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Abstract

Current approaches to Argument Mining (AM)

tend to take a holistic or black-box view of the

overall pipeline. This paper, in contrast, aims

to provide a solution to achieve increased per-

formance based on current components instead

of independent all-new solutions. To that end,

it presents the Deployment of Recombination

and Ensemble methods for Argument Miners

(DREAM) framework that allows for the (auto-

mated) combination of AM components. Using

ensemble methods, DREAM combines sets of

AM systems to improve accuracy for the four

tasks in the AM pipeline. Furthermore, it lever-

ages recombination by using different argu-

ment miners elements throughout the pipeline.

Experiments with five systems previously in-

cluded in a benchmark show that the systems

combined with DREAM can outperform the

previous best single systems in terms of accu-

racy measured by an AM benchmark.

1 Introduction

A well-known and open challenge in Argument

Mining (AM) is that approaches do not generalize

well across domains (Lippi and Torroni, 2016a).

Thus, a single system will not be able to solve

the task of extracting arguments from publications

across multiple research fields. Therefore, we in-

vestigate the use of ensemble methods (Opitz and

Maclin, 1999) to find combinations that are ex-

pected to help alleviate the issue.

Furthermore, the overview of AM approaches

presented by Lawrence and Reed (2019) shows that

papers typically introduce novel techniques or use

methods for AM that have demonstrated success in

other applications. As new systems tend to take the

holistic view of an end-to-end pipeline (Lawrence

and Reed, 2019), it has become evident that novel

approaches rarely investigate improvements of in-

termediate steps. By introducing a system with

ensemble methods and combinations, we aim to

improve smaller aspects of the pipeline.

Moreover, Lawrence and Reed (2019) also take

the same line by advocating for a unifying frame-

work to enable the harmonization of all AM tasks,

including the format of data and results. Such a

unification would be necessary to combine many

systems and facilitate the integration of additional

ones. Likewise, not every task receives the same

amount of attention, with approaches for identi-

fying argumentative relations being sparse (Al-

Khatib et al., 2021). Thus, they cover a smaller

range of domains or do not work well across them.

By using recombination, we hypothesize to in-

crease coverage and find yet untapped potential.

To this end, we formulate the following research

question:

RQ. How can we leverage (re-)combinations of Ar-

gument Mining systems to improve accuracy?

Thus, we build DREAM, a system that allows for

the Deployment of Recombination and Ensemble

methods for Argument Miners. For this en-

deavor, we base our approach and the evaluation

on BAM (Ruosch et al., 2022), our benchmark for

Argument Mining. We reuse the performance data

of five AM systems when evaluated by BAM as

well as its implementation for our purposes. Ac-

cordingly, we restrict the systems for the initial

combinations to these five argument miners and

adhere to the definition of the four tasks in the AM

pipeline (Lippi and Torroni, 2016a): sentence clas-

sification, boundary detection, component identifi-

cation, and relation prediction. Using these tools,

we try to outperform the current best accuracy for

every task of the AM pipeline by combining sys-

tems with the following ensemble methods: voting,

stacking, and bagging. Finally, we split the AM sys-

tems into “modules” according to the AM pipeline,

allowing their recombination to increase accuracy.

We present two main contributions in this paper.

First and foremost, we build the DREAM frame-

work to combine AM systems using ensemble
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methods and recombinations. Second, we show

the value of such combinations, as they outperform

some of the state-of-the-art systems used in the

AM benchmark.

The remainder of this paper is structured as

follows: Section 2 presents background and

the related work, and Section 3 introduces our

methodology. In the ensuing Section 4, we

describe our experiments and their results before

we evaluate them in Section 5. Then, Section 6

discusses limitations and future work. Finally, we

draw conclusions in Section 7.

2 Background

In this section, we lay the foundations by describ-

ing Argument Mining and presenting specific re-

lated work.

2.1 Argument Mining

The field of AM is wide-ranging and has differ-

ent interpretations (Wells, 2014) of what its tasks

consist of. We focus on the information extraction

approach (Budzynska and Villata, 2015; Lippi and

Torroni, 2016a): the automated analysis of argu-

ments in natural language text. To this endavor, we

consider the AM pipeline as described by Lippi

and Torroni (2016a), depicted in Figure 1. The in-

put text is processed in four stages: argumentative

sentence detection, argument component bound-

ary detection, argument component detection, and

argument structure prediction.

In the first step, sentences are classified as argu-

mentative if they contain parts of an argument and

as non-argumentative otherwise. Next, the bound-

aries of the argument components are identified

by segmenting the argumentative sentences. Then,

these argument components are classified accord-

ing to the representation of the arguments defined

beforehand. Finally, the structure (i.e., relations) of

the previously identified components is predicted

to form an argument graph. The annotated text (in

any format) is the output of the AM pipeline.

2.2 Specific Related Work

Combining approaches in AM has barely received

any attention in previous literature. The only ex-

ception is the work of Lawrence and Reed (2015),

where the authors implement and combine three

different AM techniques. They are evaluated with

respect to identified connections between proposi-

tions and use a fixed set of 36 pairs.

First, the presence of discourse indicators:

words such as “because” and “however”, indicat-

ing support- and conflict-relations, respectively, be-

tween adjacent statements. These words provide a

good signal (precision of 1.00), but the technique

fails to capture most relations (recall of 0.08) due

to their low number of occurrences in texts. Fur-

thermore, they can not be used to find relations for

non-adjacent propositions.

The second technique is based on changes in

the topic for consecutive propositions, which is as-

sumed to relate to the argumentative structure in

the text. The similarity of adjacent propositions

is calculated using the synsets of WordNet1, re-

sulting in a number on a scale from 0 to 1. A

preset threshold then determines whether the topic

remains the same, and, that being the case, it is

deduced that the propositions are connected. This

approach achieves a precision of 0.70 and a recall

of 0.54, respectively.

The third method uses argumentation

schemes (Walton et al., 2008): “common

patterns of human reasoning.” They avoid the need

for having the components and the structure of

arguments already annotated by instead focusing

on features of the parts of the present scheme. With

a list of propositions from the text and a Naïve

Bayes classifier, they can determine the particular

scheme and, therefore, detect information about

the structure of the argumentation. This results in

a precision of 0.82 and a recall of 0.69.

Finally, the techniques are combined to exploit

their respective fortes. The presence of discourse

indicators is used to infer connections among

propositions in the first step. Subsequently, com-

ponents are related after having determined argu-

mentation scheme instances. Lastly, previously

unconnected units are integrated based on topic

similarity. Combining the methods results in an

improved performance with precision and recall,

increasing to 0.91 and 0.77, respectively.

In contrast to the approach described above, we

aim to provide combinations on a larger scale and

a pipeline for a unifying framework that allows for

integrating additional components. We aim to

investigate if and how combinations (of parts of)

different AM system can be used to improve over-

all performance. Finally, our approach also differs

1
http://wordnet.princeton.edu
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Figure 1: The Argument Mining pipeline adapted from Lippi and Torroni (2016a).

in that we do not look to combine techniques or

features but rather out-of-the-box argument min-

ers. This facilitates the integration of additional

systems.

3 Methodology

In this section, we first lay out our evaluation

hypotheses and then describe the concept of the

DREAM (re-)combination framework.

3.1 Hypotheses

We base both the evaluation and the conception

on the systems, data, and results of BAM, our

benchmark for Argument Mining (Ruosch et al.,

2022). We utilize the five systems included in BAM

(i.e., AURC, TARGER, TRABAM, ArguminSci,

and MARGOT) and evaluate the recombinations

using the provided implementation of the bench-

mark. That means the AM pipeline is split into four

tasks (Lippi and Torroni, 2016a): sentence classi-

fication, boundary detection, component identifi-

cation, and relation prediction. These tasks are

evaluated with their respective metrics from BAM

(i.e., micro F1, the boundary similarity measure

defined by Fournier (2013), and F1-score).

To evaluate the implemented recombination sys-

tem, we formulate the following hypotheses de-

rived from the research question and describe our

approach to assess their acceptance or rejection.

H1. For some tasks in the AM pipeline, ensem-

bles of systems exist for which accuracy will

be higher than for the most accurate single

system.

This hypothesis encapsulates two different but en-

tangled problems: finding the optimal set of sys-

tems to combine and testing whether they are more

accurate than the current top system. Thus, we split

it into two sub-hypotheses, which are the requisites

for accepting Hypothesis H1.

H1.1. There exists an ensemble of systems for ev-

ery task that is more accurate than any other

ensemble of systems (excluding single sys-

tems).

Since we already restrict the space of systems and

combinations that we need to explore by limiting

ourselves to the systems in BAM, we can test all

combinations of size n, where 1 < n ≤ 5, because

we require combinations of at least two and can

combine at most all five systems. Thus, it becomes

a matter of running all possible systems and com-

bining them using ensemble methods We accept

the hypothesis if we find one or more ensembles of

systems that exceed all others in terms of accuracy

as measured by BAM for all the tasks. It is impor-

tant to note that these ensembles might differ for

individual tasks.

H1.2. For some tasks in the AM pipeline, the most

accurate ensemble of systems will be more

accurate than the most accurate single system

for this task.

For the second sub-hypothesis, we can compare the

previously discovered combinations with the most

accurate single system and compare their numbers

for all the tasks. That means doing a pair-wise

comparison four times, namely once for every task,

and checking whether the combinations outperform

the single systems. Again, we accept the hypothesis

if we can confirm this for at least some of the four

tasks.

H2. For some tasks in the AM pipeline, the ac-

curacy for subsequent tasks will be higher if

intermediate data is used that has been pro-

duced by the system with the highest accuracy

for the preceding task instead of its own inter-

mediate data.

Subsequently, we investigate how to improve in

single tasks and how the intermediate results influ-

ence the ensuing tasks of the pipeline. Thus, we
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hypothesize that data of higher accuracy compared

to the ground truth will also result in an increase

in a system’s accuracy as opposed to its own in-

termediate results. Again, we try out all possible

pairs to answer this hypothesis. Any two systems

can be combined by using one’s output as the other

one’s input, provided that the former’s accuracy

was higher than the latter’s at the preceding task.

Considering the five systems and four tasks in the

benchmark, we have to try out a maximum of 60

pairwise combinations, every system acting as “in-

put provider” and “input taker” but never at the

same time. We compare the new highest accuracy

for every task and system to the previous results

and accept this hypothesis if the new numbers are

higher than the old ones.

H3. For some tasks in the AM pipeline, the accu-

racy will be higher if we use an ensemble of

systems and intermediate results as input pro-

duced by the most accurate system (ensemble)

for the preceding task.

The final hypothesis brings all possible combina-

tions together. We not only allow combining sys-

tems for tasks but also to “mix-and-match” for the

intermediate results in the hope of improving the

accuracy of the whole pipeline. We employ the

best combinations from Hypothesis H1 and com-

bine them with the insights from Hypothesis H2.

We compare the newly obtained accuracies to the

previous best per the benchmark and accept the

hypothesis if we outperform the top single system

for every task.

3.2 The DREAM Framework

The basic idea behind the approach to combining

multiple AM systems is simple: Employ a multi-

tude of systems such that they can combine their

strengths and, at the same time, balance out their

weaknesses. Our framework, DREAM, is intended

for the (automated) recombination of multiple AM

systems according to predefined parameters. Fol-

lowing the aforementioned AM pipeline by Lippi

and Torroni (2016a), we first identify argumenta-

tive sentences, then we identify the boundaries of

the components and classify them (usually as either

claim or premise). Finally, we predict the relations

between the argumentative components (such as

supports or attacks).

Not every argument miner adheres to this

pipeline, which results in some of the argument

miners lacking the capabilities to solve one or more

of these tasks. Furthermore, Lawrence and Reed

(2019) point out that current systems tend to take

a holistic view of the end-to-end pipeline. This

is further emphasized by the fact that black-box

models, such as neural networks and, more specif-

ically, transformers, become increasingly preva-

lent. While they carry the advantage of improved

performance, they prevent a look into their inner

workings and modularization of their features.

Thus, we have access solely to the final outputs

of argument miners for our framework. However,

as we showed in BAM (Ruosch et al., 2022), we

can reconstruct the intermediate results necessary

for evaluating the tasks mentioned above of the AM

pipeline. We can use these reconstructed interme-

diate results for the recombination effort, with the

added benefit of not needing to re-train or re-run

any of the systems (i.e., we only perform post-hoc

combinations).

DREAM reads the output files from the argu-

ment miners and calculates the combinations ac-

cording to the specified parameters. There are sev-

eral different options when combining this data: the

list of employed systems, the method to calculate

the combination, and the targeted task.

Figure 2 visualizes the ways we combine sys-

tems. Figure 2a corresponds to what is described in

Hypothesis H1: using ensemble methods to com-

bine multiple systems for a single task. This is

what we call Vertical Integration. Meanwhile, Fig-

ure 2b illustrates Hypothesis H2: using different

systems throughout the AM pipeline (recombina-

tion). This is referred to as Horizontal Integration.

Tying these two together, we get the Combined In-

tegration, where we allow sets of systems to be

used for the intermediate results fed forward in

the pipeline to either other combinations or single

systems.

3.2.1 Vertical Integration

Vertical Integration gets its name because we

choose systems from the “column” of options as

illustrated in Figure 2a. The number of systems

used for the combination can vary from a minimum

of two to all available systems. The list of used

systems can be either specified or the recombina-

tion framework can try (all) possible combinations

(including power sets). This is how we approach

auto-experimentation for recombination.

As for the method to calculate the combination

of results, we follow the well-established ensemble
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(a) Using ensemble methods per task.
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(b) Recombining systems over the whole pipeline.

Figure 2: The two types of combinations employed in the framework.

methods (Opitz and Maclin, 1999). As simplest

method, we employ a hard voting scheme (Little-

stone and Warmuth, 1994), where systems can op-

tionally be assigned a weight. It is important to

note that systems may all receive a uniform weight

of one or be assigned arbitrary scores (e.g., bench-

mark results). Then, we calculate the score of the

available answers for a given item based on the

systems’ output and weights. Next, we use the

ensemble stacking method, which trains a meta-

classifier on the predictions the trained argument

miners produced. We employ multinomial logistic

regression (Greene, 2003) as the stacking model.

Our third ensemble method is bootstrap aggregat-

ing (bagging) (Breiman, 1996). Using bootstrapped

sets for training, we expect to strengthen the en-

semble of classifiers.

3.2.2 Horizontal Integration

Next, we allow combining systems across the bor-

ders of individual tasks (i.e., columns) by using

intermediate results and feeding them to other sys-

tems. This results in what we call Horizontal Inte-

gration, since we allow the combination of differ-

ent “rows”, as depicted in Figure 2b. The output

for all the tasks in the AM pipeline depends on the

input fed into the corresponding module. Although,

these modules may not be explicitly constructed

as such and may have to be inferred due to the

holistic view of AM systems (Lawrence and Reed,

2019). Still, we can generally describe the data

processing in the AM pipeline. In the first step,

the raw text supplied to the pipeline is split into

sentences, which in turn are classified as either ar-

gumentative or non-argumentative, depending on

the presence of argumentative components in them.

Thus, the output of the sentence detection depends

on its input because it will process (and output)

no more and no less than the text it has been sup-

plied with. Subsequently, the boundary detection

will find the delineations of components in only the

argumentative sentences since, by definition, only

they may contain argumentative components. The

same holds for the component identification: it will

only identify components whose boundaries have

been detected. Lastly, the relation prediction relies

on the previously identified components to find the

triples (subject and object are from the set of ar-

gumentative components) that constitute its output.

Thus, we can see that every subsequent step in the

AM pipeline depends on its predecessor’s output.

3.2.3 Combined Integration

Finally, we will also allow for the Vertically Inte-

grated ensemble learners to be used as the inter-

mediate result creators and, thus, bring it together

with Horizontal Integration to the Combined Inte-

gration. Since we hypothesize that both individual

Integrations increase accuracy, we hypothesized

their combination exhibits an even higher perfor-

mance. Thus, we make an effort to find sequences

of combined AM systems that further improve the

accuracy of the tasks in the pipeline.

4 Experiments

In this section, we discuss conducted experiments.

First, we describe the setup used. Then, we ex-

plain the implementation of the experiments and

the subsequent evaluation.

4.1 Setup

We rely on the systems and data used by BAM (Ru-

osch et al., 2022), the results of which are shown

in Table 1. Thus, we consider five different AM

systems that have been benchmarked using the Sci-

Arg data set (Lauscher et al., 2018b). It represents

the only available collection of full argument an-

notated scientific papers in English and builds on

the Dr. Inventor data set (Fisas et al., 2016). The

corpus consists of publications from the field of

computer graphics and contains a total of 10,780
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System S B C R

AURC (Trautmann et al., 2020) 0.792 0.470 - -

TARGER (Chernodub et al., 2019) 0.653 0.483 0.656 -

TRABAM (Mayer et al., 2020) 0.832 0.506 0.662 0.021

ArguminSci (Lauscher et al., 2018a) 0.600 0.115 0.091 -

MARGOT (Lippi and Torroni, 2016b) 0.454 0.097 0.133 -

Table 1: Results of BAM, our benchmark for Argument Mining (Ruosch et al., 2022).

sentences that have been annotated with argumen-

tative components (background and own claims as

well as data) and relations (contradicts, supports,

semantically same, and part of ).

BAM uses individual evaluation measures for

each of the pipeline tasks. For the argumenta-

tive sentence classification, it employs the micro-

F1 (van Rijsbergen, 1979) score to avoid the skew-

ing effect of a possible label imbalance. For the

boundary detection task, BAM uses the boundary

similarity measure as proposed by Fournier (2013),

which compares the identified boundaries for two

segmentations for the same text. The argumenta-

tive component identification is evaluated by us-

ing the F1 as implemented for the task of Named

Entity Recognition (Segura-Bedmar et al., 2013).

Finally, relation prediction is treated as the classi-

fication of triples (subject, predicate, object) into

retrieved or missed and thus, BAM employs the F1-

score. Therefore, we obtain four individual scores

between 0 and 1, one per task in the AM pipeline,

where bigger signifies better.

We use the same five systems that have already

been evaluated in the initial showcase of BAM.

The first three were trained on the benchmark data

set, while the last two were already pre-trained

by the authors of the systems. AURC (Trautmann

et al., 2020) treats AM as a sequence tagging prob-

lem and employs the BiLSTM model of Reimers

et al. (2019) to identify argumentative spans in

texts. TARGER (Chernodub et al., 2019) also uses

a BiLSTM in conjunction with a CNN-CRF and

pre-computed word embeddings to label tokens

from free text input as belonging to either claims or

premises. TRABAM (Mayer et al., 2020) relies on

pre-trained transformers such as SciBERT (Beltagy

et al., 2019) in combination with neural networks.

TRABAM is the sole system in the benchmark that

solves all the pipeline tasks, tagging argumenta-

tive components and predicting relations between

them. ArguminSci (Lauscher et al., 2018a) was

trained on the data set that is also incorporated in

the benchmark. It consists of a range of different

tools to analyze rhetorical aspects, but we only use

the argument component identification functional-

ity. This module uses a BiLSTM to tag tokens as

one of three argumentative component types akin

to the annotations in the corpus: background claim,

own claim, or data. Finally, MARGOT (Lippi and

Torroni, 2016b) detects claims and evidences by

analyzing the sentence structures and uses a subset

tree kernel (Collins and Duffy, 2002) to compare

their constituency parse trees.

Data and code involved in the execution and

subsequent evaluation are available in the project’s

repository.2

4.2 Vertical Integration

The best results for each task using the Vertical In-

tegration are presented in Table 2.3 For context, we

also report the runner-up and the worst result, as in-

dicated in the Result column, and provide the mean,

median, and variance for each task. We round all

results to three decimal places for readability, ex-

cept where necessary to indicate differences. Each

task of the AM pipeline is represented by a row,

in which the accuracy (as measured by BAM), the

used ensemble method, and the systems involved

are indicated (the order matters therein as the first

system serves as the primary to which all other

annotations are aligned to). Notably, the relation

prediction score R is absent since only one system

performed it in BAM, and thus, there is no oppor-

tunity to apply an ensemble method. Also, because

no system explicitly disentangles the AM pipeline

into individual tasks, we perform the combination

on the final output and not on task-specific anno-

tations, akin to the way it is handled in BAM. We

tried every possible combination of all system lists

and ensemble methods to obtain the results and list

the best, second best, and worst here.

2
https://gitlab.ifi.uzh.ch/DDIS-Public/DREAM

3The full results are omitted for brevity and are available
in the online repository.
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Task Result Score Method Systems

S

mean: 0.739 Best 0.8419 Stacking TARGER, AURC, MARGOT, TRABAM

median: 0.793 Second 0.8416 Stacking TARGER, AURC, TRABAM

variance: 0.011 Worst 0.513 Voting MARGOT, TARGER

B

mean: 0.379 Best 0.4972 Bagging TARGER, ArguminSci, MARGOT, TRABAM

median: 0.457 Second 0.4971 Bagging ArguminSci, MARGOT, TARGER, TRABAM

variance: 0.020 Worst 0.022 Voting MARGOT, ArguminSci

C

mean: 0.498 Best 0.673 Voting TRABAM, TARGER

median: 0.615 Second 0.671 Voting TRABAM, ArguminSci, TARGER

variance: 0.036 Worst 0.052 Voting MARGOT, ArguminSci

Table 2: Best, runner-up, and worst results per task for Vertical Integration (mean, median, and variance refer to all

results per task).3

From To B C R

TRABAM AURC 0.475 - -

TRABAM TARGER 0.494 0.630 -

TRABAM ArguminSci 0.281 0.345 -

TRABAM MARGOT 0.171 0.162 -

Table 3: Results per system for Horizontal Integration.

Stacking the systems TARGER, AURC, MAR-

GOT, and TRABAM using logistic regression is

the most accurate ensemble for sentence classifi-

cation with S = 0.8419. Bagging with TARGER,

ArguminSci, MARGOT, and TRABAM achieves

a score of B = 0.4972 for boundary detection,

which is the highest among the ensembles. Com-

bining the two systems TRABAM and TARGER

using the hard voting scheme results in C = 0.673
as the best score for component identification.

The main insight gained from these results is

that no ensemble method outperforms the others.

Rather, each of the three techniques achieves the

highest score for one task.

4.3 Horizontal Integration

Table 3 shows the complete results for the Hor-

izontal Integration. We used the most accurate

system from BAM, TRABAM, as listed in the

“From”-column to indicate where the intermedi-

ate results originated from. These were combined

with the output of the individual systems (in the

“To”-column) in the respective rows by using them

as the template for the subsequent annotations.

TARGER combined with TRABAM scores the

highest for both the boundary detection B = 0.494
and component identification C = 0.630. Again,

due to the lack of a system to combine TRABAM

with, the results for the relation prediction R are

omitted. The sentence classification is not consid-

ered for the Vertical Integration as its input is the

initial text, which is not considered an intermediate

result since it is the same for every system.

4.4 Combined Integration

In Table 4, we show the results of the Combined

Integration. We list the results achieved with the

previously identified most accurate single system

or ensemble (from the Vertical Integration) and

their score for each AM pipeline task. For each

row in the table, the output has been combined

with the output of the preceding row, according

to the Horizontal Integration. This results in the

Combined Integration.

The ensemble of TARGER, AURC, MARGOT,

and TRABAM stacked using logistic regression

is the most accurate for sentence classification

with S = 0.842. The single system TRABAM

achieves the highest boundary detection score with

B = 0.483. Combining TRABAM and TARGER

into an ensemble using voting results in C = 0.673
as the best score for component identification. Fi-

nally, TRABAM scores R = 0.019 for the relation

prediction. Interestingly, ensembles are only better

than single systems in two out of the three AM

pipeline tasks (relation prediction does not have an

alternative to TRABAM).

5 Hypotheses Evaluation

In this section, we evaluate the hypotheses individ-

ually. The results from BAM in Table 1 serve as

the baseline, more specifically, the best-performing

system nicknamed TRABAM in with the bold-

faced numbers. It achieved the following scores

for the AM tasks, where each of them is on a scale

from zero to one, and higher means better: sen-
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Task Score Method System(s)

S 0.842 Stacking TARGER, AURC, MARGOT, TRABAM

B 0.483 Single TRABAM

C 0.673 Voting TRABAM, TARGER

R 0.019 Single TRABAM

Table 4: Results per task for Combined Integration.

tence classification S = 0.832, boundary detection

B = 0.506, component identification C = 0.662,

and relation prediction R = 0.021. Unlike the

result reported in BAM, we use TRABAM’s inter-

mediate results as input for the last step, decreasing

the accuracy (from R = 0.318 when using the

ground truth components). We compare the newly

obtained scores to these numbers to evaluate the

hypotheses. The statistical significance testing re-

sults and the correction for multiple comparisons

can be found in Appendix A.

5.1 Hypothesis H1

This evaluation is based on the outcome of the Sub-

hypotheses H1.1 and H1.2. Thus, we assess these

two before giving the verdict on H1.

H1.1 Before collating previous and new results,

we look at the isolated findings from applying the

ensemble methods. We hypothesized that there

would be a set of systems that is the most accu-

rate compared to any other combination. We can

confirm this hypothesis by looking at the results

produced in the experiments by using the ensemble

methods. Due to the lack of a second system to

combine TARGER with, no ensembles can be built

to improve the relation prediction score R; thus, it

is omitted.

Table 2 shows the results for each task. From it,

we can see that the highest scores are unique num-

bers. This leads us to accept Sub-hypothesis H1.1.

H1.2 This hypothesis compares the results from

the benchmark and the Vertical Integration by

opposing the best results from Table 1 and Ta-

ble 2. For the sentence classification, the ensem-

ble of TARGER, AURC, MARGOT, and TRA-

BAM combined by stacking them (with logistic re-

gression) slightly outperforms the previously most

accurate single system TRABAM: S = 0.842
and S = 0.832, respectively. Statistical testing,

however, reveals that the difference is not signif-

icant (cf. Appendix A). For the component iden-

tification where the two systems TRABAM and

TARGER were combined using the voting method

(C = 0.673), they beat the previous best achieved

by TRABAM (C = 0.662), with the difference

being statistically significant. This is in contrast to

the boundary detection, where the best ensemble re-

sult does not reach the most accurate single system:

bagging TARGER, ArguminSci, MARGOT, and

TRABAM scored B = 0.497, while TRABAM

held the most accurate result in B = 0.506. As

explained in the previous hypothesis, the relation

prediction is omitted.

Since we found one of three ensembles to out-

perform single systems with a statistical signifi-

cance, this leads us to accept Sub-hypothesis H1.2.

Moreover, this indicates a correlation between the

systems’ errors since they do not seem to balance

out their weaknesses in all cases. An exhaustive

error analysis would be necessary to reveal more

detailed insights.

H1 We based the acceptance of Hypothe-

sis H1 on accepting both its corresponding sub-

hypotheses, which we did as explained above. This

means that we also accept Hypothesis H1.

5.2 Hypothesis H2

Table 3 shows the results of using the annotations

produced by TRABAM (i.e., the most accurate sys-

tem in the benchmark) as the input to subsequent

steps for the other systems. The boldfaced numbers

indicate improvements over the initial results with

the system’s own data. We can see that, except

when combining TRABAM with TARGER for the

component classification, we consistently outper-

form the benchmark results, and the differences are

all statistically significant. Akin to the previous hy-

potheses, R cannot be improved as we do not have

another system to feed TRABAM’s intermediate

results into, or vice versa. Therefore, we also omit

the relation prediction from evaluating this hypoth-

esis. Since we could show that using more accurate

intermediate results can improve the subsequent

step of the AM pipeline, we accept Hypothesis H2.
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5.3 Hypothesis H3

This hypothesis merges the Vertical and the Hori-

zontal Integration into the Combined Integration

to improve the accuracy for all tasks in the pipeline

by also allowing intermediate data produced by en-

semble methods. The results are shown in Table 4

with the boldfaced numbers indicating the tasks

for which a new highest accuracy was achieved:

S = 0.842 and C = 0.673 outperform the previ-

ous best single systems from BAM, but only the

latter being statistically significantly different. This

is in contrast to B = 0.483 and R = 0.019, where

the former did not perform better, and the latter

even lowered the score. Still, we have evidence

that Combined Integration can be used to improve

at least some tasks in the AM pipeline. Thus, we

accept Hypothesis H3.

6 Limitations and Future Work

The major limitation of this work is that we imple-

ment post-hoc combinations. The reasons for not

re-training the systems are two-fold. First, out of

practicality to facilitate the addition of new AM

systems and existing ensembles. Second, to set the

scope of this research as opposed to works that look

to explicitly fuse models such as neural networks

by entangling the final classification layer such as

described in Ribeiro et al. (2020). The latter opens

up the future work of applying these techniques to

the current five AM systems and mixing their latent

representations, as opposed to only their outputs.

Another limitation is that all the included sys-

tems take a holistic view of the AM pipeline, and

none is explicitly split into the four modules we

infer for the ensemble methods. Given the success

of (re-)combinations of components in other do-

mains, this paper can, hence, be seen as a call to

action to systematically explore the effectiveness

of functional components of the AM pipeline and

share these for re-use by others. Indeed, more

broadly, the limited availability of AM systems and

benchmark datasets hampered our ability to system-

atically compare a larger design space of system

(component) combinations and limits the general-

izability of our findings to other domains/datasets.

The plans for future efforts in this direction in-

clude two main points. As the next step, we aim to

conduct an error analysis and explore the influences

of the systems on the results. This will help iden-

tify the strengths and weaknesses of the individual

systems and may provide insights about current

AM systems’ common weaknesses. Also, the new

analysis can incorporate the spatial and temporal

costs of the recombinations, which was omitted in

this paper. In the future, should the number of ar-

gument mining systems considerably increase, the

framework could be extended to include a predic-

tor to choose the sets and sequences of argument

miners for a given document that lead to an opti-

mal accuracy improvement. This would involve

developing a cost function.

7 Conclusions

This paper presented DREAM, a framework for

the Deployment of Recombination and Ensemble

methods for Argument Miners. Our work focuses

on improving accuracy in Argument Mining (AM)

and addresses the need for incremental improve-

ments as opposed to current approaches, which

tend to provide all-new solutions (Lawrence and

Reed, 2019). With the DREAM framework, we

implemented a flexible and automated approach for

(re)combining AM systems. It offers the Vertical

Integration (using ensemble methods for a single

task), the Horizontal Integration (using different

systems throughout the pipeline), and, finally, the

Combined Integration (allowing sets of systems for

the intermediate data).

Our findings confirmed the hypotheses formu-

lated in this work. We showed that ensemble meth-

ods (Opitz and Maclin, 1999) could be used to

improve accuracy for specific tasks in the AM

pipeline. Furthermore, we demonstrated that re-

combination by using intermediate data from the

most accurate system could lead to higher accu-

racy in the subsequent task. Finally, we highlighted

the potential of deploying ensemble methods and

recombination for AM. We hope this work will

contribute to the further improvement of state-of-

the-art and better generalizing AM systems across

domains, a prevalent and well-acknowledged prob-

lem (Lippi and Torroni, 2016a).
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A Appendix

A.1 Statistical Significance Testing

We report the p-values where we claim to outper-

form a previously best result (indicated in bold in

the original tables) in Table 5, Table 6, and Table 7.

Bold numbers indicate statistically significant dif-

ferences (p < 0.05), while * denotes small, **

medium, and *** large effect size. The testing

for the statistical significance of the results was

conducted with Autorank (Herbold, 2020). The de-

tailed reports on the conducted tests for statistical

significance, including all procedures and assump-

tions testing, are shown below.

S for TARGER, AURC, MARGOT, and TRA-

BAM (Stacking) vs. TRABAM The statistical

analysis was conducted for 2 populations with 12

paired samples. The family-wise significance level

of the tests is alpha=0.050. We failed to reject the

null hypothesis that the population is normal for

all populations (minimal observed p-value=0.328).

Therefore, we assume that all populations are nor-

mal. No check for homogeneity was required be-

cause we only have two populations. Because we

have only two populations and both populations

are normal, we use the t-test to determine differ-

ences between the mean values of the populations

and report the mean value (M) and the standard

deviation (SD) for each population. We failed to

reject the null hypothesis (p=0.180) of the paired

t-test that the mean values of the populations C-

trabam-test (M=0.834+-0.041, SD=0.054) and SB-

S-targer+aurc+margot+trabam (M=0.838+-0.039,

SD=0.052) are are equal. Therefore, we assume

that there is no statistically significant difference

between the mean values of the populations.

C for TRABAM and TARGER (Voting) vs.

TRABAM The statistical analysis was conducted

for 2 populations with 12 paired samples. The

family-wise significance level of the tests is al-

pha=0.050. We rejected the null hypothesis that

the population is normal for the population C-V-

trabam+targer (p=0.024). Therefore, we assume

that not all populations are normal. No check

for homogeneity was required because we only

have two populations. Because we have only two

populations and one of them is not normal, we

use Wilcoxon’s signed rank test to determine the

differences in the central tendency and report the

median (MD) and the median absolute deviation

(MAD) for each population. We reject the null hy-

pothesis (p=0.021) of Wilcoxon’s signed rank test

that population C-trabam-test (MD=0.671+-0.062,

MAD=0.038) is not greater than population C-V-

trabam+targer (MD=0.691+-0.048, MAD=0.017).

Therefore, we assume that the median of C-V-

trabam+targer is significantly larger than the me-

dian value of C-trabam-test with a small effect size

(gamma=-0.461).

B for TRABAM and AURC (Recombination)

vs. AURC The statistical analysis was conducted

for 2 populations with 12 paired samples. The

family-wise significance level of the tests is al-

pha=0.050. We failed to reject the null hypoth-

esis that the population is normal for all popula-

tions (minimal observed p-value=0.052). There-

fore, we assume that all populations are normal. No

check for homogeneity was required because we

only have two populations. Because we have only

two populations and both populations are normal,

we use the t-test to determine differences between

the mean values of the populations and report the

mean value (M) and the standard deviation (SD)

for each population. We reject the null hypothesis

(p=0.000) of the paired t-test that the mean values

of the populations B-aurc-test (M=0.028+-0.009,

SD=0.012) and SB-R-(trabam)+(aurc) (M=0.488+-

0.036, SD=0.047) are equal. Therefore, we assume

that the mean value of SB-R-(trabam)+(aurc) is sig-

nificantly larger than the mean value of B-aurc-test

with a large effect size (d=-13.252).

B for TRABAM and TARGER (Recombination)

vs. TARGER The statistical analysis was con-

ducted for 2 populations with 12 paired samples.

The family-wise significance level of the tests is

alpha=0.050. We failed to reject the null hypoth-
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Task Method Systems Previous best p-value

S Stacking TARGER, AURC, MARGOT, TRABAM TRABAM 0.180

C Voting TRABAM, TARGER TRABAM 0.021 *

Table 5: The p-values corresponding to the results reported in Table 2.

From To B C R

TRABAM AURC 0.000 *** - -

TRABAM TARGER 0.018 * - -

TRABAM ArguminSci 0.000 *** 0.000 *** -

TRABAM MARGOT 0.000 *** 0.000 *** -

Table 6: The p-values corresponding to the results reported in Table 3.

esis that the population is normal for all popula-

tions (minimal observed p-value=0.189). There-

fore, we assume that all populations are normal. No

check for homogeneity was required because we

only have two populations. Because we have only

two populations and both populations are normal,

we use the t-test to determine differences between

the mean values of the populations and report the

mean value (M) and the standard deviation (SD)

for each population. We reject the null hypothesis

(p=0.018) of the paired t-test that the mean values

of the populations C-targer-test (M=0.485+-0.047,

SD=0.063) and C-R-(trabam)+(targer) (M=0.504+-

0.042, SD=0.056) are equal. Therefore, we assume

that the mean value of C-R-(trabam)+(targer) is

significantly larger than the mean value of C-targer-

test with a small effect size (d=-0.313).

B for TRABAM and ArguminSci (Recombina-

tion) vs. ArguminSci The statistical analysis

was conducted for 2 populations with 12 paired

samples. The family-wise significance level of the

tests is alpha=0.050. We failed to reject the null

hypothesis that the population is normal for all pop-

ulations (minimal observed p-value=0.120). There-

fore, we assume that all populations are normal. No

check for homogeneity was required because we

only have two populations. Because we have only

two populations and both populations are normal,

we use the t-test to determine differences between

the mean values of the populations and report the

mean value (M) and the standard deviation (SD)

for each population. We reject the null hypothesis

(p=0.000) of the paired t-test that the mean values

of the populations C-arguminsci-test (M=0.102+-

0.013, SD=0.018) and C-R-(trabam)+(arguminsci)

(M=0.287+-0.035, SD=0.047) are equal. There-

fore, we assume that the mean value of C-R-

(trabam)+(arguminsci) is significantly larger than

the mean value of C-arguminsci-test with a large

effect size (d=-5.227).

C for TRABAM and ArguminSci (Recombina-

tion) vs. ArguminSci The statistical analysis

was conducted for 2 populations with 12 paired

samples. The family-wise significance level of the

tests is alpha=0.050. We failed to reject the null

hypothesis that the population is normal for all pop-

ulations (minimal observed p-value=0.681). There-

fore, we assume that all populations are normal. No

check for homogeneity was required because we

only have two populations. Because we have only

two populations and both populations are normal,

we use the t-test to determine differences between

the mean values of the populations and report the

mean value (M) and the standard deviation (SD)

for each population. We reject the null hypothesis

(p=0.000) of the paired t-test that the mean values

of the populations C-arguminsci-test (M=0.093+-

0.016, SD=0.021) and C-R-(trabam)+(arguminsci)

(M=0.344+-0.040, SD=0.054) are equal. There-

fore, we assume that the mean value of C-R-

(trabam)+(arguminsci) is significantly larger than

the mean value of C-arguminsci-test with a large

effect size (d=-6.140).

B for MARGOT and TRABAM (Recombina-

tion) vs. MARGOT The statistical analysis was

conducted for 2 populations with 12 paired sam-

ples. The family-wise significance level of the

tests is alpha=0.050. We failed to reject the null

hypothesis that the population is normal for all pop-

ulations (minimal observed p-value=0.133). There-

fore, we assume that all populations are normal. No

check for homogeneity was required because we
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Task Method Systems Previous best p-value

S Stacking TARGER, AURC, MARGOT, TRABAM TRABAM 0.180

C Voting TRABAM, TARGER TRABAM 0.021 *

Table 7: The p-values corresponding to the results reported in Table 4.

Hypothesis p-value Rank (i/m)α

B B-aurc-test SB-R-(trabam)+(aurc) 1.933E-12 1 0.006

C C-arguminsci-test C-R-(trabam)+(arguminsci) 2.133E-09 2 0.013

B C-arguminsci-test C-R-(trabam)+(arguminsci) 1.866E-08 3 0.019

B C-margot-test C-R-(trabam)+(margot) 2.032E-07 4 0.025

C C-margot-test C-R-(trabam)+(margot) 4.266E-04 5 0.031

B C-targer-test C-R-(trabam)+(targer) 1.822E-02 6 0.038

C C-trabam-test C-V-trabam+targer 2.124E-02 7 0.044

S C-trabam-test SB-S-targer+aurc+margot+trabam 1.795E-01 8 0.050

Table 8: Calculations of the Benjamini-Hochberg procedure.

only have two populations. Because we have only

two populations and both populations are normal,

we use the t-test to determine differences between

the mean values of the populations and report the

mean value (M) and the standard deviation (SD)

for each population. We reject the null hypothesis

(p=0.000) of the paired t-test that the mean val-

ues of the populations C-margot-test (M=0.098+-

0.014, SD=0.019) and C-R-(trabam)+(margot)

(M=0.171+-0.020, SD=0.026) are equal. There-

fore, we assume that the mean value of C-R-

(trabam)+(margot) is significantly larger than the

mean value of C-margot-test with a large effect size

(d=-3.210).

C for MARGOT and TRABAM (Recombina-

tion) vs. MARGOT The statistical analysis was

conducted for 2 populations with 12 paired sam-

ples. The family-wise significance level of the

tests is alpha=0.050. We failed to reject the null

hypothesis that the population is normal for all pop-

ulations (minimal observed p-value=0.347). There-

fore, we assume that all populations are normal. No

check for homogeneity was required because we

only have two populations. Because we have only

two populations and both populations are normal,

we use the t-test to determine differences between

the mean values of the populations and report the

mean value (M) and the standard deviation (SD)

for each population. We reject the null hypothesis

(p=0.000) of the paired t-test that the mean val-

ues of the populations C-margot-test (M=0.135+-

0.031, SD=0.042) and C-R-(trabam)+(margot)

(M=0.164+-0.029, SD=0.039) are equal. There-

fore, we assume that the mean value of C-R-

(trabam)+(margot) is significantly larger than the

mean value of C-margot-test with a medium effect

size (d=-0.743).

S for TARGER, AURC, MARGOT, and TRA-

BAM (Stacking) vs. TRABAM The statistical

analysis was conducted for 2 populations with 12

paired samples. The family-wise significance level

of the tests is alpha=0.050. We failed to reject the

null hypothesis that the population is normal for

all populations (minimal observed p-value=0.328).

Therefore, we assume that all populations are nor-

mal. No check for homogeneity was required be-

cause we only have two populations. Because we

have only two populations and both populations

are normal, we use the t-test to determine differ-

ences between the mean values of the populations

and report the mean value (M) and the standard

deviation (SD) for each population. We failed to

reject the null hypothesis (p=0.180) of the paired

t-test that the mean values of the populations C-

trabam-test (M=0.834+-0.041, SD=0.054) and SB-

S-targer+aurc+margot+trabam (M=0.838+-0.039,

SD=0.052) are are equal. Therefore, we assume

that there is no statistically significant difference

between the mean values of the populations.

C for (TRABAM and TARGER (Voting)) and

TRABAM (Recombination) vs. TRABAM The

statistical analysis was conducted for 2 popula-

tions with 12 paired samples. The family-wise

significance level of the tests is alpha=0.050. We

5289



rejected the null hypothesis that the population

is normal for the population C-R-(trabam)+(C-V-

trabam+targer) (p=0.024). Therefore, we assume

that not all populations are normal. No check

for homogeneity was required because we only

have two populations. Because we have only two

populations and one of them is not normal, we

use Wilcoxon’s signed rank test to determine the

differences in the central tendency and report the

median (MD) and the median absolute deviation

(MAD) for each population. We reject the null

hypothesis (p=0.021) of Wilcoxon’s signed rank

test that population C-trabam-test (MD=0.671+-

0.062, MAD=0.038) is not greater than population

C-R-(trabam)+(C-V-trabam+targer) (MD=0.691+-

0.048, MAD=0.017). Therefore, we assume that

the median of C-R-(trabam)+(C-V-trabam+targer)

is significantly larger than the median value of

C-trabam-test with a small effect size (gamma=-

0.461).

A.2 Multiple Comparisons Problem

With the results from the tests above, we correct

for the multiple comparisons problem by using

the Benjamini-Hochberg procedure (Benjamini and

Hochberg, 1995) with a critical value of α = 0.05.

Table 8 shows the details of the calculations. From

it, we see that all the differences are still statistically

significant, even after correcting for the multiple

comparisons problem.
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