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Abstract 

Since the advent of phylogenetic linguistics, researchers have used a large 
number of phylogenetic comparative methods adapted from computational bio-
logy to model and analyze the dynamics of change of a wide range of linguistic 
features. Models of this sort vary in complexity; the simplest models of change 
assume homogeneity of transition rates within families, while state-of-the-art 
models of heterotachy allow transition rates to vary across lineages within a 
family. In this contribution, I review a range of applications of biological models of 
rate variation to questions in diachronic linguistics and highlight some models 
from computational biology that have remained largely overlooked by linguists. 
Building off of these and other biological models, I sketch out a program for what 
I term DISTRIBUTIONAL PHYLOGENETIC MODELING, inspired by an analogous 
recently proposed family of hierarchical Bayesian models. I report the results of 
some work in progress carried out within this framework and present a case 
study illustrating the flexibility of the approach.

INTRODUCTION 

Despite the longstanding recognition of a number of parallels between 

biological and linguistic change, linguistics arguably lags behind biology 

in developing tractable quantitative models capable of testing hypotheses 

regarding the nature of change. While a number of computational biolog-

ical models can be extended to questions regarding language change, dia-

chronic linguistics in general has proved hesitant in adopting these 

models wholesale. Some of the qualms involved are justified: despite 

analogs between biological and linguistic evolution, the two fields often 
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have different conceptions of the ways in which the features under study 

change. At the same time, phylogenetic models are increasingly designed 

with linguistic questions in mind, and as historical linguistics becomes 

more technically inclined, specialists in the field can assume a primary 

role in the development of such models. Popular models for categorical 

data types assume that features change according to a continuous-time 

Markov (CTM) process, a stochastic process parameterized by so-called 

transition rates, which characterize not only the speed with which transi-

tions between feature values occur but also long-term trends towards par-

ticular values. 

In this contribution, I probe the flexibility of standard biological 

models of transition rate variation with respect to addressing questions in 

linguistics. I provide (perhaps unsurprising) evidence that the biological 

term HETEROTACHY, although explicitly defined as RATE variation in 

a large number of publications—and thus suggesting models which allow 

transition rates to vary across different regimes of change with relative 

freedom—implicitly carries the meaning of variation in SPEED (and not 

in other properties of transition rates) in most of the biological literature 

surveyed. I review a range of applications of these models to questions in 

linguistics and explore the range of questions that such models are 

capable of answering. Additionally, I draw attention to a small number of 

biological methods that model the joint co-evolution of phenotypic and 

genetic traits but have gone largely unnoticed in linguistics, possibly due 

to their difficulty of implementation and a lack of recognition of the par-

allels between the phenomena described and comparable linguistic ques-

tions. 

Taking these models as a starting point, I sketch out a framework that 

I term DISTRIBUTIONAL PHYLOGENETIC MODELING, which 

allows different properties of transition rates to vary according to differ-

ent predictors, across features or lineages. This terminology pays homage 

to the newly developed framework of distributional statistical modeling, 

a family of regression models where both the expected location and dis-

persion of a response value can vary across predictor values. In a similar 

vein, distributional phylogenetic modeling assesses the effect of different 

predictors on a binary feature’s speed of change (the frequency with 

which transitions occur regardless of the direction of transition), and sta-

tionary probability (the long-term preference for a particular feature 

value). Some results of ongoing work in this framework are presented; 

additionally, I provide a case study showing how a distributional 

approach can potentially detect the role of areality in change in prosodic 

systems. I conclude by adumbrating additional potential applications for 

this method and discussing some challenges in generalizing this 

approach to non-binary data types. 
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RATE VARIATION IN BIOLOGICAL AND LINGUISTIC CHANGE 

A number of biological models account for a phenomenon known as 

HETEROTACHY, derived from Greek takhus ‘swift’ and defined at 

times as speed variation (Lopez et al. 2002) but also in a large number of 

publications as rate variation (e.g., Meade and Pagel 2008: 30). Models 

of heterotachy allow properties of trait evolution to vary according to dif-

ferent regimes, across features and/or within phylogenies. However, 

from the concise definition given above, there is ambiguity regarding the 

exact quantities that vary across regimes — is there variation in the rate 

of change, i.e., the overall speed with which the system changes, or in 

transition rates more generally, which control not only the speed of the 

system but preferences for individual states? For phylogenetic linguis-

tics, models which account for a broader understanding of rate variation 

are essential, as both properties of change are of importance to the field, 

as well as the extent to which dynamics of change vary as a function of 

different predictor variables. Below, I assess the extent to which existing 

biological models fulfill these desiderata. 

As far as speed of change is concerned, a large body of work argues 

that linguistic features change at different speeds under different circum-

stances: for instance, different languages display divergent rates of 

vocabulary replacement (Bergsland and Vogt 1962), pointing to different 

dynamics of lexical change in different phylogenetic lineages. A well-

known but controversial hypothesis argues that language change is char-

acterized by regimes of equilibrium, involving slow change, and punctu-

ation, involving rapid change (Dixon 1997; for a critical appraisal of this 

specific view, see Bowern 2006). Other work, some of it in a phyloge-

netic framework, links different rates and trends in language change to 

differences in population size, different societal dynamics, and differ-

ences in social isolation (Nettle 1999; Greenhill et al. 2018). 

Additionally, a large body of research explores the role of large-scale lan-

guage contact in accelerating language change (McWhorter 2007), par-

ticularly in extreme cases such as the formation of pidgins and creoles. 

In addition to differences in the speed of change, regimes of language 

change can differ in terms of a preference for a given feature state and are 

thus characterized by different long-term biases toward feature values. 

These preferences may depend on another linguistic feature or one or 

more extra-linguistic features. It is argued, for instance, that labiodental 

sounds like f and v became easier to pronounce following changes to bite 

configuration associated with shifts in subsistence patterns and diet, and 

were thus more likely to be used as speech sounds (Blasi et al. 2019). 

Anatomical research also suggests that the click sounds found in lan-

guages of southern Africa are a relatively recent response to changes in 

physiology (Dediu et al. 2017, 2021; Moisik and Dediu 2017). It is 

additionally argued that social isolation is linked to the maintenance of 

linguistic complexity, with simplification brought about by adult second-

language learners (Bentz and Winter 2013; Trudgill 2001). As in the case 
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of phonological inventories, environmental factors have also been 

invoked as an influence on static sound patterns within languages. For 

instance, it has been claimed that languages spoken in drier climates use 

fewer vowels (Everett 2017) and that the same pattern holds for lan-

guages spoken in colder climates (Maddieson 2018), due to the fact that 

dry air creates articulatory problems for phonation needed to produce 

vowels, and high temperatures degrade the high-frequency spectral infor-

mation helpful in perceiving consonant clusters. In addition to environ-

mental factors, genetic factors have been implicated in biases toward lin-

guistic tone (Dediu 2021). Studies demonstrate robustly that tonal lan-

guages are spoken in regions of higher humidity (Everett et al. 2015; 

Roberts 2018), due to the fact that lower jitter in fundamental frequency, 

a property of humid environments, makes it easier to stabilize fundamen-

tal frequency and exapt it for linguistic purposes. Hypotheses that posit 

the direct influence of the environment on sound patterns are highly con-

troversial (Haynie 2014; Urban 2020), as it is difficult to tease apart the 

correlated influence of environment, areality, and genetics, and it has 

been argued in recent years that hypotheses regarding the influence of the 

environment on sound patterns (Everett 2013) are better analyzed as 

sociolinguistic isolation (Urban and Moran 2021). Regardless of the fac-

tors involved, a growing body of evidence robustly attests that phyloge-

netic lineages are characterized by different regimes of change that vary 

both in the speed of change and preferences for individual features. 

The quantitative turn in historical linguistics has seen an increase in 

the application of phylogenetic methodologies to questions in historical 

linguistics. A popular model for the evolution of categorical linguistic 

data assumes that features undergo state changes over a phylogeny 

(usually inferred a priori on the basis of lexical data) according to a con-

tinuous-time Markov (CTM) process. The transition rates of the process 

can be estimated (usually via Bayesian inference) and estimated values 

can be used to test hypotheses regarding the dynamics of change in the 

features in question. To date, the majority of applications of the CTM 

model in linguistics assume that transition rates between features or pairs 

of features do not vary within phylogenies (Carling and Cathcart 2021; 

Cathcart et al. 2020; Dunn et al. 2017; Haynie and Bowern 2016; Shirtz 

et al. 2021). If data from multiple families are analyzed, phylogenetic 

models are generally fitted separately for each family, with different rates 

for each family (Dediu 2010; Dunn et al. 2011).1 Although the rate homo-

geneity assumption may be overly simplistic, given the evidence for dif-

ferent rate regimes in language change mentioned above, this assumption 

has a number of advantages: given the relatively small number of param-

eters in rate-homogeneous models, they are computationally efficient to 

 
 
1      Note that some of these papers employ the Discrete model (Pagel 1994) and 

related methods (Pagel and Meade 2006), which can be interpreted as models of 
heterotachy; see below.
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fit, and their restrictiveness may allow for less uncertainty in posterior 

estimates than in more elaborate models. Additionally, questions asked in 

the work cited here are in no way related to rate heterogeneity and are 

more concerned about exploring the long-term dynamics of feature 

change; recent work even finds support for rate homogeneity across 

rather than within families (Jäger and Wahle 2021). At the same time, rate 

heterogeneity, both across features and lineages, is central to a number of 

outstanding questions in linguistics, including those raised at the begin-

ning of this section. 

A number of well-known models of heterotachy account for variation 

in speed across evolving features as well as within phylogenies. Models 

accounting for within-phylogeny variation can be subdivided into 

models which assume variation to be fixed at the branch level, and those 

that allow multiple rate regimes to be visited on a single branch of a phy-

logeny. The latter type is best represented by the COVARION model, a 

prominent way of representing heterotachy (Fitch 1971; Tuffley and 

Steel 1998; Wang et al. 2007). A basic covarion model for binary data 

assumes a four-state CTM process with “hot” and “cold” regions charac-

terized by normal and slow or nonexistent change. The system can transi-

tion from hot to cold regions or vice versa but change between presence 

and absence is more frequent in hot regions than in cold ones. The hidden 

rates model is a generalization of the covarion model that allows gain and 

loss rates to differ across rate regimes in a less constrained manner, not 

solely according to speed, and additionally can accommodate more than 

two rate classes (Beaulieu and O’Meara 2014). 

Other alternatives to the covarion model assume that speed variation 

is fixed at the branch level (Heath et al. 2011; Pagel and Meade 2008). 

Unlike the covarion model, within-branch transitions between rate 

classes are not permitted.2 At the same time, branch-level models are 

more flexible than covarion models in that it is straightforward to 

account for a greater number of rate regimes to an extent that would be 

computationally costly under a covarion model, as it would involve a 

high-dimensional rate matrix (Irvahn and Minin 2014). The models cited 

above allow variation in speed, but not necessarily in branch-level trends 

toward some feature value. Limiting variation to speed enables some 

computational tricks, as differences in speed can be modeled at the 

branch level by directly manipulating the branch length rather than the 

rates of the CTM process. 

Similar methods are used to account for variation in rates across fea-

tures. Huelsenbeck and Suchard (2007) allow the speed of change of dif-

ferent features to vary across speed classes by manipulating the total tree 

length across rate classes. A notable linguistic study allowing speeds to 

 
 
2      A reviewer notes that this distinction is somewhat trivial, as within-branch state 

transitions under a covarion model account for the cumulative expected amount 
of change on the branch as a whole.



Cathcart

184 Words, Bones, Genes, Tools: DFG Center for Advanced Studies

vary across branches and features is that of Greenhill et al. (2017), which 

analyzes change in lexical and morphosyntactic features in Austronesian, 

allowing speed variation across branches as well as features (the authors 

coestimate speeds of change along with language phylogenies, rather 

than assuming the phylogeny a priori). 

Ultimately, an overwhelming number of off-the-shelf models of het-

erotachy account solely for variation in speeds of change. One obvious 

reason is the fact that methods of this sort are designed for modeling 

change in DNA sequences, where in most circumstances there are no 

clear biases towards particular bases (though see below). Another issue is 

the fact that models of this sort rely on Markov chain Monte Carlo 

(MCMC) methods, which must satisfy certain constraints in order to effi-

ciently explore parameter space. Many MCMC methods suffer when 

exploring high-dimensional posteriors; hence, simpler models are easier 

to tune such that proposals are efficient. Models of this sort are readily 

available to linguists interested in speed variation, but not necessarily in 

other dynamics of change. Furthermore, these methods do not directly 

model the role of different linguistic and extra-linguistic predictors in 

explaining variation in the dynamics of change. One model capable of 

doing this is the Discrete model of correlated evolution (Pagel 1994), 

under which gain and loss rates for one feature vary freely according to 

the presence or absence of another feature; this model requires a binar-

ized representation of both features. 

Despite the fact that the most accessible models of heterotachy model 

only variation in speed and are thus not expressive enough to capture the 

full range of phenomena of interest to phylogenetic typology, other 

models, albeit less well-known ones, may be relevant to the needs of the 

subfield. There exist a number of biological models which jointly charac-

terize the evolution of continuous phenotypic and discrete genetic traits 

across lineages within a phylogeny (see Bromham 2009; Bromham et al. 

1996 on some relevant phenomena). These are overlooked in the phy-

logenetic linguistics literature, because at first blush there is no clear con-

nection between the biological phenomena they capture and linguistic 

processes we may wish to model. Lartillot and Poujol (2011) model cor-

relations between several phenotypic variables (maturity, mass, and lon-

gevity) and the ratio of nonsynonymous (i.e., transitions between nucleo-

tides that alter the amino acid sequence of a protein) to synonymous sub-

stitutions. A handful of papers (Horvilleur and Lartillot 2014; Lartillot 

2013) deal with so-called GC equilibrium or GC-biased gene conversion, 

a phenomenon where repairs to certain DNA mismatches may favor 

strong bases (G and C) over their weak counterparts (A and T), and pos-

sible extra-genetic correlates or determinants thereof. While it is chal-

lenging to find a direct analog in linguistics for the biological phenomena 

to which these methods are applied, the importance of models of this sort 

is clear: they provide a means of representing relationships between co-

evolving continuous and discrete features off of which phylogenetic lin-

guistic methods can build in order to explore how changes in a continu-
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ous extra-linguistic feature influences long-term preferences for values 

of a discrete linguistic feature, as well as its speed of change (although 

these models do not explicitly address speed) (Table 1). 

Speed variation Transition rate variation

Predictors not modeled
Huelsenbeck and Suchard 
2007; Pagel and Meade 2008; 
Tuffley and Steel 1998, etc.

Beaulieu and O’Meara 2014

Predictors/correlates  
modeled

Lartillot and Poujol 2011; 
Pagel 1994, etc.

Table 1. 
An abridged summary of bio-
logical models surveyed, 
grouped according to whether 
they model speed variation or 
transition rate variation, and 
whether they model the effects 
of predictors on change (or 
correlated variables).

Markov chain Monte Carlo (MCMC) implementations of the models 

described above are not straightforward to modify by researchers wish-

ing to apply the models to non-biological data. Fortunately, specialists 

lacking the expertise to tune and modify MCMC algorithms for the pur-

pose of efficient sampling can make use of an increasing set of offerings 

in the domain of probabilistic programming languages which require 

only a specification of the generative process thought to underlie the 

data. One such language is Stan (Carpenter et al. 2017), which uses an 

adaptive version of Hamiltonian Monte Carlo, a gradient-based method 

that avoids the random walk behavior of MCMC approaches, making it 

possible to infer larger numbers of parameters and employ flexible prior 

distributions over parameters. Recent sophisticated phylogenetic models 

have been implemented in Stan, including phylogenetic causal modeling 

(Ringen et al. 2021). Programming languages like Stan can be used to 

recast some of the models described above, in order to make them more 

flexible, with some limitations. A salient limitation of gradient-based 

probabilistic programming languages like Stan is that discrete parame-

ters cannot be directly sampled, and must be marginalized, which is 

unfeasible under some circumstances. This rules out the possibility of 

modeling branch-specific rate classes, which involves an exponentially 

increasing enumeration of configurations of rate class membership 

across a phylogeny, and makes modeling feature-specific rate classes 

computationally costly for large numbers of features and rate classes. In 

what follows, we move away from the notion of discrete rate classes in 

favor of approaches that allow speeds and preferences to vary at both the 

branch level as a function of one or more predictors. 

DISTRIBUTIONAL MODELING 

In this section, I motivate a method for assessing the effect of different 

predictors on multiple components of language change for binary lin-

guistic features. Specifically, this method decouples transition rates into 

the overall speed of change, i.e., the scale of the change rate between fea-

ture states irrespective of the direction of change, and the stationary prob-
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ability of feature presence, interpretable as the long-term preference for 

a given feature. 

Under the standard view of a continuous-time Markov process for 

binary data, a feature arises and is lost according to a gain rate and a loss 

rate. Assuming a speed of change s and stationary probability π, the gain 

rate and loss rate can be rewritten as sπ and s(1 − π), respectively (see 

Fig. 1). This is the binary case of a general time-reversible model (Tavaré 

1986), which parameterizes changes between multiple states in a con-

tinuous-time Markov chain according to stationary probabilities of state 

presence and exchange rates (identical to what I term the speed of 

change) between each pair of states. Simulated trajectories of change 

under binary CTM processes with different speeds and stationary prob-

abilities are found in Figure 2. 

Fig. 2. 
Simulated CTM processes 
showing transitions between 
states of a binary feature 
under different speeds (s ∈ 
{5,10}) and stationary probabil-
ities (π ∈ {0.1,0.9}).

Allowing both the speed of change and stationary probability of a fea-

ture to vary according to one or more predictors invites analogies with a 

recently proposed innovation in hierarchical Bayesian modeling, namely 

so-called DISTRIBUTIONAL MODELS, which allow both the location 

and scale of a regression model to vary as a function of predictor vari-

ables (Bürkner 2017), thus relaxing a number of assumptions found in 

classical linear regression, such as homoskedasticity. In the same vein, 

distributional phylogenetic modeling can allow us to understand which 

properties of change vary according to different predictor variables, both 

Fig. 1. 
Binary continuous-time 
Markov process representing 
changes between presence 
and absence of a feature. 
Transitions are annotated 
according to the gain rate (α) 
and loss rate (β) of the feature, 
with alternative parameteriza-
tions according to speed of 
change (s) and stationary prob-
ability of feature presence (π) 
provided as well. 
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within and across features. A more refined understanding of whether cer-

tain extralinguistic predictors of change affect speed versus biases 

toward a particular feature value can be crucial to our understanding of 

language change. For instance, it could be the case that what appears to 

be the result of increases in complexity in regions of greater social isola-

tion is simply an artifact of more rapid change in regions of less isolation. 

Decoupling these components of change provides a principled method 

for investigating hypotheses of this sort, both across lineages as well as 

linguistic features. 

In what follows, I illustrate the results of work that investigates the 

role of different predictors in explaining variation in speed of change and 

stationary probability of presence at the featural level, using a large lin-

guistic data set. Subsequently, I present the results of a case study that 

models differences in speed at the branch level as a function of an extra-

linguistic feature, namely geospatial dynamics. 

CASE STUDY: ROMANCE VERBAL MORPHOLOGY 

Cathcart et al. (2022) conduct a study in a distributional phylogenetic 

framework of the evolution of stem alternations in Romance verbs. Stem 

alternations in Romance verb paradigms are of particular interest to dia-

chronic linguistics (Esher 2016; Herce 2019; Maiden 2018, etc.). 

Romance verbal paradigms often exhibit so-called morphomic patterns 

constituting stem allomorphy that is neither phonologically nor semanti-

cally motivated. Despite their irregularity, these patterns are highly stable 

and are frequently extended to new verbs. The philological literature 

identifies three main types of stem alternations in Romance verbs, 

labeled N, L, and P(YTA); these can co-occur within verbal paradigms. 

The emergence of the N and L patterns occurred as a result of sound 

changes after Classical Latin but (largely) before the break-up of 

Romance into different languages. Unlike the other two patterns, the P 

pattern is inherited from Latin, stemming from a semantic distinction that 

is no longer present in modern Romance languages, leading to alterna-

tions that are arbitrary from the perspective of meaning. 

Data from the Oxford Online Database of Romance Verb Morphol-

ogy (Beniamine et al. 2020; Maiden et al. 2010) were manually coded 

according to whether or not they exhibited each of the three pattern types 

(which can co-occur within individual paradigms), yielding three possi-

ble lemma-pattern pairs per lemma in each language. In total, the data 

analyzed comprised 171 lemma-pattern pairs involving 66 lemmas from 

67 Romance speech varieties (lemma-pattern pairs exhibiting no varia-

tion between the states present and absent were excluded). A Romance 

phylogeny was used to carry out distributional phylogenetic modeling, 

inferred using RevBayes (Höhna et al. 2016) on the basis of both auto-

matically generated lexical cognacy data (Jäger 2018) and sound class 

data indicating speech sounds that are present in each variety Heggarty  

et al. (2019). 
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As morphomic pattern types can co-occur within the same lexeme’s 

verbal paradigm, each lemma-pattern pair is assumed to evolve inde-

pendently according to a binary CTM process between the states PRES-

ENT and ABSENT. The gain and loss rate of a lemma-pattern pair with 

index d ∈ {1,...,D} are πdsdρ and (1 − πd)sdρ. Here, sdρ represents the 

speed of change for feature d, sd being a multiplier of the global speed ρ. 
The global speed ρ ∼ Uniform(0,10) represents the global speed of 

change, which varies from feature to feature according to the multiplier 

sd, and prevents changes from happening more frequently than once per 

century. The parameter πd is the stationary probability for the lemma-pat-

tern pair in question. For each feature, the likelihood P(xd|sd,πd,ρ,Ψ) can 

be computed using Felsenstein’s pruning algorithm (Felsenstein 1981, 

2004), where xd is a vector of values indicating the presence or absence 

of a given lemma-pattern pair in the languages in the data set, and Ψ is a 

phylogeny. Both the speed of change and stationary probability for each 

lemma-pattern pair can be modeled as a function of multiple predictors, 

making it possible to assess the effect of different factors on both speed 

and stationary probability. Both s and π are logit-normally distributed, as 

follows: 

In each sampling statement, α represents an intercept, βLEMMA repre-

sents the contribution of each lemma type, and βPATTERN represents the 

contribution of each alternation type. The contribution of lemma type is 

modeled as a monotonic function (Bürkner and Charpentier 2020) of 

each lemma’s frequency in Latin texts. Pattern type is dummy-coded, 

modeling comparisons of the levels L and P to N, respectively. Nor-

mal(0,1) priors are placed over all model parameters in statements (1–2) 

with the exception of simplex parameters and standard deviations σ, 

which receive Dirichlet(1,...,1) and HalfNormal(0,1) priors, respectively. 

Posterior distributions for parameters are inferred using the R package 

CmdStanR (Gabry and Češnovar 2021). The resulting posterior 

coefficientsˇ for model predictors (given in Fig. 4) serve to clarify some 

aspects of morphological change that were previously poorly understood 

or underappreciated. Interestingly, none of the predictors have a decisive 

effect on the speed of change of a lemma-pattern pair, as 95% credible 

intervals for these parameters all overlap with zero. However, frequency 

has a decisive effect on the stationary probability of pattern presence 

(βπ,LEMMA). This result is interesting in light of a large body of research 

that links frequency of usage to speed of change in vocabulary replace-

ment (Pagel et al. 2007, though see also Wilson et al. 2019). In the case of 

Romance verbal paradigms, lexical frequency does not explain variation 

in speed of change, but in other properties of change. A tentative interpre-

tation of this result is that the loss versus maintenance of irregularity in 
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less versus more frequent forms is not an accident brought about by the 

instability of less frequent forms, but rather reflects the evolutionary 

advantage of maintaining irregular patterns in highly frequent verbs. The 

distributional model developed can be straightforwardly extended to 

model branch-level trends in change (pertaining to both speed and prefer-

ences for general irregularity or specific irregular patterns) and can incor-

porate a wide range of predictors. 

CASE STUDY: STRESS SYSTEMS OF THE WORLD’S LANGUAGES 

In this section, I present the results of a case study designed to demon-

strate the flexibility of a distributional approach in assessing the role of 

different predictors across multiple features and lineages. Importantly, 

the model I construct probes the influence of geospatial factors on across-

lineage trends in change. Though highly preliminary at this stage, this 

work further advances phylogenetic linguistics in the direction of 

accounting for horizontal as well as vertical pressures in language 

change. 

I apply the model developed to the question of change in stress sys-

tems. Languages differ widely in terms of the suprasegmental systems 

they exhibit. Language change can involve drastic transitions between 

types of prosodic behavior. For instance, Old Latin had fixed stress on 

initial syllables, whereas Classical Latin developed stress on penultimate 

or antepenultimate syllables, depending on vowel length (Penney et al. 

2011); additionally, Old Chinese is believed to have lacked tone, yet lex-

ical tone developed in later Chinese varieties via tonogenesis (Baxter 

1992). Changes in prosodic systems are well studied. In particular, the 

emergence of tone is linked to voicing and other acoustic properties that 

may be enhanced by environmental and genetic factors. At the same time, 

many aspects of change in stress systems are not fully understood. While 

undoubtedly many factors are involved, language contact is frequently 

invoked as a source of prosodic change (Pronk 2018; Rice 2014). For 

instance, the presence of initial stress among genetically distantly related 

languages of Central Europe such as Hungarian and Czech is highly con-

spicuous, and usually attributed to contact. (Fig. 3) 

Fig. 3. 
Medians and posterior 95% 
and 85% (shaded) credible 
intervals for model parameters 
of interest on the logit scale, 
along with percentage of sam-
ples above or below 0. PAT-
TERN refers to the difference 
between N, L and P alterna-
tions; LEMMA refers to Latin 
lemma frequency. 

As a means of assessing the role of geography in linguistic change, I 

jointly model the phylogeographic diffusion of language families along 

with a distributional CTM model of the evolution of features pertaining 

to prosody. I assume a relaxed random walk model (RRW) of phylogeog-
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raphy, under which geospatial diffusion takes place according to a pro-

cess of Brownian motion, the scale of which exhibits branch-level varia-

tion. This model and some extensions serve as the standard for modeling 

linguistic migration (Gill et al. 2017; Lemey et al. 2010), and are shown 

to accurately capture properties of a language family’s spread when the 

process of spread involves expansion from a given point of origin, but not 

necessarily when wholesale migration from the point of origin has taken 

place (Neureiter et al. 2021); accordingly, the RRW and its extensions 

may not be appropriate for all of the world’s language families. The basic 

RRW employed in this paper is not sensitive to environmental features in 

the way that more sophisticated models are (Bouckaert et al. 2012, 2018; 

Koile et al. 2022). 

I take branch-level diffusion rates as our key geospatial parameter of 

interest. These parameters model fluctuation in the speed of migration of 

different phylogenetic lineages. More rapid migration on the part of a 

speech community has the potential to bring speakers into contact with 

speakers of other languages, increasing the possibility of language shift 

among adults and rapid changes in typological profile. If this view is 

accurate, higher rates of geospatial diffusion should coincide with faster 

speeds of featural change on the same branch. This hypothesis — that the 

speed of geospatial diffusion has a positive effect on the speed of linguis-

tic change — is perhaps simplistic, but the investigation carried out here 

opens the door for more nuanced studies of this broader question. 

I use data from chapters 14–15 (Fixed Stress Locations and Weight-

Sensitive Stress; Goedemans and van der Hulst 2013a, 2013b) of the 

World Atlas of Linguistic Structures (Dryer and Haspelmath 2013). The 

data were recoded into 12 binary traits (Antepenultimate, Initial, Penulti-

mate, Second, Third, Ultimate, Left Edge, Left Oriented, Not Predict-

able, Right Edge, Right Oriented, Unbounded), removing redundant fea-

tures logically dependent on other feature values. In theory, multiple 

stress types can co-occur within languages in different lexical strata, 

making a binary data type an appropriate representation for these feature 

values. Whether or not all features can be absent in a given language 

(e.g., in sign languages, in certain tone languages) gets further into the 

domain of theoretical analyses outside the scope of this paper (Duanmu 

2004; Hyman 2006); this behavior would be a potentially unintended 

consequence of a binary data type. 

To prepare the data for phylogenetic analysis, I used the workflow 

designed by Jäger and Wahle (2021). I merged each glottocode in the 

recoded WALS data with one or more corresponding taxa in the ASJP 

dataset (Wichmann et al. 2018). This expanded the 485 languages in the 

WALS sample into 779 ASJP taxa for which stress data are available. I 

inferred phylogenies for the families in the augmented data set. In sum, 

the augmented data contained taxa from 57 families, of which 13 con-

tained only two members, as well as 55 taxa that were the sole represen-

tatives of their family. I limited my analyses to 698 languages from 44 
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families comprising more than 2 members. Data and code can be found at 

https://github.com/chundrac/phylogeneticTypology. 

I fit three models of increasing complexity. The first of these 

(MODEL) assumes that each feature in the data set evolves in each phy-

logeny according to a global change rate and stationary probability. The 

second of these (MODEL-FAM) allows change rates and stationary 

probabilities for features to vary across families. The third of these 

(MODEL-FAM-GEO) builds upon MODEL-FAM, combining an RRW 

model of phylogeography with a CTM model of character evolution in 

order to detect fluctuation in the speed of change that may be explained 

by variability in rates of phylogeographic diffusion at the branch level. 

Under a time-homogeneous Brownian motion, displacement in a trait 

value between times s and t, xt − xs is normally distributed with a mean 

of 0 and a variance of σ(t − s), where σ is a parameter controlling the 

overall scale of diffusion. The RRW model multiplies σ by a branch-spe-

cific scale ρb for a branch with index b, which allows for faster or slower 

displacement on different branches. This model allows change rates and 

stationary probabilities for features to vary across families, and also 

allows branch-level speeds of change to vary as a function of the phylo-

geographic diffusion rates of corresponding branches. A detailed model 

specification can be found in the Appendix. 

Model comparison was carried out via Pareto-smoothed importance 

sampling leave-one-out (PSIS-LOO) cross-validation (Vehtari et al. 

2017). Posterior samples (including log-likelihood values for each sam-

ple) were aggregated across all 10 posterior distributions. Differences in 

expected log predictive density (ELPD) values across models were cal-

culated using the function loo compare in the R package loo (Vehtari et 

al. 2020). Below, we see differences in ELPD between each model and 

the model with the largest ELPD (the model in the first row), along with 

standard errors of the differences. In general, if the absolute difference is 

greater than two standard errors, the model with the higher ELPD is a 

decisively better fit to the data. I also carry out model stacking (Yao et al. 

2017), which averages predictive distributions of different models to 

generate weights representing their relative predictive power; weights 

are provided below. 

Model ΔELPD SE Weight

MODEL-FAM-GEO 0 0 1

MODEL-FAM -43.1 9 0

MODEL -66.4 16 0

The diffusion-sensitive model is the best fit for the data, followed by 

the model with family-level rate variation. There is little support for the 

idea that universal trends alone account well for the variation in the data. 

A question arises as to why there is support for family-specific rate vari-
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ation in this paper’s models, but not in the results of Jäger and Wahle 

(2021), who analyze Greenbergian word order correlations. A reason for 

this may be that models of the evolution of interdependent features cap-

ture global dynamics rooted in cognitive pressures, which hold across 

families. Here, we analyze the independent evolution of specific prosodic 

traits, which are preferred to different degrees in different phylogenies 

and linguistic areas, and are thus better characterized by evolutionary 

dynamics that vary across families. 

For MODEL-FAM-GEO, I inspect the posterior distribution of the 

parameter βGEO
s, which controls the effect of branch-level phylogeo-

graphic diffusion rates on branch-level speeds of change (see Fig. 4). 

100% of samples are greater than zero, indicating decisive evidence for a 

positive effect of phylogeographic diffusion rate on the speed of linguis-

tic change. This indicates that branches with faster speeds of migration 

tend to exhibit higher overall speeds of change for the linguistic features 

analyzed here. This result can be interpreted as evidence that change in 

prosodic features shows sensitivity to dynamics of geospatial change, 

indirectly pointing to the role of contact in language change. 

This result is intriguing, although it should be evaluated with care. 

Conclusive acceptance of this result will hinge on careful model criticism 

in order to ensure that this result is not an artifact of some properties of 

Fig. 4. 
Posterior distribution of values 
for             (shaded portion indi-
cates the 95% highest density 
interval). All posterior values are 
greater than zero.
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the model that are incorrect. An important step, outside of the scope of 

this paper, is to inspect distributions of diffusion rates at the individual 

branch level to ensure that patterns dovetail with extra-linguistic infor-

mation regarding individual languages’ dispersal. A preliminary inspec-

tion of the phylogeographic parameters, specifically, the inferred loca-

tions for proto-homelands (Fig. 5) of the different families in the sample, 

indicates some shortcomings and directions for improvement. Many of 

the inferred homeland locations do not reflect consensus views found in 

the literature: to mention only a few, the Indo-European homeland is 

inferred to be in Central Europe, which is not a serious candidate for the 

Indo-European Urheimat; the Austronesian homeland is inferred to be in 

Indonesia rather than Taiwan; the Turkic homeland is located further to 

the west than the traditional view holds it to be. It appears to be the case 

that inferred homeland locations are highly sensitive to biases in the lin-

guistic sample: non-European Indo-European languages are underrepre-

sented, as are Formosan Austronesian languages. Ancient and medieval 

languages that can serve to produce more plausible estimates of home-

land locations are also missing from this data set. This issue can be alle-

viated in a number of ways. One approach might involve imposing rel-

atively informative priors over homeland locations, based on proposals 

in the literature; this would be particularly helpful in situations where 

Fig. 5. 
Posterior distributions of 
inferred longitude and latitude 
values for ancestral home-
lands of phylogenies in sample. 
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migration of speech communities rather than expansion has taken place. 

Another approach would be to estimate phylogenetic parameters on the 

basis of a larger tree than the subtrees for which typological data are 

available while estimating parameters of the CTM model on the basis of 

a smaller tree. It is worth noting that none of the trees used here are cali-

brated to produce realistically timed branch lengths, so the use of pub-

lished trees with more accurate chronologies will aid this process as well 

(there is the risk that unrealistically shallow or deep chronologies for lan-

guage phylogenies will respectively overestimate and underestimate 

phylogeographic diffusion rates, as the model will take languages to have 

undergone more or less migration over time than expected). Fitting 

family-level, as well as global and branch-level diffusion rate multipliers, 

might help to account for variation in chronologies among phylogenies 

that stems from modeling assumptions (cf. Chang et al. 2015). At the 

same time if different families have in fact undergone geographic dis-

persal at different overall rates, then fitting family-level rate multipliers 

might suppress meaningful effects of diffusion rate on linguistic change. 

Yet another issue is the fact that for this paper, phylogeographic 

parameters and CTM parameters were co-inferred, with posterior param-

eters inferred on the basis of the joint distribution of the phylogeographic 

and CTM parameters. This has the potential to produce different results 

than a procedure in which phylogeographic parameters are first estimated 

on their own, with CTM parameters subsequently estimated on the basis 

of phylogeographic distributions (employing some form of measurement 

error). Just as phylogenetic comparative methods tend to treat the phy-

logenetic representation of taxa under study as a given, not to be coesti-

mated with evolutionary dynamics of the data under study, so too might 

we wish to treat phylogeographic distributions as given quantities on the 

basis of which we wish to condition our models. 

These issues aside, this case study serves as an important proof of 

concept for the integration of phylogeographic models and CTM models 

of linguistic evolution. Related approaches can investigate more direct 

questions regarding the role of geography in language change. Here, we 

looked only at the effect of diffusion rate on the speed of feature change, 

but this variable’s role in shaping trends toward simplification could be 

investigated as well (cf. Jing et al. 2022). Additionally, inferred longitude 

and latitude values for internal nodes of phylogenies in a sample can be 

incorporated into a CTM model of character evolution. These values 

could be used to detect spatial autocorrelation in branch-level fluctuation 

in speed or preferences for particular features in a data set. Under most 

circumstances, Gaussian Processes (Rasmussen and Williams 2006) are 

ideal for modeling spatial autocorrelation, given their flexibility. At the 

same time, they are computationally costly for large numbers of data 

points, as the covariance between each pair of data points must be com-

puted. For phylogenetic samples like this paper’s, there are too many 

branches for this to be computationally feasible. A recently developed 

method approximates draws from a Gaussian Process using basis func-
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tions (Riutort-Mayol et al. 2020), which lowers the computational cost 

for large data sets. At the same time, this method requires several non-

trivial decisions on the part of the user, such as the choice of the number 

of basis functions. A Gaussian Process-based approach may be more 

appropriate for targeted studies involving smaller numbers of phy-

logenies comprising languages spoken in the vicinity of each other. 

OUTLOOK 

In the previous sections, I introduced distributional phylogenetic model-

ing, an approach that takes as its inspiration advances in hierarchical 

Bayesian modeling and builds off of biological models of the co-evolu-

tion of continuous and discrete traits. I showed how these models can be 

used to analyze rate variation across features as well as phylogenetic lin-

eages, and demonstrated that by decoupling speed of change and station-

ary probability of feature presence, we can uncover the effects of 

different predictor variables on different components of change. It is 

hoped that this framework will be useful in further advancing our under-

standing of the relationship between different extralinguistic and linguis-

tic variables, which are much discussed in the literature but generally 

analyzed in a regression framework, which does not explicitly model the 

diachronic dynamics of these relationships. For instance, if we are will-

ing to assume that a language’s altitude, often taken as a proxy for social 

isolation (Nichols and Bentz 2019), evolves according to a stochastic 

process such as Brownian motion or variants thereof, we can assess 

whether decreases in altitude have an effect on linguistic complexity, as 

operationalized by some discrete feature. For other extra-linguistic fea-

tures, such as population size and environmental data, simple models like 

Brownian motion are most likely not appropriate and may have to make 

use of historical data in order to make accurate estimates (e.g., Huebner 

2020). 

An issue of concern is the fact that the models presented here involve 

binary data, which can be straightforwardly parameterized according to 

the speed and stationary probability of the CTM process according to 

which the data are assumed to evolve. Extending this approach to non-

binary data types requires some serious thought. The General Time-

Reversible model (Tavaré 1986) explicitly models CTM processes for 

non-binary data according to the stationary probabilities of each state as 

well as exchange rates between each pair of states, representing the rate 

of change between each pair of states irrespective of its direction. Given 

this setup, it is straightforward to allow both speed and stationary prob-

ability to vary independently across rate regimes. At the same time, for  

K states, the GTR model contains K + 
K(K – 1)

 free parameters, in compar-

ison to a CTM process involving independent rates between each pair of 

states, which would have K(K − 1) parameters. It is therefore possible 

that the GTR model is too restrictive to capture certain phenomena. This 

is to say nothing of the difficulties that may arise in interpreting the 
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effects of predictors on different components of a more complex process 

of change. 

Ultimately, while much ground has been broken in developing flex-

ible models designed expressly for phylolinguistics, many tasks remain 

in fully understanding the diachronic pressures that shape synchronic lin-

guistic distributions. It is hoped that with an increase in flexible 

approaches, we will move closer to this goal.
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