Zurich Open Repository and Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Analytic Computation of three-point energy correlator in QCD

Yang, Tong-Zhi ; Zhang, Xiaoyuan

Abstract

The energy correlator measures the energy deposited in multiple detectors as a function of the angles among them. In this paper, an analytic formula is given for the three-point energy correlator with full angle dependence at leading order in electron-positron annihilation. This is the first analytic computation of trijet event shape observables in QCD, which provides valuable data for phenomenological studies. The result is computed with direct integration, where appropriate parameterizations of both phase space and kinematic space are adopted to simplify the calculation. With full shape dependence, our result provides the expansions in various kinematic regions such as equilateral, triple collinear and squeezed limits, which benefit studies on both factorization and large logarithm resummation.

DOI: https://doi.org/10.1007/jhep09(2022)006

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-240300
Journal Article
Published Version

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Yang, Tong-Zhi; Zhang, Xiaoyuan (2022). Analytic Computation of three-point energy correlator in QCD. Journal of High Energy Physics, 2022(9):6.
DOI: https://doi.org/10.1007/jhep09(2022)006

Analytic Computation of three-point energy correlator in QCD

Tong-Zhi Yang ${ }^{a, b}$ and Xiaoyuan Zhang ${ }^{c}$
${ }^{a}$ Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
${ }^{b}$ Department of Physics and Astronomy, Michigan State University, 48824, East Lansing, MI, U.S.A.
${ }^{c}$ Department of Physics, Harvard University, 02138, Cambridge, MA, U.S.A.

E-mail: toyang@physik.uzh.ch, xiaoyuanzhang@g.harvard.edu

Abstract

The energy correlator measures the energy deposited in multiple detectors as a function of the angles among them. In this paper, an analytic formula is given for the three-point energy correlator with full angle dependence at leading order in electron-positron annihilation. This is the first analytic computation of trijet event shape observables in QCD, which provides valuable data for phenomenological studies. The result is computed with direct integration, where appropriate parameterizations of both phase space and kinematic space are adopted to simplify the calculation. With full shape dependence, our result provides the expansions in various kinematic regions such as equilateral, triple collinear and squeezed limits, which benefit studies on both factorization and large logarithm resummation.

Keywords: Higher-Order Perturbative Calculations, Jets and Jet Substructure, Resummation

ArXIV EPRINT: 2208.01051

Contents

1 Introduction 1
2 Calculation setup 4
2.1 Amplitudes and topology identification 4
2.2 Phase space parameterization 6
2.3 Direct integration 7
3 Results 10
4 Kinematic analysis 13
4.1 Equilateral limit 15
4.2 Triple collinear limit at next-to-leading power and beyond 21
4.3 Squeezed limit 30
5 Summary 32
A Usage of supplementary material 34

1 Introduction

One of the event shape observables that attracts lots of recent interest in quantum chromodynamics (QCD) and the collider physics community is energy correlators. Traditionally, energy-energy correlation (EEC) measures the energy deposited in two detectors as a function of the angle between these two detectors [1, 2]. As observed in [1], the fact that energy weights suppress the soft divergence makes EEC less sensitive to soft gluon emissions. More recently, EEC is generalized to a broader class of observables called energy correlators. In particular, the three-point energy correlator (EEEC), which depends on the three angles among the detectors, contains the nontrivial shape information of the scattering process [3-5]. In perturbative theories, EEEC is defined as

$$
\begin{align*}
\frac{1}{\sigma_{\text {tot }}} \frac{d^{3} \sigma}{d x_{1} d x_{2} d x_{3}}= & \sum_{i j k} \int d \sigma \frac{E_{i} E_{j} E_{k}}{Q^{3}} \\
& \times \delta\left(x_{1}-\frac{1-\cos \theta_{j k}}{2}\right) \delta\left(x_{2}-\frac{1-\cos \theta_{i k}}{2}\right) \delta\left(x_{3}-\frac{1-\cos \theta_{i j}}{2}\right), \tag{1.1}
\end{align*}
$$

where i, j and k run over all final-state particles, Q is the total energy of the electron-positron annihilation, and $d \sigma$ is the differential cross section. For convenience, we normalize the distribution to the born cross section. EEEC is infrared finite in the tree-level $\gamma^{*} \rightarrow 4$ jets process, which allows us to perform the calculation in $d=4$ dimension.

Figure 1. (a) A graph on the three-point energy correlator. The three detectors are separated by finite angles θ_{12}, θ_{13} and θ_{23}, capturing outgoing particles at specific angles from the hard interaction and summing their energies. (b) The "zongzi"-shaped kinematic space $\left\{x_{1}, x_{2}, x_{3}\right\}$, which is constrained by the four-particle phase space.

Energy correlators are almost the simplest infrared (IR) safe jet observables to compute analytically. The leading order (LO) EEC in QCD is obtained since 1970s [1, 2]. Recently, EEC is also computed analytically to next-to-leading order (NLO) in QCD [6-8] and NNLO in $\mathcal{N}=4$ super Yang-Mills (SYM) theory [9, 10]. At the same time, the collinear limit of the LO EEEC in both $\mathcal{N}=4$ SYM and QCD is studied in [3] and the complete LO $\mathcal{N}=4 \mathrm{SYM}$ result becomes available very recently [5]. In this paper, we calculate the complete LO EEEC in QCD, which shares a similar function space and analytic structure as in $\mathcal{N}=4$ SYM.

There is also lots of progress in studying energy correlators with effective field theories (EFTs), such as Soft-Collinear Effective theory (SCET) [11-15], which proves to be essential in jet substructure. As summarized in [6], EEC is both singular in the collinear and back-to-back limits, and large logarithms in both limits could possibly spoil the perturbation theory. Regarding the collinear region, the resummation has been achieved to the next-to-next-to-leading logarithm (NNLL) accuracy in QCD [16] and $\mathcal{N}=4 \mathrm{SYM}[17]$. In the back-to-back limit, EEC is resummed to NNLL accuracy and matched to NNLO fixed-order prediction [18-22], while a new factorization formula is also introduced in [23], allowing the resummation to $\mathrm{N}^{3} \mathrm{LL}$ [24]. With the recently derived four loop rapidity anomalous dimension in QCD [25, 26], EEC is also resummed to $\mathrm{N}^{4} \mathrm{LL}$ accuracy in the back-to-back limit [26]. EEC can also be studied at a hadron collider, the simplicity of the soft function allows the NNLL resummation in the back-to-back limit [27]. More interestingly, the collinear factorization can also be generalized to EEEC observable, where the distribution is factorized into the convolution of a hard function and a jet function. While the factorization is straightforward in SCET, the resummation becomes subtle due to multiple variables.

One way is to project the full kinematic region into a one-dimension space, which is referred to as the projected energy correlators [4]. The projected N-point correlator is defined as

$$
\begin{equation*}
\frac{d \sigma}{d x_{L}}=\sum_{n} \sum_{1 \leq i_{1}, \cdots i_{N} \leq n} \int d \sigma \frac{\prod_{a=1}^{N} E_{i_{a}}}{Q^{N}} \delta\left(x_{L}-\max \left\{x_{i_{1}, i_{2}}, x_{i_{1}, i_{3}}, \cdots x_{i_{N-1}, i_{N}}\right\}\right) \tag{1.2}
\end{equation*}
$$

and its collinear logarithms can be resummed to NNLL accuracy [28]. It would be also interesting to study EEEC in other kinematic limits. Since the shape dependence of EEEC provides more information on the jet substructure, several singular regions besides collinear remain unexplored: equilateral limit $\left(x_{1,2,3} \sim \eta\right)$, squeezed limit $\left(x_{1} \sim 0, x_{2,3} \sim x\right)$, coplanar limit and so on. Our fixed-order calculation allows one to extract both leading power (LP) and next-to-leading power (NLP) expansions, which benefit the large logarithm resummations. In a word, the energy correlator is a bridge to precision standard model tests and new physics searches.

The energy correlators attract lots of attention on the phenomenological side these days. In ref. [29], both the shape dependence and the scaling behavior of EEEC, as well as the ratio of projected energy correlators with respect to EEC are measured with the CMS open data. The close agreement between theoretical prediction and CMS open data proves that energy correlators will play an important role in precision QCD measurement and jet substructure, and it would be interesting to perform the measurement at the Large Hadron Collider (LHC). Besides, energy correlators enable measurements in hadronic environments to be theoretically predicted by means of modern loop computation techniques and track functions $[4,30,31]$. Traditionally, the calculation of track-based observables (e.g. angularities) requires the full functional form of track functions $T(x)$ [32], of which the renormalization group evolution is described by complicated nonlinear equations. However, it is found recently that energy correlator is advantageous for studying track information since it only needs a finite number of track functions moments, which are just numbers and hence do not take part in the phase space integration. It is also suggested that an energy correlator can be applied to top quark mass measurement at the LHC [33].

It has been observed that N-point energy correlators can be written as $(N+2)$-point Wightman correlation function of energy flux operators and source operators that produces the localized excitation [34]. Explicitly, EEEC can be alternatively defined by

$$
\begin{align*}
\frac{d^{3} \sigma}{d x_{1} d x_{2} d x_{3}} \propto & \int \prod_{i=1}^{3}\left[d \Omega_{\vec{n}_{i}} \delta\left(\frac{1-\vec{n}_{i} \cdot \vec{n}_{i+1}}{2}-x_{i}\right)\right] \\
& \times \frac{\int d^{4} x e^{i q \cdot x}\langle 0| \mathcal{O}^{\dagger}(x) \mathcal{E}\left(\vec{n}_{1}\right) \mathcal{E}\left(\vec{n}_{2}\right) \mathcal{E}\left(\vec{n}_{3}\right) \mathcal{O}(0)|0\rangle}{Q^{3} \int d^{4} x e^{i q \cdot x}\langle 0| \mathcal{O}^{\dagger}(x) \mathcal{O}(0)|0\rangle} \tag{1.3}
\end{align*}
$$

where the energy flux operator is given by integrated stress-energy tensor $T_{\mu \nu}$ along the direction $\vec{n}_{i}[35-38]$:

$$
\begin{equation*}
\mathcal{E}(\vec{n})=\int_{-\infty}^{\infty} d \tau \lim _{r \rightarrow \infty} r^{2} n^{i} T_{0 i}(t=\tau+r, r \vec{n}) \tag{1.4}
\end{equation*}
$$

and for electron-positron collision, the source operator \mathcal{O} is the electromagnetic current. In conformal field theory (CFT), the light-ray operator product expansion (OPE) [39, 40] of
the energy flux operators reveals that the collinear behavior of EEC is determined by the spin-3 non-local operators [34]. Recently, the squeezed limit of EEEC has been investigated, where the light-ray OPE is developed at leading twist in QCD, in order to understand the transverse spin structure in the squeezed limit [41]. In fact, this spin structure gives rise to a quantum interference at colliders: when rotating the squeezed detector by an angle ϕ with respect to the third detector, the interference between the intermediate virtual gluon with different helicity leads to a $\cos (2 \phi)$ dependence [42]. Furthermore, standard CFT tools like conformal blocks and Lorentz inversion formula [43, 44] are also developed to organize the power correction of triple-collinear EEEC [45, 46], opening a new window to studying jet substructure. More recent progress can be found in [47, 48].

An outline of this paper is as follows. In section 2, we introduce the calculation method for three-point energy correlators at leading order. Briefly speaking, we directly integrate the tree-level matrix elements over the four-particle phase space and express the result in terms of transcendental polylogarithmic functions. With our parameterization, the non-analytic structure in the phase space factorizes and EEEC is reduced to a two-fold integral that can be calculated directly. We discuss the structure of the analytic expression and the numerical checks in section 3. In section 4, we extract the equilateral limit, the triple collinear limit and the squeezed limit contributions. The analytic formula for equilateral EEEC and its endpoint behaviors is given for all partonic channels. For the triple collinear limit, we also present a method that allows us to directly extract the subleading power corrections from expanding the EEEC integrand. We summarize in section 5.

2 Calculation setup

The leading order EEEC arises from the tree-level process $\gamma^{*} \rightarrow 4$ partons. Given the appearance of the non-standard measurement function in eq. (1.1), it is not easy to directly apply the modern loop techniques like Integration-by-parts (IBP) [49] and differential equations $[50,51]$. While for the cases that only involving one non-standard cut propagator like $\delta\left(x_{1}-\left(1-\cos \theta_{i j}\right) / 2\right)$, a method was proposed in refs. [6-8] to allow for a generalized IBP reduction in LiteRed [52, 53] and Fire [54, 55]. The appearance of three non-standard cut propagators in eq. (1.1) makes the application of the method in refs. [6-8] much less efficient. Instead of trying to improve the efficiency of the same method, we take the EEEC definition eq. (1.1) and calculate the phase space integral directly. The main feature of our method is appropriate parameterizations of the four-particle phase space $d P S_{4}$ and the kinematic space $\left\{x_{1}, x_{2}, x_{3}\right\}$, which makes the direct integration possible. Since we only care about EEEC at LO, it is safe to perform the computation in the $d=4$ dimension.

2.1 Amplitudes and topology identification

We start by calculating the matrix elements squared $|\mathcal{M}|^{2}$ for $\gamma^{*} \rightarrow 4$ partons with QGRAF [56] and FORM [57], where the color algebra is handled by the Color package [58]. The calculation includes three subprocesses:

$$
\begin{align*}
& \gamma^{*}(q) \rightarrow q\left(p_{1}\right)+\bar{q}\left(p_{2}\right)+q^{\prime}\left(p_{3}\right)+\bar{q}^{\prime}\left(p_{4}\right), \\
& \gamma^{*}(q) \rightarrow q\left(p_{1}\right)+\bar{q}\left(p_{2}\right)+q\left(p_{3}\right)+\bar{q}\left(p_{4}\right), \\
& \gamma^{*}(q) \rightarrow q\left(p_{1}\right)+\bar{q}\left(p_{2}\right)+g\left(p_{3}\right)+g\left(p_{4}\right), \tag{2.1}
\end{align*}
$$

Figure 2. Some typical graphs on the matrix elements squared $|\mathcal{M}|^{2}$ for $\gamma^{*} \rightarrow 4$ partons. The first graph corresponds to the double gluon emissions, while in the second graph, the gray lines represent the non-identical quark pair. The last two graphs show the interface between identical quark pairs.
where q^{\prime} and \bar{q}^{\prime} stand for non-identical quarks compared with the quarks q and \bar{q}. In figure 2, we present some typical diagrams for the matrix elements. We also compute the same matrix elements squared in FeynArts [59] and FeynCalc [60, 61] as a crosscheck. For both of them, we adopt the axial gauge when summing the gluon polarizations

$$
\begin{equation*}
\sum_{\lambda=1}^{2} \epsilon^{\mu}\left(p_{i}, \lambda\right) \epsilon^{* \nu}\left(p_{i}, \lambda\right)=-g^{\mu \nu}+\frac{\bar{n}^{\mu} p_{i}^{\nu}+\bar{n}^{\nu} p_{i}^{\mu}}{\bar{n} \cdot p_{i}}-\frac{\bar{n}^{2} p_{i}^{\mu} p_{i}^{\nu}}{\left(p_{i} \cdot \bar{n}\right)^{2}}, \tag{2.2}
\end{equation*}
$$

where for a particular parton with the momentum p_{i}, the momentum of another parton p_{j} is used as the auxiliary vector \bar{n}. By Lorentz invariance, the matrix elements squared are expressed in terms of the standard Mandelstam variables $s_{i j}=\left(p_{i}+p_{j}\right)^{2}$.

Our topology identification is a bit different from standard QCD calculations, where the established methods require the $\mathcal{U} \mathcal{F}$-representation of the Feynman integrals [62]. In our calculation, it is enough to permute the final state momenta $p_{1,2,3,4}$ or equivalently, permute $s_{i j}$, and classify terms that are invariant under such transformations. Importantly, we have to carry the energy weights $E_{i} E_{j} E_{k}$ together since they are not invariant under particle renaming. Since we are not going to use the topologies for IBP reduction, the point of topology identification is to reduce the integrand and simplify the phase space integration. After obtaining the reduced matrix elements $\left|\mathcal{M}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right|^{2}$, we rename
the particles such that the energy weights all become $E_{1} E_{2} E_{3}$:

$$
\begin{aligned}
& \quad \sum_{i \neq j \neq k \in\{1,2,3,4\}} \int \frac{E_{i} E_{j} E_{k}}{Q^{3}} d P S_{4} \Pi_{i j k}\left|\mathcal{M}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right|^{2} \\
& =\sum_{a \neq b \neq c \in\{1,2,3\}} \int \frac{E_{a} E_{b} E_{c}}{Q^{3}} d P S_{4} \Pi_{a b c}\left(\left|\mathcal{M}\left(p_{a}, p_{b}, p_{c}, p_{4}\right)\right|^{2}+\left|\mathcal{M}\left(p_{a}, p_{b}, p_{4}, p_{c}\right)\right|^{2}\right. \\
& \left.\quad+\left|\mathcal{M}\left(p_{a}, p_{4}, p_{c}, p_{b}\right)\right|^{2}+\left|\mathcal{M}\left(p_{4}, p_{a}, p_{b}, p_{c}\right)\right|^{2}\right) \\
& =\left[\int \frac { E _ { 1 } E _ { 2 } E _ { 3 } } { Q ^ { 3 } } d P S _ { 4 } \Pi _ { 1 2 3 } \left(\left|\mathcal{M}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right|^{2}+\left|\mathcal{M}\left(p_{1}, p_{2}, p_{4}, p_{3}\right)\right|^{2}+\left|\mathcal{M}\left(p_{1}, p_{4}, p_{3}, p_{2}\right)\right|^{2}\right.\right. \\
& \\
& \left.\left.\quad+\left|\mathcal{M}\left(p_{4}, p_{1}, p_{2}, p_{3}\right)\right|^{2}\right)\right]+ \text { permutations of } x_{1}, x_{2}, x_{3},
\end{aligned}
$$

where the Gram determinant is

$$
\begin{equation*}
\Delta_{4}=\lambda\left(s_{12} s_{34}, s_{13} s_{24}, s_{14} s_{23}\right), \quad \lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2(x y+x z+y z), \tag{2.6}
\end{equation*}
$$

and the d-dimensional hypersphere measure $d \Omega_{d}$ satisfies

$$
\begin{equation*}
V(d)=\int d \Omega_{d}=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} . \tag{2.7}
\end{equation*}
$$

The main difficulty of the direct integration method then comes from the non-trivial constraint $\Theta\left(-\Delta_{4}\right)$, which corresponds to a complicated region of the four-particle phase space. To resolve this problem, we first introduce the energy fractions of three final state particles in the center of mass frame of γ^{*},

$$
\begin{equation*}
z_{1}=\frac{2 p_{1} \cdot q}{Q^{2}}, \quad z_{2}=\frac{2 p_{2} \cdot q}{Q^{2}}, \quad z_{3}=\frac{2 p_{3} \cdot q}{Q^{2}} . \tag{2.8}
\end{equation*}
$$

Notice that $q=p_{1}+p_{2}+p_{3}+p_{4}$, the above equation becomes

$$
\begin{equation*}
z_{1}=s_{12}+s_{13}+s_{14}, \quad z_{2}=s_{12}+s_{23}+s_{24}, \quad z_{3}=s_{13}+s_{23}+s_{34} \tag{2.9}
\end{equation*}
$$

Together with EEEC measurement function in eq. (2.4), all Mandelstam variables can be written in terms of three energy fractions and three kinematic variables,

$$
\begin{align*}
& s_{12}=z_{1} z_{2} x_{3}, \quad s_{13}=z_{1} z_{3} x_{2}, \quad s_{23}=z_{2} z_{3} x_{1}, \\
& s_{14}=z_{1}\left(1-z_{2} x_{3}-z_{3} x_{2}\right), \quad s_{24}=z_{2}\left(1-z_{1} x_{3}-z_{3} x_{1}\right), \quad s_{34}=z_{3}\left(1-z_{1} x_{2}-z_{2} x_{1}\right), \tag{2.10}
\end{align*}
$$

where and in the following we set $Q^{2}=1$. Although the energy fractions break the symmetry of renaming final state particles, the complicated constraint $\Theta\left(-\Delta_{4}\right)$ decouples from the integrals. For example,

$$
\begin{align*}
& \int d s_{12} d s_{13} d s_{14} d s_{23} d s_{24} d s_{34} \Theta\left(-\Delta_{4}\right) \delta\left(\sum_{i<j} s_{i j}-1\right) \Pi_{123} \\
& =\int d z_{1} d z_{2} d z_{3}\left(z_{1}^{2} z_{2}^{2} z_{3}^{2}\right) \Theta\left(-\Delta_{4}\right) \frac{1}{1-x_{2} z_{1}-x_{1} z_{2}} \delta\left(z_{3}-\frac{z_{1}+z_{2}-x_{3} z_{1} z_{2}-1}{z_{1} x_{2}+z_{2} x_{1}-1}\right) \\
& =\Theta\left(-\widetilde{\Delta}_{4}\right) \int d z_{1} d z_{2} d z_{3}\left(z_{1}^{2} z_{2}^{2} z_{3}^{2}\right) \frac{1}{1-x_{2} z_{1}-x_{1} z_{2}} \delta\left(z_{3}-\frac{z_{1}+z_{2}-x_{3} z_{1} z_{2}-1}{z_{1} x_{2}+z_{2} x_{1}-1}\right), \tag{2.11}
\end{align*}
$$

where Δ_{4} is factorized into integration variables dependent and non-dependent parts

$$
\begin{equation*}
\frac{\Delta_{4}}{z_{1}^{2} z_{2}^{2} z_{3}^{2}}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{3}+4 x_{1} x_{2} x_{3} \equiv \widetilde{\Delta}_{4} . \tag{2.12}
\end{equation*}
$$

Here $\widetilde{\Delta}_{4} \leq 0$ becomes the constraint for the kinematic space $\left\{x_{1}, x_{2}, x_{3}\right\}$. Figure 1b shows the allowed kinematic regions, and as we will see in section 4 , the shape dependence of EEEC is encoded in different limits of this region. Note that in the triple collinear limit, $\widetilde{\Delta}_{4}$ is further reduced to

$$
\begin{equation*}
\widetilde{\Delta}_{4} \approx \tilde{\Delta}_{4}^{\text {coll }}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{3}, \tag{2.13}
\end{equation*}
$$

where $\sqrt{x_{1}}, \sqrt{x_{2}}$ and $\sqrt{x_{3}}$ can be interpreted as the lengths of three sides for a triangle due to Helen's area formula.

In summary, EEEC is simplified to an integral over the energy fraction z_{1}, z_{2} and z_{3}. While z_{3} is integrated by the δ function in eq. (2.11), the remaining two-fold integral can be finished using a package called HyperInt [64].

2.3 Direct integration

Without the constraint from the δ function in eq. (2.11), the ranges for integration variables z_{1} and z_{2} are both from 0 to 1 . With the constraint, the integration regions become non-trivial. Explicitly, the result is found to be

$$
\begin{align*}
& \int d z_{1} d z_{2} d z_{3} \delta\left(z_{3}-\frac{z_{1}+z_{2}-x_{3} z_{1} z_{2}-1}{z_{1} x_{2}+z_{2} x_{1}-1}\right) f\left(x_{1}, x_{2}, x_{3}, z_{1}, z_{2}, z_{3}\right) \\
& =\int_{0}^{1} d z_{1} \int_{0}^{\frac{1-z_{1}}{1-x_{3} z_{1}}} d z_{2} f\left(x_{1}, x_{2}, x_{3}, z_{1}, z_{2}, \frac{z_{1}+z_{2}-x_{3} z_{1} z_{2}-1}{z_{1} x_{2}+z_{2} x_{1}-1}\right), \tag{2.14}
\end{align*}
$$

where we use $f\left(x_{1}, x_{2}, x_{3}, z_{1}, z_{2}, z_{3}\right)$ to represent the EEEC integrand. In our calculation, the integration of z_{2} in eq. (2.14) can be easily carried out with standard mathematical tools like Mathematica or Maple. From the result, we identify the following two possible square roots that will appear in the final result of the LO EEEC,

$$
\begin{align*}
\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{3}} & =\sqrt{\widetilde{\Delta}_{4}^{\mathrm{coll}}} \\
\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{3}+4 x_{1} x_{2} x_{3}} & =\sqrt{\widetilde{\Delta}_{4}} \tag{2.15}
\end{align*}
$$

To perform the computation of the remaining one-fold integral with respect to z_{1}, we need to rationalize the square roots in eq. (2.15) by parameterizing the kinematic space $\left\{x_{1}, x_{2}, x_{3}\right\}$. Explicitly, we introduce a complex variable z and its congugate \bar{z} as well as a purely imaginary variable t via

$$
\begin{equation*}
\frac{x_{1}}{x_{3}}=z \bar{z}, \quad \frac{x_{2}}{x_{3}}=(1-z)(1-\bar{z}), \quad x_{3}=\frac{t^{2}-(z-\bar{z})^{2}}{4 z \bar{z}(1-z)(1-\bar{z})} \tag{2.16}
\end{equation*}
$$

such that the two square roots are rationalized

$$
\begin{gather*}
\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{3}}=x_{3}(z-\bar{z})=\frac{t^{2}-(z-\bar{z})^{2}}{4 z \bar{z}(1-z)(1-\bar{z})}(z-\bar{z}), \tag{2.17}\\
\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{3}+4 x_{1} x_{2} x_{3}}=x_{3} t=\frac{t^{2}-(z-\bar{z})^{2}}{4 z \bar{z}(1-z)(1-\bar{z})} t . \tag{2.18}
\end{gather*}
$$

Note that as observed in eq. (2.13) and in ref. [3], the second square root disappears in the triple collinear limit and we no longer need t variable. While in the triple collinear limit, z turns out to be a nice variable that characterizes the triangle shape dependence of EEEC and manifests the $\mathbb{S}_{3} \times \mathbb{Z}_{2}$ symmetry, $\{z, t\}$ are not good variables for the full shape dependence and for phenomenological studies eventually. So we will change back to the angular distances $x_{1,2,3}$ after finishing the calculation.

Using the z, t parameterization, we partial fraction the integrand and format the denominators to be linear functions in the last integration variable z_{1}. Subsequently we can evaluate the final integration in HyperInt [64]. It gives us the result in terms of Goncharov polylogarithms (GPLs) [65-67], up to transcendentality-two. The GPL is defined iteratively by

$$
\begin{equation*}
G\left(a_{1}, \cdots a_{n} ; x\right) \equiv \int_{0}^{x} \frac{d t}{t-a_{1}} G\left(a_{2}, \cdots a_{n} ; t\right) \tag{2.19}
\end{equation*}
$$

with

$$
\begin{equation*}
G(; x) \equiv 1, \quad G\left(\overrightarrow{0}_{n} ; x\right) \equiv \frac{1}{n!} \ln ^{n}(x) \tag{2.20}
\end{equation*}
$$

There are lots of analytic calculations at two-loop order found involving GPLs, both loop integrals and phase space integrals. It is conjectured that GPLs up to transcendentalitythree can be expressed in term of logarithms and classical polylogarithms $\mathrm{Li}_{n}(x)$ with $n \leq 3$ [68]. For transcendentality-four GPLs, one also need the special function $\operatorname{Li}_{2,2}(x, y)$.

For EEEC at LO, we only need GPLs up to transcendentality-two. The conversion from low transcendental weight GPLs to polylogarithms can be done with public packages like PolyLogTools [69] or gtolrules.m [70]. We use the latter package to achieve the conversion. The same results can be obtained by the direct integration from the definition in eq. (2.19), and we also modify the arguments to meet Mathematica's branch prescription for polylogarithms. After the conversion, our results are expressed in terms of classical polylogarithms.

To simplify the expression, we first collect the transcendental functions with the same rational coefficients. This constructs a raw transcendental function space in terms of classical polylogarithms. All the rational functions are simplified by the MultivariateApart package [71], which implements the partial fraction algorithms for multiple variables. However, simplifying the raw transcendental function space is in general not easy given the three variables. We start by applying transcendentality-two identities to simplify the individual base. A typical set of dilogarithm identities is as follows:

$$
\begin{align*}
\text { Reflection: } & \operatorname{Li}_{2}(x)=-\operatorname{Li}_{2}(1-x)-\log (x) \log (1-x)+\zeta_{2} \\
\text { Inversion: } & \operatorname{Li}_{2}(x)=-\operatorname{Li}_{2}\left(\frac{1}{x}\right)-\frac{1}{2} \log ^{2}(-x)-\zeta_{2} \\
\text { Duplication: } & \operatorname{Li}_{2}(x)=-\operatorname{Li}_{2}(-x)+\frac{1}{2} \operatorname{Li}_{2}\left(x^{2}\right) \tag{2.21}
\end{align*}
$$

which all comes from the well-known five-term identity [72]:

$$
\begin{align*}
& \mathrm{Li}_{2}(x)+\mathrm{Li}_{2}(y)+\mathrm{Li}_{2}\left(\frac{1-x}{1-x y}\right)+\mathrm{Li}_{2}(1-x y)+\mathrm{Li}_{2}\left(\frac{1-y}{1-x y}\right) \\
& =\frac{\pi^{2}}{2}-\log (x) \log (1-x)-\log (y) \log (1-y)-\log \left(\frac{1-x}{1-x y}\right) \log \left(\frac{1-y}{1-x y}\right) . \tag{2.22}
\end{align*}
$$

It turns out useful to use the five-term identity to simplify complicated arguments. Then we add back all permutation terms of $x_{1,2,3}$ (what we call symmetrization) as specified in eq. (2.3), and reorganize the result such that all bases and the corresponding coefficients are real. A better transcendental basis was already presented in ref. [5] for the $\mathcal{N}=4$ SYM EEEC at LO. So for the last step, we try to project our function basis to the basis in ref. [5]. Explicitly, we symmetrize the $\mathcal{N}=4$ function basis and construct a new linear independent transcendental weight-two basis. By evaluating both basis at a same numerical point and applying PSLQ algorithm [73, 74], we managed to find the linear relations between the elements of these two function bases and successfully simplify our full result in QCD. As a crosscheck, we evaluate the original result from HyperInt numerically using public GPL libraries like GiNac [75] and FastGPL [76], and compare with the predictions of our final analytic expression.

It is interesting to ask how we can simplify the expression in the first step. On the one hand, this requires one to know the singularities of the result and to rule out all spurious poles and branch cuts. Landau equation [77] or Polynomial reduction [78] provides a sufficient set of possible singularities, but it is challenging to figure out the minimal set, especially in the high-dimensional complex hyperplane. Some of the progress can be found
in refs. [79, 80]. On the other hand, given the singularities of the integrals, there are still ambiguities how to choose the arguments of polylogarithms. To our knowledge, there is no public algorithm to search for the best arguments that make the expression shortest. It is possible that this can be done with symbol [81] or even with Machine Learning [82] in the future, but it is out of scope of this paper.

3 Results

In this section, we present the full result for three-point energy correlator in QCD , in terms of the angular distance variables $x_{1,2,3}$ and the short-hand notations for the square roots:

$$
\begin{align*}
& s_{1}=\sqrt{\widetilde{\Delta}_{4}^{\mathrm{coll}}}=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{3}} \tag{3.1}\\
& s_{2}=\sqrt{\widetilde{\Delta}_{4}}=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{3}+4 x_{1} x_{2} x_{3}} \tag{3.2}
\end{align*}
$$

At LO, there are three color channels

$$
\begin{equation*}
\frac{1}{\sigma_{\mathrm{tot}}} \frac{d^{3} \sigma}{d x_{1} d x_{2} d x_{3}}=\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \frac{1}{4 \pi \sqrt{-s_{2}^{2}}}\left(C_{F} T_{F} n_{f} H_{n_{f}}+C_{F}^{2} H_{C_{F}}+C_{F} C_{A} H_{C_{A}}\right) \tag{3.3}
\end{equation*}
$$

where we normalize the distribution to the born-level cross section, and $\alpha_{s}=g_{s}^{2} /(4 \pi)$ with g_{s} being the strong coupling constant. All channels contain functions up to transcendentalitytwo and take the form

$$
\begin{equation*}
H \equiv H^{(0)}+H^{(1)}+H^{(2)}=H^{(0)}+\sum_{i=1}^{7} R_{i}^{(1)} f_{i}+\sum_{i=1}^{21} R_{i}^{(2)} g_{i} \tag{3.4}
\end{equation*}
$$

The EEEC function space is composed of 7 logarithmic bases $f_{1, \cdots, 7}$ and 21 polylogarithmic bases $g_{1, \cdots, 21}$. The transcendental weight-one bases are

$$
\begin{align*}
& f_{1}=\log \left(1-x_{1}\right), \quad f_{2}=\log x_{1}, \quad f_{3}=\log \left(1-x_{2}\right), \quad f_{4}=\log x_{2}, \quad f_{5}=\log \left(1-x_{3}\right), \\
& f_{6}=\log x_{3}, \quad f_{7}=\log \left(2-s_{2}-x_{1}-x_{2}-x_{3}\right)-\log \left(2+s_{2}-x_{1}-x_{2}-x_{3}\right) \tag{3.5}
\end{align*}
$$

with the explicit \mathbb{S}_{3} permutation symmetry. The transcendental weight-two bases are

$$
\begin{aligned}
g_{1}= & \operatorname{Li}_{2}\left(\frac{x_{1}}{x_{1}-1}\right), \quad g_{2}=\operatorname{Li}_{2}\left(\frac{x_{2}}{x_{2}-1}\right), \quad g_{3}=\operatorname{Li}_{2}\left(\frac{x_{3}}{x_{3}-1}\right), \\
g_{4}= & 2 \operatorname{Re}\left[\operatorname{Li}_{2}\left(\frac{s_{2}+x_{1}-x_{2}+2 x_{2} x_{3}-x_{3}}{2\left(x_{2}-1\right)\left(x_{3}-1\right)}\right)-\operatorname{Li}_{2}\left(\frac{2 x_{1} x_{2}}{s_{2}-x_{1}+2 x_{1} x_{2}-x_{2}+x_{3}}\right)\right] \\
& +2 \operatorname{Li}_{2}\left(\frac{x_{1}}{x_{1}-1}\right)-2 \operatorname{Li}_{2}\left(\frac{x_{3}}{x_{3}-1}\right) \\
g_{5}= & g_{4}\left(x_{2} \leftrightarrow x_{3}\right), \\
g_{6}= & -2 i \operatorname{Im}\left[\operatorname{Li}_{2}\left(\frac{2\left(x_{1}-1\right) x_{2}}{s_{2}-x_{1}+2 x_{1} x_{2}-x_{2}+x_{3}}\right)\right] \\
& -2 i \operatorname{Im}\left[\log \left(\frac{s_{2}-x_{1}+x_{2}-x_{3}}{2 x_{1}\left(x_{2}-1\right)}\right)\right] \operatorname{Re}\left[\log \left(\frac{2\left(x_{1}-1\right) x_{2}}{s_{2}-x_{1}+2 x_{1} x_{2}-x_{2}+x_{3}}\right)\right] \\
g_{7}= & g_{6}\left(x_{2} \leftrightarrow x_{3}\right), \quad g_{8}=g_{6}\left(x_{1}, x_{2}, x_{3} \leftrightarrow x_{2}, x_{3}, x_{1}\right)
\end{aligned}
$$

$$
\begin{align*}
& g_{9}=2 i \operatorname{Im}\left[\operatorname{Li}_{2}\left(\frac{s_{2}+x_{1}-x_{2}+x_{3}}{2\left(1-x_{2}\right)}\right)-\operatorname{Li}_{2}\left(\frac{s_{2}+x_{1}-x_{2}-x_{3}}{2\left(x_{1}-1\right)}\right)-\operatorname{Li}_{2}\left(\frac{2 x_{1} x_{2}}{s_{2}+x_{1}+x_{2}-x_{3}}\right)\right. \\
& \left.+\frac{1}{2} \log \left[\left(1-x_{1}\right)\left(x_{2}-1\right)\left(x_{3}-1\right)\right] \log \left(2-s_{2}-x_{1}-x_{2}-x_{3}\right)\right], \\
& g_{10}=\pi^{2}, \quad g_{11}=-4\left[\operatorname{Im}\left[\log \left(2-s_{2}-x_{1}-x_{2}-x_{3}\right)\right]\right]^{2}, \\
& g_{12}=2 i \log \left(\frac{x_{2}\left(x_{1}-1\right)}{x_{1}\left(x_{2}-1\right)}\right) \operatorname{Im}\left[\log \left(-s_{2}-x_{1}-x_{2}-x_{3}+2\right)\right], \quad g_{13}=g_{12}\left(x_{2} \leftrightarrow x_{3}\right), \\
& g_{14}=\log \left(1-x_{1}\right) \log \left[\frac{\left(x_{1}-1\right) x_{2}}{x_{1}\left(x_{2}-1\right)}\right]-\log \left(1-x_{3}\right) \log \left[\frac{x_{2}\left(x_{3}-1\right)}{\left(x_{2}-1\right) x_{3}}\right], \\
& g_{15}=g_{14}\left(x_{2} \leftrightarrow x_{3}\right), \quad g_{16}=g_{14}\left(x_{1} \leftrightarrow x_{2}\right), \\
& g_{17}=-i \operatorname{Im}\left[\operatorname{Li}_{2}\left(\frac{s_{2}+x_{1}+x_{2}+x_{3}-2}{-s_{2}+x_{1}+x_{2}+x_{3}-2}\right)\right] \\
& -i \log \left[\frac{s_{2}^{2}}{\left(x_{1}-1\right)\left(x_{2}-1\right)\left(x_{3}-1\right)}\right] \operatorname{Im}\left[\log \left(2-s_{2}-x_{1}-x_{2}-x_{3}\right)\right], \\
& g_{18}=\operatorname{Li}_{2}\left(\frac{x_{1}-x_{2}}{x_{1}\left(1-x_{2}\right)}\right)+\frac{1}{2} \log \left[\frac{x_{2}\left(x_{1}-1\right)}{x_{1}\left(x_{2}-1\right)}\right] \log \left[\frac{x_{3}}{x_{1}\left(1-x_{2}\right)}\right], \\
& g_{19}=g_{18}\left(x_{2} \leftrightarrow x_{3}\right), \quad g_{20}=g_{18}\left(x_{1}, x_{2}, x_{3} \leftrightarrow x_{2}, x_{3}, x_{1}\right), \\
& g_{21}=-2 i\left\{\operatorname { I m } \left[\operatorname{Li}_{2}\left(\frac{s_{1}+x_{1}-x_{2}-x_{3}}{s_{2}+x_{1}-x_{2}-x_{3}}\right)-\operatorname{Li}_{2}\left(\frac{s_{1}+x_{1}+x_{2}-x_{3}}{-s_{2}+x_{1}+x_{2}-x_{3}}\right)\right.\right. \\
& -\operatorname{Li}_{2}\left(\frac{s_{1}+x_{1}+x_{2}-x_{3}}{s_{2}+x_{1}+x_{2}-x_{3}}\right)-\operatorname{Li}_{2}\left(-\frac{s_{1}-x_{1}+x_{2}+x_{3}}{s_{2}+x_{1}-x_{2}-x_{3}}\right) \\
& -\operatorname{Li}_{2}\left(\frac{2\left(x_{1}-1\right) x_{2}\left(s_{1}+x_{1}-x_{2}+x_{3}\right)}{\left(s_{2}+x_{1}-2 x_{1} x_{2}+x_{2}-x_{3}\right)\left(s_{2}-x_{1}+x_{2}+x_{3}\right)}\right) \\
& \left.-\operatorname{Li}_{2}\left(\frac{2\left(x_{1}-1\right) x_{2}\left(s_{1}+x_{1}-x_{2}+x_{3}\right)}{\left(s_{2}+x_{1}-x_{2}-x_{3}\right)\left(s_{2}-x_{1}+2 x_{1} x_{2}-x_{2}+x_{3}\right)}\right)\right] \\
& +\operatorname{Im}\left[\log \left(2-s_{2}-x_{1}-x_{2}-x_{3}\right)\right] \log \left(\frac{s_{1}-s_{2}}{s_{1}+s_{2}}\right) \\
& -\operatorname{Im}\left[\log \left(\frac{s_{2}-s_{1}}{s_{2}-x_{1}+x_{2}+x_{3}}\right)\right] \operatorname{Re}\left[\log \left(\frac{s_{1}+x_{1}-x_{2}-x_{3}}{s_{2}+x_{1}-x_{2}-x_{3}}\right)\right] \\
& -\operatorname{Im}\left[\log \left(\frac{s_{1}+s_{2}}{s_{2}-x_{1}-x_{2}+x_{3}}\right)\right] \operatorname{Re}\left[\log \left(\frac{s_{1}+x_{1}+x_{2}-x_{3}}{-s_{2}+x_{1}+x_{2}-x_{3}}\right)\right] \\
& -\operatorname{Im}\left[\log \left(\frac{s_{2}-s_{1}}{s_{2}+x_{1}+x_{2}-x_{3}}\right)\right] \operatorname{Re}\left[\log \left(\frac{s_{1}+x_{1}+x_{2}-x_{3}}{s_{2}+x_{1}+x_{2}-x_{3}}\right)\right] \\
& -\operatorname{Im}\left[\log \left(\frac{s_{1}+s_{2}}{s_{2}+x_{1}-x_{2}-x_{3}}\right)\right] \operatorname{Re}\left[\log \left(\frac{-s_{1}-x_{1}+x_{2}+x_{3}}{s_{2}-x_{1}+x_{2}+x_{3}}\right)\right] \\
& +\operatorname{Im}\left[\log \left(\frac{2\left(s_{1}-s_{2}\right)\left(x_{1}-1\right) x_{2}}{\left(s_{2}+x_{1}-2 x_{1} x_{2}+x_{2}-x_{3}\right)\left(s_{2}-x_{1}+x_{2}+x_{3}\right)}\right)\right] \\
& \times \operatorname{Re}\left[\log \left(\frac{2\left(x_{1}-1\right) x_{2}\left(-s_{1}+x_{1}-x_{2}+x_{3}\right)}{\left(s_{2}+x_{1}-2 x_{1} x_{2}+x_{2}-x_{3}\right)\left(s_{2}-x_{1}+x_{2}+x_{3}\right)}\right)\right] \\
& +\operatorname{Im}\left[\log \left(\frac{2\left(s_{1}+s_{2}\right)\left(x_{1}-1\right) x_{2}}{\left(s_{2}+x_{1}-x_{2}-x_{3}\right)\left(s_{2}-x_{1}+2 x_{1} x_{2}-x_{2}+x_{3}\right)}\right)\right] \\
& \left.\times \operatorname{Re}\left[\log \left(\frac{2\left(x_{1}-1\right) x_{2}\left(s_{1}+x_{1}-x_{2}+x_{3}\right)}{\left(s_{2}+x_{1}-2 x_{1} x_{2}+x_{2}-x_{3}\right)\left(s_{2}-x_{1}+x_{2}+x_{3}\right)}\right)\right]\right\} . \tag{3.6}
\end{align*}
$$

Figure 3. Comparison of the analytic result with the numerical programs Event2 and NLOJet++ for $\left\{x_{1}, x_{2}, x_{3}\right\}=\{3 y, 2 y, y\}$ and $\left\{x_{1}, x_{2}, x_{3}\right\}=\left\{\frac{11}{4} y, \frac{5}{3} y, y\right\}$. Due to eq. (3.7), the kinematic spaces are cutoff at $y=\frac{1}{3}$ and $y=\frac{959}{2640} \approx 0.36$ respectively. Fifty billion points are sampled and the internal cutoff is set to 10^{-14} in Event2. Ten billion events are generated in NLOJet++.

Figure 4. Left: comparison of the analytic result with Event2 for separate color structures with $\left\{x_{1}, x_{2}, x_{3}\right\}=\{3 y, 2 y, y\}$. The C_{F}^{2} and $C_{F} C_{A}$ are multiplied by a constant for clarity. Right: the identical quark part is verified separately since its contribution is small.

Although we use the short-hand notation Re and Im to make the expressions compact, all the bases are analytic functions themselves. The corresponding coefficients $R_{i}^{(1)}$ and $R_{i}^{(2)}$ are rational functions in terms of $x_{1,2,3}$ and s_{1}, s_{2}. We provide these coefficients in the supplementary material.

We emphasize that EEEC encodes both scaling information and non-trival shape dependence since it is a three-parameter jet observable. Unlike collinear EEEC, the longest angular distance $x_{L}=\max \left\{x_{1}, x_{2}, x_{3}\right\}$ does not factorize out. Instead, the kinematic space is fully determined by the second square root $s_{2}^{2} \leq 0$, i.e.

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{3}+4 x_{1} x_{2} x_{3}<0 . \tag{3.7}
\end{equation*}
$$

To verify our analytic result, we consider two special cases $\left\{x_{1}, x_{2}, x_{3}\right\}=\{3 y, 2 y, y\}$ as well as $\left\{x_{1}, x_{2}, x_{3}\right\}=\left\{\frac{11}{4} y, \frac{5}{3} y, y\right\}$ and calculate them in Event2 [83, 84] and NLOJet++ [85]. The obtained results are in good agreement with our analytic results (see figure 3). We also pick the first configuration and separate different color structures as well as the identical quark pair contribution in Event2. The detailed comparison can be found in figure 4.

Our result can be useful for phenomenological studies in precision QCD and jet physics. With a simple function basis as well as the simplified rational coefficients, evaluating its numerical values to high precisions is much faster than the raw GPL expression or a Monte Carlo program. As an example, it is easy to numerically evaluate our analytic expression in Mathematica to 200 digits precision within 4 seconds for a regular point in a single core machine. The simplicity of the result strongly encourages us to compute EEEC in QCD for gluon-initiated or $b \bar{b}$-initiated Higgs decays analytically in the future.

4 Kinematic analysis

Given the complete shape dependence of the three-point energy correlator, it is interesting to investigate its behavior under different kinematic limits. Figure 5 shows several typical regions that could be useful for understanding the singularities and resummation. They are

- Triple collinear limit: $x_{1} \sim 0, x_{2} \sim 0$ and $x_{3} \sim 0$
- Squeezed limit: $x_{1} \sim 0, x_{2}, x_{3} \sim x$ and its permutations
- Back-to-back limit: $x_{1} \sim 1$ and its permutations
- Coplanar limit: $s_{2} \rightarrow 0$

Alternatively, one can borrow the variables $\left\{s, \tau_{1}, \tau_{2}\right\}$ from [5], which is related to the angular distance via

$$
\begin{equation*}
x_{1}=-\frac{s}{(s+1)^{2}} \frac{\left(1-\tau_{1}\right)^{2}}{\tau_{1}}, \quad x_{2}=-\frac{s}{(s+1)^{2}} \frac{\left(1-\tau_{2}\right)^{2}}{\tau_{2}}, \quad x_{3}=-\frac{s}{(s+1)^{2}} \frac{\left(1-\tau_{1} \tau_{2}\right)^{2}}{\tau_{1} \tau_{2}} \tag{4.1}
\end{equation*}
$$

Here we put the three points in a circle with radius \sqrt{s} on the celestial sphere and $\tau_{1,2}$ corresponds to the angle between two of them (see figure 6). One can also extract the kinematic limits using the new coordinate, and particularly, it is more convenient to expand the coplanar limit via $s \rightarrow 1$.

From phenomenological perspective, one can also slice the kinematic space and apply a constraint on the angular distance $x_{1,2,3}$. Since the demonstration of the full EEEC requires a 3D density plot, from which it is difficult to read information, applying the kinematic constraints helps to reduce the dimension of the plots. The most simplest case is the equilateral EEEC, where three angular distances are the same $x_{1}=x_{2}=x_{3}=x$. Two other typical choices are isosceles configuration $x_{1}=x_{2}$ and the right configuration $x_{3}+x_{2}=x_{1}$. When dealing with data from experiments or simulation programs like Pythia [86-88], it is straightforward to apply these constraints directly in the event selection. There are also overlaps between the expansion of kinematic limits and the configuration constraints. For example, one can study both the triple collinear limit and coplanar limit in the equilateral configuration. Applying both expansion and slicing together gives a clearer picture on specific jet substructure that we want to understand.

In this section, we will focus on the analytic result of equilateral EEEC and triple collinear EEEC at next-to-leading power, as well as the squeezed limit. We present the full

Figure 5. Various kinematic limits in the $\left\{x_{1}, x_{2}, x_{3}\right\}$ "zongzi"-shaped space. We denote the triple-collinear limit, squeezed limits and back-to-back limits using different colors. The coplanar limit corresponds to the boundary of the kinematic space itself. The full 3D dynamic figure can be found in the supplementary material.

Figure 6. (a) A graph on the $\left\{s, \tau_{1}, \tau_{2}\right\}$ coordinate on the celestial sphere [5]. (b) The kinematic limits of EEEC under the $\left\{s, \tau_{1}, \tau_{2}\right\}$ coordinate. $s \rightarrow 0$ and $s \rightarrow 1$ lead to the triple collinear and coplanar limit respectively, while $\tau_{i} \rightarrow 1$ represents squeezed limit.
expression for the equilateral EEEC, with equilateral function space included. To give a concrete example of applying both the kinematic expansion and configuration constraint together, we discuss the $x \rightarrow 0$ (collinear limit) and $x \rightarrow \frac{3}{4}$ (coplanar limit) singular behaviors, which could be interesting to the studies of trijet events at colliders. Regarding the triple collinear limit, we present the NLP correction analytically. It turns out that the collinear function space only contains one transcendental weight-one function and three weight-two functions under the \mathbb{S}_{3} symmetry. Finally, we extract the LP squeezed limit and discuss the ambiguity of the definition under the triple collinear limit. The geometry reveals that the squeezed limit is actually path-dependent.

4.1 Equilateral limit

It is straightforward to extract the equilateral EEEC from our analytic formula. Alternatively, one can take the equilateral limit before performing the integral. Explicitly, eq. (2.11) becomes

$$
\begin{equation*}
\Theta(3-4 x) \int_{0}^{1} d z_{1} \int_{0}^{\frac{1-z_{1}}{1-x z_{1}}} d z_{2} d z_{3} \frac{z_{1}^{2} z_{2}^{2} z_{3}^{2}}{1-z_{1} x-z_{2} x} \delta\left(z_{3}-\frac{z_{1}+z_{2}-x z_{1} z_{2}-1}{x z_{1}+x z_{2}-1}\right) \tag{4.2}
\end{equation*}
$$

which can be evaluated directly. The Heaviside function suggests the equilateral EEEC is cutoff at $x=\frac{3}{4}$.

The analytic result is written as

$$
\begin{equation*}
\frac{1}{\sigma_{0}} \frac{d^{3} \sigma}{d x^{3}}=\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \mathcal{N} \times\left(G_{q \bar{q} q \prime \bar{q} \prime}(t)+\frac{1}{4} G_{q \bar{q} q \bar{q}}(t)+\frac{1}{2} G_{q \bar{q} g g}(t)\right) \tag{4.3}
\end{equation*}
$$

where the normalization factor is $\mathcal{N}=\frac{1}{4 \pi x \sqrt{3-4 x}}$, and $\frac{1}{4}$ and $\frac{1}{2}$ are symmetry factors due to identical particles. In eq. (4.3), we also introduce another variable $t=\sqrt{3-4 x}$ to make the result more compact. The n_{f} contribution is given by

$$
\begin{align*}
G_{q \bar{q} q \bar{q}^{\prime}}(t)= & C_{f} T_{f} n_{f}\left\{-\frac{8}{2835\left(t^{2}-3\right)^{6}\left(t^{2}-1\right)^{3}}\left(872935 t^{16}+7645260 t^{14}-78741432 t^{12}\right.\right. \\
& +174628460 t^{10}-57642594 t^{8}-167457660 t^{6}+106781904 t^{4}+50927940 t^{2} \\
& -34837533)+\frac{8}{8505\left(t^{2}-1\right)^{4} t\left(t^{2}-3\right)^{7}}\left(5275445 t^{22}+31825710 t^{20}-554071427 t^{18}\right. \\
& +1961298184 t^{16}-1956329238 t^{14}-2450875468 t^{12}+6441472482 t^{10}-3202455096 t^{8} \\
& \left.-2041671807 t^{6}+2142124110 t^{4}-315629055 t^{2}-34836480\right)\left(\pi-3 \tan ^{-1}(t)\right) \\
& +\frac{4}{35\left(t^{2}-1\right)^{4}\left(t^{2}-3\right)^{7}}\left(43575 t^{20}+312270 t^{18}-3991645 t^{16}+10221960 t^{14}\right. \\
& -1074402 t^{12}-29837836 t^{10}+41621582 t^{8}-12477368 t^{6}-14178453 t^{4}+12394094 t^{2} \\
& \left.-3141297) \log \left(\frac{t^{2}+1}{4}\right)+\mathcal{T}_{2}(t)\right\} \tag{4.4}
\end{align*}
$$

where the transcendentality-two part $\mathcal{T}_{2}(t)$ is

$$
\begin{align*}
\mathcal{T}_{2}(t)= & \frac{64\left(11 t^{4}-774 t^{2}+135\right)}{81 \sqrt{3}\left(t^{2}-3\right)^{2}} g_{1}^{(2)}-\frac{3}{\left(t^{2}-3\right)^{5}\left(t^{2}-1\right)^{5}}\left(-415 t^{20}-4634 t^{18}+20033 t^{16}\right. \\
& \left.-10488 t^{14}-51326 t^{12}+84452 t^{10}-19254 t^{8}-54136 t^{6}+48381 t^{4}-14682 t^{2}+3093\right) g_{2}^{(2)} \\
& -\frac{3\left(t^{2}+1\right)}{\left(t^{2}-3\right)^{5}\left(t^{2}-1\right)^{5}}\left(1657 t^{18}+16957 t^{16}-97956 t^{14}+145260 t^{12}+40262 t^{10}-334978 t^{8}\right. \\
& \left.+365500 t^{6}-150900 t^{4}+16425 t^{2}-5811\right) g_{3}^{(2)}+\frac{24}{\left(t^{2}-3\right)^{5}\left(t^{2}-1\right)^{5}}\left(207 t^{20}+2330 t^{18}\right. \\
& -10161 t^{16}+6136 t^{14}+22366 t^{12}-35044 t^{10}+1878 t^{8}+26744 t^{6}-14349 t^{4} \\
& \left.-678 t^{2}-453\right) g_{4}^{(2)} \tag{4.5}
\end{align*}
$$

with the corresponding function space

$$
\begin{align*}
& g_{1}^{(2)}=D_{2}^{-}\left(\frac{t-\sqrt{3}}{t-i}\right)-D_{2}^{-}\left(\frac{t+\sqrt{3}}{t-i}\right)+\frac{1}{3} \log \left(\frac{\sqrt{3}+t}{\sqrt{3}-t}\right)\left(\pi-3 \tan ^{-1}(t)\right) \\
& g_{2}^{(2)}=\operatorname{Li}_{2}\left(\frac{t-\sqrt{3}}{-i+t}\right)+\operatorname{Li}_{2}\left(\frac{t+\sqrt{3}}{-i+t}\right)+\operatorname{Li}_{2}\left(\frac{t-\sqrt{3}}{i+t}\right)+\mathrm{Li}_{2}\left(\frac{t+\sqrt{3}}{i+t}\right) \\
& g_{3}^{(2)}=2\left(\tan ^{-1} t\right)^{2}+\zeta_{2} \\
& g_{4}^{(2)}=\pi \tan ^{-1}(t) \tag{4.6}
\end{align*}
$$

Here $D_{2}^{-}(z)$ is the Bloch-Wigner function

$$
\begin{equation*}
2 i D_{2}^{-}(z)=\operatorname{Li}_{2}(z)-\operatorname{Li}_{2}(\bar{z})+\frac{1}{2}(\log (1-z)-\log (1-\bar{z})) \log (z \bar{z}) \tag{4.7}
\end{equation*}
$$

As a Single-valued Harmonic Polylogarithm (SVHPL), Bloch-Wigner function satisfies

$$
\begin{equation*}
D_{2}^{-}(z)=D_{2}^{-}\left(1-\frac{1}{z}\right)=D_{2}^{-}\left(\frac{1}{1-z}\right)=-D_{2}^{-}\left(\frac{1}{z}\right)=-D_{2}^{-}(1-z)=-D_{2}^{-}\left(\frac{-z}{1-z}\right) \tag{4.8}
\end{equation*}
$$

and is parity-odd under \mathbb{Z}_{2} symmetry.
The results for the other two partonic channels are given as follows,

$$
\begin{align*}
G_{q \bar{q} q \prime \bar{q} \prime}(t)= & C_{F}\left(C_{A}-2 C_{F}\right)\left\{\frac { 3 2 } { 2 8 3 5 (t ^ { 2 } - 3) ^ { 6 } (t ^ { 2 } - 1) } \left(75565 t^{12}+3240230 t^{10}-17398269 t^{8}\right.\right. \\
& \left.+18684804 t^{6}+22325715 t^{4}-11993994 t^{2}-14389731\right)-\frac{32 t}{8505\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{2}} \\
& \left(329735 t^{16}+20536600 t^{14}-165711644 t^{12}+358668392 t^{10}-124678326 t^{8}\right. \\
& \left.-343694808 t^{6}+231523236 t^{4}+95157720 t^{2}-65599065\right)\left(\pi-3 \tan ^{-1}(t)\right) \\
& -\frac{16}{35\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{2}}\left(2205 t^{16}+181860 t^{14}-1202880 t^{12}+1813700 t^{10}+303506 t^{8}\right. \\
& \left.\left.-676788 t^{6}-1242776 t^{4}+240652 t^{2}+553641\right) \log \left(\frac{t^{2}+1}{4}\right)+\mathcal{T}_{2}^{(i d)}(t)\right\}, \tag{4.9}
\end{align*}
$$

$$
\begin{aligned}
\mathcal{T}_{2}^{(i d)}(t)= & \frac{12288 t\left(3 t^{8}+2 t^{6}+116 t^{4}-66 t^{2}-55\right)}{\left(t^{2}-3\right)^{7}} g_{7}^{(2)} \\
& +\frac{12288 t\left(t^{8}-2 t^{6}+36 t^{4}-30 t^{2}-5\right)}{\left(t^{2}-3\right)^{7}} g_{8}^{(2)}+\frac{12}{\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{3}}\left(99 t^{20}\right. \\
& +6454 t^{18}-56825 t^{16}+149896 t^{14}-72458 t^{12}-263676 t^{10}+401078 t^{8}-170360 t^{6} \\
& \left.+7847 t^{4}+11958 t^{2}-21181\right) g_{9}^{(2)}-\frac{96}{\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{3}}\left(13 t^{20}+794 t^{18}-6983 t^{16}\right. \\
& \left.+18040 t^{14}-6294 t^{12}-40676 t^{10}+65098 t^{8}-40456 t^{6}+15625 t^{4}-3750 t^{2}-2435\right) g_{4}^{(2)} \\
& +\frac{24}{\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{3}}\left(99 t^{20}+6454 t^{18}-56825 t^{16}+149896 t^{14}-72458 t^{12}-259580 t^{10}\right. \\
& \left.+388790 t^{8}-162168 t^{6}+16039 t^{4}-330 t^{2}-17085\right)\left(\tan ^{-1} t\right)^{2}-\frac{128}{81 \sqrt{3}\left(t^{2}-3\right)^{7}} \\
& \left(7 t^{14}-195 t^{12}+4563 t^{10}+53649 t^{8}+251829 t^{6}+337527 t^{4}-541647 t^{2}-102789\right) g_{1}^{(2)} \\
& -\frac{12\left(21 t^{16}+1816 t^{14}-4220 t^{12}-8 t^{10}+3238 t^{8}+3976 t^{6}-7084 t^{4}+2280 t^{2}-275\right)}{\left(t^{2}-3\right)^{5}\left(t^{2}-1\right)^{3}} g_{2}^{(2)} \\
& -\frac{36864 t\left(t^{2}-1\right)\left(t^{6}-t^{4}+27 t^{2}-3\right)}{\left(t^{2}-3\right)^{7}} g_{5}^{(2)}+\frac{589824 t\left(t^{2}-1\right)\left(t^{2}+1\right)}{\left(t^{2}-3\right)^{7}} g_{6}^{(2)}
\end{aligned}
$$

$$
\begin{aligned}
G_{q \bar{q} g g}(x)= & C_{F}^{2}\left\{\frac { 3 2 } { 2 8 3 5 (t ^ { 2 } - 3) ^ { 6 } (t ^ { 2 } - 1) } \left(76265 t^{12}+1803550 t^{10}-11498697 t^{8}+23078148 t^{6}\right.\right. \\
& \left.-22718457 t^{4}-14652738 t^{2}+23367609\right)-\frac{32}{8505 t\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{2}}\left(433195 t^{18}\right. \\
& +10991120 t^{16}-116769772 t^{14}+420616912 t^{12}-881234862 t^{10}+1592484336 t^{8} \\
& \left.-2208930444 t^{6}+1630223280 t^{4}-375963525 t^{2}-78382080\right)\left(\pi-3 \tan ^{-1}(t)\right)
\end{aligned}
$$

$$
-\frac{16}{35\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{2}}\left(3465 t^{16}+100380 t^{14}-927360 t^{12}+3217900 t^{10}-7212422 t^{8}\right.
$$

$$
\left.\left.+14195412 t^{6}-23299672 t^{4}+21526436 t^{2}-7577259\right) \log \left(\frac{t^{2}+1}{4}\right)+\mathcal{T}_{2}^{\left(C_{F}\right)}(t)\right\}
$$

$$
+C_{F} C_{A}\left\{\frac { 8 } { 2 8 3 5 (t ^ { 2 } - 3) ^ { 6 } (t ^ { 2 } - 1) ^ { 3 } } \left(872935 t^{16}+7567140 t^{14}-75054672 t^{12}\right.\right.
$$

$$
+137782532 t^{10}+150426246 t^{8}-446621748 t^{6}+8482248 t^{4}+415400076 t^{2}
$$

$$
-196677477)-\frac{8}{8505 t\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{4}}\left(5275445 t^{22}+30784950 t^{20}-509147387 t^{18}\right.
$$

$$
+1420469896 t^{16}+951601578 t^{14}-10595367292 t^{12}+19702929138 t^{10}-16474375800 t^{8}
$$

$$
\left.+6298931457 t^{6}-1215264330 t^{4}+601890345 t^{2}-191600640\right)\left(\pi-3 \tan ^{-1}(t)\right)
$$

$$
-\frac{4}{35\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{4}}\left(43575 t^{20}+301350 t^{18}-3542245 t^{16}+4989320 t^{14}\right.
$$

$$
+26927838 t^{12}-101446044 t^{10}+157979838 t^{8}-163463672 t^{6}+134482283 t^{4}
$$

$$
\begin{equation*}
\left.\left.-74242330 t^{2}+17862567\right) \log \left(\frac{t^{2}+1}{4}\right)+\mathcal{T}_{2}^{\left(C_{A}\right)}(t)\right\} \tag{4.11}
\end{equation*}
$$

$$
\begin{align*}
\mathcal{T}_{2}^{\left(C_{F}\right)}(t)= & \frac{6144}{t\left(t^{2}-3\right)^{7}\left(t^{2}+1\right)^{2}}\left(3 t^{14}-42 t^{12}+625 t^{10}-2780 t^{8}+6613 t^{6}-5562 t^{4}\right. \\
& \left.+2647 t^{2}-160\right) g_{7}^{(2)}+\frac{6144}{t\left(t^{2}-3\right)^{7}\left(t^{2}+1\right)^{2}}\left(t^{14}-20 t^{12}+237 t^{10}\right. \\
& \left.-976 t^{8}+2187 t^{6}-1916 t^{4}+775 t^{2}-32\right) g_{8}^{(2)}+\frac{12}{\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{3}\left(t^{2}+1\right)^{2}} \\
& \left(135 t^{24}+3668 t^{22}-32786 t^{20}+87876 t^{18}-70871 t^{16}-314200 t^{14}+2461060 t^{12}\right. \\
& \left.-7605976 t^{10}+12371529 t^{8}-11499772 t^{6}+6054766 t^{4}-1628780 t^{2}+202023\right) g_{9}^{(2)} \\
& -\frac{96}{\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{3}\left(t^{2}+1\right)^{2}}\left(17 t^{24}+452 t^{22}-3974 t^{20}+9700 t^{18}-569 t^{16}-74936 t^{14}\right. \\
& \left.+412748 t^{12}-1163480 t^{10}+1835439 t^{8}-1686668 t^{6}+878042 t^{4}-228748 t^{2}+26073\right) g_{4}^{(2)} \\
& +\frac{24}{\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{3}\left(t^{2}+1\right)^{2}}\left(135 t^{24}+3668 t^{22}-32786 t^{20}+87876 t^{18}-70871 t^{16}\right. \\
& -301912 t^{14}+2268548 t^{12}-6889176 t^{10}+11146825 t^{8}-10348796 t^{6}+5411694 t^{4} \\
& \left.-1411692 t^{2}+165159\right) \tan ^{-1}(t)^{2}-\frac{128}{81 \sqrt{3}\left(t^{2}-3\right)^{7}}\left(2 t^{14}-129 t^{12}+3780 t^{10}-8559 t^{8}\right. \\
& \left.+127170 t^{6}+838593 t^{4}-682344 t^{2}-111537\right) g_{1}^{(2)}-\frac{12}{\left(t^{2}-3\right)^{5}\left(t^{2}-1\right)^{5}\left(t^{2}+1\right)} \\
& \left(33 t^{18}+1121 t^{16}-3436 t^{14}+8836 t^{12}-23058 t^{10}+36830 t^{8}-34140 t^{6}+18036 t^{4}\right. \\
& \left.-4679 t^{2}+969\right) g_{2}^{(2)}+\frac{1179648\left(t^{10}-10 t^{8}+23 t^{6}-17 t^{4}+12 t^{2}-1\right)}{t\left(t^{2}-3\right)^{7}\left(t^{2}+1\right)^{2}} g_{6}^{(2)} \\
& -\frac{18432(t-1) t(t+1)\left(t^{10}-19 t^{8}+186 t^{6}-470 t^{4}+981 t^{2}-391\right)}{\left(t^{2}-3\right)^{7}\left(t^{2}+1\right)^{2}} g_{5}^{(2)}, \tag{4.12}
\end{align*}
$$

$$
\begin{align*}
\mathcal{T}_{2}^{\left(C_{A}\right)}(t)= & \frac{24576\left(t^{12}-23 t^{10}+266 t^{8}-930 t^{6}+681 t^{4}-423 t^{2}-20\right)}{t\left(t^{2}-3\right)^{7}\left(t^{2}+1\right)^{2}} g_{7}^{(2)} \\
& +\frac{12288\left(t^{12}-21 t^{10}+178 t^{8}-586 t^{6}+501 t^{4}-257 t^{2}-8\right)}{t\left(t^{2}-3\right)^{7}\left(t^{2}+1\right)^{2}} g_{8}^{(2)} \\
& +\frac{3}{\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{5}\left(t^{2}+1\right)^{2}}\left(1657 t^{28}+11642 t^{26}-143785 t^{24}+180852 t^{22}\right. \\
& +1216825 t^{20}-3297130 t^{18}-3018817 t^{16}+27516824 t^{14}-61945741 t^{12} \\
& \left.+84100358 t^{10}-80819475 t^{8}+55150516 t^{6}-23111589 t^{4}+4051754 t^{2}-8579\right) g_{9}^{(2)} \\
& -\frac{24}{\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{5}\left(t^{2}+1\right)^{2}}\left(207 t^{28}+1462 t^{26}-18111 t^{24}+24172 t^{22}\right. \\
& +140623 t^{20}-353478 t^{18}-595239 t^{16}+4040872 t^{14}-8983259 t^{12}+12403402 t^{10} \\
& \left.-12167013 t^{8}+8407340 t^{6}-3546051 t^{4}+633862 t^{2}-5173\right) g_{4}^{(2)} \\
& +\frac{6}{\left(t^{2}-3\right)^{7}\left(t^{2}-1\right)^{5}\left(t^{2}+1\right)^{2}}\left(1657 t^{28}+11642 t^{26}-143785 t^{24}+180852 t^{22}\right. \\
& +1216825 t^{20}-3305322 t^{18}-2666561 t^{16}+25419672 t^{14}-56244109 t^{12}+75236614 t^{10} \\
& \left.-72250643 t^{8}+49842100 t^{6}-21014437 t^{4}+3552042 t^{2}+48765\right)\left(t^{-1} t\right)^{2} \\
& -\frac{64}{81 \sqrt{3}\left(t^{2}-3\right)^{7}}\left(11 t^{14}-903 t^{12}+16335 t^{10}-142155 t^{8}+795825 t^{6}-2544453 t^{4}\right. \\
& \left.+44469 t^{2}+500823\right) g_{1}^{(2)}-\frac{3}{\left(t^{2}+1\right)\left(t^{4}-4 t^{2}+3\right)^{5}}\left(415 t^{22}+4945 t^{20}-11639 t^{18}\right. \\
& -40945 t^{16}+158774 t^{14}-162998 t^{12}-17934 t^{10}+144798 t^{8}-99781 t^{6}+44309 t^{4} \\
& \left.-30859 t^{2}+8867\right) g_{2}^{(2)}-\frac{36864 t\left(t^{10}-17 t^{8}+98 t^{6}-394 t^{4}+381 t^{2}-133\right)}{\left(t^{2}-3\right)^{7}\left(t^{2}+1\right)^{2}} \\
& -\frac{294912\left(t^{10}-20 t^{8}+48 t^{6}-30 t^{4}+31 t^{2}+2\right)}{t\left(t^{2}-3\right)^{7}\left(t^{2}+1\right)^{2}}, \tag{4.13}
\end{align*}
$$

Figure 7. The comparison between the analytic expression and Event2 for equilateral EEEC. We compute 2.5 billion events and set the internal cutoff to 10^{-14}.
where we need five more function bases
$g_{5}^{(2)}=\frac{1}{3} \log \left(3-t^{2}\right)\left(\pi-3 \tan ^{-1}(t)\right)+\log \left(t^{2}+1\right) \tan ^{-1}(t)-D_{2}^{-}\left(\frac{t-\sqrt{3}}{t-i}\right)-D_{2}^{-}\left(\frac{t+\sqrt{3}}{t-i}\right)$,
$g_{6}^{(2)}=D_{2}^{-}(i t)-\frac{1}{2} \log \left(t^{2}+1\right) \tan ^{-1}(t)-\frac{1}{3} \log (2 t)\left(\pi-3 \tan ^{-1}(t)\right)$,
$g_{7}^{(2)}=D_{2}^{-}\left(\frac{t-i}{t+i}\right), \quad g_{8}^{(2)}=\pi \log \left(t^{2}+1\right), \quad g_{9}^{(2)}=\zeta_{2}$.
In figure 7, we also show the equilateral EEEC result from Event2, which has good agreement with our analytic formula.

Even slicing the kinematic space with equilateral constraint gives us an interesting result. There are two singular limits: the collinear limit $x \rightarrow 0$ and coplanar limit $x \rightarrow \frac{3}{4}$. The collinear expansion is given by

$$
\begin{equation*}
\frac{1}{\sigma_{\mathrm{tot}}} \frac{d^{3} \sigma}{d x^{3}} \stackrel{x \rightarrow 0}{\approx}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \frac{1}{4 \pi x \sqrt{3-4 x}} \times\left(\frac{1}{x^{2}} \mathcal{F}_{1}+\frac{1}{x^{1}} \mathcal{F}_{2}+\mathcal{F}_{3}+x \mathcal{F}_{4}+\mathcal{O}\left(x^{2}\right)\right) \tag{4.15}
\end{equation*}
$$

where the coefficients are linear combinations of Clausen functions and Riemann zeta functions:

$$
\begin{aligned}
\mathcal{F}_{1}= & C_{F} n_{f} T_{F}\left(\frac{1856 \kappa}{27 \sqrt{3}}-\frac{5354}{135}\right)+C_{F}^{2}\left(24 \zeta_{2}-\frac{32 \kappa}{27 \sqrt{3}}-\frac{4543}{135}\right) \\
& +C_{A} C_{F}\left(-12 \zeta_{2}+\frac{304 \kappa}{27 \sqrt{3}}+\frac{779}{54}\right), \\
\mathcal{F}_{2}= & C_{F} n_{f} T_{F}\left(\frac{4511}{81}-\frac{7552 \kappa}{81 \sqrt{3}}\right)+C_{F}^{2}\left(-24 \zeta_{2}+\frac{32 \kappa}{81 \sqrt{3}}+\frac{20506}{405}\right) \\
& +C_{A} C_{F}\left(12 \zeta_{2}+\frac{704 \kappa}{27 \sqrt{3}}-\frac{18047}{540}\right), \\
\mathcal{F}_{3}= & C_{F} n_{f} T_{F}\left(\frac{206168}{42525}-\frac{1408 \kappa}{243 \sqrt{3}}\right)+C_{F}^{2}\left(48 \zeta_{2}-\frac{1312 \kappa}{243 \sqrt{3}}-\frac{2390434}{42525}\right) \\
& +C_{A} C_{F}\left(-24 \zeta_{2}-\frac{944 \kappa}{81 \sqrt{3}}+\frac{678556}{14175}\right),
\end{aligned}
$$

$$
\begin{align*}
\mathcal{F}_{4}= & C_{F} n_{f} T_{F} \frac{79}{42}+C_{F}^{2}\left(48 \zeta_{2}-\frac{320 \kappa}{243 \sqrt{3}}-\frac{4063357}{85050}\right) \\
& +C_{A} C_{F}\left(-24 \zeta_{2}-\frac{3632 \kappa}{243 \sqrt{3}}+\frac{16887929}{340200}\right) \tag{4.16}
\end{align*}
$$

Here $\kappa \equiv \mathrm{Cl}_{2}\left(\frac{\pi}{3}\right)=\operatorname{Im~Li}_{2} e^{\frac{i \pi}{3}}$ is Gieseking's constant, with $\mathrm{Cl}_{2}(\phi)=-\int_{0}^{\phi} \log \left|2 \sin \frac{x}{2}\right| d x$ being the Clausen function. This is a transcendentality-two number that is typical in the trijet computation (e.g., the one-loop trijet soft function [89]). Another interesting feature is from the n_{f} color factor, i.e., the coefficient of n_{f} for \mathcal{F}_{4} in eq. (4.16) doesn't involve κ while κ still shows up for $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}$. We will find a similar feature in the triple collinear limit in the next subsection.

Due to the kinematic cut $\Theta\left(\frac{3}{4}-x\right)$, there is no back-to-back limit in the equilateral configuration. Instead, the three detectors are separated by an angle $\frac{2 \pi}{3}$ on the same plane, which refers to the coplanar limit. The coplanar expansion includes both fractional power divergence and logarithmic divergence:

$$
\begin{align*}
\frac{1}{\sigma_{0}} \frac{d^{3} \sigma}{d x^{3}} \stackrel{x \rightarrow \frac{3}{4}}{\approx}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \frac{1}{4 \pi} \times\left(\frac{\ln \left(\frac{3}{4}-x\right)}{\frac{3}{4}-x} \mathcal{R}_{1}\right. & +\frac{1}{\frac{3}{4}-x} \mathcal{R}_{2}+\frac{1}{\sqrt{\frac{3}{4}-x}} \mathcal{R}_{3} \\
& \left.+\ln \left(\frac{3}{4}-x\right) \mathcal{R}_{4}+\mathcal{R}_{5}\right)+\mathcal{O}\left(\sqrt{\frac{3}{4}-x}\right) \tag{4.17}
\end{align*}
$$

and the corresponding coefficients are

$$
\begin{align*}
\mathcal{R}_{1} & =-\pi \frac{16384}{2187} C_{F}\left(C_{A}+2 C_{F}\right), \\
\mathcal{R}_{2} & =C_{F} T_{f} n_{f} \frac{32768}{6561} \pi-C_{F}^{2}\left(\frac{16384}{729} \pi+\frac{131072}{2187} \pi \ln 2\right)-C_{F} C_{A}\left(\frac{90112}{6561} \pi+\frac{65536}{2187} \pi \ln 2\right), \\
\mathcal{R}_{3} & =C_{F} T_{f} n_{f}\left(-\frac{3200}{243 \sqrt{3}} \kappa-\frac{2062}{81} \mathrm{Li}_{2}(-3)+\frac{3874}{81} \zeta_{2}-\frac{339824}{2835}-\frac{5584528}{25515} \ln 2\right) \\
& +C_{F}^{2}\left(\frac{2560}{729 \sqrt{3}} \kappa-\frac{4976}{243} \mathrm{Li}_{2}(-3)+\frac{892816}{2187} \zeta_{2}+\frac{611200}{5103}+\frac{5170304}{5103} \ln 2\right) \\
& +C_{F} C_{A}\left(-\frac{58240}{729 \sqrt{3}} \kappa-\frac{8317}{243} \mathrm{Li}_{2}(-3)-\frac{50941}{2187} \zeta_{2}+\frac{3939608}{8505}-\frac{55173784}{76545} \ln 2\right), \\
\mathcal{R}_{4} & =\pi\left(C_{F}^{2} \frac{4653056}{6561}-C_{F} C_{A} \frac{3276800}{6561}\right), \\
\mathcal{R}_{5} & =C_{F} T_{f} n_{f} \frac{5079040}{19683} \pi+C_{F}^{2}\left(-\frac{376832}{243} \pi+\frac{18612224}{6561} \pi \ln 2+\frac{1576960}{2187} \pi \ln 3\right) \\
& +C_{F} C_{A}\left(-\frac{2097152}{19683} \pi-\frac{13107200}{6561} \pi \ln 2-\frac{1077248}{2187} \pi \ln 3\right) \tag{4.18}
\end{align*}
$$

where we need one more transcendentality-two number $\mathrm{Li}_{2}(-3)$. The $C_{A}+2 C_{F}$ structure in \mathcal{R}_{1} implies that the leading logarithm in the cumulant can possibly be predicted by a Sudakov form factor [90].

It would be interesting to study the singularity structure in both limits and resum the large logarithms in the future. In the collinear limit, our result provides the regular terms
that complete the two-loop equilateral EEEC jet function. To recover its close form in ϵ, one might need to compute equilateral EEEC to higher orders in ϵ expansion. The soft gluon enhancement appears in the coplanar limit, and similarly, our fixed-order calculation provides the needed ingredients for its resummation. Some of the similar analysis for another trijet event shape observable D-parameter can be found in refs. [91-93]. Either way, equilateral EEEC contains valuable information on understanding the symmetric trijet events in electron-positron collisions.

Like two-point energy correlator (EEC), equilateral EEEC has nice analytic properties and is free of Sudakov shoulders [94]. For event shape observables like thrust, C parameter and heavy jet mass, the range of the parameter grows order by order in perturbation theory, and the incomplete cancellation between real emissions and virtual corrections leads to divergences or kinks at fixed orders. To obtain a precise measurement of the strong running coupling α_{s}, one will have to resum the Sudakov shoulder logarithms that fall into the relevant regions [89]. However, in equilateral EEEC, since the three particles are separated by the same angle, the maximum angle is $\frac{2 \pi}{3}$ when all three particles fall into the same plane. This geometry constraint remains the same in higher-order perturbation theory so that the IR cancellation is guaranteed by Kinoshita-Lee-Nauenberg (KLN) theorem [95, 96].

4.2 Triple collinear limit at next-to-leading power and beyond

The factorization theoroem at leading power (LP) has been well understood for different observables and different physical processes. It allows for the resummation of large logarithms to very high accuracy. Oppositely, much less is known for the factorization theorem and its violation at next-to-leading power (NLP). The complete factorization framework is still not established for NLP observables. In this subsection, we focus on the NLP contribution from the direct calculation point of view, where only a few cases have been carried out [22, 97-102]. More discussions can be found in ref. [103].

At LP, the triple collinear EEEC is factorized as the hard function $\vec{H}=\left\{H_{q}, H_{g}\right\}$ and the jet function $\vec{J}=\left\{J_{q}, J_{g}\right\}$, which both live in the flavor space. In momentum space, the EEEC jet function also decouples into the triple collinear phase space [104, 105] and the $1 \rightarrow 3$ splitting functions [105-107]. Benefiting from the decoupling, the calculation was performed in ref. [3], which becomes the first analytic calculation of a three-parameter jet substructure observable. From our EEEC result with full angle dependence in section 3, it is straightforward to extract NLP contribution in the triple collinear limit. While the NLP contribution itself can provide comparison data for the study of NLP factorization, it can not provide hints toward NLP factorization. It is more interesting to explore a similar decoupling of the phase space and the integrand to NLP, and extract the NLP corrections from a direct computation.

For the purpose of extracting the triple collinear limit, we perform the following rescaling

$$
\begin{equation*}
x_{1} \rightarrow \lambda x_{1}, \quad x_{2} \rightarrow \lambda x_{2}, \quad x_{3} \rightarrow \lambda x_{3} \tag{4.19}
\end{equation*}
$$

and expand the corresponding formula in λ order by order. To decouple the phase space measure and the integrand to NLP, we start from eq. (2.14) and reformulate it as in the
following,

$$
\begin{equation*}
\frac{1}{\sigma_{\text {tot }}} \frac{d^{3} \sigma}{d x_{1} d x_{2} d x_{3}}=\int_{0}^{1} d z_{1} \int_{0}^{\frac{1-z_{1}}{1-x_{3} z_{1}}} d z_{2} g\left(x_{1}, x_{2}, x_{3}, z_{1}, z_{2}\right) \tag{4.20}
\end{equation*}
$$

where $g\left(x_{1}, x_{2}, x_{3}, z_{1}, z_{2}\right)$ is used to represent the EEEC integrand. Notice that the upper bound of z_{2} depends on x_{3}, this makes the decoupling non-trivial at NLP. At LP, it is safe to expand the upper bound and the integrand separately, where the leading terms in λ directly gives us the decoupling at LP, as computed in ref. [3]. At NLP, one can not just expand the integrand $g\left(x_{1}, x_{2}, x_{3}, z_{1}, z_{2}\right)$ to the next-to-leading term while only keeping the leading term in the upper bound. One may expand both the upper bound and the integrand to next-to-leading terms, however, it doesn't make the computation simpler and also mixes a part of NNLP and beyond into the NLP contribution.

To extract the exact NLP contribution and make the decoupling explicit, we separate the interval of z_{2} integration into the following three intervals,

$$
\begin{equation*}
\int_{0}^{\frac{1-z_{1}}{1-x_{3} z_{1}}} d z_{2}=\int_{0}^{1-z_{1}} d z_{2}+\int_{1-z_{1}}^{\left(1-z_{1}\right)\left(1+x_{3} z_{1}\right)} d z_{2}+\int_{\left(1-z_{1}\right)\left(1+x_{3} z_{1}\right)}^{\frac{1-z_{1}}{11 x_{3} z_{1}}} d z_{2} \tag{4.21}
\end{equation*}
$$

On the right-hand side of eq. (4.21), the first term corresponds to the triple collinear phase space measure and contributes to LP and beyond, the second term starts to contribute at NLP, and the third term only contributes to NNLP and beyond. The right-hand side of eq. (4.21) is formulated in a way that the i-th term contributes only at $\mathrm{N}^{i-1} \mathrm{LP}$ and beyond. It is similar to ref. [108] where the operators are organized in a way such that the i-th type operators contribute only at α_{s}^{i} and beyond. Let us focus on the second term, together with the integrand, we have

$$
\begin{align*}
& \int_{1-z_{1}}^{\left(1-z_{1}\right)\left(1+x_{3} z_{1}\right)} d z_{2} g\left(x_{1}, x_{2}, x_{3}, z_{1}, z_{2}\right) \\
& =\left(1-z_{1}\right) \int_{0}^{x_{3} z_{1}} d t g\left(x_{1}, x_{2}, x_{3}, z_{1}, z_{2}=\left(1-z_{1}\right)(1+t)\right) \\
& =x_{3} z_{1}\left(1-z_{1}\right) g\left(x_{1}, x_{2}, x_{3}, z_{1}, z_{2}=1-z_{1}\right)+\cdots \\
& =x_{3} z_{1}\left(1-z_{1}\right) \int_{0}^{1-z_{1}} d z_{2} \delta\left(z_{2}-\left(1-z_{1}\right)\right) g\left(x_{1}, x_{2}, x_{3}, z_{1}, z_{2}\right)+\cdots, \tag{4.22}
\end{align*}
$$

where \cdots only contributes to NNLP and beyond. In summary, the contribution up to NLP can be written as

$$
\begin{align*}
& \frac{1}{\sigma_{\text {tot }}} \frac{d^{3} \sigma}{d x_{1} d x_{2} d x_{3}} \stackrel{\text { triple coll }}{\approx} \int_{0}^{1} d z_{1} \int_{0}^{1-z_{1}} d z_{2}\left[g\left(x_{1}, x_{2}, x_{3}, z_{1}, z_{2}\right)\right. \\
&\left.\times\left(1+x_{3} z_{1}\left(1-z_{1}\right) \delta\left(z_{2}-\left(1-z_{1}\right)\right)\right)\right]+\mathcal{O}(\mathrm{NNLP}) \tag{4.23}
\end{align*}
$$

The intervals of both integration variables z_{1}, z_{2} in the above equation don't involve any kinematic variables $x_{1,2,3}$. Therefore, we can safely expand the integrand in the triple collinear limit, which makes the computation of the NLP contribution as easy as LP. We
emphasize that the contact term that is proportional to $\delta\left(z_{2}-\left(1-z_{1}\right)\right)$ is crucial to get correct result at NLP. The above method to extract NLP for triple collinear EEEC may also be useful to compute the NLP contributions for other observables. It is also straightforward to generalize the above method to NNLP and beyond.

An alternative method to extract the NLP contribution is to first integrate over z_{2} in eq. (4.20) without performing any expansion. By simplifying the resulting integrand and performing the expansion, one can integrate over z_{1} and obtain the NLP contribution. The simplified integrand with z_{1} dependence is also useful as a cross-check of our final analytic formula, such that we also provide it in the suppementary material.

We use both methods to extract the triple collinear limit to NLP and find the same result. The validity of both methods is verified by the fact that no poles in the integration variables are generated when performing the expansion. We also compare the result with the final full analytic formula by setting $x_{1,2,3}$ to very small numbers, and we find the difference is indeed an NNLP contribution.

The result up to NLP in the triple collinear limit can be written as

$$
\begin{equation*}
\frac{1}{\sigma_{\text {tot }}} \frac{d^{3} \sigma}{d x_{1} d x_{2} d x_{3}} \stackrel{\text { triple coll }}{\approx}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \frac{1}{4 \pi \sqrt{-s_{2}^{2}}}\left(\frac{C^{\mathrm{LP}}\left(x_{i}\right)}{\lambda^{2}}+\frac{C^{\mathrm{NLP}}\left(x_{i}\right)}{\lambda^{1}}+\mathcal{O}\left(\lambda^{0}\right)\right) \tag{4.24}
\end{equation*}
$$

where λ is just used to track the expansion order and should be set to 1 at the end. The leading contribution C^{LP} agrees with the result in ref. [3]. The subleading term C^{NLP} is new and also contains three color channels:

$$
\begin{equation*}
C^{\mathrm{NLP}}\left(x_{i}\right)=C_{F} T_{F} n_{f} A_{n_{f}}\left(x_{i}\right)+C_{F}^{2} A_{C_{F}}\left(x_{i}\right)+C_{F} C_{A} A_{C_{A}}\left(x_{i}\right) \tag{4.25}
\end{equation*}
$$

The n_{f} contribution is given below:

$$
\begin{aligned}
& A_{n_{f}}= \\
& \frac{1}{s_{1}^{10}}\left[-\frac{16 x_{1}^{13}}{x_{3}^{4}}+\left(\frac{176 x_{2}}{x_{3}^{4}}+\frac{140}{x_{3}^{3}}\right) x_{1}^{12}+\left(-\frac{864 x_{2}^{2}}{x_{3}^{4}}-\frac{1024 x_{2}}{x_{3}^{3}}-\frac{23672}{45 x_{3}^{2}}\right) x_{1}^{11}\right. \\
& +\left(\frac{2464 x_{2}^{3}}{x_{3}^{4}}+\frac{2680 x_{2}^{2}}{x_{3}^{3}}+\frac{6040 x_{2}}{3 x_{3}^{2}}+\frac{9703}{9 x_{3}}\right) x_{1}^{10}+\left(-\frac{4400 x_{2}^{4}}{x_{3}^{4}}-\frac{1280 x_{2}^{3}}{x_{3}^{3}}+\frac{28616 x_{2}^{2}}{45 x_{3}^{2}}\right. \\
& \left.-\frac{10382 x_{2}}{45 x_{3}}-\frac{108919}{90}\right) x_{1}^{9}+\left(\frac{4752 x_{2}^{5}}{x_{3}^{4}}-\frac{9420 x_{2}^{4}}{x_{3}^{3}}-\frac{14968 x_{2}^{3}}{x_{3}^{2}}-\frac{64177 x_{2}^{2}}{5 x_{3}}-\frac{47843 x_{2}}{9}\right) x_{1}^{8} \\
& +\left(-\frac{2112 x_{2}^{6}}{x_{3}^{4}}+\frac{26880 x_{2}^{5}}{x_{3}^{3}}+\frac{432688 x_{2}^{4}}{15 x_{3}^{2}}+\frac{415816 x_{2}^{3}}{15 x_{3}}+\frac{111187 x_{2}^{2}}{5}+\frac{172757 x_{3} x_{2}}{15}\right) x_{1}^{7} \\
& +\left(-\frac{17976 x_{2}^{6}}{x_{3}^{3}}-\frac{240016 x_{2}^{5}}{15 x_{3}^{2}}-\frac{279406 x_{2}^{4}}{15 x_{3}}-\frac{858662 x_{2}^{3}}{45}-\frac{258220}{9} x_{3} x_{2}^{2}\right) x_{1}^{6} \\
& +\left(\frac{2894 x_{2}^{5}}{x_{3}}+\frac{35138 x_{2}^{4}}{9}+\frac{559376}{45} x_{3} x_{2}^{3}+\frac{27734}{5} x_{3}^{2} x_{2}^{2}\right) x_{1}^{5}+\left(-\frac{35887}{15} x_{3} x_{2}^{4}-\frac{18322}{5} x_{3}^{2} x_{2}^{3}\right) x_{1}^{4} \\
& \left.+\frac{110872}{45} x_{2}^{3} x_{3}^{3} x_{1}^{3}\right]+\frac{1}{s_{1}^{12}} \log \left(x_{1}\right)\left[-\frac{16 x_{1}^{15}}{x_{3}^{4}}+\left(\frac{192 x_{2}}{x_{3}^{4}}+\frac{168}{x_{3}^{3}}\right) x_{1}^{14}+\left(-\frac{1040 x_{2}^{2}}{x_{3}^{4}}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{1424 x_{2}}{x_{3}^{3}}-\frac{2344}{3 x_{3}^{2}}\right) x_{1}^{13}+\left(\frac{3328 x_{2}^{3}}{x_{3}^{4}}+\frac{4736 x_{2}^{2}}{x_{3}^{3}}+\frac{12104 x_{2}}{3 x_{3}^{2}}+\frac{6260}{3 x_{3}}\right) x_{1}^{12} \\
& +\left(-\frac{6864 x_{2}^{4}}{x_{3}^{4}}-\frac{6160 x_{2}^{3}}{x_{3}^{3}}-\frac{20136 x_{2}^{2}}{5 x_{3}^{2}}-\frac{11896 x_{2}}{3 x_{3}}-\frac{17076}{5}\right) x_{1}^{11}+\left(\frac{9152 x_{2}^{5}}{x_{3}^{4}}-\frac{5720 x_{2}^{4}}{x_{3}^{3}}\right. \\
& \left.-\frac{85496 x_{2}^{3}}{5 x_{3}^{2}}-\frac{49244 x_{2}^{2}}{3 x_{3}}-\frac{8572 x_{2}}{3}\right) x_{1}^{10}+\left(-\frac{6864 x_{2}^{6}}{x_{3}^{4}}+\frac{35904 x_{2}^{5}}{x_{3}^{3}}+\frac{280784 x_{2}^{4}}{5 x_{3}^{2}}\right. \\
& \left.+\frac{60352 x_{2}^{3}}{x_{3}}-\frac{16\left(-44693 x_{2}^{2}-23320 x_{3} x_{2}\right)}{15}\right) x_{1}^{9}+\left(-\frac{65472 x_{2}^{6}}{x_{3}^{3}}-\frac{315216 x_{2}^{5}}{5 x_{3}^{2}}\right. \\
& \left.-\frac{198616 x_{2}^{4}}{3 x_{3}}-\frac{4\left(246961 x_{2}^{3}+345869 x_{3} x_{2}^{2}\right)}{15}\right) x_{1}^{8}+\left(\frac{6864 x_{2}^{8}}{x_{3}^{4}}+\frac{66528 x_{2}^{7}}{x_{3}^{3}}+\frac{44464 x_{2}^{6}}{5 x_{3}^{2}}\right. \\
& \left.+\frac{63280 x_{2}^{5}}{3 x_{3}}+\frac{4\left(97897 x_{2}^{4}+216666 x_{3} x_{2}^{3}+92975 x_{3}^{2} x_{2}^{2}\right)}{15}\right) x_{1}^{7}+\left(-\frac{9152 x_{2}^{9}}{x_{3}^{4}}-\frac{38280 x_{2}^{8}}{x_{3}^{3}}\right. \\
& \left.+\frac{249616 x_{2}^{7}}{5 x_{3}^{2}}-\frac{12488 x_{2}^{6}}{x_{3}}-\frac{8\left(10292 x_{2}^{5}+40165 x_{3} x_{2}^{4}-35663 x_{3}^{2} x_{2}^{3}\right)}{15}\right) x_{1}^{6} \\
& +\left(\frac{6864 x_{2}^{10}}{x_{3}^{4}}+\frac{7920 x_{2}^{9}}{x_{3}^{3}}-\frac{259704 x_{2}^{8}}{5 x_{3}^{2}}+\frac{152864 x_{2}^{7}}{3 x_{3}}+\frac{8}{15}\left(-14491 x_{2}^{6}-4296 x_{3} x_{2}^{5}\right.\right. \\
& \left.\left.-21392 x_{3}^{2} x_{2}^{4}-24618 x_{3}^{3} x_{2}^{3}\right)\right) x_{1}^{5}+\left(-\frac{3328 x_{2}^{11}}{x_{3}^{4}}+\frac{4928 x_{2}^{10}}{x_{3}^{3}}+\frac{272648 x_{2}^{9}}{15 x_{3}^{2}}-\frac{158876 x_{2}^{8}}{3 x_{3}}\right. \\
& \left.-\frac{4\left(-165413 x_{2}^{7}-43150 x_{3} x_{2}^{6}+27668 x_{3}^{2} x_{2}^{5}-41818 x_{3}^{3} x_{2}^{4}\right)}{15}\right) x_{1}^{4}+\left(\frac{1040 x_{2}^{12}}{x_{3}^{4}}\right. \\
& -\frac{4304 x_{2}^{11}}{x_{3}^{3}}+\frac{36968 x_{2}^{10}}{15 x_{3}^{2}}+\frac{50056 x_{2}^{9}}{3 x_{3}}+\frac{8}{15}\left(-74107 x_{2}^{8}+7867 x_{3} x_{2}^{7}-2535 x_{3}^{2} x_{2}^{6}\right. \\
& \left.\left.+24618 x_{3}^{3} x_{2}^{5}-20909 x_{3}^{4} x_{2}^{4}\right)\right) x_{1}^{3}+\left(-\frac{192 x_{2}^{13}}{x_{3}^{4}}+\frac{1336 x_{2}^{12}}{x_{3}^{3}}-\frac{17304 x_{2}^{11}}{5 x_{3}^{2}}+\frac{2620 x_{2}^{10}}{x_{3}}\right. \\
& \left.-\frac{4\left(-28243 x_{2}^{9}-59399 x_{3} x_{2}^{8}+92975 x_{3}^{2} x_{2}^{7}+66256 x_{3}^{3} x_{2}^{6}-70452 x_{3}^{4} x_{2}^{5}\right)}{15}\right) x_{1}^{2} \\
& +\left(\frac{16 x_{2}^{14}}{x_{3}^{4}}-\frac{160 x_{2}^{13}}{x_{3}^{3}}+\frac{704 x_{2}^{12}}{x_{3}^{2}}-\frac{1760 x_{2}^{11}}{x_{3}}+\frac{8}{15}\left(-1031 x_{2}^{10}-46640 x_{3} x_{2}^{9}+143235 x_{3}^{2} x_{2}^{8}\right.\right. \\
& \left.\left.-116200 x_{3}^{3} x_{2}^{7}+18590 x_{3}^{4} x_{2}^{6}+4296 x_{3}^{5} x_{2}^{5}\right)\right) x_{1}+\frac{17076 x_{2}^{11}}{5}+\frac{66088}{5} x_{2}^{6} x_{3}^{5}-70216 x_{2}^{7} x_{3}^{4} \\
& +105380 x_{2}^{8} x_{3}^{3}-55204 x_{2}^{9} x_{3}^{2}+\frac{17036}{5} x_{2}^{10} x_{3}+\frac{1}{x_{1}}\left(-\frac{6260 x_{2}^{12}}{3}+\frac{17176}{3} x_{3} x_{2}^{11}\right. \\
& \left.+\frac{41384}{3} x_{3}^{2} x_{2}^{10}-\frac{231112}{3} x_{3}^{3} x_{2}^{9}+119164 x_{3}^{4} x_{2}^{8}-72048 x_{3}^{5} x_{2}^{7}+12488 x_{3}^{6} x_{2}^{6}\right) \\
& +\frac{1}{x_{1}^{2}}\left(\frac{2344 x_{2}^{13}}{3}-\frac{14216}{3} x_{3} x_{2}^{12}+7488 x_{3}^{2} x_{2}^{11}+\frac{43904}{3} x_{3}^{3} x_{2}^{10}-\frac{223000}{3} x_{3}^{4} x_{2}^{9}\right. \\
& \left.+114984 x_{3}^{5} x_{2}^{8}-58816 x_{3}^{6} x_{2}^{7}\right)+\frac{1}{x_{1}^{3}}\left(-168 x_{2}^{14}+1584 x_{3} x_{2}^{13}-6072 x_{3}^{2} x_{2}^{12}+10464 x_{3}^{3} x_{2}^{11}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+792 x_{3}^{4} x_{2}^{10}-43824 x_{3}^{5} x_{2}^{9}+103752 x_{3}^{6} x_{2}^{8}-66528 x_{3}^{7} x_{2}^{7}\right)+\frac{1}{x_{1}^{4}}\left(16 x_{2}^{15}-208 x_{3} x_{2}^{14}\right. \\
& \left.\left.+1232 x_{3}^{2} x_{2}^{13}-4368 x_{3}^{3} x_{2}^{12}+10192 x_{3}^{4} x_{2}^{11}-16016 x_{3}^{5} x_{2}^{10}+16016 x_{3}^{6} x_{2}^{9}-6864 x_{3}^{7} x_{2}^{8}\right)\right] \\
& +\frac{1}{s_{1}^{12}} b_{2}\left[-\frac{16 x_{1}^{17}}{x_{3}^{5}}+\left(\frac{240 x_{2}}{x_{3}^{5}}+\frac{192}{x_{3}^{4}}\right) x_{1}^{16}+\left(-\frac{1664 x_{2}^{2}}{x_{3}^{5}}-\frac{2208 x_{2}}{x_{3}^{4}}-\frac{1040}{x_{3}^{3}}\right) x_{1}^{15}\right. \\
& +\left(\frac{7040 x_{2}^{3}}{x_{3}^{5}}+\frac{10944 x_{2}^{2}}{x_{3}^{4}}+\frac{8528 x_{2}}{x_{3}^{3}}+\frac{3328}{x_{3}^{2}}\right) x_{1}^{14}+\left(-\frac{20160 x_{2}^{4}}{x_{3}^{5}}-\frac{28896 x_{2}^{3}}{x_{3}^{4}}-\frac{25168 x_{2}^{2}}{x_{3}^{3}}\right. \\
& \left.-\frac{16640 x_{2}}{x_{3}^{2}}-\frac{6864}{x_{3}}\right) x_{1}^{13}+\left(\frac{40768 x_{2}^{5}}{x_{3}^{5}}+\frac{34944 x_{2}^{4}}{x_{3}^{4}}+\frac{14352 x_{2}^{3}}{x_{3}^{3}}+\frac{7488 x_{2}^{2}}{x_{3}^{2}}+\frac{11440 x_{2}}{x_{3}}\right. \\
& +9152) x_{1}^{12}+\left(-\frac{58240 x_{2}^{6}}{x_{3}^{5}}+\frac{26208 x_{2}^{5}}{x_{3}^{4}}+\frac{106288 x_{2}^{4}}{x_{3}^{3}}+\frac{124800 x_{2}^{3}}{x_{3}^{2}}+\frac{82368 x_{2}^{2}}{x_{3}}\right. \\
& \left.+16016 x_{2}\right) x_{1}^{11}+\left(\frac{54912 x_{2}^{7}}{x_{3}^{5}}-\frac{192192 x_{2}^{6}}{x_{3}^{4}}-\frac{331760 x_{2}^{5}}{x_{3}^{3}}-\frac{375232 x_{2}^{4}}{x_{3}^{2}}-\frac{320320 x_{2}^{3}}{x_{3}}\right. \\
& \left.-201344 x_{2}^{2}-75504 x_{3} x_{2}\right) x_{1}^{10}+\left(-\frac{22880 x_{2}^{8}}{x_{3}^{5}}+\frac{398112 x_{2}^{7}}{x_{3}^{4}}+\frac{441584 x_{2}^{6}}{x_{3}^{3}}+\frac{475904 x_{2}^{5}}{x_{3}^{2}}\right. \\
& \left.+\frac{446160 x_{2}^{4}}{x_{3}}+368384 x_{2}^{3}+349984 x_{3} x_{2}^{2}\right) x_{1}^{9}+\left(-\frac{247104 x_{2}^{8}}{x_{3}^{4}}-\frac{212784 x_{2}^{7}}{x_{3}^{3}}-\frac{274560 x_{2}^{6}}{x_{3}^{2}}\right. \\
& \left.-\frac{267696 x_{2}^{5}}{x_{3}}-256448 x_{2}^{4}-314944 x_{3} x_{2}^{3}-166784 x_{3}^{2} x_{2}^{2}\right) x_{1}^{8}+\left(\frac{54912 x_{2}^{7}}{x_{3}^{2}}+\frac{54912 x_{2}^{6}}{x_{3}}\right. \\
& \left.+62816 x_{2}^{5}+119600 x_{3} x_{2}^{4}+105024 x_{3}^{2} x_{2}^{3}\right) x_{1}^{7}+\left(19872 x_{3}^{3} x_{2}^{3}+7168 x_{3}^{2} x_{2}^{4}-3328 x_{2}^{6}\right. \\
& \left.\left.+21008 x_{3} x_{2}^{5}\right) x_{1}^{6}+\left(-1232 x_{3}^{2} x_{2}^{5}-32816 x_{3}^{3} x_{2}^{4}\right) x_{1}^{5}+9728 x_{2}^{4} x_{3}^{4} x_{1}^{4}\right]+\left[-\frac{16 x_{1}^{4}}{x_{2}^{5}}\right. \\
& +\left(\frac{32 x_{3}}{x_{2}^{5}}-\frac{16}{x_{2}^{4}}\right) x_{1}^{3}+\left(\frac{48 x_{3}}{x_{2}^{4}}-\frac{16 x_{3}^{2}}{x_{2}^{5}}\right) x_{1}^{2}-\frac{32 x_{3}^{2} x_{1}}{x_{3}^{4}\left(x_{3}, x_{1}, x_{2}\right)} \\
& + \text { permutations of } x_{1,2,3} \tag{4.26}
\end{align*}
$$

Similarly, for other color factor contributions, we have

$$
\begin{aligned}
& A_{C_{F}}= \\
& \frac{1}{s_{1}^{10}}\left[-\frac{4 x_{1}^{14}}{x_{2} x_{3}^{4}}+\left(\frac{52}{x_{3}^{4}}+\frac{19}{x_{3}^{3} x_{2}}\right) x_{1}^{13}+\left(-\frac{308 x_{2}}{x_{3}^{4}}-\frac{142}{x_{3}^{3}}+\frac{365}{9 x_{3}^{2} x_{2}}\right) x_{1}^{12}+\left(\frac{1092 x_{2}^{2}}{x_{3}^{4}}\right.\right. \\
& \left.+\frac{241 x_{2}}{x_{3}^{3}}-\frac{6631}{9 x_{3}^{2}}-\frac{100259}{180 x_{3} x_{2}}\right) x_{1}^{11}+\left(-\frac{2548 x_{2}^{3}}{x_{3}^{4}}+\frac{1268 x_{2}^{2}}{x_{3}^{3}}+\frac{4806 x_{2}}{x_{3}^{2}}+\frac{198539}{30 x_{3}}\right) x_{1}^{10} \\
& +\left(\frac{4004 x_{2}^{4}}{x_{3}^{4}}-\frac{8261 x_{2}^{3}}{x_{3}^{3}}-\frac{147770 x_{2}^{2}}{9 x_{3}^{2}}-\frac{302942 x_{2}}{15 x_{3}}-\frac{210419}{20}\right) x_{1}^{9}+\left(-\frac{4004 x_{2}^{5}}{x_{3}^{4}}\right. \\
& \left.+\frac{23342 x_{2}^{4}}{x_{3}^{3}}+\frac{296575 x_{2}^{3}}{9 x_{3}^{2}}+\frac{3200369 x_{2}^{2}}{90 x_{3}}+\frac{346399 x_{2}}{10}\right) x_{1}^{8}+\left(\frac{1716 x_{2}^{6}}{x_{3}^{4}}-\frac{41151 x_{2}^{5}}{x_{3}^{3}}\right. \\
& \left.-\frac{38205 x_{2}^{4}}{x_{3}^{2}}-\frac{3198389 x_{2}^{3}}{90 x_{3}}-\frac{551761 x_{2}^{2}}{18}-\frac{41662 x_{3} x_{2}}{3}\right) x_{1}^{7}+\left(\frac{24684 x_{2}^{6}}{x_{3}^{3}}+\frac{52684 x_{2}^{5}}{3 x_{3}^{2}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{255406 x_{2}^{4}}{15 x_{3}}+\frac{64233 x_{2}^{3}}{5}+\frac{105028}{15} x_{3} x_{2}^{2}\right) x_{1}^{6}+\left(-\frac{36187 x_{2}^{5}}{15 x_{3}}-\frac{7912 x_{2}^{4}}{5}+\frac{112747}{15} x_{3} x_{2}^{3}\right. \\
& \left.\left.+\frac{151714}{45} x_{3}^{2} x_{2}^{2}\right) x_{1}^{5}+\left(-\frac{177793}{30} x_{3} x_{2}^{4}-\frac{206644}{45} x_{3}^{2} x_{2}^{3}\right) x_{1}^{4}-\frac{7657}{10} x_{2}^{3} x_{3}^{3} x_{1}^{3}\right] \\
& +\frac{1}{s_{1}^{11}} \log \left(x_{1}\right)\left[-\frac{4 x_{1}^{16}}{x_{2} x_{3}^{4}}+\left(\frac{56}{x_{3}^{4}}+\frac{26}{x_{3}^{3} x_{2}}\right) x_{1}^{15}+\left(-\frac{360 x_{2}}{x_{3}^{4}}-\frac{240}{x_{3}^{3}}+\frac{14}{3 x_{3}^{2} x_{2}}\right) x_{1}^{14}\right. \\
& +\left(\frac{1400 x_{2}^{2}}{x_{3}^{4}}+\frac{778 x_{2}}{x_{3}^{3}}-\frac{1646}{3 x_{3}^{2}}-\frac{1907}{3 x_{3} x_{2}}\right) x_{1}^{13}+\left(-\frac{3640 x_{2}^{3}}{x_{3}^{4}}-\frac{104 x_{2}^{2}}{x_{3}^{3}}+\frac{15796 x_{2}}{3 x_{3}^{2}}\right. \\
& \left.+\frac{29168}{3 x_{3}}\right) x_{1}^{12}+\left(\frac{6552 x_{2}^{4}}{x_{3}^{4}}-\frac{7566 x_{2}^{3}}{x_{3}^{3}}-\frac{69076 x_{2}^{2}}{3 x_{3}^{2}}-\frac{187597 x_{2}}{5 x_{3}}-21625\right) x_{1}^{11} \\
& +\left(-\frac{8008 x_{2}^{5}}{x_{3}^{4}}+\frac{29744 x_{2}^{4}}{x_{3}^{3}}+\frac{58014 x_{2}^{3}}{x_{3}^{2}}+\frac{1300108 x_{2}^{2}}{15 x_{3}}+\frac{1532353 x_{2}}{15}\right) x_{1}^{10}+\left(\frac{5720 x_{2}^{6}}{x_{3}^{4}}\right. \\
& \left.-\frac{64350 x_{2}^{5}}{x_{3}^{3}}-\frac{89166 x_{2}^{4}}{x_{3}^{2}}-\frac{627674 x_{2}^{3}}{5 x_{3}}-\frac{2177254 x_{2}^{2}}{15}-\frac{1130216 x_{3} x_{2}}{15}\right) x_{1}^{9}+\left(\frac{92664 x_{2}^{6}}{x_{3}^{3}}\right. \\
& \left.+\frac{76824 x_{2}^{5}}{x_{3}^{2}}+\frac{1706228 x_{2}^{4}}{15 x_{3}}+\frac{1917257 x_{2}^{3}}{15}+\frac{2001659}{15} x_{3} x_{2}^{2}\right) x_{1}^{8}+\left(-\frac{5720 x_{2}^{8}}{x_{3}^{4}}-\frac{93522 x_{2}^{7}}{x_{3}^{3}}\right. \\
& \left.-\frac{12584 x_{2}^{6}}{x_{3}^{2}}-\frac{995477 x_{2}^{5}}{15 x_{3}}-\frac{1016974 x_{2}^{4}}{15}-\frac{363547}{5} x_{3} x_{2}^{3}-37414 x_{3}^{2} x_{2}^{2}\right) x_{1}^{7}+\left(\frac{8008 x_{2}^{9}}{x_{3}^{4}}\right. \\
& \left.+\frac{66352 x_{2}^{8}}{x_{3}^{3}}-\frac{55946 x_{2}^{7}}{x_{3}^{2}}+\frac{42512 x_{2}^{6}}{x_{3}}+\frac{238238 x_{2}^{5}}{15}+21916 x_{3} x_{2}^{4}+\frac{425752}{15} x_{3}^{2} x_{2}^{3}\right) x_{1}^{6} \\
& +\left(-\frac{6552 x_{2}^{10}}{x_{3}^{4}}-\frac{31746 x_{2}^{9}}{x_{3}^{3}}+\frac{232606 x_{2}^{8}}{3 x_{3}^{2}}-\frac{833968 x_{2}^{7}}{15 x_{3}}+\frac{212812 x_{2}^{6}}{15}-\frac{67118}{15} x_{3} x_{2}^{5}\right. \\
& \left.-\frac{254474}{15} x_{3}^{2} x_{2}^{4}+\frac{23356}{5} x_{3}^{3} x_{2}^{3}\right) x_{1}^{5}+\left(\frac{3640 x_{2}^{11}}{x_{3}^{4}}+\frac{8840 x_{2}^{10}}{x_{3}^{3}}-\frac{162316 x_{2}^{9}}{3 x_{3}^{2}}+\frac{915092 x_{2}^{8}}{15 x_{3}}\right. \\
& \left.-\frac{437396 x_{2}^{7}}{15}+\frac{99122}{15} x_{3} x_{2}^{6}+14074 x_{3}^{2} x_{2}^{5}-\frac{53716}{5} x_{3}^{3} x_{2}^{4}\right) x_{1}^{4}+\left(-\frac{1400 x_{2}^{12}}{x_{3}^{4}}-\frac{442 x_{2}^{11}}{x_{3}^{3}}\right. \\
& +\frac{67724 x_{2}^{10}}{3 x_{3}^{2}}-\frac{553513 x_{2}^{9}}{15 x_{3}}+\frac{281428 x_{2}^{8}}{15}+\frac{24851}{15} x_{3} x_{2}^{7}-\frac{51612}{5} x_{3}^{2} x_{2}^{6}-\frac{23356}{5} x_{3}^{3} x_{2}^{5} \\
& \left.+\frac{53716}{5} x_{3}^{4} x_{2}^{4}\right) x_{1}^{3}+\left(\frac{360 x_{2}^{13}}{x_{3}^{4}}-\frac{624 x_{2}^{12}}{x_{3}^{3}}-\frac{16394 x_{2}^{11}}{3 x_{3}^{2}}+\frac{42284 x_{2}^{10}}{5 x_{3}}+\frac{180259 x_{2}^{9}}{15}\right. \\
& \left.-\frac{554839}{15} x_{3} x_{2}^{8}+37414 x_{3}^{2} x_{2}^{7}-\frac{270916}{15} x_{3}^{3} x_{2}^{6}+\frac{43364}{15} x_{3}^{4} x_{2}^{5}\right) x_{1}^{2}+\left(-\frac{56 x_{2}^{14}}{x_{3}^{4}}+\frac{214 x_{2}^{13}}{x_{3}^{3}}\right. \\
& +\frac{638 x_{2}^{12}}{x_{3}^{2}}+\frac{45986 x_{2}^{11}}{15 x_{3}}-\frac{446368 x_{2}^{10}}{15}+\frac{1130216}{15} x_{3} x_{2}^{9}-\frac{289364}{3} x_{3}^{2} x_{2}^{8}+\frac{213158}{3} x_{3}^{3} x_{2}^{7} \\
& \left.-\frac{427862}{15} x_{3}^{4} x_{2}^{6}+\frac{67118}{15} x_{3}^{5} x_{2}^{5}\right) x_{1}+21625 x_{2}^{11}-30070 x_{2}^{6} x_{3}^{5}+96958 x_{2}^{7} x_{3}^{4}-146579 x_{2}^{8} x_{3}^{3} \\
& +133133 x_{2}^{9} x_{3}^{2}-72399 x_{2}^{10} x_{3}-\frac{2632 x_{2}^{12}}{x_{3}}-\frac{16 x_{2}^{13}}{x_{3}^{2}}-\frac{24 x_{2}^{14}}{x_{3}^{3}}+\frac{4 x_{2}^{15}}{x_{3}^{4}}+\frac{1}{x_{1}}\left(\frac{1907 x_{2}^{13}}{3 x_{3}}\right.
\end{aligned}
$$

$$
\begin{align*}
& -\frac{21272 x_{2}^{12}}{3}+\frac{103361}{3} x_{3} x_{2}^{11}-\frac{285392}{3} x_{3}^{2} x_{2}^{10}+\frac{487307}{3} x_{3}^{3} x_{2}^{9}-\frac{524264}{3} x_{3}^{4} x_{2}^{8} \\
& \left.+121963 x_{3}^{5} x_{2}^{7}-42512 x_{3}^{6} x_{2}^{6}\right)+\frac{1}{x_{1}^{2}}\left(-\frac{14 x_{2}^{14}}{3 x_{3}}+\frac{1694 x_{2}^{13}}{3}-\frac{17710}{3} x_{3} x_{2}^{12}+28490 x_{3}^{2} x_{2}^{11}\right. \\
& \left.-\frac{241766}{3} x_{3}^{3} x_{2}^{10}+\frac{429814}{3} x_{3}^{4} x_{2}^{9}-\frac{463078}{3} x_{3}^{5} x_{2}^{8}+68530 x_{3}^{6} x_{2}^{7}\right)+\frac{1}{x_{1}^{3}}\left(-\frac{26 x_{2}^{15}}{x_{3}}\right. \\
& +264 x_{2}^{14}-992 x_{3} x_{2}^{13}+728 x_{3}^{2} x_{2}^{12}+8008 x_{3}^{3} x_{2}^{11}-38584 x_{3}^{4} x_{2}^{10}+96096 x_{3}^{5} x_{2}^{9} \\
& \left.-159016 x_{3}^{6} x_{2}^{8}+93522 x_{3}^{7} x_{2}^{7}\right)+\frac{1}{x_{1}^{4}}\left(\frac{4 x_{2}^{16}}{x_{3}}-60 x_{2}^{15}+416 x_{3} x_{2}^{14}-1760 x_{3}^{2} x_{2}^{13}\right. \\
& \left.\left.+5040 x_{3}^{3} x_{2}^{12}-10192 x_{3}^{4} x_{2}^{11}+14560 x_{3}^{5} x_{2}^{10}-13728 x_{3}^{6} x_{2}^{9}+5720 x_{3}^{7} x_{2}^{8}\right)\right] \\
& +\left(\frac{4}{3 x_{3}}-\frac{2 x_{1}}{x_{2} x_{3}}\right) b_{1}+\frac{1}{s_{1}^{12}} b_{2}\left[-\frac{4 x_{1}^{18}}{x_{2} x_{3}^{5}}+\left(\frac{68}{x_{3}^{5}}+\frac{32}{x_{3}^{4} x_{2}}\right) x_{1}^{17}+\left(-\frac{540 x_{2}}{x_{3}^{5}}-\frac{400}{x_{3}^{4}}\right.\right. \\
& \left.-\frac{36}{x_{3}^{3} x_{2}}\right) x_{1}^{16}+\left(\frac{2652 x_{2}^{2}}{x_{3}^{5}}+\frac{2080 x_{2}}{x_{3}^{4}}-\frac{188}{x_{3}^{3}}-\frac{632}{x_{3}^{2} x_{2}}\right) x_{1}^{15}+\left(-\frac{8976 x_{2}^{3}}{x_{3}^{5}}-\frac{4992 x_{2}^{2}}{x_{3}^{4}}\right. \\
& \left.+\frac{5720 x_{2}}{x_{3}^{3}}+\frac{9072}{x_{3}^{2}}+\frac{4212}{x_{3} x_{2}}\right) x_{1}^{14}+\left(\frac{22032 x_{2}^{4}}{x_{3}^{5}}-\frac{640 x_{2}^{3}}{x_{3}^{4}}-\frac{40216 x_{2}^{2}}{x_{3}^{3}}-\frac{56704 x_{2}}{x_{3}^{2}}\right. \\
& \left.-\frac{55380}{x_{3}}\right) x_{1}^{13}+\left(-\frac{39984 x_{2}^{5}}{x_{3}^{5}}+\frac{46144 x_{2}^{4}}{x_{3}^{4}}+\frac{153384 x_{2}^{3}}{x_{3}^{3}}+\frac{204368 x_{2}^{2}}{x_{3}^{2}}+\frac{209352 x_{2}}{x_{3}}\right. \\
& +102544) x_{1}^{12}+\left(\frac{53040 x_{2}^{6}}{x_{3}^{5}}-\frac{174720 x_{2}^{5}}{x_{3}^{4}}-\frac{372008 x_{2}^{4}}{x_{3}^{3}}-\frac{469664 x_{2}^{3}}{x_{3}^{2}}-\frac{493212 x_{2}^{2}}{x_{3}}\right. \\
& \left.-487508 x_{2}\right) x_{1}^{11}+\left(-\frac{47736 x_{2}^{7}}{x_{3}^{5}}+\frac{391040 x_{2}^{6}}{x_{3}^{4}}+\frac{597688 x_{2}^{5}}{x_{3}^{3}}+\frac{712816 x_{2}^{4}}{x_{3}^{2}}+\frac{755856 x_{2}^{3}}{x_{3}}\right. \\
& \left.+755768 x_{2}^{2}+374104 x_{3} x_{2}\right) x_{1}^{10}+\left(\frac{19448 x_{2}^{8}}{x_{3}^{5}}-\frac{613184 x_{2}^{7}}{x_{3}^{4}}-\frac{605176 x_{2}^{6}}{x_{3}^{3}}-\frac{713856 x_{2}^{5}}{x_{3}^{2}}\right. \\
& \left.-\frac{761624 x_{2}^{4}}{x_{3}}-772208 x_{2}^{3}-759032 x_{3} x_{2}^{2}\right) x_{1}^{9}+\left(\frac{354640 x_{2}^{8}}{x_{3}^{4}}+\frac{260832 x_{2}^{7}}{x_{3}^{3}}+\frac{482768 x_{2}^{6}}{x_{3}^{2}}\right. \\
& \left.+\frac{491560 x_{2}^{5}}{x_{3}}+514576 x_{2}^{4}+504584 x_{3} x_{2}^{3}+250056 x_{3}^{2} x_{2}^{2}\right) x_{1}^{8}+\left(-\frac{168168 x_{2}^{7}}{x_{3}^{2}}-\frac{154336 x_{2}^{6}}{x_{3}}\right. \\
& \left.-216176 x_{2}^{5}-207520 x_{3} x_{2}^{4}-215360 x_{3}^{2} x_{2}^{3}\right) x_{1}^{7}+\left(47288 x_{2}^{6}+41360 x_{3} x_{2}^{5}+65320 x_{3}^{2} x_{2}^{4}\right. \\
& \left.\left.+23008 x_{3}^{3} x_{2}^{3}\right) x_{1}^{6}+\left(7008 x_{2}^{4} x_{3}^{3}-15408 x_{2}^{5} x_{3}^{2}\right) x_{1}^{5}-8808 x_{2}^{4} x_{3}^{4} x_{1}^{4}\right]+\left[-\frac{4 x_{1}^{5}}{x_{2}^{5} x_{3}}\right. \\
& +\left(\frac{16}{x_{2}^{5}}-\frac{20}{x_{2}^{4} x_{3}}\right) x_{1}^{4}+\left(-\frac{20 x_{3}}{x_{2}^{5}}+\frac{68}{x_{2}^{4}}+\frac{16}{x_{2}^{3} x_{3}}\right) x_{1}^{3}+\left(\frac{8 x_{3}^{2}}{x_{2}^{5}}-\frac{76 x_{3}}{x_{2}^{4}}-\frac{32}{x_{2}^{3}}-\frac{8}{x_{2}^{2} x_{3}}\right) x_{1}^{2} \\
& \left.+\left(\frac{28 x_{3}^{2}}{x_{2}^{4}}+\frac{16 x_{3}}{x_{2}^{3}}+\frac{16}{x_{2}^{2}}\right) x_{1}-\frac{8 x_{3}}{x_{2}^{2}}\right] b_{3}\left(x_{3}, x_{1}, x_{2}\right)+\text { permutations of } x_{1,2,3}, \tag{4.27}
\end{align*}
$$

and

$$
\begin{aligned}
& A_{C_{A}}= \\
& \frac{1}{s_{1}^{10}}\left[\frac{2 x_{1}^{14}}{x_{2} x_{3}^{4}}+\left(-\frac{18}{x_{3}^{4}}-\frac{11}{2 x_{3}^{3} x_{2}}\right) x_{1}^{13}+\left(\frac{66 x_{2}}{x_{3}^{4}}-\frac{43}{x_{3}^{3}}-\frac{1139}{18 x_{3}^{2} x_{2}}\right) x_{1}^{12}+\left(-\frac{114 x_{2}^{2}}{x_{3}^{4}}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{1223 x_{2}}{2 x_{3}^{3}}+\frac{88867}{90 x_{3}^{2}}+\frac{58627}{120 x_{3} x_{2}}\right) x_{1}^{11}+\left(\frac{42 x_{2}^{3}}{x_{3}^{4}}-\frac{2638 x_{2}^{2}}{x_{3}^{3}}-\frac{14036 x_{2}}{3 x_{3}^{2}}-\frac{28521}{5 x_{3}}\right) x_{1}^{10} \\
& +\left(\frac{198 x_{2}^{4}}{x_{3}^{4}}+\frac{12269 x_{2}^{3}}{2 x_{3}^{3}}+\frac{468832 x_{2}^{2}}{45 x_{3}^{2}}+\frac{142871 x_{2}}{10 x_{3}}+\frac{1484113}{180}\right) x_{1}^{9}+\left(-\frac{374 x_{2}^{5}}{x_{3}^{4}}\right. \\
& \left.-\frac{9029 x_{2}^{4}}{x_{3}^{3}}-\frac{216763 x_{2}^{3}}{18 x_{3}^{2}}-\frac{80428 x_{2}^{2}}{5 x_{3}}-\frac{361877 x_{2}}{18}\right) x_{1}^{8}+\left(\frac{198 x_{2}^{6}}{x_{3}^{4}}+\frac{19287 x_{2}^{5}}{2 x_{3}^{3}}\right. \\
& \left.+\frac{207617 x_{2}^{4}}{30 x_{3}^{2}}+\frac{1179863 x_{2}^{3}}{180 x_{3}}+\frac{253091 x_{2}^{2}}{45}+\frac{87881 x_{3} x_{2}}{60}\right) x_{1}^{7}+\left(-\frac{4674 x_{2}^{6}}{x_{3}^{3}}-\frac{23132 x_{2}^{5}}{15 x_{3}^{2}}\right. \\
& \left.+\frac{20311 x_{2}^{4}}{30 x_{3}}+\frac{497777 x_{2}^{3}}{90}+\frac{137896}{9} x_{3} x_{2}^{2}\right) x_{1}^{6}+\left(-\frac{9592 x_{2}^{5}}{15 x_{3}}-\frac{124343 x_{2}^{4}}{45}-\frac{383287}{30} x_{3} x_{2}^{3}\right. \\
& \left.\left.-\frac{26954}{5} x_{3}^{2} x_{2}^{2}\right) x_{1}^{5}+\left(\frac{130303}{30} x_{3} x_{2}^{4}+\frac{133141}{45} x_{3}^{2} x_{2}^{3}\right) x_{1}^{4}-\frac{122213}{180} x_{2}^{3} x_{3}^{3} x_{1}^{3}\right] \\
& +\frac{1}{s_{1}^{12}} \log \left(x_{1}\right)\left[\frac{2 x_{1}^{16}}{x_{2} x_{3}^{4}}+\left(-\frac{20}{x_{3}^{4}}-\frac{9}{x_{3}^{3} x_{2}}\right) x_{1}^{15}+\left(\frac{84 x_{2}}{x_{3}^{4}}-\frac{12}{x_{3}^{3}}-\frac{157}{3 x_{3}^{2} x_{2}}\right) x_{1}^{14}\right. \\
& +\left(-\frac{180 x_{2}^{2}}{x_{3}^{4}}+\frac{587 x_{2}}{x_{3}^{3}}+\frac{1129}{x_{3}^{2}}+\frac{3631}{6 x_{3} x_{2}}\right) x_{1}^{13}+\left(\frac{156 x_{2}^{3}}{x_{3}^{4}}-\frac{3200 x_{2}^{2}}{x_{3}^{3}}-\frac{6540 x_{2}}{x_{3}^{2}}\right. \\
& \left.-\frac{266383}{30 x_{3}}\right) x_{1}^{12}+\left(\frac{156 x_{2}^{4}}{x_{3}^{4}}+\frac{8891 x_{2}^{3}}{x_{3}^{3}}+\frac{269164 x_{2}^{2}}{15 x_{3}^{2}}+\frac{859471 x_{2}}{30 x_{3}}+\frac{172647}{10}\right) x_{1}^{11} \\
& +\left(-\frac{572 x_{2}^{5}}{x_{3}^{4}}-\frac{15444 x_{2}^{4}}{x_{3}^{3}}-\frac{134847 x_{2}^{3}}{5 x_{3}^{2}}-\frac{141134 x_{2}^{2}}{3 x_{3}}-\frac{193133 x_{2}}{3}\right) x_{1}^{10}+\left(\frac{572 x_{2}^{6}}{x_{3}^{4}}\right. \\
& \left.+\frac{18799 x_{2}^{5}}{x_{3}^{3}}+\frac{113873 x_{2}^{4}}{5 x_{3}^{2}}+\frac{214987 x_{2}^{3}}{5 x_{3}}+\frac{868598 x_{2}^{2}}{15}+\frac{146216 x_{3} x_{2}}{5}\right) x_{1}^{9}+\left(-\frac{18744 x_{2}^{6}}{x_{3}^{3}}\right. \\
& \left.-\frac{53592 x_{2}^{5}}{5 x_{3}^{2}}-\frac{855203 x_{2}^{4}}{30 x_{3}}-\frac{163327 x_{2}^{3}}{6}-\frac{180149}{15} x_{3} x_{2}^{2}\right) x_{1}^{8}+\left(-\frac{572 x_{2}^{8}}{x_{3}^{4}}+\frac{18645 x_{2}^{7}}{x_{3}^{3}}\right. \\
& \left.+\frac{12528 x_{2}^{6}}{5 x_{3}^{2}}+\frac{222251 x_{2}^{5}}{10 x_{3}}+\frac{46462 x_{2}^{4}}{5}-\frac{160283}{30} x_{3} x_{2}^{3}-\frac{614}{3} x_{3}^{2} x_{2}^{2}\right) x_{1}^{7}+\left(\frac{572 x_{2}^{9}}{x_{3}^{4}}\right. \\
& \left.-\frac{18612 x_{2}^{8}}{x_{3}^{3}}+\frac{27927 x_{2}^{7}}{5 x_{3}^{2}}-\frac{11636 x_{2}^{6}}{x_{3}}+\frac{85241 x_{2}^{5}}{15}+2927 x_{3} x_{2}^{4}-\frac{355583}{15} x_{3}^{2} x_{2}^{3}\right) x_{1}^{6} \\
& +\left(-\frac{156 x_{2}^{10}}{x_{3}^{4}}+\frac{15345 x_{2}^{9}}{x_{3}^{3}}-\frac{270499 x_{2}^{8}}{15 x_{3}^{2}}-\frac{5708 x_{2}^{7}}{5 x_{3}}-\frac{133547 x_{2}^{6}}{15}+\frac{43481}{5} x_{3} x_{2}^{5}\right. \\
& \left.+\frac{109974}{5} x_{3}^{2} x_{2}^{4}+\frac{7638}{5} x_{3}^{3} x_{2}^{3}\right) x_{1}^{5}+\left(-\frac{156 x_{2}^{11}}{x_{3}^{4}}-\frac{8912 x_{2}^{10}}{x_{3}^{3}}+\frac{118972 x_{2}^{9}}{5 x_{3}^{2}}-\frac{33899 x_{2}^{8}}{10 x_{3}}\right. \\
& \left.-\frac{64247 x_{2}^{7}}{10}-\frac{233566}{15} x_{3} x_{2}^{6}-\frac{120734}{15} x_{3}^{2} x_{2}^{5}+\frac{26741}{5} x_{3}^{3} x_{2}^{4}\right) x_{1}^{4}+\left(\frac{180 x_{2}^{12}}{x_{3}^{4}}+\frac{3257 x_{2}^{11}}{x_{3}^{3}}\right. \\
& -\frac{83028 x_{2}^{10}}{5 x_{3}^{2}}+\frac{350473 x_{2}^{9}}{30 x_{3}}+\frac{31979 x_{2}^{8}}{3}+\frac{22511}{10} x_{3} x_{2}^{7}+\frac{24296}{5} x_{3}^{2} x_{2}^{6}-\frac{7638}{5} x_{3}^{3} x_{2}^{5} \\
& \left.-\frac{26741}{5} x_{3}^{4} x_{2}^{4}\right) x_{1}^{3}+\left(-\frac{84 x_{2}^{13}}{x_{3}^{4}}-\frac{620 x_{2}^{12}}{x_{3}^{3}}+\frac{93641 x_{2}^{11}}{15 x_{3}^{2}}-\frac{19094 x_{2}^{10}}{3 x_{3}}-\frac{175277 x_{2}^{9}}{15}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{111089}{15} x_{3} x_{2}^{8}+\frac{614}{3} x_{3}^{2} x_{2}^{7}+\frac{56539}{3} x_{3}^{3} x_{2}^{6}-\frac{209188}{15} x_{3}^{4} x_{2}^{5}\right) x_{1}^{2}+\left(\frac{20 x_{2}^{14}}{x_{3}^{4}}+\frac{21 x_{2}^{13}}{x_{3}^{3}}\right. \\
& -\frac{1113 x_{2}^{12}}{x_{3}^{2}}-\frac{6261 x_{2}^{11}}{5 x_{3}}+\frac{298858 x_{2}^{10}}{15}-\frac{146216}{5} x_{3} x_{2}^{9}+4604 x_{3}^{2} x_{2}^{8}+\frac{9275}{3} x_{3}^{3} x_{2}^{7} \\
& \left.+\frac{189661}{15} x_{3}^{4} x_{2}^{6}-\frac{43481}{5} x_{3}^{5} x_{2}^{5}\right) x_{1}-\frac{172647 x_{2}^{11}}{10}+\frac{16102}{5} x_{2}^{6} x_{3}^{5}-\frac{28677}{10} x_{2}^{7} x_{3}^{4} \\
& +\frac{33123}{2} x_{2}^{8} x_{3}^{3}-\frac{231107}{5} x_{2}^{9} x_{3}^{2}+\frac{222269}{5} x_{2}^{10} x_{3}+\frac{20561 x_{2}^{12}}{10 x_{3}}+\frac{56 x_{2}^{13}}{x_{3}^{2}}+\frac{8 x_{2}^{14}}{x_{3}^{3}}-\frac{2 x_{2}^{15}}{x_{3}^{4}} \\
& +\frac{1}{x_{1}}\left(-\frac{3631 x_{2}^{13}}{6 x_{3}}+\frac{20470 x_{2}^{12}}{3}-\frac{164381}{6} x_{3} x_{2}^{11}+\frac{160228}{3} x_{3}^{2} x_{2}^{10}-\frac{328079}{6} x_{3}^{3} x_{2}^{9}\right. \\
& \left.+\frac{95690}{3} x_{3}^{4} x_{2}^{8}-\frac{42167}{2} x_{3}^{5} x_{2}^{7}+11636 x_{3}^{6} x_{2}^{6}\right)+\frac{1}{x_{1}^{2}}\left(\frac{157 x_{2}^{14}}{3 x_{3}}-1185 x_{2}^{13}+7653 x_{3} x_{2}^{12}\right. \\
& \left.-24187 x_{3}^{2} x_{2}^{11}+43575 x_{3}^{3} x_{2}^{10}-46569 x_{3}^{4} x_{2}^{9}+\frac{86255}{3} x_{3}^{5} x_{2}^{8}-8091 x_{3}^{6} x_{2}^{7}\right)+\frac{1}{x_{1}^{3}}\left(\frac{9 x_{2}^{15}}{x_{3}}\right. \\
& +4 x_{2}^{14}-608 x_{3} x_{2}^{13}+3820 x_{3}^{2} x_{2}^{12}-12148 x_{3}^{3} x_{2}^{11}+24356 x_{3}^{4} x_{2}^{10}-34144 x_{3}^{5} x_{2}^{9} \\
& \left.+37356 x_{3}^{6} x_{2}^{8}-18645 x_{3}^{7} x_{2}^{7}\right)+\frac{1}{x_{1}^{4}}\left(-\frac{2 x_{2}^{16}}{x_{3}}+22 x_{2}^{15}-104 x_{3} x_{2}^{14}+264 x_{3}^{2} x_{2}^{13}\right. \\
& \left.\left.-336 x_{3}^{3} x_{2}^{12}+728 x_{3}^{5} x_{2}^{10}-1144 x_{3}^{6} x_{2}^{9}+572 x_{3}^{7} x_{2}^{8}\right)\right]+\left(\frac{x_{1}}{x_{2} x_{3}}-\frac{2}{3 x_{3}}\right) b_{1} \\
& +\frac{1}{s_{1}^{12}} b_{2}\left[\frac{2 x_{1}^{18}}{x_{2} x_{3}^{5}}+\left(-\frac{26}{x_{3}^{5}}-\frac{12}{x_{3}^{4} x_{2}}\right) x_{1}^{17}+\left(\frac{150 x_{2}}{x_{3}^{5}}+\frac{44}{x_{3}^{4}}-\frac{38}{x_{3}^{3} x_{2}}\right) x_{1}^{16}+\left(-\frac{494 x_{2}^{2}}{x_{3}^{5}}\right.\right. \\
& \left.+\frac{484 x_{2}}{x_{3}^{4}}+\frac{1298}{x_{3}^{3}}+\frac{680}{x_{3}^{2} x_{2}}\right) x_{1}^{15}+\left(\frac{968 x_{2}^{3}}{x_{3}^{5}}-\frac{4800 x_{2}^{2}}{x_{3}^{4}}-\frac{10920 x_{2}}{x_{3}^{3}}-\frac{9728}{x_{3}^{2}}-\frac{3562}{x_{3} x_{2}}\right) x_{1}^{14} \\
& +\left(-\frac{936 x_{2}^{4}}{x_{3}^{5}}+\frac{20288 x_{2}^{3}}{x_{3}^{4}}+\frac{45320 x_{2}^{2}}{x_{3}^{3}}+\frac{51640 x_{2}}{x_{3}^{2}}+\frac{45942}{x_{3}}\right) x_{1}^{13}+\left(-\frac{392 x_{2}^{5}}{x_{3}^{5}}\right. \\
& \left.-\frac{52976 x_{2}^{4}}{x_{3}^{4}}-\frac{111840 x_{2}^{3}}{x_{3}^{3}}-\frac{142016 x_{2}^{2}}{x_{3}^{2}}-\frac{151580 x_{2}}{x_{3}}-77532\right) x_{1}^{12}+\left(\frac{2600 x_{2}^{6}}{x_{3}^{5}}\right. \\
& \left.+\frac{96096 x_{2}^{5}}{x_{3}^{4}}+\frac{176176 x_{2}^{4}}{x_{3}^{3}}+\frac{225680 x_{2}^{3}}{x_{3}^{2}}+\frac{269538 x_{2}^{2}}{x_{3}}+308338 x_{2}\right) x_{1}^{11}+\left(-\frac{3588 x_{2}^{7}}{x_{3}^{5}}\right. \\
& \left.-\frac{130624 x_{2}^{6}}{x_{3}^{4}}-\frac{180648 x_{2}^{5}}{x_{3}^{3}}-\frac{215488 x_{2}^{4}}{x_{3}^{2}}-\frac{270076 x_{2}^{3}}{x_{3}}-334384 x_{2}^{2}-178500 x_{3} x_{2}\right) x_{1}^{10} \\
& +\left(\frac{1716 x_{2}^{8}}{x_{3}^{5}}+\frac{145288 x_{2}^{7}}{x_{3}^{4}}+\frac{117832 x_{2}^{6}}{x_{3}^{3}}+\frac{136136 x_{2}^{5}}{x_{3}^{2}}+\frac{168544 x_{2}^{4}}{x_{3}}+199896 x_{2}^{3}\right. \\
& \left.+190384 x_{3} x_{2}^{2}\right) x_{1}^{9}+\left(-\frac{73788 x_{2}^{8}}{x_{3}^{4}}-\frac{37180 x_{2}^{7}}{x_{3}^{3}}-\frac{91520 x_{2}^{6}}{x_{3}^{2}}-\frac{94408 x_{2}^{5}}{x_{3}}-88660 x_{2}^{4}\right. \\
& \left.-33368 x_{3} x_{2}^{3}-7484 x_{3}^{2} x_{2}^{2}\right) x_{1}^{8}+\left(\frac{44616 x_{2}^{7}}{x_{3}^{2}}+\frac{38532 x_{2}^{6}}{x_{3}}+44616 x_{2}^{5}+3080 x_{3} x_{2}^{4}\right. \\
& \left.+16620 x_{3}^{2} x_{2}^{3}\right) x_{1}^{7}+\left(-12272 x_{2}^{6}-1208 x_{3} x_{2}^{5}-41560 x_{3}^{2} x_{2}^{4}-19724 x_{3}^{3} x_{2}^{3}\right) x_{1}^{6}
\end{aligned}
$$

$$
\begin{align*}
& \left.+\left(16360 x_{3}^{2} x_{2}^{5}+10096 x_{3}^{3} x_{2}^{4}\right) x_{1}^{5}+3956 x_{2}^{4} x_{3}^{4} x_{1}^{4}\right]+\left[\frac{2 x_{1}^{5}}{x_{2}^{5} x_{3}}+\frac{14 x_{1}^{4}}{x_{2}^{4} x_{3}}+\left(-\frac{6 x_{3}}{x_{2}^{5}}-\frac{34}{x_{2}^{4}}\right.\right. \\
& \left.\left.-\frac{12}{x_{2}^{3} x_{3}}\right) x_{1}^{3}+\left(\frac{4 x_{3}^{2}}{x_{2}^{5}}+\frac{18 x_{3}}{x_{2}^{4}}+\frac{24}{x_{2}^{3}}+\frac{4}{x_{2}^{2} x_{3}}\right) x_{1}^{2}+\left(\frac{2 x_{3}^{2}}{x_{2}^{4}}-\frac{12 x_{3}}{x_{2}^{3}}-\frac{4}{x_{2}^{2}}\right) x_{1}\right] b_{3}\left(x_{3}, x_{1}, x_{2}\right) \tag{4.28}
\end{align*}
$$

+ permutations of $x_{1,2,3}$.
The NLP collinear function space under \mathbb{S}_{3} permutation symmetry is the same as LP, which is composed of one $\operatorname{logarithm} \log \left(x_{1}\right)$ and three transcendental weight-two functions:

$$
\begin{equation*}
b_{1}=\pi^{2}, \quad b_{2}=\frac{2 i D_{2}^{-}(z)}{s_{1}}, \quad b_{3}\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{Li}_{2}\left(1-\frac{x_{2}}{x_{1}}\right)+\frac{1}{2} \log \left(\frac{x_{1}}{x_{3}}\right) \log \left(\frac{x_{1}}{x_{2}}\right) \tag{4.29}
\end{equation*}
$$

with Bloch-Wigner function $D_{2}^{-}(z)$ defined in eq. (4.7) and z introduced in eq. (2.16).
The simplicity of the above NLP results encourages us to go to NNLP and beyond. Using the second method, we expand the integrand to $\mathrm{N}^{10} \mathrm{LP}$. Interestingly, we find that for n_{f} contribution all polylogarithmic functions disappear at $\mathrm{N}^{3} \mathrm{LP}$ and beyond, which correspond to positive powers of λ in eq. (4.24). In particular, we present the first few terms:

$$
\begin{aligned}
A_{n_{f}}^{\mathrm{N}^{3} \mathrm{LP}}= & \frac{32 x_{1}}{315}+\frac{133 x_{1}^{2}+134 x_{2} x_{1}}{1260 x_{3}}+\frac{160 x_{1}^{2} x_{2}-160 x_{1}^{3}}{1260 x_{3}^{2}}+\text { permutations of } x_{1,2,3}, \\
A_{n_{f}}^{\mathrm{N}^{4} \mathrm{LP}}= & \pi^{2}\left(\frac{16 x_{1} x_{2}}{3}-4 x_{1}^{2}\right)+\frac{5232951 x_{1}^{2}-6950496 x_{1} x_{2}}{132300}+\frac{8050 x_{1}^{3}+21350 x_{2} x_{1}^{2}}{132300 x_{3}} \\
& +\frac{-12600 x_{1}^{4}+6300 x_{2} x_{1}^{3}+6300 x_{2}^{2} x_{1}^{2}}{132300 x_{3}^{2}}+\text { permutations of } x_{1,2,3},
\end{aligned}
$$

$$
A_{n_{f}}^{\mathrm{N}^{5} \mathrm{LP}}=\pi^{2}\left(-12 x_{1}^{3}+\frac{56}{3} x_{2} x_{1}^{2}+\frac{16}{3} x_{2} x_{3} x_{1}\right)-\frac{2 x_{1}^{5}}{27 x_{3}^{2}}+\left(\frac{2 x_{2}}{135 x_{3}^{2}}+\frac{71}{1890 x_{3}}\right) x_{1}^{4}
$$

$$
+\left(\frac{8 x_{2}^{2}}{135 x_{3}^{2}}+\frac{551 x_{2}}{4725 x_{3}}+\frac{2090201}{17640}\right) x_{1}^{3}+\left(\frac{8 x_{2}^{2}}{105 x_{3}}-\frac{6087374 x_{2}}{33075}\right) x_{1}^{2}
$$

$$
-\frac{248539 x_{2} x_{3} x_{1}}{4725}+\text { permutations of } x_{1,2,3},
$$

$$
A_{n_{f}}^{\mathrm{N}_{\mathrm{LP}}}=\pi^{2}\left(-40 x_{1}^{4}+\frac{232}{3} x_{2} x_{1}^{3}-\frac{16}{3} x_{2}^{2} x_{1}^{2}+32 x_{2} x_{3} x_{1}^{2}\right)-\frac{8 x_{1}^{6}}{135 x_{3}^{2}}+\frac{29 x_{1}^{5}}{1188 x_{3}}
$$

$$
+\left(\frac{8 x_{2}^{2}}{225 x_{3}^{2}}+\frac{503 x_{2}}{5940 x_{3}}+\frac{127687543}{323400}\right) x_{1}^{4}+\left(\frac{16 x_{2}^{3}}{675 x_{3}^{2}}+\frac{1901 x_{2}^{2}}{14850 x_{3}}-\frac{740347847 x_{2}}{970200}\right) x_{1}^{3}
$$

$$
\begin{equation*}
+\left(\frac{6395408 x_{2}^{2}}{121275}-\frac{114864394 x_{2} x_{3}}{363825}\right) x_{1}^{2}+\text { permutations of } x_{1,2,3} . \tag{4.30}
\end{equation*}
$$

Only π^{2} remains at higher powers of the n_{f} channel, while in other color channels, the polylogarithmic functions still show up. The simplicity may imply that there are some hidden symmetries, we leave it to future study.

4.3 Squeezed limit

Another interesting kinematic region is the squeezed limit: $x_{1} \rightarrow 0, x_{2} \sim x_{3} \sim \eta$ and its permutations. Using our analytic formula for EEEC, it is straightforward to extract this
limit. At LP, we find,

$$
\begin{equation*}
\frac{1}{\sigma_{\text {tot }}} \frac{d^{3} \sigma}{d x_{1} d x_{2} d x_{3}} \stackrel{x_{1} \rightarrow 0, x_{2,3} \sim \eta}{\approx}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \frac{1}{4 \pi \sqrt{-s_{2}^{2}}}\left(\frac{B(\eta)}{x_{1}}+\mathcal{O}\left(x_{1}^{0}\right)\right) \tag{4.31}
\end{equation*}
$$

with

$$
\begin{align*}
B(\eta)= & C_{F} n_{f} T_{F}\left(\frac{4\left(28 \eta^{2}-82 \eta+63\right) \log (1-\eta)}{15 \eta^{6}}-\frac{67 \eta^{3}-702 \eta^{2}+1362 \eta-756}{45(1-\eta) \eta^{5}}\right) \\
& +C_{F}^{2}\left(-\frac{6\left(12 \eta^{3}-41 \eta^{2}+40 \eta-9\right) \log (1-\eta)}{(1-\eta) \eta^{6}}-\frac{31 \eta^{3}-288 \eta^{2}+426 \eta-108}{2(1-\eta) \eta^{5}}\right) \\
& +C_{A} C_{F}\left(\frac{4\left(166 \eta^{2}-544 \eta+441\right) \log (1-\eta)}{15 \eta^{6}}-\frac{349 \eta^{3}-4374 \eta^{2}+9174 \eta-5292}{45(1-\eta) \eta^{5}}\right) . \tag{4.32}
\end{align*}
$$

The functional form is similar to $\mathcal{N}=4 \mathrm{SYM}$, made of a single $\operatorname{logarithm} \log (1-\eta)$.
In fact, there are ambiguities in the definition of the squeezed limit. In the above expansion, we apply the isosceles constraint first and take the zero limit of the third angular distance. However, this is not a unique choice since we can start with other configuration constraints. The ambiguity obtains a geometry interpretation if we study the squeezed limit under the triple collinear limit. As observed in refs. [41, 42], the squeezed limit is accompanied by an angular dependence. If we adopt the z variable defined in eq. (2.16), one of the squeezed limits is $z \rightarrow 0$, and the expansion reads

$$
\begin{align*}
\frac{1}{\sigma_{\text {tot }}} \frac{d^{3} \sigma}{d x_{1} d x_{2} d x_{3}} \approx & \left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \frac{1}{4 \pi \sqrt{-s_{2}^{2}}}\left[\frac{C_{F}^{2}}{x_{3}}\left(\frac{16}{5 r^{2}}+\frac{8\left(1+t^{2}\right)}{5 r t}\right)\right. \\
& +\frac{C_{F} C_{A}}{x_{3}}\left(\frac{5+273 t^{2}+5 t^{4}}{225 r^{2} t^{2}}+\frac{10+273 t^{2}+273 t^{4}+10 t^{6}}{450 r t^{3}}\right) \\
& +\frac{C_{F} T_{F} n_{f}}{x_{3}}\left(-\frac{10-39 t^{2}+10 t^{4}}{225 r^{2} t^{2}}+\frac{-20+39 t^{2}+39 t^{4}-20 t^{6}}{450 r t^{3}}\right) \\
& +C_{F} n_{f} T_{F}\left(-\frac{24 t^{4}-31 t^{2}+24}{225 r^{2} t^{2}}-\frac{4(t-1)^{2}\left(t^{2}+1\right)(t+1)^{2}}{75 r t^{3}}\right) \\
& +C_{A} C_{F}\left(\frac{12 t^{4}+367 t^{2}+12}{225 r^{2} t^{2}}+\frac{2(t-1)^{2}\left(t^{2}+1\right)(t+1)^{2}}{75 r t^{3}}\right) \\
& \left.+\frac{47 C_{F}^{2}}{10 r^{2}}+\mathcal{O}\left(x_{3}^{0} r^{0}\right)\right] \tag{4.33}
\end{align*}
$$

with r and $t=e^{i \theta}$ introduced in figure 8a. Our definition $x_{1} \rightarrow 0, x_{2} \sim x_{3} \sim \eta$ then corresponds to approaching $z=0$ via the path $\theta=\frac{\pi}{2}$. In other words, the z point is forced to fall into a circle located in $(1,0)$ with the radius 1 (See figure 8 b). This gives

$$
\begin{equation*}
\frac{1}{\sigma_{\text {tot }}} \frac{d^{3} \sigma}{d x_{1} d x_{2} d x_{3}} \approx\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \frac{1}{4 \pi \sqrt{-s_{2}^{2}} x_{1} \eta}\left(\frac{59 C_{F} T_{F} n_{f}}{225}+\frac{16 C_{F}^{2}}{5}+\frac{263 C_{F} C_{A}}{225}\right)+\mathcal{O}\left(\eta^{0} x_{1}^{0}\right) \tag{4.34}
\end{equation*}
$$

Figure 8. (a) The triangle formed by the three angular distance $\sqrt{x_{1}}, \sqrt{x_{2}}$ and $\sqrt{x_{3}}$ under the triple collinear limit. We introduce the distance r from the origin to the top point and the angle θ between this side and the x-axis. (b). The squeezed limit with isosceles constraints $x_{1} \rightarrow 0, x_{2,3} \sim \eta$. In the triple collinear limit, this path becomes a circle $|z-1|=1$.
which agrees with the $\eta \rightarrow 0$ limit of $B(\eta)$. Another choice of the path is through $\theta=\frac{\pi}{4}$, as discussed in ref. [3], with which the expansion is different:

$$
\begin{equation*}
\frac{1}{\sigma_{\mathrm{tot}}} \frac{d^{3} \sigma}{d x_{1} d x_{2} d x_{3}} \approx\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \frac{1}{4 \pi \sqrt{-s_{2}^{2}} x_{1} \eta}\left(\frac{13 C_{F} T_{F} n_{f}}{75}+\frac{16 C_{F}^{2}}{5}+\frac{91 C_{F} C_{A}}{75}\right)+\mathcal{O}\left(\eta^{-1} x_{1}^{-1 / 2}\right) . \tag{4.35}
\end{equation*}
$$

Interestingly, we get identical results for eq. (4.34) and eq. (4.35) if we take the $\mathcal{N}=1$ SYM limit by setting $T_{F}=1 / 2, n_{f}=N_{c}, C_{F}=N_{c}, C_{A}=N_{c}$. It can be explained by looking at eq. (4.33), there the expression becomes t-independent for the squeezed limit at LP, i.e., the coefficient of $1 / r^{2}$.

While extracting the higher power corrections in the squeezed limit is pretty straightforward once a unique definition is given, the geometry interpretation is invalid beyond LP. Nevertheless, our result indicates studying the overlap among kinematic limits themselves (triple collinear limit and squeezed limit in this case) is also theoretically important. The structure of singularities becomes clear in such a joint kinematic limit and they will be useful in investigating jet substructure. It is also interesting to ask how we can organize the power corrections under joint kinematic limits in general. We leave these possible directions for future studies.

5 Summary

The energy correlator is one of the most important event shape observables widely used in both precision QCD and collider physics. Proposed in the 1970s, EEC has been playing an important role in various aspects of QCD measurements and jet physics studies, such as the precise measurement of strong coupling α_{s}. Three-point energy correlator, which captures more information about the scattering events, can be more powerful for probing jet substructure.

In this paper, we calculate the three-point energy correlator at leading order in electronpositron collisions and initialize the studies of EEEC kinematics. Instead of rewriting measurement functions as cut propagators and using IBP reduction, we approach the calculation with direct phase space integration. With appropriate parameterization of the phase space $d P S_{4}$ and kinematic space $x_{1,2,3}$, we factorize out the Heaviside Θ function from the integral and rationalize all square roots, which allows performing the remaining integration. The QCD result is very similar to $\mathcal{N}=4$ SYM EEEC, in the sense that they share the same function space that is composed of polylogarithmic functions up to transcendental weight-two.

The simplification of the leading order EEEC involves two steps. Since HyperInt expresses the result in terms of GPLs, we need to convert it into polylogarithms and modify their arguments with dilogarithm identities, in order to meet Mathematica's branch prescription. Then we construct the raw function space by collecting rational coefficients and map it to $\mathcal{N}=4$ SYM EEEC function space in ref. [5]. The linear relations between these two function spaces allow us to reduce the leading order EEEC in terms of the latter function space. With the simple function space as well as simplified rational coefficients, the file size of our analytic formula is small and the numerical evaluation is very fast. The simplicity strongly encourages us to analytically compute EEEC for gluon-initiated or $b \bar{b}$-initiated Higgs decays in the near future.

Given the multiple angular distance dependence, the EEEC kinematic space becomes more interesting. Various kinematic limits remain unexplored. In section 4, we discuss the equilateral limit $x_{1}=x_{2}=x_{3}=x$, triple collinear limit $x_{1} \sim x_{2} \sim x_{3} \rightarrow 0$ and squeezed limit $x_{1} \sim 0, x_{2} \sim x_{3} \sim \eta$, and the analytic results in all limits become very simple. Under equilateral limit, the angular distance x is cutoff at $x=\frac{3}{4}$, which corresponds to the coplanar configuration. Regarding the triple collinear limit, we present a method that allows us to directly compute the next-to-leading power corrections from expanding the EEEC integrand. The NLP result is simple and shares the same collinear function space as the LP. We also discuss the overlap between the triple collienar limit and the squeezed limit, where the ambiguity of the squeezed limit definition receives a geometry interpretation.

In fact, EEEC provides a large playground for studying factorization as well as its violation for different configurations. Using our analytic result, it is straightforward to extract the needed ingredients like jet functions. Deriving the factorization theorem for specific limits and performing resummation for EEEC could be theoretically interesting and phenomenologically important. The simple mathematical structure also makes EEEC a good candidate for understanding NLP corrections and beyond. While the resummation in the triple collinear limit is in progress, the equilateral limit could be a window to investigate symmetric trijet events in $e^{+} e^{-}$collisions. Furthermore, all these future directions can be generalized to the analysis at hadron colliders and provide new opportunities for studying Higgs phenomenology and top physics.

Acknowledgments

We are grateful to Ian Moult, Kai Yan, and Hua Xing Zhu for their generous help and collaboration at the initial stages of this project. We thank Arindam Bhattacharya, Hao

Chen, Xugan Chen, Wen Chen, Aurélien Dersy, Thomas Gehrmann, Yibei Li, Andreas von Manteuffel, Matthew Schwartz, Vladyslav Shtabovenko, Zhen Xu, and Yu Jiao Zhu for enlightening discussions on both the calculation and physics applications of energy correlators. We also thank Zhejiang University for its hospitality while most of this work was performed. T.-Z. Yang was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme grant agreement 101019620 (ERC Advanced Grant TOPUP), and by the Swiss National Science Foundation (SNF) under contract 200020-204200.

A Usage of supplementary material

In the supplementary material, we provide all the results in this paper. The usage of each file is as follows.

- EEECinQCD.nb: the main Mathematica notebook. We import other files in the notebook and define a set of commands to compute EEEC. Explicitly,
- eeec[\{x1,x2,x3\}] gives the value of EEEC using the analytic formula. The options "Color" and "Parton" can be used to separate different color structures or partonic subprocesses.
- eeecNum[\{x1, $x 2, x 3\}]$ gives the value of EEEC using the one-fold numerical integral. We provide the same "Color" and "Parton" options.
- eeecEqu[x] gives the value of equilateral EEEC using the analytic formula.
- eeecCollLP [\{x1,x2, x3\}] and eeecCollNLP[\{x1,x2,x3\}] give the value of collinear EEEC at leading power and next-to-leading power respectively.
- Numerical.wl: the one-fold numerical integral for EEEC in QCD, where the integrand is saved in the file EEEConefold. The main function is eeecNum.
- EEECanalyticfull: the full analytic expression of EEEC in QCD.
- eeecQCD: the main formula.
- baseRules: the transcendental weight-two function space.
- prefactor: the overall normalization factor.
- stoxRules: the replacement rules from $s_{1,2}$ to $x_{1,2,3}$.
- EEECequilateral: the analytic expression of equilateral EEEC in QCD.
- eeecQCDEqu: the main formula.
- prefactorEqu: the overall normalization factor.
- bwrep: the replacement rule for Bloch-Wigner functions in equilateral EEEC.
- EEECcollinearLP: the analytic expression of collinear EEEC in QCD at LP [3].
- eeecQCDCollLP: the main formula.
- CollLPBaseRules: the transcendental weight-two collinear function space.
- EEECcollinearNLP: similar to EEECcollinearLP.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. SCOAP ${ }^{3}$ supports the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in electron-Positron Annihilation in Quantum Chromodynamics: Asymptotically Free Perturbation Theory, Phys. Rev. D 19 (1979) 2018 [InSPIRE].
[2] C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in electron Positron Annihilation: Testing QCD, Phys. Rev. Lett. 41 (1978) 1585 [INSPIRE].
[3] H. Chen, M.-X. Luo, I. Moult, T.-Z. Yang, X. Zhang and H.X. Zhu, Three point energy correlators in the collinear limit: symmetries, dualities and analytic results, JHEP 08 (2020) 028 [arXiv: 1912.11050] [inSPIRE].
[4] H. Chen, I. Moult, X. Zhang and H.X. Zhu, Rethinking jets with energy correlators: Tracks, resummation, and analytic continuation, Phys. Rev. D 102 (2020) 054012 [arXiv:2004.11381] [INSPIRE].
[5] K. Yan and X. Zhang, Three-Point Energy Correlator in $N=4$ Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 129 (2022) 021602 [arXiv:2203.04349] [inSPIRE].
[6] L.J. Dixon, M.-X. Luo, V. Shtabovenko, T.-Z. Yang and H.X. Zhu, Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD, Phys. Rev. Lett. 120 (2018) 102001 [arXiv: 1801.03219] [inSPIRE].
[7] M.-X. Luo, V. Shtabovenko, T.-Z. Yang and H.X. Zhu, Analytic Next-To-Leading Order Calculation of Energy-Energy Correlation in Gluon-Initiated Higgs Decays, JHEP 06 (2019) 037 [arXiv: 1903.07277] [inSPIRE].
[8] J. Gao, V. Shtabovenko and T.-Z. Yang, Energy-energy correlation in hadronic Higgs decays: analytic results and phenomenology at NLO, JHEP 02 (2021) 210 [arXiv:2012.14188] [inSPIRE].
[9] A.V. Belitsky, S. Hohenegger, G.P. Korchemsky, E. Sokatchev and A. Zhiboedov, Energy-Energy Correlations in $N=4$ Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 112 (2014) 071601 [arXiv:1311.6800] [InSPIRE].
[10] J.M. Henn, E. Sokatchev, K. Yan and A. Zhiboedov, Energy-energy correlation in $N=4$ super Yang-Mills theory at next-to-next-to-leading order, Phys. Rev. D 100 (2019) 036010 [arXiv:1903.05314] [INSPIRE].
[11] C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [inSPIRE].
[12] C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in $\vec{B} \rightarrow X_{s} \gamma$ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [InSPIRE].
[13] C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
[14] C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [inSPIRE].
[15] M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [inSPIRE].
[16] L.J. Dixon, I. Moult and H.X. Zhu, Collinear limit of the energy-energy correlator, Phys. Rev. D 100 (2019) 014009 [arXiv:1905.01310] [INSPIRE].
[17] G.P. Korchemsky, Energy correlations in the end-point region, JHEP 01 (2020) 008 [arXiv:1905.01444] [inSPIRE].
[18] J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. 213 (1983) 545] [INSPIRE].
[19] S.D. Ellis, D.G. Richards and W.J. Stirling, Fixed Order Perturbation Theory and Leading Logarithms, Phys. Lett. B 136 (1984) 99 [InSPIRE].
[20] D. de Florian and M. Grazzini, The Back-to-back region in $e^{+} e^{-}$energy-energy correlation, Nucl. Phys. B 704 (2005) 387 [hep-ph/0407241] [inSPIRE].
[21] Z. Tulipánt, A. Kardos and G. Somogyi, Energy-energy correlation in electron-positron annihilation at NNLL + NNLO accuracy, Eur. Phys. J. C 77 (2017) 749 [arXiv:1708.04093] [inSPIRE].
[22] I. Moult, G. Vita and K. Yan, Subleading power resummation of rapidity logarithms: the energy-energy correlator in $\mathcal{N}=4$ SYM, JHEP 07 (2020) 005 [arXiv:1912.02188] [INSPIRE].
[23] I. Moult and H.X. Zhu, Simplicity from Recoil: The Three-Loop Soft Function and Factorization for the Energy-Energy Correlation, JHEP 08 (2018) 160 [arXiv:1801.02627] [INSPIRE].
[24] M.A. Ebert, B. Mistlberger and G. Vita, The Energy-Energy Correlation in the back-to-back limit at $N^{3} L O$ and $N^{3} L L^{\prime}, ~ J H E P ~ 08(2021) 022$ [arXiv:2012.07859] [INSPIRE].
[25] I. Moult, H.X. Zhu and Y.J. Zhu, The Four Loop QCD Rapidity Anomalous Dimension, arXiv:2205.02249 [INSPIRE].
[26] C. Duhr, B. Mistlberger and G. Vita, The Four-Loop Rapidity Anomalous Dimension and Event Shapes to Fourth Logarithmic Order, arXiv:2205. 02242 [InSPIRE].
[27] A. Gao, H.T. Li, I. Moult and H.X. Zhu, Precision QCD Event Shapes at Hadron Colliders: The Transverse Energy-Energy Correlator in the Back-to-Back Limit, Phys. Rev. Lett. 123 (2019) 062001 [arXiv:1901.04497] [inSPIRE].
[28] W. Chen, Y. Li, Z. Xu, X. Zhang and H.X. Zhu, Projected three-point energy correlator at $n n l l$, to be published soon.
[29] P.T. Komiske, I. Moult, J. Thaler and H.X. Zhu, Analyzing N-point Energy Correlators Inside Jets with CMS Open Data, arXiv:2201. 07800 [inSPIRE].
[30] Y. Li, I. Moult, S.S. van Velzen, W.J. Waalewijn and H.X. Zhu, Extending Precision Perturbative QCD with Track Functions, Phys. Rev. Lett. 128 (2022) 182001 [arXiv:2108.01674] [inSPIRE].
[31] M. Jaarsma, Y. Li, I. Moult, W. Waalewijn and H.X. Zhu, Renormalization group flows for track function moments, JHEP 06 (2022) 139 [arXiv:2201.05166] [INSPIRE].
[32] H.-M. Chang, M. Procura, J. Thaler and W.J. Waalewijn, Calculating Track-Based Observables for the LHC, Phys. Rev. Lett. 111 (2013) 102002 [arXiv:1303.6637] [INSPIRE].
[33] J. Holguin, I. Moult, A. Pathak and M. Procura, A New Paradigm for Precision Top Physics: Weighing the Top with Energy Correlators, arXiv:2201.08393 [inSPIRE].
[34] D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [inSPIRE].
[35] N.A. Sveshnikov and F.V. Tkachov, Jets and quantum field theory, Phys. Lett. B 382 (1996) 403 [hep-ph/9512370] [INSPIRE].
[36] G.P. Korchemsky, G. Oderda and G.F. Sterman, Power corrections and nonlocal operators, AIP Conf. Proc. 407 (1997) 988 [hep-ph/9708346] [inSPIRE].
[37] G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization, Nucl. Phys. B555 (1999) 335 [hep-ph/9902341] [inSPIRE].
[38] A.V. Belitsky, G.P. Korchemsky and G.F. Sterman, Energy flow in QCD and event shape functions, Phys. Lett. B 515 (2001) 297 [hep-ph/0106308] [InSPIRE].
[39] M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and conformal colliders, JHEP 01 (2021) 128 [arXiv:1905.01311] [INSPIRE].
[40] C.-H. Chang, M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Transverse spin in the light-ray OPE, JHEP 05 (2022) 059 [arXiv:2010.04726] [INSPIRE].
[41] H. Chen, I. Moult and H.X. Zhu, Spinning Gluons from the QCD Light-Ray OPE, arXiv:2104.00009 [INSPIRE].
[42] H. Chen, I. Moult and H.X. Zhu, Quantum Interference in Jet Substructure from Spinning Gluons, Phys. Rev. Lett. 126 (2021) 112003 [arXiv:2011.02492] [inSPIRE].
[43] S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [inSPIRE].
[44] D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].
[45] H. Chen, I. Moult, J. Sandor and H.X. Zhu, Celestial Blocks and Transverse Spin in the Three-Point Energy Correlator, arXiv: 2202.04085 [INSPIRE].
[46] C.-H. Chang and D. Simmons-Duffin, Three-point energy correlators and the celestial block expansion, arXiv:2202. 04090 [INSPIRE].
[47] H. Chen, I. Moult, J. Thaler and H.X. Zhu, Non-Gaussianities in collider energy flux, JHEP 07 (2022) 146 [arXiv:2205.02857] [INSPIRE].
[48] K. Lee, B. Meçaj and I. Moult, Conformal Colliders Meet the LHC, arXiv:2205.03414 [INSPIRE].
[49] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].
[50] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [inSPIRE].
[51] T. Gehrmann and E. Remiddi, Two loop master integrals for $\gamma^{*} \rightarrow 3$ jets: The Planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [inSPIRE].
[52] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
[53] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [inSPIRE].
[54] A.V. Smirnov, Algorithm FIRE - Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].
[55] A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].
[56] P. Nogueira, Automatic feynman graph generation, J. Comput. Phys. 105 (1993) 279.
[57] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [inSPIRE].
[58] T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [inSPIRE].
[59] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
[60] R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].
[61] V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
[62] A. Pak, The Toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques, J. Phys. Conf. Ser. 368 (2012) 012049 [arXiv:1111.0868] [inSPIRE].
[63] A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Four particle phase space integrals in massless $Q C D$, Nucl. Phys. B 682 (2004) 265 [hep-ph/0311276] [INSPIRE].
[64] E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun. 188 (2015) 148 [arXiv:1403.3385] [INSPIRE].
[65] A.B. Goncharov, Multiple polylogarithms and mixed tate motives, math/0103059.
[66] A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [inSPIRE].
[67] J.M. Borwein, D.M. Bradley, D.J. Broadhurst and P. Lisonek, Special values of multiple polylogarithms, Trans. Am. Math. Soc. 353 (2001) 907 [math/9910045] [inSPIRE].
[68] C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [inSPIRE].
[69] C. Duhr and F. Dulat, PolyLogTools - polylogs for the masses, JHEP 08 (2019) 135 [arXiv:1904.07279] [inSPIRE].
[70] H. Frellesvig, D. Tommasini and C. Wever, On the reduction of generalized polylogarithms to $L i_{n}$ and $L i_{2,2}$ and on the evaluation thereof, JHEP 03 (2016) 189 [arXiv:1601.02649] [INSPIRE].
[71] M. Heller and A. von Manteuffel, MultivariateApart: Generalized partial fractions, Comput. Phys. Commun. 271 (2022) 108174 [arXiv:2101.08283] [INSPIRE].
[72] Z. Wojtkowiak, Functional equations of iterated integrals with regular singularities, Nagoya Math. J. 142 (1996) 145.
[73] H.R.P. Ferguson, D.H. Bailey and S. Arno, Analysis of pslq, an integer relation finding algorithm, Math. Comput. 68 (1999) 351.
[74] D.H. Bailey and D.J. Broadhurst, Parallel integer relation detection: Techniques and applications, Math. Comput. 70 (2001) 1719 [math/9905048] [INSPIRE].
[75] C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2002) 1 [cs/0004015].
[76] Y. Wang, L.L. Yang and B. Zhou, FastGPL: a $C++$ library for fast evaluation of generalized polylogarithms, arXiv:2112.04122 [inSPIRE].
[77] L.D. Landau, On analytic properties of vertex parts in quantum field theory, Nucl. Phys. 13 (1959) 181 [INSPIRE].
[78] F.C.S. Brown, On the periods of some Feynman integrals, arXiv:0910.0114 [INSPIRE].
[79] J.L. Bourjaily, H. Hannesdottir, A.J. McLeod, M.D. Schwartz and C. Vergu, Sequential Discontinuities of Feynman Integrals and the Monodromy Group, JHEP 01 (2021) 205 [arXiv:2007.13747] [INSPIRE].
[80] H.S. Hannesdottir, A.J. McLeod, M.D. Schwartz and C. Vergu, Implications of the Landau equations for iterated integrals, Phys. Rev. D 105 (2022) L061701 [arXiv:2109.09744] [INSPIRE].
[81] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [InSPIRE].
[82] A. Dersy, M.D. Schwartz and X. Zhang, Simplifying Polylogarithms with Machine Learning, arXiv:2206.04115 [inSPIRE].
[83] S. Catani and M.H. Seymour, The Dipole formalism for the calculation of $Q C D$ jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
[84] S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
[85] Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [inSPIRE].
[86] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
[87] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
[88] C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3, arXiv:2203.11601 [INSPIRE].
[89] A. Bhattacharya, M.D. Schwartz and X. Zhang, Sudakov Shoulder Resummation for Thrust and Heavy Jet Mass, arXiv:2205.05702 [INSPIRE].
[90] V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [inSPIRE].
[91] A. Banfi, Y.L. Dokshitzer, G. Marchesini and G. Zanderighi, Near-to-planar three jet events in and beyond QCD perturbation theory, Phys. Lett. B 508 (2001) 269 [hep-ph/0010267] [INSPIRE].
[92] A. Banfi, Y.L. Dokshitzer, G. Marchesini and G. Zanderighi, $Q C D$ analysis of D parameter in near to planar three jet events, JHEP 05 (2001) 040 [hep-ph/0104162] [INSPIRE].
[93] A.J. Larkoski and A. Procita, New Insights on an Old Problem: Resummation of the D-parameter, JHEP 02 (2019) 104 [arXiv:1810.06563] [INSPIRE].
[94] S. Catani and B.R. Webber, Infrared safe but infinite: Soft gluon divergences inside the physical region, JHEP 10 (1997) 005 [hep-ph/9710333] [inSPIRE].
[95] T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].
[96] T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev. 133 (1964) B1549 [inSPIRE].
[97] I. Balitsky and A. Tarasov, Power corrections to TMD factorization for Z-boson production, JHEP 05 (2018) 150 [arXiv:1712.09389] [inSPIRE].
[98] M.A. Ebert, I. Moult, I.W. Stewart, F.J. Tackmann, G. Vita and H.X. Zhu, Subleading power rapidity divergences and power corrections for q_{T}, JHEP 04 (2019) 123 [arXiv:1812.08189] [inSPIRE].
[99] L. Cieri, C. Oleari and M. Rocco, Higher-order power corrections in a transverse-momentum cut for colour-singlet production at NLO, Eur. Phys. J. C 79 (2019) 852 [arXiv:1906.09044] [INSPIRE].
[100] M.A. Ebert, J.K.L. Michel, I.W. Stewart and F.J. Tackmann, Drell-Yan q_{T} resummation of fiducial power corrections at $N^{3} L L$, JHEP 04 (2021) 102 [arXiv:2006.11382] [INSPIRE].
[101] V. Moos and A. Vladimirov, Calculation of transverse momentum dependent distributions beyond the leading power, JHEP 12 (2020) 145 [arXiv:2008.01744] [InSPIRE].
[102] C. Oleari and M. Rocco, Power corrections in a transverse-momentum cut for vector-boson production at NNLO: the qg-initiated real-virtual contribution, Eur. Phys. J. C 81 (2021) 183 [arXiv:2012.10538] [INSPIRE].
[103] M.A. Ebert, A. Gao and I.W. Stewart, Factorization for azimuthal asymmetries in SIDIS at next-to-leading power, JHEP 06 (2022) 007 [arXiv:2112.07680] [INSPIRE].
[104] A. Gehrmann-De Ridder and E.W.N. Glover, A Complete $O\left(\alpha \alpha_{s}\right)$ calculation of the photon +1 jet rate in $e^{+} e^{-}$annihilation, Nucl. Phys. B 517 (1998) 269 [hep-ph/9707224] [INSPIRE].
[105] M. Ritzmann and W.J. Waalewijn, Fragmentation in Jets at NNLO, Phys. Rev. D 90 (2014) 054029 [arXiv: 1407. 3272] [inSPIRE].
[106] J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B 527 (1998) 264 [hep-ph/9710255] [inSPIRE].
[107] S. Catani and M. Grazzini, Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett. B 446 (1999) 143 [hep-ph/9810389] [INSPIRE].
[108] T. Gehrmann, A. von Manteuffel and T.-Z. Yang, Renormalization of twist-two operators in QCD and its application to singlet splitting functions, in 16th DESY Workshop on Elementary Particle Physics: Loops and Legs in Quantum Field Theory 2022, Ettal Germany, April 25-30 2022 [arXiv:2207.10108] [INSPIRE].

