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GWAS meta-analysis of over 29,000 people 
with epilepsy identifies 26 risk loci and 
subtype-specific genetic architecture

International League Against Epilepsy Consortium on Complex Epilepsies*

Epilepsy is a highly heritable disorder affecting over 50 million people 

worldwide, of which about one-third are resistant to current treatments. 

Here we report a multi-ancestry genome-wide association study including 

29,944 cases, stratified into three broad categories and seven subtypes of 

epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 

19 of which are specific to genetic generalized epilepsy (GGE). We implicate 

29 likely causal genes underlying these 26 loci. SNP-based heritability 

analyses show that common variants explain between 39.6% and 90% of 

genetic risk for GGE and its subtypes. Subtype analysis revealed markedly 

different genetic architectures between focal and generalized epilepsies. 

Gene-set analyses of GGE signals implicate synaptic processes in both 

excitatory and inhibitory neurons in the brain. Prioritized candidate 

genes overlap with monogenic epilepsy genes and with targets of current 

antiseizure medications. Finally, we leverage our results to identify alternate 

drugs with predicted efficacy if repurposed for epilepsy treatment.

The epilepsies are a heterogeneous group of neurological disorders, 

characterized by an enduring predisposition to generate unpro-

voked seizures1. It is estimated that over 50 million people worldwide 

have active epilepsy, with an annual cumulative incidence of 68 per  

100,000 persons2.

Similar to other common neurodevelopmental disorders, epilep-

sies have substantial genetic risk contributions from both common 

and rare genetic variations. Analysis of the epilepsies benefits from 

deep phenotyping, which allows clinical subtypes to be distinguished3, 

in contrast to other common neurodevelopmental disorders, where 

phenotypic subtypes are more difficult to define. Differences in the 

genetic architecture of clinical subtypes of epilepsy are also emerging, 

to complement the clinical partitioning4–7. The rare but severe epileptic 

encephalopathies are usually nonfamilial and are largely caused by 

single de novo dominant variants, often involving genes encoding ion 

channels or proteins of the synaptic machinery8. Both common and 

rare variants have been shown to contribute to the milder and more 

common focal and generalized epilepsies. This is particularly true 

for generalized epilepsy, which is primarily constituted by genetic 

generalized epilepsy (GGE)4,5,9,10. Nevertheless, previous genetic stud-

ies of common epilepsies have explained only a limited proportion 

of this common genetic variant, or single-nucleotide polymorphism 

(SNP)-based, heritability—9.2% for focal and 32.1% for GGE4–6,10.

Epilepsy is typically treated using antiseizure medications (ASMs). 

However, despite the availability of over 25 licensed ASMs worldwide, 

a third of people with epilepsy experience continuing seizures11. Diet, 

surgery and neuromodulation represent additional treatment options 

that can be effective in small subgroups of patients12. Accurate clas-

sification of clinical presentations is an important guiding factor in 

epilepsy treatment.

Here we report the third epilepsy genome-wide association 

study (GWAS) meta-analysis by the International League against Epi-

lepsy (ILAE) Consortium on complex epilepsies, comprising a total 

of 29,944 deeply phenotyped cases recruited from tertiary referral 

centers and 52,538 controls, approximately doubling the previous 

sample size4. Results suggest markedly different genetic architec-

tures between focal and generalized forms of epilepsy. Combining 

these results with those from less-stringently phenotyped biobank 
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Annotation-Dependent Depletion (CADD) scores predicted that 11 

‘all epilepsy’ and 50 GGE SNPs were deleterious (CADD score > 12.37) 

(ref. 15). LDAK heritability analyses showed significant enrichment of 

signal in ‘super-enhancers’ (Supplementary Table 6), suggesting that 

GGE SNPs regulate clusters of transcriptional enhancers that control 

the expression of genes that define cell identity16.

To assess potential syndrome-specific loci, we performed GWAS 

on seven well-defined FE and GGE subtypes (Supplementary Fig. 4a–g). 

We found three genome-wide significant loci associated specifically 

with JME (n = 1,813), of which one was new (8q23.1) and the other two 

(4p12 and 16p11.2) previously reported4. Our analysis of CAE (n = 1,072) 

consolidated an established genome-wide significant signal at 2p16.1, 

which was also observed in the GGE and all epilepsy GWAS. We did not 

find any genome-wide significant loci for JAE (n = 671), GTCSA (n = 499), 

‘nonlesional FE’ (n = 6,367), ‘FE with HS’ (n = 1,375) or ‘FE with other 

lesions’ (n = 4,661).

MTAG17 analysis of individual GGE subphenotypes showed con-

cordance with the main GGE GWAS, without identifying new loci. In 

addition, this analysis confirmed that the majority of GWAS-significant 

SNPs in GGE are overlapping (Supplementary Figs. 5 and 6 and Sup-

plementary Table 7).

The vast majority of loci reported in our previous effort4 remained 

genome-wide significant. A summary of loci that fell below the 

genome-wide significance threshold is provided in Supplementary 

Table 8.

Genomic inflation was comparable to our previous GWAS, and all 

linkage-disequilibrium score regression (LDSC) intercepts were lower 

(Supplementary Table 9)4, suggesting that the signals are primarily 

driven by polygenicity. Computation of the attenuation ratio suggested 

that part of the inflation signal, in particular for FE (0.58), might be 

due to some form of bias (for example, confounding or population 

stratification)13. The attenuation ratio was lowest for GGE (0.11), which 

includes the vast majority of significant loci (Supplementary Table 9).

Locus annotation, gene-based analyses and gene 
prioritization
Using FUMA18 (Methods), the ‘all epilepsy’ meta-analysis was mapped 

to 43 genes and the GGE analysis to 278 genes (Supplementary Data 2). 

Thirty-nine of the 43 ‘all epilepsy’ genes overlapped with GGE, result-

ing in a total of 282 uniquely mapped genes. These 282 genes were 

enriched for monogenic epilepsy genes (hypergeometric test, 18/837 

genes overlapped; odds ratio (OR) = 1.51, P = 0.04) and targets of ASMs 

(hypergeometric test, 9/191 genes overlap; OR = 3.39, P = 5.4 × 10−4).

We calculated a gene-based association score based on the aggre-

gate of all SNPs inside each gene using MAGMA (Methods)19. This analy-

sis yielded 39 significant genic associations—six with ‘all epilepsy’ and 

37 with GGE (four overlapped with the ‘all epilepsy’ analysis), after cor-

rection for 16,371 tested genes (P < 0.05/16,371 genes; Supplementary 

Data 3). Thirteen of these 39 genes mapped to regions outside of the 

genome-wide significant loci from the single SNP analyses.

Next, we performed a transcriptome-wide association study 

(TWAS) to assess whether epilepsy was associated with differential 

gene expression in the brain (Methods)20,21. These analyses revealed sig-

nificant associations with 27 genes in total; 13 genes with ‘all epilepsy,’ 

16 with GGE and two with both phenotypes (Supplementary Data 4). 

Nineteen of the 27 genes mapped outside of the 26 loci were identified 

through the GWAS. Using summary-data-based Mendelian randomiza-

tion (SMR)22, we determined a potentially causal relationship between 

brain expression of RMI1 and ‘all epilepsy,’ and among RMI1, CDK5RAP3 

and TVP23B and GGE (Supplementary Data 5).

Of note, expression of RMI1 was associated with GGE in both 

TWAS (P = 4.0 × 10−10) and SMR (P = 5.2 × 10−8), as well as with ‘all epi-

lepsy’ (TWAS P = 1.3 × 10−6; SMR P = 2.6 × 10−6). RMI1 has a crucial role 

in genomic stability23 and has not been previously associated with 

epilepsy or any other Mendelian trait (OMIM, 610404).

and deCODE genetics epilepsy cases did not substantially increase 

signal, despite almost doubling the sample size to 51,678 cases and 

1,076,527 controls. Our findings shed light on the enigmatic biology 

of generalized epilepsy and the importance of accurate syndromic 

phenotyping and may facilitate drug repurposing for new thera-

peutic approaches.

Results
Study overview
We performed a GWAS meta-analysis by combining the previously 

published effort from our consortium4 with unpublished data from 

the Epi25 collaborative10 and four additional cohorts (Supplementary 

Tables 1 and 2). Our primary mixed model meta-analysis constitutes 

4.9 million SNPs tested in 52,538 controls and 29,944 people with epi-

lepsy, of which 16,384 had neurologist-classified focal epilepsy (FE) 

and 7,407 had GGE. The epilepsy cases were primarily of European 

descent (92%), with a smaller proportion of African (3%) and Asian (5%) 

ancestry (Supplementary Table 3). Cases were matched with controls 

of the same ancestry, and GWAS analyses were performed separately 

per ancestry, before performing multi-ancestry meta-analyses for the 

broad epilepsy phenotypes ‘FE’ (n = 16,384 cases) and ‘GGE’ (n = 7,407 

cases). We further conducted meta-analyses in individuals of European 

ancestry of the well-defined GGE subtypes of juvenile myoclonic epi-

lepsy ( JME; n = 1,732), childhood absence epilepsy (CAE; n = 1,049), 

juvenile absence epilepsy ( JAE; n = 662) and generalized tonic-clonic 

seizures alone (GTCSA; n = 485), as well as the FE subtypes of FE with 

hippocampal sclerosis (HS; n = 1,260), FE with other lesions (n = 4,213) 

and lesion-negative FE (n = 5,778). The same controls (n = 42,436) 

were shared across the different subphenotypes. We ran a variety 

of follow-up analyses to identify potential sex-specific signals and 

obtain biological insights and opportunities for drug repurposing. 

Sample size prevented the inclusion of other ethnicities in the sub-

type analyses.

GWAS for the epilepsies
Our ‘all epilepsy’ meta-analysis revealed four genome-wide significant 

loci, of which two are new (Fig. 1). Similar to our previous GWAS4, the 

2q24.3 locus was composed of two independently significant signals 

(Supplementary Table 4). Using ASSET to determine the extent of FE 

and GGE-related pleiotropy, the 2q24.3 and 9q21.13 signals showed 

pleiotropic effects at a genome-wide significance level, with concord-

ant SNP effect directions for both forms of epilepsy (Supplementary 

Table 5). The 2p16.1 and 10q24.32 loci were primarily derived from GGE. 

The FE analysis did not reveal any genome-wide significant signals.

Our ‘GGE’ meta-analysis uncovered a total of 25 independent 

genome-wide significant signals across 22 loci, of which 13 loci are new. 

The strongest signal of association (P = 6.6 × 10−21), located at 2p16.1, 

constitutes three independently significant signals. Similarly, the new 

locus 12q13.13 was composed of two independently significant signals 

(Supplementary Table 4). Forest plots and P–M plots of these signals 

show that they appear consistent across all four GGE subphenotypes, 

with some exceptions (Supplementary Figs. 1 and 2).

We applied multitrait analysis of GWAS (MTAG)17 to exploit the 

correlation between FE and GGE, boosting the effective sample size. 

Results were concordant with our main analysis, and new signals did 

not emerge (Supplementary Fig. 3).

Functional annotation of the 1,082 genome-wide significant SNPs 

across the 22 GGE loci and 270 SNPs from the ‘all epilepsy’ loci revealed 

that most variants were intergenic or intronic (Supplementary Data 1). 

Eight of 1,082 (0.7%) GGE SNPs were exonic, of which five were located 

in protein-coding genes and were missense variants. We identified 

one exonic ‘all epilepsy’ SNP (rs7580482, synonymous), located in 

SCN1A. Seventy-four percent of ‘all epilepsy’ SNPs and 64% of GGE 

SNPs were located in open chromatin regions, as indicated by a mini-

mum chromatin state of 1–7 (ref. 14). Further annotation by Combined 

http://www.nature.com/naturegenetics
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We used a combination of ten different criteria to identify the most 

likely implicated gene within each of the 26 associated loci from the 

meta-analysis (Methods). This resulted in a shortlist of 29 genes (Table 

1; see Supplementary Data 6 for scores of all mapped genes), of which 

ten are monogenic epilepsy genes, seven are known targets of currently 

licensed ASDs and 17 are associated with epilepsy for the first time.

The strongest association signal for GGE was found at 2p16.1, 

consistent with our previous results where we implicated VRK2 or 

FANCL24. Our gene prioritization analysis suggests the transcription 

factor BCL11A as the culprit gene, located 2.5 Mb upstream of the lead 

SNPs at this locus. Two of three lead SNPs are in enhancer regions  

(as assessed by chromatin states in brain tissue) that are linked to  

the BCL11A promoter via 3D chromatin interactions (Supplementary 

Fig. 8). Rare variants in BCL11A were recently associated with intel-

lectual disability and epileptic encephalopathy25. However, inter-

rogation of the MetaBrain expression quantitative trait loci (eQTL)  
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Fig. 1 | Manhattan plot of multi-ancestry all epilepsy (n = 29,944), focal 

epilepsy (n = 16,384) and genetic generalized epilepsy (n = 7,407) genome-

wide meta-analyses, obtained by fixed-effects meta-analysis weighted 

by effective sample sizes. The red line shows the genome-wide significance 

threshold (5 × 10−8). Chromosome and position are displayed on the x axis, and 

two-sided −log10 P value is on the y axis. New genome-wide significant loci are 

highlighted in red, and loci previously associated with epilepsy in orange. New 

loci were those previously unreported as GWAS significant in previous epilepsy 

GWASs. Annotated genes are those implicated by our gene prioritization analyses. 

See Supplementary Fig. 7 for QQ plots. QQ plots, quantile–quantile plot.
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database did not reveal a significant association of our lead SNPs 

with BCL11A expression.

The HLA system and common epilepsies
The highly polymorphic HLA region has been associated with various 

neuropsychiatric and autoimmune neurological disorders. Therefore, 

we imputed HLA alleles and amino acid residues using CookHLA v1.0.1 

(ref. 26) and ran association across epilepsy, focal and GGE phenotypes, 

as well as the seven subphenotypes (Methods). No SNP, amino acid 

residue or HLA allele reached genome-wide significance (Supplemen-

tary Fig. 9). The most significant signal was an aspartame amino acid 

residue in exon 2 of HLA-B (position 31432494), which had a P value of 

3.8 × 10−7 for GGE.

SNP-based heritability
We calculated SNP-based heritability using LDAK to determine the 

proportion of epilepsy risk attributable to common genetic vari-

ants. We observed liability scale SNP-based heritabilities of 17.7% 

(95% confidence interval (CI): 15.5–19.9%) for all epilepsy, 16.0% 

(14.0–18.0%) for FE and 39.6% (34.3–44.6%) for GGE. Heritabilities 

were notably higher for all individual GGE subtypes, ranging from 

49.6% (14.0–85.3%) for GTCSA to 90.0% (63.3–116.6%) for JAE (Sup-

plementary Table 10).

Using a univariate causal mixture model27 (Methods), we estimated 

that 2,850 causal SNPs (s.e.: 200) underlie 90% of the SNP-based herit-

ability of GGE, comparable with previous estimates9. Power analysis 

demonstrated that the current genome-wide significant SNPs only 

explain 1.5% of the phenotypic variance, whereas an estimated sample 

size of around 2.5 million individuals would be necessary to identify 

the causal SNPs that explain 90% of GGE SNP-based heritability (Sup-

plementary Fig. 10).

To further explore the heritability of the different epilepsy phe-

notypes, we used LDSC to perform genetic correlation analyses28. 

We found evidence for a strong genetic correlation among all four 

GGE syndromes (Supplementary Fig. 11 and Supplementary Table 11).  

We also observed the previously reported significant genetic cor-

relation4 between the focal nonlesional and JME syndromes. 

Here CAE also showed a significant genetic correlation with the 

focal nonlesional cohort. Multivariate modeling of genetic cor-

relation using Genomic structural equation modeling (SEM)29 

confirmed that most of the heritability signal is shared among 

the four GGE syndromes, with some subtype-specific signals  

(Supplementary Fig. 12).

Tissue and cell type enrichment
To further illuminate the underlying biological causes of the epilep-

sies, we used MAGMA19 and data from the gene–tissue expression 

(GTEx) consortium to assess whether our GGE-associated genes were 

enriched for expression in specific tissues and cell types (Methods). 

We identified significant enrichment of associated genes expressed 

in brain and pituitary tissue (Supplementary Fig. 13). The implication 

of the pituitary gland in GGE might reflect a hormonal component to 

seizure susceptibility. Further subanalyses showed that our results 

were enriched for genes expressed in almost all brain regions, includ-

ing subcortical structures such as the hypothalamus, hippocampus 

and amygdala (Supplementary Fig. 14). We did not find enrichment 

for genes expressed at specific developmental stages in the brain 

(Supplementary Fig. 15).

Cell-type specificity analyses of GGE data using various single-cell 

RNA-sequencing reference datasets (Methods) revealed enrichment 

in excitatory as well as inhibitory neurons, but not in other brain 

cells like astrocytes, oligodendrocytes or microglia (Supplementary  

Fig. 16). Similarly, stratified linkage-disequilibrium (LD)-score regres-

sion using single-cell expression data (Methods) did not reveal a differ-

ence between excitatory and inhibitory neurons (P = 0.18).

Gene-set analyses
MAGMA gene-set analyses showed significant associations between 

GGE and biological processes involving various functions in the synapse 

(Supplementary Data 7). To further refine the synaptic signal, we per-

formed a gene-set analysis using lists of expert-curated gene sets involv-

ing 18 different synaptic functions30. These analyses showed that GGE 

was associated with intracellular signal transduction (n = 139 genes, 

P = 9.6 × 10−5) and excitability in the synapse (n = 54 genes, P = 0.0074). 

None of the other 16 synaptic functions showed any association (Sup-

plementary Data 7). Genes involved with excitability include the N-type 

calcium channel gene CACNA2D2, implicated at the new GGE locus 

3p21.31. N-type calcium channel blockers such as levetiracetam and 

lamotrigine are among the most widely used and effective ASMs for 

GGE as well as FE31–33. Together, these results suggest that the genes 

associated with GGE are expressed in excitatory as well as inhibitory 

neurons in various brain regions, where they affect excitability and 

intracellular signal transduction at the synapse.

Sex-specific analyses
There are known sex-related patterns in the epidemiology of epi-

lepsy. Although females have a marginally lower incidence of epilepsy 

than males, GGE is known to occur more frequently in females34. To 

test whether this sex divergence has a genetic basis, we performed 

sex-specific GWAS for ‘all’, GGE and FE (Supplementary Figs. 17–19). 

These analyses revealed one female-specific genome-wide significant 

signal at 10q24.32 (lead SNP: rs72845653), containing KCNIP2. This 

locus was also implicated in our main GGE meta-analysis (lead SNP: 

rs11191156); however, the lead SNPs of these two signals show low allelic 

correlation (r2 = 0.05; D′ = 0.87). Interestingly, the direction of effect 

of this signal is opposite in females and males. This sex difference is 

further corroborated by significant sex heterogeneity (P = 1.54 × 10−8) 

and sex-differentiated GWAS (P = 5.6 × 10−9) (ref. 35). Sex-related dif-

ferences in transcription levels in human heart have previously been 

reported for KCNIP2 (ref. 36). We did not find any sex-divergent signals 

for ‘all’ or FE. These analyses were limited by a reduction in sample size 

and prone to random fluctuation.

We used LDSC to assess the genetic correlation between male-only 

and female-only GWAS. The male and female GWAS of ‘all epilepsy,’ FE 

and GGE were strongly genetically correlated (all rG > 0.9), and none 

of these correlations were significantly different from 1 (all P > 0.05). 

These results suggest that, with the exception of the female-specific 

10q24.32 signal, the overall genetic basis of common epilepsy appears 

largely similar between males and females.

Genetic overlap between epilepsy and other phenotypes
To explore the genetic overlap of epilepsy with other diseases, we first 

used the GWAS Catalog37 to cross-reference the 26 genome-wide epi-

lepsy loci with other traits with significant associations (P < 5 × 10−8) 

for the same SNP, or SNPs in strong LD with our lead SNPs (as detailed 

in Table 1). This analysis revealed 18 likely pleiotropic loci, with previ-

ous associations reported across a variety of traits, the most common 

being cognitive, sleep, psychiatric, coronary and blood cell-related 

(Supplementary Fig. 20). The remaining eight loci appear to be spe-

cific to epilepsy (3p22.3, 4p12, 5q31.2, 7p14.1, 8q23.1, 9q21.13, 21q21.1 

and 21q22.1).

We then performed genetic correlation analyses between 18 

selected traits (Supplementary Table 12) and ‘all’, GGE and FE using 

LDSC13. The selected traits had either, or a combination of, epilepsy as 

a common comorbidity or pleiotropic loci shared with epilepsy. Sig-

nificant correlations (P < 0.05/54 = 0.0009) were found with febrile sei-

zures, stroke, headache, ADHD, type 2 diabetes and intelligence (Fig. 2).

Genetic correlation analyses assess the aggregate of shared 

genetic variants associated with two phenotypes. However, genetic 

correlations can become close to zero when there is inverse directional-

ity of SNP effects between two phenotypes38. To explore this further, 

http://www.nature.com/naturegenetics
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we applied MiXeR v1.2.0 to quantify the polygenic overlap between 

GGE and the same 18 selected traits, irrespective of genetic correla-

tion (Methods). Results showed a large polygenic overlap between 

epilepsy and various other brain traits (Supplementary Fig. 21). For 

most selected brain traits, the direction of effect was concordant for 

40–60% of SNPs. This might explain why some LDSC correlations 

were low, together with other relevant factors including sample size, 

polygenicity and trait genetic architecture. In combination, these 

analyses suggest that the SNPs involved with GGE are highly pleiotropic; 

a large proportion of the ~2,850 causal SNPs underlying GGE seem to 

underlie the risk of a wide range of other brain diseases and traits, often 

with opposing directions of effect. These results emphasize that each 

phenotype has a specific underlying distribution of effect sizes and 

directions among shared causal variants, which together explain the 

shared and unique risk for different brain diseases.

Leveraging GWAS for drug repurposing
We next tested the potential of our meta-analysis to inform drug repur-

posing, by predicting the relative efficacy of drugs for epilepsy (Meth-

ods). This analysis was based on the predicted ability of each drug to 

modulate epilepsy-related changes in the function and abundance of 

proteins, as inferred from the GWAS summary statistics (Methods)39. 

In our predictions for all epilepsy, current ASMs were ranked higher 

than expected by chance (P < 1 × 10−6) and higher than drugs used to 

treat any other human disease (Supplementary Data 8). These observa-

tions were also true for a ‘test set’ (randomly selected 50%) of ASMs, 

when the remaining ASMs (‘training set’) were used for optimizing 

the predictions.

For GGE, broad-spectrum ASMs were predicted to be more effec-

tive than narrow-spectrum ASMs (P < 1 × 10−6), consistent with clini-

cal experience40. Furthermore, the predicted order of efficacy for 

GGE of individual ASMs matched their observed order in the largest 

head-to-head randomized controlled clinical trials for generalized 

epilepsy33,41, an observation unlikely to occur by chance (P < 1 × 10−6).

Using this approach, we highlight the top 20 drugs that are 

licensed for conditions other than epilepsy, but are predicted to be 

efficacious for generalized epilepsy, and additionally have published 

evidence of antiseizure efficacy from multiple published studies and 

multiple animal models (Supplementary Table 13). The full list of all 

predictions can be found in Supplementary Data 9.

GWAS in epilepsies ascertained from population biobanks
Finally, we leveraged the data from several large-scale population 

biobanks and from deCODE genetics to explore the consistency of 

the epilepsy loci in cohorts that were less deeply phenotyped (total 

cases n = 21,734, total controls n = 1,023,989, phenotyped using 

International Classification of Diseases (ICD) codes; Methods; 

Supplementary Table 14). Forest plots showed a consistent direc-

tion of effect between the biobanks and our primary GWAS for all 

biobank-genotyped genome-wide significant top SNPs of the ‘all epi-

lepsy’ GWAS and for all but one GGE top SNP (Supplementary Figs. 22 

and 23). Although the biobank and deCODE genetics-specific GWAS 

did not identify any genome-wide significant loci for GGE or ‘all epi-

lepsy,’ one significant locus at 2q22.1 (nearest gene, NXPH2) emerged 

for FE (Supplementary Fig. 24).

Meta-analysis of the biobank and deCODE genetics summary 

statistics with those from the primary epilepsy GWAS identified seven 

significant loci for the ‘all epilepsy’ phenotype. Six of these signals were 

previously identified in the primary ‘all epilepsy’ (n = 4) or the ‘GGE’ 

GWAS (n = 2). One locus (2q12.1) was new. The combined biobank and 

deCODE genetics meta-analysis for GGE identified five new loci, but 

four loci from our primary GWAS fell below the threshold of signifi-

cance (Supplementary Fig. 25). The combined FE meta-analysis showed 

no significant associations. LDSC between the biobank/deCODE genet-

ics and the primary GWAS results showed genetic correlations ranging 

between 0.31 and 0.74 (Supplementary Table 15).

Discussion
In this study, we leveraged a substantial increase in sample size to 

uncover 26 common epilepsy risk loci, of which 16 have not been 

reported previously. Using a combination of ten post-GWAS analysis 

methods, we pinpointed 29 genes that most likely underlie these sig-

nals of association. These signals showed enrichment throughout the 

brain and indicate an important role for synapse biology in excitatory 

as well as inhibitory neurons. Drug prioritization from the genetic data 

highlighted licensed ASMs, ranked the ASMs broadly in line with clini-

cal experience and pointed to drugs for potential repurposing. These 

findings further our understanding of the pathophysiology of common 

epilepsies and provide new leads for therapeutics.

The 26 associated loci included some notable monogenic epi-

lepsy genes. These include the calcium channel gene CACNA2D2, an 

established epileptic encephalopathy gene42 that is directly targeted 

by ten currently licensed drugs, including two ASMs (gabapentin and 

pregabalin) as well as the Parkinson’s disease drug safinamide and 

the nonsteroidal anti-inflammatory drug celecoxib. Both safinamide 

and celecoxib have evidence of antiseizure activity43,44. SCN8A, which 

encodes a voltage-gated sodium channel, is an established epilep-

tic encephalopathy gene and is associated here with common epi-

lepsies. Nav1.6 (encoded by SCN8A) is targeted by commonly used 

sodium channel-blocking drugs, the most efficacious ASMs for people 

with monogenic SCN8A-related epilepsies, that are often caused by 

gain-of-function pathogenic variants45. Additional drugs targeting 

Nav1.6 include safinamide and quinidine. RYR2 encodes a ryanodine 

receptor, is an established cardiac disorder gene, has recently been 

implicated in epilepsy46,47 and is targeted by caffeine as well simvastatin, 

atorvastatin and carvedilol. The acetylcholine receptor gene CHRM3 

has been previously associated with epilepsy48 and is targeted by drugs 

including solifenacin, used to treat urinary incontinence.
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Fig. 2 | Genetic correlations of epilepsy with other phenotypes. The genetic 

correlation coefficient was calculated with LDSC and is denoted by color scale 

from −1 (red; negatively (anti-)correlated) to +1 (blue; positively correlated). 

The square size relates to the absolute value of the corresponding correlation 

coefficient. Single asterisk indicates two-sided P < 0.05 and double asterisk 

indicates two-sided P < 0.0009 (Bonferroni corrected).
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We found that GGE, in particular, has a strong contribution from 

common genetic variation. When analyzing individual GGE syn-

dromes, we found that up to 90% of liability is attributable to com-

mon variants in the JAE subtype, making it among the highest of over 

700 traits reported in a large GWAS atlas49 (albeit with relatively large 

CIs; Supplementary Table 10). The heritability estimates decrease 

to 40% for the collective GGE phenotype, possibly due to increased 

heterogeneity from combining syndromes with pleiotropic as well 

as syndrome-specific risk loci. Although statistical power drastically 

decreased when assessing specific GGE syndromes, three loci appeared 

specific to JME. These findings highlight the unique genetic architec-

ture of the subtypes of common epilepsies, which are characterized 

by a high degree of both shared and syndrome-specific genetic risk.

In contrast to GGE, for FEs, we found only a minor contribution of 

common variants, with no variant reaching genome-wide significance. 

It would seem that FEs, as a group, are far more heterogeneous than 

GGE, lack (common-variation) loci with high effect sizes, have a higher 

degree of polygenicity and/or have a lower contribution of common 

heritable risk variation. Our attempt to mitigate this heterogeneity by 

performing subtype analysis contrasted with the results from GGE, sug-

gesting different genetic architectures, consistent with the experience 

from studies of common9 and rare5 genetic variation and polygenic risk 

score analyses6. There is also emerging evidence for a substantial role 

of noninherited, somatic mutations in FEs50.

This work highlights the challenges of working with epilepsy 

cohorts ascertained through large biobanking initiatives. Accurate 

classification of epilepsy requires a combination of clinical features, 

electrophysiology and neuroimaging. Such details were absent from 

the biobanks we worked with. Rather, phenotypes were generally lim-

ited to ICD codes, which are prone to misclassification51. Population 

biobanks are also probably ascertaining milder epilepsies that are 

responsive to treatment, contrasting with the enrichment for refrac-

tory epilepsies at tertiary referral centers.

Moreover, a proportion of adults with epilepsy have an acquired 

brain lesion, such as stroke, tumors or head trauma. Biobanks typically 

provide self-reported clinical information and codes from primary care 

and inpatient hospital care episodes, but not neurological specialist 

outpatient records that would indicate whether previous brain insults 

were considered relevant to epilepsy. As a result, the inclusion of the 

biobank data appeared to introduce more heterogeneity. This contrasts 

with genetic mapping of other polygenic diseases like type 2 diabetes 

and migraine, which are relatively easy and reliable to diagnose and 

classify, resulting in a great increase in GWAS loci when including data 

from the same biobanks as included in our study52,53.

We found enrichment of GGE variants in brain-expressed genes, 

involving excitatory and inhibitory neurons, but not any other brain 

cell type. This contrasts with other neurological diseases. For example, 

microglia are involved in Alzheimer’s disease54 and multiple sclerosis55, 

whereas migraine does not appear to have brain cell specificity53. We 

further refine this signal by showing the involvement of synapse biol-

ogy, primarily intracellular signal transduction and synapse excitabil-

ity. These findings suggest an important role of synaptic processes in 

excitatory and inhibitory neurons throughout the brain, which could 

be a potential therapeutic target. Indeed, synaptic vesicle transport is 

a known target of the ASMs levetiracetam and brivaracetam56.

We confirmed that our GWAS-identified genes had substantial 

overlap with monogenic epilepsy genes. A similar convergence of 

common and rare variant associations has been observed for other neu-

rological neuropsychiatric conditions including schizophrenia57 and 

ALS58. The genes prioritized in our GWAS signals also overlapped with 

known targets of current ASMs4, and we have provided a list of other 

drugs that directly target these genes. Moreover, using a systems-based 

approach39, we highlight drugs that are predicted to be efficacious 

when repurposed for epilepsy, based on their ability to perturb func-

tion and abundance in gene expression. Insights from GWAS of epilepsy 

have the potential to accelerate the development of new treatments 

via the identification of promising drug repurposing candidates for 

clinical trials59. We anticipate that follow-up studies of the highlighted 

drugs in this study could show clinical efficacy in epilepsy treatment.

In summary, these new data reveal markedly different genetic 

architectures between the milder and more common focal and general-

ized epilepsies, provide new biological insights to disease etiology and 

highlight drugs with predicted efficacy when repurposed for epilepsy 

treatment.
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Methods
Inclusion and ethics statement
Local institutional review boards approved study protocols at each 

contributing site. All study participants provided written, informed 

consent for the use of their data in genetic studies of epilepsy. For 

minors, written informed consent was obtained from their parents 

or legal guardian.

Sample and phenotype descriptions
This meta-analysis combines previously published datasets with new 

genotyped cohorts. Descriptions of the 24 cohorts included in our 

previous analysis can be found in the Supplementary Table 6 of that 

publication4. Here we included five new cohorts (Supplementary Table 

1), comprising 14,732 epilepsy cases and 22,362 controls, resulting in 

a total sample size of 29,944 cases and 52,538 controls. Classification 

of epilepsy was performed as described previously (see Supplemen-

tary Note for a detailed description)4. In brief, we assigned people 

with epilepsy to FE, GGE or unclassified epilepsy. ‘All epilepsy’ was the 

combination of GGE, focal and unclassified epilepsy. Where possible, 

we used EEG, MRI and clinical history to further refine the subpheno-

types—JME, CAE, JAE, GTCSA, nonlesional FE, FE with HS and FE with 

lesions other than HS.

Genotyping, quality control (QC) and imputation
Study participants were genotyped on SNP arrays (see Supplemen-

tary Table 1 for an overview of genotyping in new cohorts). QC was 

performed separately for each cohort. Pre-imputation QC included 

removal of SNPs with call rate (<98%), differential missing rate, dupli-

cated and monomorphic SNPs, SNPs with batch association (P < 10−4) 

and violation of Hardy–Weinberg equilibrium (P < 10−10). In addition, 

the Epi25 cohort was split by ancestry, based on principal component 

analysis. Individuals were removed if their heterozygous/homozygous 

ratio was >4 s.d. from the mean. We also removed one from each pair 

of related samples (determined by identity-by-descent >0.2) and 

removed individuals with ambiguous or nonmatching genetically 

imputed sex. Furthermore, 3,180 duplicates between the Epi25 cohort 

and the previously published genome-wide mega-analysis4 were iden-

tified based on genotype and were removed from the Epi25 cohort. Of 

the 3,180 duplicates, 1,226 were GGE and 1,402 FE. Before imputation, 

cohorts were cross-referenced to the Haplotype Reference Consor-

tium (HRC) panel to ensure SNPs matched in terms of strand, position 

and ref/alt allele assignment. Additionally, SNPs were removed if they 

were absent in the HRC panel, if they had a >20% allele frequency 

difference with the HRC panel or if any AT/GC SNPs had MAFs >40%, 

using tools available from https://www.well.ox.ac.uk/~wrayner/tools/. 

Data from Janssen Pharmaceuticals, Austrian GenEpa, Swiss GenEpa, 

Norwegian GenEpa and BPCCC were then imputed using the Well-

come Sanger Institutes’ imputation server (https://imputation.sanger.

ac.uk/), using EAGLE v2.4.1 (ref. 60) for phasing, and the Positional 

Burrows–Wheeler Transform algorithm61 v3.1 for imputation. The HRC 

reference panel r1.1 was used as a reference for imputation (n = 32,470) 

(ref. 62). Similarly, data from the Epi25 cohort were imputed using the 

Michigan Imputation server (https://imputationserver.sph.umich.

edu/). We used the HRC r1.1 as the reference panel for individuals 

of European and Asian ancestry and the 1000 Genomes Phase 3 v5 

(n = 2,504) for individuals of African ancestry. Default imputation 

parameters were used. Due to data sharing restrictions and with the 

Epi25 cohort data located in the USA and the other cohorts located in 

the European Union, we were unable to merge the data or use the same 

imputation server. Postimputation QC was largely similar among all 

cohorts. The Epi25 cohort used an in-house pipeline, where imputed 

dosages were used for genome-wide association analyses, filtering 

on imputation INFO > 0.3, MAF < 1%, genotype coverage <0.98 and 

Hardy–Weinberg violations (P < 10−5). For all other cohorts, the same 

procedures as our previous study4 were used—imputed datasets were 

converted to hard-coded PLINK format, requiring a more stringent 

imputation filtering of INFO > 0.9 (as opposed to dosages, where 

imputation inaccuracy is incorporated in downstream analyses). Fur-

thermore, we removed SNPs with MAF < 5%, genotype coverage <0.98 

and Hardy–Weinberg violations (P < 10−5)(ref. 4). We removed SNPs <5% 

MAF in the Janssen Pharmaceuticals, Austrian GenEpa, Swiss GenEpa, 

Norwegian GenEpa and BPCCC cohorts for QC reasons, and note there 

will be a corresponding loss in study power for lower frequency SNPs 

in the ‘focal’ and ‘all epilepsy’ epilepsy analysis.

Genome-wide association analyses
GWAS of the Janssen Pharmaceuticals, Swiss GenEpa, Norwe-

gian GenEpa and Austrian GenEpa cohorts was performed as a 

mega-analysis, as described previously4. GWAS of the Epi25 cohort 

was performed with a generalized mixed model using SAIGE v0.38 

(ref. 63). SAIGE was performed in two steps. First, we fit the null logistic 

mixed model to estimate the variance component and other model 

parameters. For this step, SNPs were filtered on-call rate >0.98 and 

MAF > 5%, and SNPs were pruned to obtain approximate independ-

ent markers (window size of 100 SNPs and r2 > 0.3). Second, we tested 

for the association between each genetic variant and phenotypes 

by applying SPA to the score test statistics. Next, we performed P 

value-based fixed-effects meta-analyses with METAL v2020-05-05 

(ref. 64) for each of the main phenotypes (‘all’, GGE and FE), as well 

as the subphenotypes, weighted by effective samples sizes (neff = 4/

(1/ncases + 1/ncontrols)) to account for case–control imbalance. We per-

formed multi-ancestry and European-only meta-analyses for the main 

phenotypes, and restricted the subphenotype analyses to Europeans 

only, due to limited sample size in other ancestries. We included all 

SNPs (~4.9 million, MAF > 1%) that were present in at least the previ-

ous mega-analysis and the Epi25 dataset, which together account for 

88% of the total sample size. We calculated genomic inflation factors 

(λ), mean χ2 and LD-score regression intercepts to assess potential 

inflation of the test statistic. Because λ is known to scale with sample 

size, we also calculated λ1000, which is λ corrected for an equivalent 

sample size of 1,000 cases and 1,000 controls65. We limited these 

analyses to participants of European ancestry because LD-structure 

depends on ethnicity and Europeans constituted 92% of cases. For 

forest plots of genome-wide significant hits, Beta/SE was estimated 

from METAL z scores using a previously published formula22. For P–M 

plots, m values were generated using the default settings of the tool 

Metasoft v2.0.0 (ref. 66).

Data sources for the biobank and deCODE genetics GWAS
Summary statistics for epilepsy GWAS were obtained from three popu-

lation biobanks (UK Biobank67, Biobank Japan68,69 and FinnGen release 

R6 (ref. 70)) and from deCODE genetics71 (Iceland). The Biobank Japan, 

FinnGen and deCODE genetics epilepsy cases were further assigned 

into either ‘focal’ or ‘generalized’ epilepsy, whereas the UK Biobank 

samples were not subdivided based on seizure localization, as the 

relevant clinical details were unavailable to facilitate an accurate sub-

division (see Supplementary Table 14 for sample sizes per biobank and 

deCODE genetics). Control data were population-matched samples 

with no history of epilepsy.

Fixed-effects meta-analyses were conducted using METAL 

v2020-05-05 (ref. 64), weighted by effective sample size (neff = 4/

(1/ncases + 1/ncontrols)) to account for case–control imbalance.

UK Biobank. We identified people with epilepsy from the UK Biobank 

using an analysis of self-reported data, inpatient hospital episode sta-

tistics, death certificate diagnostic data and primary care diagnostic 

data as described elsewhere72. This allowed us to interrogate the evi-

dence available to support a diagnosis of epilepsy rather than relying 

purely on UK Biobank-generated data fields 131048 and 13049 based 

on ICD-10 G40 mapping.
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FinnGen. Epilepsy was determined with ICD-10 G40, ICD-9 345, ICD-8 

345 and Social Insurance Institution of Finland (KELA) code 111. Exclu-

sion criteria were ICD-9 3452/3453 and ICD-8 34520. GGE was deter-

mined with ICD-10 G40.3, ICD-9 345(0-3) and ICD-8 34519. Exclusion 

criteria were ICD-8 34511. FE was determined with ICD-10 G40.0, G40.1, 

G40.2, ICD-9 345(45) and ICD-8 3453.

deCODE genetics. Epilepsy was determined with ICD-10 G40 and 

ICD-9 345 excluding 3452/3453. GGE with ICD-10 G40.3/G40.4/G40.6/

G40.7 or ICD-9 3450/3451/3456, and FE with ICD-10 G40.0/G40.1/G40.2 

or ICD-9 3454/3455.

Biobank Japan. Cases were classified into ‘Broad_Epilepsy,’ being 

any form of epilepsy; ‘Idiopathic_Epilepsy,’ being epilepsy with onset 

under 40 years and no known cause or ‘Idiopathic_Focal_Epilepsy’ 

and ‘Idiopathic_Generalized_Epilepsy,’ where focal and generalized 

syndromes could be ascertained.

Control data were population-matched samples with no history 

of epilepsy. GWAS fixed-effects meta-analyses were conducted using 

METAL64. To account for case–control imbalance, the effective sam-

ple size for each cohort was calculated as neff = 4/(1/ncases + 1/ncontrols)). 

GWAS Manhattan plots were generated using the qqman package73 in 

R v3.6.0. Genome-wide significant loci were mapped onto genes using 

the FUMA web platform18.

We performed three meta-analyses. As a primary analysis, we 

meta-analyzed all nonbiobank samples, then we meta-analyzed only 

biobank/deCODE genetics samples and finally, we performed a com-

bined meta-analysis of biobank/deCODE genetics and nonbiobank 

samples.

Pleiotropy analysis
ASSET74 is a meta-analysis-based pleiotropy detection approach that 

identifies common or shared genetic effects between two or more 

related, but distinct traits. We used ASSET v2.2.0 with a genome-wide 

significance level of α = 5 × 10−8. We applied ASSET to the subset of 

European-ancestry samples, comprising 6,952 (3,244 + 3,708) GGE 

cases and 14,939 (5,344 + 9,095) FE cases from the Epi25 and our con-

sortium as well as 42,434 partially overlapping controls from both 

consortia. Note that ASSET accounts for sample overlap in the analysis. 

Effect sizes, standard errors and the effective sample sizes estimated 

were from the main meta-analysis.

HLA association
Given the prior association of the HLA with autoimmune epilepsy75,76, 

we included a specific analysis of the HLA. HLA types and amino acid 

residues were imputed using CookHLA software v1.0.1 (ref. 26), with 

the 1000 Genomes Phase 3 used as a reference panel77. Samples were 

grouped by genetic ancestry for imputation.

Following imputation, association analysis was conducted using 

the HLA Analysis Toolkit (HATK) v1.2 (ref. 78). The following three 

phenotypes were analyzed: ‘all epilepsy’, FE and GGE. Samples from 

the ILAE and Epi25 datasets were analyzed separately, and the associa-

tion results were meta-analyzed across datasets and ancestries using 

PLINK v1.9 (ref. 79).

Functional annotation
We annotated all genome-wide significant SNPs and tagged SNPs within 

the loci from our multi-ancestry meta-analyses. ANNOVAR v2017-07-17 

was used to retrieve the location and function of each SNP80, the CADD 

score was used as a measure of predicted deleteriousness81 and chro-

matin states were incorporated from the ENCODE and NIH Roadmap 

Epigenomics Mapping Consortium14,82. We used FUMA v1.3.8 to define 

the independently significant SNPs within loci; that is, SNPs that were 

genome-wide significant but not in LD (r2 < 0.2 in Europeans) with the 

lead SNP in the locus.

MTAG
MTAG v1.0.8 (ref. 17) was used (with default settings) to increase the 

effective sample size from our European ancestry GGE subpheno-

type analysis by pairing it with the strongly correlated overall GGE 

GWAS with a larger sample size. MTAG accounts for sample overlap 

between traits and uses the fact that estimations of effect size and 

standard error of a primary GWAS, in this case GGE subtypes, can be 

improved by matching them to a genetically correlated secondary 

GWAS, in this case GGE17. Similarly, we applied MTAG to combine 

FE with GGE.

Gene mapping
To map genome-wide significant loci from our multi-ancestry 

meta-analyses to specific genes, we used FUMA v1.3.8 (ref. 18) with the 

same parameters as published previously4. We defined genome-wide 

significant loci as the region encompassing all SNPs with P < 10−4 that 

were in LD (r2 > 0.2) with the lead SNP (that is, the SNP with the strong-

est association within the region). We used a combination of positional 

mapping (within 250 kb from the locus), eQTL mapping (SNPs with FDR 

corrected eQTL P < 0.05 in blood or brain tissue) and 3D Chromatin 

Interaction Mapping (FDR P < 10−6 in brain tissue).

Genome-wide gene-based association study (GWGAS) and 
gene-set analyses
We performed the GWGAS using the default settings of MAGMA v1.08, 

as implemented in FUMA v1.3.8, which calculates an association P value 

based on all the associations of all SNPs within each gene in the GWAS19. 

Based on these GWGAS results, we performed competitive gene-set 

analyses with default MAGMA settings, using 15,483 default gene sets 

and GO-terms from MsigDB. In addition, we specifically assessed 18 

curated gene sets involving different synaptic functions30.

TWAS
TWAS was performed with FUSION v3, with default settings20. We 

imputed gene expression based on our European-only GWAS (because 

the method relies on LD reference data) eQTL data from the PsychEN-

CODE consortium, which includes dorsolateral prefrontal cortex tissue 

from 1,695 individuals21.

SMR
SMR v1.03 is an additional method to assess the association between 

epilepsy and expression of specific genes22. Although TWAS and SMR 

have similar aims, the differences in methods and reference datasets 

result in complementary information. As opposed to the FUSION 

TWAS method, which uses multi-SNP imputation of gene expression, 

SMR uses Mendelian randomization to test whether the effect size of 

an SNP on epilepsy is mediated by the expression of specific genes. We 

performed SMR analyses with default settings, using European-only 

GWAS and the MetaBrain expression data as reference, a new eQTL 

dataset including 2,970 human brain samples83.

Sex-specific analyses
We performed a GWAS, as described above, for all epilepsy (13,889 

female cases and 19,676 female controls; 12,259 male cases and 18,645 

male controls) and GGE (3,946 female cases and 19,676 female controls; 

2,603 male cases and 18,645 male controls) separately for participants 

of either sex, after which we performed fixed-effects meta-analyses 

with METAL to merge the different cohorts. We performed 

meta-analyses between the male and female GWAS with GWAMA 

v2.2.2 (ref. 84) to assess the heterogeneity of effect sizes between 

sexes and sex-differentiated associations35. Sex-differentiated analyses 

are meta-analyses between female-only and male-only GWAS, allowing 

for different effect sizes between the sexes, while sex-heterogeneity 

tests the difference in effect size for each SNP between female-only 

and male-only GWAS35.
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Gene prioritization
We combined ten methods to prioritize the most likely biological 

candidate gene within each genome-wide significant locus. For each 

gene in each locus, we assessed the following criteria:

•	 Missense: we assessed whether the SNPs tagged in the genome- 

wide significant locus contained an exonic missense variant in the 

gene, as annotated by ANNOVAR v2017-07-17.

•	 TWAS: we assessed whether imputed gene expression was  

significantly associated with the epilepsy phenotype, based on  

the FUSION TWAS as described above, Bonferroni corrected  

for each mapped gene with expression information.

•	 SMR: we assessed whether the gene had a significant SMR associa-

tion with the epilepsy phenotype, based on the SMR analyses as 

described above, Bonferroni corrected for each mapped gene with 

expression information.

•	 MAGMA: we assessed whether the gene was significantly associ-

ated with the epilepsy phenotype through a GWGAS analysis, 

Bonferroni corrected for each mapped gene.

•	 PoPS: we calculated the polygenic priority score (PoPS)85, a method 

that combines GWAS summary statistics with biological pathways, 

gene expression and protein–protein interaction data, to pinpoint 

the most likely causal genes. We scored the gene with the highest 

PoPS score within each locus.

•	 Brain expression: for each mapped gene, we calculated the mean 

expression in all brain and nonbrain tissues based on data from the 

GTEx project v8 (ref. 86). Next, we assessed whether the gene was 

more strongly expressed in brain tissues than nonbrain tissues, 

by comparing the average expression in all brain tissues with all 

nonbrain tissues.

•	 Brain-coX: we assessed whether genes were prioritized as 

co-expressed with established epilepsy genes in more than a third 

of brain tissue resources used, using the tool brain-coX (Supple-

mentary Fig. 26)87.

•	 Target of AED: we assessed whether the gene is a known target of 

an anti-epileptic drug, as detailed in the drug–gene interaction 

database (www.DGidb.com; accessed on 26-11-2021) and a list of 

drug targets from a recent publication (Supplementary Data 10)88.

•	 Knockout mouse: we assessed whether a knockout of the 

gene in a mouse model results in a nervous system (pheno-

type ID: MP:0003631) or a neurological/behavior phenotype 

(MP:0005386) in the Mouse Genome Informatics database  

(http://www.informatics.jax.org; accessed on 26-11-2021).

•	 Monogenic epilepsy gene: we evaluated whether the gene is listed 

as a monogenic epilepsy gene, in a curated list maintained by 

the Epilepsy Research Center at the University of Melbourne89  

(Supplementary Data 10).

Similar to previous studies4,90, we scored all genes based on the 

number of criteria being met (range: 0–10; all criteria had an equal 

weight). The gene with the highest score was chosen as the most likely 

implicated gene (see Supplementary Data 6 for a complete list of scores 

for all genes in each locus). We implicated both genes if they had an 

identical, highest score. We calculated Pearson correlation coefficients 

between the ten criteria (Supplementary Table 16) and note that most 

correlations were low (range: −0.13 to 0.39), suggesting that they con-

vey complementary information.

Long-distance expression regulation of BCL11A
Most eQTL databases, like PsychENCODE and MetaBrain, restrict eQTL 

analyses to 1 Mb distance between genes and SNPs. To specifically 

assess the hypothesis of long-distance regulation of BCL11A by the 

lead SNPs in the 2p16.1 epilepsy locus, we manually interrogated the 

MetaBrain database83 without distance restraints. Next, we calculated 

the association between the three lead SNPs in the locus (rs11688767, 

rs77876353 and rs13416557) with BCL11A expression.

Heritability analyses
We calculated SNP-based heritability on the European-only GWAS 

using LDAK v5.2, as it was recently shown to give more accurate 

heritability estimates for complex traits, when compared to other 

methods including LDSC91,92. We used default settings in LDAK and 

precalculated LD weights from 2,000 European (white British) ref-

erence samples under the BLD–LDAK SumHer model92. SNP-based 

heritabilities were converted to liability scale heritability estimates, 

using the following formula: h2
l = h2

o × K2(1 − K)2/p(1 − p) × Z2, where K 

is the disease prevalence, p is the proportion of cases in the sample 

and Z is the standard normal density at the liability threshold. To 

decrease downward bias, we performed these calculations based 

on the effective sample sizes (see calculation above), after which 

p = 0.5 can be assumed93, with the same population prevalences as 

our previous study (Supplementary Table 10)4. The total amount of 

causally associated variants (that is, variants with nonzero additive 

genetic effect) underlying epilepsy risk was calculated by a causal 

mixture model (MiXeR) v1.2.0 (ref. 38). MiXeR uses a likelihood-based 

framework to estimate the amount of causal SNPs underlying a trait, 

without the need to pinpoint which specific SNPs are involved. Fur-

thermore, MiXeR allows for power calculations to assess the required 

sample size to explain a certain proportion of SNP-based heritability 

by genome-wide significant SNPs.

Genomic SEM
Genomic SEM entails two stages of estimation29. In the first stage, the 

empirical genetic covariance matrix and sampling covariance matrix 

are estimated using an extension of multivariable LDSC. This matrix 

is extended to include SNP effects for the multivariate GWAS SEM. In 

the second stage, an SEM is specified, and its parameters are estimated 

such that the discrepancies in the model covariance matrix and the 

empirical covariance matrix are minimized. The Genomic SEM mod-

els are specified such that the SNP effect, defined by multiple traits, 

occurs at a level of a latent factor (Fg), and the model fit is assessed 

using model chi-square, Akaike information criterion and standardized 

root mean square. However, this method also provides evidence of 

heterogeneity between the phenotypes via the QSNP statistics, which 

show the extent to which the univariate regression effects of SNPs for 

each phenotype are explained by a common genetic factor. QSNP is a 

chi-square distributed statistic that can test whether SNPs act entirely 

through a common factor.

Enrichment analyses
We used MAGMA v1.08 (as implemented in FUMA) to perform tissue 

and cell-type enrichment based on our multi-ancestry meta-analyses. 

First, we assessed whether our GGE GWAS was enriched for specific 

tissues from the GTEx database. Similarly, we assessed the enrichment 

of genes expressed in the brain at 11 general developmental stages, 

using data from the BrainSpan consortium. Next, we assessed whether 

GGE was associated with specific cell types, by cross-referencing 

two single-cell RNA-sequencing databases of human developmen-

tal and adult brain samples. The PsychENCODE database contains 

RNA-sequencing data from 4,249 human brain cells from develop-

mental stages and 27,412 human adult brain cells94. The Zhong dataset 

(GSE104276) contains RNA-sequencing data from 2,309 human brain 

cells at different stages of development95. We performed FDR cor-

rection across datasets to assess which cell types were significantly 

associated with GGE. As a sensitivity analysis, we performed stratified 

LDSC with default settings using the cell-specific gene expression 

weights from the PsychENCODE consortium to compare GABAergic 

with glutamatergic neuron enrichment96.
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Genetic overlap with other diseases
Using the FUMA web application, we searched the GWAS catalog for 

previously reported associations with P < 5 × 10−8 for SNPs at all 26 

genome-wide significant loci.

Genetic correlations between ‘all’, FE and GGE and 18 other traits 

were computed with LDSC v1.01, using default settings. For these 

analyses, we used our European-only GWAS. Traits highlighted by 

the GWAS catalog analysis and/or those with established epilepsy 

comorbidity were prioritized and pursued provided recent summary 

statistics were available for public download (Supplementary Table 

12). Although estimates are in general consistent between LDSC and 

LDAK90, we decided to use LDSC as it is the more established method 

of the two for genetic correlations and used by almost all genetic cor-

relation atlases and databases97,98.

We used a recently described bivariate causal mixture model 

(MiXeR) v1.2.0 to quantify the polygenic overlap between GGE with 

the same 18 traits as assessed with LDSC. Bivariate MiXeR analyses 

estimate the total amount of causal SNPs underlying each trait, after 

which it assesses how many of these SNPs are shared between two traits. 

Notably, the number of overlapping SNPs is calculated regardless of 

the direction of effect. This makes it different from overall genetic cor-

relation analyses such as LDSC, where overlapping SNPs with mixed 

directions of effect can cancel each other out, resulting in low genetic 

correlation. We used the same publicly available summary statistics as 

used for LDSC (Supplementary Table 12), after which bivariate MiXeR 

was run with default settings.

Drug-repurposing analyses
We used a recently developed method that uses the GWAS for a dis-

ease to predict the relative efficacy of drugs for the disease39. We 

applied this method to ‘all’ epilepsy and GGE GWAS results, using (1) 

imputed gene expression data from the FUSION analyses, as described 

above, and (2) gene-based P values from MAGMA (see above), with 

default settings. We predicted the relative efficacy of 1,343 drugs 

in total (Supplementary Data 8). We determined if our predictions 

correctly identify (area under the receiver operating characteristic 

curve) and prioritize (median rank) known clinically effective antisei-

zure drugs, as previously described39. We determined the statisti-

cal significance of drug identification and prioritization results by 

comparing the results to those from a null distribution generated 

by performing 106 random permutations of the scores assigned  

to drugs.

Reporting summary
Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability
The GWAS summary statistics data that support the findings of this 

study (for both multi-ancestry and European-only analyses) are pub-

licly available at https://www.epigad.org/ and in the NHGRI-EBI GWAS 

Catalog at https://www.ebi.ac.uk/gwas/ (accession IDs: GCST90271608, 

GCST90271609, GCST90271610, GCST90271611, GCST90271612, 

GCST90271613, GCST90271614, GCST90271615, GCST90271616, 

GCST90271617, GCST90271618, GCST90271619 and GCST90271620). 

Individual-level GSA-MD v1.0 data for the Epi25 case samples and 

HKOS control samples are available in dbGaP/AnVIL under phs001489.

v2.p2. GSA-MD v1.0 data for Genomic Psychiatry Cohort (GPC) con-

trol samples data will be made available in dbGAP/AnVIL under study 

phs002041. Individual-level SNP genotype data for other cohorts 

used as controls in the Epi25 analyses are accessible via an application 

through the THL Biobank portal (https://thl-biobank.elixir-finland.

org/) for FINRISK, and in dbGaP/AnVIL under study accession numbers 

phs001642 (NIDDK IBDGC) and phs002018.v1.p1 (MGB Biobank) (see 

Supplementary Note for more details). Data relating to UK Biobank are 

available via the application to UK Biobank (https://www.ukbiobank.

ac.uk/enable-your-research/apply-for-access). The FinnGen data can 

be accessed through the Fingenious services (https://site.fingenious.fi/

en/) managed by FINBB: release R6. The summary statistics of the Japa-

nese GWAS in this study are publicly available from the National Biosci-

ence Database Center (https://biosciencedbc.jp/en) under research ID: 

hum0014. We also accessed data from the following online database: 

www.DGidb.com (accessed on 26 November 2021). Source data are 

provided with this paper.

Code availability
No custom code was used in this study. Publicly available software tools 

were used to perform genetic analyses and are referenced throughout 

the manuscript.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Genotyping was performed at various sites as detailed in the Methods and Supplementary Table 1. Genotypes were harmonized to the 

Haplotype Reference Consortium (HRC) panel v1.1 using tools available from https://www.well.ox.ac.uk/~wrayner/tools/ prior to imputation 

using one of the two following imputation servers: 

1. Wellcome Sanger Institutes imputation server: https://imputation.sanger.ac.uk 

2. Michigan Imputation server: https://imputationserver.sph.umich.edu/

Data analysis No custom code was used in this study. We used the following public and freely available software tools to preform the reported analyses: 

Eagle v2.4.1 for haplotype phasing;  

PBWT v3.1 for imputation; 

Plink v1.9 for genotype data manipulation/QC; 

Saige v0.38 for generalized mixed models; 

METAL v2020-05-05 for meta-analyses; 

Metasoft v2.0.0 for generating m-values for PM-Plots; 

R v3.6.0 for generating Manhattan and correlation plots; 

ASSET v2.2.0 for pleiotropy detection; 

CookHLA v1.0.1 for HLA imputation; 

HLA Analysis Toolkit (HATK) v1.2 for HLA association analysis 

ANNOVAR v2017-07-17 for SNP annotation; 

MTAG v1.0.8 for multi-trait analysis;  

FUMA v1.3.8 for gene mapping; 

MAGMA v1.08 for gene set analyses; 



2

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

M
a

rc
h

 2
0

2
1

FUSION v3 for TWAS; 

GWAMA v2.2.2 for sex-specific GWAS 

LDAK v5.2 for SNP-based heritability analyses; 

MiXeR v1.2.0 for causal mixture models; 

LDSC v.1.01 for cross-train genetic correlations; 

Relevant references are listed throughout the manuscript for all above stated tools and software.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The GWAS summary statistics data that support the findings of this study (for both multi-ancestry and European-only analyses) are publicly available at https://

www.epigad.org/ and in the NHGRI-EBI GWAS Catalog at https://www.ebi.ac.uk/gwas/ (accession IDs: GCST90271608, GCST90271609, GCST90271610, 

GCST90271611 ,GCST90271612, GCST90271613, GCST90271614, GCST90271615, GCST90271616, GCST90271617, GCST90271618, GCST90271619 & 

GCST90271620). Individual-level GSA-MD v1.0 data for the Epi25 case samples and HKOS control samples are available in dbGaP/AnVIL under phs001489.v2.p2. 

GSA-MD v1.0 data for Genomic Psychiatry Cohort (GPC) control samples data will be made available in dbGAP/AnVIL under study phs002041. Individual-level SNP 

genotype data for other cohorts used as controls in the Epi25 analyses are accessible via an application through the THL Biobank portal (https://thl-biobank.elixir-

finland.org/) for FINRISK, and in dbGaP/AnVIL under study accession numbers phs001642 (NIDDK IBDGC) and phs002018.v1.p1 (MGB Biobank) (see Supplementary 

information for more details). Data relating to UKBiobank is available via application to UKBiobank (https://www.ukbiobank.ac.uk/enable-your-research/apply-for-

access). The FinnGen data  can be accessed through the Fingenious services (https://site.fingenious.fi/en/) managed by FINBB: release R6. The summary statistics of 

the Japanese GWAS in this study are publicly available from the National Bioscience Database Center (https://biosciencedbc.jp/en) under research ID: hum0014. We 

also accessed data from the following online database: www.DGidb.com (accessed on 26-11-2021).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Self-identified gender was collected upon recruitment of both cases and controls. Biological sex was subsequently 

determined genetically and used for downstream analyses.

Population characteristics Diagnoses: 29944 patients with epilepsy, 52538 controls 

Genotypic ancestry (cases & controls): 69995 European, 5306 Asian, 7181 African 

Sample age data was not available.

Recruitment Case and control samples were recruited from tertiary hospital and academic research centres. All cases were diagnosed with 

epilepsy syndrome according to the same international guidelines and classification system, however, it is possible that the 

application of diagnostic criteria across cohorts may slightly differ. This ascertainment bias may have resulted in a reduction 

to the overall power of the study and the generalizability of results. 

Ethics oversight All contributing case and control sites collected samples following local IRB/ethics committee approval. A full list of approval 

bodies can be found in Supplementary Table 1.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was not predetermined, however, we note that this study is almost twice the size of the previous largest epilepsy GWAS 

published in 2018.

Data exclusions We excluded poorly genotyped SNPs and outlier samples according to the various QC parameters which are described in our methods.  
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Replication As this is the largest study of common variants in epilepsy to date we did not have additional samples to replicate the significant variants in 

this study. However we have demonstrated reproducibility of our previous study findings and expect to reproduce this study findings with the 

addition of new samples in future work.

Randomization There was no randomization in this study. Cases were grouped according to electroclinical phenotypes in epilepsy while controls were 

unscreened population samples.

Blinding Samples were coded at collection and phenotypes were collected by separate individuals from analysts, preventing analysts from making 

genotype-phenotype identification of a study participant.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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