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The SUð2ÞL triplet scalar with hypercharge Y ¼ 0 predicts a positive definite shift in the W mass, with

respect to the Standard Model prediction, if it acquires a vacuum expectation value. As this new field cannot

couple directly to Standard Model fermions (on its own), it has no significant impact on other low-energy

precision observables and is weakly constrained by collider searches. In fact, the multilepton anomalies at

the LHC even point toward new scalars that decay dominantly toW bosons, as the neutral component of the

triplet naturally does. In this article, we show that with a minimal extension of the scalar triplet model by a

heavy vectorlike lepton, being either (I) an SUð2ÞL doublet with Y ¼ −1=2 or (II) an SUð2ÞL triplet with

Y ¼ −1, couplings of the triplet to Standard Model leptons are possible. This minimal extension can then

provide, in addition to the desired positive shift in theW mass, a chirally enhanced contribution to ðg − 2Þμ.
In addition, versions (I) and (II) can improve on Z → μþμ− and alleviate the tension in first-row Cabibbo-

Kobayashi-Maskawa unitarity (known as the Cabibbo angle anomaly), respectively. Finally, both options, in

general, predict sizable changes of h → μþμ−, i.e., much larger than most other ðg − 2Þμ explanations where
only Oð%Þ effects are expected, making this channel a smoking gun signature of our model.

DOI: 10.1103/PhysRevD.108.L031702

I. INTRODUCTION

The Standard Model (SM) of particle physics is the

theory describing the fundamental constituents and inter-

actions of matter according to our current state of knowl-

edge. However, it is clear that it cannot be the ultimate

description of nature. For instance, it cannot account for the

existence of dark matter established at cosmological scales

nor for the nonvanishing neutrino masses required by

neutrino oscillations. Unfortunately, these observations

can be addressed in many different ways and within a very

wide range for the new physics scale. Therefore, in the

absence of confirmed direct signals for new particles, more

information on possible extensions of the SM is thus

necessary to make progress toward a theory superseding

the SM that can be tested at the Large Hadron Collider

(LHC) or next-generation experiments. In this context, we

can use deviations from the SM predictions in low-energy

observables, known as anomalies, as a guide for identifying

promising extensions of the SM, within which one can then

calculate predictions for future verification (or falsification)

of the model. Prominent candidates among these indirect

hints for physics beyond the SM (see e.g. Ref. [1] for a

recent review) are the anomaly in theW-boson mass [2] and

the anomalous magnetic moment of the muon [ðg − 2Þμ] [3]
as well as the deficit in first-row Cabibbo-Kobayashi-

Maskawa (CKM) unitarity, known as the Cabibbo angle

anomaly (CAA) [4]. While in the first observable the CDF II

result is in some tension with LHC measurements [5,6], the

significance of the deviation in ðg − 2Þμ depends on the SM
prediction, where inconsistencies between the data-driven

method [7] and lattice results [8] exist. However, it is still

very interesting and instructive to see which models can
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give sizable effects in these observables. While several

combined new physics explanations of ðg − 2Þμ and the W

mass have been proposed in the literature [9–37], a simple

combined explanation of all three anomalies is still missing

(to the best of our knowledge).

In this article, we aim at constructing a minimal model

that can naturally provide sizable effects in both mW and

ðg − 2Þμ (and possibly explain the CAA) and investigate its
phenomenological consequences. For this, our starting

point is the ΔSM [38–45], where an SUð2ÞL triplet scalar

with hypercharge 0 (Δ) is added to the SM particle content.

Its vacuum expectation value (VEV) violates custodial

symmetry at the tree level via a positive contribution to the

W-boson mass, as suggested by the measurement of the

CDF II measurement [46–55]. Since the neutral component

of the triplet scalar can dominantly decay to pairs of W
bosons, while the decay to Z pairs is suppressed by mixing

with the SM Higgs, this model is well motivated by the

LHC multilepton anomalies [56–60], including the hint for

an enhanced W pair production at the electroweak (EW)

scale [61].

Next, we aim at extending the ΔSM to obtain a sizable

effect in g − 2 of the muon. In fact, there are only two

minimal options that can, as we will show, give rise to

chirally enhanced effects in ðg − 2Þμ (see e.g. Refs. [62–69]
for generic models with chiral enhancement). We can

supplement the ΔSM by a vectorlike lepton

ðIÞ D ∼ ð1; 2;−1=2Þ or ðIIÞ T ∼ ð1; 3;−1Þ;

where the numbers in the bracket denote their representa-

tion under the SM gauge group SUð3ÞC × SUð2ÞL×
Uð1ÞY . The corresponding Feynman diagrams giving the

dominant contribution to g − 2 are shown in Fig. 1.
1

Interestingly, both model versions lead to unavoidable

tree-level effects in the dim-6 operator ðH†HÞðlLHeRÞ [72]
contributing to the muon mass and h→ μþμ− after EW

symmetry breaking. In fact, while most other ðg − 2Þμ
explanations only predict effects of the order of a few

percent [70,73,74], we will see that our model, in general,

predicts much larger effects.

II. MODEL

Our starting point is to add a real scalar SUð2ÞL triplet

with Y ¼ 0 (Δ) to the SM particle content, called the ΔSM.

The most general renormalizable scalar potential involving

SM Higgs H and real triplet Δ reads

V ¼ −μ2HH
†H þ μ2ΔTr½Δ2� þ λ1ðH†HÞ2 þ λ2Tr½Δ4�

þ λ3ðH†HÞTr½Δ2� þ μH†ΔH; ð1Þ

where the scalar fields are defined as

H ¼
 

Hþ

H0

!

; Δ ¼ 1

2

 

Δ0
ffiffiffi

2
p

Δþ
ffiffiffi

2
p

Δ−
−Δ0

!

; ð2Þ

in terms of electric charge eigenstates. The scalar potential

has a global Oð4ÞH ×Oð3ÞΔ symmetry in the limit μ → 0.

Therefore, μ softly breaks this symmetry and is naturally

small. We denote the VEVs as hH0i ¼ v=
ffiffiffi

2
p

and hΔ0i ¼
vΔ, with v2 þ 4v2Δ ≈ ð246 GeVÞ2, and the minimization

conditions are

−μ2H þ λ1v
2
−
1

2
μvΔ þ 1

2
λ3v

2
Δ ¼ 0; ð3Þ

μ2Δ þ 1

2
λ3v

2
−
1

4

μ

vΔ
v2 þ 1

2
λ2v

2
Δ ¼ 0; ð4Þ

which we use to eliminate μ2H and μ2Δ. The scalar mass

matrices, in the basis (Hþ;Δþ) and (Re H0, Re Δ0), are

M2
þ ¼ μ

 

vΔ
v
2

v
2

v2

4vΔ

!

; ð5Þ

M2
0 ¼

 

2λ1v
2 −μ

2
vþ λ3vvΔ

−μ

2
vþ λ3vvΔ

μv2

4vΔ
þ λ2v

2
Δ

!

; ð6Þ

with mass eigenstates

FIG. 1. Leading one-loop effect contribution to ðg − 2Þμ from

the VLL doublet D (triplet T). Note that while the upper diagram
involves μ, the lower diagram is proportional to the VEV of the

SM doublet and therefore in general dominant.

1
Note that contrary to Ref. [70], or the MSSM with R-parity

conservation (see Ref. [71] for a review), we do not impose a
(effective) Z2 symmetry. This extension allows for a more
minimal setup in which only two new fields are needed (instead
of three in Ref. [70]).
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Gþ ¼ −vHþ þ 2vΔΔ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ 4v2Δ
p ; δþ ¼ 2vΔH

þ þ vΔþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ 4v2Δ
p ; ð7Þ

h ¼ cos αReðH0Þ þ sin αReðΔ0Þ; ð8Þ

δ0 ¼ − sin αReðH0Þ þ cos αReðΔ0Þ; ð9Þ

where

sin 2α ¼ μv − 2λ3vvΔ

m2

δ0
−m2

h

: ð10Þ

Note that the massless eigenstate is the Goldstone boson

(G�), eaten up by the W� gauge boson, while the other

combination (δ�) is a physical charged Higgs field. The

field h is to be identified as the SM-like Higgs boson of

mass 125 GeV and in the limit of a small mixing angle α,

the splitting between the charged and neutral component of

the triplet field is m2
δþ −m2

δ0
≃ vΔðμ − λ2vΔÞ; i.e., both

components are nearly degenerate. In the limit vΔ ≪ v

we have vΔ ¼ μv2=ð4m2

δ0
Þ.

As stated in the introduction, the triplet model can be

minimally extended by two different vectorlike leptons

(VLLs) in order to allow for couplings to SM leptons:

(I) an SUð2ÞL doublet with Y ¼ −1=2 (D) with Yukawa

interactions given by

LI
Y ⊃ YI

LD̄RlLΔþ YI
RD̄LeRH þ YID̄LΔDR þ H:c:;

ð11Þ

(II) an SUð2ÞL triplet with Y ¼ −1 (T) with Yukawa

interactions given by

LII
Y ⊃ YII

RTr½T̄LΔ�eR þ YII
LH

†T̄RlL þ YIITr½T̄LΔTR�
þ H:c:; ð12Þ

where l (e) is the SM lepton doublet (singlet) and

the VLL T is defined as

T ¼ 1

2

 

T−
ffiffiffi

2
p

T0

ffiffiffi

2
p

T−−
−T−

!

: ð13Þ

Integrating out the new VLL at the tree level leads to the

following effective interactions:

Leff ¼
jYI

Rj2
2m2

D

ðH†iDμ

↔

HÞðēRγμeRÞ

−
3jYII

Lj2
16m2

T

ðH†iDμ

↔

HÞðlLγμlLÞ

þ jYII
Lj2

16m2
T

ðH†iDa
μ

↔

HÞðlLσaγμlLÞ

−

�ðYI
LÞ�YI

R

mD

þ ðYII
LÞ�YII

R

2mT

�

lLΔHeR; ð14Þ

which, after EW breaking modifies gauge bosons couplings

to leptons, affect Higgs decay to lepton pairs h → l
þ
l
−

and induce couplings of the triplet scalar Δ to leptons.

III. PHENOMENOLOGY

The CDF II Collaboration updated their previous meas-

urement of the W-boson mass, finding MW ¼ 80.4335

ð94Þ GeV, which leads to the new Tevatron average

80.4270(89) GeV when combined with the D0 [2] result.

However, the recent ATLAS update [6] (superseding their

2017 result [75]) of MW ¼ 80.360ð16Þ GeV, as well the

LHCb [5], find significantly smaller values. Together with

LEP [76], a naive average gives MW ¼ 80.406ð7Þ GeV.
Since the consistency of the data is poor (χ2=d:o:f: ¼ 4.3),

we inflate the error to get a conservative estimate
2
of

Mcomb
W ¼ 80.406ð15Þ GeV. Comparing this to the SM

prediction of MSM
W ¼ 80.355ð5Þ GeV [78–85], with mt ¼

172.5ð7Þ GeV [85], we see a discrepancy of 51 MeV, with a

significance of slightly more than 3σ. If instead we disregard

the CDF II result, the data agree well among themselves, and

we find an average ofM
combðw=o CDF IIÞ
W ¼ 80.372ð10Þ GeV,

which would correspond to a discrepancy of 17 MeV with a

significance of below 2σ. In the ΔSM we have

m2
W ¼ g2

4
ðv2 þ 4v2ΔÞ; m2

Z ¼ g2

4 cos θ2W
v2; ð15Þ

which shows that the VEVof the triplet can easily alter theW
mass in the desired direction.

3

2
Note that these averages agree well with the more sophisti-

cated combinations done by HEPfit [77] prior to the ATLAS
update.

3
The triplet scalar Δ also contributes to the oblique param-

eters at one-loop level, parametrized by the singly charged scalar
mþ

δ , the mass difference Δm ¼ mþ
δ −m0

δ , and VEV vΔ. In the
limit vΔ ≪ v, Δm ∼ 0 (required by the perturbative unitarity)
and for mþ

δ > 100 GeV, the one-loop contribution is subdomi-
nant [48,86]. Similarly, the contribution to S and T parameters
from the VLLs is suppressed due to VLL mixing with leptons
and a loop factor, compared to tree-level effect, which is seen in
the very mild to invisible dependence of the MW regions in
Fig. 2 on the VLL couplings.
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Let us start with the tree-level effects induced by the

couplings YII
L and YI

R, which give rise to modifications of

EW gauge bosons couplings to leptons. Here, bothD and T
modify Zμμ couplings, which are constrained from LEP

measurements [87], while T, in addition, modifies the

leptonicW vertex as μ̄γαPLνμW
−

α→ ½1þv2jYII
Lj2=ð16m2

TÞ�×
μ̄γαPLνμW

−

α . Therefore, in case (II), the extraction of CKM

elements is affected by the determination of the Fermi

constant GF from the muon lifetime [88] (dominantly Vud

from beta decays [88]). Furthermore, lepton flavor univer-

sality (LFU) measurements in the charged current (see

Ref. [89] for an overview) receive new physics contribu-

tions. In fact, the CAA, i.e., the deficit in the first row

unitarity relation jVudj2 þ jVusj2 þ jVubj2 ¼ 1 [90–94],

with a significance at the 3σ level [95–98], can be resolved

by the VLL triplet [92,99,100]. Performing a combined

fit using
4

SMELLI v2.4.0 [102,103] (which is built on

FLAVIO v2.5.4 [104,105] for the observable calculations

and Wilson [106] for the renormalization group evolution),

we show the region in parameter space favoured by the

global EW fit, tests of LFU, theW mass and CKM unitarity

in Fig. 2. The best-fit points are

YI
Rv=mD ¼ �0.05; vΔ ¼ 4.5 GeV; ð16Þ

YII
Lv=mT ¼ �0.09; vΔ ¼ 4.8 GeV; ð17Þ

with pulls relative to the SM of 3.1σ and 3.6σ, respectively

(taking into account two degrees of freedom). Note that the

preference for a nonzero coupling YI
R (YII

L) is mainly due to

BrðZ → μþμ−Þ (the CKM unitarity deficit).

For g − 2 of the muon, the experimental value [3,107]

deviates from the SM prediction [108–127], resulting in a

4.2σ tension:

Δaμ½eþe−�WP¼a
exp
μ −aSMμ ½eþe−�¼251ð59Þ×10−11; ð18Þ

according to the White Paper [7]. However, the signifi-

cance crucially depends on the value used for hadronic

vacuum polarization. While eþe− data underlie Eq. (18),

this dispersive approach has been challenged by lattice

QCD [8,128–133], leading to a smaller tension with

experiment. The reason for this mismatch is not under-

stood, and also the recent measurement of eþe− → πþπ−

by CMD-3 [134] differs from previous measurements

[135–140] at a combined level of 5σ. Therefore, in this

article, we consider ourselves agnostic to the exact value

and do not aim for any specific range, merely noting two

possible options in the figure to guide the reader.

Neglecting scalar mixing, which is naturally small given

the preferred range of vΔ, the leading (chirally enhanced)

one-loop contribution to the anomalous magnetic moment

is given by

ΔaIμ ¼
mμvðYI

LÞ�YI
R

64
ffiffiffi

2
p

π2m2
Dðr − 1Þ3

×

�

4rvΔmD

v2
½7þ rðr − 8Þ þ ðrþ 2Þ log r2�

þ YI½1þ rð4 − 5rÞ þ rðrþ 2Þ log r2�
�

; ð19Þ

FIG. 2. Global fit to EW precision data, the W mass, CKM unitarity and tests of LFU, for the case of the VLL doublet (left) and the

triplet (right). The preference for a nonzero coupling YI
R (YII

L) is mainly due to BrðZ → μþμ−Þ (the CKM unitarity deficit). The solid

lines correspond to the conservative average Mcomb
W while the dashed lines use the W mass average without CDF-II.

4
For the complete list of observables included in our global fit,

we refer the interested reader to Ref. [101], to which we added the
tests of LFU Brðτ → eννÞ, Brðτ → μννÞ, Brðπþ → eνÞ, and
BrðKþ

→ eνÞ=BrðKþ
→ μνÞ.
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ΔaIIμ ¼ mμvðYII
LÞ�YII

R

128
ffiffiffi

2
p

π2m2
Tðr − 1Þ3

×

�

4rvΔmT

v2
½−1þ rð8 − 7rÞ þ ð5r − 2Þ log r2�

− 2YIIðr − 1Þ½1 − rþ r log r�
�

; ð20Þ

for the two cases,
5
where r ¼ m2

δ0
=m2

D;T for the doublet and

triplet case, respectively. The dominant modification of

h→ μþμ− arises already at tree level resulting in

Brðh→ μμÞ
Brðh → μμÞSM ¼

�

�

�

�

1þ vvΔYLYR

N
ffiffiffi

2
p

mμmψ

�

�

�

�

2

; ð21Þ

where mψ ¼ mD or mT and N ¼ 1 or 2 for the doublet or

triplet VLL cases, respectively. The average of the ATLAS

[142] and CMS [143] measurements is

Brðh→ μμÞ
Brðh → μμÞSM ¼ 1.21þ0.36

−0.34 ; ð22Þ

while a precision of around 10% is expected at the HL-LHC

with an integrated luminosity of 3000 fb−1 [144].

Concerning direct LHC bounds, the lower limits on the

masses of VLLs which are triplets or doublets of SUð2ÞL are

around 700 GeV for third-generation VLLs [145], meaning

that we expect somehow stronger limits for second-

generation VLLs and to be conservative we will set the

mass to 2 TeV. Furthermore, since the VLLs induce

couplings of the triplet to muons and muon neutrinos, to

a good approximation, the bounds on slepton searches in the

limit of a vanishing neutralino mass apply for the mass of the

scalar triplet, which are as well around 700 GeV [146].

Taking into account these constraints, in Fig. 3 we predict

Brðh→ μþμ−Þ as a function of ðg − 2Þμ andMW . Note that

Δaμ can be as large as 250 × 10−11 while at the same time

providing a sizable effect in MW . It is important to note that

the numerical value of the loop function entering ðg − 2Þμ is
larger in model (II) than in model (I). Therefore, in model (II)

one can obtain a sizable effect with smaller couplings YL;R

which leads to the small effects in h→ μμ compared to

model (I), as well as to bounds from the perturbativity of YI
L

[if YI
R is fixed to the best-fit value in Eq. (16)].

IV. CONCLUSIONS

In this article, we proposed (two versions of) a minimal

model obtained by extending the SM with a scalar triplet

with hypercharge 0 and a vectorlike lepton, that is, (I) an

SUð2ÞL doublet with Y ¼ −1=2 or (II) SUð2ÞL triplet with

Y ¼ −1. This model can

(i) provide naturally a positive definite shift in the W
mass of the size suggested by the current tension;

(ii) give a sizable effect in g − 2 of the muon; and

(iii) improve on Z → μþμ− in case (I) or explain the

CAA in case (II).

For both model versions, effects in h→ μþμ− of the order

of 10% [while most other models on the market only

generate Oð%Þ effects], as well as μþμ− plus missing

energy signatures at the LHC, are predicted.
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[129] M. Cè et al., Window observable for the hadronic vacuum

polarization contribution to the muon g − 2 from lattice

QCD, Phys. Rev. D 106, 114502 (2022).

[130] C. Alexandrou et al. (Extended Twisted Mass Collabora-

tion), Lattice calculation of the short and intermediate

time-distance hadronic vacuum polarization contributions

to the muon magnetic moment using twisted-mass fer-

mions, Phys. Rev. D 107, 074506 (2023).

[131] A. Bazavov et al., Light-quark connected intermediate-

window contributions to the muon g − 2 hadronic vacuum

polarization from lattice QCD, Phys. Rev. D 107, 114514

(2023).

[132] T. Blum et al., An update of Euclidean windows of the

hadronic vacuum polarization, arXiv:2301.08696.

[133] G. Colangelo, A. X. El-Khadra, M. Hoferichter, A.

Keshavarzi, C. Lehner, P. Stoffer, and T. Teubner, Data-

driven evaluations of Euclidean windows to scrutinize

hadronic vacuum polarization, Phys. Lett. B 833, 137313

(2022).

[134] F. V. Ignatov et al. (CMD-3 Collaboration), Measurement

of the eþe− → πþπ− cross section from threshold to

1.2 GeV with the CMD-3 detector, arXiv:2302.08834.

[135] R. R. Akhmetshin et al. (CMD-2 Collaboration), High-

statistics measurement of the pion form factor in the

rho-meson energy range with the CMD-2 detector, Phys.

Lett. B 648, 28 (2007).

[136] M. N. Achasov et al., Update of the eþe− → πþπ− cross-

section measured by SND detector in the energy region

400 <
ffiffiffi

s
p

< 1000-MeV, J. Exp. Theor. Phys. 103, 380

(2006).

[137] J. P. Lees et al. (BABAR Collaboration), Precise measure-

ment of the eþe− → πþπ−ðγÞ cross section with the

MINIMAL MODEL FOR THE W-BOSON MASS, … PHYS. REV. D 108, L031702 (2023)

L031702-9



initial-state radiation method at BABAR, Phys. Rev. D 86,

032013 (2012).

[138] A. Anastasi et al. (KLOE-2 Collaboration), Combination of

KLOE σðeþe− → πþπ−γðγÞÞ measurements and determi-

nation of aπ
þπ−

μ in the energy range 0.10 < s < 0.95 GeV2,

J. High Energy Phys. 03 (2018) 173.

[139] M. Ablikim et al. (BESIII Collaboration), Measurement of

the eþe− → πþπ− cross section between 600 and

900 MeV using initial state radiation, Phys. Lett. B 753,

629 (2016); 812, 135982(E) (2021).

[140] M. N. Achasov et al. (SND Collaboration), Measurement of

the eþe− → πþπ− process cross section with the SND

detector at the VEPP-2000 collider in the energy region

0.525 <
ffiffiffi

s
p

< 0.883 GeV, J. High Energy Phys. 01 (2021)

113.

[141] A. Carmona, A. Lazopoulos, P. Olgoso, and J. Santiago,

Matchmakereft: Automated tree-level and one-loop match-

ing, SciPost Phys. 12, 198 (2022).

[142] G. Aad et al. (ATLAS Collaboration), A search for

the dimuon decay of the standard model Higgs boson

with the ATLAS detector, Phys. Lett. B 812, 135980

(2021).

[143] A. M. Sirunyan et al. (CMS Collaboration), Evidence for

Higgs boson decay to a pair of muons, J. High Energy

Phys. 01 (2021) 148.

[144] M. Cepeda et al., Report from working group 2: Higgs

physics at the HL-LHC and HE-LHC, CERN Yellow Rep.

Monogr. 7, 221 (2019).

[145] A. M. Sirunyan et al. (CMS Collaboration), Search for

vector-like leptons in multilepton final states in proton-

proton collisions at
ffiffiffi

s
p ¼ 13 TeV, Phys. Rev. D 100,

052003 (2019).

[146] CMS Collaboration, Combined search for electroweak

production of winos, binos, Higgsinos, and sleptons

in proton-proton collisions at
ffiffiffi

s
p ¼ 13 TeV (to be

published).

CRIVELLIN, KIRK, and THAPA PHYS. REV. D 108, L031702 (2023)

L031702-10


