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1 Introduction

Heavy-quark pair production is one of the classic hard-scattering processes at hadron col-

liders. For a sufficiently-heavy quark, the cross section is perturbatively computable as an

expansion in the QCD coupling αS(µ2
R) where the renormalisation scale µR is of the order

of the mass m of the heavy quark. A large variety of QCD studies of heavy-quark hadropro-

duction have been carried out over the years. In this context top-quark pair production

plays a special role: being the heaviest particle in the Standard Model, the top quark cou-

ples strongly to the Higgs boson and is therefore particularly relevant for the mechanism of

electroweak symmetry breaking. As such, top-quark pair production is especially relevant

in searches for physics beyond the Standard Model, it constitutes a possible window on

new physics and, at the same time, a crucial background in many analyses. Bottom and

charm quark production have also been extensively studied at hadron colliders, and allow

us to probe QCD at smaller energy scales.
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For the above reasons, the study of the hadroproduction of a heavy-quark pair has

attracted the attention and the efforts of the theoretical community for decades. Next-to-

leading order (NLO) QCD corrections to this process have been available since a long time,

both for the total cross section and for differential distributions [1–5]. Nevertheless, because

of the challenging complications arising at the next order in the perturbative expansion,

more than 20 years passed before next-to-next-to-leading order (NNLO) QCD corrections

for top-quark pair production were also computed [6–13]. Further progress regards the

combination of QCD and EW corrections [14] and the inclusion of top-quark decays [15].

Results by using the MS scheme for the renormalisation of the top-quark mass are also

available [16, 17]. More recently, the NNLO calculation of refs. [12, 13] has been extended

to bottom-quark pair production [18].

One of the two available NNLO computations for heavy-quark production [12, 13,

17, 18] is based on the qT subtraction formalism [19]. The qT subtraction formalism is a

method to handle and cancel the IR divergences in QCD computations at NLO, NNLO and

beyond. The method uses IR subtraction counterterms that are constructed by evaluating

the qT distribution of the produced final-state system in the limit qT → 0. If the produced

final-state system is composed of colourless particles (such as vector bosons, Higgs bosons,

and so forth), the behaviour of the qT distribution in the limit qT → 0 has a universal

structure that is explicitly known to the next-to-next-to-next-to leading order (N3LO)

through the formalism of transverse-momentum resummation [20–24]. In refs. [25–27] the

resummation formalism has been extended to the production of final states containing a

heavy-quark pair. Other recent studies on transverse-momentum resummation for heavy-

quark observables can be found in refs. [28–30]. The heavy quarks do not lead to additional

collinear singularities (which are absent because of the finite heavy-quark mass) but, being

coloured, they lead to additional soft singularities that need to be properly taken into

account. The NNLO computations of refs. [12, 13, 17, 18] rely on the explicit evaluation

of such soft-parton contributions due to the coloured massive quarks.

The purpose of this paper is to report on the details of the computation of such soft-

parton terms. The final numerical results can be obtained by using the program provided as

Supplementary Material of the paper.1 Our calculation is performed within the transverse-

momentum resummation formalism of ref. [27]. A similar computation, carried out within

the framework of Soft Collinear Effective Theory (SCET) used in refs. [25, 26], has been

presented in ref. [34].

We note that our formalism can be extended to the production of a heavy-quark

pair accompanied by colourless particles [35]. Such extension has been recently applied

to the evaluation of NNLO corrections to tt̄H [36] and Wbb̄ [37] production. In this

paper, however, we will limit ourselves to the case of heavy-quark production, i.e., with no

additional colourless particles. The soft-parton contributions relevant for the production

of a heavy-quark pair and a colourless system will be documented elsewhere.

The paper is organised as follows. In section 2 we review the resummation formalism for

1The soft-parton contributions evaluated in this work also enter the MiNNLOPS formalism for the

matching of NNLO calculations to parton showers for heavy-quark production [31–33].
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heavy-quark production and we discuss the soft-parton contributions we want to compute.

In section 3 we illustrate our calculation, starting from single-gluon emission at tree level in

section 3.2, then going to single-gluon emission at one loop in section 3.3, soft qq̄ emission

in section 3.4 and double-gluon emission in section 3.5. Our numerical implementation and

final results are presented in section 4. In section 5 we summarise our findings.

2 Heavy-quark production at low transverse momentum

2.1 Resummation formalism for heavy-quark production

We consider the inclusive hard-scattering process

h1(P1)+h2(P2) →Q(p3)+Q̄(p4)+X (2.1)

where the collision of the two hadrons h1 and h2 with momenta P1 and P2 produces

the heavy-quark pair QQ̄, and X denotes the accompanying final-state radiation. The

heavy quarks have four-momenta p3 and p4, total momentum q= p3+p4, invariant mass

M2 = q2 and total transverse momentum ~qT = ~p3,T +~p4,T . The rapidity of the QQ̄ pair

is y= 1/2ln(q ·P2/q ·P1). The knowledge of M , y and ~qT completely specifies the total

momentum q of the heavy-quark pair. The kinematics of the observed heavy quarks is fully

determined by q and two additional independent kinematical variables, that we denote by
~Ω. For example, we can choose ~Ω = {y3,φ3}, where y3 and φ3 are the rapidity and the

azimuthal angle of the heavy quark Q.

The hadronic cross section corresponding to eq. (2.1) can be computed by convoluting

partonic cross sections with parton distribution functions fa/h(x,µ2
F ) (a= q, q̄,g denotes

the massless partons) of the colliding hadrons. The partonic cross sections can be com-

puted in QCD perturbation theory. At the leading order (LO) only two partonic processes

contribute: quark-antiquark annihilation qq̄→QQ̄ and gluon fusion gg→QQ̄. For both

processes the ~qT dependence of the cross section at LO is simply proportional to δ(2)(~qT ),

since no radiation is emitted at this perturbative order. At higher perturbative orders the

partonic cross section in the limit qT → 0 receives large logarithmic contributions of the

form αn+2
S

1
q2

T

lnk(M2/q2
T ) (k≤ 2n−1) that need be resummed to all orders. The resumma-

tion is customarily carried out in impact parameter (~b) space, to factorise the kinematics

of multiple parton emission.

The all-order structure of the logarithmically enhanced contributions can be written

as [27]

dσ(P1,P2; ~qT ,M,y, ~Ω)

d2~qT dM2 dyd~Ω
=

M2

2P1 ·P2

∑

c=q,q̄,g

[
dσ

(0)
cc̄

]∫ d2~b

(2π)2
ei~b·~qTSc(M,b)

×
∑

a1,a2

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
[(H∆)C1C2]cc̄;a1a2fa1/h1

(x1/z1, b
2
0/b

2)fa2/h2
(x2/z2, b

2
0/b

2) , (2.2)

where b0 = 2e−γE (γE = 0.5772 . . . . is the Euler number) and the kinematic variables x1 and

x2 are defined as

x1,2 =
M√

2P1 ·P2
e±y . (2.3)

– 3 –
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The symbol
[
dσ

(0)
cc̄

]
is related to the LO cross section dσ̂

(0)

cc̄→QQ̄
for the partonic process

c(p1)+c̄(p2) →Q(p3)+Q̄(p4), c= q, q̄,g (2.4)

with pi =xiPi (i= 1,2), and we have

[
dσ

(0)
cc̄

]
=α2

S(M2)
dσ̂

(0)

cc̄→QQ̄

M2d~Ω
. (2.5)

We briefly recall the perturbative ingredients entering the resummation formula in eq. (2.2)

(more details can be found in ref. [27]). The formula contains process-dependent and

process-independent contributions. The functions Ci include the contribution of radiation

collinear to the initial-state partons at small momentum scales q. 1/b, while the Sudakov

form factor Sc accounts for soft and flavour-conserving collinear emissions at scales 1/b.

q.M . Since they are originated by the spin- and qT -dependent collinear splitting kernels,

the functions Ci feature also a dependence on the azimuthal degree of freedom of ~b. All

the information on the process-dependent corrections is embodied in the term H∆, while

the collinear functions Ci and the Sudakov form factor Sc are universal. The radiative

factor ∆ is specific of heavy-quark pair production and is due to soft radiation from the

QQ̄ final state and from the initial-state and final-state interference. It depends on the

invariant mass M2, on the kinematics of the partonic process in eq. (2.4) and on the impact

parameter ~b. The azimuthal dependence can be specified through the angle φ=φ3−φb,

where φ3 and φb are the azimuthal angles of ~p3,T and ~b, respectively. The hard-virtual term

H, which embodies virtual contributions at scale q∼M , depends on the all-loop scattering

amplitude Mcc̄→QQ̄ for the partonic process cc̄→QQ̄.

The explicit form of the term H∆ is

(H∆)cc̄ =
〈M̃cc̄→QQ̄|∆|M̃cc̄→QQ̄〉

α2
S(M2)

∣∣∣M(0)

cc̄→QQ̄

∣∣∣
2 . (2.6)

The symbol M(0)

cc̄→QQ̄
denotes the Born-level amplitude, while M̃cc̄→QQ̄ represents the all-

loop renormalised amplitude after subtraction of the IR singularities (see eq. (2.16)). The

amplitude |M̃cc̄→QQ̄〉 is a vector in the colour space of {c, c̄,Q,Q̄} and ∆ is a colour-space

operator. In the gluon fusion channel (c= g), the Lorentz (spin) indices of M̃ in eq. (2.6)

are properly summed with the corresponding indices of the gluon collinear functions Ci

(see eqs. (11) and (13) in ref. [27]).

The action of the colour factor ∆ is expressed in terms of the operators2
D and V [27]

∆(~b,M) = V
†(b,M)D(φ,αS(b2

0/b
2))V(b,M) . (2.7)

The evolution factor V resums logarithmic terms αn
S(M2) lnk(M2b2) (with k≤n). It is

obtained by the exponentiation of the integral of the anomalous dimension matrix Γt,

2Here and in the following, the additional dependence on the rapidity difference y34 = y3−y4 is left

understood.
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which is specific of transverse-momentum resummation for QQ production

V(b,M) =P q exp

(
−
∫ M2

b2
0/b2

dq2

q2
Γt(αS(q2))

)
. (2.8)

The symbol P q in eq. (2.8) denotes the anti path-ordering of the exponential matrix with

respect to the integration variable q2.

The soft-parton factor D in eq. (2.7) embodies the azimuthal correlations produced by

the soft radiation and it is defined [27] in such a way that it gives a trivial contribution

after integration over the azimuthal angle. We have

〈D(φ,αS)〉av. = 1 , (2.9)

where the symbol 〈. . .〉av. denotes the average with respect to the azimuthal angle φ.

The explicit expressions of the factor H∆ up to O(αS) and of the anomalous dimension

Γt up to O(α2
S) are given in ref. [27].3 In this paper we present a general discussion of

the resummation factor H∆ and of its detailed origin and dependence on soft-parton

contributions. Moreover we explicitly compute H∆ up to O(α2
S). This O(α2

S) result is

also relevant in the context of the QCD computation of heavy-quark production at NNLO.

Indeed, as recalled below, it permits the NNLO implementation of the qT subtraction

formalism for this production process.

Within the qT -subtraction formalism, the NNLO differential cross section dσQQ
NNLO of

the process in eq. (2.1) is split into a part with qT = 0 and one with qT 6= 0

dσQQ
NNLO = dσQQ

NNLO

∣∣
qT =0

+dσQQ
NNLO

∣∣
qT 6=0

. (2.10)

Since at the Born level the final state QQ has qT = 0, the NNLO contributions at qT 6= 0

are actually given by NLO contributions for the final state QQ+jets

dσQQ
NNLO

∣∣
qT 6=0

= dσQQ+jets
NLO . (2.11)

At NNLO, we can hence handle the IR divergences of the qT 6= 0 part with the available

NLO techniques. By doing so, we are nevertheless left with additional singularities of purely

NNLO origin connected to the limit qT → 0, for which we need an additional subtraction.

Following this strategy, we write the cross section as [19]

dσQQ
NNLO = HQQ

NNLO⊗dσQQ
LO +

[
dσQQ+jets

NLO −dσCT
NNLO

]
. (2.12)

The cancellation of the extra singularities of NNLO type is performed by introducing the

counterterm dσCT
NNLO, while the coefficient HQQ

NNLO embodies the information on the virtual

corrections to the process and contains the qT = 0 contribution.

3The explicit expressions of the corresponding resummation coefficients for the production of an arbitrary

number of heavy quarks accompanied by a colourless system is reported in ref. [35]. Note that the expression

of the first-order contribution D
(1) to D therein is mistyped. The correct expression is obtained by replacing

b̂ → −b̂ in eqs. (25) and (26).

– 5 –
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The counterterm dσCT
NNLO needs to capture the singular behaviour of the amplitude in

the limit qT → 0 and it can been derived by using the knowledge on the low transverse-

momentum spectrum. In particular, it can be obtained from the NNLO perturbative

expansion of the logarithmically-enhanced contributions of the resummation formula in

eq. (2.2). It depends [38] on the resummation coefficients that already appear in the case

of a colourless final state, on the additional QQ̄ resummation coefficients at O(αS) and on

the anomalous dimension Γt at O(α2
S).

The coefficient HQQ
NNLO contains the virtual corrections to the process in eq. (2.4) and

contributions that compensate for the subtraction of the counterterm dσCT
NNLO. It is defined

as the NNLO truncation of the following perturbative series

HQQ = 1+
αS

π
HQQ(1)+

(
αS

π

)2

HQQ(2)+. . . (2.13)

where HQQ can be expressed [12, 35, 38] in terms of the functions that we just introduced

in the context of qT resummation. We have

HQQ = 〈(HD)C1C2〉av. , (2.14)

where the average is over the azimuthal angle φ, which appears [27] both in the factor D

and through the functions Ci in the gluon channel. Analogously to eq. (2.6), the explicit

form of the term HD reads

(HD)cc̄ =
〈M̃cc̄→QQ̄|D|M̃cc̄→QQ̄〉

α2
S(M2)

∣∣∣M(0)

cc̄→QQ̄

∣∣∣
2 . (2.15)

The second-order coefficient HQQ(2) can be computed with the results presented in this

paper.

2.2 Soft contributions

In our computation we regularise both ultraviolet and IR divergences by using conventional

dimensional regularisation in D= 4−2ǫ space-time dimensions (see, e.g., ref. [39]). The

SU(Nc) QCD colour factors are CF = (N2
c −1)/(2Nc), CA =Nc, TR = 1/2 and we use Cc =

CF if c= q and Cc =CA if c= g. We consider nf flavours of massless quarks in addition to

the heavy quark Q. The QCD running coupling αS(µ2
R) =α

(nf )
S (µ2

R) is introduced through

MS renormalisation at the scale µR and decoupling of the heavy quark [39].

We start our discussion by considering the finite part M̃cc̄→QQ̄ of the all-order virtual

amplitude Mcc̄→QQ̄, which is defined through the relation [27]

|M̃cc̄→QQ̄〉 =
[
1−Ĩcc̄→QQ̄

]
|Mcc̄→QQ̄〉 , (2.16)

where the subtraction operator Ĩcc̄→QQ̄ in colour space has the following expansion

Ĩcc̄→QQ̄(αS(M2), ǫ;{pi}) =
∞∑

n=1

(
αS(µ2

R)

2π

)n

Ĩ
(n)

cc̄→QQ̄
(ǫ,M2/µ2

R;{pi}) . (2.17)

– 6 –
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It is useful to introduce the subtraction operator in the simpler case in which a colourless

system F with invariant mass M is produced. In this case we can write [40]

|M̃cc̄→F 〉 =
[
1−Ĩc

]
|Mcc̄→F 〉 , (2.18)

where the subtraction operator Ĩc(αS(M2), ǫ) is now a c-number, and it can be pertur-

batively expanded as in eq. (2.17). The explicit expression of the first two perturbative

coefficients Ĩ
(1)
c (ǫ,M2/µ2

R) and Ĩ
(2)
c (ǫ,M2/µ2

R) can be found in ref. [40]. We note that Ĩc

depends on the initial-state parton c, but it is completely independent of the produced

colourless system F . For later convenience we also define Vc as follows

Vc = ln(1−Ĩc) , (2.19)

and we write its decomposition in IR divergent and IR finite components

Vc =V sing
c +V fin

c . (2.20)

The term V sing
c , which includes the complete IR divergent contributions to Vc, is a per-

turbative series in powers of αS(M2) and the corresponding perturbative coefficients are

proportional to ǫ poles, with no additional ǫ dependence. The remaining ǫ dependence

of Vc is entirely embodied in V fin
c , which is finite in the limit ǫ→ 0. The all-order virtual

amplitude Mcc̄→F has IR divergent contributions that are cancelled by Ĩc, and M̃cc̄→F in

eq. (2.18) is IR finite in the limit ǫ→ 0.

Comparing the transverse-momentum resummation formula in eq. (2.2) with the cor-

responding formula for the production of a colourless system F [40], we recall [27] that

the factor 〈M̃cc̄→QQ̄|∆|M̃cc̄→QQ̄〉 in eq. (2.6) is analogous to the factor |M̃cc̄→F |2 for F

production and, therefore, we can introduce the following master formula4

〈M̃|∆|M̃〉 =
[
〈M|eV ∗

c e2Fex(~b)eVc |M〉
]

ǫ=0
, (2.21)

where we have written 1−Ĩc = eVc , according to eq. (2.19). The term Ĩc in eq. (2.18) is due

to real emission contributions to the underlying partonic process cc̄→F . More precisely,

Ĩc is produced by radiation of final-state partons that are either soft or collinear to the

colliding partons c and c̄ [40]. In the case of QQ̄ production, the underlying partonic process

is cc̄→QQ̄, and the produced Q and Q̄ act as extra source of soft-parton radiation, while

the accompanying initial-state collinear radiation is the same as for F production. The

amount of extra soft radiation due to Q and Q̄ is embodied by the factor e2Fex in the

right-hand side of eq. (2.21). This factor is the result of the integration of the soft-emission

contributions after factorisation of the initial-state emission, which is taken into account

by the factor eVc . We note that Fex is a colour space operator, which depends on the colour

charges of the partons c, c̄,Q,Q̄.

The real-emission factor eV ∗
c e2Fex(~b)eVc in eq. (2.21) is IR divergent, and it cancels the

IR divergences of the virtual amplitude M. This cancellation mechanism and the ensuing

4For convenience, here and in the following the amplitudes Mcc̄→QQ̄ and M̃cc̄→QQ̄ are denoted as M

and M̃, by removing the subscript cc̄ → QQ̄.

– 7 –
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structure of the IR-finite terms ∆ and M̃ are discussed in the remaining part of this

section.

The structure of the IR singular contributions in QCD amplitudes with massive partons

is discussed in refs. [41–45]. The IR singularities of the amplitude M in eq. (2.21) are

factorised in the IR divergent operator Z [45] that permits to write the IR-finite remainder

Mfin of the amplitude as follows

|Mfin(µIR)〉 = Z
−1(µIR) |M〉 . (2.22)

Both Z(µIR) and Mfin(µIR) depend on the arbitrary subtraction scale µIR. The operator

Z(µIR) is a perturbative series in powers of αS(µ2
IR) and the corresponding perturbative

coefficients are proportional to ǫ poles, with no additional ǫ dependence. Unless otherwise

stated we will use µIR =M .

We write the operator Z as follows

Z(M) = ZexZc(M) , (2.23)

where the factor Zc(M) embodies the IR divergences due to the initial-state partons c and

c̄, while Zex includes the additional IR divergences due to soft wide-angle radiation from

the colour-charged heavy quarks. Therefore Zc(M) is the IR divergent operator of the

amplitude Mcc̄→F in eq. (2.18), and we also have

Zc(M) = e−V sing
c , (2.24)

since the real-emission factor eVc in eq. (2.18) cancels the virtual IR divergences of Mcc̄→F .

The operator Zex can be obtained by exponentiation of the integral of the subtracted soft

anomalous dimension Γsub introduced in ref. [27]. We have

Zex(M) =P q exp

{
−1

2

∫ M2

0

dq2

q2
Γsub(αS(q2))

}
, (2.25)

where αS(q2) is the renormalised QCD coupling in D= 4−2ǫ dimensions and the pertur-

bative expansion of Γsub is

Γsub =
αS

2π
Γ

(1)
sub+

(
αS

2π

)2

Γ
(2)
sub+O(α3

S) . (2.26)

The explicit scale dependence of αS is

αS(q2) =αS(µ2)

(
µ2

q2

)ǫ[
1−β0

ǫ
αS(µ2)

(
1−
(
µ2

q2

)ǫ)
+O(α2

S)

]
(2.27)

where β0 is the first coefficient of the QCD beta function

12πβ0 = 11CA−2nf . (2.28)

Using eq. (2.27), the operator Zex in eq. (2.25) can be written as

Zex(M) = e−Vex(M2) , (2.29)
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where the explicit expression of Vex up to O(α2
S) reads

Vex(M2) =
αS(M2)

2π

(
− 1

2ǫ
Γ

(1)
sub

)
+

(
αS(M2)

2π

)2(
1

ǫ2
πβ0

2
Γ

(1)
sub− 1

ǫ

1

4
Γ

(2)
sub

)
+O(α3

S) . (2.30)

We note that the anti-path ordered operator P̄q in eq. (2.25) is irrelevant to evaluate Zex

up to O(α2
S).

Using eqs. (2.22)–(2.24) in the right-hand side of eq. (2.21) we see that the colourless

subtraction operator Vc only cancels the IR singularities of M that originate from the

initial-state emission factor Zc(M). The virtual IR divergences in Zex are removed by the

IR divergences in Fex, as discussed in the following. The perturbative expansion of Fex(~b)

can be written as

Fex(~b) =
α0

2π
Sǫ

(
b2µ2

0

b2
0

)ǫ

Fex,1 (φ)+

(
α0

2π
Sǫ

)2
(
b2µ2

0

b2
0

)2ǫ

Fex,2 (φ)+O(α3
0) , (2.31)

where α0 denotes the unrenormalised QCD coupling. In our calculation of Fex(~b), the

renormalisation of the coupling constant is taken into account by using the MS scheme:

the running coupling αS is related to the bare coupling α0 via the relation

α0µ
2ǫ
0 Sǫ =αS(µ2

R)µ2ǫ
R

(
1−αS(µ2

R)
β0

ǫ
+O(α2

S)

)
, (2.32)

where5 β0 is given in eq. (2.28) and

Sǫ = (4π)ǫe−ǫγE (2.33)

is the customary D-dimensional spherical factor. We note that the operator Fex(~b) fulfils

the relation F
†
ex(~b) = Fex(−~b). We also point out that, while the function Fex(~b) depends

on the vector ~b, the dependence on b in eq. (2.31) is fully embodied in the prefactors b2nǫ

and, therefore, the perturbative coefficients Fex,n(φ) only depend on the azimuthal degree

of freedom φ of ~b. In the following, this dependence is left understood. Each perturbative

coefficient can also be expanded in ǫ as follows

Fex,1 =
1

ǫ
F

(−1)
ex,1 +F

(0)
ex,1+ǫF

(1)
ex,1+. . . , (2.34)

Fex,2 =
1

ǫ2
F

(−2)
ex,2 +

1

ǫ
F

(−1)
ex,2 +F

(0)
ex,2+. . . . (2.35)

The poles in eqs. (2.34) and (2.35) are due to the soft singularities of the real-emission

contributions and, as previously mentioned, they have to cancel the virtual IR divergences

due to the factor Zex in eq. (2.21). The cancellation of IR divergences leads to relations

between the coefficients F
(k)
ex,n in eqs. (2.34), (2.35) and the coefficients Γ

(n)
sub of the ǫ pole

contributions in eqs. (2.29), (2.30). We find the following relations

F
(−1)
ex,1 = −1

4

(
Γ

(1)
sub+h.c.

)
, (2.36)

F
(−2)
ex,2 =πβ0F

(−1)
ex,1 +

1

8

[(
Γ

(1)
sub−h.c.

)
,F

(−1)
ex,1

]
, (2.37)

F
(−1)
ex,2 = −1

8

(
Γ

(2)
sub+h.c.

)
+2πβ0F

(0)
ex,1+

1

4

[(
Γ

(1)
sub−h.c.

)
,F

(0)
ex,1

]
. (2.38)

5At the end of section 3.3 we comment on the contribution to Fex(~b) of heavy-quark loops.
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The explicit calculation of Fex is presented in section 3. We have verified that eqs. (2.36)–

(2.38) are fulfilled by our final result for Fex, which is an important cross-check of our

computation.

We can now consider the master formula in eq. (2.21), implement the cancellation of

the real and virtual IR divergences and derive the expressions of ∆ and M̃. We write

〈M̃|∆|M̃〉 =
[
〈Mfin|e−V†

ex(M2)e−V sing∗
c eV ∗

c e2Fex(~b)eVce−V sing
c e−Vex(M2) |Mfin〉

]
ǫ=0

=
[
〈Mfin|eV fin∗

c e−V†
ex(M2)e2Fex(~b)e−Vex(M2)eV fin

c |Mfin〉
]

ǫ=0

=
[
〈Mfin|eV fin∗

c V
†
sub(b,M)e−V†

ex(b2
0/b2)e2Fex(~b)e−Vex(b2

0/b2)
Vsub(b,M)eV fin

c |Mfin〉
]

ǫ=0
.

(2.39)

In the first line of eq. (2.39) we have used eqs. (2.22), (2.23), (2.24) and (2.29). In the

second line we have used eq. (2.20), and the fact that Vc is a c-number that commutes with

the other operators in colour space. In the third line we have introduced the evolution

operator Vsub, defined by the following relation:

e−Vex(M2) = e−Vex(b2
0/b2)P̄q exp

(
−1

2

∫ M2

b2
0/b2

dq2

q2
Γsub(αS(q2))

)

≡ e−Vex(b2
0/b2)

Vsub(b,M) . (2.40)

The IR poles in the third line of eq. (2.39) are fully contained in the individual factors of the

operator e−V†
ex(b2

0/b2)e2Fex(~b)e−Vex(b2
0/b2). Their cancellation takes place at the operator level

after combining the exponential functions together, and it is guaranteed by the relations

between Fex and Γsub that are reported in eqs. (2.36) and (2.38). Therefore we can safely

perform the limit ǫ→ 0 and we obtain a finite reminder that, for later convenience, we

define as follows

lim
ǫ→0

(
e−V†

ex(b2
0/b2)e2Fex(~b)e−Vex(b2

0/b2)
)

= K
†(−~b)K(~b) , (2.41)

where we also used the relation F
†
ex(~b) = Fex(−~b).

To recast eqs. (2.39) and (2.41) in the form of eqs. (2.6) and (2.7) we isolate the

azimuthal dependence of K
†(−~b)K(~b) in a factor with azimuthal average equal to unity,

thus identifying the operator D(φ,αS). We write

K
†(−~b)K(~b) = h(αS(b2

0/b
2))D(φ,αS)h(αS(b2

0/b
2)) , (2.42)

with

h
†(αS(b2

0/b
2)) = h(αS(b2

0/b
2)) , (2.43)

〈D(φ,αS)〉av. = 1 . (2.44)

The expressions for the colour operators h and D can be trivially obtained from K as

follows

(h(αS(b2
0/b

2))2 = 〈K†(−~b)K(~b)〉av. , (2.45)

D(φ,αS(b2
0/b

2)) = h
−1(αS(b2

0/b
2))
(
K

†(−~b)K(~b)
)

h
−1(αS(b2

0/b
2)) . (2.46)
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In terms of Fex and Γsub they read

h(αS) = 1+
αS

2π
〈F(0)

ex,1〉
av.

+

(
αS

2π

)2{
〈(F(0)

ex,1)2〉
av.

− 1

2

(
〈F(0)

ex,1〉
av.

)2

+〈F(0)
ex,2〉

av.
−2πβ0 〈F(1)

ex,1〉
av.

− 1

4

[(
Γ

(1)
sub−h.c.

)
,〈F(1)

ex,1〉av.

]}
+O(α3

S) , (2.47)

D(φ,αS) = 1+2
αS

2π

(
F

(0)
ex,1

)
cor

+2

(
αS

2π

)2{(
F

(0)
ex,2−2πβ0F

(1)
ex,1− 1

4

[(
Γ

(1)
sub−h.c.

)
,F

(1)
ex,1

])

cor

+
(
(F

(0)
ex,1)2

)
cor

−〈F(0)
ex,1〉

av.

(
F

(0)
ex,1

)
cor

−
(
F

(0)
ex,1

)
cor

〈F(0)
ex,1〉

av.

}
+O(α3

S) , (2.48)

where, to keep the notation compact, we have defined the azimuthal correlation (f)cor of

an operator f as

(f)cor = f−〈f〉av. . (2.49)

In the operator h of eq. (2.42) the scale of αS is b2
0/b

2. The scale in h can be evolved up to

the hard scale M2 by using the operator Vsub of eq. (2.40) and by introducing the operator

V of eq. (2.8) through the following relation

V(b,M) = h(αS(b2
0/b

2))Vsub(b,M)h−1(αS(M2)) . (2.50)

From here we also obtain the relation between the anomalous dimensions Γt and Γsub in

eqs. (2.8) and (2.40). Computing the logarithmic derivative of eq. (2.50) with respect to

M2 we find

Γt(αS) =
1

2
h(αS)Γsub(αS)h−1(αS)+β(αS)

dh(αS)

d lnαS
h

−1(αS) , (2.51)

where we have introduced the QCD β function

β(αS(q2)) =
d lnαS(q2)

d lnq2
= −

∞∑

k=1

βk−1α
k
S(q2) , (2.52)

with β0 given in eq. (2.28). At O(α2
S) eq. (2.51) is eq. (40) of ref. [27] with the identification

F
(1)
t = 2〈F(0)

ex,1〉
av.

.

We can collect all the results of our discussion by inserting eqs. (2.41), (2.42) and (2.50)

in the third line of eq. (2.39), and we obtain

〈M̃|∆ |M̃〉 = 〈M̃|V†(b,M)D(φ,αS(b2
0/b

2))V(b,M) |M̃〉 , (2.53)

where the IR finite matrix element |M̃〉 can be expressed as

|M̃〉 = lim
ǫ→0

(
h(αS(M2))eV fin

c Z
−1 |M〉

)
, (2.54)
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and Z
−1 |M〉 = |Mfin〉 can be obtained from ref. [39].6 For convenience, we report the

explicit expression of V fin
c in the limit ǫ→ 0

V fin
c =Cc

{
−π2

12

(
αS(M2)

2π

)
+

(
αS(M2)

2π

)2[(
607

162
− 67

144
π2+

π4

72
− 77

36

)
CA

+

(
−41

81
+

5

72
π2+

7

18
ζ3

)
nf −iπ

4

6
β0

]
+O(α3

S)

}
. (2.55)

In this section we have discussed how the factors ∆ and M̃ that appear in the transverse-

momentum resummation formalism of section 2.1 are related to the soft-radiation contri-

bution Fex(~b). The first order resummation coefficients that were presented in ref. [27]

depend on the first-order term Fex,1 in eq. (2.31). In the following sections we illustrate

the explicit computation of the first- and second-order terms Fex,1 and Fex,2. In particu-

lar, Fex,2, controls the NNLO contribution to the operator h (see eq. (2.47)) and, through

eq. (2.54), it allows us to evaluate the NNLO subtracted amplitude M̃.

We conclude this section with a general comment on the comparison with the cal-

culation of soft-parton contributions performed in ref. [34] . The calculation of ref. [34]

is carried out within the SCET framework, following the approach of refs. [25, 26]. A

main difference with respect to our work is that the soft-parton terms considered therein

are defined without any subtraction of the corresponding terms for the production of a

colourless system. Therefore, strictly speaking, those soft terms are divergent and require

a regularisation of related rapidity divergences [47–51] (see the discussion in section 3.2).

The authors of ref. [34] use the regularization procedure of ref. [52]. Using a different

regulator would give a different result, which would need to be combined with collinear

contributions evaluated by using the corresponding regularisation prescription of rapidity

divergences. In contrast, we directly compute the subtracted soft-radiation contribution

Fex(~b). In our calculation the subtraction of the colourless production terms ensures a

well-defined result for the soft-parton contribution, which does not lead to any rapidity

divergences as discussed in section 3.2.

3 Details of the calculation

3.1 The subtracted integrals

The evaluation of the operator Fex(~b) introduced in the previous section requires the inte-

gration of the soft-parton contributions after subtraction of the corresponding contribution

of initial-state emission. We can write this symbolically as

Fex(~b) =
1

2

(
FQQ̄−Fcolourless

)
≡ 1

2
Fsub . (3.1)

6To be precise the numerical expression of the two-loop amplitude in ref. [39] is presented by using

µIR = m as IR subtraction scale, while in eq. (2.54) the operator Z is defined at the IR subtraction scale

µIR = M . Therefore the implementation of the results of ref. [39] in eq. (2.54) requires the evolution of the

numerical result presented in ref. [39] from the scale m to the scale M . We also note that a fully analytic

result for the two-loop amplitude in the qq̄ → QQ̄ channel became available recently [46].
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At NLO we just have to consider the emission of one soft gluon, which can be described

by the customary tree-level eikonal factorisation formula, after subtraction of initial-state

emission. The relevant contribution is

I
(0)
g (~b) = −

∫
dDk

(2π)D−1
δ+(k2)

∣∣∣J(0)
g (k)

∣∣∣
2

sub
ei~b·~kT , (3.2)

where the subtracted squared current
∣∣∣J(0)

g (k)
∣∣∣
2

sub
is defined in eq. (3.28). At NNLO we

need to consider contributions from:

• single-gluon emission at one-loop order (see section 3.3);

• emission of a soft quark-antiquark pair (see section 3.4);

• emission of two soft gluons (see section 3.5).

The corresponding integrals read

I
(1)
g (~b) = −

∫
dDk

(2π)D−1
δ+(k2)

(
J

(0)†
g (k)J(1)

g (k)+c.c.
)

sub
ei~b·~kT , (3.3)

I
(0)
qq̄ (~b) =

∫
dDk1

(2π)D−1

dDk2

(2π)D−1
δ+(k2

1)δ+(k2
2)I

(0)
qq̄ (k1,k2)

∣∣
sub
ei~b·(~kT 1+kT 2) , (3.4)

I
(0)
gg (~b) =

1

2

∫
dDk1

(2π)D−1

dDk2

(2π)D−1
δ+(k2

1)δ+(k2
2)W(0)

gg (k1,k2)
∣∣
sub
ei~b·(~kT 1+kT 2) , (3.5)

where the soft factors
(
J

(0)†
g (k)J

(1)
g (k)+c.c.

)
, I

(0)
qq̄ (k1,k2) and W

(0)
gg (k1,k2) are explicitly

given in eq. (3.49), (3.118) and (3.141), respectively. As in eq. (3.2), the label “sub” in

eqs. (3.3)–(3.5) denotes the subtraction procedure that removes the initial-state emission

contributions. Details of this procedure are given in sections 3.3, 3.4 and 3.5. All the

integrals are computed by using dimensional regularisation with D= 4−2ǫ dimensions.

The relations with the perturbative coefficients Fex,1 and Fex,2 in eq. (2.31) are

2× Sǫ

8π2

(
b2

b2
0

)ǫ

Fex,1(φ) = I
(0)
g (~b) , (3.6)

2× S2
ǫ

(8π2)2

(
b2

b2
0

)2ǫ

Fex,2(φ) = I
(1)
g (~b)+I

(0)
qq̄ (~b)+I

(0)
gg (~b) . (3.7)

We observe that the expression for Fex,2 (see eq. (2.35)) has up to double poles in ǫ. This is

however not the case for the different contributions defined here: in particular terms 1/ǫ3

are separately present in I
(1)
g and I

(0)
gg , but they cancel in eq. (3.7).

All the integrals presented so far have been written in b-space, that is, in the space of

the impact parameter b, connected to the ordinary space (qT -space) by a Fourier transform.

The transformation from a b-space integral in a qT -space one is hence obtained with the

formal substitution

δ(D−2)
(
~qT +~kT 1+~kT 2

)
−→ ei~b·(~kT 1+~kT 2) . (3.8)
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For the computation of the function h in eq. (2.47), azimuthal averages are required,

which are denoted as 〈. . .〉av.. We compute the D-dimensional azimuthal average of a

function F (φ) as

〈F (φ)〉av. =
1

B
(

1
2 ,

1
2 −ǫ

)
∫ 1

−1
dcosφ(1−cos2φ)− 1

2
−ǫF (φ) , (3.9)

where B(x,y) is the Euler beta function.

We note that, when considering the azimuthally averaged result, the step from b-space

to qT -space is straightforward, and is determined by the overall dependence on b of the

integral under consideration. Given a b-space function I(~b) we introduce the corresponding

qT -space transform as

Ĩ(~qT ) =
1

(2π)D−2

∫
dD−2~bI(~b)e−i~b·~qT . (3.10)

Performing the azimuthal average in qT space of eq. (3.10) we obtain

〈Ĩ(~qT )〉av. =
1

(2π)D−2

∫
dD−2~b〈I(~b)〉av. e

−i~b·~qT . (3.11)

If the b-space function has the factorised form

I(~b) = f(b2)Ī(b̂) , (3.12)

where the function Ī(b̂) depends only on the azimuthal angle of ~b, eq. (3.11) gives

〈Ĩ(~qT )〉av. = 〈Ī(b̂)〉av.
1

(2π)D−2

∫
dD−2~bf(b2)e−i~b·~qT . (3.13)

By inspection of the structure of eq. (2.31), we see that the soft integrals to be evaluated

at NnLO are of the form

I(~b) = b2nǫĪ(b̂) . (3.14)

We can then use eq. (3.13) with f(b2) = b2nǫ to obtain

〈Ĩ(~qT )〉av. = 4nǫπ−1+ǫ

(
1

q2
T

)1+(n−1)ǫ
Γ(1+(n−1)ǫ)

Γ(−nǫ) 〈Ī(b̂)〉av. (3.15)

We conclude this section by specifying the kinematical variables for the Born level

process in eq. (2.4). The polar angle θ is defined as the angle between the beam axis and

the momentum of the final-state heavy quark in the centre-of-mass frame of the colliding

partons. The variable β is defined as

β=
√

1−τ , (3.16)

with 0<τ < 1

τ =
4m2

s
, (3.17)

– 14 –



J
H
E
P
0
4
(
2
0
2
3
)
1
4
4

where s= (p1+p2)2 = (p3+p4)2. We also introduce the following auxiliary variables, that

will be useful in order to write our partial results in a more compact form

B=
p2

T,3

m2
=
p2

T,4

m2
=

β2

1−β2
sin2 θ , (3.18)

r=
√

1+B , (3.19)

v=

√

1−
(

2m2

s−2m2

)2

=
2β

1+β2
, (3.20)

c=
1−β
1+β

, (3.21)

cT =
1−

√
1−r2 τ

1+
√

1−r2 τ
. (3.22)

3.2 Single gluon emission at tree level

The evaluation of the soft-gluon contributions at NLO has already been performed in

ref. [27]. In the following, we describe the strategy adopted to carry out the calculation.

We note that, for the extension to NNLO, we need to obtain the NLO result up to O(ǫ)

(see eq. (2.47)).

The integral I
(0)
g (~b) in eq. (3.2) is obtained from the subtracted current

∣∣∣J(0)
g (k)

∣∣∣
2

sub
,

which is constructed as follows. We start from the tree-level eikonal current J
(0)
g (k) de-

scribing the emission of a soft gluon with momentum k from the c(p1)c̄(p2) →Q(p3)Q̄(p4)

Born level amplitude

J
(0)
g,µ(k) =

4∑

i=1

Ti
piµ

(pi ·k)
. (3.23)

The corresponding factorisation formula reads7

|M(0)

cc̄→QQ̄g
|2 ∼ (g0µ

ǫ
0)2〈M(0)

cc̄→QQ̄
|J(0)†

g,µ (k)dµν(k)J
(0)
g,ν(k)|M(0)

cc̄→QQ̄
〉

= −(g0µ
ǫ
0)2〈M(0)

cc̄→QQ̄
|
∣∣∣J(0)

g (k)
∣∣∣
2
|M(0)

cc̄→QQ̄
〉 , (3.24)

where g0 is the bare coupling (g2
0 = 4πα0),

dµν(k) = −gµν +gauge terms (3.25)

is the spin-polarisation tensor of the soft gluon and the gauge terms give vanishing con-

tribution due to current conservation. The square of the current can be written in the

form

∣∣∣J(0)
g (k)

∣∣∣
2

=
∑

j=3,4

[
p2

j

(pj ·k)2
T2

j +
∑

i=1,2

2pi ·pj

(pi ·k)(pj ·k)
Ti ·Tj

]

+
2p3 ·p4

(p3 ·k)(p4 ·k)
T3 ·T4+

2p1 ·p2

(p1 ·k)(p2 ·k)
T1 ·T2 . (3.26)

7Here and in the following the unrenormalised scattering amplitudes are denoted as Mu =

α0µ2ǫ
0

(
M(0)+M(1)+. . . .

)
where M(0) is the tree-level contribution, M(1) is the one-loop virtual correction

and so forth.
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From this expression we need to subtract the initial-state contribution, which is relevant

for the production of a colourless system. It reads

∣∣∣J(0)
g (k)

∣∣∣
2

colourless
=

2p1 ·p2

(p1 ·k)(p2 ·k)
T1 ·T2 = − (p1 ·p2)

(p1 ·k)(p2 ·k)

(
T2

1+T2
2

)

= −
(

(p1 ·p2)

(p1 ·k)(p1+p2)·k+
(p1 ·p2)

(p2 ·k)(p1+p2)·k

)(
T2

1+T2
2

)
, (3.27)

where we used the colour conservation relation T1+T2 = 0 for the corresponding produc-

tion process. The subtracted squared current that appears in eq. (3.2) is defined as

∣∣∣J(0)
g (k)

∣∣∣
2

sub
=
∣∣∣J(0)

g (k)
∣∣∣
2
−
∣∣∣J(0)

g (k)
∣∣∣
2

colourless

=
∑

j=3,4

[
m2

(pj ·k)2
T2

j +2
∑

i=1,2

(
pi ·pj

pj ·k − p1 ·p2

(p1+p2)k

)
Ti ·Tj

pi ·k

]

+
2p3 ·p4

(p3 ·k)(p4 ·k)
T3 ·T4 , (3.28)

We emphasise that each of the three colour contributions in eq. (3.28) is separately collinear

safe.

Using eq. (3.28) the evaluation of eq. (3.2) is reduced to the computation of the fol-

lowing integrals

Ijj(~b) =

∫
dDkδ+(k2)

m2

(pj ·k)2
ei~b·~kT , (3.29)

Iij(~b) =

∫
dDkδ+(k2)

1

pi ·k

[
pi ·pj

pj ·k − p1 ·p2

(p1+p2)·k

]
ei~b·~kT , (3.30)

I34(~b) =

∫
dDkδ+(k2)

p3 ·p4

(p3 ·k)(p4 ·k)
ei~b·~kT , (3.31)

where i= 1,2 labels an initial-state parton, while j= 3,4 labels one of the final-state massive

particles. In terms of these definitions, eq. (3.2) reads

I
(0)
g (~b) = − 1

(2π)D−1

{
∑

j=3,4


Ijj(~b)T2

j +2
∑

i=1,2

Iij(~b)Ti ·Tj


+2I34(~b)T3 ·T4

}
. (3.32)

The simplest contribution is the one where only a massive final-state particle is involved,

Ijj defined in eq. (3.29). To perform its computation, we introduce light-cone coordinates

p± =
p0±pz√

2
, pµkµ = p+k−+p−k+−~pT ·~kT , (3.33)

and eq. (3.29) becomes

Ijj(~b) =

∫
dk+ dk− d

D−2~kT δ(2k+k−−~k2
T )

m2 ei~b·~kT

(
pj,+k−+pj,−k+−~pj,T ·~kT

)2 . (3.34)
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The delta function can now be used to perform the integral over k+

Ijj(~b) =

∫
dk− d

D−2~kT
2m2 k− ei~b·~kT

(
pj,−k2

T +2pj,+k2
−−2k−~pj,T ·~kT

)2 . (3.35)

The leftover angular integral can be simplified by removing the angular dependence from

the denominator with an appropriate shift of the ~kT variable. We obtain

Ijj(~b) = (2π)1−ǫbǫm2
∫
dk−

2k−
p2

j,−
e

i
k−

pj,−

~b·~pj,T

∫
dkT

k1−ǫ
T J−ǫ(bkT )

(
k2

T +m2 k2
−

p2
j,−

)2 , (3.36)

where Jn(x) is the Bessel function of the first kind. Including the azimuthal average, we

are now left with a three-fold integral that can be performed via standard techniques to

all orders in ǫ.

A similar strategy can be followed to compute Iij(~b) in eq. (3.30), but this requires some

additional care. The term Iij(~b) involves the contribution of the initial-state emitter that is

massless, and this may lead to a collinear singularity in the region pi ·k→ 0. The collinear

singularity is absent in the complete integrand of Iij(~b), but it is present in the two separate

contributions that correspond to the two terms in the square bracket of eq. (3.30). To apply

the same integration procedure used for Ijj(~b), the two contributions must be computed

separately and, therefore, a regulator for the collinear singularity needs be introduced. We

thus multiply the integrand by the factor [52, 53]

(
pi ·k
m2

)2λ

, (3.37)

where λ is a small, positive coefficient and the mass scale m has been chosen equal to the

heavy-quark mass, but it is in principle arbitrary. With the inclusion of this additional

factor, the collinear singularity is regularised, and after integration it leads to poles in λ,

which cancel with each other once the results from the two contributions are combined.

The divergence that appears in the intermediate steps of the evaluation of Iij(~b) is

just an artifact of the approximation used to compute the small-qT behavior. Similar di-

vergences arise in SCET computations and are usually called rapidity divergences [47–51].

However, we point out that the term Iij(~b) and our entire soft contributions in eqs. (3.2)–

(3.7) have no collinear or rapidity divergences. In our computation the collinear singulari-

ties from initial-state emission can only appear due to technical reasons, since for practical

purposes we split integrable integrands in several non-integrable terms that are evaluated

separately.

We now focus on the final integral, I34(~b) in eq. (3.31). It can be computed from Ijj(~b)

by using Feynman parametrisation

I34(~b) =

∫ 1

0
dx

∫
dDkδ+(k2)

p3 ·p4

(p(x)·k)2
ei~b·~kT =

p3 ·p4

m2

∫ 1

0
dxIjj(~b)

∣∣
pj=p(x)

, (3.38)

where we introduced the auxiliary momentum

pµ(x) =xpµ
3 +(1−x)pµ

4 . (3.39)
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The integration over the Feynman parameter can be easily performed in terms of multiple

polylogarithms after the azimuthal average and an expansion to O(ǫ).

We now present our results for the azimuthally averaged integrals 〈Ijj(~b)〉av., 〈Iij(~b)〉av.

and 〈I34(~b)〉av.. When the all order result is available, we show both the expression before

and after the ǫ expansion. We find

〈Ijj(~b)〉av. =π1−ǫ Γ(1−ǫ)
(
b2

4

)ǫ [
−1

ǫ
2F1 (1,−ǫ;1−ǫ;−B)

]

=π1−ǫ Γ(1−ǫ)
(
b2

4

)ǫ[
− 1

ǫ
−ln(1+B)+ǫLi2 (−B)+O(ǫ2)

]
, (3.40)

〈Iij(~b)〉av. = lim
λ→0

1

2
π1−ǫ

(
b2

4

)ǫ

Γ

(
λ

2
−ǫ
)

Γ

(
λ

2

)[(
pi ·pj

m

)λ

2F1

(
λ

2
,
λ

2
−ǫ;1−ǫ;−B

)

−
(
p1 ·p2√

s

)λ

2F1

(
λ

2
,
λ

2
−ǫ;1−ǫ;−1

s

)]

=π1−ǫ Γ(1−ǫ)
2

(
b2

4

)ǫ[
− 2

ǫ
ln

(
2pi ·pj√
sm

)
+Li2 (−B)+ǫLi3 (−B)+O(ǫ2)

]
, (3.41)

〈I34(~b)〉av. =π1−ǫ Γ(1−ǫ)
(
b2

4

)ǫ
1+β2

2β

[
−1

ǫ
L0(β)−L1(β,θ)+ǫP2(β,θ)+O(ǫ2)

]
, (3.42)

where the coefficient λ is the one introduced with the collinear regulator in eq. (3.37) and

the functions Ln(β,θ), Pn(β,θ) are defined as

Ln(β,θ) = (p3 ·p4)
2β

1+β2

∫ 1

0

dx

p(x)2
lnn

(
1+

~pT (x)2

p(x)2

)
→
∫ β

−β

dz

1−z2
lnn

(
1−z2 cosθ

1−z2

)
, (3.43)

Pn(β) = (p3 ·p4)
2β

1+β2

∫ 1

0

dx

p(x)2
Lin

(
−~pT (x)2

p(x)2

)
→
∫ β

−β

dz

1−z2
Lin

(
z2 sin2 θ

z2−1

)
. (3.44)

The momentum pµ(x) is defined in eq. (3.39), and in the last step in eqs. (3.43), (3.44) we

have used ~p3 = −~p4. The explicit expressions of the functions L0(β), L1(β,θ) and P2(β,θ)

read

L0(β) = ln

(
1+β

1−β

)
, (3.45)

L1(β,θ) = ln

(
1+β

1−β

)
ln(1+B)−Li2

(
4β

(1+β)2

)
− 1

2
ln2
(

1+β

1−β

)
+Li2(1−ccT )

+Li2

(
1− c

cT

)
+

1

2
ln2 cT , (3.46)

P2(β,θ) =G

(
0,0,

β−1

2β
,sin2

(
θ

2

))
+G

(
0,1,

β−1

2β
,sin2

(
θ

2

))

+G

(
0,
β−1

2β
,0,sin2

(
θ

2

))
+G

(
0,
β−1

2β
,1,sin2

(
θ

2

))

−G
(

1,0,
β−1

2β
,sin2

(
θ

2

))
−G

(
1,1,

β−1

2β
,sin2

(
θ

2

))
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−G
(

1,
β−1

2β
,0,sin2

(
θ

2

))
−2ln(1−β)G

(
1,0,sin2

(
θ

2

))

−2ln(1−β)G

(
1,1,sin2

(
θ

2

))
−G

(
1,
β−1

2β
,1,sin2

(
θ

2

))

−ln

(
sin2(θ)

4

)
G

(
0,
β−1

2β
,sin2

(
θ

2

))
+ln

(
sin2(θ)

4

)
G

(
1,
β−1

2β
,sin2

(
θ

2

))

+2ln(1−β) ln

(
sin2(θ)

4

)
ln

(
cos2

(
θ

2

))
. (3.47)

with c and cT defined in eq. (3.21) and eq. (3.22) respectively.

The function P2(β,θ) is expressed in terms of multiple polylogarithmic functions G.

We note that the same kind of integrals in eqs. (3.43), (3.44) will also appear at a later

stage in the computation of the double gluon emission contribution (see section 3.5): in

this case though we will need Ln and Pn up to n= 3.

3.3 Single gluon emission at one loop

We now focus on the emission of a soft gluon at one loop order. The corresponding

factorisation formula reads [54, 55]

〈M(0)

cc̄→QQ̄g
|M(1)

cc̄→QQ̄g
〉+c.c.≃−(g0µ

ǫ
0)2
[
〈M(0)

cc̄→QQ̄
|J(0)

g (k)·J(0)
g (k)|M(1)

cc̄→QQ̄
〉+c.c.

]

+(g0µ
ǫ
0)4
[
〈M(0)

cc̄→QQ̄
|J(0)†

g (k)·J(1)
g (k)|M(0)

cc̄→QQ̄
〉+c.c.

]
,

(3.48)

where J
(1)
g (k) is the one-loop correction to the soft-gluon current. The first contribution

in eq. (3.48) factorises the tree-level squared current from the interference between the

cc̄→QQ̄ Born and one-loop amplitudes. Such term does not lead to new soft contributions

to Fex. The product of the tree and loop soft currents can be written as

J
(0)†
g (k)·J(1)

g (k)+c.c.=2CA

∑

i6=j

(
(pi ·pj)

(pi ·k)(pj ·k)
− m2

(pj ·k)2

)
Rij Ti ·Tj

−4π
∑

i,j,k

′ pi ·pj

(pi ·k)(pj ·k)
Iikf

abcT a
i T

b
kT

c
j , (3.49)

where
∑′

i,j,k denotes the sum over distinct indices (i 6= j, j 6= k, k 6= i). The expansion in ǫ

of the Rij , Iij functions can be found in ref. [55] and, in the case of two massive emitters,

a simplified expression has been presented in ref. [56].

Since we limit ourselves to considering heavy-quark production, we only need to eval-

uate the contribution proportional to Rij . In fact Iij is proportional to the three-partons

correlator fabcT a
i T

b
kT

c
j that vanishes when acting on the tree-level amplitudes of the pro-

cess8 cc̄→QQ̄ [58–60].

8Note that this is not generally the case for processes in which the heavy-quark pair is accompanied by

particles with complex couplings (see the Note Added in ref. [57]).
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By using colour conservation, we can apply the same procedure employed in section 3.2

to isolate the initial-state radiation and thus replace the first contribution on the right hand

side of eq. (3.49) with

(
J

(0)
g (k)·J(1)

g (k)+c.c.
)

sub
≡

= 2CA

∑

i=1,2
j=3,4

[(
2(pi ·pj)

(pi ·k)(pj ·k)
− m2

(pj ·k)2

)
Rij − 2(pi ·pj)

(pi ·k)(p1+p2)·kR12

]
Ti ·Tj

+2CA

(
2(p3 ·p4)

(p3 ·k)(p4 ·k)
− m2

(p3 ·k)2
− m2

(p4 ·k)2

)
R34 T3 ·T4+. . . . (3.50)

where the dots stand for the contributions proportional to Iij that will eventually vanish

when evaluated onto tree-level amplitudes. We now need to expand Rij in powers of ǫ. In

order to match the normalisation used in ref. [55] we write

Rij =

(
(pi ·pj)

2(pi ·k)(pj ·k)

)ǫ

Rij , (3.51)

where

Rij =
∞∑

n=−2

R
(n)
ij ǫ

n , (3.52)

and R
(n)
ij with n≤ 2 are given in section 2 of ref. [55]. The integral of the one-loop squared

current in eq. (3.3) can be organised into a massless-massive and a massive-massive con-

tribution based on their colour factor

I
(1)
g (~b) = − 2CA

(2π)D−1





∑

j=1,2
i=3,4

I
(1)
ij (~b)Ti ·Tj +I

(1)
34 (~b)T3 ·T4




, (3.53)

where the massless-massive contribution reads

I
(1)
ij (~b) =

∫
dDkδ+(k2)

[(
2(pi ·pj)

(pi ·k)(pj ·k)
− m2

(pj ·k)2

)
Rij − 2(pi ·pj)

(pi ·k)(p1+p2)·kR12

]
ei~b·~kT ,

(3.54)

while the massive-massive contribution is

I
(1)
34 (~b) =

∫
dDkδ+(k2)

(
2(p3 ·p4)

(p3 ·k)(p4 ·k)
− m2

(p3 ·k)2
− m2

(p4 ·k)2

)
R34 e

i~b·~kT . (3.55)

3.3.1 Massive-massless contribution: I
(1)
ij

By inspecting eq. (3.54) we can identify three different contributions proportional to
(pi·pj)

(pi·k)(pj ·k) , m2

(pj ·k)2 and
(pi·pj)

(pi·k)(p1+p2)·k , respectively. We therefore define the three auxiliary
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integrals

I
(1)
ij,ij(~b) =

∫
dDkδ+(k2)

(pi ·pj)

(pi ·k)(pj ·k)
Rij

(
(pi ·pj)

2(pi ·k)(pj ·k)

)ǫ

ei~b·~kT , (3.56)

I
(1)
ij,jj(~b) =

∫
dDkδ+(k2)

m2

(pj ·k)2
Rij

(
(pi ·pj)

2(pi ·k)(pj ·k)

)ǫ

ei~b·~kT , (3.57)

I
(1)
ij,i(12)(

~b) =

∫
dDkδ+(k2)

(pi ·pj)

(pi ·k)(p1+p2)·k R12

(
(p1 ·p2)

2(p1 ·k)(p2 ·k)

)ǫ

ei~b·~kT . (3.58)

In terms of these auxiliary integrals, I
(1)
ij reads

I
(1)
ij (~b) = 2I

(1)
ij,ij(~b)−I(1)

ij,jj(~b)−2I
(1)
ij,i(12)(

~b) . (3.59)

We start from I
(1)
ij,ij . In this case we have a collinear singularity associated with the

radiation from the initial-state massless particle which is due to the factor (pi ·k) in the

denominator. To take care of it, we can introduce a λ regulator similarly to what was done

in the case of the NLO contribution in eq. (3.37)

(
pi ·k
m2

)2λ

, (3.60)

with λ being positive. The collinear singularity will then be translated into poles in λ,

which will cancel with analogous poles in the massless-massless contribution I
(1)
ij,i(12).

From this stage, we can closely follow the procedure used in section 3.2 to perform the

integral over the phase space of the emitted gluon. We obtain

I
(1)
ij,ij(~b) =(m2)−3λπ1−ǫ(pi ·pj)2λ

(
b2

4

)2ǫ−λ
Γ(−2ǫ+λ)

2Γ(1+ǫ−λ)

∫ ∞

0
dw

Rij(w)

w(1+w)1+ǫ

×



w

λ+


2F1


−2ǫ,−ǫ; 1

2
;

(
~b·~pT,j

bm

)2

w


−1−4ǫ

i~b·~pT,j

bm

×
√
w

Γ(1
2 −2ǫ)Γ(1+ǫ)

Γ(1−2ǫ)Γ(1
2 +ǫ)

2F1


1

2
−2ǫ,

1

2
−ǫ; 3

2
;

(
~b·~pT,j

bm

)2

w







 , (3.61)

which after azimuthal average becomes

〈I(1)
ij,ij(~b)〉

av.
= (m2)−3λπ1−ǫ(pi ·pj)2λ

(
b2

4

)2ǫ−λ
Γ(−2ǫ+λ)

2Γ(1+ǫ−λ)

∫ ∞

0
dw

Rij(w)

w(1+w)1+ǫ

×
{
wλ+Re{[2F1 (−2ǫ,−ǫ;1−ǫ;wB)−1](1+icot(πǫ))}

}
. (3.62)

Expanding in ǫ the expression in the curly bracket of eq. (3.62) we obtain

Re{[2F1 (−2ǫ,−ǫ;1−ǫ;wB)−1](1+icot(πǫ))} =− 2ǫ

π
Im [Li2 (wB)]+O(ǫ2)

=2ǫ ln(wB)θ (wB−1)+O(ǫ2). (3.63)
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In eqs. (3.61) and (3.62) we have defined the adimensional variable w as

w=
m2

p2
j,−

k2
−
k2

T

. (3.64)

The kinematical invariants can be written in terms of w as

(pi ·k) =
(pi ·pj)

m
kT

√
w, (3.65)

(pj ·k) =
m

2
kT

(
1√
w

+
√
w

)
, (3.66)

while the explicit expression of the coefficients R
(n)
ij presented in ref. [55] in terms of w

reads

R
(−2)
ij = −1

2
, (3.67)

R
(−1)
ij = 0 , (3.68)

R
(0)
ij =

1

24

(
5π2−6w ln2

(
w

w+1

))
, (3.69)

R
(1)
ij =

1

12

(
6(w−1)Li3

(
w

w+1

)
+6(w−1)Li2

(
1

w+1

)
ln

(
w

w+1

)
+2(7−3w)ζ3

+ln

(
w

w+1

)(
π2(6w+1)−3(w−1) ln

(
w

w+1

)
ln(w+1)

))
. (3.70)

Our task is now to integrate eq. (3.62) with the expansion of R defined in eqs. (3.67)–

(3.70). The final result reads

〈I(1)
ij,ij(~b)〉

av.
=(m2)−3λπ1−ǫ(pi ·pj)2λ

(
b2

4

)2ǫ−λ
Γ(−2ǫ+λ)

2Γ(1+ǫ−λ)

{
1

λ

[
− 1

2ǫ2
+

5π2

24
+

7ζ3ǫ

6
+O

(
ǫ2
)]

+

[
1

ǫ

(
−Li2

(
− 1

B

)
− 1

2
ln2(B)−π2

12

)
+

1

6

(
−6Li3

(
B

B+1

)

−6Li2

(
− 1

B

)
ln(B+1)+ln3

(
1

B
+1

)
+ln3(B)+3ln(B) ln2(B+1)

−6ln2(B) ln(B+1)−2π2 ln

(
1

B
+1

)
−2π2 ln(B)+π2 ln(B+1)−6ζ3

)

+ǫ

(
ζ3 ln(B)+ζ3 ln(B+1)− 1

2
Li2

(
− 1

B

)
2+

1

4
π2Li2

(
− 1

B

)

−2Li4

(
− 1

B

)
−Li4

(
1

B+1

)
−Li4

(
B

B+1

)
− 1

2
Li2

(
− 1

B

)
ln2(B)

−Li3

(
− 1

B

)
ln(B)−Li3

(
− 1

B

)
ln(B+1)−2Li3

(
1

B+1

)
ln(B+1)

−2Li3

(
B

B+1

)
ln(B+1)+S2,2

(
− 1

B

)
− 1

24
ln4(B)+

7

24
ln4(B+1)
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+
1

3
ln(B+1)ln3(B)+

1

3
ln3
(

1

B
+1

)
ln(B+1)− 3

4
ln2(B+1)ln2(B)

− 73

24
π2 ln2(B)+

19

6
π2 ln2

(
1

B
+1

)
− 11

4
π2 ln2(B+1)

− 1

24
ln2
(

1

B
+1

)
ln2
(

2B

2B+1

)
− 1

24
ln2
(

1

B
+1

)
ln2
(

1

2B+1
+1

)

+
1

12
ln2
(

1

B
+1

)
ln

(
2B

2B+1

)
ln

(
1

2B+1
+1

)
+

35

6
π2 ln(B+1)ln(B)

− 2

3
π2 ln

(
1

B
+1

)
ln(B+1)− 23

240
π4

)
+O

(
ǫ2
)]

+O (λ)

}
. (3.71)

with B defined as in eq. (3.18) and S2,2 being the Nielsen generalised polylogarithm func-

tion.

We now consider the integral I
(1)
ij,jj(~b). The only difference with I

(1)
ij,ij(~b) consists in the

replacement
(pi·pj)

(pi·k)(pj ·k) → m2

(pj ·k)2 , which in terms of our integration variable w implies

2

k2
T (1+w)

−→ 2

k2
T (1+w)

2w

(1+w)
, (3.72)

that is, we simply need to multiply the integrand by a factor 2w/(1+w). In addition,

the presence of only final-state emitters in the integrand implies that we can set λ= 0

throughout. We can use this method to obtain from eq. (3.61) an expression for I
(1)
ij,jj as

an integral over w

I
(1)
ij,jj(~b) =π1−ǫ

(
b2

4

)2ǫ
Γ(−2ǫ)

Γ(1+ǫ)

∫ ∞

0

Rij(w)

(1+w)2+ǫ

{[

2F1

(
−2ǫ,−ǫ; 1

2
;c2

jbw

)

−4ǫicjb

√
w

Γ(1
2 −2ǫ)Γ(1+ǫ)

Γ(1−2ǫ)Γ(1
2 +ǫ)

2F1

(
1

2
−2ǫ,

1

2
−ǫ; 3

2
;c2

jbw

)]}
, (3.73)

where we have defined

cjb =
~b·~pT,j

bm
. (3.74)

The azimuthally averaged equivalent of eq. (3.73) can be obtained from eq. (3.62)

〈I(1)
ij,jj(~b)〉

av.
=π1−ǫ

(
b2

4

)2ǫ
Γ(−2ǫ)

Γ(1+ǫ)

∫ ∞

0
dw

Rij(w)

(1+w)2+ǫ

×{1+Re{[2F1 (−2ǫ,−ǫ;1−ǫ;wB)−1](1+icot(πǫ))}} . (3.75)

We obtain

〈I(1)
ij,jj(~b)〉

av.
=π1−ǫ

(
b2

4

)2ǫ
Γ(−2ǫ)

Γ(1+ǫ)
×
{

1

ǫ2
+

1

ǫ
(2 ln(B+1)−1)

+

(
2Li2

(
− 1

B

)
+ln2(B)+ln2(B+1)−2ln(B+1)− ζ3

2
+

13π2

24
+

3

2

)
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+ǫ

(
−3Li3(−B)+2Li3

(
1

B+1

)
−Li3

(
B

B+1

)
+Li4

(
− 1

B

)

−Li4

(
B

B+1

)
−2Li4

(
1

B+1

)
+

1

2
Li2

(
− 1

B

)(
ln2(B+1)−2ln(B+1)−6

)

−2Li3

(
1

B+1

)
ln(B+1)−Li3

(
B

B+1

)
ln(B+1)+

1

24
ln4(B)+

3

8
ln4(B+1)

− 2

3
ln3(B+1)ln(B)+

1

3
ln3(B+1)+

1

4
ln2(B+1)ln2(B)− 1

2
ln(B+1)ln2(B)

+
1

12
π2 ln2(B)− 3ln2(B)

2
+ln2(B+1)ln(B)− 1

12
π2 ln2(B+1)

− 1

2
ln2(B+1)+

7

12
π2 ln(B+1)+3ln(B+1)− 7

2
− ζ2

4
+
ζ3

6
−5ζ4

)

+O
(
ǫ2
)}

. (3.76)

We finally consider I
(1)
ij,i(12)(

~b). To obtain a one-fold integral representation of this

contribution we can again take advantage of the result for I
(1)
ij,ij , identifying pj = p1+p2.

This also means setting ~b·~pT,j = 0 due to the absence of a transverse component in p1+

p2. Nevertheless, the identification between the results is not completely straightforward

because of the additional difference in the integrand
(

(pi ·pj)

(pi ·k)(pj ·k)

)ǫ

−→
(

(p1 ·p2)

(p1 ·k)(p2 ·k)

)ǫ

. (3.77)

However, we can notice that
(

(pi ·pj)

(pi ·k)(pj ·k)

)ǫ

=

(
2

k2
T

)ǫ

(1+w)−ǫ (3.78)

while (
(p1 ·p2)

(p1 ·k)(p2 ·k)

)ǫ

=

(
(pi ·pj)

(pi ·k)((pj ·k)−(pi ·k))

)ǫ

=

(
2

k2
T

)ǫ

. (3.79)

Thus we can take care of this additional difference by adding a factor (1+w)ǫ to the one-fold

representation of I
(1)
ij,ij . Therefore, we have

〈I(1)
ij,i(12)(

~b)〉av. =

(
p1 ·p2

2m4

)λ

π1−ǫ

(
b2

4

)2ǫ−λ
Γ(−2ǫ+λ)

2Γ(1+ǫ−λ)

∫ ∞

0
dw

w−1+λ

(1+w)
R12(w) . (3.80)

The expression for R12(w) can be obtained taking the massless limit of eqs. (3.67)–(3.70),

which leads to the simplified expressions

R
(−2)
12 = −1

2
(3.81)

R
(−1)
12 = 0 (3.82)

R
(0)
12 =

5

4
ζ2 (3.83)

R
(1)
12 =

7

6
ζ3 , (3.84)
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and therefore straightforwardly

∫ ∞

0

dww−1+λ

(1+w)
R12(w) =

1

λ

[
− 1

2ǫ2
+

5

4
ζ2+ǫ

7

6
ζ3+O(ǫ2)

]
+O(λ) . (3.85)

By comparing with eq. (3.71) we see that the λ→ 0 singular terms cancel out as expected.

By using eq. (3.59) we can write the final result for I
(1)
ij (~b) as

〈I(1)
ij (~b)〉

av.
=π1−ǫ

(
b2

4

)2ǫ
Γ(−2ǫ)

2Γ(1+ǫ)

{
1

ǫ2

(
1−2ln

(
2(pi ·pj)√

sm

))

+
1

ǫ

(
−1−π2

6
+2ln(B+1)−ln2(B)−2Li2

(
− 1

B

))

+

(
5

6
π2 ln

(
2(pi ·pj)√

sm

)
− 13π2

12
−6Li2(−B)+2Li3

(
− 1

B

)
+2Li3

(
1

B+1

)

− 1

3
ln3(B)− 1

3
ln3(B+1)−ln(B+1)ln2(B)−2ln2(B)+ln2(B+1)ln(B)

+ln2(B+1)− 1

3
π2 ln(B)−2ln(B+1)−3ζ3−2Li2

(
− 1

B

)
(ln(B+1)+2)

)

+ǫ

(
14

3
ζ3 ln

(
2(pi ·pj)√

sm

)
+2ζ3 ln(B)−Li22

(
− 1

B

)
+6Li2(−B)−2Li3

(
− 1

B

)

−6Li4

(
− 1

B

)
+Li2

(
− 1

B

)(
− ln2(B)−ln2(B+1)+2ln(B+1)+

π2

2
+6

)

+2Li4

(
1

B+1

)
+2S2,2

(
− 1

B

)
−2Li3

(
− 1

B

)
ln(B)+2Li3

(
1

B+1

)
ln(B+1)

− 1

4
ln4(B)− 1

4
ln4(B+1)+

1

3
ln3(B)+

2

3
ln3(B+1)ln(B)+

1

12
π2 ln2(B)

− 1

2
ln2(B+1)ln2(B)+ln(B+1)ln2(B)+3ln2(B)−2ln2(B+1)

+
1

3
π2 ln(B)− 1

2
π2 ln(B+1)− 13ζ3

3
− 29π4

360
+
π2

12
+4

)
+O

(
ǫ2
)}

. (3.86)

3.3.2 Massive-massive contribution: I
(1)
34

Let us now consider the purely massive contribution, i.e. I
(1)
34 (~b) in eq. (3.55), which can

also be written as

I
(1)
34 =

∫
dDkδ+(k2)

(
2(p3 ·p4)

(p3 ·k)(p4 ·k)
− m2

(p3 ·k)2
− m2

(p4 ·k)2

) (
(p3 ·p4)

2(p3 ·k)(p4 ·k)

)ǫ

R34e
i~b·~kT ,

(3.87)

where the functions R34 have been presented for the first time in ref. [55], while in ref. [56]

a simplified expression has been proposed. The coefficients R
(n)
34 read

R
(−2)
34 =1 , (3.88)

R
(−1)
34 = ln(v+)− v−

v

(
ln
(α3

v+

)
+ln

(α4

v+

))
, (3.89)

– 25 –



J
H
E
P
0
4
(
2
0
2
3
)
1
4
4

R
(0)
34 = ,

1

2
ln2(v+)+

1

v

[
1

(d3+d4)

(
(α3v+−α4v−) ln2

(α3

v+

)
+
(
α4v+−α3v−

)
ln2
(α4

v+

))

+

(
ln
(α3

v+

)
+ln

(α4

v+

))(
v+ ln(v+)−ln(v)

)
−Li2

(
v−
v+

)]
+ζ2

(
7

v
− 19

2

)
, (3.90)

R
(1)
34 =

1

d3+d4

{
(
1−(d3+d4)

)
[

ln
(
1− α3

v+

)
ln2
(α3

v+

)
+ln

(
1− α4

v+

)
ln2
(α4

v+

)

+2

(
ln
(α3

v+

)
Li2
(α3

v+

)
+ln

(α4

v+

)
Li2
(α4

v+

))
−Li2

(
v−
v+

)(
ln
(α3

v+

)
+ln

(α4

v+

))

+2

(
Li3

(
v−
v+

)
−Li3

(α3

v+

)
−Li3

(α4

v+

)
+ζ3

)]
−7ζ2

(
ln
(α3

v+

)
+ln

(α4

v+

))

+
1

v

[((
α4v+−α3v−

)
ln2
(α3

v+

)
+
(
α3v+−α4v−

)
ln2
(α4

v+

))
ln(v+)

+
(
α3−α4

)(
ln2
(α3

v+

)
−ln2

(α4

v+

))
ln(v)

−
(
d3 ln

(α3

v+

)
+d4 ln

(α4

v+

))(
Li2

(
v−
v+

)
−7ζ2

)
]}

+
1

v

{[
ln(v+)

(
3+v

4
ln(v+)−ln(v)

)
− 9v−

2
ζ2

](
ln
(α3

v+

)
+ln

(α4

v+

))

− v−
6

(
ln3
(α3

v+

)
+ln3

(α4

v+

))
+2Li3

(
1− v−

v+

)
+Li3

(
v−
v+

)

−
[
Li2

(
v−
v+

)
+ζ2

(
5+

19

2
v

)]
ln(v+)+12ζ2 ln(v)

}
+

1

6
ln3(v+)−

(
7

3
+

1

v

)
ζ3 . (3.91)

In eqs. (3.88)–(3.91) we used the same notation of refs. [55, 56], introducing the variables

α3 =
m2(p4 ·k)

(p3 ·k)(p3 ·p4)
, (3.92)

α4 =
m2(p3 ·k)

(p4 ·k)(p3 ·p4)
, (3.93)

v± =
1±v

2
, (3.94)

d3 = 1−2α3 , (3.95)

d4 = 1−2α4 , (3.96)

with v defined as in eq. (3.20).

We first discuss the contributions of R
(−2)
34 and R

(−1)
34 . Both these coefficients are

independent of the gluon momentum k (note that α3α4 =m4/(p3 ·p4)2), and, therefore,

the corresponding integrals can be evaluated with the same method. We start from the

generalised Feynman parametrisation

1

AmBn
=

Γ(m+n)

Γ(m)Γ(n)

∫ 1

0
dx

xm−1(1−x)n−1

(xA+(1−x)B)m+n
, (3.97)

to write the denominators in terms of a single scalar product.
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For the term proportional to (p3 ·p4)/(p3 ·k p4 ·k) in I
(1)
34 , dropping overall constant

terms, the relevant integral is

∫
dDkδ+(k2)

ei~b·~kT

(p3 ·k)1+ǫ(p4 ·k)1+ǫ
=

Γ(2+2ǫ)

Γ2(1+ǫ)

∫ 1

0
dx

∫
dDk

δ+(k2)(1−x)ǫxǫ ei~b·~kT

((1−x)(p4 ·k)+x(p3 ·k))2+2ǫ
,

(3.98)

while when considering the term proportional to m2/(pj ·k)2, with j= 3,4 we need to

evaluate

∫
dDkδ+(k2)

ei~b·~kT

(pj ·k)2+ǫ(pi ·k)ǫ
=

Γ(2+2ǫ)

Γ(2+ǫ)Γ(ǫ)

∫ 1

0
dx

∫
dDk

δ+(k2)(1−x)−1+ǫx1+ǫ ei~b·~kT

((1−x)(p4 ·k)+x(p3 ·k))2+2ǫ
.

(3.99)

We see that both eq. (3.98) and eq. (3.99) depend on the same integral

I
(1)
k (x) =

∫
dDkδ+(k2)

ei~b·~kT

(p(x)·k)2+2ǫ
, (3.100)

with

pµ(x) =xpµ
3 +(1−x)pµ

4 . (3.101)

This integral can be evaluated with the techniques used in section 3.2 and we find

〈I(1)
k (x)〉av. = −4−ǫb4ǫπ2−ǫ

sin(ǫπ)

Γ(−2ǫ)

Γ(−ǫ)Γ(2+2ǫ)
(p2(x))−1−ǫ

2F1

(
−2ǫ,1+ǫ,1−ǫ;−p2

T (x)

p2(x)

)
.

(3.102)

We are now left with the integration over the Feynman parameter x. It is convenient to

expand in ǫ the hypergeometric function

2F1 (−2ǫ,1+ǫ,1−ǫ;−X) =1+2ln(1+X)ǫ−4Li2(−X)ǫ2

+
4

3

(
ln3(1+X)+3ln(1+X)Li2(−X)−9Li3(−x)

−6Li3

(
X

1+X

))
ǫ3+O(ǫ4) . (3.103)

By substituting eq. (3.102) in eqs. (3.98), (3.99) we obtain a sum of integrals that in most

cases can be computed in terms of multiple polylogarithms. The remaining finite integrals

are computed numerically.

We now focus on the contribution of R
(0)
34 . We can split R

(0)
34 in a part independent on

k, R
(0)
34;const, and one with an explicit k dependence, R

(0)
34;k

R
(0)
34 =R

(0)
34;const+R

(0)
34;k . (3.104)

We define

R
(0)
34;const =

1

v

[(
ln
(α3

v+

)
+ln

(α4

v+

))(
v+ ln(v+)−ln(v)

)
−Li2

(
v−
v+

)]
+

1

2
ln2(v+)

+ζ2

(7

v
− 19

2

)
. (3.105)
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and

R
(0)
34;k =

1

(d3+d4)v

[
(α3v+−α4v−) ln2

(α3

v+

)
+
(
α4v+−α3v−

)
ln2
(α4

v+

)]
≡ 1

d3+d4
r

(0)
34 .

(3.106)

The contribution of R
(0)
34;const can be evaluated as those of R

(−2)
34 and R

(−1)
34 .

The singular part of the contribution of R
(0)
34;k can be computed by using the following

identity
∫
dDkΘ(k2)Θ(k0)f(k,ǫ)ei~b·~kT =

∫
dDkΘ(k2)Θ(k0)f(k,ǫ)θ(µ−kT )+O(ǫ0) , (3.107)

which holds for the dimensionally regulated integral of a generic function f(k,ǫ) which is

singular as kT → 0 and produces at most single poles in ǫ. The identity in eq. (3.107) tells

us that, to the purpose of computing the singular term as ǫ→ 0 the exponential factor

ei~b·~kT can be replaced by an ultraviolet cutoff µ. This can be understood by observing

that θ(µ−kT ) and ei~b·~kT both reduce to unity as kT → 0. The identity holds also when the

cutoff is placed on the energy component k0 of k (since k2 ≥ 0 implies k2
0 ≥ k2

T ).

We consider the integral of the k-dependent part of R
(0)
34

I
(1,0)
34;k (~b) =

∫
dDkδ+(k2)

1

d3+d4

(
2(p3 ·p4)

(p3 ·k)(p4 ·k)
− m2

(p3 ·k)2
− m2

(p4 ·k)2

)
(3.108)

×
(

(p3 ·p4)

2(p3 ·k)(p4 ·k)

)ǫ

r
(0)
34 e

i~b·~kT ,

up to order 1/ǫ. The reason to pull out the factor 1/(d3+d4) is because it allows us to use

the identity
2(p3 ·p4)

(p3 ·k)(p4 ·k)
− m2

(p3 ·k)2
− m2

(p4 ·k)2
=

(p3 ·p4)

(p3 ·k)(p4 ·k)
(d3+d4) , (3.109)

which makes the integrand considerably simpler. If now we extract the pole structure of

the integral by using eq. (3.107), we get

I
(1,0)
34;k (~b) =

∫
dDkδ+(k2)

(
p3 ·p4

(p3 ·k)(p4 ·k)

)1+ǫ

r
(0)
34 θ(µ

2−k2
0)+O(ǫ0) . (3.110)

There is no singularity associated to the angular variables. We can thus safely set ǫ= 0 in

the angular integral, obtaining

I
(1,0)
34;k (~b) = 2π

∫ ∞

0

dk0

k1+4ǫ
0

θ(µ2−k2
0)

∫ 1

0
dt

∫ 1

−1
dcosθ t2−2ǫδ(1−t2)

1

1−v cosθ
r

(0)
34 +O(ǫ0) ,

(3.111)

with t= |~k|/k0. Now we can perform the integral over t by using the delta function, while

the (otherwise divergent) integration over k0 is regulated by the cutoff we inserted. We

find for the pole

I
(1,0)
34;k (~b)

∣∣
pole

= − π

4ǫ

∫ 1

−1
dcosθ

1

1−v cosθ
r

(0)
34 . (3.112)
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The integration of the pole part of eq. (3.90) is thus finally reduced to a one-fold integral

that can be computed with standard methods. In order to write r
(0)
34 in terms of v, cosθ

the following relations are useful

α3 =
1−v cosθ

2
, (3.113)

α4 =
1−v2

2

1

1−v cosθ
. (3.114)

The result for the pole part of this contribution reads

〈I(1,0)
34;k (~b)

∣∣
pole

〉av. =π1−ǫ

(
b2

4

)2ǫ
Γ(−2ǫ)

Γ(ǫ+1)

(
2−

(
1−β2

)2

2β2
ln2
(

1−β
β+1

))
. (3.115)

The finite part in ǫ of the contribution of R
(0)
34;k can be integrated numerically.

The last contribution to be computed is that from R
(1)
34 . Since it comes with an overall

ǫ factor we can directly apply eq. (3.107) to evaluate it. The analytic result is too lengthy

to be reported.

We conclude this subsection discussing the contribution of the one-loop heavy-quark

vacuum polarization. Such term can be inserted in the radiated soft-gluon line, thus

leading to an additional virtual contribution to the one-loop soft-gluon current. Then

such contribution has to be consistently taken into account through the renormalization

procedure, which amounts to the wave function renormalization of the soft-gluon line and

the MS renormalization of αS with nf +1 quark flavours (the nf massless quarks and the

heavy quark Q). Finally, we can apply the decoupling relation of the heavy quark [39]

and introduce the running coupling α
(nf )
S (µ2

R) that we use throughout this paper (see

the comment at the beginning of section 2.2). To the purpose of computing the soft

contributions at small qT , the final result of this entire procedure is equivalent to avoiding

the introduction of the heavy-quark vacuum polarization and to directly renormalizing the

QCD coupling with nf light-quark flavours as in eq. (2.32).

3.4 Light-quark pair production

We start the analysis of the double real contribution by focusing on the process in which

a massless soft quark-antiquark pair is radiated

c(p1)c̄(p2) → Q(p3)Q̄(p4)q(k1)q̄(k2) . (3.116)

The corresponding factorisation formula for the squared matrix element is [61]

∣∣∣M(0)

cc̄→QQ̄qq̄

∣∣∣
2

∼ (g0µ
ǫ
0)4〈M(0)

cc̄→QQ̄
|I(0)

qq̄ (k1,k2)|M(0)

cc̄→QQ̄
〉 (3.117)

where the singular contributions are controlled by the soft factor

I
(0)
qq̄ (k1,k2) =

[
J

(0)
g,µ(k1+k2)

]†
Πµν(k1,k2)J

(0)
g,ν(k1+k2)+. . . . (3.118)
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In eq. (3.118) J
(0)
g,µ is the tree-level soft current in eq. (3.23) and we have defined the tensor

Πµν as:

Πµν(k1,k2) =
TR

(k1 ·k2)2
(−gµνk1 ·k2+kµ

1k
ν
2 +kν

1k
µ
2 ) . (3.119)

The dots in eq. (3.118) stand for gauge dependent contributions that are proportional to

the total charge of the hard partons, thereby vanishing when evaluated on the cc̄→QQ̄

matrix element. Our task is now to integrate eq. (3.118) over the phase space of the qq̄

pair after subtracting the initial-state contribution, i.e., to evaluate the integral I
(0)
qq̄ (~b) in

eq. (3.4).

To perform this calculation, we first integrate over the light-quark momenta k1 and k2

while keeping their total momentum k= k1+k2 fixed. This procedure will leave us with

expressions similar to the ones for the NLO-like contribution already described in section 3.2

and will be useful in order to organise the final integration over k in a similar way.

To proceed in this direction, we rewrite the integration of the soft factor in eq. (3.4)

in the following way:

∫
dDk1

(2π)D−1

dDk2

(2π)D−1
δ+(k2

1)δ+(k2
2)I

(0)
qq̄ (k1,k2)ei~b·(~kT 1+~kT 2) =

=

∫
dDk

(2π)D−1
J

(0)
g,µ(k)J(0)

g,ν(k)Fµν(k)ei~b·~kT , (3.120)

obtained by inserting the identity

1 =

∫
dDkδ(D)(k−k1−k2) , (3.121)

and by isolating the integral over the soft-quark momenta in the tensor Fµν(k), defined as:

Fµν(k) =
1

(2π)D−1

∫
dDk1

∫
dDk2 Πµν(k1,k2)δ+(k1)δ+(k2)δ(D)(k−k1−k2) . (3.122)

We now continue with the computation of the tensor Fµν . Since Fµν is a symmetric

tensor fulfilling kµF
µν = kνF

µν = 0 it must take the form

Fµν(k) =C

(
−gµν +

kµkν

k2

)
. (3.123)

The normalisation factor C can be fixed by evaluating the quantity gµνF
µν using eq. (3.122)

and eq. (3.123) and comparing the results. From eq. (3.123) we immediately obtain

gµνF
µν = −C(3−2ǫ) , (3.124)

while from eq. (3.122)

gµνF
µν = −TR

2−2ǫ

(k2)1+ǫΓ(3
2 −ǫ)161−ǫπ

3
2

−ǫ
. (3.125)

We can therefore write

C =
F (ǫ)

(k2)1+ǫ
, (3.126)
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with

F (ǫ) =
TR(1−ǫ)

Γ
(

5
2 −ǫ

)
161−ǫπ

3
2

−ǫ
. (3.127)

With the explicit expression for Fµν just obtained, the right-hand side of eq. (3.120) reads:

∫
dDk

(2π)D−1
J

(0)
g,µ(k)J(0)

g,ν(k)Fµν(k)ei~b·~kT = −
∫

dDk

(2π)D−1

F (ǫ)

(k2)1+ǫ

4∑

i,j=1

Ti ·Tj
pi ·pj

(pi ·k)(pj ·k)
ei~b·~kT ,

(3.128)

where the term in Fµν proportional to kµkν gives no contribution because of colour con-

servation.

We observe that eq. (3.128) has a similar structure to eq. (3.2), the corresponding NLO

integral for single soft-gluon emission at tree-level, after the substitution

δ+(k2) → F (ǫ)

(k2)1+ǫ
, (3.129)

which removes the on-shell constraint for the gluon. We can thus apply for the computation

a similar strategy as the one already employed in section 3.2, when dealing with the NLO-

like contribution.

Before performing the final integration over k of the expression in eq. (3.128), we need

to subtract the initial-state contribution from the soft current. We therefore write the

integral I
(0)
qq̄ (~b) in eq. (3.4) as

I
(0)
qq̄ (~b) = −F (ǫ)

∫
dDk

(2π)D−1

1

(k2)1+ǫ

{
∑

j=3,4


 m2

(pj ·k)2
T

2
j +2

∑

i=1,2

(
pi ·pj

pj ·k − p1 ·p2

(p1+p2)k

)
Ti ·Tj

pi ·k




+
2p3 ·p4

(p3 ·k)(p4 ·k)
T3 ·T4

}
ei~b·~kT . (3.130)

We can split eq. (3.130) in different integrals according to the different colour factors

Iqq̄
jj (~b) =

∫
dDk

(k2)1+ǫ

m2

(pj ·k)2
ei~b·~kT , (3.131)

Iqq̄
ij (~b) =

∫
dDk

(k2)1+ǫ

1

pi ·k

(
pi ·pj

pj ·k − p1 ·p2

(p1+p2)·k

)
ei~b·~kT , (3.132)

Iqq̄
34(~b) =

∫
dDk

(k2)1+ǫ

p3 ·p4

(p3 ·k)(p4 ·k)
ei~b·~kT . (3.133)

In terms of these integrals, eq. (3.130) reads

I
(0)
qq̄ (~b) = − F (ǫ)

(2π)D−1




∑

j=3,4


Iqq̄

jj (~b)T
2
j +2

∑

i=1,2

Iqq̄
ij (~b)Ti ·Tj


+2Iqq̄

34(~b)T3 ·T4



 . (3.134)
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The integrals in eqs. (3.131)–(3.133) can be evaluated with a similar strategy as to the one

used for the integrals in eqs. (3.29)–(3.31). The azimuthally averaged results are

〈Iqq̄
jj (~b)〉av. =π1−ǫΓ(1−ǫ)Γ(−2ǫ)

(
b2

4

)2ǫ [
−1

ǫ
2F1 (1,−2ǫ;1−ǫ;−B)

]

=π1−ǫΓ(1−ǫ)Γ(−2ǫ)

(
b2

4

)2ǫ{
− 1

ǫ
−2ln(1+B)

+ǫ
[
2Li2 (−B)−ln2 (1+B)

]
+O(ǫ2)

}
, (3.135)

〈Iqq̄
ij (~b)〉av. =

1

2
π1−ǫΓ(1−ǫ)Γ(−2ǫ)

(
b2

4

)2ǫ
Γ(λ

2 −2ǫ)Γ(λ
2 )

Γ(1−2ǫ)

×2

[(
pi ·pj

m2

)λ

2F1

(
λ

2
,
λ

2
−2ǫ;1ǫ;−B

)
−
(
p1 ·p2√

s

)λ

2F1

(
λ

2
,
λ

2
−2ǫ;1−ǫ;0

)]

=
1

2
π1−ǫΓ(1−ǫ)Γ(−2ǫ)

(
b2

4

)2ǫ{
− 2

ǫ
ln

(
2pi ·pj

m
√
s

)
+2Li2 (−B)

+
ǫ

3

[
ln3 (1+B)+6ln(1+B)Li2 (−B)−6Li3

(
B

B+1

)]
+O(ǫ2)

}
, (3.136)

〈Iqq̄
34(~b)〉av. =π1−ǫΓ(1−ǫ)Γ(−2ǫ)

(
b2

4

)2ǫ
1+β2

2β

{
−1

ǫ
L0−2L1+ǫ(2P2−L2)+O(ǫ2)

}
.

(3.137)

The functions Ln and Pn have been defined in eq. (3.43) and eq. (3.44), respectively, while

their explicit expressions are reported in eqs. (3.45)–(3.47). In the present case we also

need the function L2(β,θ), which reads

L2(β,θ) = 2(G(1,−1,−sec(θ),β)+G(1,−1,sec(θ),β)+G(1,1,−sec(θ),β)

+G(1,1,sec(θ),β)+G(1,−sec(θ),−1,β)+G(1,−sec(θ),1,β)−G(1,1,1,β)

−G(1,−sec(θ),−sec(θ),β)+G(1,sec(θ),−1,β)+G(1,sec(θ),1,β)−G(1,1,−1,β)

−G(1,sec(θ),−sec(θ),β)−G(1,sec(θ),sec(θ),β)−G(1,−sec(θ),sec(θ),β)

−G(1,−1,−1,β)−G(1,−1,1,β)) . (3.138)

Note that in eq. (3.136), the expression for 〈Iqq̄
ij (~b)〉av. before the ǫ-expansion depends on

the regularisation parameter λ. As in section 3.2 the integration in eq. (3.132) needs to be

carried out separately for the two terms, by using the regulator factor in eq. (3.37). We

can then perform the limit λ→ 0 in the expanded result.

3.5 Double gluon emission

We finally consider the contribution due to the emission of a soft-gluon pair, i.e. we consider

the process

c(p1)c̄(p2) → Q(p3)Q̄(p4)g(k1)g(k2) . (3.139)
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In the limit in which the two gluons become soft the singular behaviour is controlled by

the double-soft current J
(0)µν
gg (k1,k2) [61, 62]. The general expression of the squared soft

current reads

[
J (0)a1a2

gg,µν (k1,k2)
]†
dσµ(k1)dρν(k2)J (0)a1a2

gg,σρ (k1,k2)

=
1

2

{
J

(0)
g

2
(k1),J(0)

g

2
(k2)

}
+W

(0)
gg (k1,k2)+. . . ,

(3.140)

where the purely non-abelian two-parton correlations are controlled by the function

W
(0)
gg (k1,k2), which is defined as

W
(0)
gg (k1,k2) = −CA

n∑

i,j=1

Ti ·Tj Sij(k1,k2) . (3.141)

The dots in eq. (3.140) stand for gauge-dependent terms proportional to the total colour

charge of the hard partons and, thus, give a vanishing contribution when evaluated on

the cc̄→QQ̄ matrix element. The soft factor can be separated into massless and massive

contributions

Sij(k1,k2) = Sm=0
ij (k1,k2)+

(
m2

i Sm6=0
ij (k1,k2)+m2

j Sm6=0
ji (k1,k2)

)
, (3.142)

where mi(mj) = 0 for i(j) = 1,2 and mi(mj) =m for i(j) = 3,4. The massless contribution

reads [61]

Sm=0
ij (k1,k2) =

(1−ǫ)
(k1 ·k2)2

pi ·k1 pj ·k2+pi ·k2 pj ·k1

pi ·(k1+k2) pj ·(k1+k2)

− (pi ·pj)2

2 pi ·k1 pj ·k2 pi ·k2 pj ·k1

[
2− pi ·k1 pj ·k2+pi ·k2 pj ·k1

pi ·(k1+k2) pj ·(k1+k2)

]

+
pi ·pj

2 k1 ·k2

[
2

pi ·k1 pj ·k2
+

2

pj ·k1 pi ·k2
− 1

pi ·(k1+k2) pj ·(k1+k2)

×
(

4+
(pi ·k1 pj ·k2+pi ·k2 pj ·k1)2

pi ·k1 pj ·k2 pi ·k2 pj ·k1

)]
, (3.143)

pi, pj being the momenta of the emitters. The massive contribution is [62]

Sm6=0
ij (k1,k2) = − 1

4 k1 ·k2 pi ·k1 pi ·k2
+

pi ·pj pj ·(k1+k2)

2 pi ·k1 pj ·k2 pi ·k2 pj ·k1 pi ·(k1+k2)

− 1

2 k1 ·k2 pi ·(k1+k2) pj ·(k1+k2)

(
(pj ·k1)2

pi ·k1 pj ·k2
+

(pj ·k2)2

pi ·k2 pj ·k1

)
. (3.144)

On the right-hand side of eq. (3.140), W
(0)
gg is the irreducible correlation component

of double-soft radiation, while the anticommutator term corresponds to the independent-

emission component. We have to evaluate the b-space contribution of the squared current in

eq. (3.140). Going to b-space, the phase space for double-parton emission factorizes in terms

of single-parton factors (see eq. (3.8)). Therefore the b-space integral of the independent-

emission component of eq. (3.140) is fully factorized and it leads to the straightforward
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exponentiation of the tree-level single-emission contribution Fex,1 in eq. (3.6). Consequently

the b-space contribution I
(0)
gg (~b) of double soft-gluon emission to Fex,2 in eq. (3.7) is entirely

due to the correlation component W
(0)
gg of eq. (3.140). More precisely, we have to perform

the integral in eq. (3.5) where W
(0)
gg (k1,k2)

∣∣
sub

is defined from W
(0)
gg (k1,k2) in eq. (3.141)

after the proper subtraction of the contribution from initial-state radiation.

Part of the contribution to I
(0)
gg (~b) is similar to I

(0)
qq̄ (~b). The soft term in eq. (3.118)

involves the factor

pµ
i p

ν
j Πµν (k1,k2)

pi ·(k1+k2)pj ·(k1+k2)
=

TR

(k1 ·k2)2

−(pi ·pj)(k1 ·k2)+(pi ·k1)(pj ·k2)+(pi ·k2)(pj ·k1)

pi ·(k1+k2)pj ·(k1+k2)
.

(3.145)

In eq. (3.143) we have some terms with a similar structure as the ones in eq. (3.145). Those

are

Sm=0
ij (k1,k2)

∣∣∣
12

=
4

(k1 ·k2)

(pi ·pj)

(pi ·k)(pj ·k)
− (1−ǫ)

(k1 ·k2)2

(pi ·k1) (pj ·k2)+(pi ·k2) (pj ·k1)

pi ·(k1+k2) pj ·(k1+k2)
. (3.146)

Indeed by defining

Π̃µν(k1,k2) = − 1

(k1 ·k2)2
(−4gµν(k1 ·k2)+(1−ǫ)kµ

1k
ν
2 +(1−ǫ)kµ

2k
ν
1 ) (3.147)

we can rewrite eq. (3.146) as

Sm=0
ij (k1,k2)

∣∣∣
12

=
pµ

i

pi ·(k1+k2)
Π̃µν(k1,k2)

pν
j

pj ·(k1+k2)
. (3.148)

Now the integration of eq. (3.148) can be performed exactly in the same way as the inte-

gration of eq. (3.118) in the case of the emission of a soft qq̄ pair in section 3.4, leading to

the same results with an overall multiplicative factor.

By following the strategy of integrating over k1 and k2 at a fixed value of k= k1+k2,

similarly to what was done in eq. (3.122), we isolate the following integral

F̃µν(k) =
1

(2π)D−1

∫
dDk1

∫
dDk2 Π̃µν(k1,k2)δ+(k2

1)δ+(k2
2)δ(D)(k−k1−k2) . (3.149)

The structure of F̃µν(k) must be of the form

F̃µν(k) = agµν +b
kµkν

k2
. (3.150)

The coefficients a and b can be obtained by contracting eq. (3.149) with gµν and kµkν . We

find

F̃µν =
1

(k2)1+ǫ

1

Γ
(

5
2 −ǫ

)
161−ǫπ

3
2

−ǫ

(
11−7ǫ

2
gµν +(1−ǫ)k

µkν

k2

)
. (3.151)

Because of current conservation, the second term will give no contribution to the integrals.

The first term, on the other hand, is exactly the same we obtained in the computation for

the soft-quark pair emission, but with an overall multiplicative factor: −(11−7ǫ)/(1−ǫ).
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Hence, to compute the integral of the contribution in eq. (3.146), we can take the result

for the qq̄ pair production and perform the formal substitution

nfTR −→ −CA
11−7ǫ

4(1−ǫ) , (3.152)

where we also included the Bose factor 1/2 of eq. (3.5), which is due to the production of

two identical particles.

We can now define a new soft factor, in which we subtract the contribution that can

be computed as described above

S̃ij(k1,k2) = S̃m=0
ij (k1,k2)+

(
m2

i S̃m6=0
ij (k1,k2)+m2

j S̃m6=0
ji (k1,k2)

)
, (3.153)

where

S̃m=0
ij (k1,k2) = Sm=0

ij (k1,k2)−Sm=0
ij (k1,k2)

∣∣∣
12
, (3.154)

S̃m6=0
ij (k1,k2) = Sm6=0

ij (k1,k2) . (3.155)

We have

S̃m=0
ij (k1,k2) = − (pi ·pj)2

2(pi ·k)(pj ·k)

(
2

(pi ·k1)(pj ·k1)
+

1

(pi ·k1)(pj ·k2)

)

− (pi ·pj)

2k2(pi ·k)(pj ·k)

((pi ·k1)(pj ·k2)−(pi ·k2)(pj ·k1))2

(pi ·k1)(pj ·k2)(pi ·k2)(pj ·k1)

+
(pi ·pj)

k2

2

(pi ·k1)(pj ·k2)
+(1 ↔ 2) , (3.156)

S̃m6=0
ij (k1,k2) =

(pi ·pj)

2(pi ·k)2

(
1

(pi ·k1)(pj ·k1)
+

1

(pi ·k1)(pj ·k2)

)

− 1

k2(pi ·k)

1

(pi ·k1)

(
(pj ·k1)2

(pj ·k)(pj ·k2)
− (pi ·k1)2

(pi ·k)(pi ·k2)

)
+(1 ↔ 2) , (3.157)

where we have introduced k= k1+k2. We now need to subtract the contribution from

initial-state radiation. We can use the same technique already used in the previous sections.

The sum over the colour configurations can be organised as

4∑

i,j=1

S̃ij(k1,k2)Ti ·Tj =




4∑

i,j=1

S̃ijTi ·Tj −
(
−S̃12(T2

1+T
2
2)
)

+

(
−S̃12(T2

1+T
2
2)
)
. (3.158)

The second term on the r.h.s. is the same we would have for a colourless final state. The

first term is the new contribution to the subtracted current we have to compute and, by

using colour conservation, we can rewrite it as

∑

j=3,4


S̃jjT

2
j +

∑

i=1,2

(
2 S̃ij −S̃12

)
Ti ·Tj


+2 S̃34T3 ·T4 . (3.159)
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Hence we need now to compute
∫
dDk1 d

Dk2 S̃ij(k1,k2)δ+(k2
1)δ+(k2

2) , (3.160)

for all the contributions involved in eq. (3.159). This means we have to consider the

following combinations of emitters i and j:

• i and j being the two initial-state massless emitters;

• i being an initial-state massless emitter, j a final-state massive emitter;

• i= j being the same final-state massive emitter;

• i and j being the two final-state massive emitter.

It is convenient to integrate over the soft-gluon momenta k1 and k2 at fixed kµ = kµ
1 +kµ

2 :

after that, we are left with only the integration over k. With this goal in mind, we define

the shorthand notation

∫

(12)
f(k1,k2) ≡ Γ(1

2 −ǫ)
4ǫπ

1
2

−ǫ

∫
dDk1 d

Dk2 f(k1,k2)δ+(k2
1)δ+(k2

2)δ(D)(k−k1−k2) , (3.161)

and we apply it to the functions S̃m=0
ij and S̃m6=0

ij . To perform this computation, we can first

integrate one of the soft-gluon momenta (e.g. k1) using the delta function δ(D)(k−k1−k2).

Afterwards, we can go in the rest frame of k and integrate over the energy component

and the modulus of ~k2 by using the two remaining delta functions: this way only angular

integrals are left.

By following these steps, we obtain

∫

(12)
S̃m=0

ij =
(k2)−1−ǫ(pi ·pj)

(pi ·k)(pj ·k)

[
(1+~ni ·~nj)A+

1,1−2(1−~ni ·~nj)A−
1,1+A1,0+A0,1

]

≡(k2)−1−ǫ(pi ·pj)

(pi ·k)(pj ·k)
f
gg
ij (~ni ·~nj ,~n

2
i ,~n

2
j ) , (3.162)

∫

(12)
S̃m6=0

ij =
(k2)−1−ǫ

(pj ·k)2

[
(1−~ni ·~nj)A−

1,1−(1+~ni ·~nj)A+
1,1− 1

2
A+

1,−1+3A1,0− 1

2
A0,0

]

≡(k2)−1−ǫ

(pj ·k)2
g

gg
ij (~ni ·~nj ,~n

2
i ,~n

2
j ) , (3.163)

where we defined ~ni and ~nj as vectors in the centre-of-mass frame of k via pi =Ei(1,~ni)

and pj =Ej(1,~nj). In terms of invariants, we have

~n2
i = 1− k2m2

i

(pi ·k)2
, (3.164)

~n2
j = 1−

k2m2
j

(pj ·k)2
, (3.165)

~ni ·~nj = 1− k2(pi ·pj)

(pi ·k)(pj ·k)
. (3.166)
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The functions f
gg
ij , g

gg
ij are defined as the sum of the angular integrals (with appropriate

multiplicative factors) for the massless and massive case respectively. The angular integrals

A±
k,l are defined as

A±
k,l =

∫ π

0
dθ

∫ π

0
dφ

sinD−3 θ sinD−4φ

(1−ai cosθ)k(1±aj cosχcosθ±aj sinχsinθ cosφ)l
, (3.167)

with:

ai =
√
~n2

i cosχ=
~ni ·~nj√
~n2

i~n
2
j

. (3.168)

The expression of the angular integral in eq. (3.167) in many cases of interest can be found

in ref. [63]. Observe that A1,0 and A0,1 only depend on ai and aj respectively, and are

independent of the label ± in eq. (3.167).

We now need to perform the integration over k (and, when needed, the explicit eval-

uation of the angular integrals) of the expressions in eqs. (3.162) and (3.163) for all the

possible emitters.

3.5.1 Massless-massless contribution: S̃12

We start by addressing the problem of the integration of eq. (3.162) in the case in which

both the emitters are massless. The first step is to write explicitly the function f
gg
ij for this

configuration. By using the results of ref. [63] we find

∫

(12)
S̃m=0

12 (k1,k2) =
π

2

(p1 ·p2)(k2)−1−ǫ

(p1 ·k)(p2 ·k)

{
− 8

ǫ

[
1−Γ(1+ǫ)Γ(1−ǫ)

(
1+~n1 ·~n2

1−~n1 ·~n2

)ǫ]

−4

(
1−~n1 ·~n2

2

)∫ 1

0

dt

1−
(

1−~n1·~n2
2

)
t

[
(1−t)−ǫ−2(1−t)ǫ]

}
, (3.169)

where the integration over t in the last line is the integral representation of an hypergeo-

metric function.

Our task is now to compute
∫
dDkei~b·~kT

∫

(12)
S̃m=0

12 (k1,k2) . (3.170)

We observe that, while the first term on the right-hand side of eq. (3.169) is singular in

the limit k2 → 0, the second term is regular since ~n1 ·~n2 → 1 as k2 → 0 (see eq. (3.166)) and

thus it can be safely expanded in ǫ.

To proceed further, we need to regularise the additional collinear singularity due to

the presence of massless emitters, and we do it by partial fractioning

1

(p1 ·k)(p2 ·k)
=

1

(p1+p2)·k

(
1

(p1 ·k)
+

1

(p2 ·k)

)
, (3.171)

and by multiplying each singular contribution by the regulator already introduced in

eq. (3.37). The next step is, after switching to light-cone coordinates, to add the inte-

gration over the delta function of k2

∫
dK2 δ(k2−K2) . (3.172)
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which is used to integrate over k+. Then we can introduce the dimensionless variables

x=
K2

k2
T

y=
k2

−
k2

T

, (3.173)

obtaining expressions where the integrals over kT and the one over x and y are factorised.

The calculation can be completed with standard techniques: we find

〈
∫
dDk ei~b·~kT

∫

(12)
S̃m=0

ij

(
pi ·k
m2

)2λ

〉av. =

(
b2

4

)2ǫ−λ( √
s

2m2

)2λ

π2−ǫ Γ(−2ǫ+λ)

2Γ(1+ǫ−λ)

×
{

1

λ

[
4

ǫ2
−8ζ2−28ζ3ǫ+O(ǫ2)

]
+
(
31ζ4ǫ+O(ǫ2)

)
+O(λ)

}
. (3.174)

3.5.2 Massless-massive contribution: S̃ij

We now consider the massless-massive contribution. In this case we have to integrate both

eq. (3.162) and eq. (3.163) for i= 1,2 and j= 3,4.

Mass-independent part. We start our analysis with the massless-like part of the soft

factor. After writing explicitly the function f
gg
ij for this configuration by using the results

of ref. [63], we split it into a regular and a singular part as done for the massless-massless

contribution in section 3.5.1, immediately expanding in ǫ the regular part. Because of the

ǫ-pole coming from phase-space integration, the expansion of the integrand needs to be

performed up to order ǫ.

We now describe the integration over k of the angular function f
gg
ij . The collinear

singularity due to the presence of the massless momentum pi is regularised as before with

the regulator factor in eq. (3.37). We then introduce a delta function δ(k2−K2) as in

eq. (3.172) and we use it to perform the integral over k+.

Unlike the massless-massless contribution to the double gluon soft current but similarly

to the single-gluon computation, the emitter has a non-zero transverse momentum and

hence we have a dependence on ~kT in (pj ·k). As it is by now customary, we remove it with

the shift
~kT →~kT +

k−
pj,−

~pT,j . (3.175)

This way the only dependence left on the angular part of ~kT is in the exponential and the

angular integral can now be easily performed.

The integrals that are left are now the one over K2, over kT and over k−. We introduce

the dimensionless variables

u=
K2

k2
T

w=
k2

−
k2

T

m2

p2
j,−

, (3.176)

in terms of which f
gg
ij (~nj ·~ni,1,~n

2
j ) is now independent of k2

T

f
gg
ij (~ni ·~nj ,1,~n

2
j ) ≡ fgg

ij (u,w) . (3.177)

Because of this, the integral over kT factorises in the form
∫ ∞

0
dkT k

−1−3ǫ+2λ
T J−ǫ(bkT )ei~b·~pT,j

√
w kT /m , (3.178)
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and can be computed separately obtaining an hypergeometric function.9 As for the integral

over the variables u and w we obtain, up to overall factors

∫
dDkei~b·~kT

∫

(12)
S̃m=0

ij

(
pi ·k
m2

)2λ

∝
∫ ∞

0
du dw

u−1−ǫw−1+2ǫ

1+u+w
2F1

(
−2ǫ+λ,

1

2
−2ǫ+λ;1−ǫ; 1

w

b2m2

(~b·~pT,j)2

)
fgg

ij (u,w) . (3.179)

Notice that the collinear divergence, regulated by the parameter λ, is now described by the

limit w→ 0.

It is now useful to perform some manipulation on eq. (3.179) in order to move the

dependence on the regulator λ outside of the hypergeometric function. We use the following

relation

2F1(a,b,c;z) =
Γ(b−a)Γ(c)

Γ(b)Γ(c−a)
(−z)−a

2F1

(
a,a−c+1,a−b+1;

1

z

)

+
Γ(a−b)Γ(c)

Γ(a)Γ(c−b)(−z)−b
2F1

(
b,b−c+1, b−a+1,

1

z

)
. (3.180)

By applying it to eq. (3.179) and by exploiting the w→ 0 limits of the new hypergeometric

functions, the limit λ→ 0 can be easily carried out and we obtain

∫
dDkei~b·~kT

∫

(12)
S̃m=0

ij

(
pi ·k
m2

)2λ

=
(pi ·pj)2λ

(m2)3λ

(
b2

4

)2ǫ−λ

π1−ǫ Γ(−2ǫ+λ)

2Γ(1+ǫ−λ)

×
∫ ∞

0
du dw f gg

ij (u,w)
u−1−ǫw−1

1+u+w

{
wλ+

[

2F1

(
−2ǫ,−ǫ; 1

2
;c2

jbw

)
−1

−4ǫicjb

√
w

Γ(1
2 −2ǫ)Γ(1+ǫ)

Γ(1−2ǫ)Γ(1
2 +ǫ)

2F1

(
1

2
−2ǫ,

1

2
−ǫ; 3

2
;c2

jbw

)]}
, (3.181)

where cjb is defined in eq. (3.74). By comparing eq. (3.181) with the expression obtained

in the one loop case in eq. (3.61), we can observe that they share the same structure, the

only differences being an overall multiplicative factor, an additional integration over u and

the formal substitution

u−1−ǫw−1

1+u+w
→ 1

w (1+w)1+ǫ
. (3.182)

By using this relation, the azimuthal average can be directly deduced from eq. (3.62)

〈
∫
dDkei~b·~kT

∫

(12)
S̃m=0

ij

(
pi ·k
m2

)2λ

〉av. =
(pi ·pj)2λ

(m2)3λ

(
b2

4

)2ǫ−λ

π1−ǫ Γ(−2ǫ+λ)

2Γ(1+ǫ−λ)

×
∫ ∞

0
du dw f gg

ij (u,w)
u−1−ǫw−1

1+u+w

{
wλ+Re

{
(2F1 (−2ǫ,−ǫ;1−ǫ;wB)−1)

×(1+icot(πǫ))
}}

. (3.183)

9See formula 6.621 in ref. [64].
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The two-folded integral in eq. (3.183) does not present significant complications and can

be computed with standard techniques. We obtain

〈
∫
dDkei~b·~kT

∫

(12)
S̃m=0

ij

(
pi ·k
m2

)2λ

〉av. = −(pi ·pj)2λ

(m2)3λ

(
b2

4

)2ǫ−λ

π2−ǫ Γ(λ−2ǫ)

2ǫΓ(ǫ−λ+1)

×
{

1

λ

(
−2

ǫ
+4ζ2ǫ+14ζ3ǫ

2+O(ǫ3)

)
+

(
−
[
2ln2 (B)+4Li2

(
− 1

B

)
+2ζ2

]

+
2

3
ǫ

[
ln3
(

1

B
+1

)
+ln3 (B)+3ln(B) ln2 (B+1)−6ln2 (B) ln(B+1)

−6ln(B+1)Li2

(
− 1

B

)
−6Li3

(
B

B+1

)
−6

(
2ln

(
1

B
+1

)
+2ln(B)

− ln(B+1))ζ2

]
+ǫ2

[
7

12
ln4
(

1

B
+1

)
+14ζ2 ln2

(
1

B
+1

)
− 2

3
ln(B+1)

×ln3
(

1

B
+1

)
+Li2

(
B

B+1

)
ln2
(

1

B
+1

)
+8ln(B+1)ζ2 ln

(
1

B
+1

)

− 31

12
ln4 (B)+

11

12
ln4 (B+1)− 7

3
ln(B) ln3 (B+1)−2Li2

(
− 1

B

)
2

+Li2

(
B

B+1

)
2+

10

3
ln3 (B) ln(B+1)−4ln(B+1)Li3

(
− 1

B

)

+4ln(B+1)Li3

(
B

B+1

)
−12Li4

(
− 1

B

)
+6ln(B+1)Li3

(
1

B+1

)

+8Li4

(
B

B+1

)
+10Li4

(
1

B+1

)
−27ln2 (B)ζ2+3Li2

(
1

B+1

)

×
(
ln2 (B+1)−6ζ2

)
−33ln2 (B+1)ζ2+60ln(B) ln(B+1)ζ2

−4Li2

(
B

B+1

)
ζ2−Li2

(
− 1

B

)(
ln2
(

1

B
+1

)
+3ln2 (B)−2ln2 (B+1)

+2Li2

(
B

B+1

)
+10ζ2

)
+4ln(B+1)ζ3+

ζ4

2

]
+O

(
ǫ2
))

+O (λ)

}
. (3.184)

Combining the results in eq. (3.184) and eq. (3.174) to construct the second term in the

square bracket of eq. (3.159) we see that the λ→ 0 singularities cancel out, as expected.

Mass-dependent part. We now address the problem of the integration of the mass-

dependent part, thus considering eq. (3.163). The structure of this integral is similar to

the one we evaluated for the mass-independent part, but with some differences that simplify

the computation. In particular, the overall factor multiplying the angular functions changes

according to the substitution

(k2)−1−ǫ(pi ·pj)

(pi ·k)(pj ·k)
→ (k2)−1−ǫ

(pj ·k)2
, (3.185)

which in terms of the dimensionless variables introduced in eq. (3.176), corresponds to:

u

1+u+w
→ 2uw

(1+u+w)2
. (3.186)
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This replacement removes the dependence on the massless momentum from the denomi-

nator of the integrand: as a consequence, the integration of this term will not give rise to

additional collinear singularities and thus there is no need for the regulator we introduced

in eq. (3.37), that we can safely drop.

Eq. (3.163) can thus be written in terms of two-folded integrals simply by applying the

substitution (3.186) in eq. (3.183), setting λ= 0 and considering the function g
gg
ij rather

than f
gg
ij . By doing so, we obtain

〈
∫
dDkei~b·~kT

∫

(12)
S̃m6=0

ij 〉av. =

(
b2

4

)2ǫ

π1−ǫ Γ(−2ǫ)

Γ(1+ǫ)

∫ ∞

0
du dw

u−1−ǫ

(1+u+w)2

×
{

1+Re{[2F1 (−2ǫ,−ǫ;1−ǫ;wB)−1](1+icot(πǫ))}
}
ggg

ij (u,w) , (3.187)

where we have defined g
gg
ij (~ni ·~nj ,1,~n

2
j ) ≡ ggg

ij (u,w). The computation of this integral does

not present any particular additional challenge that cannot be solved with standard tech-

niques. The expression of the angular function ggg
ij can be obtained from ref. [63] and it is

again convenient to identify and immediately expand its contribution which is regular in ǫ.

To simplify the expression of the integrand, we also isolated a part that, after integration,

would have been independent of any kinematical variables: we evaluated numerically this

contribution to obtain its constant result c0, finding c0 = −37.73041235261383. The final

result reads

〈
∫
dDkei~b·~kT

∫

(12)
S̃m6=0

ij 〉av. = −
(
b2

4

)2ǫ

π2−ǫ Γ(−2ǫ)

ǫΓ(1+ǫ)

{
1+ǫ

[
π2

6
−6−2Li2

(
1

1−r2

)

−ln2(r2−1)+2ln(r)(2 ln(r)+2)

]
+
ǫ2

6

[
c0+30Li3

(
1

r2

)

+72Li3

(
1

1−r2

)
−120

(
Li3

(
1

1−r

)
−Li3

(
1

r+1

))

+12Li2

(
1

r2

)
(ln(r)−5)+16π2 coth−1

(
1−2r2

)
+8ln3(r−1)−16ln3(r)

+8ln3(r+1)−36ln(r+1)ln2(r−1)+36ln2(r) ln(r−1)

−36ln2(r+1)ln(r−1)−192ln2(r)+36ln2(r) ln(r+1)

+120ln(r) ln(r−1)+4π2 ln(r)−144ln(r)+120ln(r) ln(r+1)

+63ζ3+13π2+24−30π2 ln(2)

]}
, (3.188)

where the variable r is defined in eq. (3.19).
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3.5.3 Massive-massive contribution: S̃jj

We now examine the case in which only one massive final-state emitter is involved and we

consider S̃jj , with j= 3, 4. By plugging in eq. (3.153) the condition pi = pj , we obtain

S̃jj = S̃m=0
jj +2m2S̃m6=0

jj =
m4

(pj ·k1)(pj ·k2)(pj ·k)2
+

4m2

k2(pj ·k1)(pj ·k2)

= 2

(
m4

(pj ·k)3
+

4m2

k2(pj ·k)

)
1

(pj ·k1)
, (3.189)

where k= k1+k2. This more compact expression for S̃jj allows us to obtain a simplified

version of eqs. (3.162), (3.163)

∫

(12)
S̃jj = 2

(
m4

(pj ·k)3
+

4m2

k2(pj ·k)

)
(k2)−ǫ2−2+2ǫ

(pj ·k)
A1,0 , (3.190)

and, by using the result of the angular integral A1,0 from ref. [63], we can write

∫

(12)
S̃jj =

(k2)−1−ǫm2

(pj ·k)2

2π

1−2ǫ

(
m2k2

(pj ·k)2
+4

)

2F1

(
1

2
,1,

3

2
;~n2

j

)
. (3.191)

The integration of eq. (3.191) can be carried out in a similar way as the integration of S̃ij

has been performed in section 3.5.2. Also in this case it is convenient to split the integrand

into its singular and regular part, immediately expanding in ǫ the latter. The final result

reads

〈
∫
dDkei~b·~kT

∫

(12)
S̃jj〉av. =

(
b2

4

)2ǫ

π2−ǫ Γ(−2ǫ)

Γ(ǫ+1)

{
2

ǫ2
+

4

ǫ

(
ln
(
r2
)

−1
)

+
1

3

[
−24Li2

(
1−r2

)
−24ln

(
r2
)

−5π2+30
]

+ǫ

[
32ln

(
2r

r+1

)
Li2

(
1

2

(
1+

1

r

))
− 8

3

(
7+12ln

(
2

r−1

))
Li2

(
1−r

2

)

+

(
254

3
+64ln(r+1)

)
Li2(1−r)+2

(
4+

1

r
+8ln

(
r
r+1

(r−1)2

))
Li2

(
1

r2

)

+

(
−182

3
− 8

r
+32ln

(
(r−1)2

2r2(r+1)2

))
Li2

(
1

r

)
+32ln

(
2r

r−1

)
Li2

(
r−1

2r

)

+32ln

(
r−1

2r

)
Li2

(
r−1

r

)
+8

(
−3+4ln

(
2r2 r+1

r−1

))
Li2(−r)

−64ln(r−1)Li2

(
1

r+1

)
+

8

3

(
7+12ln

(
2

r+1

))
Li2

(
2

r+1

)

+32ln

(
2r

r+1

)
Li2

(
r

r+1

)
+32Li3

(
1

2

(
1+

1

r

))
−32Li3

(
1−r

2

)

−64Li3(1−r)+8Li3

(
1

r2

)
−64Li3

(
1

r

)
+32Li3

(
r−1

2r

)
−32Li3

(
r−1

r

)

−64Li3(−r)−64Li3

(
1

r+1

)
−32Li3

(
2

r+1

)
−64Li3

(
r−1

r+1

)
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−32Li3

(
r

r+1

)
+64Li3

(
r+1

1−r

)
−8Li3

(
1−r2

)
+

1

3r

(
−32r ln3(r−1)

+96r ln3(r)+r ln2(r)(77+96ln(2)−144ln(r+1))+96r ln2(r−1)

×ln(r+1)−2ln(r−1)(4r
(
5π2−7ln(2)

)
+ln(r)(−6+r(−67

+48ln(2))+72r ln(r))+4r(7−48ln(r)) ln(r+1)+96r ln2(r+1))

+12ln(r)
(
2r
(
9+8ln2(2)

)
−ln(r+1)(1+2r(5+8ln(2))−8r ln(r+1))

)

+r(−60+π2(27+16ln(2))+4ln2(2)(−7+8ln(2))+2
(
−24+π2

)
ln
(
r2
)

−8ln3
(
r2
)

+4ln(r+1)
(
6
(
π2−4ln2(2)

)
+(7+36ln(2)) ln(r+1)

)

+12ln2
(
r2
)(

−2+ln
(
r2−1

))
+276ζ(3))

)]}
. (3.192)

3.5.4 Massive-massive contribution: S̃34

We finally analyse the case of the interference between the two final-state emitters. Our task

is to integrate both the mass-independent and mass-dependent expressions in eq. (3.162)

and eq. (3.163) for i= 3, j= 4.

Mass-independent part. Let us start our analysis with the mass-independent contri-

bution. We need to integrate the dimensionless angular function f
gg
34 (~n3 ·~n4,~n

2
3,~n

2
4) defined

in eq. (3.162).

To evaluate the angular integrals contained therein, we relate them to the imaginary

part of a massive box diagram via the optical theorem.10 All order results for the box

diagram with a single mass, equivalent to fix ai = aj in eq. (3.167), are presented in ref. [66],

while results with two different masses but only at the lowest order in ǫ can be found

in ref. [67]. We extended the latter expression to all orders in ǫ, obtaining the angular

integral A±
1,1

A±
1,1 =

∫ π

0
dθ

∫ π

0
dφ

sinD−3 θ sinD−4φ

(1−a3 cosθ)(1±a4 cosχcosθ±a4 sinχsinθ cosφ)

=
2π

2ǫ−1

~n2
3+~n3 ·~n4√

1−~n2
3

(
~n2

3+~n2
4+(~n3 ·~n4)2+2~n3 ·~n4−~n2

3~n
2
4

)×

×F1

(
1

2
−ǫ;1, 1

2
;
3

2
−ǫ; ~n3 ·~n2

4−~n2
3~n

2
4

(~n3 ·~n4)2+2~n3 ·~n4+~n2
3−~n2

3~n
2
4+~n2

4

,1− ~n2
3

~n2
3−1

)

+(3 ↔ 4) . (3.193)

By following the same strategy applied in the previous sections, we isolate in the angular

function f
gg
34 (~n3 ·~n4,~n

2
3 ,~n

2
4 ) a term σm=0

34 that will give rise to singularities upon integration

over k2 and a regular term ρm=0
34 that vanishes in the k2 → 0 limit and that can be directly

expanded in ǫ

f
gg
34 (~n3 ·~n4,~n

2
3 ,~n

2
4 ) = −π

ǫ

[
σm=0

34 +ǫρm=0
34 +(p3 ↔ p4)

]
. (3.194)

10See e.g. the discussion in appendix A of ref. [65].
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By using eq. (3.193), the k2-singular part can be written in the following way

σm=0
34 = 2−2h(ǫ)

(
1−~n2

3

4

)−ǫ [
1−2ǫ

(1−~n3 ·~n4)χ34

~n2
3−~n3 ·~n4

2F1

(
1,

1

2
−ǫ; 3

2
;χ34

)]
, (3.195)

where the function h(ǫ) is defined as

h(ǫ) =π−1/2 4−ǫ Γ(
1

2
−ǫ)Γ(1+ǫ) , (3.196)

and the k2-independent coefficient χ34 is given by

χ34 =
(~n2

3−~n3 ·~n4)2

(~n2
3−~n2

4)2+(~n3 ·~n4)2−~n2
3~n

2
4

, (3.197)

and fulfils 0 ≤χ34 ≤ 1. We observe that the factor (1−~n3 ·~n4)/(~n2
3−~n3 ·~n4) is also indepen-

dent of k2.

Let us start by considering the integration of the singular contribution. By inserting

eqs. (3.194), (3.195) in eq. (3.162) we obtain a sum of integrals with the following structure

Igg
34 [fα] =

∫
dDkei~b·~kT

(k2)−1−ǫ(p3 ·p4)

(p3 ·k)(p4 ·k)
fα(~n3,~n4) , (3.198)

with three possible functions fα(~n3,~n4) (α= 1,2,3)

f1(~n3,~n4) = 1 , (3.199)

f2(~n3,~n4) =

(
1−~n2

3

4

)−ǫ

, (3.200)

f3(~n3,~n4) = −4πh(ǫ)

(
1−~n2

3

4

)−ǫ
(1−~n3 ·~n4)χ34

~n2
3−~n3 ·~n4

2F1(1,
1

2
−ǫ; 3

2
;χ34) . (3.201)

With those definitions, we have

∫
dDkei~b·~kT

(k2)−1−ǫ(p3 ·p4)

(p3 ·k)(p4 ·k)

(
−π

ǫ
σm=0

34

)
= −2π

ǫ
Igg

34 [f1]+
2π

ǫ
h(ǫ)Igg

34 [f2]+Igg
34 [f3] . (3.202)

We start by considering Igg
34 [f1]

Igg
34 [f1] =

∫
dDk

p3 ·p4

(p3 ·k)(p4 ·k)
(k2)−1−ǫ ei~b·~kT . (3.203)

This integral is exactly the same appearing in eq. (3.133) for the case of soft qq̄ emission,

and the result up to O(ǫ) was already presented in eq. (3.137). In the present case, however,

we need it up to O(ǫ2), since in eq. (3.202) Igg
34 [f1] already appears with an overall factor

1/ǫ. We find

〈Igg
34 [f1]〉av. =π1−ǫ Γ(1−ǫ)Γ(−2ǫ)

(
b2

4

)2ǫ
1+β2

2β

{
−1

ǫ
L0−2L1+ǫ(2P2−L2) (3.204)

−2

3
ǫ2 (L3−6P3−3Q3)+O(ǫ3)

}
.
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The functions Ln, Pn have been defined in eqs. (3.43)–(3.44). Here we also introduced the

function Qn, defined as

Qn(β) =

∫ β

−β

dz

1−z2
Lin

(
− z2 tan2(θ)

z2−sec2(θ)

)
. (3.205)

The explicit expressions of the functions L0, L1 and P2 are already provided in eqs. (3.45)–

(3.47) while L2 can be found in eq. (3.138). The functions L3, P3 and Q3, that can be

obtained in a similar way.

We can use a similar strategy to evaluate Igg
34 [f2]

Igg
34 [f2] =

(
m2

4

)−ǫ ∫
dDkei~b·~kT

(k2)−1−2ǫ(p3 ·p4)

(p3 ·k)1−2ǫ(p4 ·k)
. (3.206)

In this case, the generalisation of Feynman parametrisation needs to be applied

1

AmBn
=

Γ(m+n)

Γ(m)Γ(n)

∫ 1

0
dx

xm−1(1−x)n−1

(xA+(1−x)B)m+n
, (3.207)

thereby obtaining

Igg
34 [f2] = (p3 ·p4)

(
m2

4

)−ǫ

(1−2ǫ)

∫ 1

0
dxx−2ǫ

∫
dDkei~b·~kT

(k2)−1−2ǫ

(p(x)·k)2−2ǫ
, (3.208)

with p(x) =xp3+(1−x)p4. The azimuthally averaged integral 〈Igg
34 [f2]〉av. can be evalu-

ated as

〈Igg
34 [f2]〉av. = (p3 ·p4)

(
m2

4

)−ǫ

(1−2ǫ)

∫ 1

0

dx

(p2(x))1−ǫ
x−2ǫ 〈Iaux

2 (x)〉av. , (3.209)

with

〈Iaux
2 (x)〉av. = 〈

∫
dDkei~b·~kT

(k2)−1−ǫ

(p(x)·k)2
p2(x)

(
k2p2(x)

(p(x)·k)2

)−ǫ

〉
av.

=

(
b2

4

)2ǫ
π1−ǫ 2−2−2ǫ

ǫ2(1−2ǫ)
Γ(1−2ǫ)Γ(1−ǫ)

(
1+

p2
T (x)

p2(x)

)2ǫ

. (3.210)

The leftover integral over the Feynman parameter can be performed in a standard way and

the solution expressed in terms of multiple polylogarithms.

The last integral we need for the evaluation of the singular part is

Igg
34 [f3] = −4πh(ǫ)

∫
dDkei~b·~kT

(k2)−1−ǫ(p3 ·p4)

(p3 ·k)(p4 ·k)

×
(

1−~n2
i

4

)−ǫ
(1−~n3 ·~n4)χ34

~n2
3−~n3 ·~n4

2F1

(
1,

1

2
−ǫ; 3

2
;χ34

)
, (3.211)

with h(ǫ) and χ34 defined in eqs. (3.196) and (3.197), respectively.

– 45 –



J
H
E
P
0
4
(
2
0
2
3
)
1
4
4

In order to simplify the expression of the integrand we define the auxiliary momentum

ℓµ =
1

v

(
pµ

3 − m2

(p3 ·p4)
pµ

4

)
, (3.212)

with v defined as in eq. (3.20). By using the definition of ℓµ and an integral representation

for the hypergeometric function, we can rewrite Igg
34 [f3] as

Igg
34 [f3] = −

∫
dDkei~b·~kT

2π(p3 ·p4)

v

(k2)−1−2ǫ

(p4 ·k)

(
m2

(p3 ·k)2

)−ǫ
1

ℓ·k

×
∫ 1

0
dt(t)− 1

2
−ǫ(1−t)ǫ χ34

1−tχ34
.

=2π(m2)−ǫ (p3 ·p4)

v2

∫ 1

0
dt(t)− 1

2
−ǫ(1−t)ǫ

∫
dDk(k2)−1−2ǫ ei~b·~kT

(p3 ·k)1−2ǫ

×
((

1

1− t
v2

)(
− 1

(p4 ·k)

)
+

m2

2(p3 ·p4)

∑

σ=±1

1

1+σ
√

t
v

1

ℓ(σ) ·k

)
, (3.213)

where for convenience we introduced

ℓµ(±) = pµ
3 ±

√
tℓµ . (3.214)

By analysing the dependence on t of the integrand, we observe that it is expressed as a

sum of functions, some of which feature a divergence for t= v2. This singularity has no

physical origin and will eventually cancel in the final result when summing together these

divergent contributions. In order to regularise it, we fix a small imaginary part for v and

take its finite limit to zero at the end of the computation. The dependence of the integrand

on k is via a factor

Igg
34 [f3] ∝ (k2)−1−2ǫ

(p3 ·k)1−2ǫ

{
1

(p4 ·k)
;

1

(ℓ(±) ·k)

}
. (3.215)

By applying the generalised Feynman parametrisation introduced in eq. (3.207), we obtain

a single momentum integral equivalent to Iaux
2 in eq. (3.210), the only difference being the

expression of the auxiliary momentum, which now reads:

p(x) =xp3+(1−x)P , (3.216)

with the three possibilities

P = p4, P = ℓ(+) P = ℓ(−) . (3.217)

The integration over k can thus be performed by using the partial results already obtained.

The leftover integrals over the Feynman parameter x and the variable t we used for the

integral representation of the hypergeometric function can be performed with standard

techniques, and the result can be expressed in terms of multiple polylogarithms.
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We now consider the contribution to f
gg
34 that vanishes in the k2 → 0 limit, ρm=0

34 . It

can be written at all orders in ǫ in the following compact way

1

π
ρm=0

34 =
Γ
(

1
2 −ǫ

)
Γ(ǫ)

√
π

(
1−~n2

3

~n2
3

)−ǫ 1+D34−2
√
~n2

3√
~n2

3

+
1

ǫ

[
2−(1+D34)2F1

(
1

2
,1;1+ǫ,1−~n2

3

)]

− 2(1−~n3 ·~n4)χ34

~n2
3−~n3 ·~n4

∫ 1

0
du

(1−u)− 1
2

−ǫ

√
1−uχ34

[(1+uψ)ǫ−uǫ(1+ψ)ǫ]

+D34γ

∫ 1

0
du

(1−u)
1
2

−ǫ

√
1−~n2

3u(1−(1−u)γ)
, (3.218)

where the coefficient χ34 is defined in eq. (3.197) and

D34 =
(1+~n3 ·~n4)(~n2

3+~n3 ·~n4)

(~n2
3+~n2

4)2+(~n3 ·~n4)2−~n2
3~n

2
4

, (3.219)

γ=
(~n3 ·~n4)2−~n2

3~n
2
4

(~n2
3+~n2

4)2+(~n3 ·~n4)2−~n2
3~n

2
4

, (3.220)

ψ= − (~n3 ·~n4)2−~n2
3~n

2
4

(~n2
3−~n2

4)2+(~n3 ·~n4)2−~n2
3~n

2
4

. (3.221)

Because of its regular behaviour, ρm=0
34 can be safely expanded in ǫ

ρm=0
34 = ρ

m=0,(0)
34 +ǫρ

m=0,(1)
34 +O(ǫ2) . (3.222)

Due to the complexity of the functions ρ
m=0,(0)
34 and ρ

m=0,(1)
34 , we perform numerically the

last steps of their integration. The representation of the soft integrals in qT -space, rather

than the impact-parameter space used until now, is more convenient for this purpose,

as it allows us to trivially carry out the D−2 dimensional integration of the transverse

components of the soft momentum k. The conversion to the representation in b-space can

be obtained by applying to the final result the relation in eq. (3.15). To be specific, the

integral that we will compute is
〈∫

dDkδ(D−2)(~kT −~qT )
(k2)−1−ǫ(p3 ·p4)

(p3 ·k)(p4 ·k)
(ρ

m=0,(0)
34 +ǫρ

m=0,(1)
34 )

〉

av.

. (3.223)

To perform its azimuthal average, we can fix the azimuthal angle φ such that ~pT,3 ·~qT =

pT,3 qT cosφ. With this choice the integral over the other angles becomes straightforward.

After integrating over dD−2kT , the remaining computation can be performed for instance

by introducing an integral over the virtuality of k. We obtain

(q2
T )−1−ǫ

B(1
2 ,

1
2 −ǫ)

∫ 1

−1
dcosφ

∫ ∞

0
dxdy

1−~n3 ·~n4

2xy
x−1−ǫ(1−cos2φ)−1/2−ǫ(ρ

m=0,(0)
34 +ǫρ

m=0,(1)
34 ) ,

(3.224)

where we introduced the dimensionless integration variables

x=
k2

q2
T

, y=
k−
qT

. (3.225)
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Given that the functions ρ
m=0,(0)
34 and ρ

m=0,(1)
34 vanish by construction in the limit x→

0, the integrand in eq. (3.224) can be safely expanded in ǫ and integrated numerically over

x, y and cosφ. The result is a function of the LO phase-space, which can be reduced to the

dependence on β and cosθ and can thus be provided in the form of a two-dimensional grid.

In order to obtain a more stable and fast numerical evaluation of eq. (3.224) we isolate

its contributions that can be expressed only as a function of β. To be specific, we observe

that in the ǫ-expanded expression,

(q2
T )−1−ǫ

B(1
2 ,

1
2 −ǫ)

∫ 1

−1
dcosφ

∫ ∞

0
dxdy

1−~n3 ·~n4

2x2 y
(1−cos2φ)−1/2

[
ρ

m=0,(0)
34 +ǫρ

m=0,(1)
34

−ǫ ln
[
x(1−cos2φ)

]
ρ

m=0,(0)
34

]
, (3.226)

the integral of the first two terms in the square bracket is independent of cosθ, allowing us

to simply compute a one-dimensional grid. In addition, these terms can be integrated by

using the following identity,

1

π

∫ 1

−1
dcosφ

∫ ∞

0
dxdy

1−~n3 ·~n4

2x2 y
x−1−ǫ(1−cos2φ)−1/2−ǫf(~n3 ·~n4,~n

2
3,~n

2
4)

=

∫ 1

0
dt

∫ 1

−1
dcosφ

t2

1−t2
1

1−vtcosφ
f

(
1− 1−t2

1−vtcosφ
,t2,1−(1−v2)

1−t2
(1−vtcosφ)2

)
,

(3.227)

which is valid for a generic function f , and that can by proven by using the relation in

eq. (3.107). The right hand side of the equation is only a two-fold integral, leading to a

further simplification of the corresponding numerical integration.

Mass-dependent part. We now consider the case of the contribution coming purely

from the massive case, S̃m6=0
34 . We can approach the computation in a way similar to

that used for the mass-independent part we just described, considering eq. (3.163) rather

than eq. (3.162). The factor multiplying the angular functions, however, is not anymore

symmetric under the exchange p3 ↔ p4. Unlike the mass-independent contribution, we

thus cannot assume that the final result respects such symmetry and we need to separately

compute the integral of S̃m6=0
34 and the one of S̃m6=0

43 .

As it is by now customary, we write the dimensionless angular function g
gg
34(~n3 ·~n4,~n

2
3 ,~n

2
4 )

defined in eq. (3.163) as the sum of a singular and a regular contribution

g
gg
34(~n3 ·~n4,~n

2
3 ,~n

2
4 ) = −π

ǫ

[
σm6=0

34 +ǫρm6=0
34 +(p3 ↔ p4)

]
. (3.228)

The singular part, which generates singularities after integration over k2, can be writ-

ten as

σm6=0
34 =−

(1−~n2
3)−ǫΓ

(
1
2 −ǫ

)
Γ(1+ǫ)

√
π


1+ǫ

2χ34(1−~n3 ·~n4)2F1

(
1, 1

2 −ǫ; 3
2 ;χ34

)

~n2
3−~n3 ·~n4




+
(1−~n2

4)−ǫΓ
(

1
2 −ǫ

)
Γ(1+ǫ)

√
π


1+ǫ

2χ34(1−~n3 ·~n4)2F1

(
1, 1

2 −ǫ; 3
2 ;χ34

)

~n3 ·~n4−~n2
4


 , (3.229)
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while the regular part can be directly expanded in ǫ and we can symbolically write

ρm6=0
34 = ρ

m6=0(0)
34 +ǫρ

m6=0(1)
34 +O(ǫ2) , (3.230)

where higher order terms can be neglected in our computation.

Let us start with the integration of the singular part in eq. (3.229). Its computation

requires the evaluation of integrals in the form

Igg
j [fα] =

∫
dDkei~b·~kT

(k2)−1−ǫ

(pj ·k)2
fα(~n3,~n4) , (3.231)

with j= 3,4 and where the possible functions fα(~n3,~n4) are the same already introduced

in the mass-independent case in eq. (3.199). With this definition we have

∑

j=3,4

∫
dDkei~b·~kT

(k2)−1−ǫ

(pj ·k)2

(
−π

ǫ
(σm6=0

34 +σm6=0
43 )

)

=

(
−π

ǫ
Igg

3 [f1]+
π

ǫ
h(ǫ)Igg

3 [f2]+
1

2
Igg

3 [f3]+
π

ǫ
Igg

4 [f1]−π

ǫ
h(ǫ)Igg

4 [f2]+
1

2
Igg

4 [f3]

)
+(p3 ↔ p4) .

(3.232)

We start from Igg
j [f1],

Igg
j [f1] =

∫
dDk

1

(k2)1+ǫ

ei~b·~kT

(pj ·k)2
. (3.233)

This integral has already been computed in section 3.4 and we have m2Igg
j [f1] = Iqq̄

jj , where

Iqq̄
jj is defined in eq. (3.131). The result for 〈Iqq̄

jj (~b)〉
av.

was reported in eq. (3.135).

We now turn our attention to Igg
j [f2]. We first consider Igg

3 (f2). The integral to

compute is

Igg
3 [f2] =

∫
dDkei~b·~kT

(k2)−1−2ǫ

(p3 ·k)2

(
m2

4(p3 ·k)2

)−ǫ

, (3.234)

which has the same structure as Iaux
2 , introduced in eq. (3.210). We can thus take the

result of 〈Igg
3 [f2]〉av. from eq. (3.210) with the replacement p(x) → p3

〈Igg
3 [f2]〉av. =

1

m2

(
b2

4

)2ǫ
π1−ǫ 2−2−2ǫ

ǫ2(1−2ǫ)
Γ(1−2ǫ)Γ(1−ǫ)

(
1+

p2
3,T

m2

)2ǫ

. (3.235)

The integral Igg
4 [f2], on the other hand, is not proportional to Iaux

2 (x)

Igg
4 [f2] =

∫
dDkei~b·~kT

(k2)−1−2ǫ

(p4 ·k)2

(
m2

4(p3 ·k)2

)−ǫ

, (3.236)
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but the structure of Iaux
2 (x) can be recovered by applying the generalised Feynman parame-

trisation of eq. (3.207):

〈Igg
4 [f2]〉av. = −21+2ǫǫ(1−2ǫ)

∫ 1

0
dxx(1−x)−1−2ǫ 〈

∫
dDkei~b·~kT

(k2)−1−2ǫ

(p(x)·k)2−2ǫ
〉
av.

= −21+2ǫǫ(1−2ǫ)

∫ 1

0

dx

(p2(x))1−ǫ
x(1−x)−1−2ǫ 〈Iaux

2 (x)〉av.

= − 1

4βm2 ǫ
π1−ǫ

(
b2

4

)2ǫ(
τ

2

)1−ǫ

Γ(1−2ǫ)Γ(1−ǫ)

×
∫ β

−β
dy

(
1+

y

β

)(
1− y

β

)−1−2ǫ( 1

1−y2

)1−ǫ
(
Bτ

1−τ
y2

1−y2
+1

)2ǫ

, (3.237)

where in the last step we used the known result of 〈Iaux
2 (x)〉av. from eq. (3.210). At this

stage, the integrand cannot yet be expanded in ǫ, since the integral does not converge in

the limit ǫ→ 0 due to a singularity in y=β. In order to perform the expansion, we need to

isolate the singular behaviour and subtract it. We consider the following auxiliary integral:

∫ β

−β
dy
(
1−y2

)2ǫ−1
(

1− y

β

)−2ǫ−1(
1+

y

β

)1−2ǫ

=

=2
√
πΓ(−2ǫ)

β

1−β2


 1

Γ
(

1
2 −2ǫ

)2F1

(
1

2
,−2ǫ,

1

2
−2ǫ,β2

)

+ǫ
1+β2

Γ
(

3
2 −2ǫ

)2F1

(
1

2
,1−2ǫ,

3

2
−2ǫ,β2

)
 . (3.238)

We observe that the integrand in eq. (3.238) has the same behaviour as I4[f2] in the

y→β limit, while having a simpler structure that allows for a straightforward analytic

integration. We can thus add the r.h.s. of eq. (3.238) to eq. (3.237), while subtracting

the l.h.s. at the integrand level in order to obtain a regular expression that can be safely

expanded. The resulting integral can be evaluated separately at each order in ǫ in terms

of multiple polylogarithms.

Let us finally consider the contribution of the function f3. By following the same

procedure already applied for the evaluation of Igg
34 [f3] in the mass-independent case, we

define the momentum ℓ as in eq. (3.212) and by using eq. (3.213) we have:

〈Igg
3 [f3]〉av. = −π

v
〈
∫
dDkei~b·~kT

(k2)−1−2ǫ

(p3 ·k)

(
m2

(p3 ·k)2

)−ǫ
1

ℓ·k

∫ 1

0
dtt−

1
2

−ǫ(1−t)ǫ χ34

1−tχ34
〉
av.

,

(3.239)

which, once we substitute in it the definition of χ34 as in eq. (3.197), gives us an expression

that only depends explicitly on two momenta, p3 and ℓ. By applying partial fractioning
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and defining ℓ± as in eq. (3.214) we obtain:

〈Igg
3 [f3]〉av. = −π

v
〈
∫
dDkei~b·~kT

(m2)−ǫ

2

×
∫ 1

0
dtt−1−ǫ(1−t)ǫ

(
(k2)−1−2ǫ

(p3 ·k)1−2ǫ(ℓ− ·k)
− (k2)−1−2ǫ

(p3 ·k)1−2ǫ(ℓ+ ·k)

)
〉av. . (3.240)

By applying the generalisation of Feynman parametrisation introduced in eq. (3.207) we

can reduce the dependence of the denominators of the integrand to a single momentum,

and retrieve the structure of Iaux
2 (x) as defined in eq. (3.210). The leftover integral over

the Feynman parameter x and the variable t can be computed in terms of multiple poly-

logarithms with a standard procedure.

The evaluation of Igg
4 [f3] can be performed by following the same steps, but the differ-

ences in the integrand make the procedure of partial fractioning a bit more involved. After

introducing the momentum ℓ and applying partial fractioning for a first time, we obtain

an expression similar to eq. (3.240):

〈Igg
4 [f3]〉av. = −π

v
〈
∫
dDkei~b·~kT

(m2)−ǫ

2(p4 ·k)2

×
∫ 1

0
dtt−1−ǫ(1−t)ǫ

(
(k2)−1−2ǫ

(p3 ·k)−1−2ǫ(ℓ− ·k)
− (k2)−1−2ǫ

(p3 ·k)−1−2ǫ(ℓ+ ·k)

)
〉av. ,

(3.241)

but, in this case, we can not yet apply Feynman parametrisation, since each denominator

involves three different products of the momenta. We can circumvent this problem by

performing an additional partial fractioning:

〈Igg
4 [f3]〉av. = − π

v2
(m2)−ǫ〈

∫
dDkei~b·~kT

∫ 1

0
dt
t−

1
2

−ǫ (1−t)ǫ

(
1− t

v2

)
{

(k2)−1−2ǫ

(p3 ·k)−2ǫ(p4 ·k)2

+
m2

p3 ·p4


−

(
1+ t

v2

)

(
1− t

v2

) (k2)−1−2ǫ

(p3 ·k)1−2ǫ(p4 ·k)
+

m2

2p3 ·p4

√
t

v

×



(
1+ t

v2

)

(
1− t

v2

) (k2)−1−2ǫ

(p3 ·k)1−2ǫ(ℓ− ·k)
−

(
1− t

v2

)

(
1+ t

v2

) (k2)−1−2ǫ

(p3 ·k)1−2ǫ(ℓ+ ·k)







〉av. . (3.242)

It is now possible to apply Feynman parametrisation to eq. (3.242), obtaining integrals

over the momentum k that can be written in terms of Iaux
2 . By using the known result of

〈Iaux
2 〉 provided in eq. (3.210) to perform the integration over k, we are left with the final

two integrals over the Feynman parameter and the variable t, that can be performed with

a standard procedure.

Let us finally analyse the regular part of g
gg
34(~n3 ·~n4,~n

2
3,~n

2
4), that can be safely be

expanded in ǫ. We need to evaluate the following integral:

〈
∑

j=3,4

∫
dDkei~b·~kT

(k2)−1−ǫ

(pj ·k)2
(ρm6=0

34 +ρm6=0
43 )〉av. . (3.243)
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The explicit all-orders expression of the integrand reads:

1

π

∑

j=3,4

1

pj ·k
(
ρm6=0

34 +ρm6=0
43

)
= (1−~n2

3)

(
− 2−5ǫ

ǫ(1−2ǫ)
− 1

1−2ǫ

~n3 ·~n4

~n2
3

)

+(2−~n2
3−~n2

4)


1

ǫ
+

Γ(1−2ǫ)Γ(ǫ)

Γ(1−ǫ)

(
1−~n2

3

4

)−ǫ(
D34

n
1/2−ǫ
3

−1

)


+
1√
π

Γ

(
1

2
−ǫ
)

Γ(ǫ)(1−~n2
3)1−ǫ

(
~n2

3+~n3 ·~n4

2(~n2
3)3/2−ǫ

− 6~n2
3

2(~n2
3)3/2−ǫ

+2

)

+
1

ǫ

(
3(1−~n2

3)+D34(2−~n2
3−~n2

4)
)

2F1

(
1

2
,1,1+ǫ;1−~n2

3

)

−
1−
√
~n2

3

ǫ~n2
3

(~n2
3+~n3 ·~n4)2F1


1,1−ǫ,1+ǫ;

2

1+
√
n2

3

−1




− 1−~n3 ·~n4

~n2
3−~n3 ·~n4

(2−~n2
3−~n2

4)χ34

∫ 1

0
du

(1−u)− 1
2

−ǫ

√
1−χ34u

[(1+uψ)ǫ−uǫ(1+ψ)ǫ]

+D34
γ

1−γ (2−~n2
3−~n2

4)

∫ 1

0
du

(1−u)
1
2

−ǫ

√
1−~n2

3u

(
1+u

γ

1−γ

)−1

, (3.244)

where the variable χ34 has been defined in eq. (3.197) while D34, γ and ψ are given in

eqs. (3.219)–(3.221). We introduce the following notation for the ǫ-expansion of the inte-

grand:

ρm6=0
ij = ρ

m6=0,(0)
ij +ǫρ

m6=0,(1)
ij +O(ǫ2) . (3.245)

As for the case of the mass-independent contribution, due to the complexity of the

functions involved in the integrand, we perform numerically the last steps of this com-

putation. We follow the same steps as for the integration of ρm=0
34 , by considering the

qT -space representation of the integral and by fixing the azimuthal angle φ such that

~pT,3 ·~qT = pT,3 qT cosφ. After switching to the dimensionless variables x, y already intro-

duced in eq. (3.225) and inserting an integral over the virtuality of the momentum, we

obtain:

〈
∑

j=3,4

∫
dDkδ(D−2)(~kT −~qT )

(k2)−1−ǫ

(pj ·k)2
(ρ

m=0,(0)
34 +ǫρ

m=0,(1)
34 )〉av. =

=
q−1−ǫ

T

B(1
2 ,

1
2 −ǫ)

∫ 1

−1
dcosφ

∫ ∞

0
dxdy

1

2x2y
(1−cos2φ)−1/2

×
∑

j=3,4

1

pj ·k
[
ρ

m6=0,(0)
34 +ǫρ

m6=0,(1)
34 −ǫ ln

[
x(1−cos2φ)

]
ρ

m6=0,(0)
34

]
. (3.246)

We can observe that also in this case the integral of the first two terms in the square

bracket only depends on β and can be thus evaluated on a one-dimensional grid. We can

also reduce the 3-fold integrals of eq. (3.246) in 2-fold ones by replacing the exponential

by a θ-function in the corresponding b-space representation, in a similar fashion as it was
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done in eq. (3.227). Adapting it to the present functions we obtain:

1

π

∫ 1

−1
dcosφ

∫ ∞

0
dxdy

1

2x2 y
x−1−ǫ(1−cos2φ)−1/2−ǫρ(~n3 ·~n4,~n

2
3,~n

2
4)

=

∫ 1

0
dt

∫ 1

−1
dcosφ

t2

1−t2 ρ
(

1− 1−t2
1−vtcosφ

,t2,1−(1−v2)
1−t2

(1−vtcosφ)2

)
. (3.247)

We have now summarized in detail the technical aspects of our calculation, and pre-

sented explicit partial results in the cases the expressions were obtained in a compact

analytic form. Our complete final results are collected and implemented in a numerical

code, which is described in the next section.

4 Numerical results

In section 2 we described in detail the ingredients entering the transverse-momentum re-

summation formalism for heavy-quark production. For the purpose of the application to the

qT -subtraction framework, the key role is played by the coefficient HQQ̄ defined in eq. (2.14),

which depends on the subtracted matrix element M̃ via the master formula (2.15), while

M̃ can be obtained through eq. (2.54). All the ingredients entering in these equations are

finite, since the cancellation of the IR poles has been carried out at the operator level as

described in eq. (2.41). The cancellation is guaranteed by the relation with the subtracted

soft anomalous dimension Γsub in eqs. (2.36)–(2.38): we were able to verify analytically this

cancellation for all the contributions, with the exception of the nf -independent part of the

term proportional to the colour factor T3 ·T4. This term depends only on the variable β.

As described in section 3.5.4, part of this term was evaluated numerically, and, therefore,

only a numerical check of the cancellation is possible. In figure 1 we compare the coefficient

of the 1/ǫ pole as a function of β computed analytically with eq. (2.38) against our nu-

merical result. The lower plot shows the relative difference between the two: The relative

difference is below the 0.0005% in all the regions of the phase-space, showing a perfect

agreement with the prediction and providing a strong cross-check of our computation.

Having discussed the cancellation of the IR singularities, we now consider the ingredi-

ents needed for the implementation of the function HQQ̄. In the qT -subtraction formalism,

a final average over the azimuthal degree of freedom of ~b is required (see eq. (2.14)), and

since the operator D is defined in such a way that 〈D〉av. = 1, it gives no contribution in

our computation, except when interfering with the azimuthally dependent part of the C

coefficients in eq. (2.14). Therefore, as a new perturbative ingredient at NNLO we just

need to evaluate the subtracted amplitude M̃ through eq. (2.54) at second order. At this

order the subtracted amplitude Z
−1 |M〉 appearing in eq. (2.54) is provided by the nu-

merical grids in ref. [39]. The operator eV fin
c at the same order is already known from the

implementation of qT -subtraction for a colourless final state at NNLO [40] (see eq. (2.55)).

We are left with the coefficient h, whose perturbative expansion is given in eq. (2.47).

The term involving the commutator produces contributions proportional to three-parton

correlators, which vanish when evaluated on the Born cc̄→QQ̄ amplitude. Therefore we

– 53 –



J
H
E
P
0
4
(
2
0
2
3
)
1
4
4

-2

-1

0

1

2

3

4

5

〈F
e
x
,2

(-
1
) 〉

a
v
.

nf=0, T3 .T4 component

0.0 0.2 0.4 0.6 0.8 1.0

-0.0004

-0.0002

0.0000

0.0002

0.0004

β

r
e
la

t
iv

e
d
iff

e
r
e
n
c
e
(%

)

Figure 1. Numerical results for the coefficient of the 1/ǫ pole of the contribution proportional to

T3 ·T4 in Fex,2 (red points), compared to the expected analytical result (gray curve) from eq. (2.38).

The lower plot shows the relative difference (in percentage) between the two.

can simply write

h(αS) = 1+
αS

2π
〈F(0)

ex,1〉
av.

+

(
αS

2π

)2{
〈(F(0)

ex,1)2〉
av.

− 1

2

(
〈F(0)

ex,1〉
av.

)2

+〈F(0)
ex,2〉

av.
−2πβ0 〈F(1)

ex,1〉
av.

}
+O(α3

S) . (4.1)

The two last terms in the O(α2
S) contribution involve the product of two colour charges;

we have chosen to write the results in the numerical implementation in terms of the colour

structures T3 ·T4 and Ti ·Tj with i= 1,2 and j= 3,4.

The results for the Ti ·Tj structure are obtained in a fully analytical way, and the

explicit expression, which can be obtained from the results in the previous sections, is

implemented in the numerical code. The results corresponding to the colour structure

T3 ·T4 have contributions from the integral of the soft correlators Sm=0
34 and Sm6=0

34 of

eq. (3.143) and (3.144), which are partially obtained numerically in the form of a two-

dimensional grid.

The numerical integration is performed using the implementation of global adaptive

strategies available in Mathematica. For the terms independent of θ, the integral is

evaluated for a grid in the variable β from 0 to 1, in steps of 0.001 in the range (0;0.8)

and a smaller step of 0.0001 in the high-energy region (0.8;1), in which the variation of the

function is larger. For the remaining term, which depends both on β and cosθ, the integral

is evaluated for a total number of 5000 phase-space points in the range β ∈ (0;1), cosθ∈

– 54 –



J
H
E
P
0
4
(
2
0
2
3
)
1
4
4

(0;1) (the result is symmetric under the exchange cosθ→ −cosθ), which were obtained from

the NNLO parton level generator Matrix [68] after the optimisation for the integration

of the LO tt̄ cross section.

Given that a numerical interpolation of the grid is already needed, and also due to the

fact that the numerical evaluation of the analytical terms entering the T3 ·T4 structure

of 〈F(0)
ex,2〉av. is computationally very expensive, we decided to encode all the contributions

proportional to T3 ·T4 in the terms 〈F(0)
ex,2〉av.−2πβ0 〈F(1)

ex,1〉av. in a two-dimensional grid

composed by the same phase-space points used for the numerical integration of the afore-

mentioned pieces of Sm=0
34 and Sm6=0

34 . The different pieces entering the final result are

defined in three independent grids and combined afterwards, in order to have a fully flexi-

ble implementation in the number of light-quark flavours nf . The numerical evaluation of

the multiple polylogarithms appearing in some of our analytic expressions, needed for the

construction of the grids, is performed using GiNaC [69, 70].

In addition to the contributions described above, the result for the azimuthal average

of the square of the NLO result, i.e. the term 〈(F(0)
ex,1)2〉av., is also obtained numerically, by

simply starting from the known result for F
(0)
ex,1 and computing the azimuthal average of

its square, again in the same set of phase-space points used before. In this case, the results

are grouped in three different colour structures, (T3 ·T4)2, CF T3 ·T4 and C2
F .

The grids described above are afterwards fitted using a spline approximation [71].

Given that we do not expect our results for each phase-space point to have a large deviation

from the correct value, as the uncertainties of the numerical integration are at the per mille

level, the parameters of the spline fitting are chosen such that the fit is very close to the

original points. In addition, and in order to improve the quality of the fit, the grids are

divided by appropriate factors depending on β and cosθ before performing the fit, which

were checked to generate surfaces with smaller variations and therefore easier to fit. A

concrete example of this procedure is given by the way to handle the threshold region:

all the grids had a divergent logarithmic behaviour in the β→ 1 limit. We thus divided

all the points by a factor (1+log2(1−β2)n), with the value of n chosen in order to get a

regular grid in such limit, and this factor was added back after the fitting. Also, in order

to work with more evenly distributed points, we worked with the variables β2 (instead of

β) and cosθ.

We have studied the self-consistency of the fit by comparing the results obtained with

it to the original values on the grids used to construct it. We observed that, for the majority

of the points (93.9%), the difference is below the per mille level, while the points that agree

better than 1% almost cover the full phase-space (98.9%). The largest relative differences

show up in the grids corresponding to 〈(F(0)
ex,1)2〉av., in the regions in which simultaneously

β and |cosθ| are close to 1, the reason being the sudden variation of the fitted function in

that area, and its value being very close to zero.

In order to see if the error coming from the fitting of the grids has an impact in the

computation of a physical quantity, we checked the difference between the original grid

and the fit once combined with all the other ingredients entering the coefficient HQQ̄.

This involves, among other things, the evaluation of lower-order (colour-correlated) matrix
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Figure 2. Contributions to the second order coefficient of h proportional to T3 ·T4 (upper panels)

and T1 ·T3 (lower panels). The results correspond to nf = 0. The left panels show the β dependence

for a fixed value of cosθ= 0, while the cosθ dependence is shown in the right panels for β= 0.5.

elements, the finite part of the two-loop amplitudes, plus all the soft contributions that

were obtained and encoded analytically. We performed this check for the specific case of

top-quark pair production, using OpenLoops [72] for the evaluation of tree-level and one-

loop amplitudes, and the results from ref. [39] for the two-loop corrections. We observed

that the point-wise difference is always below 0.25%, and that, from the total of points,

only a handful of them present a deviation larger than 0.05%, indicating that the accuracy

obtained through the fit is more than enough to reproduce the original results.

The checks described above only tested the accuracy of the fit on the very same points

used to generate it: it is also important to perform some checks on the rest of the phase-

space. To this end, we reduced the number of points used to perform the fit by a factor of

2 and checked how the accuracy of the final result is affected, finding results similar to the

ones described above, thereby confirming the reliability of our implementation.

We illustrate our final results in figures 2 and 3. As described in the text, we split our

results into the different colour structures appearing in h, specifically

h(αS) =1+
αS

2π

(
h

(1)
34 T3 ·T4+h

(1)
33 CF

)

+

(
αS

2π

)2(
h

(2)
34 T3 ·T4+h

(2)
13 T1 ·T3+h

(2)
14 T1 ·T4+h

(2)
23 T2 ·T3+h

(2)
24 T2 ·T4

+ h
(2)
3434 T3 ·T4 T3 ·T4+h

(2)
3433 T3 ·T4CF +h

(2)
3333C

2
F

)
+O(α3

S) . (4.2)
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Figure 3. Same as in figure 2 for the contributions proportional to T3 ·T4 T3 ·T4 (upper panels),

CF T3 ·T4 (middle panels) and C2

F (lower panels).

We note that this particular choice of colour structures is not unique, and different choices

can be made which are related by colour conservation. Results for h
(2)
34 and h

(2)
13 are given

in figure 2, while h
(2)
3434, h

(2)
3433 and h

(2)
3333 are presented in figure 3. In both cases, the results

correspond to nf = 0. The numerical code used to evaluate all the terms in eq. (4.2) is

included as supplemental material of this paper, allowing for the evaluation of our final

results for arbitrary values of β, cosθ and nf .
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5 Summary

This paper has been devoted to the evaluation of the soft-parton contributions that are

relevant when a heavy-quark pair is produced at small transverse momenta in hadronic

collisions.

When a colourless system (vector boson(s), Higgs boson(s) and so forth) is produced

in hadron collisions only soft and collinear radiation from the initial-state colliding partons

plays a role. When a heavy-quark pair is produced, the coloured heavy quarks can emit in

turn soft radiation (soft gluons and light quark-antiquark pairs), which gives an additional

contribution to the structure of the singular contributions at small transverse momenta.

We have evaluated such soft-parton contributions to NNLO in QCD perturbation theory.

Our computation has been carried out by using a semi-numerical approach, and eval-

uating all the relevant integrals in impact parameter space. We have explicitly considered

only the contributions that are relevant to apply the qT subtraction formalism to this pro-

cess. After having introduced our framework in section 2, in section 3 we have provided

the details of our calculation, by first starting from the NLO in section 3.2, which had

already been obtained in ref. [27]. We then moved to the evaluation of the integrals from

soft-gluon emission at one-loop order in section 3.3, soft light-quark pairs in section 3.4,

and finally double gluon emission in section 3.5. We have provided all the relevant details

of the computation by highlighting the difficulties that had to be overcome. At NNLO the

most challenging contributions are those from the double-real emission, and in particular,

those from double gluon radiation. These contributions need first to be integrated over

the angles of the emitted partons by keeping their total momentum k fixed. Then, the

remaining integrals have been evaluated by splitting them into a singular and a regular

part as k2 → 0. For some of the contributions, the latter has been evaluated numerically.

After checking the cancellation of the ǫ poles, the complete results for the final remainders

are provided through a numerical code that is provided as Supplementary Material of the

paper.

Together with the results already available in the literature, the soft-parton contribu-

tions presented in this paper complete the evaluation at NNLO of the azimuthally-averaged

transverse momentum resummation formula for the production of heavy-quark pairs. In

particular, the results can straightforwardly be implemented to carry out fully differential

NNLO calculations for the production of a pair of heavy quarks with arbitrary mass by

using the qT subtraction formalism.
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