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The anatomy of neuroepithelial tumours
Kevin Akeret,1 Michael Weller2 and Niklaus Krayenbühl3

Many neurological conditions conceal specific anatomical patterns. Their study contributes to the understanding of 
disease biology and to tailored diagnostics and therapy. Neuroepithelial tumours exhibit distinct anatomical pheno-
types and spatiotemporal dynamics that differ from those of other brain tumours. Brain metastases display a pref-
erence for the cortico-subcortical boundaries of watershed areas and have a predominantly spherical growth. 
Primary CNS lymphomas localize to the white matter and generally invade along fibre tracts. In neuroepithelial tu-
mours, topographic probability mapping and unsupervised topological clustering have identified an inherent radial 
anatomy and adherence to ventriculopial configurations of specific hierarchical orders. Spatiotemporal probability 
and multivariate survival analyses have identified a temporal and prognostic sequence underlying the anatomical 
phenotypes of neuroepithelial tumours. Gradual neuroepithelial de-differentiation and declining prognosis follow 
(i) an expansion into higher order radial units; (ii) a subventricular spread; and (iii) the presence of mesenchymal pat-
terns (expansion along white matter tracts, leptomeningeal or perivascular invasion, CSF spread). While different 
pathophysiological hypotheses have been proposed, the cellular and molecular mechanisms dictating this anatom-
ical behaviour remain largely unknown. Here we adopt an ontogenetic approach towards the understanding of 
neuroepithelial tumour anatomy. Contemporary perception of histo- and morphogenetic processes during neurode-
velopment permit us to conceptualize the architecture of the brain into hierarchically organized radial units. The 
anatomical phenotypes in neuroepithelial tumours and their temporal and prognostic sequences share remarkable 
similarities with the ontogenetic organization of the brain and the anatomical specifications that occur during neu-
rodevelopment. This macroscopic coherence is reinforced by cellular and molecular observations that the initiation 
of various neuroepithelial tumours, their intratumoural hierarchy and tumour progression are associated with the 
aberrant reactivation of surprisingly normal ontogenetic programs. Generalizable topological phenotypes could pro-
vide the basis for an anatomical refinement of the current classification of neuroepithelial tumours. In addition, we 
have proposed a staging system for adult-type diffuse gliomas that is based on the prognostically critical steps along 
the sequence of anatomical tumour progression. Considering the parallels in anatomical behaviour between differ-
ent neuroepithelial tumours, analogous staging systems may be implemented for other neuroepithelial tumour types 
and subtypes. Both the anatomical stage of a neuroepithelial tumour and the spatial configuration of its hosting radial 
unit harbour the potential to stratify treatment decisions at diagnosis and during follow-up. More data on specific 
neuroepithelial tumour types and subtypes are needed to increase the anatomical granularity in their classification 
and to determine the clinical impact of stage-adapted and anatomically tailored therapy and surveillance.
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Introduction

In 2019, more than 347 000 patients worldwide were diagnosed with 
a primary neoplasm of the CNS, causing over 240 000 deaths and 
8 600 000 disability-adjusted life years.1 The term ‘primary CNS 
neoplasms’ refers to a heterogeneous group of primary intracranial 
and intraspinal tumours, including neoplasms with osseous, 
meningeal or haematolymphoid differentiation.2 The more specific 
term ‘neuroepithelial tumours’ is confined to neoplasms of neuro-
epithelial differentiation and includes neuronal, astrocytic, oligo-
dendroglial, ependymal and primitive neuroectodermal tumours. 
The classification of neuroepithelial tumours underlies a high- 
paced evolution driven by progressive insight into tumour 
biology.3-13 While it was traditionally based on histological features 
only, significant advances in understanding the molecular land-
scape of neuroepithelial tumours have reshaped their categoriza-
tion.3-13 The most recent edition of the World Health 
Organization Classification of Tumours of the Central Nervous 
System (WHO CNS5) strengthened the role of molecular biomarkers 
in determining tumour type and grade.2 In addition, the WHO CNS5 
annotates individual tumour subtypes with spatial information, 
e.g. diffuse midline H3 K27-altered versus diffuse hemispheric H3 
G34-mutant glioma, central versus extraventricular neurocytoma, 
or supratentorial versus posterior fossa versus spinal ependymo-
ma.2 Considering the anatomical complexity of the brain, however, 
the anatomical dimension may hold much more potential in the 
classification of neuroepithelial tumours.

In addition to complementing classification through the identi-
fication of generalizable anatomical patterns in neuroepithelial tu-
mours, insight into the anatomical sequence of neuroepithelial 
tumour progression might serve as a basis for tumour staging. 
There is no established staging system for neuroepithelial tumours. 
Age, general and neurological performance, extent of resection and 
O6-methylguanine DNA methyltransferase (MGMT) promoter 
methylation are established prognostic factors in subsets of gli-
omas.14,15 Classic tumour staging systems, such as TNM staging 
for solid tumours or Ann Arbor staging for lymphoma, however, 
are rooted in an understanding of the anatomical sequence of tu-
mour progression and its correlation with prognosis.16 Insight 
into such a sequence in neuroepithelial tumours could provide 
the basis for a staging system to inform patient-specific treatment 
and surveillance decisions.

Here we consolidate evidence on specific anatomical patterns 
and sequences identified in neuroepithelial tumours and discuss 
possible pathophysiological mechanisms. In addition, we outline 
the clinical potential of a higher anatomical granularity in the clas-
sification of neuroepithelial tumours, an anatomical staging sys-
tem for neuroepithelial tumours and an anatomical tailoring of 
therapy and surveillance.

Archetypical anatomy in neurological 
diseases and brain tumours

Neurological diseases of various aetiologies are characterized 
by distinct neuroanatomical phenotypes. Examples include the 

selective affection of the cornu ammonis and cerebellar Purkinje 
cell layer in hypoxic conditions,17-19 the selectivity for limbic struc-
tures in autoimmune encephalitis20 or the entity-specific atrophy 
patterns with neurodegenerative diseases.21,22 Both the anatomical 
pattern and its sequence of progression are determined by the 
interplay between disease-intrinsic affinity, i.e. tropism (from the 
Greek tropos for ‘a turn, growth towards’) and tissue-selective vul-
nerability, i.e. pathoclisis (from the Greek pathos for ‘disease and 
-clisis for predisposition’). Thus, topographic probability and 
spatiotemporal dynamics provide insight into disease biology.

The anatomical phenotype in brain metastases is determined 
by the brain’s arterial angioarchitecture, with the highest tumour 
probability at the cortical-subcortical boundary of cerebral and 
cerebellar watershed areas.23-27 The specific patterns vary by 
primary tumour.26-29 The growth of brain metastases is predomin-
antly spherical with displacement and little invasion of neuroepi-
thelial tissue.26

The anatomical phenotype in primary CNS lymphomas is deter-
mined by the white matter architecture. The cortex is characteris-
tically spared, early disease has a predilection for the subcortical 
white matter with orientation along U-fibres, while more advanced 
lymphomas demonstrate extensive white matter involvement 
dominated by patterning along the major fibre tracts, e.g. corpus 
callosum or corticospinal tract.25-27,30 The predominant growth 
pattern in primary CNS lymphomas is invasion along white matter 
tracts.26

The anatomical patterns and spatiotemporal dynamics of 
neuroepithelial tumours differ fundamentally from those of brain 
metastases or primary CNS lymphomas.

Anatomical phenotypes and sequences 
in neuroepithelial tumours

In 1938 and 1940, H. J. Scherer31,32 concluded in his pioneering 
works Structural development in gliomas and The forms of growth in gli-

omas and their practical significance that neuroepithelial tumours do 
not behave stochastically, but adhere to certain anatomical pat-
terns. Scherer31,32 further proposed that gliomas follow specific 
rules in their spatial evolution, but that these rules differ depending 
on the ‘aggressiveness’ of the tumours.

More recently, topographic probability mapping and unsuper-
vised topological clustering identified an inherent radial anatomy 
in neuroepithelial tumours and adherence to specific ventriculopial 
configurations.25-27 In contrast to brain metastases or primary CNS 
lymphomas, neuroepithelial tumours revealed comparable tumour 
probabilities along the ventriculopial axis, irrespective of their 
WHO grade or anatomical extent along other axes.26 An unsuper-
vised clustering of the interstructural relationships in neuroepithe-
lial tumours through non-negative matrix factorization identified 
generalizable topological patterns, which all shared a radial anat-
omy.27 The ventriculopial configurations were deciphered into ra-
dial units of different hierarchical orders with sharp intergyral 
and supragyral boundaries.26,27,33 The radial units differed in their 
topographic probabilities for neuroepithelial tumours in general, 
and in their histological and molecular profiles.25,26 Progression 
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of neuroepithelial tumours to higher order radial units was asso-
ciated with neuroepithelial de-differentiation and declining 
prognosis.25,26,33

In contrast to the predominant spherical displacing growth of 
brain metastases or the invasion of primary CNS lymphomas along 
white matter tracts, spatiotemporal probability analyses revealed 
that the growth patterns in neuroepithelial tumours are related to 
their degree of differentiation.26 Well-differentiated lower grade 
neuroepithelial tumours exhibited either no growth, local dis-
placing behaviour or a radial expansion along the ventriculopial 
axis.26 In higher grade neuroepithelial tumours with a lower degree 
of differentiation, a radial spatiotemporal dynamic along the ven-
triculopial axis predominated, but along with occasional subepen-
dymal or leptomeningeal spread.26

Multivariate survival analysis identified the anatomical pheno-
type of neuroepithelial tumours as an independent prognostic fac-
tor across histological and molecular tumour types.26,27 However, 
only specific anatomical features have an inherent prognostic rele-
vance.26,27 These include, with ascending hazard ratio: (i) the ex-
pansion into higher order radial units; (ii) the presence of 
subventricular spread; and (iii) the presence of a mesenchymal 
CNS pattern (expansion along white matter tracts, leptomeningeal 
or perivascular invasion, CSF spread).26,27 In contrast, the anatom-
ical localization itself, the extension of the tumour along the radial 
ventriculopial axis or the presence of a contact with the ventricle 
harbour no independent prognostic significance.26,27

The cellular and molecular mechanisms that dictate the ob-
served anatomical behaviour of neuroepithelial tumours remain 
largely unknown. Yet, the specific topographic and topological pat-
terns along with their temporal and prognostic sequences allow for 
indirect pathophysiological inferences.

Traditionally, it has been assumed that neuroepithelial tumours 
grow along white matter tracts.31,32,34 This idea was fuelled by the 
observations of butterfly glioblastomas, i.e. glioblastomas extend-
ing across the corpus callosum.35 Ex vivo and in vivo analyses sup-
port the ability of glioblastoma cells to migrate along myelin and 
defined underlying molecular mechanisms.36-39 However, an inva-
sion of the corpus callosum is only found in 6.2% of all glioblast-
omas, despite affection of the adjacent lobar white matter sector 
in 92.4% and the lateral ventricle ependyma in 92.3%.26 The internal 
capsule, another large and anatomically clearly identifiable white 
matter bundle located in anatomical proximity to the lobar white 
matter sector, is affected in only 1.0% of glioblastomas.26 Both the 
infiltration of the corpus callosum or the internal capsule are inde-
pendently associated with a very poor prognosis in glioblast-
omas.26,40,41 Affection of either structure is exceptionally rare in 
lower grade gliomas.25,26 In addition, if neuroepithelial tumours 
would preferentially orient along white matter tracts, they were ex-
pected to demonstrate early transsulcal patterns due to a spread 
along the subcortical U-fibres.25-27 In contrast to primary CNS 
lymphomas, this is not a dominant anatomical feature of neuroepi-
thelial tumours.25-27 Spatiotemporal probability analyses in neuro-
epithelial tumours also did not identify a general macroscopic 
extension along white matter tracts, except for isolated cases of 
glioblastoma. Collectively, white matter patterns in neuroepithelial 
tumours do occur, but are rare, linked to a high degree of de- 
differentiation and constitute an independent negative prognostic 
factor.26,37,42-45

While neoangiogenesis assumes a critical role during neuroepi-
thelial tumorigenesis,46,47 it has also been hypothesized that neuro-
epithelial tumours orient their growth along the brain’s arterial and 
venous structures.31,32 Various studies illustrate the capability of 

glioblastoma cells to invade along perivascular spaces and describe 
potential molecular drivers.48-52 While perivascular invasion is a 
histological feature sometimes encountered with glioblastoma, it 
is rarely seen with lower grade neuroepithelial tumours.31,32 The 
MRI based topographic probability maps and the higher order topo-
logical clusters in neuroepithelial tumours are inconsistent with 
both the arterial or venous anatomy of the brain.25-27 Vascular ana-
tomical patterns in neuroepithelial tumours are associated with a 
high degree of neoplastic de-differentiation.26 Consequently, peri-
vascular invasion, akin to growth along white matter tracts, is likely 
an anatomical feature relatively restricted to neuroepithelial tu-
mours with a high degree of de-differentiation.

Thus, eight decades after Scherer’s original publications, con-
temporary evidence validates his assessment that neuroepithelial 
tumours adhere to specific anatomical patterns, and that the rules 
of spatial evolution change with the degree of tumour de- 
differentiation. In the following, we adopt an ontogenetic approach 
towards the understanding of neuroepithelial tumour anatomy 
based on the current perception of the brain’s neurodevelopmental 
architecture.

Ontogenetic architecture of the human 
brain

Contemporary understanding of histo- and morphogenetic pro-
cesses during neurodevelopment permit to conceptualize the archi-
tecture of the brain into hierarchically organized radial ontogenetic 
units (Fig. 1).53-55 The neural tube forms from the neural plate, which 
results in a radial orientation of the single layered neuroepithelium, 
thereby defining a natural coordinate system of the developing 
brain with a radial (ventriculopial) axis and a transverse plane 
(rostro-caudal and/or dorso-ventral).53 According to Rakic’s radial 
units hypothesis, radial ontogenetic units persist throughout life, 
evolving from the radially oriented, single-layered neuroepithelium 
of the neural tube to 3D neuro-glial complexes that extend from the 
ventricular to the pial surface in the mature brain.55-57 The prolifera-
tive centre at the ventricle, the cellular output of which is translated 
by radial fibres to the expanding cortex, determines the identity of a 
radial unit, thereby forming a proto-map of the cortex.55,57,58 Brain 
growth and morphogenesis are paralleled by a progressive arealiza-
tion along the transverse plane, which results in a nested hierarchy 
of radial ontogenetic units.53 This arealization is coordinated 
through the concerted activity of patterning centres, which release 
diffusible morphogens.56,59,60 Based on a threshold phenomenon, 
periventricular stem and progenitor cells integrate morphogen gra-
dients and translate them into sharp borders of gene expression to 
establish the spatial identity of a radial ontogenetic unit.60 Possible 
target genes control cytoskeleton dynamics, allowing cell repulsion, 
attraction and migration.60 Rostrocaudal arealization is exemplified 
by the progression of a three-vesicular to a five-vesicular stage and 
the formation of prosomeres, mesomeres and rhombomeres.53,56

Along the dorsoventral dimension there is a division into pallium 
and subpallium, the former being further subdivided into dorsal, 
medial and lateral divisions, while the latter separates into a lateral, 
medial and caudal ganglionic eminence.53,56 The eventual forma-
tion of cerebral gyri and subgyral divisions or cerebellar lobules 
and foliae are continued expressions of the tangential arealization 
of the brain.55-57

Histologically, ventricular radial glia cells (vRGC) are the deter-
mining cell type of the brain’s radial organization, serving as both 
stem cells and radial migration scaffolds (Fig. 2A). vRGC are derived 
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from neuroepithelial cells and appear with the start of neuroglio-
genesis.61-63 They have cell bodies situated near the ventricle, one 
fibre that extends to the ventricle and a second fibre that extends 
to the pia.61-63 vRGC serve as direct and indirect stem cells for neu-
rons, astrocytes, oligodendrocytes and ependymal cells.61-71 They 
divide symmetrically, for self-renewal and maintenance of the pro-
genitor pool, and asymmetrically, giving rise to more committed 
progeny.71,72 The ventricular zone is the site of symmetric division 
of vRGC. Asymmetric vRGC division occurs in the outer subventri-
cular zone deriving progenitor cells, such as intermediate precursor 
cells,73 short neural progenitors74,75 or outer radial glia cells 
(oRGC).76,77 Neuron and glia cell production in the outer subventri-
cular zone also means that their migration begins there. Instead of 
following the trajectory of a single vRGC fibre from the ventricular 
zone, they follow a relay of fibres that originate from oRGC.78

Thus, vRGC give rise to a radial unit composed of clonally related 
directly and indirectly derived neurons, astrocytes, oligodendro-
cytes and ependymal cells, which are organized along the radial 
ventriculopial scaffold of the vRGC and corresponding oRGC.61-70

The spatial identity of these clonal radial units is determined by 
the integration of morphogen gradients.60 They constitute the 
smallest element in the ontogenetic concept of a radially organized 
brain. The nested grouping of these radial elements along the 
transverse axis reflects the ontogenetic hierarchy.

There is a direct link between the spatial configuration of ontogen-
etic radial units and the surface anatomy of the brain, since vRGC are 
also believed to direct brain morphogenesis, including cortical gyr-
ation and sulcation (Fig. 2B).61-63,67 The tangential expansion of the 
brain surface area is driven by the number of symmetric self-renewing 
proliferations of vRGC or subventricular progenitor cells.55,78,79 While 
the symmetric proliferation of vRGC in the ventricular zone leads to 
additional radial units, new fibres from the outer subventricular 

zone result in a fan-like expansion of the radial scaffold.76,80,81 Gyrus 
formation correlates with the proliferation in the outer subventricular 
zone, and hence a high subventricular-to-ventricular zone and 
progenitor-to-ventricular-radial-glia cell ratio.80,82-84 Cerebral fissures 
and sulci are characterized by an inverse relationship.80,82-84

The morpho- and histogenetic processes in the cerebellum 
resemble those in the cerebrum, albeit with relevant peculiar-
ities.85-88 The cerebellum develops bilaterally from the alar rhom-
bencephalic neuroepithelium.53,85,88 As a correlate to cerebral 
vRGC, neuroepithelial cells develop into radial glia cells (RGC) of 
the cerebellar ventricular zone with preserved contact to the fourth 
ventricle and the pial surface of the cerebellar anlage.88-90

Bergmann glia cells arise from cerebellar ventricular zone RGC 
through the retraction of the ventricular process, relocation of the 
cell body towards the cerebellar cortex into the later Purkinje cell 
layer, and retention of the pial process that traverses the eventual 
molecular layer.86,88,90-92 Bergmann glia cells constitute the cere-
bellar correlate to cerebral oRCG, both sharing common genetic ex-
pression profiles.86 Like their cerebral counterparts, cerebellar RGC 
and Bergmann glia cells serve as stem cells, migration scaffolds and 
shape cerebellar lobulation and foliation.87,88,93-97 They are the ori-
gin of cerebellar astrocytes and oligodendrocytes, Purkinje neu-
rons, and interneurons (Golgi, stellate and basket cells).85,88,98

This results in radial ontogenetic units of cerebellar neuro- and 
gliogenesis comparable to those in the cerebrum. A particularity 
is the development of the granule neurons, the most numerous 
neurons in the entire brain.85,88,98,99 Towards the end of the embry-
onic period, a specific germinal region develops from the subventri-
cular zone of the rhombic lip, adjacent to the lateral recess of the 
fourth ventricle.85,88,98,99 Stem cells from this primary proliferative 
zone subsequently migrate tangentially to the surface of the cere-
bellum and form the external granular layer as a secondary 

Figure 1 Ontogenetic architecture of the human brain. Directed by the concerted activity of morphogen-releasing patterning centres (white), brain 
growth during ontogeny is paralleled by progressive arealization along the natural coordinate system’s (black arrows) transverse plane (rostro-caudal 
and dorso-ventral). This results in progressive anatomical segmentation and a developmental hierarchy of the brain composed of nested radial onto-
genetic units. The ventriculopial configuration of radial glia cells (RGC) determines the anatomy of radial ontogenetic units and is subject to progressive 
distortion during morphogenesis (bottom row). Concept and design by Kevin Akeret, illustrations by Lucille Solomon.
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proliferative zone.85,88,98,99 In humans, the external granular layer 
appears at the end of the embryonic period and persists for several 
months to a few years after birth.85,88,98,99 Here, cell proliferation 
continues, giving rise to the granule neuron precursors, which mi-
grate ventriculopetally along the processes of Bergmann glia cells 
to their final location, the internal granular layer.85,88,98,99

The anatomical phenotypes and sequences seen in neuroepi-
thelial tumours share remarkable similarities with the ontogenetic 
architecture and developmental program of the brain.25-27

Ontogenetic concept of neuroepithelial 
tumour anatomy

The initiation of various neuroepithelial tumours, their intratu-
moural hierarchy and tumour progression are associated with the 
aberrant reactivation of surprisingly normal ontogenetic pro-
grams.100-105 Many transcription factors with well-characterized 
roles in lineage progression during neuroglial development have 
been identified as specific oncogenes or tumour suppressor genes, 
e.g. ASCL1 in adult-type diffuse gliomas or ATOH1 in medulloblasto-
ma.106,107 Controversy remains about the cells of origin of different 
neuroepithelial tumours. Collectively, there is experimental evi-
dence that neuroepithelial tumours could arise from any cell along 
the entire spectrum of neuroglial differentiation, although with 
various resistance to neoplastic transformation: neural stem cells, 
such as RGC or their adult progeny subventricular astrocyte-like 
neural stem cells;108-114 intermediate progenitor cells, such as oligo-
dendrocyte precursor cells,115-119 or granule neuron precursors in 
the cerebellum;120,121 and mature cells, such as astrocytes or even 
neurons.118,122-130 The degree of maturity of the cells correlates 
with their resistance to neoplastic transformation.130 In addition, 
both intertumour and intratumour transcriptome heterogeneity 
in glioblastoma and medulloblastoma were shown to map 
along the neurodevelopmental spectrum from mature-like (e.g. 
neuron-like) to progenitor-like (e.g. neural progenitor-like) to 
mesenchymal-like cells.105,119,131-133 A high degree of aberrant 
neuroepithelial differentiation is associated with good prognosis, 

while the poorest prognosis is associated with neuroepithelial tu-
mours of a dominant mesenchymal-like phenotype.119,134

There are distinct similarities between the brain’s radial onto-
genetic organization and the anatomical patterns observed in 
neuroepithelial tumours of various types and subtypes (exempli-
fied in Supplementary Fig. 1A–G).26,27,135 On a population level, 
this is supported by the results of topographic probability mapping 
and unsupervised topological clustering, which identified an inher-
ent radial anatomy and adherence to specific ventriculopial config-
urations.25-27 The radial anatomy of neuroepithelial tumours 
located in the cerebral lobes may be only represented as a discreet 
tail of MRI signal alteration connecting a more superficial overt tu-
mour mass to the ventricle (Supplementary Fig. 1A, left, example of 
a WHO grade 3 astrocytoma).25,26 The MRI appearance of this radial 
tail resembles the transmantle sign sometimes observed with focal 
cortical dysplasia (Supplementary Fig. 1H).136,137 Both trajectories 
may be determined by RGC, which could serve as scaffolds for mi-
grating neoplastic cells, and along which migration is impaired in 
focal cortical dysplasia. In the cerebellum, the ontogenetic units 
of the ipsilateral hemisphere and half of the vermis converge in 
the lateral recess of the fourth ventricle (Supplementary Fig. 
1G).98 This is consistent with the original location of the cerebellar 
anlagen during neurodevelopment, which arise bilaterally from the 
rostral portions of the rhombencephalic alar plates and subse-
quently merge in the midline.98 Despite the difficulty in assessing 
the anatomy of neuroepithelial tumours in the cerebellum given 
the close spatial relationships, there is a consistency in the associ-
ation with one of the lateral recesses.25-27

The anatomical phenotypes in neuroepithelial tumours adhere 
to a temporal and prognostic sequence, which is associated to the 
degree of differentiation and displays inverse parallels to the ana-
tomical specification during neurodevelopment (Fig. 3).26,27

Spatiotemporal probability and multivariate survival analyses 
identified that gradual neuroepithelial de-differentiation and de-
clining prognosis followed the sequence of (i) an expansion into 
higher order radial units; (ii) a subventricular spread; and (iii) the 
presence of mesenchymal patterns (expansion along white matter 
tracts, leptomeningeal or perivascular invasion, CSF spread).26,27

Figure 2 Radial glia cells in brain histo- and morphogenesis. (A) Concept of clonal radial units. Radial glia cells (RGC) serve as stem cells and radial 
migration scaffolds. RGC give rise to clonally related neurons, astrocytes, oligodendrocytes, and ependymal cells, which orient along their ventriculo-
pial fibres. Ventricular radial glia cells (vRGC) are located in the ventricular zone (VZ). Outer radial glia cells (oRGC) are located in the outer subventri-
cular zone (oSVZ) and constitute more committed progenitor cells resulting in a fanning of the radial glia scaffold. By the integration of morphogen 
gradients, periventricular proliferative centres define the spatial identity of the entire corresponding radial ontogenetic unit containing clonally related 
neurons, astrocytes, oligodendrocytes, and ependymal cells. (B) Role of RGC in brain morphogenesis. The anatomy of tangential pallial expansion de-
pends on the ratio of self-renewing symmetric divisions of RGC between the VZ (i.e. vRGC) and oSVZ (i.e. oRGC). Dominant oRGC fibres from the oSVZ 
result in a fan-like pallial expansion and hence gyration. Fissures and sulci derive from a dominance of vRGC. Concept and design by Kevin Akeret, 
illustrations by Lucille Solomon.
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Supplementary Fig. 2 exemplifies this anatomical sequence across 
different types and subtypes of neuroepithelial tumours. 
Neoplastic cells with a high degree of aberrant neuroepithelial dif-
ferentiation may confine to subradial lineage-specific locations 
within affected radial units (in situ)26,27: neuronal differentiation 
may be associated with a specificity for cortical locations; epen-
dymal differentiation might predispose to periventricular loca-
tions; neoplastic cells with aberrant astrocytic or oligodendrocytic 
differentiation may populate along the entire radial unit. 
Especially if they originate from mature cells,118,122-130 neoplastic 
neuroepithelial cells may already arise at the respective anatomical 
sites. If they arise from periventricular progenitor or stem cells,108-110

however, well-differentiated neoplastic cells may make use of 
the ontogenetic migration scaffolds to home to their designated 
sites. Reminiscent of their roles during ontogeny, RGC may in these 
cases serve as both, cell of origin, and migration scaffold for neuro-
epithelial tumours.113,114,138,139 The site of overt tumour mass does 
therefore not necessarily correspond to the site of tumour origin, 
but they share the same ontogenetic unit. With progressive neuro-
epithelial de-differentiation, there is radial expansion of the tu-
mour to the entire extent of the hosting ontogenetic unit, 
followed by gradual transverse expansion into radial units of higher 
hierarchical order.25-27 This may manifest as an initially barely dis-
cernible tail from the superficially localized tumour to the ventricle, 
which becomes more prominent as encroachment on higher order 
ontogenetic units progresses.25-27 More advanced neuroepithelial 
de-differentiation is reflected in a subventricular tumour spread, 
which corresponds to an extension to yet higher order ontogenetic 

units, including subcallosal extension to contralateral homologous 
sites.25-27 De-differentiation to a mesenchymal phenotype is ana-
tomically reflected in an expansion along white matter fibre tracts, 
invasion of the perivascular spaces and leptomeninges or CSF 
metastases.26,140 Ultimately, de-differentiation might even enable 
systemic (non-CNS) metastases, which requires neoplastic intrava-
sation, intravascular survival and peripheral extravasation.141,142

The low degree of neuroepithelial differentiation with granule neu-
ron precursors as the cell of origin of medulloblastomas may ex-
plain the high frequency of CSF dissemination and the occasional 
observation of systemic metastases.26,27,143,144

Collectively, this indicates that the anatomical phenotype of a 
specific neuroepithelial tumour may be framed by the spatial con-
figuration of the hosting ontogenetic unit and further modelled by 
the tumours lineages and degree of neuroepithelial differentiation. 
The ontogenetic link between tumour differentiation, the anatom-
ical tumour phenotype and prognosis provides potential for further 
anatomical refinement of the classification of brain tumours and 
for an anatomical staging system.

Anatomical classification and staging of 
neuroepithelial tumours

The identification of generalizable topological phenotypes in 
neuroepithelial tumours and their association with distinct mo-
lecular, histological and clinical features render anatomical tumour 
classes a promising extension of the current elements of 

Figure 3 Temporal and prognostic sequence in neuroepithelial tumour anatomy. Red: The temporal and prognostic sequence identified behind the 
anatomical phenotypes in neuroepithelial tumours and its association to the degree of neoplastic differentiation. Blue: Illustration of the inverse par-
allels to the progressive arealization of the neural tube into tangentially nested radial units during neurodevelopment. Concept and design by Kevin 
Akeret, illustrations by Lucille Solomon.
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neuroepithelial tumour classification.27 The WHO CNS5 is domi-
nated by histological and molecular tumour profiling,2 the quality 
of which depends on the representativeness of tissue samples.14

Although serial biopsies reduce the risk of sampling bias,145,146 in-
tratumoural heterogeneity and the low relative number of stem- 
like tumour cells carries the inherent risk that bulk sequencing 
of tissue samples does not capture the cells that cause a tumour 
to progress or recur after therapy.14 Modern neuroimaging pro-
vides detailed information on the anatomy of a neuroepithelial tu-
mour at the time of diagnosis, which represents the tumour in its 
macroscopic entirety. Complementing the current classification 
of neuroepithelial tumours by an anatomical dimension has the 
potential to increase its robustness. However, large scale studies 
will be necessary to increase the granularity of anatomical tumour 
classes and to determine their impact on prognosis and response 
to therapy.

Staging systems, e.g. TNM staging in solid tumours or Ann Arbor 
staging in lymphoma, serve to estimate individual prognosis and to 
tailor patient-specific therapy and surveillance.16,147 The anatomic-
al extent of a tumour determines the appropriateness of surgical in-
terventions, guides resection margins, or justifies the removal of an 
entire anatomical segment, a whole organ, or lymph drainage 
sites.16,147 In addition, the indication for radiotherapy and/or sys-
temic therapy and the specific field of irradiation are adapted to 
the tumour stage.16,147 Tumour restaging during follow-up, e.g. 
rTNM, serves to readjust therapy and surveillance to the individual 
spatiotemporal tumour behaviour.16,147 Ultimately, tumour staging 
also improves the comparability of clinical research results.16 The 
principles of tumour staging may also be applicable to neuroepithe-
lial tumours.

Classic tumour staging adheres to a general scheme (Fig. 4)16: 
‘Stage I’ tumours represent a localized neoplasia, which is usually 
surgically removable; ‘Stage II’ characterizes early; and ‘Stage III’ 
late locally advanced tumours. The concrete stratification between 
Stages II and III depends on the tumour type. ‘Stage IV’ is generally 
reserved for metastasized cancer. Sometimes carcinoma in situ, i.e. 
neoplastic cells growing in their normal place, are referred to as 
‘Stage 0’. Thus, the basis of every staging system is an understand-
ing of the natural sequence of anatomical tumour progression and 
its relationship to the degree of histological de-differentiation and 
prognosis.16

Based on the prognostically most critical steps within the pre-
sented anatomical sequence of neuroepithelial tumour progres-
sion, a staging system for adult-type diffuse gliomas has been 
proposed (Fig. 4).26 Anatomical Stage I (AS1) groups in situ and radi-
ally confined tumour phenotypes. Anatomical Stage II (AS2) is de-
fined by a transverse subventricular tumour spread (segmental 
confinement or diffuse). Anatomical Stage III (AS3) clusters tu-
mours with mesenchymal CNS patterns (expansion along white 
matter tracts, leptomeningeal or perivascular invasion, CSF spread) 
or systemic metastases. Given the rarity of systemic metastases 
from adult-type diffuse gliomas and the poor prognosis associated 
with AS3 tumours, the distinction of a classic Stage IV was deemed 
of limited consequence. The validation of this staging system for 
adult-type diffuse gliomas in an independent cohort obtained 
from the same centre confirmed distinct survival differences for 
AS1-3 across tumour subtypes.26

To assess the generalizability of the proposed staging system to 
other neuroepithelial tumours and to evaluate the value of distin-
guishing between in situ tumours (classic Stage 0) and different 
hierarchies within radial units, larger multicentre cohorts are 
needed. Both the anatomical classification and the staging of 

neuroepithelial tumours harbour the potential to further stratify 
treatment decisions at diagnosis and during follow-up.26

Anatomical tailoring of neuroepithelial 
tumour therapy and surveillance

The diagnosis of a neuroepithelial tumour is generally made on the 
basis of MRI. MRI does not yet allow to predict the underlying histo-
pathology and molecular characteristics with certainty but provides 
all necessary information for anatomical phenotyping.14,25-27,148-150

The initial surgical intervention serves to specify the diagnosis 
by obtaining tissue, which defines subsequent individual ther-
apy.14,148-150 Whenever possible, the initial surgical intervention 
also serves as first treatment through maximum safe resec-
tion.14,148-150 Both the surgical strategies for biopsy and microsur-
gical resection might benefit from stage-adaptation and 
anatomical tailoring.

If, due to the clinical condition of the patient or the anatomical 
localization of the tumour, microsurgical resection does not appear 
safe, diagnostic specification is sought via biopsy.14,148-150 These are 
usually performed openly or stereotactically,145,146 while the bene-
fits of liquid biopsies, i.e. detection of cell-free tumour DNA in blood 
or CSF, are controversial.151 Although often multiple samples are 
taken, these reflect only a small and potentially unrepresentative 
proportion of the tumour, resulting in the risk of sampling bias 
and misdirection of subsequent therapy.152,153 Histopathological 
and molecular diagnostics are aimed at the tumour cell population 
with the highest degree of neuroepithelial de-differentiation and 
associated stem-like tumour cells. An ontogenetic conceptualiza-
tion of the spatiotemporal behaviour of neuroepithelial tumours 
could provide valuable guidance in choosing the most appropriate 
biopsy strategy to capture this target cell population. In tumours 
with subventricular spread (AS2), the subventricular zone should 
be included in the sampling strategy whenever possible. In tu-
mours with mesenchymal CNS patterns (AS3), separate biopsies 
of the different mesenchymal representations should be taken. If 
there is evidence of perivascular or leptomeningeal invasion, or 
the anatomical phenotype suggests CSF spread, attempting a liquid 
CSF biopsy prior to stereotactic or open biopsy may be appropriate. 
While still speculative, tailoring the biopsy strategy to the anatom-
ical tumour stage and the brain’s ontogenetic architecture could 
therefore maximize the prognostic and therapeutic significance 
of histopathological and molecular results.

If the clinical condition of the patient and the localization of the 
tumour so allow, initial surgery is performed with therapeutic in-
tent and the goal to achieve maximum safe resection, defined by 
the tumour mass visible on MRI.14,148-150 Additional intraoperative 
methods, such as ultrasound or 5-aminolevulinic acid guided sur-
gery, contribute to the definition of the extent of resection.154-156

Both the anatomical stage of a neuroepithelial tumour and the spa-
tial configuration of its hosting radial unit could inform patient- 
specific surgical strategies.26,27 For in situ and radially confined tu-
mours (AS1), the entire corresponding radial unit should represent 
the surgical target volume. The rationale is that neuroepithelial tu-
mours can be maintained by any stem-like tumour cell within the 
affected ontogenetic unit, even cells distant from the tumour 
mass.103,157-160 In cases, where such a radical surgical approach is 
functionally not justifiable, the remnant of the radial unit should 
be integrated into the radiation target volume whenever possible.26

Instead of a therapeutic surgical approach, patient with AS2 or AS3 
tumours might benefit more from an anatomically tailored biopsy, 
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radiotherapy that covers the affected radial units, and systemic 
therapy adapted to the histological and molecular tumour profile.14

Post-surgical management of patients with neuroepithelial tu-
mours is determined by tumour histopathology and molecular pro-
file, presence of residual tumour and the clinical condition of the 
patients.14,148-150 The initial anatomical tumour stage, the extent 
of resection relative to the hosting radial unit as well as the spatio-
temporal behaviour during follow-up could gain additional signifi-
cance for specific neuroepithelial tumour types and subtypes.

Adult-type diffuse gliomas

The anatomical stage of an adult-type diffuse glioma at diagnosis 
harbours a prognostic significance that is independent of tumour 
histology and molecular profile, tumour volume, patient age and 
Karnofsky Performance Status or choice of postoperative ther-
apy.26,27 Therefore, an advanced anatomical stage, e.g. higher order 
radial confinement or evidence of subventricular spread, in a WHO 
grade 2 astrocytoma or oligodendroglioma could argue for initial 
postoperative therapy and against watchful waiting, despite fa-
vourable conventional prognostic factors (i.e. age <40 years, no 
neurological deficits and no or little residual tumour).14 In contrast, 
a far-advanced anatomical stage (AS3) could justify systemic ther-
apy alone and limits the likelihood of benefit from local therapies.14

Since neoplastic cells extend beyond imaging abnormalities in dif-
fuse gliomas, the extent of resection compared to the preoperative 
image-based tumour mass is arguably an insufficient prognostic 
parameter.161 A more significant prognostic factor could be 
whether the ontogenetic unit hosting the tumour was removed in 
its entirety through microsurgery (Supplementary Fig. 3).25-27

Recurrence patterns in tumours with sub-segmental resection indi-
cate an origin from non-resected parts of the respective ontogenet-
ic units (Supplementary Fig. 3).26 Currently, the recommended 
clinical target volume for radiotherapy of higher grade adult-type 

diffuse gliomas is composed of the surgical bed, residual tumour 
identified on MRI and a margin of 1–2 cm to account for microscopic 
tumour invasion.14,162 In situ and radially confined adult-type dif-
fuse gliomas (AS1) may benefit from having the entire affected 
ontogenetic unit covered by the clinical target volume of radiother-
apy. In support of this, increased irradiation of the ipsilateral peri-
ventricular area with a mean radiation dose of 40 Gy or greater has 
been shown to be associated with longer progression-free and over-
all survival in glioblastoma patients after gross total resection.163

In the case of subventricular tumour spread (AS2), the associated 
subventricular and parenchymal segments may be integrated 
into the planning whenever possible. In cases of CSF spread (AS3), 
craniospinal radiotherapy may be warranted. Currently radiologic-
al surveillance is oriented along the Response Assessment in 
Neuro-Oncology (RANO) criteria.164,165 Tumour progression is de-
fined as an increase in the size of contrast-enhancing lesions of at 
least 25% based on bidirectional length measurements, a signifi-
cant increase in non-enhancing FLAIR/T2 lesions, or the appear-
ance of new lesions.164,165 Regular anatomical restaging might 
facilitate the recognition of recurrence in the residual hosting radial 
unit or of an anatomical phenotype switch. The stochastic patho-
physiology of progressive tumour de-differentiation may be better 
served by the identification of anatomical phenotype switches than 
by mere size monitoring, e.g. a new extension into a higher order 
radial unit, a new subventricular spread or the emergence of mes-
enchymal anatomical patterns.

Ependymal tumours and circumscribed astrocytic, 
glioneuronal and neuronal tumours

These tumours adhere to comparable cerebral and cerebellar anatom-
ical phenotypes and appear to follow similar anatomical progression 
sequences as adult-type diffuse gliomas.26,27 Microsurgical resection 
is the cornerstone of therapy and the extent of surgical resection is 

Figure 4 Anatomical staging of neuroepithelial tumours. Top: Scheme underlying the general staging of solid tumours. Middle: Prognostic sequence 
underlying the anatomical phenotypes in neuroepithelial tumours and the corresponding Anatomical Staging (AS) proposed for adult-type diffuse gli-
omas.26 Bottom: The Kaplan-Meier curves reproduced from an external validation of the staging system26 demonstrating the survival probability of AS 
1–3 WHO grade 2 gliomas, WHO grade 3 gliomas, and WHO grade 4 astrocytomas/glioblastoma.
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the most important prognostic factor in all those tumours.148,149,166,167

Both surgery and radiotherapy may benefit from stage-adaptation and 
anatomical tailoring. In contrast to the invariable progressive nature 
of diffuse gliomas, the majority of circumscribed astrocytic, glioneur-
onal, and neuronal tumours have an indolent course.148 Some tu-
mours, however, exhibit aggressive behaviour, for which WHO 
grading is an insufficient indicator.148 Anatomical phenotyping at 
diagnosis and restaging during follow-up could aid in identifying ag-
gressive tumours with unfavourable prognosis, adjust their therapy, 
and guide imaging surveillance.148,149,166,167

Medulloblastoma

In 1969, Chang et al.144 proposed a surgical staging system for me-
dulloblastomas based on the local extent of the tumour (T1: <3 cm 
in diameter; T2: >3 cm in diameter; T3: invasion of the fourth ven-
tricle; T4: invasion of midbrain, third ventricle or upper cervical 
cord) and metastatic state (M0: no evidence for metastases; M1: 
microscopic tumour cells in the CSF; M2: gross nodular seeding in 
the cerebral CSF space; M3: gross nodular seeding in the spinal 
CSF space; M4: extra-CNS metastases). Enhanced understanding 
of the spatiotemporal behaviour of medulloblastomas and cerebel-
lar development might allow for an anatomical staging of medullo-
blastomas, anatomically tailored supratotal resection and 
individualization of radiotherapy through stage-specific dose and 
irradiation field adjustment.26,27 How these concepts would differ 
from that for adult-type diffuse gliomas, given their differences in 
tumorigenesis, requires further research.

Conclusions

Analogous to numerous other neurological diseases, neuroepithe-
lial tumours conceal specific anatomical patterns. The anatomical 
phenotypes and sequences seen in neuroepithelial tumours share 
remarkable similarities with the ontogenetic architecture and de-
velopmental program of the human brain. This macroscopic coher-
ence is reinforced by cellular and molecular observations that the 
initiation of various neuroepithelial tumours, their intratumoural 
hierarchy and tumour progression are associated with the aberrant 
reactivation of surprisingly normal ontogenetic programs. Further 
research is needed to identify the precise mechanisms that dictate 
the anatomical behaviour of neuroepithelial tumours.

Generalizable topological phenotypes may allow to enhance the 
current classification of neuroepithelial tumours by a more in- 
depth anatomical dimension. In addition, an anatomical staging 
system has been proposed, based on the prognostically critical 
steps along the anatomical sequence of tumour progression. More 
data on specific neuroepithelial tumour types and subtypes is 
needed to increase the anatomical granularity in the anatomical 
classification and to determine the clinical impact of stage-adapted 
and anatomically tailored therapy and surveillance.

Supplementary material

Supplementary material is available at Brain online.
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