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1 Introduction

As the heaviest particle in the Standard Model (SM) of particle physics, the top quark has
many important implications for the nature of the fundamental forces. The stability of the
SM vacuum is highly sensitive to the value of the top mass whose precision measurement is
a high priority at the Large Hadron Collider (LHC). Top quark pair production at hadron
colliders is known extremely precisely both theoretically and experimentally and can be used
to constrain SM parameters and parton distribution functions [1, 2]. It has been argued
that top-quark pair production in association with a jet is even more sensitive to the value
of the top quark mass [3-5], yet the theoretical predictions for this process are not currently
at the same level of precision as the experimental measurements. Current theoretical
predictions are represented by the next-to-leading order (NLO) QCD corrections [6, 7] with
state-of-the-art predictions including complete decay information and interfaces with a
parton shower [8-12]. Mixed QCD and EW corrections are now also available [13]. In order
to match the experimental precision, see for example [14, 15|, next-to-next-to-leading order



(NNLO) corrections are required. Indeed, fully differential cross-section predictions at NNLO
in the strong coupling would open up opportunities for the most precise determination of
the top-quark mass, yet substantial computational bottlenecks remain.

The two-loop scattering amplitudes that form part of the NNLO correction are currently
unknown. In general, amplitudes with massive internal propagators represent a considerable
increase in complexity compared to the massless internal propagators that have been
considered so far for five particle processes. In addition to the growth in algebraic complexity
that comes from the increased number of scales, the analytic complexity contained in the
Feynman integrals that appear can lead to difficulties in identifying a numerically well-
defined function space. In some cases, of which pp — tt is one, analytic evaluation of the
integrals leads to elliptic integrals that still require a better mathematical understanding.
While in the case of leading colour pp — ttj elliptic functions should not appear,! the
evaluation of the master integrals is still a substantial challenge.

A lot of experience in these type of problems has been gained from the study of massless
propagator five-point integrals which form a good starting point for the integrals we study
in this article. The kinematic case of five massless external particles has now been fully
classified into a basis numerically well-defined pentagon functions [16-21]. For the case of
one off-shell external leg and four massless legs the situation is also almost complete with
the planar [22-24] and the non-planar hexa-box [25] now known. This progress has allowed
the calculation of several five-point two-loop scattering amplitudes [16, 19, 26-41] and led
to the first NNLO theoretical predictions for 2 — 3 processes [42-46].

In this article we make a small step towards the two-loop amplitudes for pp — ttj by
considering the computation of the master integrals associated to a five-point pentagon-box
configuration with one internal massive propagator (see figure 1). This builds upon previous
work considering the one-loop helicity amplitudes expanded up to O(£?) in the dimensional
regulator. Our methodology to determine a set of master integrals follows by the means of
the differential equation method [47, 48]. In particular, we write the system of differential
equations in a canonical form [49], where the dependence on the dimensional regulator
factorises. The canonical form requires the identification of a uniform transcendental weight
(UT) basis of master integrals and the solution to a large system of Integration-by-Parts
(IBP) relations [50, 51]. For the later we employ the Laporta algorithm [52] which can
be implemented within a numerical framework using finite field arithmetic [53-55]. The
derivation of the differential equation system can be implemented entirely within the
dataflow graphs provided by the FINITEFLOW library [55] allowing us to sidestep traditional
limitations due to huge intermediate expressions. The determination of a UT basis also
presents a significant challenge and has a significant effect on the simplicity of the differential
equation system. While considerable effort has been spent to determine automated, or
semi-automated techniques for the determination of UT bases yet they are still difficult to
apply to situations with a large number of kinematic scales. In this work we will describe

"We refrain from making a stronger statement though the pattern established in pp — ¢t would mean
elliptic curves (and more complicated geometries) would only appear in closed heavy fermion loops or
sub-leading colour, non-planar topologies.



how the UT system can instead be inferred by observing patterns in known examples to
provide a suitable ansatz.

Once the differential equation system has been determined we employ the semi-analytic
approach to provide the solution of the master integrals. The generalised power series
method [56-58] provides a practical way to evaluate the integrals at given numerical values
through contour integration from a boundary point. In this work we use the implementation
of the method discussed in the ref. [58] into the MATHEMATICA package DIFFEXP [59].
For a successful implementation the boundary value must be given with a sufficiently
high numerical precision. The development of the auxiliary mass flow method [60-62]
and in particular the MATHEMATICA package AMFLOW [63] offers a simple and practical
solution to this task. We are therefore able to offer a solution for the master integrals
which has the potential for phenomenological applications, as has been done for other
processes [22, 25, 64-70].

Beyond our semi-analytic solution for the master integrals, we also derive the analytic
representation for the system of differential equations in terms of logarithmic one-forms.
The alphabet for this system is written in a compact form and it shows the same analytic
structure as in the five-point massless [16] and in the one-mass [22] cases. As a consequence,
this paper lays the groundwork for a fully analytic solution, in terms of an extension of the
pentagon functions [18, 21, 24], to the case of top-pair plus jet production.

The paper is structured as follows. In section 2 we define the topology that is under
study and we discuss the computational framework. In section 3 we describe our approach
to construct the canonical differential equations and the UT basis of master integrals. In
section 4 we present the logarithmic one-forms representation of the differential equations and
the analytic form of the alphabet, while in section 5 we discuss the numerical evaluation of the
master integrals. Finally in 6 we give our conclusions and we analyse future developments.

2 Notation and definitions

We consider the Feynman integral topology in d = 4 — 2 dimensions with eight propagators
as shown in figure 1. This can be written as,

05 g = | DDk, D0 D DU (2.)
1 8
where a1, --- ,a11 > 0. The propagators, and numerators, are defined as
Dy =k, Dy = (ki —p1)*—mi,  D3=(k1—p1—p2)’
Dy = (k1 —p1 — p2 — p3)°, D5 = k3, Ds = (ka — ps)?,
D7 = (ky — ps — ps)°, Dg = (k1 + k2)?, Dy = (k1 +ps)%,
Dig = (k2 +p1)* — mj, Dy1 = (k2 + p1 + p2)?, (2.2)
and the integration measure is:
Dk; = A% oy (2.3)
T2



3

Figure 1. The pentagon-box topology contributing to pp — ttj. Black lines denote massless
particles and red double-lines denote massive particles.

Momenta are considered outgoing from the graphs and all the particles are on-shell, i.e.
p? = p3 = m? while p§ =p3 = p% = 0. The kinematics of the integrals can be described in
terms of six independent invariants. Here we choose the top-quark mass m; and the five
dot products, ¥ = {d12, do3, d34, dss, d15, m?}, where

dij =DPi-Pj- (2.4)
The minimal set of master integrals (Mls) is obtained by IBP reduction [51, 71], as
implemented in the software LITERED [72, 73] and FINITEFLOW [55]. We found a total
number of 8 MIs which are shown in figure 2 and 3.
We wish to find a basis of Mls, f, which satisfies a system of differential equations in
canonical form [49]:
dZ(Z e) = e dA(Z)L(Z,e), (2.5)
where d is the total differential with respect to the kinematic invariants, and the matrix
A(Z) is a linear combination of logarithms:

A(E) = cilog(wi(d)). (2.6)
The ¢; are matrices of rational numbers, and the alphabet {w;(Z)} consists of algebraic
functions of the kinematic invariants Z. We discuss the details of the canonical basis of MIs
and the alphabet structure in section 3.
The system of differential equations depends on a set of square roots which we define
here for later convenience:

6 = 1-— %7
S12
Al =\ det G(p23ap1)7 AQ — \/ det G(p157p2)7
4 2 4 2
A3 = \/1 — 345mt AVE A4 = \/1 + 834845mt PR
(s12 + s23 — my) s12(815 — S23)

2 2

S45M; 5345451
As =4/1— , Ag=y[1— =22t
5 4dq5dos 0 4d15d23512

trs = 4y/det G(ps, pa, ps, p1) = tr(vspyp Ppy): (2.7)




where G;(U) = v; - vj is the Gram matrix and s;; = (p; + pj)2. The square roots Ay and
Ag appear in some intermediate steps of the differential equations reconstruction but they
are not related to the normalisation of any master integral. We nevertheless list them here,
as some letters of the alphabet can be written in terms of their squared expression and
therefore they can be used to match factors appearing in the denominator of the differential
equation system.

In order to be able to build a canonical system of differential equations in a rather
compact form, our basis of MIs contains integrals with insertions of local numerators [16,
22, 74-76]. We will therefore need to extend the notation introduced in eq. (2.1) to allow
for insertions of these local numerators into the integrand. For the scope of this paper
it will suffice to extend the notation to the local numerators p;;, which are defined after
splitting the loop momenta into four dimensional and (—2¢) dimensional components,

ki = kY 4 k7, pij = =y 2k, (28)

Hence, we introduce the minimal extensions

ag 7a10 MHe11
1lid],a9,a10,a11 — [ pi2ep. pA-2¢p, . Dy"Dig” D1
a1,a2,a3,04,05,06,47,08 1 2 [ij a1 ag
DI ... DY
a9 1)aio Hait
[i5,kl],a9,a10,011 _ 4—2¢ 4—2¢ . Dy’ D1y’ Diq
Ia1,a27a3,a4,a57a6,a7,a8 =|D k1D ka2 puij b D% ... D% - (2-9)
1 8

3 Canonical form differential equations and a basis of uniform
transcendental weight master integrals

In this section we describe the structure of the canonical basis of UT master integrals.
The canonical basis approach [49] for systems of differential equations greatly improved
the effectiveness of this method for computing Feynman integrals. As a consequence,
a great effort has been put into developing techniques aimed at identifying a basis of
MIs which satisfy canonical differential equations [49, 77-84]. Given the complexity of
the kinematics, automated approaches are difficult to apply in our case yet we find a
relatively compact form that demonstrates an emerging pattern in 2 — 3 scattering
problems [16, 17, 19, 20, 22, 23, 25, 27, 85-87].

Our approach relies on our ability to perform IBP reduction and evaluate the differential
equation matrix over finite fields. This means it is relatively easy to extract information
about the e structure of the differential equations from a univariate slice. Combining this
with cuts to identify the homogeneous parts of each sector means that it is very quick to
check whether particular choices of MIs are suitable. The second important part of our
approach is the availability of a sufficiently good set of potential choices. Even though we do
not attempt to provide any algorithmic way to generate such a set there is an increasingly
large set of known UT bases for 2 — 3 scattering problems and many subtopologies that
gives us an excellent starting point. In particular the existence of known topologies for
massless and one-mass five-point [18, 20, 22, 25] (for e.g. pp — W + 2j and pp — 3j),
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Figure 2. The first 30 diagram topologies describing 60 out of 88 master integrals. The label of the
individual sub-figures lists the master integrals belonging to the corresponding topology. Massive
propagators and massive external momenta are indicated by red double-lines.
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Figure 3. The remaining 23 diagram topologies describing 28 out of 88 master integrals. The
label of the individual sub-figures lists the master integrals belonging to the corresponding topology.
Massive propagators and massive external momenta are indicated by red double-lines.

two-mass four-point for pp — Wt scattering [88] provide a lot of information about the
subtopologies in our 88 integral system and so only 40 were completely unknown in UT form.

Owing to the large number of square roots appearing in the problem we do not attempt
to construct the canonical form of eq. (2.5) directly but instead search for a form linear in €
with purely rational matrices. The square roots appearing in the UT basis can be arranged
to be overall normalisations of individual integrals and can thus be removed for the purposes
of simple finite field evaluations. This approach is explained in reference [55]. Specifically,

dJ (@) = d (A0@) + AV (7)) T (@), (3.1)

where

Z; = Nij(2)J; (3.2)



and both of the 88 x 88 matrices A(®) and N are diagonal. The canonical form differential
equation is then easy to obtain via,

d1(7,¢) = ed (N(@HAD@N (7)) L(#,e) (3.3)
after fixing the normalisation through,
~ 1
AO) §N2dN(‘2) =0. (3.4)

Since the matrix N is diagonal the inverse and square operations are trivial. We write the
latter relations using N2 to demonstrate it contains only rational functions.

The set of 88 MIs shown in figure 2 and 3 are split into genuine two-loop integrals
and one-loop factorisable (one-loop squared) integrals. These integrals are grouped into 52
different sectors of which 6 are of one-loop squared type. We can also subdivide the two-loop
topologies by the number of external legs and we will refer to the topologies according to
the shape of each loop:

o Five-point integrals: this class contains pentagon-box, pentagon-bubble, double-
box and box-triangle topologies;

e Four-point integrals: this class contains double-box, box-triangle, box-bubble and
kite topologies;

e Three-point integrals: this class contains kite-like and triangle-bubble topologies;
 Two-point integrals: this class contains just the sunrise topology.

The guide for selecting candidate MIs then follows from patterns already observed in
previously studied cases and can be justified by considering the leading singularities and
local numerator insertions:

e In the two-point and three-point class the canonical MI candidates can involve scalar
integrals with dotted denominators;

e In the four-point class the canonical MI candidates can involve scalar integrals with
dotted denominators or the numerators Dy, D1, D11;

e In the five-point class the canonical MI candidates can involve scalar integrals with
the numerators Dy, D1g, D11 and local integrand insertions f;;.

Another important feature in the selection of candidates is to ensure that the maximum
numerator rank and number of dotted propagators is minimised. Including high rank
numerators and large numbers of dotted propagators quickly causes the number of required
IBP relations to explode and requires excessive computational resources. We therefore build
up from a Laporta style minimisation of numerator rank and dotted denominators and add
dots and numerators until each sector has a homogeneous differential equations (i.e. on the
maximal cut of each sector) of the form of eq. (3.1). During this process we can also use
the univariate slice in € to determine factorised prefactors that would allow us to rotate



3

Figure 4. The pentagon-box sector with the master integrals Z;, Z5 and Zs.

the homogeneous differential equation matrix into the desired form. As a result we can use
integrals with fewer dots and substitute with prefactors depending only on &.

After checking each homogeneous system, the remaining € dependent factors can be
determined from a univariate slice of the full system. After this procedure we find that some
sectors require additional rotations in sub-sectors. In our case this step was particularly
simple and only involved the treatment of 2 x 2 systems, yet it would be interesting to
understand why this is necessary in some cases so a better selection of candidates could be
made. Interestingly, such problems did not arise in any of the most complicated five-point
topologies where the (extra-dimensional) local numerator insertions worked well.

For the remainder of this section we present explicit forms for all integrals in the
five-point sectors. A complete list of the remaining UT integrals is given in appendix A as
well as in computer readable form in the supplementary material attached to this paper.

3.1 Pentagon-box sector

The eight propagator pentagon-box sector shown in figure 4 contains three Mls. As the
topology with the maximal number of propagators it is particularly important to find a
simple basis choice in order to avoid technical complications with the size of the IBP system.
In particular we find a convenient choice of UT integrals with a lower tensor rank than in
previous five-point bases which simplified the analytic reconstruction.

In these massless and one-mass five-point planar cases [16, 22] a basis of canonical MIs
was obtained that involved the following integrals:

71:0,0 [11,22],0,0,0
1,1,1,1,1,

711212000 £[121,0,0,0
171717171717171’ 17]‘7 717 - :

1 1,1,1,1,1,1,1,1041,1,1,1,1,1,1,1 (3.5)

The local numerator pi11420 — 135, requires the reduction of rank 4 numerators which puts a
considerable strain on the system of IBP equations. We find that a different local numerator
insertion of rank 2,
[11],0,0,0
IRREERREE (3.6)

also leads to a UT basis which allows for a simple analytic reconstruction. We note that
this choice is also UT for the other five-point configurations mentioned above.
We then find that a canonical basis of MIs for this sector is:

Ty = 8dpg dus (diz +mf) 711110, (3.7)



Figure 5. The two five-point double-box topologies, containing the canonical MIs Zy, Z5, Zg, Z7,
and Zg, Zg, Z1¢ respectively.

d
(A dss [11],0,0,0
I = trs Iy 11410110

7= ¢ s L
One should be aware that this simplification in the rank of the IBP system is only valid for
the differential equation system. Rank five numerators cannot, at least with the current
technology, be avoided in the reduction of the amplitude. However since the differential
equation system requires the reduction of many more dotted propagators than the amplitude,
we may still avoid the need for a system requiring simultaneous reduction of high ranks
and multiple dots.

3.2 Double-box sectors

There are two sectors with a double-box topology, as shown in figure 5. As for the pentagon-
box, a compact form of the canonical basis for these two sectors can be constructed using
local numerators. Specifically, we choose as canonical MIs for the first sector in figure 5
the set:

I4 = € 8d15 d45 (d12 + mt> 1]97’]977]?70717171’17 (3.8)
Ts = e*4 Bdys (d12 + mt) I ’?’?0,1,1,1,1,

1
4 [12],0,0,0
Ig =€ Z 1—1,1,1,0,1,1,1,1a

Iy =€ (d12+m§)( (d15—d23)—7 ’ ’?00111+4d45111101111)

7777 It Rk it ]

We note that in the massless limit there are only three master integrals in this sector. The
fourth integral in this set was identified by a simple analysis on the maximal cut of the
sector, and it required a rotation to remove contribution from a sub-sector. For the second
sector in figure 5 we have the following set of canonical Mls:

Ig =€ 4d23 dsq dys IO 171’171717171, (3.9)
Ig=e¢ 4d25 das Io 1, 1 1,1,1,1,10
41 [12],0,0,0
Tho = et 1 trs I, ERERRRRE

These integrals line up precisely with previously considered five-point kinematics.

~10 -



Figure 6. The pentagon with a bubble insertion covers the master integrals Z4 and Z;7.

3 2 4 3 4 3
(a) (b) (c)

Figure 7. The three genuine five-point box-triangle topologies covering the master integrals Z;g
and Zyg (a), Zoo and Zyy (b), and Zoo—Tsg (), respectively.

3.3 Pentagon-bubble sector

For the pentagon-bubble sector, differently from the previous cases, we find a choice
of canonical basis which involves also a dotted denominator. The dotted denominator
corresponds to one of the one-loop bubble propagators. Hence, we define the canonical
basis for this sector as follows:

1
_ 3 [11],0,0,0
Tir=c¢ 1 trs 11,1,1,1,0,1,072-

3.4 Box-triangle sectors

There are three distinct box-triangle sectors with genuine five-point kinematics displayed in
figure 7. Four of the nine master integrals require the insertion of local numerators. The
explicit form of the canonical MIs in these topologies is given by

1
_ 3 [11],0,0,0
Tyg=e 1 trs [ ,1,1,0,0,1,1,25

4 2\ 70,0,0
Ty = € dos <d12 —dzs + mt> Iohni1,01

1
3 [11],0,0,0
I =c¢ 1“5 10,1,1,1,1,1,0,27

- 11 -
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_ .3 2 70,0,0 4 0,0,0
Ipg = €’dgadasmi In 70111, — € (d1s — dz4) das Iox101,1,1,00

Lt b At ] Pt it it

3 2 70,0,1 3 2 70,0,0
Tog = €dasmi Lys'1 911,11 + € dsadas mi Lpr1 011,11

4 0,0,0
—3€ (dis —d3a)das Ig1 1 011115

by by dydydy

_ 3 [12],0,0,0
Ios =¢ 1‘51‘5[ ,1,1,0,1,1,1,25
T — 3L 722000

26 = € 1 r519.1,1,0,1,1,1,2

3.5 Rational function reconstruction

Having identified an integral basis in the form of eq. (3.1), we find the maximal polynomial
degree (numerators/denominators) in the variables ¢ and d;; drop from 53/57 to 15/15.
Since many denominators align with the one-loop case considered recently [70], matching
factors on a univariate slice also simplifies the final analytic reconstruction which was
eventually achieved in just a couple of hours on a 32 (physical) core workstation.

4 Analytic structure of the differential equations

The reconstructed, e-factorised form of the DEQ system can be used directly in the
generalised series expansion method. However, for a more detailed understanding and the
first steps towards constructing a well defined special function basis, we demonstrate that
the system can also be written compactly in terms of d-logarithmic forms using an alphabet
which is made of 71 letters wj:

71
dZ(Z,e) = e dA(T)I(Z,e), A(X) = c;log(w;(Z)). (4.1)
=1

In situations such as these where there are many square roots it can be difficult to identify
the complete alphabet but we find the following a strategy along the lines of those described
in refs. [89-91] is sufficient in this case. We proceed in two steps, first we identify a set
of rational letters (i.e. without square roots). The remaining algebraic letters containing
square roots can then be constructed by examining the denominator structure of a particular
element of the total derivative matrix. It is useful to first determine the linear relations in
the total derivative matrix to minimise the number of times the strategy must be followed.
Given an independent entry of the derivative matrix one looks for all square roots appearing
in the denominators. One can then construct an ansatz containing free polynomials in the
variables d;; which depends on the number of square roots. If there is one square root we

a—i—\/l;
a—b

may try a letter of the form,

Q(a,b) = (4.2)

and in the case of two square roots,

. (a+vb+Ve)(a—vb— /)

Qa,b,c) = (@t Vb a— Vbt va) (4.3)

- 12 —



Such forms have appeared in numerous of previously studied examples including five-particle
kinematics [18, 22, 25, 92]. We note that one can expand the form of eq. (4.3) into one
similar to eq. (4.2) where the single square root is the product vbe. The structure in
eq. (4.3) is preferable as the polynomial degree of the unknown element a is lower as noted
in ref. [22]. Using an ansatz for a up to a particular order it is simple to compute the
quantity d(log(€2)) and check for a solution in the unknown numerical coefficients in a.
Taking the polynomial factors inside the square roots and the dimensions into account
allows a simple template to be constructed where the polynomial order is kept as low as
possible. We note that if the square root appearing in the letter is trs we may find another
compact representation of the form,

ra(ig k) = 5 ((LE )P, ) (1.4)

As before, this follows the structure identified previously in the literature [22, 25, 92].

Following this strategy we identify an alphabet for our case in which the rational and
algebraic letters can be divided into subsets which we describe in turn. For the rational
letters we define,

Wr:=WgrgUWrUWg:={wy, - ,wir} U{ws, - ,was}U{wss, -, w33}, (4.5)
and for the algebraic letters

Wy = Wsr 1 UWrrUWgg 9 = {wss, - ,ws1} U{wsz, -+ ,weo} U{wer, -+ ,wr}.
(4.6)
The rational set of letters W g is made of linear combinations of the kinematic invariants.
However, we can identify three different kind of subsets in Wg. The subset Wk can be
written in terms of the Mandelstam variables s;; = (p; + p;)? and it is defined as:

2 2 2 2 2 2

Wk = {mt, 512, 523, 534, 545, 515, 535, $23 — M}, S14—M3, S15— My, S24 —My, S25 — My,
S12— 534, S12— 545, S12 — 535, 523 — 515, 523 — 514} - (4.7)
The subset Wt consists of letter that can be written as traces over «-matrices. Defining,
tr(ij---k) = tr(pl.pj ) (4.8)

we can then write the 8 letters as,

W = {tr(4151), tr(4232), tr(5242), tr(3252), tr(32[1 + 2J4[1 + 2]2), tr(312312)
tr(412412), tr(512512)} . (4.9)

Finally, the rational letters that belong to the third subset, Wg, can be related to the roots
defined in eq. (2.7):

W = {82 (A2, (A2)2, 4(dha + das + md)2(A3)2, (A5)2, (As)?, (Ag)%, ). (4.10)
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We identity three different classes of algebraic letters which involve square roots of the
kinematic invariants. The first class, Wggr_1, is made by letters in terms of €2 as defined
above in eq. (4.2),

Wsp-1:=
2 2
di2—dss+my)
01,52, 0 1_|_mt( t) g2,
{ (.5) < di5(diz+m3) b
d12d23+d12mt —i—dggmt d45mt +mt 52
dog(dia+m?) ’ ’
diad15—diadag+diads +dism? —dozm? —dsym? )
Q ? 7Q d _d 3 A 5
< (di2+m3?)(d15—dos+das) f ( 23— d1s, (A1) )

d12(2do3+m?)+ (doz+ dos —dy5+m?
Q(d23—2d15—d45,(A1)2>,Q< 12( 23 mt) (23 mt)( 23 —a45 mt)7(A1)2>’

do3

d3, d23d45 —dyzm?

2

: (A1)2> , Q2 (dls—d34, (Az)z) , Q (d15—2d23—d347 (A2)2) ,

)

dys

2

d3 5—d15d34 dsam? 9 2 < 2(d15—d23—d3a) 2)
A Q(1,(A Q1 A
( 2) s ( 7( 3) )a + d12+d23+m§ 7( 3) )

d12d23+d12mt+d23+d23mt d45mt+mt 9 9
As)? ) (1, (A))?)),
dgg(d12+d23+mt) ( 3) ( ( 4)>
dy5+do3 2 d15d34—di5d45 —dozdzs+dogdys+2d3adys
(A7), Q
(d15—da3)(d3a+das)

Q

<d12 2d15+mt +(d15+m7)(dis —dss+m37) (A2)2>

(@)} @y

The letters associated to the class Wrg, contain dependence 5 and are of the form defined
above in eq. (4.4),

W o [T (5241) tro(35[1 4+ 212) ey (34[1 +2)2) tr_(341542)

T {tr (5241)" tr_(35[1 + 2]2)" tr_(34[1 + 2]2)" tr, (341542)’
try (5142[1 + 2J4) try(3423[1 4+ 2]1) tr4(5232[1 + 2]4) tr, (51431 + 2]1)
tr_ (51421 + 2J4)" tr_(3423[1 + 2]1)" tr_(5232[1 + 2J4)" tr_(5143[1 + 2]1)’
try (4151[1 + 2]5)
(@IS 25) } ' (412)

The final class, Wgg_o, is made by letters in terms of  as defined above in eq. (4.3),

Wgegr_9:=

Q (d12—|—d23—d45+mf, (A1)?, (d12+m§)252) )

—N—

(d12+d15—d34—|—mt, (A)?, (d12+m?)252) ;
2 (da, (D) (diatdag+m?)?, (diz+m3)*8%)
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Q (d12—d45+mt2, (A3)*(di2+daz+m7)?, (A1)2> ,
—((d12+m?)(d1s—daz+das)), (Ag)?(d1a+m3)?(dis —da3)?, 52 di5(d12+m?)2),

ol

tr2
<d12d15—d12d23 dysdys+dism? —dazm?, d3, (A1)?, 15) 7

tr2
d12d15—d12d23+d15’mt +dozdszs— d23mt, d45 (A2)2, 165> ,
d12+d12(d15+d23 dss— d45+2mt) (d45—mt)(d15 d34+mt>

tr
+das3(mi —dsy), (di2+m3)?(dia—dzs —dys+mi)* B2, 165>

~ tr
Q<6l12(dls—d23—61l34) (dis—dss)(dgs—m3?) —das(dza+m3?), diy(dia+m?)? 52, 1§>

Q (d12 (d15—dag —dsa)+dis(mi —das) —m? (doz+dzs) +dsadas,

tr2
d3,(A3)?(d12+daz+m?)?, 165> ;

~ tr2
Q <d15d45+d23d34—d34d45, (A4)?*(drg+m3)?(d1s—da3)?, 15) } . (4.13)

We observe encouraging patterns between these letters and those observed in other five-
particle kinematic configurations which suggest a general alphabet for all polylogarihmic
two-loop integrals with five legs or fewer can be described with similar letters.

4.1 Symbol level structure

While a completely analytic solution for the master integrals is beyond the scope of this
article, using the weight zero terms from the boundary values we are able to construct
the symbol of the master integrals [93, 94] by iteratively expanding the canonical form
differential equation in ¢,

o)=Y FITW (7). (4.14)
k
At each order the result is obtained by integrating over the previous one:
I0(@) = [ Y edlogui() T4 V@), (4.15)

where at weight 0, 70 is just the vector of boundary conditions and it is made of rational
numbers. For the system of MIs under study ZO has the following form:

- 5 5 119 5 11 5 1 15

70 { 00 00 .0,-1,0,=—.,0,—,~,0,0,0,0,0,0, ,0,0,0,0,0,0,0,
6’ 62476’ YRR DXD S 6 12’

1 1 1 111 1
00— 1o r000-100000 00210 Yo100211
b ) 67 67 76? b b ] 7?777767 b ) 6727277 67 ) ) ) 7677
1 11111 1 1 1 1 1 1
~.0,0,0,=, =, =, = = 0,0,-,0,0,0,0,1,1,0,—~, —~, ——.0,—=,0, —. 1,1 %.
27777272727272ﬂ77477777777 27 27 277 277 277}
(4.16)
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By iterating the expression in eq. (4.15) we can write Z()(Z) as:
IO@) = Y i [ dlogwn (@) dlog(w, (). (.17)

where e;, ... ;, are given by products of the matrices ¢; in eq. (2.6). The expression in
eq. (4.17) is not enough to obtain an analytic expression for the MlIs, however, it contains
analytic information at the integrand level which is encoded in the symbol definition [93, 94]:

S [f(k)(f)} = ' Z €iy,ee ik [wh (‘f)a T 7w1k(f)] : (4‘18)

Using the information provided in the supplementary material attached to this paper together
with the descriptions in the literature [93-95] and some help from the PoLyLoGTooLs
package [96], it is straightforward to construct explicitly the symbol of the master integrals.
This symbol level expression can be used to perform a useful consistency check on our
results since it carries information about the discontinuities of the Feynman integrals. The
so-called first entry condition [97] states that e;, .. ;, = 0 if the first entry, w;, (Z), in the
symbol (4.18) does not correspond to a physical channel of the topology. Checking this
condition for our integrals can be simply stated as expanding the symbol level expression
to weight one (logarithmic terms only) and checking that the only discontinuities appear in
the invariants,

T = {812, So3 — m?, 834, 845, S15 — m?} , (4.19)

which we have confirmed to be true.

5 Numerical solution of the differential equations

As a proof of concept of our work, we discuss in this section a numerical solution for the
system of differential equations associated to the master integrals. The system has been
integrated semi-analytically exploiting the generalised power series expansion method [58],
as implemented in the package DIFFEXP [59]. Since we are interested in a numerical
evaluation of the master integrals, we integrated the system using high-precision numerical
boundary conditions. This evaluation has been done exploiting the auxiliary mass flow
method [60-62], by means of the package AMFLOW [63]. The boundary values are evaluated
at the rational point chosen arbitrarily in the Euclidean region:

pee {219 B 1) -
with a precision of O(100) digits. All the relevant material for the numerical evaluation is
given in the supplementary material attached to this paper:

e anc/DiffExp/boundary_value.m: a set of numerical boundary conditions;
e anc/DiffExp/DEQs/d_1.m: the dlog matrix in the DIFFEXP format;

e anc/DiffExp/analytic_continuation.m: the list of polynomials needed for the
analytic continuation;
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e anc/DiffExp/DIFFEXP_run.wl: a MATHEMATICA file for the numerical evaluation of
the MIs with DIFFEXP;

e anc/boundary/run.wl: an AMFLOW script to generate high-precision boundary
conditions.

Our numerical tests with DIFFEXP have not been optimised for a realistic phase-space
integration required by phenomenological studies. As a result it is not possible to quote
any sensible analysis of the evaluation times since in our tests, all benchmark points were
transported from the same Euclidean boundary point. While this was useful to establish
that the analytic continuation was performed correctly a different strategy would likely be
beneficial during the evaluation of multiple points. It has been shown for other processes
that iterating in short steps around an initial high precision grid of evaluations can lead to a
highly efficient implementation suitable for phase-space integration [22, 25, 6769, 98|. High
precision boundary terms valid in a particular phase-space region can also easily computed

using auxiliary mass flow method if required.

5.1 Benchmark points

We now give some benchmark points for the pentagon-box Mls Z; and Zs. Interestingly,
the third master integral in this sector, Z3, is zero up to and including weight 4 for all the
points that we studied.

We consider benchmark points for the physical phase-space region in the scattering
channel 45 — 123:

R = {p% > 0, p% > 0, di2 >0, dis <0, dog > 0, d3q4 < 0, dygs > 0, tr% < O} . (5.2)

In particular we consider the following five points:

L (1319 111 81 1

xl_{&)’m’_so’z’_zloo’m}

L f1w07 7 171 93 1

w2 _{400 200 200’2’_400’16}

L 201 1 77 1

s _{400 200 200’2’_400’16}

L (271 259 222 37 3441 1

v _{400 200 25’2’_400’16}’

- _{271 1221 222 37 2479 1} 53)
400° 200 25° 27 40016

5.2 Numerical checks

We briefly comment on the numerical checks that we performed in order to validate our
results. The numerical checks have been done by comparing the numerical results, obtained
with DIFFEXP, with respect to a fully numerical evaluations performed with AMFLOW.
We made checks for several values of the kinematic invariants and we found full agreement

between the two methods.
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T T T3 Ty Ts5
(0) 5 5 5 5 5
1 6 6 6 6 6
I(l) 2.1892384 + | 3.7462547 + | 2.0349747 + | —3.8483012 + | —5.9157644 +
1 4.18879027 4.18879021 4.18879021 4.18879021 4.18879021
I(g) —4.0886316 + | 0.601470 + | —4.9774769 + | —2.102532 — | 9.928524 —
1 9.43514072 16.615964: 10.3252137% 29.1860227 35.6811497
I(g) —6.9367835 + | —11.982563 + | —21.690194 + | —89.442855 + | 58.305031 +
1 6.14247761 29.5345557 10.5407082 18.0568837 71.732816%
I(4) —51.557014 4+ | —50.707105 + | —141.376078+| —51.44856 + | —277.01306 +
1 40.311095% 81.83262112 1.757813: 237.863997 85.514924

Table 1. Benchmark points for the pentagon-box master integrals Z;. Ifk) indicates the k-th order
term in the e-expansion of the integral.

— — — — —

T1 Z2 T3 T4 T
¥ o 0 0 0 0
¥ o 0 0 0 0
¥ o 0 0 0 0
S || 015787753 — | 0.09544126 — | 0.23166742 — | 0.03401419 — | 0.16100404 —
2 0.49701005i | 0.39795332i | 0.52220052i | 0.28601824i | 0.57235050i
S | 11713578 — | 0.8565234 — | 1.6250680 — | 0.00744603 + | ~0.2359265 +
2 2.2750822i | 1.9943250i | 2.5557664i | 1.08835475i | 1.8438365i

Table 2. Benchmark points for the pentagon-box master integrals Zs. Iék) indicates the k-th order
term in the e-expansion of the integral.

5.3 Remark on square roots numerical evaluation

We finish this section with a comment about the square root implementation within our
DirrEXP setup. In order to be able to run DIFFEXP, the differential equations file has
to contain only irreducible square roots. As it can be seen from eq. (2.7) the square
roots As and A4 contain a perfect square at denominator, hence they are not irreducible.
Consequently a replacement rule has to be applied within the DIFFEXP setup. Specifically,
we made the following replacement in generating the differential equations file:

\/2 (di2 + dag — das) m? + (di2 + dag) 2 + m}
dio + daz +m?

\/((d15 — do3) 2 + 2d34dys) m? + dia (dis — dag) 2

Ay — sign(dis — da3)
\/di2 +mi(dis — da3)

Ag — sign(dlg + d23 + m%)

9

(5.4)
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The sign in eq. (5.4) depends on the boundary point that is used within DIFFEXP. As an
example, for the setup that is given in the DIFFEXP files in the supplementary material
the sign is negative both for A3 and A4, because we are using the boundary point Zy in
eq. (5.1). Moreover, the square roots Az and Ay appear as normalisation factors in the
definition of the UT basis for the MlIs 18 and 31. Therefore, in order to have a consistent
numerical evaluation of these MIs, the sign prefactors in eq. (5.4) have to be kept into
account when generating new sets of boundary conditions.

6 Conclusions

In this article we have considered a set of master integrals required to describe pp — ttj
at two-loops in QCD in the planar limit. While we have limited ourselves to a semi-
analytic evaluation of the integrals using the method of generalised series expansions, the
identification of a ‘dlog’ representation of the differential equation is the first step towards
a well defined special function representation as has been achieved in massless propagator
cases [18, 21, 24]. We also observe some simple structure in the choices of UT integrals
which we hope will be of use when treating the other planar topologies.

An analytic computation of pp — ttj at two-loops in QCD remains a considerable
challenge, yet in the planar limit (excluding corrections from closed heavy fermion loops) the
prospects look quite reasonable. Of course, as soon as elliptic curves (or more complicated
geometries) become relevant, the problem quickly grows in complexity, both for finding a
good choice of MIs and reconstructing the differential equation and by the fact that the space
of special functions the integrals evaluate to is often unknown. Nevertheless, the successful
application of the generalised series expansion together with the high precision boundary
values obtained through the auxiliary mass flow method, offers hope that representations
suitable for phenomenological applications may be achievable in the near future.

Beyond the phenomenological applications of this work, the analytic results obtained
for the differential equations and the alphabet structure could also be of interest in some
more theoretical contexts, such as cluster algebras [99, 100] or recent studies concerning
the singularities structure of Feynman integrals [101-103].
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A UT integrals for sectors with few than five external legs

In this section we give explicitly the expressions for the UT basis of the non five-point MIs.

Sector: 711, Z1o

5 1
2
Ty = — 8dsy dj; € 19,78,7?,1,1,1,1,1
2\ 4 71,0,0
Tho = —4dys (—dra +das —mi) € 119111111
) ; (A1)
Sector: 1.13, I14, Il5
5 /1
4 3 2
Ti3 = 8dy5 d3s €t I?,’%g,l,l,l,l,l
Thy = 2da5 Ay € 111,’?,’8,1,1,1,1,1
9 4 70,10 3dag e (2¢ —1)(3¢ — 2)(3e — 1) 0,0,0
1'15 = 4d45€ 11’170’171’171,1 + 10,070,1,1,0,0,1
4dy5 dys
4daz dgs mi €2(2¢ — 1) 00 ddaz das mi € 000
dis 1,2,0,1,0,1,0,1 — d—15 1,2,0,0,0,1,1,1
€(2e — 1)(3€ — 2) (10da3 € — 2da3 + 4em? — m3?) 0.0
- 157170,0,0,0,1,1
815 das
3€%(2¢ — 1)(3e — 2)m? 50,0 3€(2e — 1)(3e — 1) (2d23 + m3?) 000
- 82, 0,1,0,0,0,1,0,1 — Adis Ioh 01,0101
€(2e — 1) (11daz em? — 2dag m? + 4d35 € + demi —mi) 000
- Adi-d 197210,0,0,0,1,1
15 da3
3€%(2e — 1)m7 (di5 + m?) 000 3daz €2(2¢ — 1)(3e — 1) 900
B 4d%5 10,27070,0717071 + 2d15 1,0,0,1,0,1,0,1
6das (di5 — da3 + dys) €t 70.00 6da3 (dog — das) €(2e — 1) 00
- dis 1,1,0,0,0,1,1,1 — dis i 00,0101
(A.2)

Sector: Zo;

A To7 = 4da3 (d12 —dys + mf) ¢ Ig,’?,’?,1,1,0,1,1 (A.3)
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Sector: Tog

1
V4
5
4
N\
3 2
Sector: Ty
5
1
2
4 3
Sector: 73
5 1
2
3
4

Sector: 731, I3, L33, T34, I35

Sectors: 1367 I37 and I46, I47

) 1

W~
(V)

2\ 4 70,0,0
Tog = 24\ (d12 + mt) € 1117101011

b

2\ _4 70,0,0
Tog = 4dys (d12 —d3q + mt) € L1 01,11

4 70,0,0
T30 = —4(dis5 —da3) das € I p11111

Ly Lytydy

T31 = 23 <d12 + daz + mf) € Ip1 701011
T3y = 2mt2 (dlg —dys + m%) el Ig:g:?,(),l,o,l,l
T33 = 46 dys (d12 + m?) e Ig:?:?,O,Q,O,Ll

T34 = 4do3 dys € -78,’?,’?,0,1,0,2,1

2\ _3 70,0,0
I35 = 4da3 (d12 +mt> € 15717101012

4 70,0,0
Iss = —2(dis — daz —dsa) € Ip11001,11
2 3 70,0,0
T37 = 2dzami € Iy 001,11

4 70,0,0
Zas = 2(d15 — daz +dus) € It 00111

_ 2 3 70,0,0
ZLyz =2dasmi € 115000111

— 21 —
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Sector:

Sector:

Sector:

Sector:

Sector:

Sector:

[\

1
I3g =2 (d12 +dis —dsa + m?) e Ig,’?,’?,o,1,1,o,1
.
’ Ty9 = 2m] (dl? —dsa + m?) e Ig,’g,’?,o,l,l,o,l
PaS (A.9)

Zao, I
5
1
4 70,0,0
A Zao =4(dsa +dus) € 11100111 (A.10)
3 70,0,0 :
2 Ty = 4dssdas € 1,07 00112
3
Lyo

I42 = 2 (d12 - d34 - d45 + m%) 64 100:8:?7171717071
(A.11)

ot
H; :
w

I43 = 2 (d12 - d45 + m%) 64 13:8:2?7071707171 (A.12)

=~ (@3]
(3] —_

Taa, Iys
1
2
5 Tag = 2 (di5 + dys) € Ig,’?,’8,1,1,1,0,1
2 _3 70,0,0 (A-13)
3 Tys =2 <2d15d23 - d45mt) € 15201,1,1,01
4
Zag

1
5 2
4 70,0,0
4 3 Zis = A€ Ipio 1,011 (A.14)

~99 _



Sectors: 1-497 I50 and .’1.537 154

N o

Sector: 75

e N\

Sector: Zso

e N\

Sector: Zs5

|

Tyg = —26(2¢ — 1) (d12 + m?) e I?ﬁ’?

0
,1,0,0,1,0,1

2\ 3 70,0,0
Ts0 = 4dis <d12 + mt) € 1117100102

1-53 = —26 (26 — 1) (dlg =+ m?) 63 [10:?

2\ 3 70,0,0
T54 = 4da3 (d12 + mt) € 1117100012

_ 3 70,0,0
T51 = —2da3 (2¢ — 1) € 10,1,1,1,0,1,0,1

_ 3 70,0,0
Tso = —2da3 (2¢ — 1) € 10,1,1,1,1,0,0,1

Tos = —2(2e — 1) €* (dio — das +mi) I

~ 93 -

0

,1,0,0,0,1,1
(A.15)
(A.16)
(A.17)

0,0,0

1,0,1,1,0,1,0,1
(A.18)



Sector: Zsg, Is7

5 1

~
w
)

Sector: Zsg, Is9

5
/
i N
4 3

2

1

Sector: Zg
1 2

\
/ i
3
Sector: Zg;

1
b)
2
4
3

Sector: Zgo

1
5
4
3 2

5

4

Ts6 = —2dys € (26 — 1) I(()):?:O,O,l,l,l,l
+ 4dy5 dys € Ig,’g,’g,o 1,1,1,1 (A.19)

bty dy

2\ _3 70,0,0
Ts7 = 2dys (2d15 + mt) € 13001111

B 3 0,0,0
Tss = —A1e’ (2 = 1) I110101,01

3
Tso = B (das — dus) € (2¢ — 1) I%%(()),l,o,l,o,l (A.20)

2 2 0,0,0
—dgsmy € (2 = 1) 115010101

)

Teo = —2das € (26 — 1) Ig,’8,’?,0,1,1,1,1 (A.21)

Tg1 = —4das (d12 + m?) e*(2e — 1) IE,’%IO,I,LO,LO
(A.22)

Too = —Ap €3 (2 — 1) ]10,’?,’8,1,1,0,1,0 (A.23)
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Sector: Zg;3

1
Tos = Be? (2¢ —1)(3¢ — 1) IV 01004
2 Be?(2e—1)(3e —2)(3e — 1) g0,
B 2(de — 1) m2 0,1,0,0,1,0,0,1
A.24
543 (A.24)
Sectors: Zg4 and Z75
2 1
4 3 4 5
Tl — Ase?(2e —1)(3e — 1) g00 n 3Ag €% (e — 1)(2¢ — 1) (d15 + m3) 010
64 = 2d3y 0,1,1,0,0,1,0,1 Ad2, dgym? 0,1,0,0,0,1,0,1
B Ay e? (2e —1) (—5d156 m? + 3dy5 mf + Qd%s € — 2d%5 — 4e mf + 3mf}) 0,0,0
4d%5 d34 m% 0,1,0,0,0,1,0,1
T A1 e (26— 1)(Be—1) 900 n A1 e? (2 —1)(3e —2) gy,
75 =
2dy45 1,1,0,0,0,0,1,1 4das das 0,1,0,0,0,0,1,1
A162(26—1) d23—|—m2 0.0.0
( 2 152/0,0,0,0,1,1 (A.25)
2d3 dys
Sector: Zgs
2 1
)
0,0,0
4 Tos = € (2¢ = 1)(3¢ = 1) I5%01,01,01,1 (A.26)

Sector: Zgg

5

Tos = €% (2e — 1)(3¢ — 1) 0 1.0.1.0.1 (A.27)
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Sectors: Zgy and Zgg

To7 = €2 (2¢ —1)(3e — 1)

Tos = € (26 — 1)(3e — 1) ?,’o,’ 10,0,1,0,1
1
9
3

Sector: Iﬁg, 1'70, I71

(@)
w
ot
[ o

IO,O,O

L Too = € (26 — 1)(3e — 1) 0,1,0,0,1,0,1,1
— €% (daz — das) Ig:?:g,o,l,o,LQ
@ +é2 (4e — 1) m? I87’37’870717071’1 (A.29)
Tro = A1 1950 04 0,1,1
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Sector: g

1
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