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A B S T R A C T   

Reduced water availability poses risks for many economic activities. This paper studies how water risks affect 
hydroelectricity generation in Europe and the US and whether these risks are priced in by financial markets. To 
this end, we build a novel dataset for the period 2015–2022, which combines plant-specific hydroelectricity 
generation with geo-specific water physical risks and equity returns. We find that water risks, measured using 
model-based aggregate water risk metrics as well as precipitation anomalies, are significantly associated with 
reduced electricity generation, although the effect disap- pears after two months. We then link the power plants 
in our sample to the equity returns of their owners to investigate whether financial markets adequately price 
water risks. Using a portfolio sorts approach, we find weak evidence of a negative risk pre- mium. Given the real 
negative effect of water risks on generation, we conclude that the lack of a positive risk premium amounts to 
mispricing of water risks by financial markets.   

1. Introduction 

In the summer of 2022, intense droughts severely hit several loca-
tions of the world. The nega- tive effects have been felt, amongst others, 
in the hydropower sector. In Southwestern China, declining reservoir 
levels reduced the amount of electricity produced by hydropower plants 
and the government of Sichuan had to issue a power rationing plan: 
Energy-intensive indus- try, such as Toyota and the Apple supplier 
Foxconn, had to halt production for two weeks (Yin, 2022; Langley et al., 
2022). In the same summer, the European Drought Observatory re-
ported significant economic impacts from water stress mixed with high 
temperatures. In particular, hydroelectricity generation in Italy, France 
and Portugal fell by 11,233 GWh in the first half of 2022 compared to 

previous years (Toreti et al., 2022). This is equivalent to the amount of 
hydroelectricity usually produced in Italy in a three-month period. 

Academics and policy makers have drawn attention to the fact that a 
partial collapse of natural ecosystems can have catastrophic conse-
quences for the economic and financial systems (Johnson et al., 2021; 
Svartzman et al., 2021; Dasgupta, 2021; NGFS, 2022). The widespread 
disturbance of the hydrological cycle, which is the source of the water 
risks we describe in this paper, and other examples of nature loss, such as 
biodiversity loss, are caused by the same anthropogenic drivers, 
including climate change, land use change, watershed disturbance, 
pollution, and water resource development (Vorosmarty et al., 2010). 

The impact of these drivers, especially of climate change, on water 
availability affects the feasibility of new hydropower projects (IHA, 
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2019; Paltan et al., 2021).1 Yet existing plants are also facing the risk of 
producing less electricity, as changes in water availability reduce their 
generating capacity. This might hinder the transition to a low-carbon 
economy, for which hydropower is crucial (Ramiao et al., 2023; 
IRENA, 2023): existing hydropower plants are the largest source of low- 
carbon electricity globally and the International Energy Agency (IEA) 
estimates that hydropower capacity could double by 2050 and cover 
around 15% of total electricity generation in its net zero scenario (IEA, 
2021). The importance of hydropower is further compounded as it is 
needed as a flexible source of clean electricity to smooth over peaks in 
generation from solar and wind (Grady and Dennis, 2022). 

A reduction in the generating capacity of existing plants also has 
implications for the financial owners. There are at least two channels 
through which reduced water availability can impact the economic and 
financial value of hydropower plants and the viability of hydropower 
projects (Beilfuss et al., 2012; Van Vliet et al., 2016; Von Randow et al., 
2019). First, by reducing the productivity of the plants, water shortages 
negatively affect their profitability. Possible causes of productivity loss 
are reduced reservoir inflows due to decreased basin runoff, droughts 
and increased surface-water evaporation (Beilfuss et al., 2012). Second, 
reduced water availability might require investments in adaptation 
measures (Haguma et al., 2017; IHA, 2019). Such additional in-
vestments due to changes in water availability increase operating costs. 
In an extreme scenario, the lack of water can result into stranded assets, 
driving profits to zero. 

This paper contributes to the debate on the impact of nature-related 
risks on the economy and the financial system, by addressing two 
questions: (1) What is the impact of reduced water availability, which 
we refer to as water risks, on hydroelectricity generation? (2) Are these 
risks priced in by financial market? 

We rely on two different measures of water risks to quantify the 
impact of reduced water availability on hydroelectricity generation. 
First, we use a model-based aggregate water risk metric provided by WRI 
Aqueduct Water Risk Atlas, which captures exposure to changes in water 
quantity. Second, we rely on raw hydro-meteorological data from Ter-
raClimate. The dataset was developed by Abatzoglou et al. (2018) and 
combines high resolution climate nor- mals with coarser time-varying 
weather data, including precipitation and evapotranspiration. We use 
this data to construct a time-varying measure of water risks based on 
precipitation anomalies. 

We build a novel dataset that combines the two geo-specific mea-
sures of water risks with the locations of hydropower plants and plant- 
specific characteristics, including plant-level electricity generation and 
operating capacity. We also add information about the closest reservoir 
as well as equity returns of power plants’ owners. Our sample consists of 
a subset of hydropower plants in Europe and the United States that we 
observe over the period 2015–2022. We use our novel dataset to 
investigate the real effects of water risks on hydroelectricity generation 
and the pricing of water risks by financial markets. 

Our analysis of the real effects is based on three alternative empirical 
strategies. First, we perform a cross-sectional regression, in which we 
rely on the aggregate water risk metric provided by WRI. Second, we 
conduct panel regressions in which we use the time series of location- 
specific precipitation anomalies as a proxy for water risk. Third, in 
order to identify the dynamic response of hydroelectricity generation to 
water risks, we use a structural panel VAR (PVAR) approach.2 To 
investigate the pricing of water risks by financial markets, we examine 
the cross-sectional relationship between water risks and equity returns 

using a portfolio sorts approach.3 The flow of analysis is described in 
Fig. 1. 

In terms of the real effects of water risk, our analysis reveals three 
main findings. First, a one standard deviation increase in water risk is 
associated with a 9% lower hydroelectric- ity generation for the average 
plant in 2022, the driest year in our sample, relative to its historical 
average. Second, the occurrence of a precipitation anomaly (as defined 
below) is associated with a 18% drop in hydroelectricity generation. 
Third, our structural panel vector autoregression (PVAR) analysis shows 
that precipitation anomalies have an immediate effect on generation 
though the effect fades out after two months. In terms of the financial 
effects of water risks, we find weak evidence that financial markets 
provide a negative risk premium on water risk. While we expect water 
risks to negatively impact hydroelectricity generation, the pricing of 
these risks is an empirical question. If financial markets price water 
risks, exposure to such risks is associated with a positive equity risk 
premium. This implies that investors demand to be compensated for 
bearing higher risk and leads to more efficient resource al- location in 
the economy, by increasing the cost of taking risk. However, our findings 
show that water risks are not priced in, which is reflected in the weak 
evidence for a negative risk premium.4 Therefore, either financial 
markets do not provide plant owners with the right incentives for 
appropriate risk management or other mechanisms are at work that 
prevent the water risks at the plant-level to be reflected in the valuation 
of the assets. Given the evidence of negative real effects of water risks on 
hydropower generation, we conclude that the absence of a risk premium 
amounts to a mispricing of water risks by financial markets. 

1.1. Relation to the literature 

Climate-related physical risks - e.g. the increased likelihood of 
adverse weather events due to climate change - have already been 
identified as a potential source of economic losses and financial insta-
bility (Battiston et al., 2021; Campiglio et al., 2022; Bressan et al., 2022) 
and several attempts have been made to estimate appropriate damage 
functions (Nordhaus, 1993; Botzen and van den Bergh, 2012; Diaz and 
Moore, 2017; Bretschger and Pattakou, 2019; Neumann et al., 2020; 
Franzke, 2021; Dunyo, 2022; Russell et al., 2022). Moreover, empirical 
estimates of the economic costs from natural disasters have became 
increasingly available (Hornbeck, 2012; Parker, 2018; Botzen et al., 
2019; Coronese et al., 2019) and studies have emerged on the costs from 
environmental degradation (Johnson et al., 2021). 

At the same time, a related literature has focused on the economic 
impacts of water risks using both hydro-economic models (Munoz and 
Sailor, 1998; Harou et al., 2009; Dadson et al., 2017; Turner et al., 2017; 
Sarzaeim et al., 2018; de Boer et al., 2021; Liao et al., 2021; Turner and 
Voisin, 2022) and empirical analysis (Eyer and Wichman, 2018; Russ, 
2020). Dadson et al. (2017) use a dynamical systems model of water- 
related investment, risk, and growth to show that without such invest-
ment, losses from water-related hazards slow economic growth and may 
create a poverty trap. Liao et al. (2021) use a calibrated, physically 
based hydrological model to show that around 10% of China’s coal-fired 
power capacities face low-flow water risks from July to October, and 
20% the rest of the year. Empirically, the literature has shown that water 
risks can significantly impact economic growth, for instance, through 
changes in water runoff (Russ, 2020), and slow down the transition to a 
low-carbon economy by tilting the energy mix towards fossil fuels (Eyer 
and Wichman, 2018). 

A specific concern in the context of damages from water risks has 
been the hydropower sector, which plays an important role in energy 

1 While most regions are likely to see a decrease, some might see an increase 
in hydropower potential (Ali et al., 2018).  

2 For a detailed description and applications of a PVAR, see the review article 
by Pedroni (2013). 

3 Note that, due to data availability constraints, throughout our analysis we 
always look at realized and not expected returns.  

4 Note that an insignificant or a negative risk premium implies that financial 
markets are not pricing water risks. 
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security. Our paper builds on the literature on the water-energy nexus 
(Leck et al., 2015), which highlights the impacts of climate change on 
the provision of energy and water (Bhave et al., 2022; Pardoe et al., 
2018; Siderius et al., 2020). In particular, Munoz and Sailor (1998), 
Beilfuss et al. (2012), Van Vliet et al. (2016), Turner et al. (2017), Paltan 
et al. (2018), Von Randow et al. (2019), Paltan et al. (2021) and Zhao 
et al. (2023) explicitly analyze the impact of climate change on the water 
cycle and hydroelectricity generation. Van Vliet et al. (2016) project the 
impact of climate-driven changes in hydrology on the electricity gen-
eration of 24,500 hydropower projects globally. They find that between 
61 and 74% of plants will see their energy input fall. Beilfuss et al. 
(2012) and Von Randow et al. (2019) find that frequent droughts in-
crease the variability and reduce the reliability of hydroelectricity 
generation, reducing total power generation. Paltan et al. (2021) use a 
multi-model approach to project changing water flows under a 1.5 ◦C 
and 2 ◦C scenario and estimate that about 65% of current installed hy-
dropower capacity will be exposed to risk from recurrent high river 
flows. While climate change is set to exacerbate water risks (Duran- 
Encalada et al., 2017; Siderius et al., 2018; Portner et al., 2022; Geressu 
et al., 2022; Wasti et al., 2022), Lumbroso et al. (2015) find that it is 
rarely explicitly considered when new hydropower projects are planned. 

Another strand of literature considers effects at a more granular level 
(Conway et al., 2017; Goodarzi et al., 2020; Qin et al., 2020). Conway 
et al. (2017) look at the river basin configuration in Africa and find that 
by 2030, 70% and 59% of total hydropower capacity will be located in 
one cluster of rainfall variability in Eastern and Southern Africa, 
respectively. This increases the risk of a climate-related concurrent 
electricity supply disruption in each region. Goodarzi et al. (2020) 
conduct a microstudy of Seimare Dam in Iran and find that climate 
change is likely to reduce both water inflow into the dam and electricity 
generation over a a 30-year horizon. Some recent contributions have 
made inquiries similar to our paper. Opperman et al. (2022) show that 
existing and projected dams are predominantly located within river 
basins that are currently exposed to medium to very high levels of water 
risk and that climate change will increase the risk for about one third of 
these plants by 2050. Zhao et al. (2023) study the impact of climate- 
induced droughts on hydroelectricity generation in China. They find 
that more than one-fourth of studied plants will experience a 20% 
reduction in electricity generation under both optimistic and pessimistic 
climate scenarios vis-a-vis the baseline. 

Finally, we build on the literature of pricing of climate and biodi-
versity risks. Recent work examines such pricing in equities (Hong et al., 
2019; Gostlow, 2021; Pastor et al., 2022; Bolton and Kacperczyk, 2021; 
Hsu et al., 2023; Faccini et al., 2023), corporate bonds (Huynh and Xia, 
2021; Seltzer et al., 2022), municipal bonds (Painter, 2020; Goldsmith- 

Pinkham et al., 2022), options (Ilhan et al., 2021), and real estate 
(Bernstein et al., 2019; Baldauf et al., 2020; Giglio et al., 2021) or in 
multiple asset classes (Acharya et al., 2022). Amongst others, Bolton and 
Kacperczyk (2022) find that higher stock returns are associated with 
higher levels and growth rates of carbon emissions in all sectors and 
most countries. Premia related to emission levels are higher in countries 
with stricter domestic climate policies. Garel et al. (2023) take the 
analysis explicitly to the context of biodiversity loss and analyze 
whether the stock prices of firms with a greater biodiversity footprint 
react to events that signal transition risks, such as the “Kunming 
Declaration on Biodiversity Conservation”. They find that investors have 
indeed started to require a risk premium from companies with a higher 
biodiversity footprint. Coqueret and Giroux (2023) conduct a portfolio 
sorts analysis based on firm-specific measures of biodiversity loss in US 
equity markets to investigate the presence of a biodiversity risk pre-
mium. They find that the risk premium for biodiversity over the past 
decade is close to zero and that dimensions of biodiversity closely 
related to climate change attracting more market attention. 

Our paper makes two main contributions to the literature. First, by 
merging geospatial water data with asset-level economic data, it pre-
sents new empirical evidence that water risks are material to hydro-
electricity generation. This direct statistical evidence is comple- mentary 
to the results of hydrological models and can be used to validate simu-
lations from process-based models. The estimates in the paper can be 
used for planning, as well as for calibrating economy-wide models that 
endogenize hydroelectricity generation, such as Zhang et al. (2022). 
Second, the paper contributes to the literature on financial markets 
pricing climate and biodiversity risks by showing that, despite the real 
negative effect of water risks on electricity generation, there is only find 
weak evidence of a negative risk premium for the most exposed plants. 
This suggests that these risks are not adequately priced in by financial 
markets. 

The remainder of the paper is organized as follows. Section 2 de-
scribes the construction of the dataset. In Section 3 we outline our 
empirical analysis of the real effects of water risk on hydroelectricity 
generation and present the results of this analysis. In Section 4, we use 
portfolio sorts analysis to investigate the presence of a water risk pre-
mium. Section 5 provides a discussion of our main findings and their 
implications and highlights directions for future research. Section 6 
concludes. 

2. Data 

For the empirical analysis, we rely on the data sources listed in 
Table 1 and described below. 

Fig. 1. Flow of the analysis.  
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Hydropower plant location and operating capacity. We obtain 
global data on hy- dropower plants from S&P CapitalIQ Pro Asset Data 
(CIQ). We extract the location (lat- itude, longitude), operating capacity 
(in MW) and first year in service for all active hy- dropower plants 
globally (for a total of 9′498 plants). 

Hydroelectricity generation at the plant level. Data on hydro-
electricity generation for Europe is taken from the Energy Charts 
managed by the Frauenhofer Institute for Solar Energy Systems, which is 
based on 15-min interval electricity generation data from the European 
association for the cooperation of transmission system operators for 
electricity (ENTSO-E). We aggregate electricity generation data at the 
monthly level over the period 2015–2022. Monthly data on plant-level 
hydroelectricity generation in the US is taken from the Electricity Data 
Browser provided by the U.S. Energy Information Administration. For 
Europe, the plant names from the ENTSO-E dataset do not correspond to 
the names in CIQ. Hence, we manually construct a correspondence table 
to merge the generation and location data. 

Power plant types. The European data includes information on 
generation from two types of hydropower plants, run of river (ROR) and 
water reservoir (WR) plants. ROR plants are located directly on or next 
to active rivers and use water channeled from the riverbed to the facility. 
Water pressure to operate the turbines is generated by the natural 
decline of the riverbed. WR plants are located at or below artificial dams 
or impoundment facilities, which collect the water from rivers and/or 
precipitation. The pressure to power the turbines is derived from the 
elevation of the reservoir’s surface compared to the turbine. The 
distinction between ROR and WR plants is not directly available for US 
data. Instead, we construct a classification table based on the plant’s 
water source (“river”/“rio”/“creek” vs. “reservoir”/“lake”/“dam”). 

Water risks. Water risk data is taken from the World Resources In-
stitute’s Aqueduct Water Risk Atlas. The Water Risk Atlas covers three 
sources of water risks: water quantity (made up of eight indicators), 
water quality (two indicators) and reputational/regulatory risks (three 
indicators). Weights can be adjusted to the user’s needs. Our interest are 
water quantity risks, which are defined as the exposure to changes in 
water quantity that may impact a company’s direct operations, supply 
chains and/or logistics. For our purposes, we use five out of the eight 
quantity risks, which are based on the hydrological model PCR-GLOBWB 
2 (Sutanudjaja et al., 2018): baseline water stress, baseline water 
depletion, interannual variability, seasonal variability, and groundwater 
table decline. In our analysis, we use an aggregated metric of all of the 
physical quantity risks, which is computed directly within the Aqueduct 
Water Risk Atlas. This approach leads to an aggregate risk metric that is 
specific to the water basins,5 meaning that power plants in the same 
basin will have the same water risk. We obtain the water risk for the 
location of each hydropower plant by uploading the longitude and 
latitude of each plant into Aqueduct. The maps in Figs. 2 and 3 show the 
aggregate risk metric, expressed in categories of 0–4 (where 4 corre-
sponds to higher risk), of the hydropower plants in our sample. Clusters 
of high-risk (e.g., Southern California) and low-risk (e.g., Norway and 
Sweden) locations can be identified. In particular, in Europe we can 
clearly identify two zones (Northern and Southern Europe) with ho-
mogeneous characteristics in terms of water risk. Such a distinction is a 
bit less clear for the US, although we can identify a cluster of risky lo-
cations along the West Coast. However, some high- and low-risk plants 
are located close to each other, as in the Alps or the South Western US. 

Hydro-meteorological data. We rely on hydro-meteorological data 
to obtain a time- varying proxy for water risks. We use precipitation (the 
sum of rain and snow-water equiv- alent)6 and evapotranspiration (in 
mm) as well the Palmer Drought Severity Index (PDSI) from TerraCli-
mate. The PDSI is a standardized index and uses readily available tem-
perature and precipitation data to estimate relative dryness. Lower 
values are associated with drier locations. All variables have a resolution 

Table 1 
Sources of the data used in the analysis.  

Data Application Source 
Hydropower plant lo- 

cation and 
operating capacity 

Location data (latitude, 
longitude), age and operating 
capacity of 9′498 active 
hydropower plants (the final 
sample is much smaller as we 
only focus on countries with 
electricity data availability). 
The location is used to obtain 
generation, water risk and 
precipitation data. The 
operating capacity is used as 
a control variable. 

S&P CapitalIQ Pro Asset 
Data 

Hydroelectricity 
gener- ation at the 
plant level 

Electricity generation data is 
aggregated at the monthly 
level. Average generation per 
hour in each month is used as 
the dependent variable in the 
analysis. Data was reported 
in MW per 15 minute interval 
(aggregated at the mean 
hourly production each 
month) for Europe and total 
MWh produced each month 
for the US 

European data comes 
from ENTSO-E and is 
downloaded from 
Fraunhofer Energy 
Charts. US data comes 
from the En- ergy 
Information 
Administration (EIA) 

Water risk factors For the cross-sectional 
analysis, we use indicators of 
water quantity risk (water 
stress, drought risk and water 
depletion), which are based 
on a hydrological model 
validated on data from 1960 
onwards (Sutanudjaja et al., 
2018, Hofste et al., 2019). 

WRI Aqueduct Water Risk 
Atlas (World Resource 
Institute) 

Hydro- 
meteorological 
data 

In the panel analysis, we use 
data about precipitation 
(rain), snow-water 
equivalent (to account for 
snow cover, which might fill 
reservoirs too), 
evapotranspiration and the 
Palmer Drought Severity 
Index. The data comes from 
the analysis of satellite 
imagery and is available at a 
resolution of 5 km with 
missing data taken from 
separate historical sources. 

TerraClimate via Google 
Earth Engine 

Reservoir data Reservoir size is used as a 
control variable. The dataset 
contains the surface water 
area of 71,208 reservoirs/ 
lakes derived from optical 
satellite imagery. 

The data was compiled by 
Donchyts et al. (2022) 

Ownership data For the analysis of the risk 
premium, we use data on 
plant ownership to connect 
plants to their owners and/or 
ultimate parent. 

S&P CapitalIQ Pro Asset 
Data 

Revenues data We use revenues by business 
activity to infer the 
importance of the 
hydroelectricity generation 
segment for the individual 
company. 

S&P Trucost 

Realized returns We use realized returns to 
investigate the presence of a 
risk premium. 

S&P Capital IQ Financials  

5 Basins are defined as land areas in which surface water converges.  
6 Note that snow-water equivalent is not a component of precipitation as it is 

a terrestrial variable, not an atmospheric one. However, for convenience, we 
refer to the sum of rain and snow-water equivalent as precipitation. We are 
interested in a measure of the water that is available to fill reservoirs or increase 
the stream flow of rivers. 
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of 1/24◦ and we aggregate them at the monthly level over the period 
2015–2022. The TerraClimate dataset developed by Abatzoglou et al. 
(2018) combines high-spatial resolution climatological datapoints from 
the WorldClim dataset with coarser monthly data to create a monthly 
dataset for the years 1958–2015.7 The data is obtained based on a 5 km 
buffer area around the latitude and longitude of the individual power 
plants. 

Reservoir data. Time-varying data on the surface size of reservoirs 
is obtained from Donchyts et al. (2022). The dataset includes a 

reservoir’s location (in latitude/longitude) and the reservoir’s surface 
area (in ha) for the period 2000–2022. Based on the location, we match 
each power plant to the closest reservoir - a power plant is considered as 
connected to a reservoir if their coordinates are within a distance of 20 
km.8 

Financial data. We merge the plant-specific water risk measures 
with ownership informa- tion available from S&P Capital IQ and the 
financial performance (i.e. the returns) of the owners. S&P Capital IQ 
additionally contains information about the ownership percentage of a 
power plant by a company, which can be the owner of the plant or the 

Fig. 2. European hydropower plant locations in our sample and water risk categories (0 - no risk, to 4 - very high risk).  

7 Our final sample covers the period 2015–2022 due to the availability of 
other variables. 

8 We acknowledge the possibility of heterogeneous measurement error 
induced by this approach, because there will be spatial variability in temporal 
behaviour of precipitation within catchments. For smaller catch- ments (e.g. in 
Europe) this will be less of an issue but for the larger dams/catchments in the 
US it could be quite important (also important in mountainous areas where 
precipitation variability is higher). 
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ultimate parent company of the owner.9 To provide a more accurate 
picture of the risk faced by companies owning the power plants, we 
weight the risk of the power plants by the ownership share. Moreover, 
lower generation might be more relevant for some companies than for 
others, de- pending on their main activities. We capture this by including 
in the analysis the company revenue shares from different business 
segments. The revenue share data is retrieved from the S&P Trucost 
database. In particular, we look at the revenue share of a company from 
hydropower generation and pre-multiply this by the ownership share- 
weighted water risk.10 The intuition is that for companies deriving a 
large share of their revenues from hydropower, water risks are more 
relevant. Finally, data on realized returns is obtained from S&P Capital 
IQ Financials. 

Our final sample includes 1145 power plants in 14 European 

countries and 47 US states over the period 2015–2022. We report the 
summary statistics in Table A in the Appendix. 

2.1. Precipitation and power generation 

To provide some insights about trends, as well as periods of shocks 
and variability in precip- itation and electricity generation, we show the 
evolution of these variables over the sample period. Results are reported 
as monthly averages over different spatial aggregations. Fig. 4 depicts 
the evolution for the sample of European countries excluding Norway.11 

The figure shows that 2022 is the lowest precipitation year in our sample 
and reveals the presence of a clear seasonal pattern.12 Fig. 5 shows that, 
also for the US, 2022 is the year in which the lowest precipitation was 
registered.13 We also see that while average monthly electricity gener-
ation is around 40–45 MWh for both European and US plants, it seems to 

Fig. 3. US hydropower plant locations in our sample and water risk categories (0 - no risk, to 4 - very high risk).  

9 When available, we use the ultimate parent identifier and retrieve financial 
information about this company, as the ultimate parent is the guarantor in case 
of financial losses. For hydropower plants for which only the owner is available 
or no financial information about the ultimate parent could be retrieved, we 
rely on the owner.  
10 The Trucost database provides a company’s revenue shares from different 

business activities. As a robustness check, we conduct the same analysis using 
the total revenue share from “hydropower generation” and “other electricity 
generation”, instead of only “hydropower generation”. 

11 We exclude Norway from the analysis as data is only available from 2020 
onward. Moreover, Norway experienced unusually large amounts of precipi-
tation in 2021.  
12 To further investigate the variability in precipitation and hydroelectricity 

generation in European coun- tries, we also plot the monthly averages by 
country in Figure 9 in the Appendix. 
13 Figure 10 in the Appendix reports the evolution of precipitation and gen-

eration for the individual US states. 
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be more volatile in the US. Both plots show a co-movement amongst the 
variables (especially evident for the US), with generation following 
precipitation with some delay. 

3. Real effect of water risk 

We employ three alternative empirical strategies to understand the 
impact of water risk on hydropower generation. The first strategy uses 
the cross-sectional water risk from WRI; the second strategy leverages 
water risk information contained in temporal variation in hydro- 
meteorological data; the third investigates the dynamic response of 
hydroelectricity genera- tion to water risks using a structural panel VAR 

(PVAR) approach. The following subsection describes the methodolo-
gies. Subsequently, we discuss results and present some robustness 
checks. 

3.1. Methodology 

Cross-sectional analysis. To investigate the impact of water risks 
using the cross–sectional water risk metric from WRI, we first summa-
rize the time series of electricity generation in the sample period into a 
single measure. To this end, we construct plant-specific deviations in 
electricity generation in the low rainfall year 2022, as the ratio of gen-
eration in 2022 relative to the historical average (2015–2021). Our 
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regression specification reads 
ỹi = βCS ×Riski + γ′xi + δi + ϵi  

where ỹi is the plant-specific deviation in electricity generation. Riski is 
the standardized WRI aggregated raw physical quantity risk metric in 
the basin where plant i is located. βCS is our parameter of interest. The 
vector x includes the following control variables: age, which is defined 
as the number of years the power plant has been operating,14 the 
operating capacity of the power plant, and the surface area of the closest 
reservoir.15,16 We also include country fixed effects to control for un-
observables at the country level, such as country-specific demand pat-
terns for electricity, management of the electricity grid and water 
demand, as well as power plant type (WR or ROR) fixed effects (δi). 
Standard errors are clustered at the country level. Except for Risk, all 
variables are in logs and are winsorized at the 5% level. WRI also pro-
vides the risk metric on a discrete scale of five categories, running from 
0 to 4 (lowest to highest risk). Hence, we also estimate our cross- 
sectional model using these discrete categories instead of the contin-
uous values of the aggregate risk metric. 

Panel data analysis. Next, we are interested in the dynamic effect of 
water risks on electricity generation. Since the aggregate water risk 
metric from WRI is time invariant, we use the time series of precipitation 
to build a time-varying measure of water risk, which we refer to as 
“precipitation anomaly”. To construct this measure, as a first step, we 
run plant-specific regressions of precipitation on month fixed effects. 
These regressions account for the average plant-level precipitation as 
well as plant-level seasonality in rainfall. We then look at the empirical 
distribution of the regression residuals. These residuals aim to mimic 
precipitation surprises because we have removed any plant-level 
average and plant- level seasonal trends. We code events below the 

10th and above the 90th percentiles of this distribution as extreme low 
and extreme high precipitation events, respectively, using dummy var-
iables (we use the same approach for the PDSI).17 Our focus is on the low 
precipitation anomalies and we use the constructed low-precipitation 
dummies as a proxy for high water risk in our panel regression. The 
intuition behind this exercise is that even if precipitation is not the same 
as risk, extremely low values of precipitation can be interpreted as 
realized water risk. Therefore, in the subsequent discussion, we use the 
term “low precipitation anomaly” interchangeably with “water risk”.18 

Figs. 6 and 7 report the counts of low and high precipitation and PDSI 
anomalies in our sample.19 For both Europe and the US, the count of 
negative precipitation anomalies in 2022 (the red bar) outweighs posi-
tive anomalies (in yellow), a situation that only occurred in 2015 (for 
Europe) and 2016 (for the US) before.20 This is consistent with 2022 
being a lowest precipitation year in our sample.21 

We estimate the model 
yi,t = βPanel ×Anomalyi,t + γ′xi,t + δi,t + ϵi,t  

where yi,t is the plant-specific average hourly electricity generation per 
month. The dummy variable Anomalyi,t is the location-specific time se-
ries of low precipitation anoma- lies. βPanel is our parameter of interest. 
The vector xi,t includes plant- and location-specific time-varying control 
variables (operating capacity, age, area of closest reservoir, evapotran- 
spiration). The vector δi,t includes country-by-month, year and type (WR 
or ROR) fixed effects. The time fixed effects capture the average effect of 
unobserved time-varying factors that affect the dependent variable 
across all countries. These factors could include macroe- conomic 
shocks, global events, or other time-specific influences. Country by 
month fixed effect account for potential heterogeneous seasonal effects 
across countries. For example, the effect of higher temperature in some 
months might be positive for some countries (e.g., through glacier 
melting) and negative for others (more evapotranspiration). In such 
cases, the interaction between country and month fixed effects allows us 
to estimate country-specific time trends. Hence, this specification ad-
dresses additional concerns about the results being driven by electricity 
demand instead of supply shocks, for instance.22 Standard errors are 
clustered at the country level to account for any serial correlation in the 
residuals. Except for Anomalyi,t, all variables are expressed in logs and 
winsorized at the 5% level. Structural Panel Vector Autoregession. 
We also estimate the dynamic response of hydroelectricity generation to 
water risks using a structural panel VAR (PVAR) approach. The idea is to 
estimate the joint evolution of hydroelectricity generation and precipi-
tation anomalies using a flexible autoregressive model, imposing a mild 
theoretical restriction on the model, and using the estimated model to 

14 The rationale for including age is that it could affect the results in two ways: 
on the one hand, older power plants might have been upgraded to become more 
efficient over time; on the other hand, older power plants, left without updates, 
might become less efficient.  
15 Note that we matched the power plants with the closest reservoir both for 

water reservoir (WR) and run of river (ROR) plants. This is justified by two 
reasons: First, the available data on reservoirs size does not distinguish between 
hydropower-specific and other reservoirs. Second, even in the case of ROR 
plants, a water reservoir nearby increasing in size could have a positive effect 
on generation that we want to control for.  
16 Due to data availability constraints, we do not include information about 

storage at the plant level. Our results are likely to underestimate the negative 
effect of water risks, since we do not control for plants’ potential to isolate 
themselves from water risks through storage. Likewise, we do not control for 
the endogenous location choice of the power plants or the adoption of adap-
tation measures. Regarding this second aspect, empirical analysis can, in gen-
eral, estimate two types of effects: (1) a general equilibrium (or policy) effect, 
(2) a partial equilibrium effect. In the first case, we would want to obtain an 
estimate that accounts for the endogenous location choice or for the adoption of 
adaptation measures. This could be the case, for instance, if we want to provide 
estimates for choosing a policy that intervenes conditional on location choice or 
investment decisions of the private sector. In this case, using an effect estimate 
that disregards private sector decisions might lead to an inefficiently large 
intervention by the policy maker. In the second case, we could attempt to 
measure the effect of water risks only, without taking the effect of endogenous 
location or adaptation into account. If we were to not account for the reduction 
in the negative effect due to endogenous location choice or the adoption of 
adaptation measures (or other similar unobservables), we would end up esti-
mating a more negative effect. Hence, our results might represent a lower 
bound of the effect of water risks. 

17 There are two advantages of this approach. First, the residuals obtained 
from the plant by plant regression on time fixed effects are noisy. By dis-
cretizing the residuals into dummy variables, we can reduce the measurement 
error. Second, coding the low/high precipitation as dummies allows us to 
interpret these occurrences as extreme events, which we consider to be a better 
proxy for risk.  
18 The validity of these proxies for water risks is supported by the fact that the 

WRI’s water risk metric correlates with rainfall, as shown in the Figs. 11, 12 and 
13 in the Appendix.  
19 See Figs. 15 and 16 in the Appendix for the occurrence of anomalies by 

European countries and US states, respectively.  
20 The count for the US is lower in 2021 and 2022 because for 14 states, our 

precipitation data is only available until 2020.  
21 Figures 12 and 13 in the Appendix show the average monthly precipitation 

by risk category in Europe and the US. They further confirm that 2022 saw low 
precipitation, especially for basins exposed to high or very high water quantity 
risk.  
22 The (i, t) subscript in δi,t indicates that there is both cross-sectional and time 

variation in the fixed effects. Conceptually, the effect is estimated off the within 
country-season and type variation, controlling for common annual trends and 
observable plant characteristics. 
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derive the effect of a one time, exogenous shock to the anomaly on the 
subsequent evolution of hydroelectricity generation.23 More precisely, 
the PVAR model reads 

yi,t = μi +
∑p

l=1

Alyi,t−l + ϵi,t  

where the yi,t is a 2 × 1 vector of the two endogenous variables 

yi,t =
[

Anomalyi,t, log( Generation )i,t

]′

,

and μi is plant fixed effect. Each endogenous variable is expressed as 
linear combination of l lags of itself and the other endogenous variable. 
Under stationarity, this PVAR representation has the equivalent panel 
vector moving averages (PVMA) representation24 given by 

yi,t = μi +

(
∑∞

j=0

Aj

)
[
ϵi,t−j

]
.
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Fig. 7. Count of high and low precipitation and PDSI anomalies in the US.  

23 The panel VAR approach is commonly used in macroeconomic studies to 
study similar questions. For a detailed description and applications, see the 
review by Pedroni (2013). 24 This can be obtained by recursively substituting the VAR representation. 
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Based on this representation, the impulse response function is 
defined as 

IRF(k, r) =
∂yi,t+k

∂
(
ϵi,t

)
r

= Aker,

where k is the number of periods after the shock to the r-th component of 
ϵi,t with er being a m × 1 vector with a 1 in the r-th column and 
0 otherwise. This impulse response, however, does not correctly capture 
the dynamic response of one endogenous variable to an exogenous 
change in another. This is because the residuals ϵi,t are not the same as 
exogenous shocks to individual endogenous variables. Formally, let Σϵ 

be the variance-covariance matrix of ϵi,t. In general, the off-diagonal 
elements of Σϵ will not be 0, which invalidates their interpretation as 
exogenous shocks. The issue here is similar to that of omitted variable 
bias. In our case, unobserved shocks to precipitation can be correlated 
with unobserved shocks to hydropower generation. To find a causal 
effect, we need to shut down any variation from the latter. 

To recover exogenous shocks, we need to impose some restrictions 
on model parameters. In particular, we impose that Σϵ is upper trian-
gular (Cholesky decomposition). This amounts to assuming that any 
exogenous shocks to hydroelectricity generation do not have a 
contemporaneous effect on precipitation anomalies. This is a defensible 
assumption since it is unlikely that a shock to generation, e.g. from an 
exogenous change in electricity demand, has an instantaneous effect on 
precipitation in the same month.25 We can use this assumption to adjust 
the VAR parameters to create a counterfactual where the effect on an 
exogenous shock to the precipitation anomaly propagates through the 
system. Formally, note that since Σϵ is a variance-covariance matrix, it is 
symmetric positive definite. Therefore, there exists a unique Cholesky 
decomposition such that Σϵ = PP⊤, where P is a lower triangular matrix. 
Defining Θk = AkP and ui,t = P−1ϵi,t we obtain the orthogonal impulse 
response function: 

OIRF(k, r) =
∂yi,t+k

∂
(
ui,t

)
r

= Θker 

Here ui,t has the interpretation of an exogenous shock and the the 
orthogonal impulse re- sponse function traces out the response path of 
an endogenous variable to an exogenous shock. In our case, we are 
interested in the impulse response of hydropower generation to an 
identified precipitation anomaly shock. We implement the structural 
PVAR using the panelvar package in R (Sigmund and Ferstl, 2021).26 

3.2. Results 

Cross-sectional analysis. The cross-sectional analysis shows that a 
higher water risk metric is indicative of greater deviation in hydropower 
plants’ electricity generation in a dry year. Table 2 displays our results. 
We find a significant negative relationship between the aggregate water 
risk metric and hydroelectricity generation. Specifically, in our baseline 
regression (Model (1)), one standard deviation increase in the risk 
metric is associated with 9% lower electricity generation in 2022 rela-
tive to the historical average. In Model (2), we use the discrete water risk 

categories instead of the continuous water risk metric. The coefficients 
have to be interpreted as the percentage difference in generation 
compared to the no-risk category (category 0), which is our benchmark. 
The results show that plants located in higher risk category basins see 
larger and more significant reductions in electricity generation in 2022 
relative to their historical average. Specifically, a plant located in a very 
high risk basin (category 4), experiences an estimated 31% larger 
reduction in generation over its average in a dry year, compared to a 
plant located in a no-risk basin. 

Panel data analysis. Our results from the panel data analysis are 

Table 2 
Cross sectional regression of electricity generation in 2022 compared to the 
histor- ical average at the plant level. Model (1) uses the continuous risk score. 
Model (2) uses the categorical risk score, where the benchmark is the risk 
category 0 (no risk.  

Dependent variable: Generation deviation 
Model: (1) (2) 
Independent variables: 

Water risk  −0.0914***   
(0.0102)  

Operating capacity −0.0241 −0.0304  
(0.0135) (0.0180) 

Age 0.0365 0.0498  
(0.0755) (0.0751) 

Reservoir size 0.0009 0.0007  

Risk category 1 
(0.0129) (0.0145) 

−0.1390**  

Risk category 2  
(0.0613) 
−0.3321***  

Risk category 3  
(0.0642) 
−0.2678***  

Risk category 4  
(0.0488) 
−0.3116***   
(0.0427) 

Fixed-effects   
Country Yes Yes 
Type Yes Yes 
Fit statistics   
Observations 165 165 
R2 0.17738 0.20288 
Within R2 0.05846 0.08765 

Clustered by country standard-errors in parentheses Signif. Codes: ***: 0.01, **: 
0.05, *: 0.1. 
Notes: The cross-sectional model has a sample of only 165 plants as US plants 
with less 100 MW capacity have not reported generation data for 2022 yet. 

Table 3 
Baseline panel regression with precipitation anomalies.  

Dependent variable: log(Generation) 
Independent variables: 
Precipitation anomaly −0.1799*** 

(0.0359) 
Age 0.2268 

(0.1491) 
Reservoir size 0.0377** 

(0.0179) 
Operating capacity 0.9244*** 

(0.0796) 
Evapotranspiration 0.0995** 

(0.0386) 
Fixed-effects 
Country by Month Yes 
Year Yes 
Type Yes 
Fit statistics 
Observations 69,700 
R2 0.32533 
Within R2 0.20810 

Clustered by country standard-errors in parentheses Signif. 
Codes: ***: 0.01, **: 0.05, *: 0.1. 

25 Besides the Cholesky decomposition adopted here, there are several other 
types of theoretical restrictions that can be imposed to recover exogenous, or 
structural, shocks from residuals. The term “structural” refers to the idea that 
these shocks are the main exogenous drivers of the economic system and they 
are propagated through the system via relationships between the endogenous 
variables. As such, the problem of identification, or recoverability, of structural 
shocks has been extensively studied in macroeconometrics. A more detailed 
discussion is beyond the scope of this paper; a textbook treatment can be found 
in Kilian and Lutkepohl (2017).  
26 The package is available at https://cran.r-project.org/web/packages/pane 

lvar/. 
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displayed in Table 3. The occurrence of a negative precipitation anomaly 
reduces electricity generation by 18%. Hence, when water risks mate-
rialize as unexpectedly low water availability, the electricity generation 
by affected plants is significantly reduced. While a direct comparison of 
this estimate size with the cross-sectional estimate is not straightfor-
ward, we can still consider the following ballpark numbers. As defined, a 
negative precipitation anomaly has a 10% chance of occurring. 
Assuming a normal distribution for precipitation surprises, this is 1.72 
standard deviations away from the mean. Scaling the estimated 18% 
effect, we get a 10.5% effect of the one standard deviation shock. In line 
with our expectations, the coefficients on operating capacity and the 
area of the reservoir are positive and significant.27,28 

We conduct several robustness checks for the panel data setting, 
which are reported in Table 4. First, to account for potential autocor-
relation in the measure of water risk that we have constructed, we run 
our baseline regression controlling for up to six lags of the shocks. Model 
(1) in Table 4 reports the results when including lags of the anomalies. 
As expected, the coefficient capturing the impact of the contempora-
neous anomaly is smaller in magnitude, but the sign and statistical 
significance are not affected. This implies that the effect of precipitation 
anomalies cumulates over time, leading to a persistent effect, although 
the effect seems to disappear after three months. Second, we test an 
alternative measure of water risk, namely anomalies to the Palmer 
Drought Severity Index (PDSI) (Palmer, 1965).29 We find that a PDSI 
anomaly is associated with an even stronger (33%) reduction in elec-
tricity generation. This might be due to the fact that the PDSI is a more 
comprehensive measure of water availability, including for instance 
surface air temperature, which could be correlated with hydroelectricity 
generation. These results are reported in Model (2) of Table 4. Third, in 
Model (3), we include country and month fixed effects separately. 
Finally, in our baseline regression we control for the type of plants (WR 
or ROR), but include all the plants in the sample. The intuition behind 
plant types fixed effects is that precipitation anomalies are more rele-
vant for plants situated on a river than for plants with reservoirs, which 
can use storage to manage anomalies in the short term. To test this 
hypothesis, we run two separate regressions for WR and ROR plants in 
Models (4) and (5), respectively. Our results show that run of river plants 
are more sensitive to water risks, with a larger and more significant 
reduction in electricity generation following the occurrence of a pre-
cipitation anomaly. In particular, a negative anomaly reduces hydro-
electric generation for ROR plant by 17.25%, which is equal to a 6.38 
GWh reduction in electricity generation for an average ROR plant (in our 
sample) that produces 36.56 GWh of power. On the other hand, an 
average WR plant, which produces 39.01 GWh of power monthly, wit-
nesses at 15.04% reduction (equal to 5.87 GWh) following a similar 
event. This confirms the conventional wisdom that storage offered by 
reservoirs reduces the sensitivity to lower precipitation. However, sur-
prisingly, we only find a positive effect of the reservoir size for ROR 

plants. This could be due to the smaller number of observations for WR 
power plants. Moreover, the reservoir size only refers to the surface of 
the reservoir and does not account for the volume. 

Structural Panel Vector Autoregession. Finally, we present the 
results from the struc- tural PVAR. Fig. 8 shows the estimated impulse 
response of log(Generation) to a precipi- tation anomaly from a structural 
PVAR with 6 lags. Precipitation anomalies have an effect on hydropower 
generation for up to two months, beyond which the effect fades out. 

4. Financial markets’ pricing of water risks 

Next to the real effects of water risks on electricity generation, we are 
interested in whether such water risks are priced in by financial markets. 
Hence, we link the power plants in our sample with the equity returns of 
their owners. Considering the real effect of water risks identified in the 
previous section, investors should demand a positive equity risk pre-
mium for holding companies owning riskier power plants. In other 
words, we expect to find a positive cross-sectional relationship between 
water risks and stock returns. If such a relationship exists, financial 
markets are pricing in water risks and investors are trading off risks and 
returns, as well as and demanding to be compensated for bearing higher 
water risks. However, if this relationship does not exist, water risks are 
not priced in, and financial markets might not be providing plant owners 
the right incentives for appropriate risk management. 

While most owners of larger hydropower plants are utilities, many of 
these firms are listed and partially traded companies. For instance, in 
our sample, Enel, Fortum, Energias de Portugal, Iberdola and PG&E are 
stock-listed and traded, while Electricité de France, a publicly traded 
company, was traded until recently fully nationalized. The subsample of 
publicly-traded companies gives us the opportunity to study the pricing 
of the water risks by financial markets. 

4.1. Methodology 

A positive cross-sectional relationship between water risk and excess 
equity returns is evidence of a risk premium for water risk. We use the 
portfolio sorts approach to investigate the presence of a risk premium. 
This is a non-parametric method for studying cross-sectional relation-
ships between two variables - in our case, excess stock returns and water 
risk. 

To apply the portfolio sorts approach, we construct a company-level 
measure of exposure to water risk. This is a weighted average of the risk 
of all plants owned by a company, with weights defined as the owner-
ship percentage of the company in each plant. For each company i, we 
define a water exposure metric. 

Expi,t = Revi,t ×

∑
j∈J

Riskj × Own%j

∑
j∈J

Own%j.

where Revi,t is the revenue percentage from hydroelectricity generation 
for company i in year t. J is the set of all power plants owned by a 
company i and Own%j is the share in power plant j owned by company i. 

Given our metric of exposure to water risk, we proceed in four steps. 
First, we partition the sample into groups based on the exposure to water 
risk of the companies. More concretely, companies are sorted based on 
their water risk level and then partitioned into terciles. Second, com-
panies in each tercile are used to create tercile portfolios (stocks in the 
lowest risk tercile will form the least risky portfolio). We use two 
alternative ways of forming these portfolio: (i) we create value-weighted 
(VW) portfolios, with the weights given by the market capitalization of 
each company (for a given tercile) in a month. This is equivalent to 
buying stocks in proportion to their market capitalization of the com-
pany and rebalancing the portfolio at the beginning of each month; (ii) 
we create equally-weighted (EW) portfolios. This amounts to buying an 
equal number of stocks in each company, without rebalancing. For every 

27 Note that the coefficient for operating capacity is significant, unlike in the 
cross-sectional regression. A possible explanation is that a ratio is not affected 
by the operating capacity, whereas when we want to explain changes to the 
overall generation, operating capacity plays a more important role. The same 
might apply for the size of the reservoir.  
28 An alternative analysis could focus on empirically measuring the risk for 

plant i as a time series correlation between generation and precipitation. This 
would give a time invariant measure of plant-specific risk (namely, the coeffi-
cient in the time series regression). In other words, with a sufficiently long time- 
series of electricity generation and precipitation anomalies, we could investi-
gate plant-specific βs, as e.g. in (Keane and Neal, 2020). This approach can also 
be used to estimate plant-specific adaptation under some theoretical 
restrictions.  
29 The PDSI is a standardized index and uses readily available temperature and 

precipitation data to estimate relative dryness. Lower values are associated with 
drier locations. Alternatively, we could have used the Standardized Precipita-
tion Index (McKee et al., 1993). 
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Table 4 
Panel regression robustness checks. Model (1) includes 6 lags of the precipitation anomalies, Model (2) looks at the impact of PDSI anomalies, Model (3) includes 
country and month fixed effects separately, Model (4) and (5) only includes the results for the subsamples of WR and ROR power plants, respectively.  

Dependent variable:   log(Generation)  
Model: (1) (2) (3) (4) (5) 
Independent variables: 

Precipitation anomaly  −0.1337***   −0.1722***  −0.1504*  −0.1725***  

Precipitation anomaly, 1 lag 
(0.0355) 
−0.1157***  

(0.0539) (0.0849) (0.0511)  

Precipitation anomaly, 2 lags 
(0.0424) 
−0.0976***      

Precipitation anomaly, 3 lags 
(0.0347) 
−0.0937***      
(0.0296)     

Precipitation anomaly, 4 lags −0.0294      
(0.0259)     

Precipitation anomaly, 5 lags 0.0042      
(0.0322)     

Precipitation anomaly, 6 lags −0.0263      
(0.0418)     

Age 0.2039 0.2264 0.2268 0.0022   
(0.1471) (0.1470) (0.1472) (0.1733)  

Reservoir size 0.0342* 0.0377** 0.0382** −0.0578 0.0443**  

Operating capacity 
(0.0179) 
0.9307*** 

(0.0179) 
0.9274*** 

(0.0179) 
0.9273*** 

(0.0521) 
0.6627** 

(0.0201) 
1.012***  

(0.0844) (0.0820) (0.0820) (0.2804) (0.0527) 
Evapotranspiration 0.0425 0.0379 0.0849** 0.0465 0.0310  

PDSI anomaly 
(0.0285) (0.0282) 

−0.3291*** 
(0.0324) (0.0566) (0.0253)   

(0.0774)    
Fixed-effects      
Month Yes Yes Yes Yes Yes 
Country Yes Yes Yes Yes Yes 
Type Yes Yes Yes   
Year Yes Yes Yes Yes Yes 
Fit statistics      
Observations 64,576 69,700 69,700 16,352 53,348 
R2 0.31174 0.30819 0.30731 0.15119 0.40037 
Within R2 0.20680 0.20475 0.20375 0.05424 0.28015 

Clustered (country fe) standard-errors in parentheses. 
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. 
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Fig. 8. Impulse response function of log(Generation) to a precipitation anomaly. 
Notes: The dark line plots the estimate of the impulse response and the dotted lines represent a 90% confidence band. The confidence interval is based on a 
bootstrapping approach as described in Sigmund and Ferstl (2021). 
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tercile, we calculate the monthly excess return for both portfolio types 
(VW and EW). Excess return is defined as the difference between the 
realized return and the risk-free return for a given month. As a result, for 
each portfolio type (VW and EW), we have three time-series of excess 
returns, each corresponding to a tercile. In the third step, we create a 
hybrid portfolio, which buys (shorts) the high-risk portfolio and sells 
(goes long on) the low-risk portfolio and calculate its monthly excess 
return. The excess return on this hybrid portfolio is equal to the excess 
return on the high-risk portfolio minus the excess return on the low risk 
portfolio. This gives us an aggregate time-series “risk factor” (one for 
each portfolio type, VW and EW), which captures the excess return from 
maximal exposure to water risk in a given month. This risk factor rep-
resents the systematic water risk in the economy from the perspective of 
financial markets (Fama and French (2015)). Finally, to estimate the 
premium on water risk, we take a time-series average of this risk factor, 
that is, the unconditional average return of the long-short portfolio. We 
obtain two estimates - one for the VW portfolio and another the EW 
portfolio. 

One of the central insights of asset pricing theory is that excess 
returns on any individual traded asset or security should be explained, 
on average, by its exposure to systematic risk factors. Therefore, we 
might still be concerned that any estimated water risk premium can be 
explained by the exposure of assets to other systematic risks in the 
economy. In other words, water risk might not, in fact, be an indepen-
dent source of systemic risk in financial markets. To address this 
concern, we examine whether our findings persist even after controlling 
for sensitivity of the long-short portfolio returns to known systematic 
risk factors. We consider three alternative choices of systematic risk 
factors, or risk models, that are common in the literature. First, as sug-
gested by CAPM (Sharpe, 1964; Lintner, 1965), we consider excess re-
turn on the market portfolio as the only source of systematic risk in the 
economy. To this end, we run the following regression 
rt = α+ βMKT(Mkt−RF)+ ϵt  

where rt is the water risk factor and Mkt − RF is the excess return on the 
market portfolio. Second, we extend the set of predictors to include the 
five factors proposed by Fama and French (2015). In addition to Mkt −
RF, the authors add four more independent measures of systematic risk. 
These include: SMB, or small minus big, which represents the return 
spread between small- and large-cap stocks; HML, or high minus low, 
which measures the return spread between high book-to-market and low 
book-to-market stocks; RMW, or robust minus weak, which compares 
the returns of firms with high, or robust, operating profitability, and 
those with weak, or low, operating profitability, and lastly, CMA, or 
conservative minus aggressive, which gauges the difference between 
companies that invest aggressively and those that do so more conser-
vatively. These variables are maintained by Ken French and are avail-
able for download on his website.30 This leads to our second regression 
specification 
rt=α+βMKT(Mkt−RF)+βSMBSMB+βHMLHML+βRMW RMW+βCMACMA+ϵt,

Finally, we also add the well-known momentum factor (Jegadeesh 
and Titman, 1993) to this list. This gives us the following model  

In all three regressions above, α represents the water risk premium 
after controlling for exposure to systematic risks. Therefore, it is our 
parameter of interest and we will compare the estimates of α with the 
unconditional average return of the long-short portfolio, i.e. the average 
of the water risk factor for the VW portfolio and another the EW 
portfolio. 

4.2. Results 

Model (1) in Table 5 (6) shows the unconditional average excess 
return of the VW (EW) long-short portfolio over our sample period. This 
is an estimate of the water risk premium. The t-statistics are in paren-
theses below and can also be interpreted as Sharpe ratios. The average 
excess return is negative. Moreover, it is larger in magnitude and has a 
higher Sharpe ratio for the value-weighted portfolio. The results from 
the factor regressions, which estimate the risk premium after controlling 
for exposure to other systematic risk factors, are presented in Models 
(2)–(4) of Tables 5 and 6, for value-weighted and equal-weighted 
portfolios, respectively. 

For the three factor regression specifications considered, we consis-
tently find a negative estimate α, which would imply that the water risk 
factor earns a negative premium. The value of the risk premium is 
negative 9% when looking at value-weighted portfolios and reduces to 
negative 6–7% when using equal-weighted portfolios. Moreover, the t- 
statistics for equal- weighted portfolio are much smaller compared to 
those for value-weighted portfolios. This has two implications. First, the 
large magnitude of the risk premia for the value-weighted portfolio is 
driven by a few large firms. Second, given the proliferation of papers 
seeking new factors to explain the cross-section of returns raises data 
mining concerns, the evidence of negative risk premium itself is quite 
weak. To address this problem, the literature has proposed alternative 
multiple hypothesis testing frameworks. In this scenario, the typical 

cutoff values for t-statistics that are needed to reject the null hypothesis 
are considered too low. As a result, most of these frameworks result in a 
higher hurdle for the t-statistics to guard against the likelihood of false 
positive discoveries. As an example, Harvey et al. (2016) and Chordia 

Table 5 
Water risk premium with revenues from hydroelectricity generation and value- 
weighed portfolios.  

Dependent variable: Water risk factor 
Model: (1) (2) (3) (4) 
Independent variables:     
Constant −0.086 −0.088 −0.087 −0.087  

(−2.816) (−2.895) (−2.831) (−2.835) 
Mkt-RF  0.002 0.002 0.002   

(1.650) (1.279) (0.959) 
SMB   0.001 0.000    

(0.206) (0.158) 
HML   −0.000 −0.001    

(−0.123) (−0.399) 
RMW   −0.002 −0.002    

(−0.342) (−0.347) 
CMA   −0.001 0.000    

(−0.136) (0.007) 
Mom    −0.002     

(−0.703) 
Observations 202 202 202 202 

Notes: t-statistics in parentheses. Standard errors are adjusted following Newey 
and West (1987) using six lags. 

rt = α+ βMKT(Mkt−RF)+ βSMBSMB+ βHMLHML+ βRMW RMW + βCMACMA+ βMomMom+ ϵt   

30 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library. 
html 
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et al. (2020) propose using t-stat hurdles of 3 and 3.84, respectively. Our 
t-stats are too low compared to these benchmarks, especially for the EW 
portfolio. Therefore, on the whole, we find that there is weak evidence of 
a negative risk premium. This implies that the markets do not price in 
the water risks for these assets. However, given the real negative effect 
on generation of water risks, our factor should earn a positive premium. 
We conclude that the lack of a premium amounts to mispricing of water 
risks by financial markets. 

5. Discussion 

Our findings align with the intuition that increasing negative pre-
cipitation anomalies, which are expected consequences of climate 
change, will reduce hydropower generation. However, when testing 
whether financial markets reflect these implications, we find weak ev-
idence that investors are willing to accept lower returns from firms with 
higher exposures to water risk. This divergence between real and 
financial effects suggests that financial markets do not fully internalize 
the externality imposed by water risk. This can lead to excessive risk- 
taking by the hydropower sector as well as asset managers, leading to 
a suboptimal allocation of resources as well as instability in the financial 
system. Note that it is not a theoretical necessity that financial markets 
cannot price environmental externalities. As discussed above, several 
papers found risk premia for climate-related risks. Therefore, the 
empirical relevance of nature-related risk pricing needs to be established 
for specific risks and specific asset classes. If externalities are not 
properly priced, government policy interventions such as taxes and 
quotas, as well as financial policies are necessary to correct the mis-
pricing. While the discussion of such policies is beyond the scope of this 
paper, this highlights the relevance of our empirical results. 

There are several limitations to our approach. For example, a po-
tential bias in our cross- sectional model could stem from an omitted 

variable, such as regional weather patterns, which affect both water risk 
factors and deviations in electricity generation. Another limitation is 
that our study does not consider the propagation of shocks to the hy-
dropower sectors to other sector of the economy. This implies that the 
overall effect of water risks on the economy might be larger than what 
we estimate. 

Future research should analyze the heterogeneity across regions and 
basins. Following Conway et al. (2017), follow-up studies could inves-
tigate the location of hydropower plants by spatial clusters with 
coherent temporal rainfall variability. Extensions of the models pre-
sented in this paper may include additional control variables, relating to 
reservoir characteristics such as volume and dual use for irrigation. 
Finally, future research should analyze cascading effects by looking at 
spillovers across sectors and ownership relationships to help translate 
water risks into financial losses. 

6. Conclusion 

There is increasing awareness about the impact of climate change 
and the decline of natural ecosystems on the economy and the financial 
system. The disturbance of the hydrological cycle, which is the source of 
the water risks we describe in this paper, and other examples of nature- 
related risks, such as biodiversity loss, are interdependent and share the 
same anthropogenic drivers (Vorosmarty et al., 2010). 

Reduced water availability poses risks for many economic activities. 
This paper studies how water risks affect hydroelectricity generation in 
Europe and the US and whether these risks are priced in by financial 
markets. To this end, we build a novel dataset for the period 2015–2022, 
which combines plant-specific hydroelectricity generation with geo- 
specific water physical risks and equity returns. We show that water 
risks are material for hydroelectricity, a crucial energy source in the 
transition to a low-carbon economy. Higher water risk is associated with 
a 9% lower hydroelectricity generation for the average plant in 2022, 
the driest year in our sample, relative to the historical average. At the 
same time, the occurrence of a negative precipitation anomaly is asso-
ciated with a 18% drop in hydroelectricity generation, although the 
effect disappears after two months. These findings can be used to inform 
the design of the low-carbon transition and the role of hydroelectricity. 
To understand the financial effects of water risks, we use plant owners’ 

financial returns and investigate whether financial markets adequately 
price water risks. Using a portfolio sorts approach, we find weak evi-
dence of a negative risk premium. Given the real negative effect of water 
risks on electricity generation, we concluded that the lack of a positive 
risk premium amounts to mispricing of water risks by financial markets. 
This calls for closer scrutiny by financial supervisors. 
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Appendix A. Summary statistics 

Our sample includes 13 European countries, 47 US states, 1145 power plants of two types (run of river or ROR and reservoir or WR) and spans the 
period 2015–2022. Summary statistics are reported for the datasets used in the regressions (winsorized at the 5% level).  

Table 6 
Water risk premium with revenues from hydroelectricity generation and 
equally- weighed portfolios.  

Dependent variable: Water risk factor 
Model: (1) (2) (3) (4) 
Independent variables:     
Constant −0.083 −0.076 −0.061 −0.062  

(−2.232) (−1.949) (−1.449) (−1.474) 
Mkt-RF  −0.009 −0.009 −0.008   

(−2.161) (−2.104) (−1.771) 
SMB   −0.020 −0.019    

(−2.262) (−2.267) 
HML   0.010 0.013    

(1.293) (1.348) 
RMW   −0.026 −0.026    

(−1.650) (−1.640) 
CMA   −0.028 −0.031    

(−1.521) (−1.526) 
Mom    0.005     

(0.765) 
Observations 202 202 202 202 

Notes: t-statistics in parentheses. Standard errors are adjusted following Newey 
and West (1987) using six lags. 
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Table 7 
Summary statistics.  

Variable  Unit Min. Max. Mean Std dev.  

Cross section       
Generation change  ratio 0.26 1.35 0.84 0.26 
Age  years 24 104 59 21.71 
Operating capacity  MW 3.1 960.0 193.37 186.3 
Risk  numeric 0.3618 3.6 1.27 0.82 
Reservoirs’ size  ha 53.01 320,674.6 10,095.37 37,492.83  

Panel regression       
Generation  GWh 0 3944.18 36.56 133.19 
Operating capacity  MW 0.4 441 83.66 125.27 
Age  years 1 111 67.36 27.93 
Precipitation and mm/month 0.00 321.34 105.75 85.9 
snow-water equivalent 

Evapotranspiration  mm  0.00  1200.6  498.22  386.71 
PDSI index −791.44 564.02 46.52 295.56 
Reservoirs’ size ha 0.92 36,758.92 4963.27 9457.54  

Appendix B. Precipitation and generation

Fig. 9. Monthly average precipitation (solid line) and monthly average electricity gener-ation (dashed line) in European countries.   
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Fig. 10. Monthly average precipitation (solid line) and monthly average electricity generation (dashed line) in US states.  

Appendix C. Hydroelectricity generation shares 

Table 8 reports the average share of electricity generated from hydropower and other renew- able energy sources (excluding nuclear and waste) in 
Europe and the US as well as total electricity generated for 2022.  

Table 8 
Share of hydropower and other renewables in the total electricity generation of countries in our sample. (*UK Data from 
2019) Source: ENTSO-E/Fraunhofer Energy Charts/IEA.   

Share hydropower Share other renewables Total (TWh) 
Austria 56.16% 21.37% 49.93 
France 10.05% 13.64% 428.02 
Germany 3.45% 45.40% 490.33 
Italy 10.76% 21.88% 244.92 
Norway 88.36% 10.60% 143.54 
Portugal 13.31% 46.06% 40.88 
Romania 25.45% 16.03% 55.16 
Spain 8.32% 36.26% 261.43 
Sweden 43.29% 20.31% 161.27 
Switzerland 51.64% 6.28% 55.44 
UK* 1.41% 25.79% 252.98 
US 6.17% 15.34% 4243  

Appendix D. Correlation between precipitation and the water risk metric 

Fig. 11 shows average yearly precipitation and water risk at the plant level, differentiating by type of the power plant (water reservoir (WR) and 
run of river (ROR)) and color coded by risk category. Higher water risk is associated with lower precipitation. 
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Fig. 11. Correlation between precipitation and water risk, by risk category.  

Appendix E. Precipitation 

Figs. 12 and 13 show the average monthly precipitation disentangled by water risk categories for European and US plants, respectively.
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Fig. 12. Average monthly precipitation by water risk category at European plants. The dashed line shows the mean per risk category for the European sample.  
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Fig. 13. Average monthly precipitation by water risk category at US plants. The dashed line shows the mean per risk category for the US sample.  

C. Colesanti Senni et al.                                                                                                                                                                                                                       



Ecological Economics 218 (2024) 108048

18

Appendix F. Generation ratio 

Fig. 14 displays the deviation of electricity generation in 2022 (a low-rainfall year) rela- tive to the historical average by plant. The different 
colours reflect the different water risk categories. Some of the plants located in the high risk category generate more electricity in 2022 relative to the 
historical average. However, the figure documents that 2022 saw lower average hydroelectricity generation vis-a-vis the previous years (horizontal 
lines) across all risk categories, with stronger effects in higher categories (2–4).
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Fig. 14. Deviation of electricity generation in 2022 relative to the historical mean by plant and risk category.  

Appendix G. Water anomalies 

Figs. 15 and 16 report the counts of precipitation and PDSI anomalies each year in the sampled European countries and US states, respectively. 
Note that in the US, the data for 2021–2022 is only available in 14 states.
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Fig. 15. Count of high and low precipitation and PDSI anomalies in individual European countries.   
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Fig. 16. Count of high and low precipitation and PDSI anomalies in individual US states.  

Appendix H. Portfolio sorts analysis using an alternative revenue- share definition 

As a robustness check, we use a different measure for the revenues when computing the company-specific exposure to water risks. In particular, we 
do not only include the revenues from hydroelectricity generation, but also the one from electricity distribution. Results are reported in Tables 9 and 
10 for value-weighted and equal-weighted portfolios, respectively. In the first case, results are very close to the baseline including only revenues from 
hydro- electricity generation. In the second case, the values are slightly bigger. We prefer to rely on the specification in the main text as we think it 
provides a more accurate picture of the relevance of hydroelectricity generation for the companies analyzed.  

Table 9 
Water risk premium with revenues from hydroelectricity generation and distribu- tion and value-weighted portfolios.  

Dependent variable: Water risk factor 
Model: (1) (2) (3) (4) 
Independent variables:     
Constant −0.089 −0.090 −0.089 −0.089  

(−2.983) (−3.015) (−2.943) (−2.946) 
Mkt-RF  0.001 0.001 0.000   

(0.812) (0.717) (0.270) 
SMB   −0.001 −0.002    

(−0.421) (−0.517) 
HML   0.001 −0.001    

(0.302) (−0.155) 
RMW   −0.000 −0.000    

(−0.051) (−0.056) 
CMA   −0.003 −0.002    

(−0.562) (−0.293) 
Mom    −0.003     

(−1.230) 
Observations 202 202 202 202 

Notes: t-statistics in parentheses. Standard errors are adjusted following Newey and West (1987) using six lags.  

Table 10 
Water risk premium with revenues from hydroelectricity generation and distri- bution and equally-weighted portfolios.  

Dependent variable: Water risk factor 
Model: (1) (2) (3) (4) 
Independent variables:     
Constant −0.102 −0.102 −0.099 −0.099  

(−3.117) (−3.134) (−2.703) (−2.706) 
(continued on next page) 
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Table 10 (continued ) 
Dependent variable: Water risk factor 
Model: (1) (2) (3) (4) 
Mkt-RF  0.001 −0.001 −0.000   

(0.089) (−0.085) (−0.017) 
SMB   −0.011 −0.011    

(−1.344) (−1.333) 
HML   0.021 0.022    

(2.362) (2.166) 
RMW   0.012 0.012    

(0.721) (0.724) 
CMA   −0.030 −0.030    

(−1.535) (−1.471) 
Mom    0.002     

(0.263) 
Observations 202 202 202 202 

Notes: t-statistics in parentheses. Standard errors are adjusted following Newey and West (1987) using six lags. 
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