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1 Introduction

One of the event shape observables that attracts lots of recent interest in quantum chromo-
dynamics (QCD) and the collider physics community is energy correlators. Traditionally,
energy-energy correlation (EEC) measures the energy deposited in two detectors as a
function of the angle between these two detectors [1, 2]. As observed in [1], the fact
that energy weights suppress the soft divergence makes EEC less sensitive to soft gluon
emissions. More recently, EEC is generalized to a broader class of observables called energy
correlators. In particular, the three-point energy correlator (EEEC), which depends on
the three angles among the detectors, contains the nontrivial shape information of the
scattering process [3-5]. In perturbative theories, EEEC is defined as
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(1.1)

where i, j and k run over all final-state particles, @ is the total energy of the electron-positron
annihilation, and do is the differential cross section. For convenience, we normalize the
distribution to the born cross section. EEEC is infrared finite in the tree-level v* — 4 jets
process, which allows us to perform the calculation in d = 4 dimension.
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Figure 1. (a) A graph on the three-point energy correlator. The three detectors are separated
by finite angles 612, 613 and 623, capturing outgoing particles at specific angles from the hard
interaction and summing their energies. (b) The “zongzi”-shaped kinematic space {z1, z2, 3}, which
is constrained by the four-particle phase space.

Energy correlators are almost the simplest infrared (IR) safe jet observables to compute
analytically. The leading order (LO) EEC in QCD is obtained since 1970s [1, 2]. Recently,
EEC is also computed analytically to next-to-leading order (NLO) in QCD [6-8] and NNLO
in N' = 4 super Yang-Mills (SYM) theory [9, 10]. At the same time, the collinear limit
of the LO EEEC in both N' =4 SYM and QCD is studied in [3] and the complete LO
N = 4 SYM result becomes available very recently [5]. In this paper, we calculate the
complete LO EEEC in QCD, which shares a similar function space and analytic structure
as in /=4 SYM.

There is also lots of progress in studying energy correlators with effective field theories
(EFTs), such as Soft-Collinear Effective theory (SCET) [11-15], which proves to be essential
in jet substructure. As summarized in [6], EEC is both singular in the collinear and back-
to-back limits, and large logarithms in both limits could possibly spoil the perturbation
theory. Regarding the collinear region, the resummation has been achieved to the next-
to-next-to-leading logarithm (NNLL) accuracy in QCD [16] and N =4 SYM [17]. In the
back-to-back limit, EEC is resummed to NNLL accuracy and matched to NNLO fixed-order
prediction [18-22], while a new factorization formula is also introduced in [23], allowing
the resummation to N3LL [24]. With the recently derived four loop rapidity anomalous
dimension in QCD [25, 26], EEC is also resummed to N*LL accuracy in the back-to-back
limit [26]. EEC can also be studied at a hadron collider, the simplicity of the soft function
allows the NNLL resummation in the back-to-back limit [27]. More interestingly, the
collinear factorization can also be generalized to EEEC observable, where the distribution is
factorized into the convolution of a hard function and a jet function. While the factorization
is straightforward in SCET, the resummation becomes subtle due to multiple variables.



One way is to project the full kinematic region into a one-dimension space, which is referred
to as the projected energy correlators [4]. The projected N-point correlator is defined as

T Z Z /d b, =Sy o(rr — max{xihiwwil,is? e .xiNflaiN}) ) (1.2)

de n 1<iy, iy<n

and its collinear logarithms can be resummed to NNLL accuracy [28]. It would be also
interesting to study EEEC in other kinematic limits. Since the shape dependence of
EEEC provides more information on the jet substructure, several singular regions besides
collinear remain unexplored: equilateral limit (2123 ~ 1), squeezed limit (1 ~ 0,223 ~ ),
coplanar limit and so on. Our fixed-order calculation allows one to extract both leading
power (LP) and next-to-leading power (NLP) expansions, which benefit the large logarithm
resummations. In a word, the energy correlator is a bridge to precision standard model
tests and new physics searches.

The energy correlators attract lots of attention on the phenomenological side these
days. In ref. [29], both the shape dependence and the scaling behavior of EEEC, as well
as the ratio of projected energy correlators with respect to EEC are measured with the
CMS open data. The close agreement between theoretical prediction and CMS open data
proves that energy correlators will play an important role in precision QCD measurement
and jet substructure, and it would be interesting to perform the measurement at the
Large Hadron Collider (LHC). Besides, energy correlators enable measurements in hadronic
environments to be theoretically predicted by means of modern loop computation techniques
and track functions [4, 30, 31]. Traditionally, the calculation of track-based observables
(e.g. angularities) requires the full functional form of track functions T'(z) [32], of which the
renormalization group evolution is described by complicated nonlinear equations. However,
it is found recently that energy correlator is advantageous for studying track information
since it only needs a finite number of track functions moments, which are just numbers and
hence do not take part in the phase space integration. It is also suggested that an energy
correlator can be applied to top quark mass measurement at the LHC [33].

It has been observed that N-point energy correlators can be written as (N + 2)-point
Wightman correlation function of energy flux operators and source operators that produces
the localized excitation [34]. Explicitly, EEEC can be alternatively defined by

nH—l
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where the energy flux operator is given by integrated stress-energy tensor 7),, along the
direction 7i; [35-38]:

[e.e]

E(n) = dr lim r?n'Ty(t = 7 4 r, i), (1.4)

— 00 7—00

and for electron-positron collision, the source operator O is the electromagnetic current. In
conformal field theory (CFT), the light-ray operator product expansion (OPE) [39, 40] of
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the energy flux operators reveals that the collinear behavior of EEC is determined by the
spin-3 non-local operators [34]. Recently, the squeezed limit of EEEC has been investigated,
where the light-ray OPE is developed at leading twist in QCD, in order to understand the
transverse spin structure in the squeezed limit [41]. In fact, this spin structure gives rise
to a quantum interference at colliders: when rotating the squeezed detector by an angle ¢
with respect to the third detector, the interference between the intermediate virtual gluon
with different helicity leads to a cos(2¢) dependence [42]. Furthermore, standard CFT tools
like conformal blocks and Lorentz inversion formula [43, 44] are also developed to organize
the power correction of triple-collinear EEEC [45, 46], opening a new window to studying
jet substructure. More recent progress can be found in [47, 48].

An outline of this paper is as follows. In section 2, we introduce the calculation method
for three-point energy correlators at leading order. Briefly speaking, we directly integrate the
tree-level matrix elements over the four-particle phase space and express the result in terms
of transcendental polylogarithmic functions. With our parameterization, the non-analytic
structure in the phase space factorizes and EEEC is reduced to a two-fold integral that can
be calculated directly. We discuss the structure of the analytic expression and the numerical
checks in section 3. In section 4, we extract the equilateral limit, the triple collinear limit
and the squeezed limit contributions. The analytic formula for equilateral EEEC and its
endpoint behaviors is given for all partonic channels. For the triple collinear limit, we also
present a method that allows us to directly extract the subleading power corrections from
expanding the EEEC integrand. We summarize in section 5.

2 Calculation setup

The leading order EEEC arises from the tree-level process v* — 4 partons. Given the
appearance of the non-standard measurement function in eq. (1.1), it is not easy to directly
apply the modern loop techniques like Integration-by-parts (IBP) [49] and differential
equations [50, 51]. While for the cases that only involving one non-standard cut propagator
like §(x1 — (1 — cos;;)/2), a method was proposed in refs. [6-8] to allow for a generalized
IBP reduction in LiteRed [52, 53] and Fire [54, 55]. The appearance of three non-standard
cut propagators in eq. (1.1) makes the application of the method in refs. [6-8] much less
efficient. Instead of trying to improve the efficiency of the same method, we take the EEEC
definition eq. (1.1) and calculate the phase space integral directly. The main feature of
our method is appropriate parameterizations of the four-particle phase space dPS; and the
kinematic space {x1,z2,z3}, which makes the direct integration possible. Since we only
care about EEEC at LO, it is safe to perform the computation in the d = 4 dimension.

2.1 Amplitudes and topology identification

We start by calculating the matrix elements squared | M|? for 4* — 4 partons with QGRAF [56]
and FORM [57], where the color algebra is handled by the Color package [58]. The calculation
includes three subprocesses:

) = q(p1) + q(p2) + ¢ (p3) + G (pa) ,

v (q) = q(p1) + q(p2) + q(p3) + q(p4) ,
v (q) = q(p1) + @(p2) + 9(p3) + g(p4), (2.1)

=
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Figure 2. Some typical graphs on the matrix elements squared |M|? for v* — 4 partons. The first
graph corresponds to the double gluon emissions, while in the second graph, the gray lines represent

/

the non-identical quark pair. The last two graphs show the interface between identical quark pairs.

where ¢’ and ¢’ stand for non-identical quarks compared with the quarks g and ¢. In figure 2,
we present some typical diagrams for the matrix elements. We also compute the same
matrix elements squared in FeynArts [59] and FeynCalc [60, 61] as a crosscheck. For both
of them, we adopt the axial gauge when summing the gluon polarizations

2 AbpY 4+ AVpt aZpipY
> e (pi, N (pi, A) = =g + A pl,pg : (2.2)
py - p; (pi - 1)

where for a particular parton with the momentum p;, the momentum of another parton p;
is used as the auxiliary vector n. By Lorentz invariance, the matrix elements squared are
expressed in terms of the standard Mandelstam variables s;; = (p; + pj)2.

Our topology identification is a bit different from standard QCD calculations, where
the established methods require the U F-representation of the Feynman integrals [62]. In
our calculation, it is enough to permute the final state momenta p; 234 or equivalently,
permute s;;, and classify terms that are invariant under such transformations. Importantly,
we have to carry the energy weights E;E;E), together since they are not invariant under
particle renaming. Since we are not going to use the topologies for IBP reduction, the
point of topology identification is to reduce the integrand and simplify the phase space
integration. After obtaining the reduced matrix elements |M(p1, pa, p3, p4)|?, we rename



the particles such that the energy weights all become F; FEsFEs:

EE,E
Z / kdP54Hzgk|M(P1,P2,P3,p4)’
i#j#ke{1,2,3 4}
E,E,E.
== Z / b dPS4Habc (|M(pa7pb7pap4)’ + ’M pavpbapllapc)‘
a#btce{1,2,3}
+|M (pa, pas pes o) |* + !M(p4,pa,pb,pc)l2)
E\EoE
= [ %dﬂ%ﬂug (1M1, P2, 03, pa)? + [ M (D1, P2, pa, p3) 2 + [M(p1, pa, ps. po)

(2.3)
where II;j;, is a short-hand notation for the measurement function
1—cosf; 1-— 0; 1- 0;;
Hijk; =0 (xl — C;b]k> ) (IEQ — C2OS”€> ) (1‘3 — C;SZJ) . (24)

In the second line of eq. (2.3), we make the summation on 4 explicit and rename the
momentum labels such that there is no energy weight F4 in the expression. Then we only
need to calculate the unsymmetrical part in the last line since the result is fully symmetric

in x1, 22,23 (21,23)-

2.2 Phase space parameterization

The most challenging part of calculating EEEC is the calculation of the phase space integral.
Recall that the massless four-particle phase space measure in d dimension [63] is given by

dPSy = (2m)* Q)P 521 725(Q% — s10 — s13 — S14 — 523 — S24 — 534)
% (—Ag) T O(—Ag)dQy_1dQ_2dQy_sdsiodsizdsiadsazdsaadssa (2.5)
where the Gram determinant is
Ay = A(512834, S13524, S14523), A (z,y,2) = 2?4?22 — 2(xy +xz +yz), (2.6)

and the d-dimensional hypersphere measure df),; satisfies

27Td/2
V(d) = /de -t (2.7)

The main difficulty of the direct integration method then comes from the non-trivial

constraint ©(—Ay), which corresponds to a complicated region of the four-particle phase
space. To resolve this problem, we first introduce the energy fractions of three final state
particles in the center of mass frame of v*,

2p1-q _ 2pa-q _ 2p3-q
Q2 ) Z2 = Q2 y z3 = Q2 .

zZ1 = (2.8)



Notice that ¢ = p1 + p2 + p3 + p4, the above equation becomes
21 = S12 + 513 + 514, 29 = S12 + S23 + S24, 23 = S13 + S23 + S34.- (2.9)

Together with EEEC measurement function in eq. (2.4), all Mandelstam variables can be
written in terms of three energy fractions and three kinematic variables,

S12 = 212273, 5§13 = 212372, 8§23 = 222371,

s14 = 21(1 — 2223 — 2372), so4 = 29(1 — z123 — 2371), s34 = 23(1 — 2129 — 2271),
(2.10)

where and in the following we set Q% = 1. Although the energy fractions break the symmetry
of renaming final state particles, the complicated constraint ©(—Ay) decouples from the
integrals. For example,

/dS12d813d814d823d824d834@(—A4)(5 ZSZ‘]‘ -1 H123

1<J
1 21+ 29 —x32129 — 1
= [ dzidzodzs (222222) O(—A 1) (z —
/ 122 3(123) ( 4)1—37221—37122 3 2129 + 2921 — 1
~ 1 z21+ 20 — 132129 — 1
=0(-A /dz dzodzs (222222 ) (z — , (2.11
( 4) 192 3(123)1—23221—1'122 3 2129 + 2901 — 1 ( )
where Ay is factorized into integration variables dependent and non-dependent parts
A ~
27242 = x% + x% + :c§ — 2w129 — 221203 — 2@ox3 + dx1T9w3 = Ay (2.12)
212273

Here 84 < 0 becomes the constraint for the kinematic space {x1,x2,x3}. Figure 1b shows
the allowed kinematic regions, and as we will see in section 4, the shape dependence of
EEEC is encoded in different limits of this region. Note that in the triple collinear limit,
54 is further reduced to

Ay~ AP = 02 + 22 4+ 22 — 20129 — 2my23 — 20013, (2.13)
where /1, \/T2 and /x3 can be interpreted as the lengths of three sides for a triangle due
to Helen’s area formula.

In summary, EEEC is simplified to an integral over the energy fraction z1, 25 and z3.

While z3 is integrated by the ¢ function in eq. (2.11), the remaining two-fold integral can
be finished using a package called HyperInt [64].

2.3 Direct integration

Without the constraint from the ¢ function in eq. (2.11), the ranges for integration variables
z1 and z9 are both from 0 to 1. With the constraint, the integration regions become
non-trivial. Explicitly, the result is found to be

- -1
/d21d22d235 <23 — Atz L3122

)f($1,9027333,21722723)
2129 + 2901 — 1

1—

1 21
T—w321 21+ 29 —x32129 — 1
- / dzl/ dz2f (x1,$2,$3,21722, ) (214)
0 0 2129 + 2971 — 1




where we use f(z1, 22, x3, 21, 22, 23) to represent the EEEC integrand. In our calculation,
the integration of zy in eq. (2.14) can be easily carried out with standard mathematical
tools like Mathematica or Maple. From the result, we identify the following two possible
square roots that will appear in the final result of the LO EEEC,

\/x% + 23 + 2% — 23119 — 2m123 — 2203 = \/ APY,

2?2 + 13 + x% — 2x1T9 — 27123 — 2wox3 + dr1T0w3 = \/ Ay . (2.15)

To perform the computation of the remaining one-fold integral with respect to z1, we
need to rationalize the square roots in eq. (2.15) by parameterizing the kinematic space
{1, z2, z3}. Explicitly, we introduce a complex variable z and its congugate z as well as a
purely imaginary variable ¢ via

x1 X9 2 — (2 — 2)?

o 2Z, i (1-2)(1—-2), xz3= - 2)1-3) (2.16)

such that the two square roots are rationalized

\/:172—|—x2—|—x2—2$ x9—2r1x3—2w0x3 =13(2—2) = - (e—2)" (z—%)
1 2 3 142 143 243 3 422(1—2)(1—2) 9
(2.17)
t2—(z—2)>
\/:U%—i-:ng—l—xg—2:61332—2:L‘1:173—2:E23:3+4:L‘1x2x3 =x3t= 425(1—(,2)(1)— B t.
(2.18)

Note that as observed in eq. (2.13) and in ref. [3], the second square root disappears in
the triple collinear limit and we no longer need ¢ variable. While in the triple collinear
limit, z turns out to be a nice variable that characterizes the triangle shape dependence of
EEEC and manifests the Sz x Zg symmetry, {z,¢} are not good variables for the full shape
dependence and for phenomenological studies eventually. So we will change back to the
angular distances x1 23 after finishing the calculation.

Using the z,t parameterization, we partial fraction the integrand and format the
denominators to be linear functions in the last integration variable z;. Subsequently
we can evaluate the final integration in HyperInt [64]. It gives us the result in terms of
Goncharov polylogarithms (GPLs) [65-67], up to transcendentality-two. The GPL is defined
iteratively by

G(al,--~an;x)5/ dt G(ag, - ap;t), (2.19)
0o t—a
with 1

GGx)=1, G(0,;x)= — In"(z) . (2.20)

There are lots of analytic calculations at two-loop order found involving GPLs, both loop
integrals and phase space integrals. It is conjectured that GPLs up to transcendentality-
three can be expressed in term of logarithms and classical polylogarithms Li,(z) with
n < 3 [68]. For transcendentality-four GPLs, one also need the special function Lis o(z,y).



For EEEC at L.O, we only need GPLs up to transcendentality-two. The conversion from
low transcendental weight GPLs to polylogarithms can be done with public packages
like PolyLogTools [69] or gtolrules.m [70]. We use the latter package to achieve the
conversion. The same results can be obtained by the direct integration from the definition
in eq. (2.19), and we also modify the arguments to meet Mathematica’s branch prescription
for polylogarithms. After the conversion, our results are expressed in terms of classical
polylogarithms.

To simplify the expression, we first collect the transcendental functions with the
same rational coefficients. This constructs a raw transcendental function space in terms of
classical polylogarithms. All the rational functions are simplified by the MultivariateApart
package [71], which implements the partial fraction algorithms for multiple variables.
However, simplifying the raw transcendental function space is in general not easy given
the three variables. We start by applying transcendentality-two identities to simplify the
individual base. A typical set of dilogarithm identities is as follows:

Reflection: Lig(xz) = —Lis(1 — x) — log(x) log(1 — x) + (2,
1 1
Inversion: Lig(z) = —Lig () —5 log?(—x) — (2,
x
1
Duplication: Lis(x) = —Lig(—z) + §L12($2) , (2.21)

which all comes from the well-known five-term identity [72]:

. . [ 1-=x . . (1-y
I L i’ Lis(1 — 2y) + L

io(x) 4 Liz(y) + Liz (1_$y>+ i2(1 — 2y) + Liz (1_$y)

~ T og() Tog(1 — ) — log(y) log(1 — g) 1 <1_“">1 (l_y) (2.22)
= 5 —log(z)log x) — log(y) log y) —log ( = , og ) )

It turns out useful to use the five-term identity to simplify complicated arguments. Then
we add back all permutation terms of z1 23 (what we call symmetrization) as specified in
eq. (2.3), and reorganize the result such that all bases and the corresponding coefficients
are real. A better transcendental basis was already presented in ref. [5] for the N =4 SYM
EEEC at LO. So for the last step, we try to project our function basis to the basis in
ref. [5]. Explicitly, we symmetrize the N/ = 4 function basis and construct a new linear
independent transcendental weight-two basis. By evaluating both basis at a same numerical
point and applying PSLQ algorithm [73, 74], we managed to find the linear relations between
the elements of these two function bases and successfully simplify our full result in QCD.
As a crosscheck, we evaluate the original result from HyperInt numerically using public
GPL libraries like GiNac [75] and FastGPL [76], and compare with the predictions of our
final analytic expression.

It is interesting to ask how we can simplify the expression in the first step. On the
one hand, this requires one to know the singularities of the result and to rule out all
spurious poles and branch cuts. Landau equation [77] or Polynomial reduction [78] provides
a sufficient set of possible singularities, but it is challenging to figure out the minimal set,
especially in the high-dimensional complex hyperplane. Some of the progress can be found



in refs. [79, 80]. On the other hand, given the singularities of the integrals, there are still
ambiguities how to choose the arguments of polylogarithms. To our knowledge, there is no
public algorithm to search for the best arguments that make the expression shortest. It is
possible that this can be done with symbol [81] or even with Machine Learning [82] in the
future, but it is out of scope of this paper.

3 Results

In this section, we present the full result for three-point energy correlator in QCD, in terms
of the angular distance variables 123 and the short-hand notations for the square roots:

s] = \/AZOH = \/x% + 23 + 2% — 23179 — 27123 — 2w073, (3.1)
S9 = 1\/ 54 = \/x% + x% + :U% — 2x1x9 — 22123 — 2w9x3 + 4T1T2T3 . (3.2)

At LO, there are three color channels

1 d30' g 2 1
_ 49 _ ( ) P (C’FTanan +C%Hg, + CFCAHCA> ; (3.3)
7

adl'ldl‘gdxg N E /—8%

where we normalize the distribution to the born-level cross section, and oy = g2/(47) with g,
being the strong coupling constant. All channels contain functions up to transcendentality-
two and take the form

7 21
H=HO +HO t HO = HO S RV 1, + 3" Ry, (3.4)
i=1 1=1

The EEEC function space is composed of 7 logarithmic bases f1,... 7 and 21 polylogarithmic
bases g1,... 21. The transcendental weight-one bases are

fi=log(l—z1),  fo=logz1,  fz=log(l—z2),  fa=logzs,  f5=log(l—u3),
fe =logxs, f7:10g(2—52—3§1—$2—$3)—10g(2—|—52—$1—332—.%‘3) (35)

with the explicit S3 permutation symmetry. The transcendental weight-two bases are

g1 = Lis (3’71)’ go=Liy (@)7 93=Li2< T3 )’
r1—1 zo—1 x3—1

IR |:L_ <52+x1—x2+2x2x3—x3> . < 21:1%2 ):|
= e 1 —
94 2 2(:1:2—1) (.Tg—l) So—T1+2x1x9— T2+ T3

+2Li2( it )—2L12< 3 >
.’Elfl 563*1

g5 = ga(z2 <> x3),
2 -1
g6 = —2iTm [LiQ( (@11 )}
So—T1+2x100— T2+ T3

it g (2 I g2 )]

2z (332—1) So—xT1+2x109—To+ T3

gr=9g6(x2 > x3), g8 =ge(T1,%2,73 > T2,23,71),

~10 -



—2iIm[Li <52+x1—x2+m3>_Li (52+m1—x2—x3>_Li < 22129 )
99= 2 2(1—332) 2 2(331—1) 2 So+x1+29—3

+%10g[(1—x1) (xa—1) (1'3—1)}10g(2—82—$1—1’2—$3):|,

910:71'27 gll:—4[Im[log(2—52—$1—x2_353)”2v
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Figure 3. Comparison of the analytic result with the numerical programs Event2 and NLOJet++ for
{z1,z2, 23} = {3y,2y,y} and {z1,z9,23} = {%y, %y,y}. Due to eq. (3.7), the kinematic spaces are
cutoff at y = % and y = % ~ 0.36 respectively. Fifty billion points are sampled and the internal
cutoff is set to 107!* in Event2. Ten billion events are generated in NLOJet++.

200

00F T T T T T T
150+ _05L
. Event2: 1: 5: 3=3:2:1
815 1g0f 5z ) I
-l e -l e -10} Identical quark contribution
0 -15)
0.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30
y y

Figure 4. Left: comparison of the analytic result with Event2 for separate color structures with
{z1, 29,3} = {3y,2y,y}. The C% and CrC4 are multiplied by a constant for clarity. Right: the
identical quark part is verified separately since its contribution is small.

Although we use the short-hand notation Re and Im to make the expressions compact,
all the bases are analytic functions themselves. The corresponding coefficients Rl(l) and
RZ@) are rational functions in terms of x1 23 and sq, so. We provide these coefficients in the
supplementary material.

We emphasize that EEEC encodes both scaling information and non-trival shape
dependence since it is a three-parameter jet observable. Unlike collinear EEEC, the longest
angular distance x;, = max{z1, z2, 3} does not factorize out. Instead, the kinematic space

is fully determined by the second square root s3 < 0, i.e.
x% + x% + x§ — 27179 — 22123 — 2T973 + dT17T073 < 0. (3.7)

To verify our analytic result, we consider two special cases {z1, 2,23} = {3y, 2y,y} as
well as {z1, 22,23} = {{y, 3y, y} and calculate them in Event2 [83, 84] and NLOJet++ [85].
The obtained results are in good agreement with our analytic results (see figure 3). We also
pick the first configuration and separate different color structures as well as the identical
quark pair contribution in Event2. The detailed comparison can be found in figure 4.
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Our result can be useful for phenomenological studies in precision QCD and jet physics.
With a simple function basis as well as the simplified rational coefficients, evaluating its
numerical values to high precisions is much faster than the raw GPL expression or a Monte
Carlo program. As an example, it is easy to numerically evaluate our analytic expression in
Mathematica to 200 digits precision within 4 seconds for a regular point in a single core
machine. The simplicity of the result strongly encourages us to compute EEEC in QCD for
gluon-initiated or bb-initiated Higgs decays analytically in the future.

4 Kinematic analysis

Given the complete shape dependence of the three-point energy correlator, it is interesting
to investigate its behavior under different kinematic limits. Figure 5 shows several typical
regions that could be useful for understanding the singularities and resummation. They are

e Triple collinear limit: x1 ~ 0, xo ~ 0 and x3 ~ 0

o Squeezed limit: x1 ~ 0, x9, T3 ~ = and its permutations
e Back-to-back limit: x1 ~ 1 and its permutations

e Coplanar limit: s3 — 0

Alternatively, one can borrow the variables {s, 7,72} from [5], which is related to the
angular distance via
S (1—7‘1)2 S (1—7‘2)2 S (1—7’17’2)2

G+12 n 0 T TGr12 om0 BTG+ mn

rl1 = — (4.1)
Here we put the three points in a circle with radius /s on the celestial sphere and 71 o
corresponds to the angle between two of them (see figure 6). One can also extract the
kinematic limits using the new coordinate, and particularly, it is more convenient to expand
the coplanar limit via s — 1.

From phenomenological perspective, one can also slice the kinematic space and apply a
constraint on the angular distance x12 3. Since the demonstration of the full EEEC requires
a 3D density plot, from which it is difficult to read information, applying the kinematic
constraints helps to reduce the dimension of the plots. The most simplest case is the
equilateral EEEC, where three angular distances are the same x1 = xo = x3 = . Two other
typical choices are isosceles configuration x1 = x2 and the right configuration x3 + zo = 1.
When dealing with data from experiments or simulation programs like Pythia [86-88], it is
straightforward to apply these constraints directly in the event selection. There are also
overlaps between the expansion of kinematic limits and the configuration constraints. For
example, one can study both the triple collinear limit and coplanar limit in the equilateral
configuration. Applying both expansion and slicing together gives a clearer picture on
specific jet substructure that we want to understand.

In this section, we will focus on the analytic result of equilateral EEEC and triple
collinear EEEC at next-to-leading power, as well as the squeezed limit. We present the full
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B Squeezed x3-0

B Squeezed x,—0

Ll Squeezed x4-0

W Triple collinear

Il Back-to-Back x3—1
W Back-to-Back x,—>1

H Back-to-Back x1-1

3 1.0

Figure 5. Various kinematic limits in the {x,z5,23} “zongzi”-shaped space. We denote the
triple-collinear limit, squeezed limits and back-to-back limits using different colors. The coplanar
limit corresponds to the boundary of the kinematic space itself. The full 3D dynamic figure can be
found in the supplementary material.

(a) (b)

Figure 6. (a) A graph on the {s,71, 72} coordinate on the celestial sphere [5]. (b) The kinematic
limits of EEEC under the {s, 7,72} coordinate. s — 0 and s — 1 lead to the triple collinear and
coplanar limit respectively, while 7, — 1 represents squeezed limit.
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expression for the equilateral EEEC, with equilateral function space included. To give a
concrete example of applying both the kinematic expansion and configuration constraint
together, we discuss the  — 0 (collinear limit) and z — 2 (coplanar limit) singular
behaviors, which could be interesting to the studies of trijet events at colliders. Regarding
the triple collinear limit, we present the NLP correction analytically. It turns out that the
collinear function space only contains one transcendental weight-one function and three
weight-two functions under the S3 symmetry. Finally, we extract the LP squeezed limit
and discuss the ambiguity of the definition under the triple collinear limit. The geometry

reveals that the squeezed limit is actually path-dependent.

4.1 Equilateral limit

It is straightforward to extract the equilateral EEEC from our analytic formula. Alter-
natively, one can take the equilateral limit before performing the integral. Explicitly,
eq. (2.11) becomes

1—29

Tz - - 1
O(3 — 4z) / dz1 /1 Y drodzy— L2258 21225 1) <23 _ At Tan > (4.2)
1—z1x — 20x Tz1 +x29 — 1

which can be evaluated directly. The Heaviside function suggests the equilateral EEEC is

cutoff at x = %.

The analytic result is written as

1 3o
oo dx3

- (zm) N x ( aiga (1) + quéqé(t) + ;qugg(w), (4.3)

where the normalization factor is NV = m, and i and % are symmetry factors due to
identical particles. In eq. (4.3), we also introduce another variable t = /3 — 42 to make
the result more compact. The ny contribution is given by

8
Gaaaar(t) = CrTymy { ~2835(12-3)° (12-1)

+174628460¢'° —57642594t8 — 1674576605 +106781904¢* 4 50927940t

—34837533) + il - (5275445t%% + 31825710t —554071427¢'®
8505 (12—1)"t(12-3)

+1961298184¢'0 — 1956329238t ! — 2450875468t +6441472482¢'° — 32024550961
—2041671807¢°+2142124110¢"* —315629055t> —34836480) (7 —3tan~" (¢))
! (43575t*04312270¢'® — 3991645¢'° +10221960¢*

Jr35(t2—1)4(t2—3)7

—1074402t12 —29837836t 10 +41621582t8 —12477368t% — 14178453¢* 4123940942

—3141297) log (t “) +T5 (1) } : (4.4)

5 (872935¢'% + 76452604 — 78741432t
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where the transcendentality-two part T2(t) is

64 (11¢1 77442 +135) (o) 3
sv3@—3)? I T @ 31y

—10488t14—51326t12+84452t10—19254t8—54136t6+48381t4—14682t2+3093)g§2)

o 3(+)
(t2—3)5 (12—1)°

+365500£5 — 150900¢* 416425t —5811) g5 +

To(t) =

(—415t*° —4634¢"®+20033¢'°

(1657¢'%+16957¢'° — 97956t ' +145260¢'* +40262¢'° —334978t*

24

FoF e (207¢*°+2330¢'

—10161¢'5+6136t " +22366¢'2 — 3504410 +1878t5 + 267445 — 14349¢*
—678t2—453) (> | (4.5)

with the corresponding function space
@ _ o (t=V3Y _(t+VB) 1 V34t B .
91 =D, <t—i D, P —|—310g 1 (7r 3 tan (t)),

@2 <. t—/3 C[t+ V3 C(t—3 C(t+V3
92 _L12<—i+t>+L12<—i+t R W R S

o =2 (1o 1) 4 G,

gf) =mtan ' (t). (4.6)
Here D, (z) is the Bloch-Wigner function
2iDy () = Lia(2) — Lis (%) + % (log(1 — =) — log (1 — 7)) log (3) . (4.7)
As a Single-valued Harmonic Polylogarithm (SVHPL), Bloch-Wigner function satisfies

D;(2) = Dy (1 - i) = Dj (1 i Z) = -Dj (i) = -D;(1-2)=-Djy (1_ZZ> (4.8)

and is parity-odd under Zs symmetry.

The results for the other two partonic channels are given as follows,

32
2835 (12—3)5 (12 —1)

G g (t) =Cr(Ca— 2CF){ (75565¢'2+3240230t'° — 17398269¢°

32t
8505 (t2—3)7 (12 —1)2
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16

“BEr e (2205¢'°+181860¢"* —1202880¢'* 41813700 4303506t

2 .
—676788t° —1242776t*+240652t +553641) log (T) + 70 (t)} : (4.9)
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Figure 7. The comparison between the analytic expression and Event2 for equilateral EEEC. We

compute 2.5 billion events and set the internal cutoff to 10714

where we need five more function bases

géQ) = 1log (3—152) (W—3tan_1 (t)) +log <t2+1> tan~! (t)— Dy <t_\/§> —D5 <t+ﬁ> ;

3 t—1 t—1

@ _ i L 2 NN _ -1
a¥ =D (it) 210g(t +1) tan ™" (¢) 3 log (21) (r—3tan”' (1)),

2 _(t—1 2 2
gt =D; (t—H)’ gé):ﬂlog(tQ—i—l), 9 =G (4.14)

In figure 7, we also show the equilateral EEEC result from Event2, which has good agreement
with our analytic formula.

Even slicing the kinematic space with equilateral constraint gives us an interesting
result. There are two singular limits: the collinear limit £ — 0 and coplanar limit x — %.
The collinear expansion is given by

1 d30' x—0

2
Qg 1 1 1 )
A7) drae3 —dz . \22 = 4.15
(477) 471'1,‘\/@ x <x2fl+ $1f2+f3+$f4+0(1,‘ )) ) ( )

where the coefficients are linear combinations of Clausen functions and Riemann zeta

Otot dl‘?’

functions:
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+CaCr (—1260+ %+ 57 )
Fo = Crmy Ty (4511 - 2‘?55;) + 02 (—2442 + 8?12\'/% + %205?6)
+ CACF (12C2 + 27,(7)3% - 1??:5) g
Fy = Cong (25105 0S| 0 (1, 10125 2300130
+ CaCF (—24C2 - sfj% + 6118157556> ’
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79 320k 4063357
Fa=CrnsTros + C% <48C2 - )

243v/3 85050
3632k 16887929)

243+/3 + 340200

+CuCr (—2442 - (4.16)

Here £ = Cly (§) = Im Lise's is Gieseking’s constant, with Cla(¢) = — f0¢ log |2 sin $|dx
being the Clausen function. This is a transcendentality-two number that is typical in the
trijet computation (e.g., the one-loop trijet soft function [89]). Another interesting feature
is from the ny color factor, i.e., the coeflicient of ny for F4 in eq. (4.16) doesn’t involve &
while « still shows up for Fi, Fa, F3. We will find a similar feature in the triple collinear
limit in the next subsection.

Due to the kinematic cut © (% — :U), there is no back-to-back limit in the equilateral
configuration. Instead, the three detectors are separated by an angle %’T on the same plane,
which refers to the coplanar limit. The coplanar expansion includes both fractional power
divergence and logarithmic divergence:

1 d3¢ ==} 21 In(2 — =z 1 1
——Z ~" (as> — X <4)'R1 + 3 Ra + Ra
oo dx dmw ) Aw —x 1 %_$

+ 1n(2 vy +R5> +0 ( Z - g;) a7

and the corresponding coefficients are

Ry = ~m o O (O +2Ck)
R oy I8y (1881, T g (0012 55 )
e T VRN .
on CA( B 7528923/0g o 8234137Li2 (—3) 520198471 G+ 39835906508 B 5571675347584l 2) 7
Ry = W(C%Z"%f’(?f’ﬁ — CFCA?)Z(E;OO) ,
Ro oty TIOR8 15T
+ C'FC'A( — 2232;2277 — 13;522?0071- n2— %ﬂ'ln 3) , (4.18)

where we need one more transcendentality-two number Lis(—3). The C4 4+ 2CF structure
in R; implies that the leading logarithm in the cumulant can possibly be predicted by a
Sudakov form factor [90].

It would be interesting to study the singularity structure in both limits and resum the
large logarithms in the future. In the collinear limit, our result provides the regular terms
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that complete the two-loop equilateral EEEC jet function. To recover its close form in e,
one might need to compute equilateral EEEC to higher orders in € expansion. The soft
gluon enhancement appears in the coplanar limit, and similarly, our fixed-order calculation
provides the needed ingredients for its resummation. Some of the similar analysis for
another trijet event shape observable D-parameter can be found in refs. [91-93]. Either
way, equilateral EEEC contains valuable information on understanding the symmetric trijet
events in electron-positron collisions.

Like two-point energy correlator (EEC), equilateral EEEC has nice analytic properties
and is free of Sudakov shoulders [94]. For event shape observables like thrust, C' parameter
and heavy jet mass, the range of the parameter grows order by order in perturbation theory,
and the incomplete cancellation between real emissions and virtual corrections leads to
divergences or kinks at fixed orders. To obtain a precise measurement of the strong running
coupling «,, one will have to resum the Sudakov shoulder logarithms that fall into the

relevant regions [89]. However, in equilateral EEEC, since the three particles are separated
2

3
plane. This geometry constraint remains the same in higher-order perturbation theory so

that the IR cancellation is guaranteed by Kinoshita-Lee-Nauenberg (KLN) theorem [95, 96].

by the same angle, the maximum angle is when all three particles fall into the same

4.2 Triple collinear limit at next-to-leading power and beyond

The factorization theoroem at leading power (LP) has been well understood for different
observables and different physical processes. It allows for the resummation of large logarithms
to very high accuracy. Oppositely, much less is known for the factorization theorem and its
violation at next-to-leading power (NLP). The complete factorization framework is still not
established for NLP observables. In this subsection, we focus on the NLP contribution from
the direct calculation point of view, where only a few cases have been carried out [22, 97-102].
More discussions can be found in ref. [103].

At LP, the triple collinear EEEC is factorized as the hard function H = {H,, Hgy} and
the jet function J = {Jq, Jg}, which both live in the flavor space. In momentum space, the
EEEC jet function also decouples into the triple collinear phase space [104, 105] and the
1 — 3 splitting functions [105-107]. Benefiting from the decoupling, the calculation was
performed in ref. [3], which becomes the first analytic calculation of a three-parameter jet
substructure observable. From our EEEC result with full angle dependence in section 3,
it is straightforward to extract NLP contribution in the triple collinear limit. While the
NLP contribution itself can provide comparison data for the study of NLP factorization, it
can not provide hints toward NLP factorization. It is more interesting to explore a similar
decoupling of the phase space and the integrand to NLP, and extract the NLP corrections
from a direct computation.

For the purpose of extracting the triple collinear limit, we perform the following rescaling

1 — )\161, o — )\ZCQ, r3 — )\l’g (4.19)

and expand the corresponding formula in A order by order. To decouple the phase space
measure and the integrand to NLP, we start from eq. (2.14) and reformulate it as in the
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following,
1—2q

1 d3c /1 p /171321 d2 g ) w20
O dor drodra z 20 q (%1, 22, T3, 21, 2 ‘
Otor dardzadzs — Jo o 29 (71,2, T3, 21, 22) ,

where ¢ (21, x9, 23, 21, 22) is used to represent the EEEC integrand. Notice that the upper
bound of z5 depends on x3, this makes the decoupling non-trivial at NLP. At LP, it is safe
to expand the upper bound and the integrand separately, where the leading terms in A
directly gives us the decoupling at LP, as computed in ref. [3]. At NLP, one can not just
expand the integrand g (z1, 2, x3, 21, 22) to the next-to-leading term while only keeping
the leading term in the upper bound. One may expand both the upper bound and the
integrand to next-to-leading terms, however, it doesn’t make the computation simpler and
also mixes a part of NNLP and beyond into the NLP contribution.

To extract the exact NLP contribution and make the decoupling explicit, we separate
the interval of 29 integration into the following three intervals,

1—2q

% 1—21 (17Z1)(1+33321) T-age1
/ dzy = / dzo + dzy +/ dzo (4.21)
0 0 1—21 (17,21)(1%».%321)

On the right-hand side of eq. (4.21), the first term corresponds to the triple collinear phase
space measure and contributes to LP and beyond, the second term starts to contribute at
NLP, and the third term only contributes to NNLP and beyond. The right-hand side of
eq. (4.21) is formulated in a way that the i-th term contributes only at N*"'LP and beyond.
It is similar to ref. [108] where the operators are organized in a way such that the i-th type
operators contribute only at o’ and beyond. Let us focus on the second term, together
with the integrand, we have

(1721)(14»3337;1)
/ dzp g (w1, 2,3, 21, 22)
1—21

321
:(1—21)/0 dt g(z1, 22,23, 21,22 = (1 — 21) (1 + t))
= x321(1 — 21) (@1, 22,03, 21,22 = 1L — 21) + - -~
1—2z1
=x321(1 — zl)/o dz20 (20 — (1 — 1)) g(x1, 22,23, 21, 22) + -+, (4.22)

where - - - only contributes to NNLP and beyond. In summary, the contribution up to NLP
can be written as

1 dSO' triple coll 1 1-2z
— R~ dz dzo |g(x1, 22, 23, 21, 22)
Otot dr1drodrs 0 0

X (1 +x321(1 — 21)0 (22 — (1 — ZQ))] + O(NNLP).
(4.23)

The intervals of both integration variables z , zo in the above equation don’t involve any
kinematic variables x123. Therefore, we can safely expand the integrand in the triple
collinear limit, which makes the computation of the NLP contribution as easy as LP. We
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emphasize that the contact term that is proportional to d(z2 — (1 — z1)) is crucial to get
correct result at NLP. The above method to extract NLP for triple collinear EEEC may also
be useful to compute the NLP contributions for other observables. It is also straightforward
to generalize the above method to NNLP and beyond.

An alternative method to extract the NLP contribution is to first integrate over zy in
eq. (4.20) without performing any expansion. By simplifying the resulting integrand and
performing the expansion, one can integrate over z; and obtain the NLP contribution. The
simplified integrand with z; dependence is also useful as a cross-check of our final analytic
formula, such that we also provide it in the suppementary material.

We use both methods to extract the triple collinear limit to NLP and find the same
result. The validity of both methods is verified by the fact that no poles in the integration
variables are generated when performing the expansion. We also compare the result with
the final full analytic formula by setting 123 to very small numbers, and we find the
difference is indeed an NNLP contribution.

The result up to NLP in the triple collinear limit can be written as

1 d3o trip}s coll <as > 2 1 cLP (:L‘Z) n CNLP (ZL‘l)
Otot, dl’ldiﬂzdl‘g A

4 [Cag\ » A

where A is just used to track the expansion order and should be set to 1 at the end. The

+-CD(A°)> . (4.24)

leading contribution C*¥ agrees with the result in ref. [3]. The subleading term CNF is
new and also contains three color channels:

CNYP(25) = CpTrnsAn, (i) + CrAc, (i) + CrCalc, (x;) (4.25)

The ny contribution is given below:
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The NLP collinear function space under S3 permutation symmetry is the same as LP,
which is composed of one logarithm log(z1) and three transcendental weight-two functions:

2iD5 L
by =n% by= L@X b3(x1, 22, 23) = Lis (1 - m) +5log (951> tog (wl)
s1 " 2 s "

(4.29)

with Bloch-Wigner function D, (z) defined in eq. (4.7) and z introduced in eq. (2.16).
The simplicity of the above NLP results encourages us to go to NNLP and beyond.
Using the second method, we expand the integrand to N'°LP. Interestingly, we find that
for ny contribution all polylogarithmic functions disappear at N3LP and beyond, which
correspond to positive powers of A in eq. (4.24). In particular, we present the first few terms:
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Only 72 remains at higher powers of the n ¢ channel, while in other color channels, the
polylogarithmic functions still show up. The simplicity may imply that there are some
hidden symmetries, we leave it to future study.

4.3 Squeezed limit

Another interesting kinematic region is the squeezed limit: 71 — 0,z ~ x3 ~ 1 and its
permutations. Using our analytic formula for EEEC, it is straightforward to extract this
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limit. At LP, we find,

1 3 x1—=0,x2 3~ s\ 2 1 B
m;gkrlﬁz“"<j) 2(;W+OQ£D, (4.31)
with
4 (2812 — 82n + 63) log(1 — 67n% — 70212 + 13621 — 756
B(n) = ;T 123 7715 ¢ ) log(1—7) _ 67n 45771 2
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(4.32)

The functional form is similar to N’ =4 SYM, made of a single logarithm log(1 — 7).

In fact, there are ambiguities in the definition of the squeezed limit. In the above
expansion, we apply the isosceles constraint first and take the zero limit of the third angular
distance. However, this is not a unique choice since we can start with other configuration
constraints. The ambiguity obtains a geometry interpretation if we study the squeezed
limit under the triple collinear limit. As observed in refs. [41, 42], the squeezed limit is
accompanied by an angular dependence. If we adopt the z variable defined in eq. (2.16),
one of the squeezed limits is z — 0, and the expansion reads
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47C%, 00
+ 10,2 +0 <x3r )} (4.33)

with 7 and ¢t = € introduced in figure 8a. Our definition z; — 0,25 ~ z3 ~ n then
corresponds to approaching z = 0 via the path 6 = 7. In other words, the z point is forced
to fall into a circle located in (1,0) with the radius 1 (See figure 8b). This gives

1 a3 2 1 59CFTrn 16C%2  263CrC
s~ (8) 1y (P 55 o)
Otot dT1drodxs At} gn —8%1‘177 225 5 225

(4.34)
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Figure 8. (a) The triangle formed by the three angular distance \/z71, \/Z2 and /3 under the
triple collinear limit. We introduce the distance r from the origin to the top point and the angle 8
between this side and the x-axis. (b). The squeezed limit with isosceles constraints x; — 0,23 ~ 7.
In the triple collinear limit, this path becomes a circle |z — 1| = 1.

which agrees with the 7 — 0 limit of B(n). Another choice of the path is through 6 = 7, as
discussed in ref. [3], with which the expansion is different:

1 d? s\ 2 1 13CFrT 16C% 91 _
Y (a) rTeny 6C’F+9 CrCa +O(77_11‘1 1/2) '
Otot d.%'ldm'gdflfg 4 A1 75 5 75
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(4.35)
Interestingly, we get identical results for eq. (4.34) and eq. (4.35) if we take the N'=1 SYM
limit by setting Tp = 1/2,ny = N.,Cr = N,,C4 = N,. It can be explained by looking at
eq. (4.33), there the expression becomes t-independent for the squeezed limit at LP, i.e.,
the coefficient of 1/r2.

While extracting the higher power corrections in the squeezed limit is pretty straight-
forward once a unique definition is given, the geometry interpretation is invalid beyond LP.
Nevertheless, our result indicates studying the overlap among kinematic limits themselves
(triple collinear limit and squeezed limit in this case) is also theoretically important. The
structure of singularities becomes clear in such a joint kinematic limit and they will be
useful in investigating jet substructure. It is also interesting to ask how we can organize the
power corrections under joint kinematic limits in general. We leave these possible directions
for future studies.

5 Summary

The energy correlator is one of the most important event shape observables widely used in
both precision QCD and collider physics. Proposed in the 1970s, EEC has been playing
an important role in various aspects of QCD measurements and jet physics studies, such
as the precise measurement of strong coupling «;. Three-point energy correlator, which
captures more information about the scattering events, can be more powerful for probing
jet substructure.
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In this paper, we calculate the three-point energy correlator at leading order in electron-
positron collisions and initialize the studies of EEEC kinematics. Instead of rewriting
measurement functions as cut propagators and using IBP reduction, we approach the
calculation with direct phase space integration. With appropriate parameterization of the
phase space dPS; and kinematic space x1 23, we factorize out the Heaviside © function
from the integral and rationalize all square roots, which allows performing the remaining
integration. The QCD result is very similar to N/ = 4 SYM EEEC, in the sense that
they share the same function space that is composed of polylogarithmic functions up to
transcendental weight-two.

The simplification of the leading order EEEC involves two steps. Since HyperInt
expresses the result in terms of GPLs, we need to convert it into polylogarithms and
modify their arguments with dilogarithm identities, in order to meet Mathematica’s branch
prescription. Then we construct the raw function space by collecting rational coefficients
and map it to N =4 SYM EEEC function space in ref. [5]. The linear relations between
these two function spaces allow us to reduce the leading order EEEC in terms of the latter
function space. With the simple function space as well as simplified rational coefficients,
the file size of our analytic formula is small and the numerical evaluation is very fast. The
simplicity strongly encourages us to analytically compute EEEC for gluon-initiated or
bb-initiated Higgs decays in the near future.

Given the multiple angular distance dependence, the EEEC kinematic space becomes
more interesting. Various kinematic limits remain unexplored. In section 4, we discuss the
equilateral limit 1 = xo = x3 = =z, triple collinear limit x1 ~ xo ~ 3 — 0 and squeezed
limit 21 ~ 0,9 ~ x3 ~ 1, and the analytic results in all limits become very simple. Under
equilateral limit, the angular distance «x is cutoff at x = %, which corresponds to the coplanar
configuration. Regarding the triple collinear limit, we present a method that allows us to
directly compute the next-to-leading power corrections from expanding the EEEC integrand.
The NLP result is simple and shares the same collinear function space as the LP. We also
discuss the overlap between the triple collienar limit and the squeezed limit, where the
ambiguity of the squeezed limit definition receives a geometry interpretation.

In fact, EEEC provides a large playground for studying factorization as well as its
violation for different configurations. Using our analytic result, it is straightforward to
extract the needed ingredients like jet functions. Deriving the factorization theorem for
specific limits and performing resummation for EEEC could be theoretically interesting and
phenomenologically important. The simple mathematical structure also makes EEEC a
good candidate for understanding NLP corrections and beyond. While the resummation in
the triple collinear limit is in progress, the equilateral limit could be a window to investigate
symmetric trijet events in eTe™ collisions. Furthermore, all these future directions can be
generalized to the analysis at hadron colliders and provide new opportunities for studying
Higgs phenomenology and top physics.
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A Usage of supplementary material

In the supplementary material, we provide all the results in this paper. The usage of each
file is as follows.

e EEECinQCD.nb: the main Mathematica notebook. We import other files in the
notebook and define a set of commands to compute EEEC. Explicitly,

— eeec[{x1,22,23}] gives the value of EEEC using the analytic formula. The options
“Color” and “Parton” can be used to separate different color structures or partonic
subprocesses.

— eeecNum/[{z1,z2,23}] gives the value of EEEC using the one-fold numerical
integral. We provide the same “Color” and “Parton” options.

— eeecEqufz] gives the value of equilateral EEEC using the analytic formula.

— eeecCollLP[{x1,22,23}] and eeecColINLP[{x1,22,23}] give the value of collinear
EEEC at leading power and next-to-leading power respectively.

e Numerical.wl: the one-fold numerical integral for EEEC in QCD, where the integrand
is saved in the file EEEConefold. The main function is eeecNum.

e EEECanalyticfull: the full analytic expression of EEEC in QCD.

— eeec@CD: the main formula.
— baseRules: the transcendental weight-two function space.
— prefactor: the overall normalization factor.

— stoxRules: the replacement rules from s 2 to 212 3.
e EEECequilateral: the analytic expression of equilateral EEEC in QCD.

— eeecQQCDFEqu: the main formula.
— prefactorEqu: the overall normalization factor.

— bwrep: the replacement rule for Bloch-Wigner functions in equilateral EEEC.
o EEECcollinearLP: the analytic expression of collinear EEEC in QCD at LP [3].

— eeecQCDCollLP: the main formula.

— CollILPBaseRules: the transcendental weight-two collinear function space.

e EEECcollinearNLP: similar to EEECcollinearLP.
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