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1 Introduction

In many higher-order calculations of cross sections the virtual corrections are the bot-

tleneck, particularly if they involve massive particles propagating in loops. A prominent

example of such a process is Higgs boson pair production, where the real-radiation contri-

bution with exact dependence on the top quark mass [1] was available long before the corre-

sponding virtual corrections [2–4]. One of the reasons is certainly the enormous expressions

which are present in intermediate stages of the calculation, and the complicated integrals

which in general depend on several invariants. Often a purely numerical approach for the

evaluation of the loop integrals is necessary, which comes with the well-known disadvan-

tages of long run-times and reduced flexibility in the choice of values for parameters. In this

paper we suggest an alternative approach for the computation of virtual loop integrals for

2 → 2 processes. It is based on the combination expansions in different kinematic regions.

We consider the scattering of two (massless) partons in the initial state with momenta

q1 and q2 into two massive particles in the final state with momenta q3 and q4. It is

convenient to introduce the Mandelstam variables as

s = (q1 + q2)2 , t = (q1 + q3)2 , u = (q1 + q4)2 , (1.1)

where all momenta are incoming. Furthermore we have

q2
1 = q2

2 = 0 , q2
3 = m2

X , q2
4 = m2

Y , (1.2)
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where in general mX and mY are allowed to be different and the transverse momentum of

the final-state particles is given by

p2
T =

u t − m2
Xm2

Y

s
. (1.3)

For definiteness we will denote the internal mass by mt, the top quark mass.

The computation of massive two-loop integrals with the kinematics described above

is a difficult problem. Purely numerical approaches have been developed and applied to

the processes gg → HH, gg → ZZ, gg → ZH, gg → W +W − (see, e.g., refs. [2–7]).

Usually these computations require a large amount of CPU time for a single phase space

point. Furthermore, it is often necessary to fix numerical values for the top quark and Higgs

boson masses at an early stage of the calculation. Thus a change of value or renormalization

scheme makes it necessary to repeat a large part of the calculation.

In order to avoid the disadvantages of a purely numerical calculation a number of ana-

lytic approximation methods have been developed. Initially they have usually been applied

to Higgs boson pair production and afterwards also to more complicated processes. Among

the approximations for gg → HH are large top quark mass expansions [8–10], high-energy

expansions [11, 12], small transverse-momentum expansions [13] and expansions around the

top quark threshold [14]. In refs. [15, 16] a method has been developed where the two-loop

amplitude is expanded for small Higgs boson mass with a subsequent numerical evaluation.

Since such approximations are only valid in a restricted phase space it is tempting to

combine different approaches. A first example of such a combination has been presented

in ref. [17] where the exact numerical results from refs. [2, 3] were combined with the high-

energy expansion of refs. [11, 12]. The CPU-time expensive calculations were only necessary

for relatively small values of the Higgs transverse momentum, say below pT ≈ 200 GeV, and

the fast evaluation of the analytic high-energy expansions could be used for the remaining

phase space.

A similar approach to the one discussed in this paper has been discussed in refs. [18, 19]

where the analytic small pT and high-energy expansions are “merged”. For both expansions

Padé approximants are constructed, however, only to low order ([1/1] and [6/6], respec-

tively). The Padé approximants are constructed from the analytic expression and kept

fixed, thus there is no estimation of the uncertainty due to this approach. In our approach

high-order Padé approximants are constructed numerically in the high-energy region and

the approach of ref. [20] is used to determine an uncertainty estimate. Furthermore, in-

stead of an expansion in pT we perform an expansion first in the external Higgs boson

mass, followed by an expansion in the (massless) Mandelstam variable t. Although both

approaches are an expansion about the forward kinematics (where q3 = −q1), they differ

in the terms retained in the final result; whereas refs. [18, 19] contain terms proportional

to pT and mH in a homogenous manner, we keep all terms up to fixed maximum powers

of mH and t. Note that in [18, 19] only terms up to m2
H have been used in the high-energy

approximation. This introduces a systematic uncertainty of up to a few percent, as we

will discuss below. In this work we will include quartic corrections which reduces this

uncertainty below the percent level.
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In this paper we review the high-energy expansion method developed in refs. [12, 17,

20]. An improvement in the method allows us to obtain significantly deeper expansions in

m2
t /s, m2

t /t and m2
t /u which includes terms up to about m120

t (see also ref. [21]) (instead

of m32
t as in [12, 20]). The deeper expansions combined with the construction of Padé

approximants extends the range of validity to even smaller values of
√

s and pT . We will

provide details regarding this approach in section 2.1.

In section 2.2 we will describe our approach for the expansion around t → 0. It is

based on the observation that for this limit a simple Taylor expansion can be performed,

rather than a complicated asymptotic expansion. We can thus reduce the calculation

to integrals which only depend on m2
t /s. These integrals are obtained with the help of

differential equations using the “expand and match” approach developed in refs. [22, 23].

The boundary conditions are obtained from the large-mt limit, in which the integrals are

simple and can be computed analytically.

In section 3 we will use the process gg → HH to illustrate the methods of sections 2.1

and 2.2. However, the approach is more general and with straightforward modifications it

can also be applied to other processes as, e.g., gg → ZH. We will show that we can cover

the whole kinematic phase space which we parametrize in terms of
√

s and pT . A summary

of our findings together with a discussion of possible bottlenecks are discussed in section 4.

2 Analytic expansions

We begin by performing a Taylor expansion in the masses of the final-state particles. This

is always possible for diagrams where the final-state particles couple to massive internal

lines. This produces an amplitude in terms of four-point functions which depend on s, t

and mt, but not on mX or mY . We then proceed by considering analytic expansions of the

amplitude in the following limits:

A. high energy

B. t → 0

In both cases we perform an exact reduction of the amplitude to master integrals,

which we then expand in the relevant limit. The reduction is the same for both cases,

leading to the same master integrals. For the process gg → HH this step was first done in

refs. [11, 12] and leads to 161 two-loop master integrals. In the following subsections we

briefly discuss the features of methods A and B in more detail.

It is also possible to perform an asymptotic expansion in the limit of a large top

quark mass. In this case it is not necessary to expand in the masses of the final state

particles. Such an expansion is automated in the program exp [24, 25] and the approach

is well established; results for the gg → HH form factors at three loops can be found

in refs. [9, 26]. In this work we use the results of this approach to provide boundary

conditions for the differential equations considered in method B described above. We

also show some numerical values for the form factors in this approximation in section 3.3,

however our proposed procedure to approximate the two-loop form factors requires only

the high-energy and small-t expansions.

– 3 –
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2.1 High-energy expansion

The method of high-energy expansion, including a subsequent Padé approximant–based

improvement, has been developed in refs. [11, 12, 17, 20, 27]. We improve this approach

by constructing a deeper expansion of the master integrals, which includes 120 terms in

the small-mt expansion. Such an expansion is obtained in the following way:

1. We insert an ansatz for the expansion of each master integral Mi, i = 1, . . . , 161

Mi(ǫ, s, t, mt) =

ai,max∑

a=−3

bmax∑

b=−3

4+a∑

c=0

c
(i)
abc(s, t) ǫa

(
mt√

s

)b

ln

(
m2

t

s

)c

, (2.1)

into the system of differential equations for the master integrals, with respect to

mt. ai,max is a master integral–specific value determined by the ǫ order required to

produce the amplitude to ǫ0 and we choose bmax = 120 for each master integral.

The planar master integrals depend only on even powers of mt, while the non-planar

integrals also have contributions from odd powers as was shown in ref. [12].

2. By comparing the coefficients of powers of ǫ, mt and ln(mt) we establish a sys-

tem of linear equations for the expansion coefficients c
(i)
abc(s, t), which depend on the

Mandelstam variables s and t. We solve this system in terms of a small number of

boundary constants by making use of the reduce_user_defined_system feature of

Kira [28]. Solving over finite fields with subsequent rational reconstruction using

FireFly [29, 30] is much faster than solving symbolically using Fermat [31]. It is

this method of solving the system of equations which allows us to expand much more

deeply than ref. [12], which expands only up to bmax = 32.

3. The boundary constants can be fixed using the solutions from refs. [11, 12], where

these constants were computed using the method of regions and Mellin-Barnes tech-

niques, see also ref. [32] for more details.

The expansion coefficients of the master integrals are then exported to a FORM

Tablebase which is used to efficiently insert the expansions into the amplitude, which

is also expanded in ǫ and mt to the required depth.

The subsequent Padé approximation is performed numerically following refs. [17, 20].

For convenience we repeat the important steps in the following. The starting point is a form

factor as an expansion in mt, i.e., numerical values for all other kinematic variables and

masses are inserted. We then apply the replacements m2k
t → m2k

t xk and m2k−1
t → m2k−1

t xk

to pair together the even and odd powers of mt, yielding a degree-N polynomial in the

variable x, with half the maximum degree of the mt expansion.

Next we construct Padé approximants in the variable x and write the form factor as a

rational function of the form

[n/m](x) =
a0 + a1x + . . . + anxn

1 + b1x + . . . + bmxm
, (2.2)

where the coefficients ai and bi are determined by comparing the coefficients of xk after

expanding the right-hand side of eq. (2.2) around the point x = 0. Evaluation of this

rational function at x = 1 yields the Padé approximated value for the form factor.

– 4 –
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The numerator and denominator degrees (n, m) in eq. (2.2) are free parameters; one

only must ensure that n + m ≤ N such that a sufficient number of expansion terms are

available to determine the coefficients ai and bi. We define Nlow and Nhigh and include

Padé approximations in our analysis which fulfil

Nlow ≤ n + m ≤ Nhigh and Nlow ≤ n + m − |n − m| . (2.3)

Our default choice is Nlow = 49 and Nhigh = 56 which leads to 28 different Padé approxi-

mants.1 They are combined using three different criteria:

• The rational function in eq. (2.2) develops poles at the roots of the denominator. We

give more weight to those Padé approximants which have poles further away from

the evaluation point x = 1 (“pole-distance re-weighted” Padé approximation).

• We give more weight to Padé approximants which are derived from a larger number

of expansion terms.

• We give more weight to “near-diagonal” Padé approximants.

We combine the weights from each criterion for each of the Padé approximants, and

use the combined weight to produce a central value and corresponding uncertainty for the

phase-space point under consideration. Explicit formulae for the individual steps of the

construction are given in section 4 of ref. [20]. In the supplementary material [33] to this

paper we provide Mathematica code which can be used to construct, for a given polynomial

in x, an approximation based on the procedure described above, including an uncertainty

estimate.

We have demonstrated this approach applied to a single planar master integral in

ref. [21] and the comparison to (exact) numerical results can be found in figure 7(a) of

that reference. In figure 2 we discuss results for the non-planar integral shown in figure 1.

We choose pT = 40 GeV and vary
√

s between 300 GeV and 1100 GeV. In figure 2(a) we

compare Padé results constructed from expansions up to m32
t and m112

t , which are shown

by the green and orange bands, respectively. One observes a dramatic reduction of the

uncertainty. At the same time it is reassuring to see that the uncertainty estimate of

the Padé procedure is reliable, when comparing to the numerical values obtained using

FIESTA [34]. In figure 2(b) we focus on the comparison of the orange band with the

results from FIESTA; we observe good agreement within uncertainties in the whole plotted

range of
√

s, even very close to the threshold for the production of two top quarks.

2.2 Expansion for t → 0

In this subsection we aim for an expansion of the original 161 master integrals around t = 0

such that the amplitude can be expanded in this limit. This complements the high-energy

expansion, i.e. we aim for a good description in the region around the threshold where

s ≈ 4m2
t and the high-energy expansion breaks down. However, as we will see below, good

1While the master integrals are determined up to N = 60 (m120

t ), negative powers of mt in the amplitude

coefficients mean that the expansion of the form factors can be produced up to N = 56 (m112

t ).
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q2 q4

q1 q3

Figure 1. The two-loop Feynman diagram G59(1, 1, 1, 1, 1, 1, 1, −1, 0) (see appendix A of ref. [12]

for more details). Solid and dashed lines correspond to massive and massless propagators. All

external momenta are massless.

400 600 800 1000

-100

0

100

200

300

400

400 600 800 1000

50

100

150

200

(a) (b)

Figure 2. Comparison of Padé-based approximations constructed from different expansion depths

(Nlow, Nhigh) with numerical results obtained using FIESTA, for the non-planar master integral

shown in figure 1, with a numerator.

results are also obtained for larger values of
√

s, in particular for smaller values of pT . The

expansion is performed as follows.

• As for the high-energy expansion, we first expand in the masses of the final-state

particles. For gg → HH it is sufficient to expand up to m4
H to obtain a precision

below the percent level. We are left with integral families which depend on s, t and

mt. Here we note that the expansion in mH generates spurious 1/t terms which

cancel after inserting the t-expansion of the master integrals.

As discussed previously, this expansion is a simple Taylor expansion in cases where

the final-state particles couple to massive internal lines; otherwise, a more involved

asymptotic expansion must be performed.

• Establish differential equations, with respect to t, for the master integrals of the

2 → 2 problem where all external lines are massless. The master integrals, and thus

the resulting t-differential equations, are the same as in the high-energy case discussed

in section 2.1.

– 6 –



J
H
E
P
0
6
(
2
0
2
3
)
0
6
3

• We use the differential equations to obtain, for each master integral, a generic Taylor

expansion around t = 0. This is achieved by expanding the coefficients of the differ-

ential equations around t → 0 and for each master integral, inserting an ansatz of

the form

Mi(ǫ, s, t, mt) =

ai,max∑

a=−3

∑

b≥0

c
(i)
ab (s, m2

t ) ǫa

(
t

m2
t

)b

,

where the (unknown) coefficients c
(i)
ab (s, m2

t ) are functions of s and m2
t .

Note that for t → 0 some of the propagators of the original integral families (see

appendix A of refs. [11] and [12]) become linearly dependent. After a partial fraction

decomposition we can define new integral families which contain fewer propagators. In

terms of these new families, the number of master integrals in the t → 0 limit reduces

from 161 to 48. One of the resulting topologies has been studied in ref. [35], where it was

shown that two master integrals are elliptic and cannot be expressed in terms of iterated

integrals. These master integrals depend on two different square roots.

We have calculated all 46 non-elliptic master integrals analytically by solving the

associated differential equations in the variable s/m2
t following the algorithms outlined

in ref. [36] implemented with the help of the packages Sigma [37, 38], OreSys [39] and

HarmonicSums [40–52]. The boundary conditions have been fixed in the large-mt limit,

where the integrals can be calculated by performing a large mass expansion, implemented in

q2e/exp [24, 25]. Our final result can be expressed in terms of iterated integrals over letters

which contain the three square roots
√

x
√

4 − x,
√

x
√

4 + x,
√

4 − x
√

4 + x. However, we

find that this representation is not well suited for numerical evaluation for several reasons:

1. Some of the iterated integrals depend on two square-root valued letters at the same

time, which cannot easily be rationalized simultaneously.

2. The iterated integrals have spurious poles at s/m2
t = 1 and s/m2

t = 4, which require

analytic continuation.

3. The analytic results for the two elliptic integrals are rather involved.

Therefore, we calculate all 48 master integrals using the semi-analytic approach developed

in refs. [53, 54]. For each master integral, we provide a deep expansion of 50 terms around

different values of s/m2
t , with high-precision numerical coefficients. In particular we

construct expansions around 18 values of s/m2
t to cover values of s between 0 and ∞. Our

starting point for the construction of the approximations is the expansion around s = 0

where all master integrals can be computed analytically. As a by-product we extend the

large-mt expansion of these master integrals (but only at t = 0).

This method has a number of advantages compared to purely numerical approaches.

Since the value of mt is only inserted into the final expression, it is possible to easily change

the value or renormalization scheme used for mt. It is straightforward to take derivatives

w.r.t. mt of the one-loop expressions in order to generate the corresponding counterterm

contributions.
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3 Application to Higgs boson pair production

In this section we apply the expansion methods discussed above to the particular case of the

gg → HH amplitude. We start by examining the mH and t expansions of one-loop master

integrals by comparing to numerical results obtained with FIESTA [34] and Package-X [55].

We show that the Taylor expansion in mH produces good agreement with the exact result,

even for smaller values of
√

s close to the Higgs pair production threshold at
√

s = 2mH .

Afterwards we discuss results for the one- and two-loop form factors. Finally we compare

the virtual corrections to the Higgs pair production cross section with the numerical results

obtained in ref. [17].

For the numerical evaluations we use input values for the top quark and Higgs boson

masses of mt = 173.21 GeV and mH = 125.1 GeV, respectively.

For completeness we provide in the following the definition of the form factors for Higgs

boson pair production. The amplitude for the process g(q1)g(q2) → H(q3)H(q4) can be

decomposed into two Lorentz structures (a and b are adjoint colour indices)

Mab = ε1,µε2,νMµν,ab = ε1,µε2,νδabX0s (F1Aµν
1 + F2Aµν

2 ) , (3.1)

where

Aµν
1 = gµν − 1

q12
qν

1 qµ
2 ,

Aµν
2 = gµν +

1

p2
T q12

(q33qν
1 qµ

2 − 2q23qν
1 qµ

3 − 2q13qν
3 qµ

2 + 2q12qµ
3 qν

3 ) . (3.2)

Here we have introduced the abbreviation qij = qi · qj and pT is given in eq. (1.3). The

prefactor X0 is given by

X0 =
GF√

2

αs(µ)

2π
TF , (3.3)

where TF = 1/2, GF is Fermi’s constant and αs(µ) is the strong coupling constant evaluated

at the renormalization scale µ.

We define the expansion in αs of the form factors as

F = F (0) +
αs(µ)

π
F (1) + · · · , (3.4)

and decompose the functions F1 and F2 introduced in eq. (3.1) into “triangle” and “box”

form factors. We thus cast the one- and two-loop corrections in the form (k = 0, 1)

F
(k)
1 =

3m2
H

s − m2
H

F
(k)
tri + F

(k)
box1 + δk1F

(1)
dt1 ,

F
(k)
2 = F

(k)
box2 + δk1F

(1)
dt2 . (3.5)

F
(1)
dt1 and F

(1)
dt2 denote the contribution from one-particle reducible double-triangle diagrams,

see, e.g. figure 1(f) of ref. [17]. The main focus in this paper is on F
(1)
box1 and F

(1)
box2.

Analytic results for the leading-order form factors are available from [56, 57] and the

two-loop triangle form factors have been computed in refs. [58–60]. The results for the

double-triangle contribution can be found in [10].

– 8 –
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q1

q2 q3

q4

Figure 3. The one-loop master integral G2(1, 1, 1, 1), where all internal lines are massive and for

the external lines we have q2
1 = q2

2 = 0 and q2
3 = q2

4 = m2
H

.
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Figure 4. Real part of the master integral G2(1, 1, 1, 1) as a function of
√

s for pT = 40 GeV (left)

and pT = 200 GeV (right). The coloured lines include expansions in mH up to the indicated orders.

The exact result is shown in black. The lower panels show the relative error between the expansions

and the exact curve.
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3.1 Expansion of a one-loop master integral in mH

In figure 4 we show, as a function of
√

s, the real part of the one-loop box master integral

G2(1, 1, 1, 1) (see appendix A of ref. [11] for details on the notation), which is depicted

in figure 3. The left and right panels correspond to pT = 40 GeV and pT = 200 GeV,

respectively. The coloured lines show expansions in m2
H up to fourth order, and the black

line represents the exact result. After the Taylor expansion in mH a reduction to master

integrals is necessary. It has been performed with LiteRed [61] and for the numerical

evaluation of the resulting master integrals we have used Package-X [55].

The upper row shows the results for the master integral and the lower row shows the

relative error between the expansions and the exact curve. One observes that the m0
H curves

do not describe the exact result particularly well, with differences at the 15-20% level, how-

ever including the quadratic and quartic terms provide a description below the 5% level and

1% level, respectively; these observations are largely independent of the values of
√

s and pT .

3.2 Expansion of a one-loop master integral in t

Next we study the t → 0 expansion of the same one-loop box master integral, G2(1, 1, 1, 1).

For this purpose we choose mH = 0, i.e., the leading term of the expansion discussed in

300 400 500 600 700 800 900 1000

0.0

0.1

0.2

0.3

0.4

600 800 1000 1200 1400 1600 1800 2000

-0.02

-0.01

0.00
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10
-14

10
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10
-14
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0.01

Figure 5. Real part of the master integral G2(1, 1, 1, 1) as a function of
√

s for pT = 40 GeV (left)

and pT = 200 GeV (right). The coloured lines include expansions in t up to t10. The exact result is

shown in black. The lower panels show the relative error between the expansions and the exact curve.
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section 3.1. We perform the expansion in t using LiteRed [61] and then map the resulting

integrals to new integral families which have only three propagators and depend only on

s/m2
t . For these integrals we establish a system of differential equations which can be

solved analytically, incorporating boundary conditions from the s → 0 limit. The resulting

coefficients of the polynomial in t can be written in terms of Harmonic Polylogarithms [62],

which we evaluate using the Mathematica package HPL.m [63, 64].

In figure 5 we show the convergence of the t expansion for the values pT = 40 GeV and

pT = 200 GeV in the left and right columns, respectively. The lower row shows the relative

error between the expansion and the exact curve. For the smaller value of pT = 40 GeV,

we observe that the leading expansion term (t0) already reproduces the exact result at the

percent level. For pT = 200 GeV the leading term does not perform so well, however by

including higher-order terms the expansion converges on the exact result very quickly.

3.3 Expansion of the one-loop form factors

We now discuss the high-energy and small-t expansions at the level of the one-loop form

factors F
(0)
box1 and F

(0)
box2, and compare them to the exact results.

In figures 6 and 7 we show, for various values of pT , the results for the form factors

F
(0)
box1 and F

(0)
box2 as a function of

√
s. The high-energy and small-t expansions are shown

as coloured dashed lines; the solid black line (in the background) corresponds to the exact

result. For these plots we have incorporated quartic expansion terms in mH , the order

which is also available at the two-loop level. Furthermore, for the small-t expansion terms

up to t5 are taken into account and the high-energy expansion includes Padé approximations

which include terms up to at least (m2
t )49 and at most (m2

t )56.

Above the top quark pair threshold we observe that both expansions agree with the

exact result even for values of pT as small as 50 GeV and as large as 200 GeV. For larger

values of pT the small-t expansion starts to deviate from the black curve, as can be seen

in the panel for pT = 300 GeV, whereas the high-energy approximation agrees very well,

as expected. On the other hand, for values of pT below 50 GeV the small-t expansion

provides an excellent approximation. From the panels in figures 6 and 7 one observes that

for 100 GeV . pT . 200 GeV both approximations work well for
√

s & 350 GeV.

Below the top quark pair threshold we observe that the small-t expansion provides an

excellent description of the exact result, whereas the high-energy expansion deviates; this is

expected since it does not contain any information about the threshold. Values
√

s . 2mt

are kinematically only allowed for pT . 120 GeV.

To quantify the quality of the approximations we show in tables 1, 2 and 3, for three

different values of pT , results for the real part of F
(0)
box1 for various values of

√
s. We show

the exact results, the results for the small-t expansion for different expansion depths in

mH , the high-energy expansion including terms up to m4
H , and results for the large-mt

expansion (LME) up to 1/m12
t [26].

Let us start the discussion with table 1 (pT = 50 GeV) where we observe the following:

• If we restrict ourselves to the approximation which includes quartic mH terms, in the

region above the top quark threshold we observe an agreement of at least 3 significant

digits between the small-t and high-energy expansions.
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Figure 6. One-loop form factor F
(0)
box1 as a function of

√
s for various values of pT .

400 600 800 1000 1200 1400
s (GeV)

0.05

0.04

0.03

0.02

0.01

0.00

0.01

F(0
)

2

pT = 50 GeV

400 600 800 1000 1200 1400
s (GeV)

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

F(0
)

2

pT = 100 GeV
exact
t 0, Re
t 0, Im
high-energy, Re
high-energy, Im

400 600 800 1000 1200 1400
s (GeV)

0.25

0.20

0.15

0.10

0.05

0.00

F(0
)

2

pT = 150 GeV

400 600 800 1000 1200 1400
s (GeV)

0.25

0.20

0.15

0.10

0.05

0.00

F(0
)

2

pT = 170 GeV

400 600 800 1000 1200 1400
s (GeV)

0.30

0.25

0.20

0.15

0.10

0.05

0.00

F(0
)

2

pT = 200 GeV

400 600 800 1000 1200 1400
s (GeV)

0.30

0.25

0.20

0.15

0.10

0.05

0.00

F(0
)

2

pT = 300 GeV

Figure 7. One-loop form factor F
(0)
box2 as a function of

√
s for various values of pT .

• The agreement between the exact result and the approximations based on an expan-

sion in mH up to quartic order is well below the percent level.

• Including expansion terms in mH , beyond the quartic terms, for the small-t expansion

improves the agreement with the exact result.

Similar conclusions also hold for pT = 200 GeV, as can be seen in table 2. In practical

applications the high-energy expansion can be used for such values of pT .
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√
s (GeV) 270 300 350 400 610 990

exact −1.72013 −1.81435 −2.32246 −2.34773 −0.393996 0.0855054

small-t m0
H −1.44108 −1.52523 −1.92423 −2.01154 −0.420989 0.0626770

m2
H −1.67642 −1.77026 −2.25482 −2.30931 −0.404100 0.0837986

m4
H −1.71321 −1.80759 −2.31050 −2.34518 −0.395265 0.0854682

m6
H −1.71902 −1.81331 −2.32026 −2.34808 −0.394063 0.0855094

m8
H −1.71995 −1.81419 −2.32204 −2.34793 −0.393990 0.0855057

high-en. m4
H — — −2.31129 −2.34521 −0.395262 0.0854694

LME −1.71813 −1.80468 −2.08865 −2.76874 — —

Table 1. Real part of F
(0)
box1 for pT = 50 GeV.

In table 3 we show values for a smaller value of pT = 10 GeV. While it is impressive that

for such small values of pT the high-energy expansion still provides good approximations

for
√

s values around 400 GeV, which demonstrates the power of a deep expansion in mt

combined with a Padé improvement, for larger values of
√

s the high-energy approximation

does not reproduce the exact results. This behaviour is expected, since in this region of

phase space it is not the case that |t| ≫ m2
t , so the high-energy expansion does not converge.

Indeed for a fixed value of pT , increasing values of
√

s imply decreasing values of |t|. The

small-t expansion performs very well in this region.

For F
(0)
box2 the comparison is not so straightforward, as can be seen in the first two

panels of figure 7 and in table 4. We observe that the expansion in mH does not converge

sufficiently quickly for the quartic terms to provide a good description of the exact curve

for pT . 100 GeV. While including terms to m8
H in the small-t expansion again provides

good agreement, such expansion terms are not available at two loops.

We show in table 4 that below the top quark pair production threshold, the large

top quark expansion of ref. [26] (including expansion terms to 1/m12
t ) provides a good

approximation of the exact result and can be used instead in this region. However, F
(0)
box2 is

numerically much smaller than F
(0)
box1; we have verified that the use of the large top quark

expansion in this region does not affect the results and conclusions of section 3.5.

From the considerations above, we propose the following selection criteria for the choice

of expansion in the different regions of the {√
s, pT } plane:

• Below pT = 150 GeV: use small-t expansion for all values of
√

s.

• For 150 GeV. pT . 200 GeV either approximation can be used.

• Above pT = 200 GeV use the high-energy expansion for all values of
√

s.

As a consequence, below
√

s = 2mt the small-t expansion is always selected. The fact

that the high-energy and small-t expansions agree with each other (and with the exact

result) in the region 150 GeV. pT . 200 GeV increases our confidence in the accuracy of
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√
s (GeV) 610 990

exact −0.311182 0.110469

small-t m0
H −0.340443 0.089788

m2
H −0.319571 0.109173

m4
H −0.311692 0.110538

m6
H −0.310705 0.110570

m8
H −0.310651 0.110567

high-energy m4
H −0.312218 0.110440

Table 2. Real part of F
(0)
box1 for pT = 200 GeV.

√
s (GeV) 270 300 350 400 610 990

exact −1.72358 −1.81816 −2.32666 −2.35282 −0.400246 0.0835134

small-t m0
H −1.44780 −1.52956 −1.92815 −2.01570 −0.426920 0.0605334

m2
H −1.68133 −1.77444 −2.25910 −2.31430 −0.410425 0.0817808

m4
H −1.71707 −1.81151 −2.31474 −2.35027 −0.401533 0.0834753

m6
H −1.72257 −1.81714 −2.32446 −2.35317 −0.400314 0.0835175

m8
H −1.72342 −1.81800 −2.32624 −2.35302 −0.400239 0.0835137

high-en. m4
H — — −2.32046 −2.35382 −0.464921 −0.539285

LME −1.72158 −1.80854 −2.09373 −2.77895 — —

Table 3. Real part of F
(0)
box1 for pT = 10 GeV.

√
s (GeV) 270 300 350 400 610 990

exact −0.025050 −0.026046 −0.033323 −0.029569 −0.006633 −0.001207

small-t m0
H

−0.111991 −0.072393 −0.064400 −0.050849 −0.009550 −0.001571

m2
H

−0.069277 −0.058082 −0.061193 −0.048812 −0.008496 −0.001339

m4
H

−0.033254 −0.031982 −0.039319 −0.032503 −0.006558 −0.001190

m6
H

−0.026450 −0.027041 −0.034525 −0.029807 −0.006603 −0.001206

m8
H

−0.025286 −0.026208 −0.033565 −0.029543 −0.006631 −0.001207

high-en. m4
H

— — −0.039369 −0.032504 −0.006558 −0.001189

LME −0.024977 −0.025767 −0.028531 −0.034309 — —

Table 4. Real part of F
(0)
box2 for pT = 50 GeV.

the expansions; we will check for this agreement at two loops, where no exact analytic

result for the form factors is available.

Finally, in tables 5 and 6 we show the convergence properties of the small-t expan-

sion for F
(0)
box1, expanded to m4

H . In table 5 we have chosen pT = 50 GeV, as in table 1.
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√
s 270 300 350 400 610 990

exact −1.72013 −1.81435 −2.32246 −2.34773 −0.393996 0.0855054

small-t t0 −1.72233 −1.81614 −2.31848 −2.35377 −0.403541 0.0831798

t1 −1.70636 −1.80585 −2.30978 −2.34471 −0.395059 0.0855148

t2 −1.71349 −1.80764 −2.31052 −2.34519 −0.395270 0.0854672

t3 −1.71313 −1.80758 −2.31050 −2.34518 −0.395265 0.0854682

t4 −1.71322 −1.80759 −2.31050 −2.34518 −0.395265 0.0854682

t5 −1.71321 −1.80759 −2.31050 −2.34518 −0.395265 0.0854682

Table 5. Real part of F
(0)
box1 for pT = 50 GeV. Note that the difference between the converged

small-t expansion and the exact result is due to the limited expansion depth in m2
H

.

√
s 610 990

exact −0.271746 0.121508

small-t t0 −0.403541 0.083180

t1 −0.169798 0.140533

t2 −0.329867 0.111809

t3 −0.235303 0.126569

t4 −0.296885 0.118770

t5 −0.256537 0.122940

Table 6. Real part of F
(0)
box1 for pT = 250 GeV.

Here we observe a rapid convergence; in fact, the O(t2) terms already provide only a small

correction. For larger values of pT the higher-order expansion terms become more impor-

tant. For example, for pT = 250 GeV (table 6) even the t4 and t5 terms provide important

contributions.

3.4 Two-loop form factors

In the following we present results for the two-loop box form factors where for the ultra-

violet renormalization and infra-red subtraction we follow ref. [12]. In particular, we renor-

malize the top quark mass in the on-shell scheme.

In figures 8, 9, 10 and 11 we show the results for the two colour factors of the two-

loop form factors, for various values of pT , as a function of
√

s. For the small-t expansion

terms up to t5 are taken into account and the high-energy expansion includes Padé ap-

proximations with at least (m2
t )49 and at most (m2

t )56 terms. In all cases quartic terms

in mH are included. Results for the high-energy form factors at the deeper expansion

depths considered here are provided in the supplementary material of this paper (and also

in ref. [33]).
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An exact result for the form factors is not at our disposal, however, we observe that

the approximations show a very similar behaviour as at one-loop order. In particular,

we observe that for 100 GeV. pT . 200 GeV there is a wide range in
√

s where we find

excellent agreement between the two approximations. We want to stress that for these pT

values the small-t expansion works well even for larger values of
√

s. This is demonstrated

by the black and gray curves which show the relative percentage difference between the

small-t and high-energy expansions for the real and imaginary parts of the form factors,

respectively. For each value of 100 GeV. pT . 170 GeV there is an overlap region in which

the relative difference is far below 1%, and mostly even below 0.1%. Note that the spikes

in the gray and black curves are related to zeros of the form factors.

For pT > 200 GeV we can rely on the high-energy expansion. This is supported by

the fact that even for pT ≈ 100 GeV the high-energy expansion agrees with the small-t

expansion even for
√

s ≈ 2mt. Note that for
√

s < 2mt the high-energy expansion is not

valid for any value of pT since no information about the top quark pair threshold is used for

the construction of the approximation. However, for
√

s < 2mt the small-t approximation

is always valid since pT is kinematically constrained to be less than about 120 GeV.

For smaller values of pT the small-t expansion is even more reliable, as can been seen

from the one-loop comparison in table 3.

In summary, in sections 2.1 and 2.2 we demonstrate that the combination of the small-t

and high-energy expansions is sufficient to cover the whole phase space, and that the final

uncertainty is given only by the expansion in mH which we estimate to be below 1%.

Our expressions retain explicit dependence on all parameters, (mt, mH , s and t), al-

lowing for a straightforward change of parameter values or renormalization scheme. Our

reference implementation of the approximations in Mathematica requires a few seconds to

evaluate the small-t expansion and between 40 and 50 seconds to evaluate the (m2
t )56 Padé-

improved high-energy approximation. We have also implemented both the small-t and an

(m2
t )24 Padé-improved high-energy approximation in C++ which requires only O(10) ms per

phase-space point, which is comparable to the timings reported in ref. [19].

3.5 Virtual NLO corrections

As a final comparison, we construct the infra-red subtracted virtual corrections, following

ref. [65]. They are given by

Ṽfin =
α2

s (µ)

16π2

G2
F s2

64

[
C + 2

(
F̃

(0)∗
1 F̃

(1)
1 + F̃

(0)∗
2 F̃

(1)
2 + F̃

(0)
1 F̃

(1)∗
1 + F̃

(0)
2 F̃

(1)∗
2

)]
, (3.6)

with

C =

[∣∣∣F̃ (0)
1

∣∣∣
2

+
∣∣∣F̃ (0)

2

∣∣∣
2
](

CAπ2 − CA log2 µ2

s

)
, (3.7)

where αs corresponds to the five-flavour strong coupling constant. It is convenient to

introduce the αs-independent quantity

Vfin =
Ṽfin

α2
s(µ)

. (3.8)
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Figure 8. CF contribution to the two-loop form factor F
(1)
box1 as a function of

√
s for various values

of pT .
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Figure 10. CF contribution to the two-loop form factor F
(1)
box2 as a function of

√
s for various

values of pT .
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Figure 12. Vfin as a function of pT , normalized to the central values of the pySecDec-evaluated

points of hhgrid. We switch from the small-t to the high-energy expansion at pT = 175 GeV.

We use the exact expressions for the one-loop form factors along with the approxi-

mations discussed in the previous section for the two-loop form factors, to compute Vfin.

The triangle and double-triangle diagrams are included in the form factors, as described in

eq. (3.5); we use exact expressions for the double-triangle diagrams, while for the triangle

diagrams we use the expansions discussed above.

In ref. [17] the high-energy expansions of refs. [11, 12, 32] have been combined with the

exact, numerical two-loop results of [65], such that Vfin can be evaluated at any phase-space

point and costly two-loop numerical integrations are only required in a restricted phase

space, namely for pT < 150 GeV if
√

s ≥ 700 GeV and for pT < 200 GeV if
√

s < 700 GeV.

The results of [17] are collected as data points in hhgrid [66]. The high-energy expansion

used in [17] only includes terms up to m32
t , in contrast to the much deeper expansions

which we consider in this work.

In figure 12 we compare our new results for Vfin to those obtained using pySecDec [67,

68] in ref. [17]. The grey data points and uncertainties correspond to the pySecDec data

points, normalized to their central values. In comparison the uncertainty of our approx-

imation is negligible.2 The blue and red data points are obtained from the small-t and

high-energy expansions, where we normalize to the central values of the hhgrid data. This

plot may be compared with figure 3 of ref. [17].

To quantify the agreement between our approximations and the pySecDec evaluations,

the following table describes the proportion of points which are contained within a number

of pySecDec error intervals.

2The systematic uncertainty of about 1% due to the expansion in mH up to quartic order is not shown.
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pySecDec err. intervals 1σ 2σ 3σ

small-t 0.57 0.85 0.92

high-energy 0.65 0.94 0.99

We observe that the high-energy expansion demonstrates a Gaussian behaviour, while the

small-t expansion shows a non-Gaussian disagreement, which we ascribe to the systematic

error due to the slower convergence of the m2
H expansion in the lower-pT region, as shown

in figure 4.

Let us finally compare to the findings of refs. [18, 19]. In these works the integration

over t has been performed and an uncertainty of 1% is claimed with respect to the exact

LO values. Here we present detailed results only at the level of the form factors, and

find a several-digit agreement between our small-t and high-energy approximations in the

overlap region for pT between 100 GeV and 200 GeV. On the other hand, the results for the

form factors in ref. [18] suggest a several-percent difference between the two Padé-improved

expansions in some cases, as shown in figures 1 and 3 of ref. [18]; the form factor with the

worse agreement (Fbox2) only has a small contribution to the cross section, however.

In refs. [18, 19] only 13 high-energy terms have been taken into account to construct

a [6/6] Padé approximant and thus the transition from the small-pT to the high-energy

approximation is made at relatively high values of pT (pT ≈ 312 GeV and 340 GeV for

the choices
√

s = 900 GeV and
√

s = 2000 GeV in figure 3 of ref. [18]). As we show in

figures 6 and 7 our small-t expansion does not perform very well in this region. However in

our approach, we are able to use the high-energy expansion at much smaller values of pT ,

so this region is well described. Let us also mention that in refs. [18, 19] only quadratic

mH terms are used in the high-energy expansion which leads to a few-percent systematic

uncertainty at the level of the form factors.

In the small-pT expansion in refs. [18, 19] only a [1/1] Padé approximant is constructed

which means that three expansion terms are available. In our analysis we use terms up

to t5, i.e. six expansion terms; no Padé improvement of the t → 0 expansion is necessary.

We have shown in table 6 that the deeper expansion terms are important to approximate

higher pT values without the use of Padé approximants.

4 Conclusions

In this paper we consider a 2 → 2 process with massive internal particles, which is a

multi-scale problem and thus notoriously difficult, both in an analytic and in a numerical

approach. We show that the combination of analytic expansions in two regions of phase

space provides a complete description of the two-loop virtual amplitude. On the one hand

we consider a deep expansion in the high-energy limit where the internal mass (in our

application, the top quark mass) is small compared to the Mandelstam variables s and t.

On the other hand we perform an expansion in t which again eliminates a scale from the

integrand. In both cases we expand in the mass of the final-state particles.

We discuss in detail the two-loop corrections for gg → HH and show that for this

process no numerical integration is necessary to obtain the differential virtual corrections.

Other processes such as gg → ZH or gg → ZZ can be treated in analogy.
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Using a similar approach to the one applied in this paper it might be possible to

extend the t → 0 expansion to three loops, yielding the NNLO virtual corrections to

this gluon fusion processes. Possible bottlenecks, which have to be studied in the future,

are huge intermediate expressions and the integration-by-parts reduction of the expanded

amplitudes to master integrals.
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