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1 | BACKGROUND

Hypoglycaemia is one of the most relevant complications of diabetes1

and induces alterations in physiological parameters2,3 that can be

measured with smartwatches and detected using machine learning

(ML).4 The performance of these algorithms when applied to different

hypoglycaemic ranges or in situations involving cognitive and psycho-

motor stress remains unclear. Demanding tasks can significantly affect

the physiological responses on which the wearable-based hypoglycae-

mia detection relies.5 The present analysis aimed to investigate ML-

based hypoglycaemia detection using wearable data at different levels

of hypoglycaemia during a complex task involving cognitive and psy-

chomotor challenges (driving).

2 | METHODS

This was a pre-specified analysis of two consecutive studies con-

ducted at the University Hospital Bern (Study A: 10/2019-07/2020;

Study B: 11/2021-03/2022). The studies followed the Declaration of

Helsinki, guidelines of good clinical practice, and legally applicable

requirements. We included individuals with type 1 diabetes, aged

21-50 years (up to 60 years for Study B). Key exclusion criteria

included pregnancy, seizure disorders, severe organ dysfunction, or

alcohol/drug abuse. Following approval by the local Ethics Committee
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Bern (2019-00579, 2021-002018), the studies were registered on

ClinicalTrials.gov (NCT04035993, NCT05183191). Participants pro-

vided written informed consent. The detailed study procedures have

been described previously.6 After the screening visit, participants

were admitted to our clinical research facility for the main experiment

after an overnight fast. Participants received a smartwatch

(Garmin vivoactive 3) to collect heart rate variability and acceleration

sensor data and a second wrist-worn wearable (Empatica E4) to col-

lect electrodermal activity data. During a controlled hypoglycaemia

procedure using intravenous insulin and glucose (Figure S1A), wear-

able data were collected in euglycaemia [blood glucose

(BG) 5.0-8.0 mmol/L] followed by pronounced hypoglycaemia in

Study A (BG 2.0-2.5 mmol/L) or mild hypoglycaemia in Study B

(BG 3.0-3.5 mmol/L), while individuals were driving in a simulator.

The hypoglycaemic episode lasted �40 min. Venous BG was repeat-

edly measured using the Biosen C-Line analyser and BG was used as

the ground truth for ML modelling. Hypoglycaemia symptoms were

rated by the participants using a standardized questionnaire.7

The main outcome of the analysis was the diagnostic accuracy of

the ML approach to detect hypoglycaemia using wearable data quanti-

fied as the area under the receiver operating characteristic curve

(AUROC). The sample size was calculated based on the primary out-

come of the two interventional studies (for details see Lehmann et al.6).

Figure S1B displays the ML pipeline. To assess performance and

decision-making for different hypoglycaemic ranges, we trained

and evaluated three ML models: (a) to detect pronounced hypoglycae-

mia (BG 2.0-2.5 mmol/L), using data from Study A; (b) to detect mild

hypoglycaemia (BG 3.0-3.5 mmol/L), using data from Study B; and (c) to

detect overall hypoglycaemia, combining data from both studies. To

handle electrodermal activity data, we separated the signal into a slow-

changing (tonic) and a fast-changing (phasic) component. We follow

conventional feature engineering for time-series classification: Each sig-

nal is cut into overlapping sequences of 60 s and shifted by 1 s. Using

aggregation functions, we generated a set of 14 generic and domain-

specific features (Table S1). BG values were linearly interpolated

between measurements, while the binary output variable for ML models

was set to 1 for hypoglycaemia, otherwise 0. We implemented a logistic

regression with ridge regularization to ensure interpretable decision-

making while feature importance was derived from the magnitude of

the coefficients grouped by the modality.8 Furthermore, we assessed

generalization to unseen subjects by using leave-one-subject-out cross-

validation to compute performance metrics' mean and standard devia-

tion. The source code has been published,9 and is publicly available on

GitHub (https://github.com/im-ethz/smartwatches-hypo-detection).

3 | RESULTS

For Study A, 17 of 18 individuals were included in the analysis (one

participant excluded because of wearable data loss). For Study B, all

nine enrolled individuals were included in the analysis. Baseline char-

acteristics are provided in Table S2. Venous blood glucose in eugly-

caemia was 5.9 ± 0.6 mmol/L (Study A) and 6.4 ± 0.8 mmol/L (Study

B). Hypoglycaemia was at 2.4 ± 0.2 mmol/L (Study A) and 3.3

± 0.2 mmol/L (Study B). Self-rated hypoglycaemia symptoms are

reported in Table S3.

Pronounced hypoglycaemia was detected with an AUROC of

0.80 ± 0.20 and mild hypoglycaemia with an AUROC of 0.66 ± 0.12.

AUROC of overall hypoglycaemia detection was 0.72 ± 0.20. Addi-

tional performance metrics are provided in Table 1.

Figure 1 displays the feature importance (i.e. the sum of the coef-

ficients per modality divided by the sum of all coefficients) for the dif-

ferent input categories across the levels of hypoglycaemia. While

detection of pronounced hypoglycaemia shows a higher reliance on

electrodermal activity, the feature importance for mild hypoglycaemia

is balanced across input modalities. For the detection of overall hypo-

glycaemia, the features of electrodermal activity dominate.

4 | DISCUSSION

Previously, we have shown the general concept of hypoglycaemia

detection using smartwatch data.4 The present analysis suggests that

this concept extends to detecting pronounced hypoglycaemia even

when people are involved in tasks related to cognitive and psychomotor

stress, such as driving. The more modest performance in detecting mild

hypoglycaemia may be attributed to (a) the smaller sample size of indi-

viduals undergoing mild hypoglycaemia, (b) the potential interference of

the physiological response to the driving task,5 and/or (c) a more subtle

physiological response to mild hypoglycaemia when compared with

lower hypoglycaemic levels.10 Additional data may improve ML perfor-

mance in mild hypoglycaemia by learning generalizable patterns.

While electrodermal activity, heart rate variability and accelerom-

eter features constitute relevant features for hypoglycaemia

detection,2,4 the accuracy of ML decision-making across different

levels of hypoglycaemia is unknown. Electrodermal activity proved to

be a decisive feature modality for detecting pronounced hypoglycae-

mia, but appeared to be less informative in detecting mild

hypoglycaemia. Electrodermal activity represents the electrical

response of sweat glands to sympathetic innervation.11 Increased

TABLE 1 Machine learning performance metrics.

Model AUROC AUPRC BACC F1-score MCC Sensitivity Specificity

Pronounced 0.80 ± 0.20 0.80 ± 0.21 0.80 ± 0.17 0.79 ± 0.18 0.61 ± 0.33 0.81 ± 0.21 0.79 ± 0.28

Mild 0.66 ± 0.12 0.67 ± 0.12 0.67 ± 0.08 0.69 ± 0.07 0.36 ± 0.16 0.75 ± 0.16 0.59 ± 0.23

Overall 0.72 ± 0.20 0.72 ± 0.20 0.73 ± 0.17 0.72 ± 0.18 0.47 ± 0.32 0.75 ± 0.23 0.70 ± 0.28

Abbreviations: AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve; BACC, balanced accuracy;

MCC, Matthews correlation coefficient.

2 MARITSCH ET AL.

 1
4

6
3

1
3

2
6

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://d
o

m
-p

u
b

s.p
ericles-p

ro
d

.literatu
m

o
n

lin
e.co

m
/d

o
i/1

0
.1

1
1

1
/d

o
m

.1
5

4
0

2
 b

y
 U

n
iv

ersitätsb
ib

lio
th

ek
 Z

u
erich

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [1
5

/1
2

/2
0

2
3

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



sweating enhances skin conductivity, translating into increased elec-

trodermal activity.12 Therefore, our findings align with the existing lit-

erature, which suggests that the threshold for neurogenic symptoms

(including sweating) is about 3.0 mmol/L.13 The dominance of electro-

dermal activity in the model coefficients persists for overall hypogly-

caemia detection, probably because more participants were

experiencing pronounced hypoglycaemia compared with mild hypo-

glycaemia. However, even when the model training was limited to a

balanced subsample of participants, this pattern persisted.

Strengths include the study setting providing standardized

hypoglycaemia using the gold standard (venous BG). The ML models

are based on data recorded from unobtrusive consumer-grade

devices, rendering our approach readily available. Self-reported

symptom scores in hypoglycaemia were comparably low, emphasiz-

ing the need for alternative hypoglycaemia detection methods. For

evaluating the ML models, we used a leave-one-subject-out

approach, which allows for assessing generalizability of the models

to unseen individuals. Unlike personalized models used in a previous

study,4 this approach offers scalability by eliminating the need to

train individual models for each user. Interpretable ML allows asses-

sing the decision-making across different levels of hypoglycaemia.

We acknowledge that the smaller group size in Study B might have

compromised the performance of mild hypoglycaemia detection.

Our data were collected in standardized, stable glycaemic conditions

during cognitive stress exclusively. Consequently, further research is

needed to determine the exact time point of first hypoglycaemia

detection and to quantify directly the impact of stress on detection

performance. The glycaemic sequence (euglycaemia followed by

hypoglycaemia) may have introduced bias. However, this reflects

glycaemic trajectories in reality. Our dataset was derived from gen-

erally healthy individuals with well-controlled type 1 diabetes, which

limits the generalizability of our results to individuals with comorbid-

ities, hypoglycaemia unawareness, or other diabetes types.

In summary, pronounced hypoglycaemia can be detected using

commercially available wearables even in situations with cognitive

and psychomotor stress, such as driving. However, the proposed

approach is less reliable for milder hypoglycaemia, and additional

research is needed to optimize the corresponding models further.
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