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Background: Patients with unfavorable carcinoma of unknown primary origin (CUP) have an extremely poor prognosis

of w1 year or less, stressing the need for more tailored treatments, which are currently being tested in clinical trials.

CUPISCO (NCT03498521) was a phase II randomized study of targeted therapy/cancer immunotherapy versus platinum-

based chemotherapy in patients with previously untreated, unfavorable CUP, defined as per the European Society for

Medical Oncology guidelines. We present a preliminary, descriptive molecular analysis of 464 patients with stringently

diagnosed, unfavorable CUP enrolled in the CUPISCO study.

Materials and methods: Genomic profiling was carried out on formalin-fixed, paraffin-embedded tissue to detect

genomic alterations and assess tumor mutational burden and microsatellite instability.

Results: Overall,w32% of patients carried a potentially targetable genomic alteration, including PIK3CA, FGFR2, ERBB2,

BRAF
V600E, EGFR, MET, NTRK1, ROS1, and ALK. Using hierarchical clustering of co-mutational profiles, 10 clusters were

identified with specific genomic alteration co-occurrences, with some mirroring defined tumor entities.

Conclusions: Results reveal the molecular heterogeneity of patients with unfavorable CUP and suggest that genomic

profiling may be used as part of informed decision-making to identify the potential primary tumor and targeted

treatment options. Whether stringently diagnosed patients with unfavorable CUP benefit from targeted therapies in

a similar manner to those with matched known primaries will be a key learning from CUPISCO.
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INTRODUCTION

Carcinoma of unknown primary origin (CUP) describes a

heterogeneous group of metastatic cancers without an

identifiable primary tumor, despite thorough clinical work-

up.1 The incidence of CUP has decreased over the past few

decades, likely due to improvements in primary tumor di-

agnostics.2,3 Survival remains particularly low among pa-

tients with unfavorable CUP, which accounts for 80%-85% of

cases and has an extremely poor prognosis of w1 year or

less.3,4 As these patients lack specific and effective treat-

ment options, clinical guidelines still recommend empiric

platinum-based chemotherapy.5,6 Yet, many patients with

unfavorable CUP rapidly develop resistance to therapy.1,4

More personalized treatment options, based on particular

molecular features, are becoming a consideration and are

being tested in clinical trials.
7

In that regard, the National Comprehensive Cancer

Network (NCCN) Clinical Practice Guidelines in Oncology

(NCCN Guidelines®),6 and the recently updated European

Society for Medical Oncology (ESMO) guidelines,8 now
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recommend the consideration of next-generation

sequencing (NGS) to identify potentially actionable

genomic alterations in patients with CUP, in addition to

thorough diagnostic work-up consisting of medical history,

complete physical examination, tissue biopsy for immuno-

histochemistry (IHC) analysis, laboratory tests, and

computed tomography or magnetic resonance imaging of

the thorax, abdomen, and pelvis. Genomic profiling is an

NGS approach that detects variants of all the main classes

of genomic alterations in cancer-related genes, as well

as genomic signatures, microsatellite instability (MSI),

tumor mutational burden (TMB), and genome-wide loss of

heterozygosity, to provide prognostic, diagnostic, and pre-

dictive insights that inform research or treatment decisions

for individual patients across all cancer types.9 Use of

genomic profiling may support appropriate treatment plans

in patients with CUP by either narrowing down the po-

tential site of tumor origin or identifying a targeted therapy

based on the patient’s molecular profile, regardless of the

primary site location.7,10,11 Although recent studies have

shown a lack of clinical benefit of site-specific chemo-

therapy directed by gene expression profiling to determine

the tissue of origin,12,13 targeted therapy irrespective of the

primary tumor site may reveal more personalized and

effective therapeutic options for patients with unfavorable

CUP.

CUPISCO (NCT03498521) was a phase II, randomized

study of targeted therapy/cancer immunotherapy versus

platinum-based chemotherapy in patients with previously

untreated, unfavorable CUP, defined as per the ESMO

guidelines.14 Evidence for this approach was bolstered by a

study in 2021,11 where retrospective NGS of tumoral DNA

from 303 CUP specimens found that 31.7% of patients could

be matched to an experimental CUPISCO treatment arm,

based on their molecular profile. In addition to a lack

of effective targeted treatment options, unfavorable CUP

remains difficult to diagnose through standardized

screening, as demonstrated by a high rate of screening

failures (w55%) seen in the first 628 patients entering

screening for the CUPISCO trial.15 This highlights the current

challenges associated with defining CUP, which can impact

clinical trial enrollment, timely diagnosis, and subsequent

treatment.

We present a preliminary, descriptive molecular analysis

of 464 patients with stringently diagnosed, unfavorable CUP

designated for enrollment in CUPISCO. Such analysis may

help to increase understanding of the heterogeneous pop-

ulation of unfavorable CUP, and thus provide tools to aid

diagnosis and potentially tailored treatment in this patient

population.

MATERIALS AND METHODS

Patient eligibility

The study design and patient eligibility criteria for CUPISCO

are described elsewhere.15 Briefly, following completion of

local diagnostic testing, eligibility was verified by an eligi-

bility review team and patients with CUP underwent a

histopathology and clinical review to confirm the diagnosis

of unfavorable CUP as per ESMO criteria;
4,14

in cases with

incomplete diagnostic testing, additional IHC staining was

carried out.15 Patients were eligible to enroll in CUPISCO if

they had a systemic therapy-naive adenocarcinoma or un-

differentiated carcinoma, an Eastern Cooperative Oncology

Group performance status of 0 or 1, and at least one

measurable lesion as per RECIST v1.1.14,15 In order to

exclude carcinomas with a known origin, additional testing

was carried out based on histopathology, clinical and

radiologic assessment, e.g. specialized physical examination,

endoscopy, imaging, laboratory and blood tests, or addi-

tional IHC.15

Genomic profiling assay

Upon enrollment in CUPISCO, genomic profiling, including

determination of TMB and MSI, was carried out on

formalin-fixed, paraffin-embedded tissue using the Foun-

dationOne®CDx assay (Foundation Medicine, Inc., Cam-

bridge, MA), as described previously,
16,17

in a Clinical

Laboratory Improvement Amendments (CLIA)-certified and

College of American Pathologists-accredited laboratory.

Genomic profiling was carried out using hybrid-capture,

adapter ligation-based libraries to identify genomic alter-

ations [base substitutions, small insertions and deletions,

copy number alterations (deep deletions with gene copy

number of 0 or amplifications of at least specimen

ploidy þ4), and gene rearrangements (REs)].

TMB and MSI

TMB was calculated as the number of nondriver somatic

mutations per megabase (Mb) of genome sequenced; based

on the cutoffs used in CUPISCO, samples were classified as

TMB-high if they had �16 mutations/Mb, and TMB-low if

they had <16 mutations/Mb.18 MSI status was determined

by analyzing 114 intronic homopolymer repeat loci for

length variability; MSI-high status was defined as described

previously.19

Genomic alterations and clusters

Genomic alterations prevalent in �3% of patients were

considered for analysis using multiple correspondence

analysis of dichotomous data and subsequent hierarchic

clustering to identify co-occurrences. All genomic alter-

ations studied included only those described as functional

or pathogenic based on a review of the literature and the

Catalogue of Somatic Mutations In Cancer (COSMIC) re-

pository,20 or those with a likely functional status (frame-

shift or truncation events in tumor suppressor genes).

Variants of unknown significance were not included in the

study. Known and likely pathogenic alterations were called

down to a mutant allele fraction (MAF) of 1%. Since

required tumor purity for samples was 20%, this allowed for

the detection of all alterations except for highly subclonal

alterations. Alterations below 1% MAF were present in only

a very small fraction of tumor cells and were deemed un-

likely to be driving the bulk of the tumor biology. ‘Targetable

ESMO Open C. B. Westphalen et al.
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alterations’ were defined as those reported by Ross et al.11

(i.e. a genomic alteration for which a targeted therapy or

cancer immunotherapy was available).

Subsequent genomic clusters were associated with

genomic, clinical, and pathologic covariates. For each

genomic cluster, expression patterns of proteins typically

used to diagnose various tumor types were analyzed by IHC.

The IHC pattern of the genomic clusters was also compared

with typical IHC panels of various tumor types, as defined in

Supplementary Table S1, available at https://doi.org/10.

1016/j.esmoop.2023.102035.

Mutational signature calling

Mutational signature calling was carried out as described

previously.21 Predicted germline alterations were excluded,

and exon-adjacent noncoding alterations were included. The

DNA mismatch repair (MMR) analysis included the COSMIC

signatures 1, 6, 15, 20, and 26 and was improved from the

published methods by combining the scores from the ‘Ag-

ing’ and ‘MMR’ signatures. Dominant signatures were called

with a threshold of 40%. While examining these data, we

observed that 409 of 435 samples were assessable for

mutational signatures. Among those 409 samples, 16 had a

dominant tobacco signature, 13 had a dominant apolipo-

protein B messenger RNA-editing enzyme, catalytic poly-

peptide (APOBEC) signature, 12 had a dominant MMR

signature, and 2 had a dominant ultraviolet signature.

Statistical analyses

All statistical analyses were carried out using R version

4.2.22

RESULTS

Baseline demographics/characteristics

CUPISCO enrolled patients with proven primary diagnosis of

unfavorable CUP. Overall, 1509 patients were screened at

159 centers in 34 countries (Supplementary Figure S1,

available at https://doi.org/10.1016/j.esmoop.2023.102035).

A total of 498 patients were enrolled into the trial at the

time of this analysis and here we report the 464 patients

who had molecular data available at the time of analysis.

Baseline demographics of the 464 patients enrolled in

CUPISCO and included in this analysis are shown in Table 1.

Overall, 229/464 (49.4%) samples were from female patients

and the median age was 61 years (range 22-84 years).

Overall frequency of genomic alterations

The most frequent genomic alterations are shown in

Figure 1A and Supplementary Table S2, available at https://

doi.org/10.1016/j.esmoop.2023.102035; they occurred in:

TP53 [210/464 (45.3%)], CDKN2A [142/464 (30.6%)], KRAS

[102/464 (22.0%); G12C: 12/464 (2.6%); G12D: 29/464

(6.3%); G12V: 22/464 (4.7%); Supplementary Table S3,

available at https://doi.org/10.1016/j.esmoop.2023.102035],

CDKN2B [91/464 (19.6%)], MTAP [61/464 (13.1%)], ARID1A

[56/464 (12.1%)], STK11 [53/464 (11.4%)], PIK3CA [45/464

(9.7%)], MYC [39/464 (8.4%)], PBRM1 [37/464 (8.0%)],

FGFR2 [35/464 (7.5%)], TERT [34/464 (7.3%)], and BAP1 [32/

464 (6.9%)].

Mean TMB was 6.33 (standard deviation 9.21) and

median TMB was 3.78 (range 0-76.9). In this cohort, 8.6%

(40/464) and 83.8% (389/464) of samples, respectively,

were TMB-high (�16 mutations/Mb) and TMB-low

(<16 mutations/Mb) [7.5% (35/464) were missing]. Over-

all, 87.3% (405/464) and 2.4% (11/464) of samples were

microsatellite stable and MSI-high, respectively [10.3% (48/

464) were ambiguous].

In our analysis, w32% of patients carried a potentially

targetable genomic alteration (Figure 1B and

Supplementary Table S4, available at https://doi.org/10.

1016/j.esmoop.2023.102035), defined as those reported

by Ross et al.11 Targetable genomic alterations were found

in PIK3CA [45/464 (9.7%)], FGFR2 [35/464 (7.5%)], ERBB2

[29/464 (6.3%)], BRAF [27/464 (5.8%); V600E: 14/464

(3.0%); Supplementary Table S3, available at https://doi.

org/10.1016/j.esmoop.2023.102035], EGFR [13/464

(2.8%)], MET [12/464 (2.6%)], NTRK1 [8/464 (1.7%)], ROS1

[6/464 (1.3%)], and ALK [4/464 (0.9%)].

Patient clusters based on co-occurrence of genomic

alterations

In an exploratory analysis, we applied hierarchical clustering

of co-mutational profiles to identify 10 clusters (1-10) with

specific genomic alteration co-occurrences (Figure 2 and

Supplementary Table S5, available at https://doi.org/10.

1016/j.esmoop.2023.102035). These clusters were also

Table 1. Baseline demographics

Characteristic Overall (n [ 464)

Sex

Female 229 (49.4)

Male 235 (50.6)

Age, years

Mean (SD) 60.3 (11.8)

Median (range) 61 (22-84)

BMI, kg/m
2

Mean (SD) 26.0 (4.95)

Median (range) 25.7 (14.9-48.8)

Missing 7 (1.5)

Ethnicity

White 356 (76.7)

Asian 39 (8.4)

Black or African American 4 (0.9)

American Indian or Alaska Native 6 (1.3)

Unknown/missing 59 (12.7)

Tobacco usage

Current 87 (18.8)

Previous 189 (40.7)

Never 188 (40.5)

ECOG PS

0 175 (37.7)

1 282 (60.8)

2/3 0

Missing 7 (1.5)

Data are presented as n (%) unless otherwise specified.

BMI, body mass index; ECOG PS, Eastern Cooperative Oncology Group performance

status; SD, standard deviation.
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found after analyzing a similar population with the same

methodology (FoundationCORE� dataset;11 Supplementary

Figure S2, available at https://doi.org/10.1016/j.esmoop.

2023.102035).

Cluster 2 showed a high prevalence of FGFR2 REs [21/40

(52.5%)] and BAP1 short variants [SVs; 19/40 (47.5%)],

whereas cluster 6 demonstrated a high frequency of TP53

[30/80 (37.5%)], ARID1A [29/80 (36.3%)], and IDH1 [17/80

(21.3%); particularly IDH1R132C (9/17; 52.9%)] SVs, all typical

of intrahepatic cholangiocarcinoma.23

Cluster 3 showed co-occurrence and a high prevalence of

NF2 and SETD2 SVs [each 11/26 (42.3%)], typically observed

in renal cell carcinomas (RCCs).24 Among the most common

genomic alterations in cluster 7 were STK11 and KEAP1 SVs

[33/54 (61.1%) and 23/54 (42.6%), respectively], as

described in non-small cell lung carcinomas.25-27

The clusters were assessed for specific clinical features

(Figure 3 and Supplementary Table S6, available at https://

doi.org/10.1016/j.esmoop.2023.102035). Cluster 1 demon-

strated a greater frequency of non-smoking, younger females

with TMB-high and MSI-high tumor samples. Patients in

cluster 1 also showed the greatest frequency of alterations in

MMR (MSH2, MSH3, MSH6, MLH1, and PMS2) or other DNA

repair genes (MUTYH, PARP1, ERCC4, RAD51B, XRCC2,

RAD54L, BRCA1, MRE11A, NBN, FANCC, BRCA2, FANCG,

BRIP1, FANCL, PALB2, RAD51C, POLE, ATRX, ATM, ATR, and

CHEK1) [6/25 (24.0%) and 13/25 (52.0%), respectively], and

had a mutational signature consistent with MMR [6/23

(26.1%); Figure 4 and Supplementary Table S7, available at

https://doi.org/10.1016/j.esmoop.2023.102035]. Compared

with those in other clusters, patients in clusters 7 and 9

demonstrated a greater frequency of current/previous

smoking [41/54 (75.9%) and 26/37 (70.3%), respectively];

patients in cluster 7 also had a dominant tobacco mutational

signature [6/50 (12.0%); Figure 4 and Supplementary

Table S7, available at https://doi.org/10.1016/j.esmoop.

2023.102035], suggestive of a diagnosis of non-small cell

lung carcinoma. Regarding biopsy location, cluster 2 was

detected at a higher prevalence in liver samples versus

samples from other locations [16/40 (40.0%)].

Cluster 3, whose genomic alterations were typical of RCC,

demonstrated a protein expression pattern suggestive of

clear-cell renal carcinoma (CK7 negative, CK20 negative,

PAX8 positive, PAX2 positive, racemase positive, CD10
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Figure 1. Genomic landscape of patients enrolled in CUPISCO. Overall frequency of (A) all genomic alterations and (B) targetable genomic alterations.

RE, gene rearrangement; SV, short variant.
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positive, RCC positive; Supplementary Figure S3, available at

https://doi.org/10.1016/j.esmoop.2023.102035). All clusters

showed varying levels of human epidermal growth factor

receptor 2 expression (Supplementary Figure S3, available at

https://doi.org/10.1016/j.esmoop.2023.102035).

DISCUSSION

This descriptive analysis of 464 patients with stringently

diagnosed, unfavorable CUP enrolled into CUPISCO provides

a robust overview of their heterogeneous molecular land-

scape. The overall distribution and co-occurrence of
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genomic alterations from patients enrolled in CUPISCO,

including in targetable genes, was comparable with data

from a similar, independent CUP population.11 Key poten-

tially targetable genomic alterations included PIK3CA,

FGFR2, ERBB2, BRAFV600E, EGFR, MET, NTRK1, ROS1, and

ALK. In line with previous studies,10,11 our results from the

first 464 patients included in CUPISCO suggest that genomic

profiling of CUP samples allows for the identification of

therapeutically relevant genomic alterations in a significant

proportion of patients and can thus guide personalized

treatment of these tumors. This may extend to germline

testing, given that w8.6% of patients with CUP have been

shown to have pathogenic germline variants, according to a

recent analysis of the MASTER trial.28

Using the data obtained from genomic profiling we car-

ried out further exploratory analyses to investigate whether

CUP cases within CUPISCO could be clustered based on

their molecular profiles. Without clinical outcome data and

prospective evaluation of these clusters, the data presented

here must be considered hypotheses generating. Based on

genomic sequencing and after subsequent hierarchic clus-

tering, these clusters may provide evidence for informed

decision making regarding primary tumor identification. In

fact, some of these exploratory clusters were reminiscent of
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specific tumor types. Cluster 3 demonstrated a high fre-

quency of NF2 and SETD2 SVs, typically seen in RCCs.
24

This

finding was consistent with the IHC analysis, which showed

cluster 3 to have the greatest protein expression of the RCC

markers CD10, racemase, RCC, PAX2, and PAX8, demon-

strating the ability of genomic profiling to provide additional

information to IHC regarding tissue-of-origin identification.

While SETD2 is a frequent finding in clear-cell RCC, genetic

alterations involving NF2 occur at low frequencies in RCC

across all of the major histologic subtypes. Previously, NF2

and SETD2 alterations have been seen in high abundance in

‘unclassified’ or ‘not otherwise specified’ RCC, a subtype of

RCC that exhibits non-clear-cell histology, has no standard

therapy, and presents formidable diagnostic and manage-

ment challenges.29 Furthermore, clusters 2 and 6 were

suggestive of intrahepatic cholangiocarcinoma, showing a

high frequency of FGFR2 REs, and BAP1, TP53, ARID1A, and

IDH1 (particularly IDH1
R132C

) SVs.
23

Multiple targeted ther-

apies for both RCC and intrahepatic cholangiocarcinoma

exist, but clinical data from CUPISCO are needed to deter-

mine their applicability in the CUP setting.30,31 Finally, pa-

tients in cluster 7 demonstrated a high frequency of STK11

and KEAP1 alterations, which co-occurred with KRAS and

SMARCA4 SVs, commonly seen in non-small cell lung car-

cinomas,25-27 and these patients were frequently current/

previous all tobacco with a dominant smoking mutational

signature. In non-small cell lung carcinoma, the presence of

such alterations has been shown to predict differing bio-

logic and immune profiles, and varying responses to cancer

immunotherapy, showing the ability of genomic profiling to

differentiate this group of patients with CUP based on their

likelihood of therapeutic response.25,26,32,33 SMARCA4-

deficient lung cancers also classically exhibit aberrant

negativity for TTF-1 and thus may be inaccurately

diagnosed as CUP based on conventional histopathologic

evaluation.
34

Defining the value of genomic profiling for patients with

CUP is challenging, as this type of testing encompasses a

variety of potential benefits. Based on preliminary learnings

from CUPISCO, at least 32% of enrolled patients carried a

potentially targetable genomic alteration. Additionally,

while not the purpose of genomic profiling, when used in

the care of patients with unfavorable CUP, these results may

help establish the primary tumor site, e.g. TMPRSS2-ERG or

-ETV1 fusions are diagnostic of metastatic prostate can-

cer,35,36 or provide increased evidence for primary tumor

site identification, e.g. an FGFR2 fusion highly enriches the

likelihood that a CUP case is a primary intrahepatic chol-

angiocarcinoma31 and UV mutational signatures enrich for

cutaneous origin.37 The diagnostic value of comprehensive

DNA panel sequencing was also shown in a retrospective

analysis of DNA and RNA tests across 215 patients with

CUP.38 DNA features provided additional diagnostic evi-

dence in 31% of true CUPs (including features such as gene

fusions, cancer-type enriched mutation drivers, and muta-

tional signatures) when this information was combined with

other clinicopathologic evidence.38

At present, our study is limited by the lack of clinical

outcome data, meaning that the clusters cannot be asso-

ciated with patient prognosis to further elucidate their

clinical relevance in CUP. Furthermore, CUPISCO had not

completed enrollment at the time of this analysis, so the

complete cohort has not been included. However, overall,

our results reveal the molecular heterogeneity of patients

with unfavorable CUP and suggest that clusters of CUP may

share features with defined tumor entities; these clusters

are hypothesis-generating and not yet validated, and

therefore the clinical utility is unproven. Accordingly, our

APOBEC

MMR UV

Tobacco

0

5

10

15

20

25

0

20

10

0

10

20

30

40

50

0

5

10

15

Cluster

F
re

q
u

e
n

c
y
 o

f 
s
ig

n
a

tu
re

 (
%

)

Cluster

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 4. Mutational signatures by cluster.

Mutational signatures were calculated for each sample. Overall, 409 samples were assessable for mutational signatures. APOBEC, apolipoprotein B messenger RNA-

editing enzyme, catalytic polypeptide; MMR, DNA mismatch repair.

C. B. Westphalen et al. ESMO Open

Volume 8 - Issue 6 - 2023 https://doi.org/10.1016/j.esmoop.2023.102035 7



results indicate that genomic profiling may be used as part

of informed decision-making regarding primary tumor

identification, even though respective primaries were not

found following a thorough clinicoradiologic work-up in the

unfavorable cohort. Despite the lack of clinical benefit of

site-specific chemotherapy directed by gene expression

profiling to determine the tissue of origin,12,13 primary tu-

mor identification might still be critical to inform prognosis

and potentially tailored treatment. Whether stringently

diagnosed patients with unfavorable CUP benefit from tar-

geted therapies to a similar extent as do their counterparts

with matched known primaries will be one of the key

learnings from the CUPISCO study.
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