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1 Introduction

Higgs boson pair production is a crucial process to obtain deeper insight into the symmetry

breaking mechanism of the Standard Model (SM). For this reason, it is one of the most

important processes studied in detail at the Large Hadron Collider at CERN and similarly

at its High Luminosity upgrade which will begin operation within this decade. The main

SM production mechanism for Higgs boson pairs is via gluon-gluon fusion and a number

of higher-order corrections have been computed, mainly in the context of QCD. As far

as electroweak corrections are concerned comparatively very little is known. First steps

have been taken in refs. [1, 2]. In ref. [1] the two-loop box diagrams have been considered

where a Higgs boson is exchanged between the massive top quarks. It has been shown

that a deep expansion in the high-energy limit leads to results for the form factors which

are valid in a large part of the phase space. In ref. [2] top-quark Yukawa corrections

have been considered, partly in the infinite top quark mass limit. Electroweak corrections

proportional to the Higgs self-couplings have been considered in ref. [3] using a numerical

approach. In the present work we compute the complete NLO electroweak corrections as

an expansion in the large top quark mass limit, including sub-leading terms up to 1/m10
t .

The corresponding corrections in the case of QCD have been computed in refs. [4–6].
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A similarly important process at the LHC is the production of a Higgs boson in asso-

ciation with a jet. As for Higgs boson pair production the dominant production channel is

gluon-gluon fusion, with the partonic process gg → gH. NLO QCD corrections have been

considered in a number of works: in the large-mt limit [7], in the high-energy limit [8–10]

and numerically, including exact dependence on mt [11–13]. NNLO corrections have even

been computed in the infinite top quark mass limit [14–18]. NLO electroweak corrections

via massless bottom quark loops have been computed in ref. [19], and the corrections in-

duced by a trilinear Higgs coupling in the large top mass limit have been recently calculated

in ref. [20]. In this work we compute, for the first time, the full NLO electroweak correc-

tions involving virtual top quark loops. We consider all sectors of the Standard Model and

perform an expansion for large mt up to order 1/m8
t . Furthermore, we provide analytic re-

sults for the NLO QCD corrections, again expanded up to 1/m8
t . These expressions will be

of interest for cross checks of numerical results and for the construction of approximation

formulae involving expansions in different limits.

Calculations in the electroweak sector of the Standard Model are in general much more

complicated than in the strong sector since many different mass scales are involved. For

the case of QCD corrections it has been shown (see, e.g., refs. [21–23]) that precise approx-

imations can be obtained by combining expansions performed in different regions of the

phase space. This motivates developing these techniques beyond QCD to the electroweak

sector of the Standard Model. In this work we take a first step in this direction by consid-

ering the region in which the top quark mass is larger than all other kinematic invariants.

While the radius of convergence of such an expansion is limited only to small values of

the centre-of-mass energy, the results will serve as benchmarks for cross checks of other

expansions or for numerical results.

This paper is organized as follows: in the next section we define the form factors which

describe the two processes considered, and the technical details needed for our calculation

are presented in section 3. In particular, we describe the asymptotic expansion and our

renormalization procedure. Section 4 contains our results for Higgs boson pair production

and section 5 is dedicated to the electroweak corrections to gg → gH. The QCD corrections

to gg → gH are discussed in section 6. In all cases we study the influence of the higher-

order 1/mt terms on the form factors and provide our complete analytic expressions in the

ancillary files of this paper [24]. A brief summary of our findings is provided in section 7.

2 Form factors for gg → HH and gg → gH

2.1 gg → HH

The amplitude for the process

g(q1)g(q2) → H(q3)H(q4) (2.1)
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can be decomposed into two Lorentz structures Aµν
1 and Aµν

2 which we define as

Aµν
1 = gµν − 1

q12
qν

1 qµ
2 ,

Aµν
2 = gµν +

1

p2
T q12

(q33qν
1 qµ

2 − 2q23qν
1 qµ

3 − 2q13qν
3 qµ

2 + 2q12qµ
3 qν

3 ) . (2.2)

Here qij = qi · qj with q2
1 = q2

2 = 0 and q2
3 = q2

4 = m2
H . pT is the transverse momentum of

the final-state Higgs bosons, given by

p2
T =

u t − m4
H

s
, (2.3)

with the Mandelstam variables

s = (q1 + q2)2 , t = (q1 + q3)2 , u = (q1 + q4)2 . (2.4)

Using these definitions we introduce the form factors F1 and F2 as

Mab = ε1,µε2,νMµν,ab = ε1,µε2,νδabXggHH
0 s (F1Aµν

1 + F2Aµν
2 ) , (2.5)

where a, b are adjoint colour indices, XggHH
0 = GF αs(µ)TF /(2

√
2π), TF = 1/2, GF is

Fermi’s constant and αs(µ) is the strong coupling constant evaluated at the renormalization

scale µ. We decompose the functions F1 and F2 introduced in eq. (2.5) into “triangle” and

“box” form factors. F1 has contributions with zero, one and two s-channel Higgs boson

propagators whereas F2 only has box contributions. Thus we write

F1 =
3m2

H

s − m2
H

(

Ftri +
m2

H

s − m2
H

F̃tri

)

+ Fbox1 ,

F2 = Fbox2 . (2.6)

In order to obtain this decomposition it is important to re-write the factors of s which occur

in the numerators during the calculation using s/(s − m2
H) = 1 + m2

H/(s − m2
H). Note that

at two loops Ftri is not the same as the form factor for single Higgs boson production (as is

the case for QCD corrections), since loop corrections to the HHH vertex also enter here.

We define the perturbative expansion of the form factors as

F = F (0) +
αs(µ)

π
F (1,0) +

α

π
F (0,1) + · · · , (2.7)

where α is the fine structure constant and the ellipses indicate higher-order QCD and

electroweak corrections.

In section 4 we discuss the results for the squared matrix element constructed from

the form factors Ftri, F̃tri, Fbox1 and Fbox2. Analytic results for the leading-order form

factors (F
(0)
tri , F

(0)
box1 and F

(0)
box2) are available from [25, 26]. Two-loop corrections to F

(0,1)
box1

and F
(0,1)
box2 originating from the exchange of a virtual Higgs boson have been computed in

ref. [1] in the high-energy limit.

In figure 1 we show sample one- and two-loop diagrams contributing to gg → HH. At

two-loop order we have:
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(a-1) (a-2) (b-1) (b-2) (b-3)

(c-1) (c-2) (c-3) (c-4) (c-5)

(d-1) (d-2) (d-3) (d-4) (d-5)

(e-1) (e-2) (e-3) (e-4) (e-5)

(f-1) (f-2) (f-3) (f-4) (f-5)

(g-1) (g-2) (g-3) (g-4) (g-5)

Figure 1. One- and two-loop Feynman diagrams contributing to gg → HH. Dashed, solid,

wavy and curly lines correspond to scalar particles, fermions, electroweak gauge bosons and gluons,

respectively.

• one-particle irreducible box and triangle diagrams,

• one-particle reducible diagrams with a one-loop correction to the HHH vertex or a

one-loop self-energy correction to the Higgs propagator of a one-loop gg → H → HH

diagram,

• one-loop tadpole corrections to one-loop diagrams.

At two-loop order there are also contributions without top quarks which are not sup-

pressed by small Yukawa couplings. In these contributions the gluons couple to light quarks

and the connection to the final-state Higgs bosons is mediated via Z bosons. An example

is given by diagram (g-1) in figure 1 if a light quark runs in the fermion loop. In our

expansion these contributions formally contribute to the m0
t term, however in this work we

do not compute such diagrams; they can be computed following the approach of ref. [19].
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(a-1) (a-2) (b-1) (c-1) (c-2)

(d-1) (d-2) (d-3) (d-4) (d-5)

(e-1) (e-2) (e-3) (e-4) (e-5)

(f-1) (f-2) (f-3) (f-4) (f-5)

(g-1) (g-2) (g-3) (g-4) (g-5)

Figure 2. One- and two-loop Feynman diagrams contributing to gg → gH. Dashed, solid, wavy

and curly line correspond to scalar particles, fermions, electroweak gauge bosons and gluons, re-

spectively. Diagrams are also shown which contribute to the NLO QCD corrections.

2.2 gg → gH

The amplitude for the process

g(q1)g(q2) → g(q3)H(q4) (2.8)

can be decomposed into four physical Lorentz structures [8]1

Aµνρ
1 = gµνqρ

2 , Aµνρ
2 = gµρqν

1 ,

Aµνρ
3 = gνρqµ

3 , Aµνρ
4 =

1

s
qµ

3 qν
1 qρ

2 . (2.9)

The corresponding four form factors F1, . . . , F4 are defined through

Mabc = fabcXgggH
0 ε1,µε2,νε3,ρ

4
∑

i=1

FiA
µνρ
i , (2.10)

1We note that Aµνρ
4

differs from ref. [8] by the factor of 1/s, which we introduce such that all four form

factors are dimensionless.
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where c is the adjoint colour index of the final-state gluon, XgggH
0 is given by

XgggH
0 = 21/4

√

4παs(µ)GF
αs(µ)

4π
(2.11)

and the perturbative expansions of the form factors are defined as in (2.7). The Mandelstam

variables are defined as in eq. (2.4); the only difference with respect to gg → HH is that

here q2
3 = 0 and p2

T = u t/s. Sample Feynman diagrams for gg → gH are given in figure 2.

The classification is similar to gg → HH, we again include all one-particle reducible and

all tadpole contributions. Note that for the QCD corrections, we also include the one-loop

self-energy corrections to the gluon propagators and the one-loop vertex corrections to the

triple-gluon vertex of the one-loop diagrams. The corrections to the quartic-gluon vertex

do not appear at the two-loop order of this process.

3 Technical setup

3.1 Asymptotic expansion of the two-loop amplitudes

For the generation of the gg → HH and gg → gH diagrams and the corresponding

amplitudes we use qgraf [27]. As input we use the Lagrangian file of the full Standard

Model shipped with tapir [28], which is derived from the Feynman rules of UFO [29].

tapir translates the qgraf output to FORM [30] notation and generates further auxiliary

files which are useful for the manipulation of the amplitudes. The large-mt expansion is

realized with the help of exp [31, 32] which generates the corresponding subdiagrams and

maps them to various integral families.2

We apply the large-mt limit as

m2
t ≫ s, t, m2

W , m2
Z , m2

H , (3.1)

where no additional hierarchy is assumed among the scales on the right-hand side. This

leads to the following integral families:

• one- and two-loop one-scale vacuum integrals,

• one-loop massless triangle integrals where two external lines are massless,

• massive vertex integrals where for one external leg we have (q1 + q2)2 = s and for the

other two legs we have q2
3 = q2

4 = m2
H (for gg → HH) or q2

3 = 0 and q2
4 = m2

H (for

gg → gH),

• for the QCD corrections to gg → gH we also need massless one-loop box families

with one external mass q2
4 = m2

H ; explicit analytic results can be found in ref. [34].

Our FORM-based setup automatically performs a reduction of arbitrary members of each

family to master integrals, which are well known in the literature (see, e.g., refs. [35, 36]).

The tadpole integrals are computed by MATAD [37] and the remaining integral families are

2See also ref. [33] for a recent discussion of the expansion of integrals contributing to H → ggg in the

large-mt limit.

– 6 –



J
H
E
P
1
0
(
2
0
2
3
)
0
3
3

⇒ ∗ + ∗

⇒ ∗ + ∗

+ ∗ + ∗

Figure 3. Asymptotic expansion of two sample Feynman diagrams. The subgraphs left of the

stars have to be expanded in the small quantities, i.e., masses, external momenta or loop momenta

of the co-subgraphs, which are to the right of the stars.

reduced by IBP reduction rules derived by LiteRed [38] which have been implemented in

FORM. Furthermore all of our reduction routines can deal with tensor integrals, avoiding

the need to construct additional projection operators. In figure 3 we show how the various

integral families appear due to the asymptotic expansion in the large-mt limit. In the

Feynman gauge we have performed an expansion of the form factors up to order 1/m10
t

(1/m8
t ) for gg → HH (gg → gH).

In order to check our calculation, we also introduce general gauge parameters ξZ , ξW

and ξγ for the Z and W bosons and the photon. From the technical point of view ξγ does

not introduce any additional complexity since no new mass scale is introduced. It drops

out after summing all bare two-loop diagrams. This is not the case for ξZ and ξW since

they appear in combination with gauge boson masses in the gauge boson and Goldstone

propagators. Furthermore, ξZ and ξW only drop out after renormalization. For this check

we assume

m2
t ≫ ξW m2

W , ξZm2
Z ≫ s, t, m2

W , m2
Z , m2

H , (3.2)

and perform an expansion which includes terms up to order 1/m4
t , 1/(ξW m2

W )2, 1/(ξZm2
Z)2,

1/(m2
t ξW m2

W ), 1/(m2
t ξZm2

Z) and 1/(ξW m2
W ξZm2

Z). To check the cancellation of ξZ and ξW

we have to consider the combination of the bare two-loop diagrams and the counterterm

contribution from the wave function of the external Higgs boson (see also below), which

also depends on ξW and ξZ .3 It is a welcome and non-trivial check of our calculation that

up to this expansion depth, ξW and ξZ drop out of the gg → HH and gg → gH amplitudes.

3.2 Renormalization

In the following we concentrate on the electroweak sector; for the discussion of the renor-

malization and the treatment of the infra-red divergences which occur for the NLO QCD

corrections to gg → gH we refer to section 6.

3Note that the counterterm contributions of the (physical) parameters are independent of the gauge

parameters.
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For the renormalization we follow the standard procedure as outlined, e.g., in refs. [39,

40]. We express our one-loop amplitudes for the form factors in terms of the parameters

e, mW , mZ , mt, mH , (3.3)

where e =
√

4πα, and introduce one-loop on-shell counterterms (see, e.g. eqs. (143), (153)

and (421) of ref. [40]). Furthermore, we have to renormalize the wave function of the exter-

nal Higgs boson, which we also perform in the on-shell scheme (see eq. (144) of ref. [40]).

We consistently include tadpole contributions in all parts of our calculation (in the

two-loop gg → HH and gg → gH amplitudes, and the gauge boson and fermion two-

point functions needed for the counterterms). This guarantees that the top quark mass

counterterm is gauge-parameter independent. This prescription is equivalent to the so-

called Fleischer-Jegerlehner tadpole scheme [41].4

For the numerical evaluation of the form factors we transform our results into the so-

called Gµ scheme where the Fermi constant GF and the gauge boson masses mZ and mW

are the input parameters, and the fine structure constant α and the weak mixing angle θW

are derived quantities. (see, e.g., section 5.1.1 of ref. [40]). In this scheme it is convenient

to express the final result in terms of the variable

xt =
GF m2

t

8
√

2π2
. (3.4)

Although we have computed the exact top quark mass dependence of all counterterm

contributions it is convenient to expand them in 1/mt and combine the individual terms

with the expanded bare two-loop amplitude. We do not expand the (finite) quantity ∆r,

which performs the transformation from the α to the Gµ scheme, in the large-mt limit but

retain its exact dependence on mt.

Note that the NLO electroweak corrections do not produce infra-red divergences. Thus,

already after renormalization we obtain the finite results for the form factors. This is not

the case for the NLO QCD corrections to gg → gH; the infra-red subtraction necessary

to produce a finite result is discussed in section 6. Let us also mention that our NLO

electroweak form factors do not have an explicit dependence on the renormalization scale

since all parameters are renormalized in the on-shell scheme.

4 Results for gg → HH

4.1 Analytic results

It is instructive to begin by discussing the leading contributions in the large-mt expansion,

of order m4
t and m2

t , which are present in F
(0,1)
tri and F

(0,1)
box1 . Our results for the two-loop

form factors read

α

π
F

(0,1)
tri =

4

3
× xt

(

136

15
− 16m2

t

m2
H

)

+ O
(

m0
t

)

,

α

π
F

(0,1)
box1 = −4

3
× 4xt

5
+ O

(

m0
t

)

. (4.1)

4For a recent detailed discussion on the various tadpole renormalization schemes we refer to ref. [42].
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For reference, we also provide the large-mt limit of the leading-order form factors which

are given by

F
(0)
tri =

4

3
+ O

(

1/m2
t

)

,

F
(0)
box1 = −4

3
+ O

(

1/m2
t

)

. (4.2)

Results for Ftri and Fbox1 have also been presented in ref. [2], in which leading m2
t

corrections to the ggH and ggHH vertices at two-loop order are taken into account using an

effective-theory approach, while one-particle reducible diagrams have been computed with

full mt dependence. Furthermore, all one- and two-particle reducible diagrams involving

Yukawa couplings have been considered. After extracting the m4
t and m2

t terms we find

agreement with our results. To make this comparison it is important to consider sub-

leading terms in the expansion of the LO form factors which are factored out in ref. [2] and

contain exact mt dependence.

Using the asymptotic expansion described in section 3.1 we have obtained expansion

terms up to order 1/m10
t . Up to order 1/m4

t we have performed the calculation for general

gauge parameters and we have verified that they drop out from the renormalized results.

The higher-order 1/mt terms have been computed only in the Feynman gauge. The analytic

expressions for the form factors can be obtained from [24].

In our analytic expressions we observe poles of the form 1/(s − 4m2
H)k where k > 0

is larger for the higher-order 1/mt terms. The origin of these terms are massive one-loop

triangle (co-)subgraphs, such as the one on the first row of figure 3 with external squared

momenta s, m2
H and m2

H . The expansion of the subgraph leads to numerators in the

triangle diagram and the 1/(s−4m2
H) terms result from the subsequent reduction to master

integrals. We note that the poles are spurious; for each 1/mt term the limit s → 4m2
H exists.

We also point out that the m0
t term presented here is not complete, since it should also

receive contributions from diagrams without top quarks, for e.g., the first diagram in figure 3

where the top quarks are replaced by light quarks. We do not compute such diagrams in

this paper. They can be computed following the approach of, e.g., ref. [19] where similar

contributions to gg → gH have been considered, or with the help of expansions as proposed,

e.g. in ref. [1].

4.2 Numeric results

For the numerical evaluation of our form factors we adopt the Gµ scheme and use the

following input values

mt = 172 GeV , mH = 125 GeV ,

mW = 80 GeV , mZ = 91 GeV . (4.3)

Furthermore, we express the form factors in terms of s and pT and introduce the parameter

ρpT
=

pT√
s

. (4.4)
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t

Figure 4. Ũ (0)
ggHH plotted as a function of

√
s. Results are shown up to order 1/m10

t . The panel on

the right shows the result normalized to the m0
t expansion term.
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Figure 5. Ũ (0,1)
ggHH as a function of

√
s. The panel on the right shows the result normalized to the

m0
t expansion term.

In the following we choose ρpT
= 0.1 and discuss results for the squared matrix element

UggHH ≡ 1

82

∑

col

1

22

∑

pol

|Mab|2 =
1

16

(

XggHH
0 s

)2 (

|F1|2 + |F2|2
)

=
1

16

(

XggHH
0 s

)2
ŨggHH .

(4.5)

For the numerical evaluation of the massive two- and three-point functions we use the

program Package-X [43].

For reference, in figure 4 we show the LO contribution to ŨggHH as a function of
√

s.

Below the top quark threshold the expansion converges well, however it converges more

slowly as
√

s gets closer to 2mt.

In figure 5 we show the NLO quantity Ũ (0,1)
ggHH as a function of

√
s. The curves include

increasing expansion depths starting from the leading term proportional to m4
t (which

originates from F
(0,1)
tri ) up to 1/m10

t . For the
√

s axis we choose values from the Higgs pair

production threshold at 2mH = 250 GeV up to
√

s = 380 GeV. Note that convergence of

the expansion is not expected beyond the top quark pair production threshold at 2mt =
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Figure 6. Ũ (0,1)
ggHH without contributions involving a cut at

√
s = mt +mW , see text for details. The

panel on the right shows the result normalized to the m0
t expansion term.

344 GeV. Below this value we observe, at first sight, a reasonable convergence. Below√
s ≈ 300 GeV a significant shift is obtained from the constant contribution proportional

to m0
t and higher order 1/mt terms are small up to 1/m8

t . However, the 1/m10
t contribution

again provides a sizeable shift, which is clearly visible on the right panel which shows the

ratio with respect to the m0
t contribution.

This behaviour is due to diagrams with a closed quark loop which contains both top

and bottom quarks, see, e.g., the second diagram in figure 3. Such diagrams contain cuts

through a top quark and W boson and thus the large-mt expansion is expected to break

down above
√

s = mt + mW ≈ 250 GeV. Diagrams with such a cut contribute to both F1

and F2. To demonstrate this, in figure 6 we show the results for Ũ (0,1)
ggHH where we set all

diagrams containing a bottom quark to zero in the finite parts.5 We indeed observe that

after removing these contributions the large-mt expansion converges as expected up to the

threshold at
√

s = 2mt. We note that the two-loop diagrams have further cuts where no

top quark is involved at
√

s = 2mW , 2mZ , 2mH . In our approach all of these are taken into

account exactly, so they do not affect the convergence of the large-mt expansion.

In view of the above discussion the validity of the leading mt terms (see section 4.1

and ref. [2]), and indeed of the deeper large-mt expansion, for a description of the elec-

troweak corrections to gg → HH is questionable. More insight will be provided in a future

publication which considers the small-t expansion of these diagrams in the style of ref. [23].

5 Results for gg → gH: electroweak corrections

In this section we consider the electroweak corrections to gg → gH. The QCD corrections

are presented in section 6. For the input values for numerical evaluation we adopt the

values given in eq. (4.3).

In order to study the convergence of the expansion in 1/mt we consider the squared

matrix element since the individual form factors show a divergent behaviour for s → m2
H

5The 1/ϵ poles parts are required in order to obtain finite expressions after renormalization.
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which is due to contributions where a gluon is present in the t or u channel. In principle

one could further decompose the form factors to make this dependence explicit, however,

we prefer to consider

UgggH ≡ 1

82

∑

col

1

22

∑

pol

|Mabc|2

=
3

32

(

XgggH
0

)2
{

s

[

2F1F ⋆
1 u

t
+

2F2F ⋆
2 t

u
+ F2F ⋆

1 + F1F ⋆
2

]

+
[

F4 (F ⋆
3 + F ⋆

4 ) + F3 (2F ⋆
3 + F ⋆

4 )
] t u

s

+
[

(F3 + F4) F ⋆
2 + F2 (F ⋆

3 + F ⋆
4 )
]

t

+
[

(F3 + F4) F ⋆
1 + F1 (F ⋆

3 + F ⋆
4 )
]

u

}

=
3

32

(

XgggH
0

)2
s ŨgggH , (5.1)

where F ⋆
i denotes the complex-conjugate form factors. After inserting the perturbative

expansion from eq. (2.7) we obtain the LO and NLO contributions to UgggH, which converge

for s → m2
H .

We start with the discussion of the LO corrections. In figure 7 we show Ũ (0)
gggH, for

ρpT
= 0.1, as a function of

√
s. The right panel shows the ratio with respect to the leading

expansion term. We observe very good convergence below
√

s = 2mt and can safely assume

that we reproduce the exact result every time two successive expansion terms overlap.

In fact, below
√

s ≈ 250 GeV only the first three terms lead to visible shifts and below√
s ≈ 300 GeV the curve which includes 1/m8

t terms (which is the order we have available

at two loops) provides a good approximation. The inclusion of 1/m14
t terms extends the

convergence region even further. The one-loop form factors enter the construction of Ũ (0,1)
gggH;

due to their excellent convergence it is safe to use the expansion, including terms to 1/m14
t ,

and avoid implementing the exact, analytic leading-order expression.

NLO results for ŨgggH in the Gµ scheme are shown in figure 8, again for ρpT
= 0.1. As

expected, we observe good convergence below the top quark threshold. In particular below√
s ≈ 300 GeV the higher order 1/mt terms become smaller and smaller and the approxima-

tion which includes 1/m8
t terms agrees well with the 1/m6

t approximation. From the right

panel we observe that the {1/m2
t , 1/m4

t , 1/m6
t } terms lead an almost s-independent shift of

about {80%, 20%, 10%} and the 1/m8
t term provides only a shift at the few-percent level.

We have compared our one-loop form factors to ref. [20] and find agreement up to

1/m14
t . We also compare with the subset of NLO contributions induced by the trilinear

Higgs boson coupling considered in ref. [20], by extracting the corresponding pieces from

our bare two-loop form factors. We have compared up to 1/m2
t and find agreement.

Our result provides solid predictions for the energy range mH ≤ √
s ≲ 300 GeV and

will thus serve as an important cross check for future (analytic) calculations in different

kinematic limits or of numerical evaluations.
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Figure 7. Left: Ũ (0)
gggH as a function of

√
s. Right: ratio with respect to the m0

t expansion term.

The various colours correspond to the inclusion of different expansion terms.
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Figure 8. Ũ (0,1)
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√
s. The ratio with respect to the m0

t expansion term is shown

in the right panel.

6 NLO QCD corrections to gg → gH in the large-mt limit

A finite expression for the NLO virtual QCD corrections to gg → gH is obtained after in-

troducing counterterms for the ultra-violet poles and subtracting the infra-red divergences.

We first renormalize the strong coupling constant in the MS scheme with six active flavours.

The top quark mass and gluon wave functions are renormalized in the on-shell scheme.6

Afterwards we express the form factors in terms of α
(5)
s (µ), with five active flavours. Finite

form factors are then obtained via the subtraction (i = 1, 2, 3, 4)

F
(1,0)
i,fin = F

(1,0)
i,ren − 1

2
I(1)

g F
(0)
i (6.1)

6The transition from the on-shell to the MS quark mass is straightforward.
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where F
(1,0)
i,ren are the ultra-violet renormalized form factors. The quantity I

(1)
g on the right-

hand side of eq. (6.1) is given by [44]

I(1)
g = − eϵγE

2Γ(1 − ϵ)

(

CA

ϵ2
+

2β0

ϵ

)

[(

µ2

−s − iδ

)ϵ

+

(

µ2

−t

)ϵ

+

(

µ2

−u

)ϵ]

, (6.2)

with β0 = 11CA/12 − TF nl/3, where TF = 1/2, CA = nc and nl is the number of massless

quarks.

For illustration we present the one- and two-loop expressions for the form factors F
(0)
1

and F
(1,0)
1,fin to the expansion order 1/m2

t and m0
t , respectively. Deeper expansions can be

found in the supplementary material [24] of this paper. At one-loop order we have

F
(0)
1 =

(s + t)
(

m2
h − t

)

3su

[

−4 +
1

m2
t

(

7m4
h(s + t) − tm2

h(10s + 7t) + 3st(s + t)

30(s + t)
(

t − m2
h

)

)]

, (6.3)

and the two-loop expression is given by

F
(1,0)
1,fin =

(s + t)(m2
h − t)

3su

(

− 3

2nc
+ nc

{

2Li2

(

1 − s

m2
h

)

− 2Li2

(

t

m2
h

)

− 2Li2

(

u

m2
h

)

+
m2

h(21s + 23t) − 23t(s + t)

6(s + t)(t − m2
h)

+ log2
(

s

m2
h

)

+ log2
(

− t

m2
h

)

+ 2iπ log

(

− t

m2
h

)

−
[

2 log

(

− t

m2
h

)

+ 2iπ

]

log

(

1 − t

m2
h

)

+ log2
(

− u

m2
h

)

+ 2iπ log

(

− u

m2
h

)

−
[

2 log

(

− u

m2
h

)

+ 2iπ

]

log

(

1 − u

m2
h

)

− log2
(

µ2

s

)

+ log

(

µ2

s

)[

log

(

− µ2

t

)

+ log

(

− µ2

u

)

− 11

6
− 2iπ

]

− log2
(

− µ2

t

)

+ log

(

− µ2

t

)[

log

(

− µ2

u

)

− 11

6
+ iπ

]

− log2
(

− µ2

u

)

−
[

11

6
− iπ

]

log

(

− µ2

u

)

− 5π2

6
− 11iπ

6

}

+ log

(

µ2

m2
t

)

+ nl

{

tu

3(s + t)(m2
h − t)

+
1

3
log

(

µ2

s

)

+
1

3
log

(

− µ2

t

)

+
1

3
log

(

− µ2

u

)

+
iπ

3

})

,

(6.4)

where nc = 3 and Li2 is the dilogarithm.

In figure 9 we show the NLO QCD corrections to UgggH for ρpT
= 0.1 as a function of√

s. We observe a rapid convergence, even beyond the top quark threshold (although the

expansion is not expected to produce the correct result in this region). In fact, only the

1/m2
t terms lead to a shift of a few percent; the higher-order expansion terms are much

smaller. This behaviour can be explained by the dominance of the diagrams involving ggH

triangle contributions and the suppression of the box-type Feynman diagrams.

7 Conclusions

In this work we consider the gluon-fusion induced processes gg → HH and gg → gH

and compute complete NLO electroweak corrections in the large top quark mass limit and
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Figure 9. NLO QCD corrections to ŨgggH as a function of
√

s. For the construction of the squared

matrix element the infra-red subtracted form factors (eq. 6.1) have been used. The panel on the

right shows the result normalized to the m0
t expansion term.

present results for the form factors up to order 1/m10
t and 1/m8

t , respectively. We discuss

the renormalization procedure in detail and compute all counterterm contributions without

assuming any mass hierarchy. Thus, this part can also be applied to expansions in other

kinematic limits or an exact (numerical) calculation.

Partial electroweak results for gg → HH are already available in the literature [1, 2];

in this work we provide sub-leading terms in the large-mt expansion.

For gg → HH the expansion in 1/mt does not show a convergent behaviour in the

physical region 2mH ≲
√

s ≲ 2mt. We have demonstrated that this is due to diagrams in-

volving a cut through a W boson and a top quark. If these diagrams are omitted, we observe

reasonable convergence below
√

s ≈ 330 GeV. Despite the limited applicability of the large-

mt expansion we believe that our results serve as reference for future expansions in other

kinematic regions or exact (numerical) calculations. Despite the convergence issues, if we

assume that the order of magnitude is at least correct, in the large-mt region the electroweak

contribution provides a correction of a few tens of percent with respect to the leading order.

For the NLO electroweak corrections to gg → gH we observe very good convergence

below the top quark threshold. In particular, for
√

s < 300 GeV we can provide precise

predictions on the basis of an expansion which includes corrections up to 1/m8
t . In this

region the electroweak corrections are small, below the percent level with respect to the

leading order.

We also provide NLO QCD corrections for the four form factors needed for gg → gH

up to 1/m8
t . Here a rapid convergence is also observed up to the top quark threshold.
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