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Abstract We propose a new method based on machine

learning to play the devil’s advocate and investigate the

impact of unknown systematic effects in a quantitative way.

This method proceeds by reversing the measurement process

and using the physics results to interpret systematic effects

under the Standard Model hypothesis. We explore this idea

with two alternative approaches: the first one relies on a com-

bination of gradient descent and optimisation techniques, its

application and potentiality is illustrated with an example

that studies the branching fraction measurement of a heavy-

flavour decay. The second method employs reinforcement

learning and it is applied to the determination of the P
′
5 angu-

lar observable in B0 → K ∗0μ+μ− decays. We find that for

the former, the size of a hypothetical hidden systematic uncer-

tainty strongly depends on the kinematic overlap between

the signal and normalisation channel, while the latter is very

robust against possible mismodellings of the efficiency.

1 Introduction

The potential for hidden systematic effects, so-called “unknown-

unknowns”, in a physics measurement is difficult to address.

This problem can be alleviated by an independent confir-

mation in a different experiment. A good example, in par-

ticle physics, is the discovery of the Higgs boson, whereby

the simultaneous announcement from both the ATLAS and

Aleksandr Iniukhin and Andrea Mauri contributed equally to this work.

a e-mail: aleksandr.iniukhin@cern.ch (corresponding author)

CMS experiments of an excess led to high confidence in the

discovery [1,2]. However, the size of the collaborations and

the complexity of the experiments involved can make such

independent confirmations prohibitively expensive for future

particle physics experiments. The confidence in the Higgs

discovery was also aided by the fact that it was not com-

pletely unexpected: it was predicted by the Standard Model

(SM) of particle physics to emerge with a distinctive pattern

of couplings to the known particles.

The discovery of physics beyond the SM is expected to

answer many of the open questions of the SM and it is there-

fore the main focus of experimental particle physics. This

discovery will require even more experimental evidence to

be confirmed, particularly if it manifests itself in ways that

are unexpected. The question in this case is therefore: under

which conditions can one claim a physics discovery in an

experiment which has unique physics sensitivity and there-

fore no direct competitors? The answer to this question is

normally qualitative, such as seeing a particular control chan-

nel pass a set of compatibility tests or observe new physics

appear with multiple and complementary experimental sig-

natures. The goal of this paper is to introduce a method that

provides quantitative answers to these questions.

The philosophy this paper follows is to apply deep learning

techniques to play the devil’s advocate (DL Advocate), with

respect to deviations from the SM. This implies assuming

the true value of the parameters of interest is indeed SM-

like and determine what experimental effects could cause the

observed set of measurements. Concretely, one can consider

the set of measurements of the experiment as a system of

equations:
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F(η̃, �i ) = Mi �⇒

⎧

⎪

⎨

⎪

⎩

F(η̃, �1) = M1

F(η̃, �2) = M2,

· · ·
(1)

where F represents the measurement process, η̃ are param-

eters in common to all measurements, such as the detector

response, and �i are parameters specific to a particular mea-

surement, such as theoretical parameters. When a measure-

ment deviates from its SM prediction, it is tempting to inter-

pret the observed deviation as a sign of physics beyond the

SM. However, such an important claim must be supported

by an equally strong confidence in the understanding of the

experimental apparatus. The idea developed in this paper

reverses the classical reasoning and, instead of attributing the

observed deviation to physics beyond the SM, it starts from

the SM hypothesis by fixing the theory parameters to their

predicted values, uses the simulation to model F and uses a

neural network to find possible values of η̃ that reproduce the

observed measurements Mi . In other words, it tries to find

possible detector effects that can cause the observed devia-

tion. For the examples illustrated in this paper, the parame-

ters η̃ represent a mismodelling of the detector efficiency, but

can be extended to any assumption in the analysis. The sys-

tem in Eq. 1 could in principle include all measurements by

the experiment. However, in practice one can only consider

measurements which are correlated either through theory or

experiment.

The advantage of this approach is that the resulting val-

ues of η̃ can then be used to make quantitative predictions

of mismodelling that can be falsified by additional cross-

checks. There are two categories of information that η̃ can

represent. One is high-level information, such as kinematic

information of particles. A mismodelling as a function of a

particle momentum would fall into this class of information.

Such information can be readily implemented with existing

tools, but requires physics intuition and therefore has to be

tuned to each specific case. The other category of information

is low-level quantities, such as the material budget and hit

resolution. Exploring low-level information would require

tuning simulation in real time and would be a challenge to

implement, but would be fully general, applicable for any

measurement that relies on simulation.

In recent years increasingly more interest has been devoted

to apply machine learning techniques to systematic uncer-

tainties. The main emphasis however has been on the opti-

misation of statistical inference in the presence of systematic

uncertainties (see e.g. [3–5]) or incorporating known sys-

tematic effects in simulation (see e.g. [6–8]). In this work we

propose a method to bound the size of unknown or underesti-

mated systematic effects. A quantitative and incontrovertible

demonstration of the control of systematic uncertainties is in

fact essential for any scientific discovery, whose claim must

be supported with a confidence higher than one-in-a-million

chance not to be a fluctuation of statistical or systematic ori-

gin.

In order to demonstrate the potential of such an approach,

we apply this method to a simple toy example of a branch-

ing fraction measurement of a particle decay and restrict our

attention to a potential mis-modelling of the efficiency. Such

measurements are often normalised to a decay mode with

a known branching fraction and ideally the same final state

as the signal, which cancels systematic uncertainties due to

efficiency mismodelling to a high degree. It is therefore an

ideal testing ground for our approach. We also consider a

more concrete example which is the observable P ′
5, which

arises in the angular distribution of B0 → K ∗0μ+μ− decays

and is highly sensitive to physics beyond the SM [9,10]. In

both cases we show in a simplified scenario the use of the

DL Advocate technique to investigate the impact of possible

efficiency mismodelling on the considered measurements.

Finally, another interesting system to test this methodology

would be the W mass, recently been measured by the CDF

Collaboration [11] to be significantly different from previous

measurements [12–14] and the Standard Model prediction

[15].

This paper is structured as follows: The general idea and

the algorithm implementation is described in Sect. 2. The

concrete example of the branching fraction measurement of

a particle decay is briefly summarised in Sect. 3. An imple-

mentation with Deep Reinforcement learning applied to the

observable P
′
5 is discussed in Sect. 4, which is followed by

a summary Sect. 5 and a conclusion.

2 Methodology

Measurements in experimental particle physics typically

involve the determination of a signal yield, either integrated

over a particular decay channel or differentially in regions

of phase-space. Due to imperfections of the detection pro-

cess, the recorded signal yield must be corrected for the finite

detector efficiency in order to retrieve the true number of sig-

nal events originally produced. This efficiency is typically

estimated based on simulation or calibration samples.

Taking the example laid out in Eq. 1, we consider a set of

measurements Mi , where one is the measurement of interest

and the others are control channels which are used to vali-

date the analysis and to check for systematic uncertainties.

For each of these measurements there are some observed can-

didates Ni and an associated efficiency ei , so that Mi = Ni

ei
.

The candidates of each channel are characterised by a set of

variables (features) such as the kinematics of the produced

particles. Differences in these distributions, together with a

detection efficiency which can depend on the same kinematic
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variables, can result in different total efficiencies between the

signal and control channels.

Broadly speaking, mismodelling of the efficiency and

unaccounted or mismodelled backgrounds can create a bias

in the measurements, which are accounted for by introducing

ad-hoc systematic uncertainties. As a consequence, partial or

incorrect evaluation of these effects would result in underes-

timated systematic uncertainties. In this paper we will focus

on the role of the efficiency.

We describe possible mismodelling of the efficiency with

a weighting function w(x), which depends on the kinematic

variables x of the event. Values of w(x) = 1 correspond to a

perfect modelling of the efficiency, while values below/above

unity correspond to efficiency under/over estimated. The key

idea is that, while the detector response depends entirely on

the kinematics of the single event, the total signal/control

channel efficiency can suffer from different biases once inte-

grated over the individual kinematic distribution of each

decay channel. We can then define the true total efficiency

for a given channel i as

ei = Ex∼p(x |i)
[

w(x) × ǫ̂(x)
]

, (2)

where ǫ̂(x) is the per-event estimated efficiency in the exper-

iment and the expectation value indicates the weighted aver-

age over the kinematic distribution of each decay channel

p(x |i). Since our goal is to study the impact of possible mis-

modelling of the efficiency in a given set of measurements

we can safely assume ǫ̂(x) = 1 without loss of generality.

This simplifies the expression of the per-channel efficiency

to

ei = Ex∼p(x |i) [w(x)] ≡ 1

ni

ni
∑

k=1

w(xk,i ), (3)

where we approximated the expectation value with a sum

over a large number ni of simulated events {xk}i , where i

labels the different decay channels.

Control channels provide important constraints on how

well the efficiency is estimated. They are typically selected

with topology and kinematics similar to the signal decay

mode in order to maximise the phase space overlap between

channels. The result of the measurements obtained on such

control channels can then be compared to known reference

values, e.g. existing precise measurements from other experi-

ments or clean SM predictions. If a good agreement is found,

a certain level of confidence can be ascribed to the estima-

tion of the efficiency, at least for what concerns the kinematic

regions populated by the control channels. The requirement

that measurements performed on the control channels must

be compatible with a certain reference can be formulated as

Mi ∈ [M low
i ; M

high
i ] (4)

which reduces to

ei ∈ [V low
i ; V

high

i ], (5)

once we restrict the attention to the sole role of the efficiency

in the measurement. Here V low
i and V

high

i are the values that

bound the efficiency for the control measurements to pass

scrutiny.

The goal of this paper is to find regions of the kinematic

space 
x where a mismodelling of the efficiency can have a

significant impact in the signal measurement while the effect

on the control channels remains within the constraints of

Eq. 5. Given these constraints, the intuition is that this prob-

lem can be thought as a classification task between the signal

and control channels using the kinematic variables provided

in the space 
x .

2.1 DL Advocate algorithm

The algorithm is formed of two main parts, as shown

schematically in Fig. 1. The first is a fully connected neural

network which resembles a multi-classification algorithm.

The inputs are a set of features x whereas the output h j is a

classification score for each decay hypothesis. The last layer

of the NN is normalised with a softmax activation function

which enforce h j (x) ≥ 0 and
∑

j h j (x) = 1. Details on the

technical implementation of the neural network are given in

Appendix A.

The second part of the algorithm consists of a linear com-

bination of the NN output, also referred to as linear program-

ming (LP), which defines the final per-event weight

w(x) =
∑

j

α j h j (x) with α j ≥ 0. (6)

Combining this with Eq. 3 and moving to a vectorial notation

we can express the total per-channel efficiency as

ei = 1

ni

∑

k


α · 
h(xk,i ), (7)

or, in an even more compact form,


e = H 
α, (8)

where we have introduced the H matrix which is defined as

Hi, j = 1

ni

∑

k

h j (xk,i ). (9)

Here, H is a quadratic M × M matrix where M is the total

number of decay channels. From the previous equations it

is evident the role of the coefficients α j which relate the

NN classification response to the different decay-channel

efficiencies. The meaning of the α j coefficients can be eas-

ily understood in the ideal case of a perfectly discriminat-

ing network. In such a scenario H takes the form of the

identity matrix and α j can be individually chosen to satisfy
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Fig. 1 Schematic view of the DL Advocate algorithm. The algorithm

is formed by two parts: the output of a neural network (NN) is passed

to a linear programming (LP) solver which returns the final weight for

each event

all possible combination of efficiencies, i.e. we can choose

α( j | j∈C) = 1 for all control channels C in order to per-

fectly satisfy their efficiency constraints, and arbitrarily move

α( j | j=s) for the signal channel s to get any possible values

for the signal efficiency es .

In general, however, the H matrix will have non-diagonal

terms that correlate the efficiency of the different decay chan-

nels. The measurements carried out on the control channels,

therefore, provide non trivial constraints on the signal effi-

ciency.

2.2 Optimisation procedure

The goal of the algorithm is to find the solution that max-

imises possible shifts in the signal efficiency while maintain-

ing the control measurements within their allowed range, as

defined in Eqs. 4 and 5. This is achieved with an iterative

procedure:

(i) the NN is pretrained as a simple classifier, i.e. minimising

the cross-entropy loss between channels;

(ii) for a given set of NN parameters θ the matrix H is deter-

mined and the optimal values of the coefficients 
α are

calculated;

(iii) with the obtained values of 
α, the NN parameters are

updated to improve the current solution;

with step (ii) and (iii) repeated for 1000 iterations. In each

iteration the value of es is recorded and the solution that mani-

fests the largest bias in the signal efficiency is returned at the

end of the procedure. More details on the individual steps

(ii) and (iii) are given in the next subsections. In general,

mismodelling of the efficiency can result in both over and

underestimation of the total signal efficiency. In the follow-

ing, we focus on the minimisation of the signal efficiency;

oppositely, in order to get the maximum allowed positive

shift it will be sufficient to target −es instead of es in the

minimisation process below.

2.2.1 Determination of the coefficients α j

In order to find the values of 
α that allow the largest devi-

ation in es while satisfying the constraints from the control

channels we have to solve the following system of linear

equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

j

α j Hi, j ∈ [V low
i ; V

high
i ] ∀i ∈ C ,

es =
∑

j

α j Hi, j → min for i = s .
(10)

This linear programming (LP) problem can be solved numeri-

cally and the minimisation of es is performed with the SciPy

python package with the use of the scipy.optimize.

linprog function [16].

2.2.2 Update of the neural network

The values of 
α obtained in the previous step correspond to

the optimal result for a fixed set of NN parameters, however,

these can be modified to further improve the overall solution.

The neural network weights θ are then updated based on the

following loss function

ℓ(θ) = ℓs(θ) + ℓd(θ), (11)

with

ℓs(θ) = es (12)

driving the minimisation of es with respect to the NN param-

eters θ and

ℓd(θ) = − log |det(H)| (13)

is a regulariser term which is added to avoid det(H) = 0

and it keeps H invertible during the optimisation process.

This term is found to help the stability of the process since

the determination of 
α obtained in the previous step implic-

itly requires H matrix inversion (
α = H−1
e) which can be

numerically unstable. The gradient of the loss ℓ(θ) can then

be calculated using the chain rule, i.e.

∂ℓ

∂θ
=

∑

j

∑

i

∂ Hi, j

∂θ

(

∂ℓs(θ)

∂ Hi, j

+ ∂ℓd(θ)

∂ Hi, j

)

, (14)

123



Eur. Phys. J. C (2023) 83 :779 Page 5 of 16 779

with

∂ℓs(θ)

∂ Hi, j

=
{

α j for i = s ,

0 ∀i ∈ C .
(15)

∂ℓd(θ)

∂ Hi, j

= −
[

H−1
]

j,i
(16)

where Eq. 16 follows from Eq. 13 as shown in [17], while
∂ Hi, j

∂θ
is computed with standard backpropagation techniques.

Finally, the NN parameters θ are updated based on the over-

all loss function improvement θ → θ − η ∂ℓ
∂θ

, where η is the

learning rate set to 0.0001, and the previous step is repeated.

The overall optimisation procedure is schematised in Algo-

rithm 1.

2.3 Smoothening of the output weighting function

The solution obtained following the algorithm description

presented in the previous section represents the largest pos-

sible variation of es that keeps the control-channel measure-

ments within their limits. However, the resulting weight-

ing function w(x) can display extreme trends, such as fast-

changing values, which can be mitigated by adding the fol-

lowing regulariser to the loss function

ℓg(θ) = 1

n

∑

k

⎡

⎣

⎛

⎝

∥

∥

∥
∇
h(xk; θ)

∥

∥

∥

p
− 1

⎞

⎠

+

⎤

⎦

2

, (17)

where (·)+ denotes a positive cut, i.e. (y)+ = max(y, 0), xk

is a dataset sampled randomly from the domain 
x and p is

a tunable parameter indicating the turn on of this gradient

penalty (GP) term and is set to 0.5 in the rest of the paper.

3 A concrete example: a branching fraction

measurement

In this section, we illustrate the use of the DL Advocate

method with the example of a branching fraction measure-

ment. Branching fractions are typically measured as a ratios

of a given signal decay channel with respect to a normalisa-

tion channel

Bsig = Nsig

Nnorm
· enorm

esig
· Bnorm (18)

where B is the branching fraction, N is the observed yield

and e is the detector efficiency. It is evident from Eq. 18 that a

problem in the efficiency estimation would unavoidably lead

to an incorrect determination of the branching ratio.

For this example, we consider the branching fraction mea-

surement of a hypothetical decay of the type P → V C ,

where V → AB is a hypothetical intermediate resonance

decaying into two given particles A and B, and C is a com-

panion final-state particle. Branching ratios are typically nor-

malised relative to decays with similar topology, which we

denote here with P → XC channel, with X → AB, where

the branching ratios P → XC and X → AB are assumed to

be well known. For instance the Particle Data Group (PDG)

lists several branching fractions for various systems, some of

which have uncertainties as low as 3% [18]. In addition to

the normalisation itself, crosschecks involving other control

channels with well known branching fractions are often per-

formed during experimental analyses. In the following, we

consider the existence of a second control channel denoted

with P → Y C with Y → AB.

The advantage of the existence of a second control channel

stands in the possibility to build ratio of branching fractions,

i.e. the same procedure developed for the signal is employed

on the control channel by replacing in Eq. 18 the signal

efficiency and observed yield with the corresponding con-

trol channel counterparts. Ratios of branching fractions, in

fact, are typically characterised by smaller uncertainties com-

pared to single branching fractions, since common sources of

uncertainties are cancelled out in the ratio. For instance, the

PDG reports ratios of branching fractions which are known

with a precision at percent level [19].

In conclusion, in our toy example we assume the absolute

branching ratio of the normalisation channel to be known

with a precision of 3%, the ratio of branching ratios between

the two control channels to be known with a precision of

1% and we train the DL Advocate to place an upper bound

on the systematic associated to the measurement of signal

branching ratio while obeying these constraints.

3.1 Simulated dataset

In order to explore this method in a concrete setting, we gen-

erate simulated events based on a typical measurement per-

formed by the LHCb experiment [20], as many heavy-hadron

decays are measured by LHCb and it is therefore a natural

testbed for our approach. In order to generate the representi-

tive simulation we employ a fast simulation based on the the

RapidSim package [21], which simulates decays of heavy

hadrons with parameterised momentum smearing and rep-

resentitive production kinematics for high energy collisions.

Basic acceptance criteria are applied such as requiring each

final state particle to be within 2 < η < 5, which is a crude

estimate of the LHCb acceptance, and to have a minimum

transverse momentum of 300 MeV/c2. Finally, final state

radiation effects are simulated with PHOTOS [22], which

play a minor role in the analysis.

We use the decay of a B+ meson into a kaon and a pair

of oppositly charged muons. This decay is chosen as a proxy

for a generic three-body decay as several control channels

exist such as decays involving the J/ψ and ψ(2S) mesons
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Fig. 2 Distribution of events in the kinematic plane

max(pA, pB), αAB for two choices of signal mass m̃V = 0.1

and 0.2, as well as for the control channels

[23] which make it a plausible test case for the method. As

there is no detailed particle identification response in our

analysis, we use this decay as a representation of the gen-

eral three-body P → ABC particle decay introduced above,

where the two muons, represented here as A and B, originate

from an intermediate resonance of variable mass, mV , and

the kaon represents particle C . One hundred thousand events

are generated for each considered value of mV .

While the generated samples do not take into account

reconstruction effects specific to the LHCb detector, they

provide an excellent template to demonstrate the proposed

method on a simplified example.

3.2 Analysis setup

In order to determine how a potential mismodelling of

the efficiency could affect the branching fraction measure-

ment of P → V C decays while keeping unchanged the

value of the crosscheck provided by the control channel

P → Y C , we need to consider all possible differences

among the considered decay channels. Due to the differ-

ent resonance masses m R , with R ∈ {V, X, Y }, signal and

control modes are characterised by different kinematic dis-

tributions. In the following we use the normalised reso-

nance mass m̃ R = m R/m P as a more generalisable kine-

matic variable. This resonance mass m̃ R can be expressed

as m̃2
R = 2pA pB(1 − cos αAB)/m2

P , i.e. the mass of the

resonance is unequivocally determined by the momentum of

the two final state particles AB and their opening angle. As

an example, we take X and Y particles to have similar nor-

malised masses, i.e. m̃ X ≃ 0.6 and m̃Y ≃ 0.7, which results

in similar kinematic distributions, while m̃V is allowed to

span all the kinematically allowed range, with the result that

the further m̃V is from m̃ X,Y the bigger the difference in their

kinematic distributions will be (see Fig. 2).

For the example illustrated in this paper, we will therefore

focus on the study of the momentum, transverse momentum

Fig. 3 Evolution of the signal efficiency es for the different values of

m̃V when trained with the set of features x = {pA
T , pB

T }

and opening angle, or combination of those. In high-energy-

physics experiments, the efficiency to reconstruct and select

a given particle is typically dependent on its (transverse)

momentum, which makes particularly important – and poten-

tially prone to hidden systematics – to have good control of

the detector efficiency as function of those variables.

In the following, we will therefore train the DL Advocate

to evaluate what is the maximum impact that a hypothetical

mismodelling of the efficiency can have on the determina-

tion of the P → V C branching ratio under different values

of m̃V . It is also important to stress that the goal of the algo-

rithm shall not be to reconstruct m̃V , which is what occurs

if the two momenta and the opening angle of the AB parti-

cles are given to the network, but rather to explore possible

undetected patterns in the efficiency response of the detector

which may lie hidden in a subset of such kinematic variables.

Three different sets of input variables are therefore con-

sidered for this study:

• x = {pA
T , pB

T }, the two transverse momenta of particles

A and B;

• x = {max p, αAB}, the maximum momentum of the two

particles A and B and their opening angle;

• x = {max pT , αAB}, the maximum transverse momen-

tum of the two particles A and B and their opening angle;

The DL Advocate algorithm is then trained following the

methodology described in Sect. 2 with the constraints

imposed by the normalisation and control channels taken

into account as discussed in Sect. 2.2.1. In particular, the

constraints takes the form

B(P → XC) ∝ eP→XC ∈ [−3%, 3%], (19)

B(P → Y C)

B(P → XC)
∝ eB→Y C

eP→XC

∈ [−1%, 1%]. (20)

where ei should be interpreted as relative variations of the

efficiency with respect to the hypothesis of perfectly mod-

elled efficiency (as defined in Eq. 3) and the former equation

assumes perfect knowledge of the production of the parent

particle P . Finally, in order to evaluate the dependence of
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the maximum allowed bias on m̃V , the training is repeated

for different values of the normalised resonant mass ranging

from 0.1 to 0.9.

3.3 Training and results

Figure 3 shows the evolution of es during the training pro-

cess for the different values of m̃V and for the selected input

features x = {pA
T , pB

T }. A good learning curve is observed

for all cases, with an almost-optimal solution obtained after

less than 500 iterations. A very similar pattern is also seen

for the other pairs of features used.

Figure 4 shows the resulting weighting functions obtained

from the training of the network for the three considered sets

of variables and for different values of m̃V . For cases where

m̃V < m̃ X , the obtained solution shows a clear split of the

2D plane, with a large fraction of signal events that receive

a weight close to zero. This is due to the larger separation

in the kinematic space between signal and control channels,

which allows to find a solution that strongly affects the former

while keeping unchanged the other two. On the other hand,

for signal masses between or above the X and Y particles, the

strong overlap in the kinematic distributions leaves very little

to no room for efficiency mismodelling to be able to modify

the signal branching ratio while satisfying the constraints

from the control channels.

We can now quantitatively define the observed bias in each

decay mode as the deviation of its integrated efficiency with

respect to the hypothesis of perfect efficiency modelling, i.e.

(1 − ei ). The maximum allowed shift on the determination

of the signal efficiency, and hence the signal branching ratio,

obtained in the different tested configurations is illustrated

in Fig. 5. We can draw the following conclusions:

• as expected, the lower the normalised signal mass m̃V is,

the bigger the bias is allowed to be; this is due to the large

separation in the feature space between signal and control

channels, which allows a mismodelling of the efficiency

that only affects the signal decay channel;

• vice versa, it is nearly impossible for signal with mass

similar to the ones of the normalisation/control channels

to suffer from uncontrolled systematic effects;

• in all cases, the set of variables that allows the largest

bias is given by the combination {max p, αAB}, which

is natural being the one with the largest correlation with

the resonant mass;

• as expected, the gradient penalty term applied to the loss

function as described in Sect. 2.3 reduces the overall

allowed systematic effect.

We note that, in most of the cases the obtained solution

presents region of the parameter space where the mismod-

elling of the efficiency is maximal (i.e. an efficiency very

close to zero and/or infinity). In addition, despite the gradi-

ent penalty term added to the loss function as in Eq. 17, rather

steep transitions between well-modelled and badly-modelled

regions are still visible in Fig. 4. Nevertheless, the effective-

ness of this term is clearly visible from the comparison of

the solution obtained with and without it as shown in Fig. 5

(right) and a further tuning of this parameter goes beyond the

scope of this paper.

3.4 Implications on differential control-channel

measurements

In the toy study presented above, we limited the role of the

control channels to the sole contraint provided by their inte-

grated branching fractions. In real analyses, however, the use

of simulated datasets undergoes a rigorous validation pro-

cess, which once again makes use of well-known and largely

produced calibration channels. One of the additional cross-

checks which can be naturally performed on the control chan-

nels consists in looking for possible biases as function of the

relevant kinematic variables. A systematic uncertainty can in

fact escape the bound imposed by the total branching frac-

tion measurement while appearing in its differential distribu-

tion. This is exactly the case studied in the previous section.

Figure 6 shows the bias expected for the different obtained

solutions as function of the minimum transverse momen-

tum and opening angle of the considered control channel.

The strong visible trend demonstrates that, assuming a suffi-

cient statistical precision, the systematic uncertainty postu-

lated by the DL Advocate algorithm in the previous section

would have been revealed by analysing the consistency of

the control-channel differential branching fraction measure-

ment. For example, in Ref. [23], which measures the branch-

ing fraction of B → K (∗)μ+μ− decays, the biases shown

in Figs. 5 and 6 would have been detected by the experi-

mental crosschecks performed in the analysis thanks to the

large datasets collected for the B → J/ψ K (∗) normalisation

channels, which are of the order of hundreds of thousands of

events.

One of the limitation of the standard analysis procedure,

which consists in manually validating the simulation by look-

ing at different relevant variables, is that it is limited to the

statistical power and kinematic distribution of the control

channels. Therefore, a systematic effect may still escape this

validation procedure if it is limited to a region poorly pop-

ulated by the control samples or it appears with complex

correlations among different or unexpected sets of variables.

On the opposite, the DL Advocate algorithm presented in the

previous section can be extended to include any arbitrary set

of constraints, such as the differential control channel mea-

surements discussed above, and provide a solution that would

pass all the standard crosschecks of this kind of analyses. A

complete implementation of all the available constraints goes
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Fig. 4 Resulting weighting maps describing the efficiency mismod-

elling as function of the input variables for the three sets of considered

features {max p, αAB} (top), {max pT , αAB} (middle) and {pA
T , pB

T }

(bottom) for m̃V = {0.1, 0.2, 0.3, 0.4, 0.5} (from left to right). Values

of m̃V ≥ 0.6 are not shown since no significant deviations from unity

are visible in the entire feature plane

Fig. 5 Left: maximum allowed bias obtained on P → V C branching

ratio by running the DL Advocate algorithm with the three studied sets

of features at different masses. All cases have been trained with a gradi-

ent penalty term set to 0.5. Right: maximum allowed bias obtained using

{max p, αAB} as input features with and without the gradient penalty

term introduced in Eq. 17

Fig. 6 Expected relative bias on differential branching fraction mea-

surement for the P → XC control channel as function of the minimum

transverse momentum (left) and opening angle (right). The algorithm

has been trained with a signal of m̃V = 0.3, while the result for the

three tested configurations is shown with different colours
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beyond the scope of this paper, however, we can expect them

to play a significant role in reducing the room for possible

undetected hidden systematic uncertainties.

Finally, beyond all internal crosschecks that can be devel-

oped within a given analysis, one of the strength of the pro-

posed method is that one can systematically explore all the

repercussions that a solution found by the DL Advocate may

have on other observables and/or decay channels. For exam-

ple, one can check the impact that a certain solution obtained

investigating systematic uncertainties on the signal branching

fraction has on the mismodelling of the angular distributions

of the same decay or, vice versa, how measuring the angu-

lar distribution of the decay can further constrain the impact

of hidden systematic uncertainties on the branching fraction

determination.

4 A reinforcement learning approach

As already mentioned, the method proposed in this paper

can only reach its full potential when applied to low-level

detector information. The use of detector-related quantities,

such as hits positions, energy clusters, magnetic fields, etc.,

introduces several additional complications to the problem,

since it requires an accurate description of the detector and,

most importantly, an iterative refinement of the simulation,

i.e. the interaction of the particles with the detector has to be

re-evaluated for every considered modification. On the other

hand, the inclusion of low-level quantities would provide a

general tool that is applicable to any measurement that relies

on simulation, enabling a systematic evaluation of all possi-

ble mismodellings of the detector response. While a complete

solution to this problem is out of the scope of this paper, we

illustrate with a simplified example the use of reinforcement

learning (RL) to potentially tackle this difficult task.

Reinforcement learning [24,25] recently achieved impres-

sive results in many domains of applied research, such as

robotics [26], self-driving cars [27], gaming [28]. Coming to

high energy physics, it has been mainly suggested for jets

reconstruction [29,30] and on-line control system for accel-

erator machines [31]. In this section we discuss the possibility

to train a RL agent to play the role of the devil’s advocate

(RL Advocate). The goal of the algorithm is unchanged, i.e.

trying to find possible mismodelling of the efficiencies that

can affect a certain set of observed measurements; however,

we need to introduce some new concepts in order to formalise

the problem within a RL approach.

Reinforcement learning algorithms are designed to train

an agent via continuous interaction with an external environ-

ment. At each time step t , the agent makes an observation of

the environment’s state, St , and, based on such observation,

it undertakes a certain action At . In turn, as a consequence

of this action, the agent will find itself in a new state St+1,

Fig. 7 Schematic representation of agent–environment interaction

[24]

while receiving from the environment a numerical reward

Rt+1. Figure 7 illustrates the described process. Finally, the

decision-making of the agent, also called policy, π , is trained

to maximise the expected total reward over the long run.

4.1 Environment’s setup

Identically to the classifier-based approach discussed in

Sect. 2, also in this case we intend to describe possible

mismodelling of the efficiency by introducing a per-event

weighting function w(x) which can depend on a certain set

of input features x . However, instead of training a neural net-

work to determine the mismodelling map, we define a para-

metric expression of the weighting function itself, w(η̃, x),

where η̃ is the set of parameters that describes the detec-

tor response which needs to be determined. This approach

has some advantages, e.g. we avoid the risk of having sharp

(unphysical) changes of efficiencies, as well as disadvan-

tages, e.g. the requirement of a parametric expression in the

formulation of the problem, first, looses generality compared

to the NN output (given the enormous number of parameters

that characterises a NN allowing it to be able to approximate

any function in its domain), and second, it definitely requires

some physics intuition.

The goal of the RL agent can therefore be formulated as

finding the values of the parameters η̃ that best satisfies the

agreement with the experimental measurements. We can then

define:

• the state, s ≡ η̃ (renamed for convenience), the list of the

parameters used to describe the weighting function;

• the possible actions, which consist of increasing or

decreasing each of the η̃ parameter by a discrete quantity;

• the reward system,

r = 0.01 ×

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−χ2/Nmeas, if χ2/Nmeas > 3,

−χ2/Nmeas + 10 (3 − χ2/Nmeas),

if χ2/Nmeas ∈ [0.1, 3],
103, if χ2/Nmeas < 0.1,

(21)

with Nmeas the number of considered measurements and

χ2 ≡ ∑Nmeas

i=1

(

Mi −μi

σi

)2
where, recalling the notation
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introduced in Eq. 1, Mi = F(η̃) are the values of the

different measurements evaluated at each time step based

on the evolving values of the η̃ parameters, while μi and

σi are the corresponding central values and uncertainties

measured by the experiment.

The scheme of Eq. 21 is designed to return a negative reward

(proportional to χ2) when the agent is far from finding a good

solution that accommodates all the considered measurements

(large χ2 values). On the other hand, the agent is encouraged

with an increasingly positive reward once it reaches the con-

dition χ2/Nmeas < 3. Finally, in the event the agent finds

a good compatibility between the obtained solution and the

experimental measurements, which is defined in Eq. 21 as

χ2/Nmeas ≤ 0.1, a large positive reward is assigned and the

episode is terminated. Ultimately, since χ2 can take on very

large values, a scaling factor of 0.01 is added to improve the

convergence of the algorithm.

Each episode is run for a maximum of 200 time steps,

while the size of each parameter’s update is adjusted

to decrease from 0.1 to 0.01, according to the returned

χ2/Nmeas value, i.e. the closer the algorithm is to the best

solution the smaller the parameter’s update will be.

We implemented the described environment within the

RLlib python library [32], which offers a great variety of

Reinforcement Learning algorithms ready for use. In the fol-

lowing studies, we will employ deep Q-networks (DQN)

[33–35], which are designed to learn the action-value func-

tion, or Q-value, defined as

Q(s, a) = Eπ

[ ∞
∑

k=0

γ k Rt+k+1

∣

∣

∣

∣

St = s, At = a

]

(22)

where γ is a discount factor that weights future rewards com-

pared to present ones, whose default value is set to 0.99. In

general, the Q-value quantifies how good is to take action a

while being in state s; learning the Q-value function is the

target of the DQN training procedure. Once a good approx-

imation of the Q-values is achieved, it will be sufficient to

always select the action with the highest Q-value, namely fol-

lowing a greedy policy, in order to find the optimal solution.

However, better training performances are typically achieved

by following the so-called ε-greedy policy, where a random

action is selected a fraction ε of the times. This behaviour

allows more exploration for new – and potentially better –

actions and it is found to help the convergency of the training

process. In the following, the value of ε is chosen to decrease

exponentially from 1.0 to 0.1 with a decay length of 104 steps.

4.2 RL Advocate applied to P
′
5

This section illustrates the use of Reinforcement Learning

to play the devil’s advocate with a second concrete example

inspired by a set of measurements that shows some tension

with respect to the Standard Model prediction. In principle,

the same study could be conducted with the linear program-

ming method presented in Sect. 2 (after an appropriate mod-

ification of the loss definition) as well as RL be applied to the

branching fraction example of Sect. 3. In both cases similar

results and conclusions have to be expected given the simple

nature of the examples under study and agreement between

the simple optimisation and RL results shown later. In the fol-

lowing, we present the efficacy of the RL Advocate applied

on a physics example of high interest for the community, i.e.

the P
′
5 anomaly [36].

4.2.1 The P
′
5 measurement

Rare decays proceeding via b → sℓℓ transitions are a sensi-

tive probe of physics Beyond the Standard Model. In particu-

lar, potentially yet-undiscovered particles may contribute to

the decay process and modify, among other properties, the

angular distribution of the final state particles [36–39]. Preci-

sion measurements of these angular observables are therefore

a fundamental test of the Standard Model.

In recent years, different experiments [40–43] measured

a deviation in one of the angular observables of B0 →
K ∗0μ+μ− decays, namely P

′
5, in a region of q2 between

4 and 8 GeV2, where q2 is defined as the di-muon invariant

mass squared. In the following, we will use the example of

the LHCb measurement of P
′
5 in the [4.0, 6.0] GeV2 q2 bin

[40]

P
′
5 = − 0.439 ± 0.117 (23)

which is found to be higher than the Standard Model value by

a factor of 30–40%, depending on the considered theoretical

predictions [44–47].

In the following, we will run the RL Advocate to test

whether an uncontrolled modification of the efficiency can

cause a shift in the P
′
5 observable capable of explaining the

observed discrepancy.

4.2.2 Determination of P
′
5 and choice of the weighing

function

Three decay angles are necessary to describe the angular

distributions of B0 → K ∗0μ+μ− decays, namely 
� =
{θK , θℓ, φ}, defined as in Ref. [48]. Starting from this angu-

lar definition, one can define a basis of angular functions,

whose coefficients – the angular observables – depend on the

underlying physics model [49]. The P ′
5 observable is defined

as a combination of the angular coefficient S5 and the frac-

tion of longitudinal polarisation of the K ∗0 meson FL , i.e.

P ′
5 = S5√

FL (1−FL )
[9,10].
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In the case of a pure signal sample, FL , S5 and con-

sequently P
′
5 can be easily extracted using the method of

moments [48], i.e. averaging the value of the relevant angu-

lar functions f j over the collected sample, which gives

FL = 2 − 5
2

M1s and S5 = 5
2

M5, where the relevant angular

moments are defined as

M1s(5) = 1

N

∑

f1s(5)( 
�i ), (24)

with f1s = sin 2θK and f5 = sin 2θK sin θℓ cos φ.

The loss of efficiency due to imperfect experimental detec-

tion can be taken into account by introducing a series of

weights and modifying the determination of the moment M j

to

M1s(5) = 1
∑

wi

∑

wi f1s(5)( 
�i ), (25)

where wi represents a per-event weighting function. In gen-

eral the weight wi encodes the distorsion occurred to the sig-

nal angular distributions due to the finite detector efficiency,

which is studied with high accuracy by the different experi-

ments [40–43]. In the following, however, we will uncouple

all known detector effects, i.e. as in the previous sections we

assume perfect estimated efficiency, and we entirely identify

the weight wi with the mismodelling of the efficiency under

investigation. Finally, for this study we employ a fast sim-

ulation of one million events of B0 → K ∗0μ+μ− decays,

with K ∗0 → K +π−, obtained with the RapidSim package

[21] run under the same conditions described in Sect. 3.1.

Before entering the core of the problem, it is interesting to

test whether the solution obtained in the previous section can

have any sort of impact on the angular observables P
′
5. We

note that none of the solutions found in Sect. 3.3 can cause a

shift in P
′
5, this is because P

′
5 (and the angular observables in

general) does not depend on the total signal efficiency, as it

was for the branching fraction, but it can only be affected by

variations of the efficiency in the angular space. Therefore,

in order to create a shift in P
′
5, we need a mismodelling of

the efficiency that goes beyond the simple dependency on the

total kinematic of the event. One possibility would be to intro-

duce a detector response that is different for the two muons.

In particular, one can consider a muon efficiency that depends

on the relative charge between the muon and the kaon. Such

scenario can in principle occur if there are hidden corre-

lations between the hadronic system and the muons in the

reconstruction of the decay. In the ideal case, one may want

the agent to reach this conclusion by itself and autonomously

take the initiative to split the efficiency weighting function by

muon charge. While this possibility may appear exciting, it

introduces an enormous amount of complications in the def-

inition of the state–action space, e.g. a variable number of

available actions and/or variable dimensionality of the state,

and it is left to future work.

In the following, we will therefore program the agent to

have a mismodelling function which is different for the two

muons and we define the total per-event weight

wi (x) = w+ · w−, (26)

where w+ is the mismodelling function associated to the

muon with the same charge of the kaon, e.g. μ+(−) for a

K +(−) in the final state, while w− the one associated to the

oppositely charged muon, e.g. μ−(+) for a K +(−) in the final

state.

Concerning the choice of the functional form for w+(w−),

we limit the study reported in this example to a simple linear

dependence on the muon transverse momentum, i.e.

w+(pT ) = (1 − k+) + 2k+ · p
(μSS)
T , (27)

w−(pT ) = (1 − k−) + 2k− · p
(μO S)
T , (28)

where k+ and k− are the two parameters to be determined

by the RL Advocate and μSS(μO S) indicates the same-sign

(opposite-sign) muon with respect to the kaon. In addition,

in order to avoid unphysical negative values of the efficiency,

a lower bound of 0.1 is applied to the weights w+ and w−,

i.e. w± = max(0.1, w±). In principle the mis-modelling

function can be of any form. However, we assume this sim-

ple parameterisation as a proof-of-principle of the proposed

method for ease of comparison with simple optimisation for

validation purposes.

4.2.3 Training and results

We train the RL Advocate under the configuration described

above with two different targets

(I) First, we only focus on signal B0 → K ∗0μ+μ− decays

and try to see if we can find a mismodelling of the effi-

ciency that could describe a shift in P
′
5 of the order of

what it is seen in the experiment;

(II) second, we introduce the control channel B0 → J/ψ K ∗0,

with J/ψ → μ+μ−, and check if a systematic bias in the

determination of P
′
5 is still possible once we impose the

constraints derived from the precise measurement of the

angular observables in this control channel. Similarly to

the previous example, in fact, the resonant mode provides

an important validation of the efficiency estimation.

In concrete terms, the difference between the two training

configurations stands in the composition of the reward sys-

tem defined in Eq. 21. In the first case, only one measurement

is considered and the χ2 entering in the reward is simply

χ2
case−I =

(

P
′
5(k

+, k−) − P
′
5

meas

σmeas

P
′
5

)2

, (29)
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where P
′
5

meas
and σmeas

P
′
5

are the central value and uncertainty

measured by the experiment, while P
′
5(k

+, k−) is the modi-

fied value of P
′
5 based on the variation of the mismodelling

parameters k+, k−. On the other hand, in order to include the

constraint derived from the control channel, it is sufficient to

add to the χ2 of Eq. 29 the term corresponding to the control

channel measurement

χ2
case−II =

(

P
′
5(k

+, k−) − P
′
5

meas

σmeas

P
′
5

)2

+
(

P
′
5

J/ψ
(k+, k−) − P

′
5

SM,J/ψ

σ
P

′
5

J/ψ

)2

, (30)

where P
′
5

SM,J/ψ = 0 is Standard Model value of P
′
5 for

B0 → J/ψ K ∗0 decays, σ
P

′
5

J/ψ is assumed to be 0.0015,

which is the typical uncertainty associated to the control

channel measurement [50,51] and P
′
5

J/ψ
(k+, k−) is the alter-

ation of the control channel value of P
′
5 obtained by running

the RL Advocate.

Table 1 shows the results obtained by running the RL

Advocate for 3000 episodes. We note that, in this simplified

example, finding the best solution for {k+, k−} is equivalent

to find the minimum of the χ2. Therefore, we can validate the

result obtained by the trained RL agent with the one derived

by a simple χ2 minimisation, also shown in Table 1 for com-

pleteness. We can draw the following conclusions

• in case-I, the solution {k+ = 0.04, k− = −1.09} found

by the RL Advocate can result in a positive shift in the

value of P
′
5 of about 0.24, which corresponds to approxi-

mately 34 % of its Standard Model prediction. This shift

is of the order of the deviation observed by the LHCb

experiment.

• the solutions found by the RL Advocate and the χ2 min-

imisation provide very similar results. By definition, the

RL solution cannot achieve values of χ2 lower than 0.1,

since episodes are considered to be successfully termi-

nated when the χ2 reaches the 0.1 threshold. The thresh-

old of 0.1 is chosen as it is significantly smaller than one

standard deviation and indeed decreasing this threshold

to smaller values has a neglgible effect on the results. In

general, it is sufficient to have a χ2/d.o.f. of the order of

1 to claim a good statistical description of a given series

of measurements, however, due to the extremely simple

example considered here, with only one input measure-

ment, a threshold of 0.1 is chosen in order to get a solution

that is as close as possible to the true minimum.

• the solutions obtained for case-I (trained only with the

signal) would result in a shift on the P
′
5 measurement

for the control mode that is almost as large as the one

Table 1 Solutions obtained by running the RL Advocate on the P
′
5

example

SciPy RL I RL II

k+ 0.14 0.04 2.38

k− −1.58 −1.09 0.38

�P
′
5

sig
0.28 0.24 0.01

�P
′
5

J/ψ
0.14 0.15 0.0002

χ2/Nmeas 0.0 0.1 5.3

The first two columns refer to the case where only the B0 → K ∗0μ+μ−

measurement in q2 ∈ [4.0, 6.0] GeV2 is considered, with the first

column (SciPy) showing the values obtained by running an analytic χ2

minimisation with the BFGS method from the SciPy python package

[16], while the second column (RL I) report the solution found by the RL

Advocate algorithm. The third column (RL II) shows the best solution

obtained in presence of the constraint imposed by the control channel

measurement

on the signal, up to �P
′
5

J/ψ ≃ 0.15, which is more than

one order of magnitude larger than the uncertainty on the

control channel measurement.

• when explicitly including the constraints from the con-

trol channel (case-II) we find that it is impossible for

a mismodelling of the efficiency to cause a shift in the

value of P
′
5 for B0 → K ∗0μ+μ− decays while keeping

unchanged the measurement in the control channel, with

the largest allowed variation of the order of 0.01.

5 Discussion

The two methods presented above demonstrate the ability

to account for potentially hidden systematic uncertainties in

measurements that may show a discrepancy between the val-

ues observed in the experiments and those predicted by the

theory. While in this paper we employ simplified assump-

tions, which are necessary due to the impossibility to access

realistic detector simulation and all the crosschecks per-

formed during physics analyses that are not made public by

the experiments, we set the ground for a novel methodol-

ogy to access potentially hidden systematic uncertainties in

high-energy physics measurements. A final and more accu-

rate implementation of the proposed method is therefore left

to the individual experiments.

The first method relies on a combination of gradient

descent and optimisation techniques and its application is

illustrated with the example of a branching fraction measure-

ment. This method can be extended to incorporate additional

assumptions on the mismodelling of the efficiency which can

be derived from physics considerations. As an example, we

demonstrated how to impose a smoothening of the mismod-

elling function by adding an appropriate penalty term to the
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loss function. These coarse assumptions can be avoided if

low-level detector information is used rather than the high-

level features used for this paper.

In principle, the first method can be extended to account

for latent theoretical or detector parameters. Those param-

eters can become available within the simulation with the

help of automatic differentiation [52]. For example, one can

explore cases where the measurement uncertainty depends

on the detector’s alignment or some coupling coefficient.

However, most simulation packages are written in a way that

doesn’t support such techniques. This is precisely the moti-

vation for studying RL-based approach, which can deal with

non-differentiable function optimisations. The downside of

this approach is that it is computationally more expensive

compared to a classifier-based method. However, the flexi-

bility afforded might be crucial in certain cases, particularly

when dealing with effects difficult to parametrise. We illus-

trated the use of Reinforcement Learning with a simple exam-

ple applied to the measurement of the angular observable P
′
5

in B0 → K ∗0μ+μ− decays. Despite the fact that the limited

complexity of the considered example makes the examined

case solvable by more standard approaches, we find that for-

mulating the problem in terms of Reinforcement Learning

can open a new avenue of Machine Learning applications in

experimental particle physics.

In addition, throughout this paper we have only consid-

ered systematic effects from mismodelling of the efficiency

as this is the simplest case to incorporate into the DL Advo-

cate methodology. However, this can be extended to include

several other types of systematic effects, such as signal res-

olution and backgrounds mismodellings or even theoretical

uncertainties. Low-level information would again be very

useful in order to generalise this approach to these issues.

Finally, with the growth of sensitivity of measuring

devices and an inherent increase in the sensitivity to measured

events, the degree of the uncertainty introduced during the

measurement process becomes more and more eminent. Thus

techniques helping estimating the boundaries of the observ-

ables that would confidently distinguish alternative physics

hypotheses become an imminent research tool. Another rea-

son pushing towards the development of such methods is that

it becomes innately expensive to support a twin experiment

to confirm expected discoveries, like CMS and ATLAS did

for the discovery of the Higgs boson. The possible devel-

opment of the Future Circular Collider [53] would be rather

difficult to match by any other research facility. Nevertheless,

all the results and measurements should be scrutinised from

the perspective of possibly unknown systematic uncertain-

ties, which the devil’s advocate approach is capable of. An

interesting venue for exploring and extending this method

would be the measurement of W mass, which has recently

been measured by the CDF Collaboration [11] to be sig-

nificantly different from previous measurements [12–14,54]

and the Standard Model prediction [15]. This would require

a large amount of numerical detail to be publicly released

by experiments to have meaningful results such as auxillary

inputs assumed and the exact variations that are applied in

the measurements.

6 Summary

In summary, we have introduced a method to place quanti-

tative bounds for hidden systematic effects using machine

learning. The philosophy behind the approach is to play the

devil’s advocate by reversing the measurement process and

assuming the Standard Model hypothesis, such that system-

atic nuisance parameters are determined by the measure-

ments themselves.

To demonstrate the method, we have applied the proposed

approach to a hypothetical branching fraction measurement

to see the maximum allowed bias due to possible mismod-

elling of the detector efficiency. We find that the bias depends

significantly on the kinematic overlap between the signal and

the control channels that are used as crosschecks in the anal-

ysis.

In addition to the nominal approach, a reinforcement

learning technique is also employed. We explore the poten-

tiality of this alternative route by applying it to the mea-

surement of the P
′
5 angular observable in B0 → K ∗0μ+μ−

decays. We find that in the tested minimal scenario, when

including all the crosschecks of the analysis there is no

room for hidden systematic uncertainties associated to the

modelling of the detector efficiency to explain the deviation

observed in data. This result is based on the use of fast sim-

ulation, a robust and final statement can only be achieved by

considering all possible detector effects which can only be

accessed with a full simulation of the detector. The devel-

opment of a reinforcement learning solution is an essential

complement to the results of the paper, but such an approach

can have the highest potential when generalised to low-level

quantities. The extension of the presented method to all pos-

sible aspects directly related to the detector, in fact, will be

fundamental to demonstrate the robustness of any future dis-

covery claim.
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Appendix A: DL Advocate

The formal definition of the optimization algorithm is pre-

sented in Algorithm 1.

Algorithm 1 DL Advocate: linear programming optimisa-

tion.

Require: dataset D = {(xi , yi )}N
i=1, efficiency bounds B =

{(el
j , eu

j )}k
j=1, NN f (x; θ)

Require: Learning rate η, gradient penalty p, numeric differentiation

step ξ

1: h(x; θ) ≡ softmax( f (x; θ))

2: θ ← arg minθ

∑

(x,y)∈D crossentropyloss(y, h(x; θ))

3: while not converged do

4: ∂ℓ ← 0

5: for all i, y ∈ 1 . . . k do

6: Hi,y ← 1
Ny

∑

j :y j =y hi (x j ; θ)

7: end for

8: H+ ← inverse(H)

9: α ← solveLP(H, B)

10: E ← estimator(H, B, α)

11: for (x, y) ∈ D do

12: ∂ℓsd ← 1
Ny

∑k
i=1(Ey,i − H+

y,i )
∂hi (x;θ)

∂θ

13: ∂ℓ ← ∂ℓ + ∂ℓsd

14: if GP is enabled then

15: for all i ∈ 1 . . . k do

16: ∂xi ← ∂
∂x

hi (x; θ)

17: L i ← hi (x+ξ∂xi ;θ)−hi (x−ξ∂xi ;θ))
2ξ‖∂xi ‖

18: end for

19: ∂ℓg ← 1
N

∂
∂θ

(

1
k

∑k
i=1

(

L i

p
− 1

)2
)

20: ∂ℓ ← ∂ℓ + ∂ℓg

21: end if

22: end for

23: θ ← θ − η∂ℓ

24: end while

25: for all i, y ∈ 1 . . . k do

26: Hi,y ← 1
Ny

∑

j :y j =y hi (x j ; θ)

27: end for

28: α ← solveLP(H, B)

29: return α, θ

Training procedure is implemented using PyTorch frame-

work [55]. The neural network f (x; θ) is composed of three

internal linear layers with 20 outputs each and softplus acti-

vations. The final linear layer has three output nodes, which

correspond to the number of considered channels. This net-

work is rather simple but it is sufficient to represent non-

trivial interpretable weightings. Softplus activations are used

to keep the resulting function smooth in the domain. Input

data is normalized before training to have same scale between

features, while the gradient penalty term is computed after

feature normalization.
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