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Quantification of Empirical Determinacy:

The Impact of Likelihood Weighting on

Posterior Location and Spread in Bayesian

Meta-Analysis Estimated with JAGS and INLA∗

Sona Hunanyan†, H̊avard Rue‡, Martyn Plummer§, and Ma�lgorzata Roos¶

Abstract. The popular Bayesian meta-analysis expressed by the normal-normal
hierarchical model synthesizes knowledge from several studies and is highly rele-
vant in practice. The normal-normal hierarchical model is the simplest Bayesian
hierarchical model, but illustrates problems typical in more complex Bayesian
hierarchical models. Until now, it has been unclear to what extent the data deter-
mines the marginal posterior distributions of the parameters in the normal-normal
hierarchical model. To address this issue we computed the second derivative of
the Bhattacharyya coefficient with respect to the weighted likelihood. This quan-
tity, which we define as the total empirical determinacy (TED), can be written
as the sum of two terms: the empirical determinacy of location (EDL), and the
empirical determinacy of spread (EDS). We implemented this method in the R
package ed4bhm and considered two case studies and one simulation study. We
quantified TED, EDL and EDS under different modeling conditions such as model
parametrization, the primary outcome, and the prior. This clarifies to what extent
the location and spread of the marginal posterior distributions of the parameters
are determined by the data. Although these investigations focused on Bayesian
normal-normal hierarchical model, the method proposed is applicable more gen-
erally to complex Bayesian hierarchical models.

Keywords: empirical determinacy, likelihood weighting, Bayesian meta-analysis,
Bayesian hierarchical models, identification.

1 Introduction

Bayesian meta-analysis, which synthesizes the evidence from several already published
studies, is an indispensable tool for evidence-based medicine. Usually, Bayesian meta-
analysis is based on a normal-normal hierarchical model (NNHM) (Friede et al., 2017a,b;
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Röver, 2020; Bender et al., 2018). This is the simplest Bayesian hierarchical model
(BHM), but presents problems typical in more complex BHMs (Gelman and Hill, 2007;
Gelman et al., 2014; Talts et al., 2020; Vehtari et al., 2021).

If different values of the parameters in a likelihood map to a single data model, then
these values are indeterminate, or in other words non-identified, and are not estimable
from the likelihood alone (Poirier, 1998; Gustafson, 2015; Lewbel, 2019). The Bayesian
approach is known to mitigate this problem, because a likelihood combined with the
proper priors for the parameters that are not likelihood identifiable still yields posterior
estimates (Kadane, 1975; Gelfand and Sahu, 1999; Eberly and Carlin, 2000; Gustafson,
2015). This raises a legitimate question: to what extent are Bayesian posterior parameter
estimates determined by the data?

In classical statistical models, non-identified parameters in the likelihood are known
to cause problems (Skrondal and Rabe-Hesketh, 2004; Lele et al., 2007; Lele, 2010; Lele
et al., 2010; Sólymos, 2010; Lewbel, 2019). One method that detects non-identified pa-
rameters in classical statistical models is data cloning (Lele et al., 2007; Lele, 2010; Lele
et al., 2010; Sólymos, 2010). Data cloning increases the total sample size by artificially
replicating the data and focuses on the standard errors of the parameters. If the stan-
dard error of a parameter does not decrease at a rate of 1/

√
n with increasing sample

size n, such a parameter is deemed to be non-identified (Lele et al., 2007; Lele, 2010;
Lele et al., 2010; Sólymos, 2010; Gustafson, 2015).

In contrast, non-identification of parameters is not a problem for complex BHMs,
because proper priors lead to proper posteriors (Gelfand and Sahu, 1999; Eberly and
Carlin, 2000; Gustafson, 2015). As accurately stated by Bernardo and Smith, “Identifi-
ability is a property of the parametric model, but a Bayesian analysis of a non-identified
model is always possible if a proper prior on all the parameters is specified” (Bernardo
and Smith, 2000, p. 239). See also Gustafson (2015, Chapter 8) for a very nuanced and
in-depth discussion of this issue. However, it is unknown to what extent the posterior
estimates of parameters in BHMs are determined by the data. In complex BHMs, it
can happen that the posterior is not determined by the data at all but is completely
determined by the prior. Because the detection of non-identified parameters in BHMs
is very challenging, Carlin and Louis (1996) and Eberly and Carlin (2000) suggest that
one should avoid BHMs for which the identifiability issues have not been clarified. For
this reason, a formal method applicable to Bayesian NNHM and BHMs is needed that
can quantify the empirical determinacy of the parameters, thus answering the question
of to what extent the posterior estimates are determined by the data.

Recently, Roos et al. (2021) considered the Bayesian NNHM and proposed a two-
dimensional method for sensitivity assessment based on the second derivative of the
Bhattacharyya coefficient (BC). In one dimension, they used a factor f to scale the
within-study standard deviation provided by the data. This scaling perturbed the total
number of individual patient data provided for Bayesian meta-analysis, which is related
to data cloning (Lele et al., 2010; Sólymos, 2010). Alternatively, perturbation of the to-
tal number of observations could be expressed by a weighted likelihood with w = 1/f2

(Bissiri et al., 2016; Holmes and Walker, 2017). An open question remains whether
the applicability of the scaling proposed by Roos et al. (2021) could be generalized to
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weighting other likelihoods, or extended to general-purpose Bayesian estimation tech-
niques such as the Bayesian numerical approximation provided by the Integrated Nested
Laplace Approximation (INLA) (Rue et al., 2009), and Bayesian Markov chain Monte
Carlo (MCMC) sampling with the Just Another Gibbs Sampler (JAGS) (Plummer,
2016).

We expect that likelihood weighting will affect both the location and the spread
of the marginal posterior distributions. Because the method proposed by Roos et al.
(2021) quantifies the total impact of the scaling on the posteriors without focusing on
location and spread, a refined method is needed. Ideally, such a refined method should
quantify what proportion of the total impact of the data on the posterior affects the
location and what proportion affects the spread.

To provide a refinement, we consider the second derivative of the BC induced by the
weighted likelihood, which quantifies the total empirical determinacy (TED) for each
parameter. Based on the properties of both the BC and the rules for the computation
of the second derivative, we split TED into two parts: one for location (EDL) and one
for the spread (EDS). This enables the quantification of pEDL, the proportion of EDL
to TED, and pEDS, the proportion of EDS to TED. This method is implemented in the
R package ed4bhm and works with JAGS and INLA. The method proposed quantifies
how much weighted data impact posterior parameter estimates and whether location or
spread is more affected by the weighting.

To demonstrate how the proposed method works in applications, we consider two
case studies and one simulation study. We use INLA and JAGS for the estimation.
We consider both centered and non-centered parametrizations for Bayesian NNHM and
demonstrate how TED, pEDL, and pEDS depend on the amount of pooling induced
by the heterogeneity prior. Moreover, we consider both the Bayesian NNHM applied
to log(OR) and a logit model. To demonstrate that the proposed method is useful
in applications, for clarifying the empirical determinacy of parameters, we consider
three variants of the NNHM combined with different prior assumptions in a simulation
study.

In Section 2, we review the theoretical background behind our method and its im-
plementation through R package ed4bhm. In Section 3, we present the case studies, the
models assumed, and the results which demonstrate the performance of the measures
TED, pEDL and pEDS in applications. We conclude with a discussion in Section 4.

2 Methods

In this section, we review the Bayesian NNHM, present the idea of weighting the likeli-
hood, and define the TED measure, which quantifies the total empirical determinacy of
posterior parameters. Moreover, we define the proportion of empirical determinacy for
posterior location (pEDL) and spread (pEDS). In addition, we specify the implementa-
tion of TED, pEDL and pEDS in INLA and JAGS. Finally, a short description of the
R package ed4bhm is provided.
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2.1 Bayesian meta-analysis

The Bayesian normal-normal hierarchical model (NNHM) consists of three levels: the
sampling model, the latent random-effects field, and the priors. We consider the Bayesian
NNHM with data yj , j = 1, . . . , k, within-study standard deviations σj and between-
study standard deviation τ

yj | θj , σj ∼ N (θj , σ
2
j ),

θj | µ, τ iid∼ N(µ, τ2), j = 1, . . . , k,

µ ∼ π(µ), τ ∼ π(τ).

(2.1)

In this model, σj are fixed, µ is the overall effect, τ is the heterogeneity, and θj are
the random effects. For case studies, we assume a weakly informative normal prior π(µ)
and either a half-normal (HN) or a half-Cauchy (HC) prior π(τ). We use HN and HC
with domain on [0,∞) that emerge after taking absolute value of normal and Cauchy
distributions located at 0 with domain on (−∞,∞). We estimate marginal posterior
distributions for all the parameters ψ ∈ {µ, τ, θ1, . . . , θk} with both INLA (Rue et al.,
2009) and JAGS (Plummer, 2016).

2.2 Likelihood weighting

Likelihood weighting is applicable to BHMs with various primary outcomes. A base
model is the model without weighting (w = 1). Posterior distribution in the base model
can be obtained as

π1(η | y) ∝ π(y | η, θ)π(θ | η)π(η), (2.2)

where π(y | η, θ) is the likelihood, π(θ | η) is the latent field, π(η) is the assumed prior
distribution, and η is the set of all the parameters in the model except the random
effects θ.

The posterior distribution in a model with weighted likelihood can be written as

πw(η | y) ∝ (π(y | η, θ))w π(θ | η)π(η). (2.3)

Note that, w > 1 gives more weight to the likelihood (corresponds to the case of having
more data) and w < 1 gives less weight to the likelihood (corresponds to the case of
having less data). For example, for the Bayesian NNHM given by (2.1), the posterior
distribution from a weighted model reads as

πw(µ, τ, θ1, . . . , θk | y) ∝ (π(y | µ, θ1, . . . , θk))wπ(θ1, . . . , θk | τ)π(µ)π(τ),

where θ1, . . . , θk are random effects. The details provided below will serve to embed the
likelihood weighting in a broader context.

We assume that the observation (or response) variable yi belongs to an exponen-
tial family, which provides a solid basis for a variety of Bayesian hierarchical models
based on Latent Gaussian models fit by INLA and JAGS (Rue et al., 2009; Clayton,
1996). Although raising the likelihood to a known nonnegative scalar power w changes
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the normalizing constant of individual densities, this is not a concern for Bayesian ap-
proaches that determine the posterior up to a proportionality constant (Lunn et al.,
2013, p. 35–36). Because the interpretation of model parameters remains unchanged,
priors remain the same for varying values of w. The weighted likelihood terminology
used in this paper is motivated by the role that the weight parameter, the nonnegative
scalar w, plays in the exponential family (McCullagh and Nelder, 1989; Clayton, 1996).
Alternatively, a likelihood raised to a power can be referred to as “power-scaling of the
likelihood” (Kallioinen et al., 2021).

The technique of weighting the likelihood to generalize the usual Bayesian update
has been well-established. As shown by Bissiri et al. (2016), it is related to the notion of
pseudolikelihood and pseudoposterior (Walker and Hjort, 2001), to the concept of power
priors (Ibrahim et al., 1998; Ibrahim and Chen, 2000; Neuenschwander et al., 2009), and
to classical robust statistics provided by the general class of M estimators (Huber, 1964,
1981). In addition, the formal framework for general Bayesian inference proposed by
Bissiri et al. (2016) also uses weighted likelihood, which expresses model misspecification
in the context of Bayesian robustness (Holmes and Walker, 2017). In this context, a
misspecified likelihood is equivalent to a likelihood perturbed by weighting.

With a main focus on the base likelihood (w = 1), likelihood weighting with w < 1
and w > 1 creates perturbed proxy models of this base likelihood. Whereas likelihood
weighting with w < 1 gives less prominence to data, flattens the likelihood and effectively
downweights the influence of the data in the posterior, w > 1 gives more prominence
to data, makes the likelihood more peaked and increases the impact of the data on
the posterior. If the spread of the marginal posterior of a parameter is not affected by
likelihood weighting, this parameter cannot be well determined by the data (Gustafson,
2015). Therefore, to assess the empirical determinacy of parameters in Bayesian hierar-
chical models, we focus on the original base likelihood (w = 1), deliberately perturb the
likelihood by weighting it slightly with w close to 1, and carefully examine the impact
of these perturbations on the location and spread of marginal posteriors by computing
derivatives evaluated at w = 1.

2.3 Affinity measure Bhattacharyya coefficient

Following Roos et al. (2021), we consider the Bhattacharyya coefficient (BC) (Bhat-
tacharyya, 1943) between two probability density functions, which is given by

BC(π1(ψ | y), πw(ψ | y)) =
∫ ∞

−∞

√
π1(ψ | y)πw(ψ | y)dψ, (2.4)

where ψ = (η, θ). BC attains values in [0, 1]. Moreover, BC is 1 if and only if the two
densities are equal and is 0 when the domains of the two densities have no overlap.
BC has convenient numerical properties and is invariant under any one-to-one trans-
formation (for example, logarithmic) (Jeffreys, 1961; Roos and Held, 2011; Roos et al.,
2015, 2021). Furthermore, BC is directly connected to the Hellinger distance (H), by
H2 = 1− BC.
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For two normal densities, BC defined in (2.4) reads

BC(πN
1 (ψ | y), πN

w(ψ | y)) =
√

2s1sw
s21 + s2w

exp

[
− (mw −m1)

2

4(s2w + s21)

]
, (2.5)

where πN
j is the density of a N (mj , s

2
j ) distribution with j = {1, w}. Following Roos

et al. (2021), we approximate the marginal posterior distribution π(ψ | y) for ψ ∈
{µ, τ, θ1, . . . , θk} by πN(ψ | y) and apply moment matching together with the (2.5) to
obtain

BC(π1(ψ | y), πw(ψ | y)) ≈ BC(πN
1 (ψ | y), πN

w(ψ | y)). (2.6)

For posteriors of precision parameters, we apply this approximation to log-transformed
posteriors. This approach is justified by the invariance of BC.

The BC in (2.5) is a simple measure of agreement that is based on two familiar sum-
mary statistics, mean and standard deviation, that are routinely used to summarize the
location and the spread of marginal posterior distributions generated by both MCMC
samples and Bayesian numerical approximations. To compute BC in (2.6), we focus on
these summary statistics, assume that they are suitable, and match them with moments
of a normal distribution. Thus, the approximation in (2.6) translates the general BC
measure of affinity between the base (w = 1) and the slightly weighted posterior (w close
to 1) in (2.4) into a measure of agreement between the means and standard deviations
of base and weighted posteriors in (2.5). Because the meaning of the measure in (2.5)
is always the same regardless of the representation of marginal posteriors, this mea-
sure efficiently unifies MCMC sampling and Bayesian numerical approximations. This
unification is particularly important, because we aim to provide empirical determinacy
measures which are independent of the technique used to fit Bayesian hierarchical mod-
els. However, this unification requires marginal posterior distributions (possibly after
an appropriate transformation) that are approximately normal.

The normal distribution is the easiest distribution known to encapsulate the infor-
mation about location and spread in two unrelated parameters. Therefore, the normal
approximation in (2.6) is a convenient technical tool that efficiently disentangles the
impact of the weighted likelihood on the location and on the spread of marginal pos-
teriors. To assess the empirical determinacy of parameters, we focus on the standard
deviation of posteriors and check whether they are impacted by likelihood weighting
(Gustafson, 2015). Although the BC in (2.4) cannot disentangle location and spread in
general, the specific BC in (2.5) based on a normal distribution is more effective. As we
will show in Section 2.5, a local sensitivity measure based on the normal approximation
in (2.6) can be decomposed into one part that measures the impact of data on the lo-
cation and one part measuring the effect on the spread, thus clarifying what proportion
of the total sensitivity of parameters in Bayesian hierarchical models is accounted for
by the spread. These proportions can be misleadingly low if the standard deviation of
a marginal posterior is a poor estimate of the spread. Nonetheless, reliable proportions
can be computed if approximate normality holds and both summary statistics suitably
represent the location and spread of marginal posteriors.
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There are several justifications for using the normal approximation of a raw and, if
necessary, a log-transformed marginal posterior in (2.6). First, if the marginal posterior
density has finite mean and standard deviation estimates, it can be approximated to the
first order by a normal distribution (Hjort and Glad, 1995). Second, posteriors possess
asymptotic expansions in powers of n−1/2 that have a normal distribution as a leading
term (Johnson, 1967, 1970). Third, normality improves for regular models and in typical
settings where the asymptotic normality of the posterior distribution applies (Held and
Sabanés Bové, 2020). Finally, Rue et al. (2009) investigated the appropriateness of
the normal approximation based on mean and standard deviation in Latent Gaussian
models and found that normal approximation provides reasonable results for most real
problems and data sets.

2.4 Quantification of the total empirical determinacy

Following Roos et al. (2021), we define the TED(ψ) measure as the negative second
derivative of the Bhattacharyya coefficient (BC) between the base and weighted poste-
rior distributions for each parameter of the model. Here,

TED(ψ) = − d2BC(π1(ψ | y), πw(ψ | y))
dw2

∣∣∣∣
w=1

≈ − d2BC(πN
1 (ψ | y), πN

w(ψ | y))
dw2

∣∣∣∣
w=1

,

(2.7)
where πw(ψ | y) is the marginal posterior distribution from the model with weighted
likelihood and πN

w(ψ | y) is its normal approximation with ψ ∈ {µ, τ, θ1, . . . , θk}. By
(H2)

′′

= (1 − BC)
′′

= −BC
′′

, TED evaluates the second derivative of the squared
Hellinger distance H2. Note that, w = 1 denotes the base model with the original
likelihood, which induces the base marginal posterior density π1(ψ | y). We quantify
the total empirical determinacy (TED) of the marginal posterior of the parameter. TED
can be used to compare the empirical determinacy between different parameters ψ and
φ by computing a ratio TED(ψ)/TED(φ) (Roos et al., 2021).

For each parameter ψ in a Bayesian hierarchical model, BC in (2.5) measures the
agreement between the means and standard deviations of base (w = 1) and weighted
posteriors. Typically, a Bayesian hierarchical model has many parameters, which oper-
ate on different scales. For example, the Bayesian NNHM involves ψ ∈ {µ, τ, θ1, . . . , θk},
so that the posterior of the overall mean µ operates on a different scale than the pos-
terior of heterogeneity τ . Note that all parameters are simultaneously impacted by the
same amount of weighting and we quantify how all parameters are impacted by this per-
turbation. In this context, BC handles all parameters in a Bayesian hierarchical model
on an equal footing regardless of their scale and unifies the quantification of the impact
of likelihood weighting on posteriors of all parameters.

The TED sensitivity measure in (2.7) is based on this unifying BC. It fits in well
with the general framework of formal sensitivity quantification, which is usually based
on differential calculus or its numerical approximations (McCulloch, 1989; Dey and Bir-
miwal, 1994; Xie and Carlin, 2006; Roos et al., 2015). The negative second derivatives
of BC in (2.7) assesses the curvature of the squared Hellinger distance (H2) and quanti-
fies the acceleration with which the marginal posterior changes locally around the base
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posterior (w = 1) when likelihood perturbations are induced by weighting. Although
it is difficult to establish the meaning of the particular sensitivity values provided by
differential calculus, these values do provide information about the order of sensitivity
estimates (Roos et al., 2021, Section 2.3 of the Supplementary Material) and facilitate
a unified comparison of different specifications of Bayesian models (McCulloch, 1989;
Roos et al., 2021), so that TED values can be directly compared across parameters.

Note that TED in (2.7) measures the impact of likelihood weighting on the whole
marginal posterior distribution. We refine this approach and consider the impact of
likelihood weighting on location (L) and spread (S) of the marginal posterior distribution
in the next section.

2.5 Empirical determinacy of location and spread

In this section, we show how to quantify the impact of likelihood weighting on posterior
location (L) and spread (S). This gives rise to empirical determinacy of location (EDL)
and spread (EDS).

Given the BC between two normal densities in (2.5), we consider BC(w) =
BCS(w)BCL(w), where

BCS(w) =

√
2s1sw
s21 + s2w

(2.8)

and

BCL(w) = exp

{
− (mw −m1)

2

4(s2w + s21)

}
. (2.9)

Whereas BCS(w) in (2.8) measures the distance between spreads (S), BCL(w) in (2.9)
is the one-dimensional Mahalanobis distance between locations (L).

Equations (2)–(5) of the Supplementary Material (Hunanyan et al., 2022) show that

(BC)
′′

∣∣∣
w=1

= (BCL)
′′

∣∣∣
w=1

+ (BCS)
′′

∣∣∣
w=1

,

which is equivalent to
TED(ψ) = EDL(ψ) + EDS(ψ), (2.10)

where

EDL(ψ) = − d2BCL(π1(ψ | y), πw(ψ | y))
dw2

∣∣∣∣
w=1

,

and

EDS(ψ) = − d2BCS(π1(ψ | y), πw(ψ | y))
dw2

∣∣∣∣
w=1

,

for ψ ∈ {µ, τ, θ1, . . . , θk}. For each parameter ψ of a Bayesian hierarchical model,
EDS(ψ) quantifies the sensitivity of the spread of the posterior locally around the base
posterior (w = 1) induced by likelihood weighting perturbations. Likely, EDL(ψ) pro-
vides the corresponding sensitivity estimate for location.
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Equation (2.10) facilitates computation of the proportion of the empirical determi-
nacy of the location (pEDL), which is the proportion of EDL to TED, and the empirical
determinacy of the spread (pEDS), which is the proportion of the EDS to TED

pEDL(ψ) =
EDL(ψ)

TED(ψ)
and pEDS(ψ) =

EDS(ψ)

TED(ψ)
, (2.11)

where ψ ∈ {µ, τ, θ1, . . . , θk}.
Inspired by Gustafson (2015), the above derivations focus on likelihood weighting

and establish a unified empirical determinacy measure for all parameters of a Bayesian
hierarchical model fit either by MCMC sampling or by Bayesian numerical approxi-
mations. We consider only small likelihood perturbations from the value w = 1 used
for standard Bayesian inference. Moreover, we focus on the rates of change (i.e. how
does BC change for infinitesimal perturbations of w away from 1), for BC based on
the location and spread of marginal posteriors in (2.5). Equation (2.10) shows that the
total local sensitivity TED based on BC in (2.5) splits into two sensitivity parts of lo-
cation (EDL) and spread (EDS). If the spread of the marginal posterior of a parameter
is not affected by likelihood weighting, this parameter is non-identified and cannot be
well determined by the data (Gustafson, 2015). The pEDS estimate in (2.11) rephrases
this condition in terms of the proportion of two local sensitivity estimates (EDS/TED).
Whereas large value of pEDS close to 1 indicate that likelihood weighting mostly affects
the spread of the marginal posterior and the parameter is well determined by the data,
small values of pEDS close to 0 indicate that likelihood weighting barely affects the
spread of the marginal posterior and that the parameter is not well determined by the
data. Notably, although TED values can only show the order of sensitivity estimates,
both pEDL and pEDS estimates are dimensionless and can be easily interpreted.

To the best of our knowledge, the factorization of the BC into two parts for location
(BCL) and spread (BCS) in (2.5) is unique to the normal distribution. This factorization
is the basis of the decomposition of the TED into two additive components EDL and
EDS in (2.10). Future research could focus on whether the theory can be generalized
to a larger family of distributions. We speculate that it will always be possible to
define quantities analogous to EDL and EDS, but they will not be additive, i.e. we
will in general not have the decomposition which is shown in (2.10). However, the
decomposition will remain valid to the same extent as the normal approximation applies
to the posterior distribution, an argument that has worked well in practice. For example,
the log-Gamma posterior obtained analytically and for JAGS and INLA (Section 3.1)
showed similar empirical determinacy estimates. Given the conceptual utility of this
decomposition and the wide applicability of the normal approximation to the posterior,
we believe that the current theory is useful despite its apparently narrow theoretical
foundation.

2.6 Computational issues

In practice, we approximate the derivatives numerically by the second-order central
difference quotient formula. Note that BC(πN

1 (ψ | y), πN
1 (ψ | y)) = 1. Thus, for (2.7),
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we obtain

TED(ψ) ≈ −d2BC(πN
1 (ψ | y), πN

w(ψ | y))
dw2

≈ BC(πN
1 (ψ | y), πN

1+δ(ψ | y))− 2 + BC(πN
1 (ψ | y), πN

1−δ(ψ | y))
δ2

.

For computations, we consider weights w = 1 ± δ, with δ = 0.01. For precisions, we
conduct all computations on the logarithmic scale.

Implementation of TED in INLA

In order to implement TED(ψ) in INLA, we use INLA output from the base model
(w = 1). The function inla.rerun fits an INLA model with weighted likelihood. We
use this function for w = 1−δ and w = 1+δ. Moreover, we extract the summary statistics
(mean and standard deviation) of marginal posterior distributions directly from INLA
output. For log-precision, we extract the estimates on internal scale provided by INLA.

Implementation of TED in JAGS

For JAGS, we derive a general formula for weighting the likelihood in BHMs fit by
MCMC sampling. The posterior distributions for the base and weighted models are
given by (2.2) and (2.3). From (2.2) we obtain

π(η) ∝ π1(η | y)
π(y | η, θ)π(θ | η) . (2.12)

We then plug in the formula (2.12) into (2.3) to get

πw(η | y) ∝ (π(y | η, θ))w π(θ | η) π1(η | y)
π(y | η, θ)π(θ | η) .

Then,
πw(η | y) ∝ (π(y | η, θ))w−1

π1(η | y). (2.13)

To estimate the posterior from a weighted model without re-running MCMC sam-
pling we use (2.13). To evaluate the likelihood values π(y | η, θ) in JAGS, we use the
ability of JAGS to monitor the deviance

dev(ψ) = −2 log(π(y|ψ)),

where ψ = (η, θ). Hence,
π(y|ψ) = exp(−dev(ψ)/2).

The MCMC samples ψ(m) from π1(ψ | y) and dev(ψ) values can be extracted from the
JAGS output. To estimate the mean and standard deviation of πw(ψ | y), we compute

Ê(ψ | y) = 1
∑M

m=1 cm

M∑

m=1

cmψ(m) (2.14)



H. Sona, R. H̊avard, P. Martyn, and R. Ma�lgorzata 733

and

ŜD(ψ | y) =
√
V̂ar(ψ | y) =

√√√√ 1
∑M

m=1 cm

M∑

m=1

cm

(
ψ(m) − Ê(ψ | y)

)2

, (2.15)

where cm = (π(y | ψ))w−1
(Held and Sabanés Bové, 2020). For log-precisions, we take

the logarithmic transformation of the MCMC sample for the precision parameter and
apply (2.14) and (2.15) on that transformed sample.

Equation (2.13) demonstrates that switching from π1(η|y), the posterior based on
the unweighted likelihood, to πw(η|y), the posterior based on the weighted likelihood, is
computationally very efficient, because it only requires reweighting of existing MCMC
simulation draws. Importance sampling is a well-known, efficient method to convert one
probability measure into another probability measure (Chopin and Papaspiliopoulos,
2020, Section 8.4). Not surprisingly, the mean and the standard deviation estimates
of the posterior based on the weighted-likelihood in (2.14) and (2.15) are equivalent
to auto-normalized importance sampling estimates (Hastings, 1970; Chopin and Pa-
paspiliopoulos, 2020, Section 8.3), where cm denotes the importance weights. Moment
estimates can be affected by extreme values of importance sampling weights (Tierney,
1994), thus necessitating stabilization of these importance weights (Vehtari et al., 2017).
Nonetheless, importance sampling has promising asymptotic properties (Geweke, 1989)
and has proved very useful for efficient assessment of Bayesian sensitivity (O’Neill, 2009;
Tsai et al., 2011; Kallioinen et al., 2021).

2.7 Relative latent model complexity

In the Bayesian NNHM, the interplay between the within-study standard deviation σi

values provided by the data from k studies and the between-study standard deviation τ
can be characterized by the effective number of parameters in the model (Spiegelhalter
et al., 2002). Like Roos et al. (2021), we consider the standardized ratio, the relative
latent model complexity (RLMC)

RLMC =
1

k

k∑

i=1

τ2

τ2 + σ2
i

. (2.16)

RLMC defined in (2.16) attains values between 0 and 1 and expresses the amount of
pooling induced by a heterogeneity prior (Gelman and Hill, 2007).

In Section 3.2, a grid of scale parameter values (4.1, 10.4, 18, 31.2, 78.4) for the
half-normal heterogeneity prior for τ is induced by the grid of RLMC values fixed at
0.05, 0.25, 0.5, 0.75, 0.95. Whereas HN(4.1), which corresponds to RLMC = 0.05, assigns
much probability mass to τ values close to 0 and induces much pooling, HN(78.4), which
corresponds to RLMC = 0.95, assigns less probability mass to values of τ close to 0 and
induces little pooling.
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2.8 Bayesian computation and convergence diagnostics

The MCMC simulations performed in this paper are based on four parallel chains, with
a length of 4× 105 iterations. In each chain, we removed the first half of iterations as a
burn-in period and from the remaining 2× 105 iterations we kept every 100th iteration
in each of the four chains. Our choice of these parameters was guided by raftery.diag

for Model C1 (Section 3.4) and supported by Vehtari et al. (2021).

To assess the convergence to a stationary distribution, we applied Convergence Diag-
nostics and Output Analysis implemented in the package coda (Plummer et al., 2006).
Moreover, we implemented the rank plots proposed by Vehtari et al. (2021), which are
histograms of posterior draws ranked over all chains and plotted separately for each
chain. Nearly uniform rank plots for each chain indicate good mixing of chains. In addi-
tion, we used the function n.eff from the package stableGR (Vats and Knudson, 2021),
which calculates the effective sample size (ESS) using the lugsail variance estimators
and determines whether Markov chains have converged. Alternatively, the effective sam-
ple size of Markov chains could be computed based on the adaptive truncation rule of
monotonically decreasing autocorrelations proposed by Geyer (1992), as recommended
by Vehtari et al. (2021) and substantiated on https://avehtari.github.io/rhat_

ess/ess_comparison.html.

2.9 The R package ed4bhm

The open source R package ed4bhm Empirical determinacy for Bayesian hierarchical
models (https://github.com/hunansona/ed4bhm) uses the proposed method to quan-
tify the empirical determinacy of BHMs implemented in INLA and in JAGS. The two
main functions in this package are called ed.inla and ed.jags. These functions were
used to generate the results reported in Sections 3.1–3.4, and in Sections 3–4 and 7 of
the Supplementary Material (Hunanyan et al., 2022).

3 Results

In this section, we review data, models, and results for two case studies. Moreover, we
review the design and results of a simulation study.

3.1 Motivating examples

Sections 3 and 4 of the Supplementary Material (Hunanyan et al., 2022) consider two
motivating examples. Both examples use a normal likelihood with identified parameters.
One example considers the posterior of the mean. The other example focuses on the
posterior of the precision. These examples consider a normal and a log-Gamma posterior
and demonstrate similar empirical determinacy estimates obtained analytically and for
JAGS and INLA. Because the parameters in the likelihoods of both motivating examples
are identified, the rate of the decrease of the sample size is close to 1/

√
w, which matches

the result provided by data cloning (Lele et al., 2007; Lele, 2010; Lele et al., 2010;
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Sólymos, 2010). In both motivating examples, the estimates of the pEDS are close to
1. This indicates that likelihood weighting affects mostly the spread of the parameters.
In fact, both examples motivate that the 1/

√
w rate used by cloning translates into the

properties of the pEDS measure.

3.2 Eight schools

To quantify the effect of a coaching program on SAT-V (Scholastic Aptitude Test-
Verbal) scores in eight high schools (Table 3 on page 18 of the Supplementary Material
(Hunanyan et al., 2022)), data from a randomized study was pre-analyzed and used for
a Bayesian meta-analysis. The data from these eight schools has been used to study the
performance of the Bayesian NNHM and to demonstrate typical issues which arise for
BHMs (Gelman and Hill, 2007; Gelman et al., 2014; Vehtari et al., 2021).

We consider two parametrizations of the Bayesian NNHM: the centered and non-
centered parametrizations (Vehtari et al., 2021). The model with centered parametriza-
tion is defined as

yj ∼ N (θj , σ
2
j ),

θj ∼ N (µ, τ2),

µ ∼ N (0, 16),

τ ∼ HN(5),

(3.1)

where j = 1, . . . , 8. This parametrization is used for both INLA and JAGS. On the other
hand, the model with the non-centered parametrization (Gelman et al., 2014; Vehtari
et al., 2021) reads

yj ∼ N (θj , σ
2
j ),

θj = µ+ τ θ̃,

θ̃j ∼ N (0, 1),

µ ∼ N (0, 16),

τ ∼ HN(5),

(3.2)

for j = 1, . . . , 8, which we implemented in JAGS.

We analyze the data from the eight schools with INLA and JAGS and show the
posterior descriptive statistics and estimates of the empirical determinacy for the pa-
rameters µ and log(τ−2) in Table 1 on page 736. For JAGS, both the centered (JAGSc,
(3.1)) and non-centered (JAGSnc, (3.2)) parametrizations showed high values of ESS.
Although the values of the posterior descriptive statistics provided by INLA, JAGSc,
and JAGSnc are similar, it is unknown to what extent the posteriors of µ and log(τ−2)
are impacted by the data.

This issue is addressed by the estimates of both the total empirical determinacy
(TED) and the within-parameter empirical determinacy (EDL and EDS). For example,
the values of TED(µ) are larger than those of TED(log(τ−2)). This indicates that the
data impacts the posterior of µ more than the posterior of log(τ−2). pEDL and pEDS
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param method ESS mean sd q0.025 q0.5 q0.975 TED EDL EDS pEDL pEDS

µ
INLA 3.6 3.0 −2.2 3.6 9.3 0.11 0.09 0.02 0.82 0.18
JAGSc 1.5e+04 3.6 2.9 −2.3 3.6 9.4 0.10 0.08 0.02 0.82 0.18
JAGSnc 1.8e+04 3.6 3.0 −2.2 3.6 9.4 0.11 0.09 0.02 0.83 0.17

log(τ−2)
INLA −1.6 2.2 −4.5 −2.1 4.0 7e-04 7e-04 3e-05 0.96 0.04
JAGSc 1.6e+04 −1.6 2.2 −4.5 −2.1 4.1 7e-04 5e-04 2e-04 0.69 0.31
JAGSnc 1.6e+04 −1.6 2.2 −4.4 −2.1 4.1 6e-04 5e-04 7e-05 0.88 0.12

Table 1: Model eight schools: mean, sd, 95%CrI, median and TED, EDL, EDS, pEDL and pEDS estimates for marginal posterior
distributions for the parameters µ and log(τ−2) calculated in INLA and JAGS (centered and non-centered parametrizations)
with ESS of MCMC samples for the data provided in Table 3 on page 18 of the Supplementary Material (Hunanyan et al.,
2022).
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provide further details and demonstrate that for both µ and log(τ−2) the location of the
marginal posterior distribution is more impacted by the data than its spread. Whereas
the estimates of pEDS(µ) provided by INLA, JAGSc and JAGSnc are close to 0.18,
those of pEDS(log(τ−2)) differ depending on the centered (JAGSc and INLA) and non-
centered (JAGSnc) parametrization. This result indicates that the parametrization used
for MCMC sampling may affect the impact of the data on the parameter estimates.

Figure 1 puts the results of Table 1 on page 736 in a broader context and shows a
transition phase plot for the data of the eight schools fit by INLA, JAGSc, and JAGSnc
across a grid of HN heterogeneity priors with scale parameters equal to 4.1, 10.4, 18,
31.2, 78.4. As explained in Section 2.7, this grid specifies an RLMC grid (0.05, 0.25,
0.5, 0.75, 0.95) of pooling induced by the heterogeneity prior. The top panel of Figure 1
demonstrates that TED is always larger for µ (red) than for log(τ−2) (blue) across both
the grid of RLMC values and the estimation techniques (INLA, JAGSc, and JAGSnc).
Independently of the amount of pooling induced by the heterogeneity prior, the posterior
of µ is more determined by the data than is the posterior of log(τ−2).

The proportion of the estimates of the within-parameter empirical determinacy
(pEDS) for the scale of µ (middle panel) and log(τ−2) (bottom panel) of Figure 1
provide more insight. For HN heterogeneity priors with values of the scale parameter
equal to 4.1, 10.4, 18, 31.2, 78.4 and for three estimation techniques (INLA, JAGSc,
JAGSnc), the values of pEDS(µ) remain at a low level of at most 20%. This indicates
that the data determine the spread of the posterior of µ less than its location. In con-
trast, the estimates of pEDS(log(τ−2)) highly depend on the amount of pooling induced
by the heterogeneity prior. The estimates of pEDS(log(τ−2)) increase from 10% to 90%
across the values of RLMC. This means that heterogeneity priors that induce little
pooling lead to posteriors of log(τ−2) with spreads more determined by the data than
for heterogeneity priors that induce much pooling. Although the estimates of pEDS(µ)
are similar for the three estimation techniques (INLA, JAGSc, JAGSnc), the values of
pEDS(log(τ−2)) depend on the estimation technique.

3.3 Respiratory tract infections

In this section, we review the meta-analysis data set including 22 randomized, controlled
clinical trials on the prevention of respiratory tract infections (RTI) by selective decon-
tamination of the digestive tract in intensive care unit patients (Bodnar et al., 2017)
that are presented in Table 4 on page 19 of the Supplementary Material (Hunanyan
et al., 2022).

For the RTI data set, we consider two different models. First, a Bayesian NNHM
model for 22 trial-specific log odds ratios

yj ∼ N (θj , σ
2
j ),

θj = µ+ ηj , j = 1, . . . , 22,

µ ∼ N (0, 16),

ηj ∼ N (0, τ2),

τ ∼ HC(1),

(3.3)
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Figure 1: Model eight schools: Transition phase plots for the total empirical determinacy
(TED) measure (top) and for the proportion of the empirical determinacy of location
and spread to TED (pEDL and pEDS) of µ (middle) and of log(τ−2) (bottom) for the
data in Table 3 on page 18 of the Supplementary Material (Hunanyan et al., 2022)
modeled according to (3.1) and (3.2) (centered and non-centered parametrizations) and
analyzed with INLA and JAGS. The effective median relative latent model complexity
(RLMC) for eight schools data with HN(5) heterogeneity prior is 0.08. The scale pa-
rameters for the HN prior across the grid of 0.05, 0.25, 0.5, 0.75, 0.95 RLMC values are
equal to 4.1, 10.4, 18, 31.2, 78.4 (Section 2.7).
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and second, a binomial model with logistic transformation

zj ∼ Bin(pj , nj),

logit(pj) = α+ βxj + ηj , j = 1, . . . , 44,

α ∼ N (0, 16),

β ∼ N (0, 16),

ηj ∼ N (0, τ2),

τ ∼ HC(1),

(3.4)

where x is a stacked vector attaining value 1 for the treatment and 0 for the control
group, z and n contain the corresponding number of cases and the total number of
patients in trials in both groups, respectively. Originally, the weakly informative HC(1)
prior assumption for τ was suggested by Bodnar et al. (2017). Ott et al. (2021) suggested
a prior N(0, 16) for µ and used the HC(1) prior for τ . We assume priors for α and β
similar to the prior for µ.

Table 2 on page 740 provides posterior descriptive statistics and estimates of the
empirical determinacy for the RTI data fit by INLA and JAGS. We considered two
different models: a Bayesian NNHM defined in (3.3) with a normal primary outcome
and a Bayesian logit model defined in (3.4) with a binomial primary outcome. The
MCMC chains provided by JAGS show high values of ESS (Table 2 on page 740).
The marginal posteriors provided by INLA and JAGS match well and provide similar
descriptive statistics (see Figures 6 and 7 of the Supplementary Material (Hunanyan
et al., 2022)). The descriptive statistics for the parameter log(τ−2) differ between the
NNHM and logit models. For both the NNHM and logit models, the estimates of TED
indicate that the posterior of log(τ−2) is more impacted by the data than are the
posteriors of µ, α, and β. NNHM provides lower values of pEDS(µ) than the values of
pEDS(β) provided by the logit model. This indicates that the structure of the primary
outcome and the model can have a great impact on the empirical determinacy of the
parameters.

3.4 Simulation study

Our simulation study extends the original simulation suggested by Sólymos (2010). We
simulate a sample of random observations of size n = 50 under NNHM with parameters
µ = 2.5, σ = 0.2, τ = 0.5. See Section 7 of the Supplementary Material (Hunanyan
et al., 2022) for further details. For the analysis of the simulated data, we use three
types of models A, B, and C, which are summarized in Table 3 on page 741. Model
A is a normal model that does not assume random effects. Models B and C assume a
Bayesian NNHM with random effects. Model B assumes that the within-study standard
deviation is known and assigns a prior to the between-study standard deviation τ . This
defines the usual Bayesian NNHM. In contrast, model C assigns priors to both the
within-study (σ) and between-study (τ) standard deviations. Note that the parameters
σ and τ in model C are non-identified, because only the sum of the within-study and
between-study variances is identified by the likelihood (Bayarri and Berger, 2004; Lele,
2010; Sólymos, 2010; Gelman et al., 2014).
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param method model ESS mean sd q0.025 q0.5 q0.975 TED EDL EDS pEDL pEDS

µ

NNHM

INLA −1.3 0.2 −1.7 −1.3 −0.9 0.39 0.39 7e-04 1.00 2e-03
JAGS 1.6e+04 −1.3 0.2 −1.7 −1.3 −0.9 0.40 0.40 6e-04 1.00 2e-03

log(τ−2)
INLA 0.8 0.6 −0.3 0.8 2.0 1.04 0.78 0.27 0.74 0.26
JAGS 1.6e+04 0.8 0.6 −0.3 0.8 2.0 1.23 0.78 0.45 0.63 0.37

α

logit

INLA −0.6 0.3 −1.1 −0.6 −0.1 0.02 0.02 0.01 0.75 0.25
JAGS 1e+04 −0.6 0.3 −1.1 −0.6 −0.1 0.02 0.01 6e-03 0.61 0.39

β

logit

INLA −1.5 0.4 −2.3 −1.5 −0.8 0.03 0.03 3e-03 0.90 0.10
JAGS 1e+04 −1.5 0.4 −2.3 −1.5 −0.7 0.02 0.02 3e-03 0.89 0.11

log(τ−2)
INLA −0.3 0.3 −0.8 −0.3 0.2 0.33 0.32 6e-03 0.98 0.02
JAGS 1.6e+04 −0.3 0.3 −0.9 −0.3 0.2 0.31 0.30 0.01 0.96 0.04

Table 2: Models for RTI: NNHM (above) and logit (below). Mean, sd, 95% CrI, median and TED, EDL, EDS, pEDL and pEDS
for marginal posterior distributions for the parameters µ and log(τ−2) for NNHM, and α, β and log(τ−2) for logit models
defined in (3.3) and (3.4) calculated in INLA and JAGS for data provided in Table 4 on page 19 of the Supplementary Material
(Hunanyan et al., 2022) with ESS of MCMC samples.
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model likelihood random effects prior prior prior
overall mean within-study between-study

A yi ∼ N (µ, γ2)
A µ ∼ N (0, 103) log γ ∼ N (0, 103)
B yi | θi ∼ N (θi, σ

2) θi ∼ N (µ, τ2)
B1 µ ∼ N (0, 103) log τ ∼ N (0, 103)
B2 µ ∼ N (0, 103) 1/τ2 ∼ G(0.001, 0.001)
B3 µ ∼ N (0, 103) 1/τ2 ∼ G(4, 1)
C yi | θi ∼ N (θi, σ

2) θi ∼ N (µ, τ2)
C1 µ ∼ N (0, 103) log σ ∼ N (0, 103) log τ ∼ N (0, 103)
C2 µ ∼ N (0, 103) 1/σ2 ∼ G(0.001, 0.001) 1/τ2 ∼ G(0.001, 0.001)
C3 µ ∼ N (0, 103) 1/σ2 ∼ G(150, 6) 1/τ2 ∼ G(4, 1)

Table 3: Summary of models used for the simulation study described in Section 3.4. Section 7 of the Supplementary Material
(Hunanyan et al., 2022) provides more details.
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For the parameter µ, all models A, B, and C assume a zero mean normal prior with

variance fixed at 103 (Table 3 on page 741). For model B, three different priors are as-

signed to the between-study standard deviation: exp(N(0, 103)) for B1 (Sólymos, 2010),

SqrtIG(0.001, 0.001) for B2, and SqrtIG(4, 1) for B3. For model C3, a SqrtIG(150,

6) prior is assigned to the within-study standard deviation σ. Models C1 and C3 as-

sume identical priors for τ and σ. Table 5 on page 22 of the Supplementary Material

(Hunanyan et al., 2022) reports the properties of all priors assumed for the standard

deviations. Whereas exp(N(0, 103)) and SqrtIG(0.001, 0.001) show very large medians,

SqrtIG(4, 1) and SqrtIG(150, 6) show medians close to both true parameters τ = 0.5

and σ = 0.2 chosen for the simulation.

Table 4 on page 743 provides estimates of the empirical determinacy for the simula-

tion study described above, which considers three types of NNHM models (A, B and C),

which are fit by INLA and JAGS. The results for JAGS are based on MCMC samples

with ESS reported in Table 5 on page 744.

For model A, the estimates of TED(µ) and TED(log(γ−2)) in Table 4 on page 743

are similar. Moreover, pEDS(µ) and pEDS(log(γ−2)) are high. For example,

pEDS(log(γ−2)) ≥ 0.86 demonstrates that the spread of the posterior of log(γ−2) is

highly impacted by the data.

For models B1, B2 and B3, the values of TED(log(τ−2)) are larger than the values of

TED(µ) in Table 4 on page 743 and indicate that the posterior of log(τ−2) is more im-

pacted by the data than is the posterior of µ. Similarly to the phase transition in the ex-

ample of the eight schools discussed in Section 3.2, the values of TED(log(τ−2)) depend

on the heterogeneity prior. Moreover, the large estimates of pEDS(µ) demonstrate that

a large proportion of the change in the posterior distribution of µ is due to the change

in spread rather than in location. In contrast, the low estimates of pEDS(log(τ−2))

indicate that the posterior spread is not much determined by the data.

Models of type C assume priors on the between-study standard deviation and on

the within-study standard deviation. The estimation of models C1, C2 and C3 is very

challenging. For example, the ESS of MCMC samples for model C1 provided by JAGS

(Table 5 on page 744) is very small. Although the parameters σ and τ are non-identified

in models C2 and C3, ESS is reasonably high. Table 4 on page 743 shows that TED of

the posteriors of log(σ−2) and log(τ−2) is larger than that of the parameter µ. Again,

the values of TED(log(σ−2)) and TED(log(τ−2)) depend on heterogeneity priors. For

C1 and C2, the estimates of pEDS(µ) differ between INLA and JAGS attaining large

values for INLA and low values for JAGS. This indicates that numerical Bayesian

approximation (INLA) and MCMC sampling (JAGS) can react differently to models

with a non-identified likelihood. For model C1, pEDS(log(σ−2)) and pEDS(log(τ−2))

values shown by INLA and JAGS disagree. This is due to the small ESS values of

the MCMC samples provided by JAGS. In contrast, these estimates of pEDS agree

well for models C2 and C3. The difference between the values of pEDS(log(σ−2)) and

pEDS(log(τ−2)) for models C2 and C3 indicates that the prior assumptions impact the

values of pEDS.
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µTED σ∗
TED τ∗TED γ∗

TED µpEDL µpEDS σ∗
pEDL σ∗

pEDS τ∗pEDL τ∗pEDS γ∗
pEDL γ∗

pEDS

A : INLA 0.15 0.16 0.00 1.00 0.14 0.86
A : JAGS 0.15 0.15 0.00 1.00 0.09 0.91
B1 : INLA 1e-06 0.21 0.00 1.00 0.89 0.11
B1 : JAGS 7e-04 0.21 0.35 0.65 0.92 0.08
B2 : INLA 8e-06 0.24 0.00 1.00 0.90 0.10
B2 : JAGS 3e-05 0.27 0.05 0.95 0.89 0.11
B3 : INLA 2e-04 0.13 0.00 1.00 0.93 0.07
B3 : JAGS 3e-03 0.12 0.05 0.95 0.95 0.05
C1 : INLA 0.45 3e+03 2e+03 0.00 1.00 0.90 0.12 0.88 0.13
C1 : JAGS 182.48 1e+04 9e+03 0.70 0.25 0.57 0.65 0.20 0.92
C2 : INLA 0.01 1e+04 1e+04 0.00 1.00 0.83 0.37 0.94 0.12
C2 : JAGS 0.06 6e+02 2e+02 0.80 0.20 0.67 0.34 0.87 0.13
C3 : INLA 3e-04 1.02 0.18 0.00 1.00 1.00 0.00 0.92 0.08
C3 : JAGS 4e-03 1.13 0.20 0.00 1.00 0.99 0.01 0.97 0.03

Table 4: TED, pEDL, and pEDS values from models A, B.1, B.2, B.3, C.1, C.2 and C.3 for the simulated data described in
Section 3.4. σ∗, τ∗ and γ∗ stand for log(σ−2), log(τ−2) and log(γ−2), respectively.
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µ σ τ γ
A 16000 16000
B1 16000 16000
B2 16000 16000
B3 16000 16000
C1 79 2204 2826
C2 15429 9314 9079
C3 16000 16000 15678

Table 5: ESS for the JAGS samples for the models A, B.1, B.2, B.3, C.1, C.2 and C.3
for the simulation study described in Section 3.4. For the MCMC sampling the total
number of iterations used is 4× 105, the burn-in is 2× 105, thinning = 100.

4 Discussion

We considered two case studies and one simulation study. For the well-known eight-
school example we applied Bayesian NNHM, considering INLA analysis and both cen-
tered and non-centered parametrizations for JAGS. Moreover, we provided a transition
phase plot for the estimates of TED, pEDL and pEDS across a grid of heterogeneity
prior scale parameters, which govern the amount of pooling induced by the heterogene-
ity prior. This provided insights into how TED, pEDL and pEDS change depending
on the properties of the heterogeneity prior. For the RTI data set, we used both the
Bayesian NNHM applied to log(OR) and a logit model providing insights into how TED,
pEDL and pEDS change depending on the primary outcome. To challenge the method
proposed, we relaxed the assumption that the within-study standard deviation is known
and assumed priors for both the within-study and between-study standard deviation.
This provided an insight into how TED, pEDL and pEDS perform when the underly-
ing model has two non-identified parameters for both INLA and JAGS. The proposed
method provided novel insight and proved useful in clarifying the empirical determinacy
of the parameters in the Bayesian NNHM.

The analysis of two simple motivating examples, normal mean and normal preci-
sion, translated the results provided by data cloning, which are based on the 1/

√
n

criterion, to the unified pEDS measure. They showed that for identified parameters of
non-hierarchical likelihoods the spread of the posterior is mainly affected by the like-
lihood weighting and leads to pEDS estimates close to 1. We prefer the use of pEDS,
because the application of the 1/

√
n criterion to BHMs is not well justified (Jiang, 2017;

Lewbel, 2019).

This method considerably refines and generalizes the original method proposed by
Roos et al. (2021). We proposed a unified method that quantifies what proportion of
the total impact of likelihood weighting on the posterior is due to the change in the
location (pEDL) and what proportion is due to the change in the spread (pEDS).
This was achieved by matching posterior moments with those of a normal distribu-
tion for the computation of the BC. Note that the normal distribution encapsulates
the information about its location and spread in two unrelated parameters. This prop-
erty proved useful for the definition of pEDL and pEDS. Because likelihood weighting
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affects both the location and the spread of the marginal posterior distributions, the
proposed method is better suited for the quantification of empirical determinacy than
other methods that are focused only on the total impact (Roos et al., 2021; Kallioinen
et al., 2021).

We successfully applied the proposed method to a non-normal likelihood. This shows
that the proposed method can also be applied to other BHMs with different primary out-
comes. Moreover, we implemented this method in general-purpose Bayesian estimation
programs, such as INLA and JAGS. For JAGS, we developed and applied a technique
for the fast and efficient computation of likelihood weighting, which dispenses with
re-runs of MCMC chains. All these refinements and generalizations enable future exten-
sions of the method proposed to complex BHMs and to other general-purpose Bayesian
estimation programs, such as Stan (Stan Development Team, 2016). The estimates of
the empirical determinacy will help researchers understand to what extent posterior
estimates are determined by the data in complex BHMs.

Currently, the weighting approach focuses on weights that are very close to 1. This
is very useful to study the impact of the total number of patients, which is induced by
within-study sample size changes, on the posteriors of parameters in Bayesian NNHM.
However, the data cloning approach, which changes the total number of studies included
for the Bayesian meta-analysis, indicates that integer weights that are larger than 1
could also be very useful in assessing the impact of the data on BHMs. More work is
necessary to extend the proposed method to cope with integer weights.

The general Bayesian inference framework imposes no restrictions on the likelihood
function (Berger and Srinivasan, 1978; Walker and Hjort, 2001; Chernozhukov and Hong,
2003; Bissiri et al., 2016), thus indicating that the approach to likelihood weighting
could be extended beyond the exponential family assumption. More work is needed to
systematically investigate such extensions.

The proposed method is based on estimates of the mean and standard deviation for
location and spread. These posterior descriptive statistics are provided by default by
general-purpose software for Bayesian computation. Moreover, they are used by other
modern approaches to quantify the impact of priors on posteriors (Reimherr et al., 2021).
However, for stability reasons, Vehtari et al. (2021) recommend the use of location and
spread estimates based on quantiles. In addition, Vehtari et al. (2017) recommend Pareto
smoothed importance sampling (PSIS) to regularize importance weights, which flow
into the computation of the location and spread of the weighted posteriors. Therefore,
anchoring the method proposed on quantiles and the use of PSIS are two additional
goals that need to be addressed by our future research.

This paper focuses mainly on Bayesian NNHM. However, the application of the
method proposed to other complex BHMs would provide a further insight into the em-
pirical determinacy of posterior parameter estimates in other applications. The open
source R package ed4bhm (https://github.com/hunansona/ed4bhm) conveniently fa-
cilitates the application of the proposed method in other settings.
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