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ARTICLE

An approach for prospective forecasting of rock
slope failure time
Johannes Leinauer 1✉, Samuel Weber 1,2,3, Alessandro Cicoira 4, Jan Beutel 5 & Michael Krautblatter 1

Rock slope failures globally account for most single-event landslide disasters. Climatic

changes in mountain areas boost failure activity and the demand for reliable failure time

forecasts. State-of-the-art prediction models are often confused with high-frequency slope

deformation data. Prospectively, they provide ambiguous forecasts as data filtering, starting

point definition and forecast uncertainty remain arbitrary. Here, we develop a prospective

failure time forecast model that applies multiple filtering and inverse velocity percentiles

to minimize subjective decisions. We test the concept with 14 historic slope failures of

102-108m3 including 46 displacement datasets from different sensors. After automatic

detection of the onset of acceleration, the failure time of all events is forecasted to within

−1 ± 17 h for higher-frequency data and−1 ± 4 d for daily data with a final mean uncertainty of

1 ± 1 d and 7 ± 4 d that is estimated in real-time. This prospective approach overcomes pre-

vious long-standing problems by introducing a robust and uniform concept across various

types of catastrophic slope failures and sensors.
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S
lope instabilities of varying magnitude frequently threaten
the life, health or property of humans in all parts of the
world1–4. Massive rock slope failures alone, including rock

slides, rock avalanches and rock falls caused 58% of the global
disasters from single landslide events (downslope mass move-
ments in general) in the last millennium5. Under the current
ongoing climatic changes, landslide risk is expected to increase
critically6 and therefore, cost-efficient mitigation measures with a
wide applicability are needed. Such measures as alarm systems or
evacuation of endangered zones require reliable forecasts of the
imminent event7,8. Local monitoring systems provide important
data that can be used to predict the time of slope failures9.
However, to meet social, economic and scientific requirements,
existing forecasting methods need amendments in the real-time
processing of modern monitoring data and a conceptual basis
that is valid for diverse failure processes.

All slope failures are preceded by precursory deformations of
particular amplitude and duration10. The precursory signals,
increasing deformation rates or seismic activity, originate within the
unstable rock masses due to progressive crack propagation and non-
elastic deformations prior to failure11. The measured prefailure sur-
face displacement pattern can be described with a classical creep
curve9 (Fig. 1 top). In the secondary creep phase, under constant
stress conditions, stabilizing and destabilizing forces balance each
other and strain rates remain constant. Increasing stresses in the
fatiguing material create a self-accelerating positive feedback setting
of progressively failing retaining sectors12–15. As a result, in the final
accelerating phase, the strain rate is in a power-law relation to time,
fitting tertiary creep. Usually, the acceleration phase is shorter the
smaller the volume and the more brittle the rock is16, ranging from

seconds for small blocks up to days, weeks or months for bigger slope
failures. In the accelerating phase, more or less accurate failure time
forecasts are so far calculated with several methods9,17–22. The most
common prediction method is the inverse velocity method after
Fukuzono19, possibly due to its relatively simple graphical
solution23–25. Here, the inverse velocity of a failing mass is plotted
against time during tertiary creep and the intersection of the extra-
polated trend with the abscissa, i.e. at infinite velocity, indicates the
predicted time of failure (Fig. 1 bottom).

While it can be easy, to find a linear inverse velocity fit that
matches the actual time of a failure retrospectively post-
failure7–9,26–30, the challenge in real-time scenarios is to obtain
reliable forecasts prospectively31,32. Modern monitoring systems
are able to measure surface displacements in (near) real-time at
high spatial and temporal resolution by in situ devices (e.g.
crackmeter, tiltmeter, Global Navigation Satellite System), or by
satellite or ground-based remote sensing techniques29,33. These
data types create early warning opportunities, but present pre-
diction models have not kept pace and are not ready to be used
with high-frequency and therefore often noisy slope deformation
data. Thus, they provide ambiguous forecasts.

Specifically, data filtering, starting point definition and forecast
uncertainty remain unclear. Filtering the raw monitoring data can
improve the forecasts, but the process is often arbitrary and
involves subjective decisions23,24,34,35. Although the forecasted
failure time is sensitive to the degree of data smoothing, most
applications of the inverse velocity method in the literature
include only one or two subjectively selected time windows.
Furthermore, the outcome of the prediction model is highly
sensitive to the definition of the transition point from secondary

Fig. 1 Concept of the prospective failure time forecast model (PFTF). Displacements of unstable rock slopes follow a creep curve. Usually, monitoring

starts in the secondary creep phase without knowing the transition point to tertiary creep (onset of acceleration, OOA). This point is used as starting point

for failure time forecasting. The real time processing of PFTF uses multiple filtering windows to identify the OOA and to derive multiple inverse velocities

that are used to forecast the time of failure and estimate the forecast uncertainty (for details see Methods).
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to tertiary creep (from constant velocity to accelerating regime).
This point is called onset of acceleration (OOA) and is used as
starting point for forecasting (cp. Fig. 1)31,34. Monitoring usually
starts in the secondary creep phase and in real-time it remains
challenging to decide at what time the slope enters the tertiary
creep phase (Fig. 1 top). An unfavourable OOA setting can result
in misleading forecasts as the regression of inverse velocities may
include points, which do not belong to the final failure phase in
case of a too early OOA or may exclude important measurements
in case of a too late OOA. Modern early warning systems deliver
observations of multiple sensors at high temporal frequency. A
prospective real-time application of forecasting methods therefore
requires a predominantly automatic method for the starting point
definition. However, the few recently published approaches for
this24,35,36 perform well in some cases but also detect non-
optimal OOAs or false positives. Moreover, responsible decision-
makers are dependent on a measure of reliability and uncertainty
of the derived forecasts. In the past, the uncertainty has often not
been evaluated e.g.7,37. More recently, uncertainty estimations via
the distribution of inverse velocity regressions38,39, via the cal-
culation of a standard error30 or via the calculation of a failure
window during which a failure event is highly probable24 have
been put forward. However, there is no standard procedure for a
statistical real-time uncertainty estimation.

Therefore, there is a lack of a forecasting concept that operates
fully prospectively without post-tuning of the results, with a clear
smoothing process, a non-arbitrary OOA detection and a sys-
tematic real-time uncertainty estimation. Here, we present a pro-
spective failure time forecast model (PFTF) developed by analysing
46 data-sets from 14 slope failures with daily or higher observation
frequency. We acquire a uniform robust concept across sensor and
failure types overcoming previous major drawbacks. The onset of
acceleration is detected sufficiently early and reliable forecasts,
including uncertainty estimation can automatically be calculated in
real-time. Overall, forecast accuracy is higher with higher-
frequency data and closer towards the actual time of failure. This
model can support decision-makers in various critical situations.

Conceptual framework
Our forecasting concept (Fig. 1) includes iterative real-time data
processing, a two-step filtering process with multiple filtering
window lengths (blue and red in Fig. 1), an automatic starting
point definition and a statistical uncertainty estimation of every
forecast. We implemented the concept into an operational pro-
spective failure time forecast model (PFTF) complying with the
requirements for real-time failure forecasting. PFTF iterates with
every new available data point24,25, including only past observa-
tions without knowing the time of failure. It exclusively uses
preaccessible data in a forward model. Therefore, the open-source
algorithm design (Fig. 2a) allows real-time prospective forecasting
of imminent failures but also a prospective analysis of past events
(simulated real-time). It is capable of processing multiple high-
frequency observations (for details see Methods).

The first key element of PFTF is a two-step smoothing approach
with multiple window lengths (see Prospective real-time forecasting
with multiple data), as this enables the automatic detection of the
onset of acceleration (OOA) (see Automatic onset of acceleration
detection) and the statistical uncertainty estimation (see Converging
forecasts). In the first filtering step, the displacement trend is clar-
ified via a rolling mean of raw displacements over specific
smoothing windows (w_smooth). In the second step, a variety of
inverse velocities is calculated from each displacement data via linear
regressions over multiple velocity windows (w_v, see Methods). The
amount of data points used to derive the velocity depends on the
length of the velocity windows (Fig. 1 red boxes and arrows).

Secondly, we implement an automatic OOA detection method
that is based on four simple criteria and includes all data points
within the latest smoothing window (w_smooth, Fig. 2b, for
details see Methods). Criterion 1 requires an increasing dis-
placement rate. Criterion 2 requires decreasing inverse velocities
for all velocity windows (w_v), which is different from criterion 1
as the multiple inverse velocities can differ. Criterion 3 requires
an overall accelerating regime, represented by a decreasing 50%
inverse velocity quantile. Criterion 4 requires a short-term
accelerating trend, detected by inverse velocities smaller than
the 1% quantile, meaning that the latest velocity is greater than
99% of all velocities before. If all criteria are true over one
complete smoothing window, the OOA is detected. This method
is operating automatically within the algorithm.

Once the OOA has been detected, an expected time of failure is
calculated with all inverse velocities after the OOA with the linear
version (α= 2) of Fukuzono’s method19. We evaluate the forecast
results based on consistently updated life expectancy plots where
the predicted time until failure is plotted against the time when the
forecast is made24,34 with additional real-time statistical infor-
mation (see Supplementary Fig. 1a and details in Methods. To give
a real-time statistical uncertainty information for all diverse test
sites, we enhanced the failure window approach24 by using mul-
tiple smoothing windows simultaneously and adding the mean
forecasted time to failure. The width of the failure window and the
consistency of its limits are useful indicators for the reliability of
the forecasts. Additionally, we show important updated statistical
information in the boxplots (Supplementary Fig. 1b).

Results and discussion
Prospective real-time forecasting with multiple data filtering.
The introduced concept allows the calculation of prospective
failure time forecasts with divers rock slope monitoring data.
With the presented multiple smoothing approach, we can
diminish primary instrumental noise on the raw data and include
all observed displacement data into the inverse velocity deter-
mination. The stability of the forecasts is improved without losing
the sensitivity to changing trends35 and the effects of various
window lengths can directly be analyzed in the resulting plots in
real-time (see Supplementary Fig. 1).

Typically, the window lengths vary between few hours and
multiple days, but reasonable window lengths always depend on
the following factors:

● signal-to-noise ratio/ quality of the data; controlled by

– deformation rates (signal)
– measurement technique (noise)
– measurement frequency

● expected duration of precursory accelerations and the time
needed for emergency actions (smoothing windows should
be shorter than that)

● amplitude of other natural noise producing divergence of
the measured data from a perfect linear inverse velocity
trend24.

Instabilities with high movement rates usually require shorter
smoothing windows, while slow-moving instabilities and noisy
data require stronger smoothing24. Also, higher measurement
frequencies require filtering over a greater number of observations
as more background noise is recorded. In contrast, noise has
less influence when a sparse monitoring frequency (e.g. 1 d) is
applied24. This might also be the reason for the increasing
prediction accuracy with greater measurement intervals reported
by Iwata & Sasahara (2021)40. However, the analysis of the sites
Galterengraben, La Saxe, Veslemannen and Weissmiess from this
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study show that if the monitoring frequency is too low, precursory
accelerations can be over-seen or too few data points exist to
perform reliable forecasting. This is most relevant in geomecha-
nically strong rock slopes consisting of brittle hard rock where the
acceleration phase can be quite short24. Therefore, we identified a
high monitoring frequency as a key factor, especially in situations
with short acceleration phases35. Hence, we suggest using a
sufficiently high sampling frequency, e.g. daily or faster for
volumes > 106m3 and hourly or faster for smaller volumes, in
combination with adequate data filtering, depending on frequency
and signal-to-noise ratio (cp. Supplementary Fig. 2). Many
monitoring methods allow higher sampling frequencies without
additional costs or effort. Although longer smoothing windows
can diminish the uncertainty of the forecasts, excessive smoothing
using too long smoothing windows distorts the calculations and
adds a lag to the time series (compare Converging forecasts). As a
result, forecasts are shifted towards unsafe predictions (forecast
after failure) which should be avoided. Therefore, the smoothing
windows should be as short as possible but as long as necessary.

Due to the specific complexity of each individual slope
instability, it is impossible to define a universal rule for optimal
window lengths at this stage. However, for the sake of
comparability between the sites in this study, we use three sets
of fixed window lengths depending on the data resolution and the
expected acceleration phase duration (see Supplementary Fig. 2).
In real-time cases, a detailed knowledge of the unstable slope, its
geological process and the site-specific data quality is needed. The
operating specialist has then to decide on reasonable window
lengths and might even calculate with multiple windows
simultaneously, although the interpretation of the results can
become more complex. Also, the smoothing process is not
necessarily fixed over all time. In cases where conditions change,
e.g. when decelerations appear after the OOA but failure is
assumed imminent, the smoothing windows might need adaption
(see Supplementary Fig. 2 and the sites La Saxe and Veslemannen).

Automatic onset of acceleration detection. The automatic
determination of the OOA minimizes the subjectivity of critical
real-time decisions under the pressure of imminent failure and
could also be combined with previously published methods.

Our approach is robust for all 14 tested sites in this study
(see Supplementary table and details in Converging forecasts).
The OOA is prospectively detected sufficiently early (0.1-200 d
prior the actual time of failure) while the timing of the OOA is
dependent on failure volume and process (see Converging fore-
casts). Analogue to the smoothing windows, a restart of the OOA
detection analysis is necessary in case of trend updates.

False alarms should always be kept to a minimum, but can
never be ruled out due to periodic accelerations and natural
variations. From the 14 tested sites, the PFTF model detects false
OOAs in two cases (La Saxe and Veslemannen). A typical life
expectancy plot of such a setting is shown in Supplementary
Fig. 3. A false detection of the OOA can be identified as such as
soon as a consistent deceleration with increasing life expectancies
appears. Then, a restart of the analysis only with data after the
deceleration phase gives the best results. It is worth noting that a
false OOA detection is not necessarily leading to a false alarm
immediately. After evaluation of the forecast results by the early
warning system operators, either a manual intervention in case of
a false OOA or the triggering of an alarm in case of a threshold
exceedance are possible. On the other hand, if no clear OOA
point can be detected sufficiently early before the actual failure,
the model fails leading to a missed alarm. This is the case in 4% of
the analyses. All difficulties leading to a bad or non-representative
signal-to-noise ratio (noise fluctuations in the order of the
acceleration signal hiding or substantially distorting it) can
contribute to such a case. Then, an improvement of the
monitoring quality and smoothing window lengths, the use of
different methods, and a better understanding of the instability’s
process dynamics can assist.

Converging forecasts. Our real-time uncertainty estimation,
enabled by the usage of multiple windows, is expressed by the
plotting of failure window and mean in the life expectancy plot. A
converging failure window corresponds to an increasing con-
fidence of the forecasts. In operating systems, predefined alarm
limits can be graphically drawn as horizontal lines (e.g., at a life
expectancy of 24 h). Different warning levels or required miti-
gation measures could be triggered when the failure window or
the mean reaches specific alarm thresholds. The site-individual

Fig. 2 Flowchart of the PFTF model and OOA detection criteria. a Flowchart of the PFTF model steps (for explanation see Methods). b Criteria for the

automatic detection of the onset of acceleration (OOA) that is used as starting point for forecasting (for details see Methods).
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alarm time before failure is dependent on the required time for
mitigation measures like evacuation and the desired level of
safety.

Additionally, with the updated boxplot, the reader can easily
evaluate the range of all past forecasts and the influence of the
applied smoothing. With ongoing updated iterations, anomalous
forecasts, mainly appearing before the forecasts converge, turn
into outliers. The over-plotting of the latest forecasted time of
failure per velocity window (w_v, red diamonds) is helpful when
evaluating the latest calculations and trends. Unstable and
inconsistent forecasts can be detected. A stable position of the
marker above the box represents a trend to a later expected time
of failure and vice versa. Although the boxplots must be assessed
with care, they present more valuable information than just the
life expectancy plots usually presented by most authors, as the
most recent forecast is not necessarily the most accurate one8.

All tested sites show a similar pattern of converging forecasts
towards failure. As an example of the achieved results, we present
a time lapse video animation of the Preonzo site (Reflector 9)
showing how the PFTF result appears to a responsible operator or
decision-maker in real-time in the Supplementary Movie. Figure 3
displays the final three weeks before failure of the same data and
boxplots at two paradigmatic time steps close to the OOA and
close to failure. The resulting PFTF outcome can be divided into
three phases. In Phase 1 shortly after the OOA, the calculated life
expectancies (Fig. 3d) are scattered. The mean is unstable with no
clear trend 45∘ downward and the failure window is wide.
Subfigure 3e shows a corresponding boxplot from April 29. The
boxes and the failure window cover a wide time range and the
latest forecasts (red diamonds) are spread over 10 days. In this
phase, the uncertainty is rated high. In the second phase (point A
in Fig. 3d), the forecasts converge and the failure window
becomes narrower. The exact position of this point is dependent
on the degree of smoothing and the position of the OOA. In the
last phase of 6-10 days prior to failure, the life expectancies of all
w_v lie within a short time span, the mean plots stable 45∘

downward, and the failure window becomes small (ca. 2 d).
Subfigure 3f shows a corresponding boxplot from May 12. The
boxes and the failure window cover a narrow time range and the
latest forecasts are consistent. In this phase the uncertainty is
rated low. In fact, the mean forecasted time of failure is 1 day too
early, while the failure on May 15 lies within the failure window.

The application of the PFTF model to all 46 data-sets proves it
to be a powerful and robust concept for prospective forecasting of
slope failures. It is essential to asses the forecast results relative to
the lead time which is the time between warning and the impact
of an event41. The application as an early warning tool premises
that the forecasts must be early enough (life expectancy < lead
time) and accurate enough (uncertainty < lead time). Our single
PFTF concept is successful with a variety of monitoring methods,
different rock failure processes in different geological settings and
over seven failure magnitudes. The mean life expectancy at
the actual time of failure of all sites is −1 ± 17 h for sub-daily and
−1 ± 4 d for daily data sets respectively, representing a good fit of
the forecasts to reality. The mean failure window width is
24 ± 23 h and 7 ± 4 d, which is in the range of an earlier estimated
general forecast uncertainty in 74 pit wall failures of up to 21 h23.
In general, our results suggest a better performance of the
forecasting method with higher frequency data. Yet, forecast
uncertainties of less than a day, or a few days respectively, are
usually sufficient compared to the respective lead time
(Fig. 4g;41).

All forecast results are summarized in Fig. 4a–f, separated into
two groups of daily (d-f) and higher (a-c) data frequencies. The
most probable failure time is plotted as black diamond and the
coloured bars represent the width of each failure window during

which a failure is likely. Differences between the sites or data-sets
can be connected to inhomogeneous deformations of the unstable
body and the positioning of the sensors. Prospectively, these
variations cannot be ruled out. The operating experts must
evaluate them statistically, taking into account which trends are
reflected by which sensors combined with their knowledge of the
process dynamics and how the site is monitored. This can be
challenging (cp. see Predictability across sensor and failure types).
However, the results are robust considering the variability of
input data. Note that stronger smoothing, i.e. the lowest group in
each subplot, is usually shortening the failure window but also
shifting the forecasts to later expected times of failure, possibly
towards unsafe predictions (see Subfig. 4ab+de). Generally, the
mean forecast errors are decreasing towards failure. Due to the
lower data resolution and longer acceleration phase in the daily
data-sets, this effect is less distinct here when comparing the last
five days before failure (Fig. 4c+f). Overall, failure windows and
uncertainties are bigger in the daily data-sets, and, therefore
higher sampling frequencies are preferable (compare Fig. 4a–c
with d–f).

The comparison of the acceleration time between automatically
detected OOA and failure with the detached volumes is generally
in line with the assumption16 that bigger volumes tend to have
longer acceleration phases, although a significant correlation
cannot be proven with the available data. We calculated a log-log
fit of OOA= 0.76volume0.25 based on the 14 analysed sites (R2 =
0.30, p = 0.07). Due to the individuality of each geological setting,
strong deviations exist (Fig. 4g). At the biggest analysed failure of
Vaiont, the OOA has been detected ca. 50 d before failure after
the latest deceleration in 1963 (trend update after February 1963,
see Supplementary Discussion 1). The shortest acceleration phase
of 3-10 h has been detected at Galterengraben although it is not
the smallest volume. Here, the relatively small volume and the
brittleness of the hanging sandstone block seem to contribute to a
rapid final acceleration. At the smallest analysed event at
Grabengufer, the acceleration phase of 5 d is relatively long. In
fact, this was a failure of a small block that drifted on a sackung
(deep-seated gravitational deformation) of ca. 400,000 m3. The
complex superposition of different failure processes and volumes
might contribute to the duration of final acceleration. The
extraordinary long acceleration phase of up to 200 d at Nevis
Bluff is possibly connected to a very consistent increase of
acceleration without or with only constant external drivers.

Predictability across sensor and failure types. Our forecast
model gives useful results with a variety of failure processes
including rock slides, rock falls, toppling, ice fall, complex as well
as different monitoring methods including Global Navigation
Satellite System, total stations, displacement meters, inclin-
ometers, InSAR and volumes from 102 to 108m3). A quantitative
comparison of the results based on failure type and monitoring
method is inhibited by the diversity of the 14 test sites. Differ-
ences in the accuracy of the PFTF model might also result from
other factors like the properties of the unstable mass, external
drivers like precipitation, snow or pore water pressure, and the
location of the sensors. The reason why the PFTF model can deal
with a great variety of slope failures nonetheless, is that it uses the
phenomenological effect of slope displacement which is the result
of all influencing processes. Compared to previously published
studies from the same sites7,28,39,42,43, the PFTF results are
comparable or better especially in the sense of prospective real-
time application, uncertainty estimation and uniform robustness
(see also black points of other studies in Fig. 4c+f). Our uncer-
tainty estimation gives additional statistical information, that
helps the responsible decision-maker to judge the informative
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value of the forecasts itself. Yet, it must be emphasised that the
PFTF must be complemented with geological knowledge and that
profound understanding of the unstable site is always needed.
Two aspects affecting the predictability can be identified. First,
some simplifications are already introduced by the linear inverse

velocity method itself and secondly there are external factors that
influence the outcome of the model.

Our PFTF model uses a common25 linear simplification of
Fukuzono’s method. Although this can theoretically lead to
mistakes, the linear application is mathematically least complex

Fig. 3 Final outcome of PFTF at Preonzo (Reflector 9) for a 96 h smoothing window. See the Supplementary Movie for a time-lapse real-time animation

of the prospective forecast and Supplementary Fig. 1 for details on the visualization. Colors represent velocity windows (see legend). The dashed dark green

line marks the onset of acceleration (OOA). The dashed red line marks the actual time of failure. a Displacement. b Decreasing inverse velocities. c Criteria

for OOA detection. The OOA is detected 17 d before the failure. Labels on the vertical axis are “velocity window - criterion number". The black dashed line

marks one smoothing window (w_smooth, for details see Methods). d Life expectancy plot showing divergent and highly uncertain forecasts during the

first days after the OOA. 12 d before failure (point A), the forecasts converge and the failure window (grey area) becomes narrower indicating a low

uncertainty. The black line shows the mean of all forecasts at each time step and the grey area represents the failure window during which a failure is likely.

e Boxplot from April 29 with distributed latest forecasts (red diamonds) and a wide failure window (grey area). The horizontal black line marks the latest

timestamp. f Boxplot from May 12 with convergent forecasts. Boxplots show the median as line, the interquartile range as box, 1.5 times the interquartile

range or the minimum or maximum data point as whiskers and outliers as circles.
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and therefore more likely used in practise16. Furthermore, most
cases do not deviate much from the linear case (empirical value
α= 2)9,43 validating this simplification. Deviations from the
linear behaviour resulting in a slightly convex or concave setting
can appear (e.g. Grabengufer site, Supplementary Fig. 4 or

Weissmiess site) due to different internal and external reasons.
While in concave cases linear forecasts appear to be on the
conservative and safer side (too early), convex cases can be more
problematic. To handle this prospectively, the resulting plots
must be interpreted carefully. For example, a slightly flatter than
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Fig. 4 Forecast results of all tested data. Subplots a-c show high-frequency data-sets; subplots d-f show daily data-sets. Note the different axis scales

between the two groups. Boxplots show the median as line, the interquartile range as box, 1.5 times the interquartile range or the minimum or maximum

data point as whiskers and outliers as circles. a Life expectancy at actual time of failure for short, medium and long window sets (see Methods). A value of

0 means a perfect fit of the forecast to reality. Negative values indicate too early forecasts, positive values too late forecasts. For each sensor, the range of

the forecasts (black lines), their mean (black diamonds) and the failure window (in color corresponding to the different sites, see legend) are shown. The

mean failure window length is 24 ± 23 h. b Forecasts merged per site. The mean merged life expectancy is -1 ± 17 h. c Decreasing mean forecast errors in

the last 5 d before actual time of failure. d Life expectancy at actual time of failure for daily data-sets. The mean failure window length is 7 ± 4 d. e Forecasts

merged per site for daily data-sets. The mean merged life expectancy is -1 ± 4 d. f Decreasing mean forecast errors in the last 5 d before actual time of

failure for daily data-sets. g OOA detection time against failed volume with black dashed regression line. Larger instabilities can usually be detected earlier

due to a longer accelerating phase. The grey area is delimited by the linear regressions of earliest and latest OOA per site, represented by the error bars.

Open circles mark secondary OOAs (see Methods).
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45∘ slope of the mean life expectancy line and a position of the latest
forecasts above the boxes can indicate a shift to a later expected time
of failure (concave case; compare Supplementary Fig. 4b). However,
in doubtful cases with real danger, it is always on the safer side to
expect the failure too early rather than too late, although higher
interruption costs might result.

Among external parameters that influence the predictability of a
slope failure are the measured or derived displacement used as
input, the monitoring technique and frequency, and the failure
type and volume. The displacement used as input for the PFTF is
not always equal to the true movement of the unstable mass when
the sampling direction (e.g. the line of sight of a radar) is not in the
direction of the movement or when the derived relative
displacement neglects curvy three-dimensional movements. How-
ever, we could achieve good results with all tested sensor types
irrespective of their sampling direction. The PFTF also works with
angle differences, which has not often been used11, but is cheap
and effective to measure44. In fact, the forecast results from the
Global Navigation Satellite System position data and the
inclinometer angle data from the Grabengufer block differ by only
about 1 d (see Supplementary Fig. 4), which is mainly due to the
application of the same fixed window lengths to the two kinds of
data. Another challenge in real-time and at complex instabilities is
to judge, if the used sensor data such as point measurements are
representative for the later failure. If not, the forecasts can become
unreliable38. E.g. only a part of an instability could fail as in the La
Saxe site39, or the location of the measurement could be
inappropriate. However, the PFTF model can only calculate
reasonable forecasts, if the input data are representative.

The selection of optimal input data as well as the interpretation
of the data-driven forecast results still depend on experienced
users39 and further research is needed here. One possibility to
constrain better, which sensors are most representative of the
controlling part of an instability is to use areal measurements like
radar, laser scanning or photogrammetry to find the hotspots.
Nevertheless, complex cases like the La Saxe site remain
challenging, especially if decision-makers have to decide con-
servatively on the safe side (see the Supplementary Discussion 2).

In any case, higher sampling frequencies potentially enable
better results, irrespective of the monitoring technique. Those
higher frequencies often necessitate smoothing over a greater
number of observations, but from our analysis we infer that
higher observation frequencies provide more accurate forecasts.
Then, the use of one short-term and one long-term window
already brings several advantages24,34, but applying multiple
windows with differing lengths minimizes the subjectivity and
enables a direct analysis of the effects of various window lengths
in the resulting plots (see Supplementary Fig. 1).

Although the data possibly indicate a relation between the failed
volume and the acceleration time between OOA and failure, it is
not the goal to achieve this relation in prospective forecasting. The
goal is to detect an optimal OOA as early as possible to enable
timely forecasting. Concurrently, the expected duration of the
acceleration phase is relevant for the determination of the
smoothing window lengths. E.g. if the acceleration phase is only
several hours, smoothing windows of multiple days are useless.
Two sites from this study are paradigmatic for a challenging
kinematic behaviour with false OOA detection that complicates
interpretations8,27,39. The La Saxe instability shows a diverse
velocity regime and a strong deceleration at April 17 shortly before
the partial failure. At Veslemannen, a dominant environmental
forcing controls periodic accelerations. In such cases, experience,
detailed knowledge of the site specific processes and the
determination of secondary OOAs (circles in Fig. 4g) support
successful forecasting. By detecting trend update points24,34 and
adjusting the OOA accordingly, reliable prospective forecasts can

still be calculated. The only site in this study where all failure
windows lie on the unsafe side (forecast after failure) is the
Weissmiess ice fall. Three factors could be a reason for this: (i)
the radar line of sight is not in the direction of the movement, (ii)
the radar observations started after the OOA and thus no optimal
OOA can be found, and (iii) the ice fall behaves different than
rock slope failures. A slightly convex behaviour could result from
the high strain rates increasing from 1 to over 3.5md−1 during the
last two days before failure. However, this site supports that the
concept of increasing accelerations is not limited to fracturing9

nor to rock and earth material.
Our results show, that the prospective failure time forecast

concept (PFTF) is able to overcome the major drawbacks of
current retrospective failure time forecasting methods achieving
reliable results with a variety of slope failure processes, volumes,
materials and sensor types. It can detect the onset of acceleration
automatically and provides uniform forecast information includ-
ing an uncertainty estimation. In combination with the ongoing
progress in wireless (near) real-time monitoring and internal
fracturing observations45, the PFTF can become a key element for
future reliable and quantitative real-time natural hazard manage-
ment. Its application might not be limited to rock slopes, but the
underlying physical principle might also be valid at earth slopes,
man-made slopes, artificial structures and glaciers, thus support-
ing decision-makers in a multitude of critical situations.

Methods
Iterative prospective forecasting. The algorithm of the PFTF model calculates
prospective real-time (or simulated real-time) forecasts iteratively with every new
available data point. The concept of the PFTF model is shown in Fig. 1. Fig. 2a
gives an overview of the algorithm steps which include:

● reading new displacement data with every iteration
● removing outliers/ erroneous measurements
● smooth raw displacement data (see Data smoothing)
● calculate velocities and inverse velocities with multiple velocity windows

(see Inverse velocity calculation)
● calculate 1% and 50% quantiles of inverse velocities (see Starting point

definition)
● automatically detect the onset of acceleration (OOA) which is used as

starting point to calculate forecasts (see Starting point definition)
● calculate and plot the time to failure (life expectancy) and time of failure

(see Forecast and uncertainty presentation)

For the technical implementation of this workflow in an open-source R-Code,
(RStudio Version 2021.09.0 and R Version 4.1.346 see the code availability
statement47.

Data preparation. The PFTF model reads displacement data as input. Thus,
position data have been converted to relative displacements and inclination data to
relative angle displacement respectively. All data have been formatted as time series
with equal time steps and no gaps, so that every time step contains one dis-
placement data point or missing values (NA) in time steps without measurements.
For details on the monitoring method see the Supplementary Table.

Data smoothing. The PFTF model uses a two-stage smoothing approach with
multiple windows to enable OOA detection and statistical uncertainty estimation.
First, the raw displacement is smoothed by a moving mean over the last n values
while n is specified by the length of the given smoothing windows (w_smooth). To
minimize the effect of subjective decisions, we propose the application of multiple
smoothing windows. Displacements (Fig. 3a) are plotted after smoothing. A second
step of data smoothing is performed during the calculation of the inverse velocity
via linear regression over multiple velocity windows (w_v) (see Inverse velocity
calculation).

To create comparability between all sites in this study, we defined three sets of
standard windows that we applied to the analysed data based on a simple decision
schema (Supplementary Fig. 2). Note that other data might require different
smoothing window lengths.

Inverse velocity calculation. Velocities are calculated from the smoothed dis-
placement using a linear regression model over the last n values while n is specified
by the length of the given velocity windows (w_v). This method includes all dis-
placement measurements within w_v and gives the best fitting velocity over the last
w_v. For the standard window sets (Supplementary Fig. 2), we used five velocity
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windows in each case, ranging from 1
8
w smooth to 5w_smooth. Inverse velocities

are calculated as velocity−1 and plotted in Fig. 3b.

Starting point definition. All inverse velocity data after the defined starting point
(onset of acceleration, OOA) are included in the extrapolated linear regression to
forecast the time of failure. The real-time detection of the OOA is based on four
criteria (Fig. 2b). If all criteria are true over one complete smoothing window
(w_smooth), the OOA is detected at 1w_smooth before current time.

● criterion 1: increasing displacement rate. The displacement difference over
the second half of the last w_smooth must be greater than over the first half
of the last w_smooth.

● criterion 2: decreasing inverse velocity. The inverse velocity must decrease
over the last w_smooth for all velocity windows w_v. This is different from
criterion 1 as the different w_v can have differing trends.

● criterion 3: decreasing 50% quantile. The 50% quantile must decrease over
the last w_smooth for all velocity windows w_v. This represents a general
long-term accelerating trend.

● criterion 4: inverse velocity smaller than 1% quantile. The latest inverse
velocity must be smaller than the 1% quantile of all inverse velocities.
Respectively, the current velocity must be greater than 99% of all velocities
before. This represents a short-term accelerating trend.

If the displacement data show a trend update due to a deceleration phase or a
changing process regime, the analysis is restarted only with data after the trend
update (compare Supplementary Fig. 2) and secondary OOAs are determined.

Forecast and uncertainty presentation. Forecasts are calculated with the linear
version (α= 2) of Fukuzono’s method19. The intersection of an extrapolated linear
trend line of all inverse velocities after the OOA with the horizontal time axis cor-
responds to the forecasted time of failure. The results are plotted in a life expectancy
plot24,34, where the predicted time until failure (life expectancy) is plotted against the
time when the forecast is made on the abscissa. This allows simple updating with
every new data point and a good visualization of all historic forecasts. The axes are
scaled 1:1 for easy identification of changing forecast trends. Completely consistent
new forecasts appear 45∘ downward while a shift to later expected failure times
appears flatter and vice versa. The PFTF creates one life expectancy plot per
w_smooth and one coloured point for every w_v used (see Supplementary Fig. 1).

To evaluate the statistical uncertainty of the forecasts, we calculate a failure
window during which failure is highly probable after24. It contains the time between
the earliest and the latest forecast of each time step and half of that time span added
on each side. In the life expectancy plot, we show the mean life expectancy of all w_v
per time step as black line and the failure window as grey area.

Additionally, updated standard boxplots of all forecasts since the OOA are
produced. The plot includes one box per w_v (colour) and one for all w_v (grey).
The latest forecasted times of failure per w_v are plotted as red diamonds. A
horizontal grey line indicates the latest timestamp. The failure window is marked as
grey area (see Supplementary Fig. 1).

Statistical evaluation of results. For the statistical analysis of the results of all
sites in Fig. 4, the life expectancies, their mean, and the failure window were
extracted from the forecasts five to zero days before actual time of failure. The
mean error is calculated as average of all forecast means. Uncertainties are
expressed as standard deviation. For the Subfigures 4b+e, all forecasts per site are
merged to one line. The merged mean is the average of all means per site. The time
of OOA detection in Subfigure 4g is plotted as mean and range of all values per site.
The linear regression is calculated over the log10 values of mean OOA detection
time and volume. The uncertainty area is delimited by the regression lines of
minimum and maximum OOA detection times.

Site selection. The tested historical slope failure events have been selected based
on availability and documentation. All sites are rock slope failures, except Weiss-
miess which is an ice fall. All sites have a daily or higher sampling frequency, and
include measurements starting before the onset of acceleration and until failure.
The 14 sites represent a variety of monitoring methods and volumes. Details on the
data sets, sources and where data have been extracted from plots are listed
in Supplementary Table.

Data availability
The source of all used monitoring data is indicated in the Supplementary Table. Data of

ten sites are taken from published studies. Original data of four sites have been provided

by third party persons or institutions (Arvigo, Galterengraben, Preonzo, and

Weissmiess). A collection of all data is available under https://doi.org/10.14459/

2023mp168886848.

Code availability
The R-Code of the PFTF model including instructions is completely open-source and

available under https://doi.org/10.5281/zenodo.801036147.
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