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beyond the next-to-leading logarithmic accuracy. Starting from the probability density of
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second-order in the QCD coupling αS. In d = 4 dimensions we obtain the explicit relation

between the soft couplings at O(α3
S). Finally, we study the structure of the soft coupling in

the large-nF limit and we present explicit expressions to all orders in perturbation theory.
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1 Introduction

The QCD computations of hard-scattering processes can lead to large contributions at

each order of the perturbative expansion in the QCD coupling αS. Large logarithmic

contributions always appear in the case of hard-scattering observables that are evaluated

in kinematical regions close to the exclusive boundary of the phase space. These large

logarithms are produced by the emission of soft and collinear partons, since hard emission

is kinematically suppressed near to the phase space boundary.

For a wide class of observables, logarithmic terms due to soft and collinear emission

can be resummed to all perturbative orders in exponentiated form (see, e.g., the reviews in

refs. [1, 2] and references therein). The exponentiated form can then be sistematically orga-

nized and computed in terms of leading logarithmic (LL) terms, next-to-leading logarithmic

(NLL) terms, next-to-next-to-leading logarithmic (NNLL) terms and so forth. A relevant

feature of these resummed expressions is that they have a quite general structure with a

high degree of universality and a ‘minimal’ dependence on the hard-scattering process and

on the specific observable to be treated. In particular, the ‘dominant’ (soft and collinear)

part of the logarithmic contributions is resummed and embodied in a ‘generalized’ Sudakov

form factor, whose kernel is perturbatively computable order-by-order in αS.

Known resummed results up to NLL accuracy show that the NLL kernel of the Sudakov

form factor is entirely and universally controlled through the use of the QCD coupling

αCMW
S [3] in the Catani-Marchesini-Webber (CMW) scheme (or bremsstrahlung scheme).

More precisely, the intensity A
CMW
i of soft-gluon radiation from the hard-scattering parton

i (i = q, q̄, g) in the Sudakov form factor at NLL accuracy is

A
CMW
i (αS(k2

T )) = Ci
αCMW

S (k2
T )

π
= Ci

αS(k2
T )

π

(
1 +

αS(k2
T )

2π
K

)
, (1.1)

– 1 –
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where Ci is the Casimir coefficient of the parton i (Ci = CA if i = g and Ci = CF if

i = q, q̄), αS is the QCD running coupling in the MS renormalization scheme, αCMW
S is the

CMW coupling [3] and the coefficient K depends on the number nF of quark flavours:

K =

(
67

18
−

π2

6

)
CA −

5

9
nF . (1.2)

The CMW coupling αCMW
S (k2

T ) has the meaning of an effective (physical) coupling for

inclusive radiation of soft and collinear partons with total transverse momentum kT .

The NLL universality of the CMW coupling is evident in the context of threshold

resummation [4–6], transverse-momentum resummation [7–10] and event shape resum-

mation [11, 12]. Such universality is exploited for process-independent and observable-

independent formulations of NLL resummations [13–15]. The CMW coupling is also used

to achieve NLL accuracy in parton shower algorithms [16–20] for Monte Carlo event gen-

erators.

Definitions of soft-gluon effective couplings to all perturbative orders were introduced

in refs. [21] and [22]. These effective couplings generalize the CMW coupling beyond the

NLL level.

Reference [21] defined the effective coupling AT,i(αS) (according to the notation of

ref. [22]), presented its explicit expression at O(α3
S) and discussed its use in the context of

NNLL resummations for two-jet observables in e+e− annihilation [23].

Reference [22] observed that there is no unique extension of the CMW coupling beyond

NLL accuracy. Two effective couplings were considered in ref. [22]: the couplings AT,i(αS)

(as in ref. [21]) and A0,i(αS). Moreover, ref. [22] considered the generalized d-dimensional

(d = 4 − 2ϵ is the number of space-time dimensions) extensions, ÃT,i(αS; ϵ) and Ã0,i(αS; ϵ),

of these effective couplings. A remarkable result of ref. [22] is that the d-dimensional

couplings ÃT,i(αS; ϵ) and Ã0,i(αS; ϵ) are equal at the conformal point ϵ = β(αS) (β(αS) is

the four-dimensional QCD β function) and equal to the cusp anomalous dimension [10, 24–

32]. Considering the four-dimensional couplings, ref. [22] explicitly computed AT,i(αS) at

O(α3
S) (confirming the result in ref. [21]) and A0,i(αS) at O(α3

S) and O(α4
S) (in terms of

the cusp anomalous dimension at O(α4
S) [33, 34]).

The purpose of this paper is to further study the perturbative features of the soft-

gluon effective coupling. In d dimensions we introduce an entire class of effective couplings,

which includes the couplings ÃT,i(αS; ϵ) and Ã0,i(αS; ϵ) of ref. [22]. Each effective coupling

within this class is specified by a scale that depends on the transverse momentum and

transverse mass of the inclusive soft radiation. We show that all these effective couplings are

equal at the conformal point and, consequently [22], they are equal to the cusp anomalous

dimension.

We compute the effective couplings at O(α2
S) for arbitrary values of d (of course, if

d = 4, the result at O(α2
S) is equal to the CMW coupling). In d = 4 we present the explicit

relation between the effective couplings at O(α3
S). Considering the limit of a large value of

the number nF of quark flavours, we explicitly evaluate the soft-gluon effective couplings

to all orders in αS.

– 2 –
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The paper is organised as follows. In section 2 we introduce the probability density of

correlated soft emission and the soft-gluon effective coupling. In section 3 we present the

explicit computation of the correlated emission and of the soft coupling at O(α2
S). Some

general features of the soft-gluon effective coupling are discussed in section 4, while in

section 5 we present our all-order results in the large-nF limit. Our results are summarised

in section 6.

2 Soft factorisation, correlated emission and soft-gluon effective cou-

plings

The perturbative calculations that we carry out in the paper are performed by using ana-

lytic continuation in d = 4 − 2ϵ space time dimensions to regularise both ultraviolet (UV)

and infrared (IR) divergences. Specifically, we use the customary scheme of conventional

dimensional regularisation (CDR) [35–38] with d − 2 spin polarisation states for on-shell

gluons and 2 spin polarisation states for on-shell massless quarks and antiquarks. The UV

divergences are removed by renormalisation in the MS scheme. IR divergences, which are

encountered at intermediate stages of the calculations, cancel in the computation of IR and

collinear-safe quantities.

The QCD bare coupling αu
S and the renormalised running coupling αS(µ2

R) in the MS

scheme are related by the following standard definition:

αu
S µ2ϵ

0 Sϵ = αS(µ2
R) µ2ϵ

R Z(αS(µ2
R); ϵ) , (2.1)

Sϵ ≡ (4π)ϵ e−ϵγE (2.2)

where µ0 is the dimensional regularisation scale, µR is the renormalisation scale and γE is

the Euler number. The renormalisation function of the coupling is

Z(αS, ϵ) = 1 − αS
β0

ϵ
+ α2

S

(
β2

0

ϵ2
−

β1

2ϵ

)
+ O(α3

S) , (2.3)

where β0 and β1 are the first two perturbative coefficients of the QCD β-function β(αS):

β(αS) = −β0 αS − β1 α2
S + O(α3

S) , (2.4)

12π β0 = 11CA − 4TRnF , 24π2β1 = 17C2
A − 10CATRnF − 6CF TRnF , (2.5)

and nF is the number of quark flavours. The colour coefficients in SU(Nc) QCD with Nc

colours are CA = Nc, CF = (N2
c − 1)/(2Nc) and TR = 1/2. The scale dependence of the

renormalised coupling in d dimensions is controlled by the following evolution equation

d ln αS(µ2
R)

d ln µ2
R

= −ϵ + β(αS(µ2
R)) , (2.6)

and β(αS) − ϵ is the d-dimensional β-function.

The all-order soft-gluon effective coupling is formally defined [21, 22] by considering

multiple soft-parton radiation in the simplest class of hard-scattering processes, namely, the

– 3 –
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processes that involve only two massless hard partons. Owing to colour conservation in the

soft limit, the two hard partons have colour charge in complex-conjugate representations

and they can be either a qq̄ pair (i = q) or two gluons (i = g). This class of processess

is used to define the function wi(k; ϵ) that gives the ‘probability’1 of correlated emission

(including the corresponding virtual corrections) of an arbitrary number of soft partons

with total momentum k. The correlated probability wi(k; ϵ) is a quantity that is IR and

collinear safe. The soft-gluon effective coupling is obtained by properly integrating wi(k; ϵ)

over the soft momentum k. In the following we give details on this procedure starting from

soft-factorisation formulae of QCD scattering amplitudes.

We consider a generic scattering process whose external particles are two QCD hard

partons i and ī, soft partons and additional colourless particles. The corresponding scat-

tering amplitude with N external soft partons is denoted as Mīi(p1, p2; k1, . . . , kN ), where

p1 and p2 are the momenta of the hard partons and k1, . . . , kN are the momenta of the

soft partons. Hard and soft partons are massless. In the kinematical region where all the

momenta kℓ (ℓ = 1, . . . , N) simultaneously vanish the squared amplitude |Mīi|
2 (summed

over the colours and spins of the external particles) is singular. The dominant singular

behaviour is given by the following soft-factorisation formula:

|Mīi(p1, p2; k1, . . . kN )|2 ≃ |Mīi(p1, p2)|2 |Ji(k1, · · · , kN )|2 , (2.7)

where Ji is the soft-parton current and |Ji|
2 is the corresponding squared current. The

factorisation formula in eq. (2.7) is valid [39–41] at arbitrary orders in the loop expan-

sion of the scattering amplitude and, correspondingly, Ji is the all-order soft current. In

particular, the squared current |Ji|
2 (analogously to |Mīi|

2) can be expressed in terms of

the renormalised coupling and it can be expanded in powers of αS(µ2
R). The coefficients

of this perturbative expansion have no UV divergences, but they still have IR divergences

(in the form of ϵ poles). These IR divergences cancel by combining the squared current

contributions in the computation of IR and collinear-safe quantities.

We recall that the soft-factorisation formula for generic scattering amplitudes leads to

colour correlations between the hard partons. In the case of two sole hard partons, colour

correlations are effectively removed since there is only one colour singlet configuration of

the two hard partons. Consequently, soft factorisation takes the form in eq. (2.7) (see, e.g.,

section 7.1 in ref. [42]), where |Ji|
2 is a c-number function (rather than a colour matrix

operator).

The squared current |Ji(k1, · · · , kN )|2 depends on the soft momenta and on the mo-

menta and colour representation of the two hard partons. The hard-parton dependence is

simply denoted by the subscript i in Ji.

The soft limit kℓ → 0 is insensitive to the actual size of the energies of the hard

partons. This implies that the squared current |Ji|
2 is invariant under the rescaling trans-

formation p1 → ξ1p1, p2 → ξ2p2 (ξ1 and ξ2 are arbitrary parameters) of the hard-parton

1Note that this ‘probability’ is not positive definite since it refers to the correlation part of the (positive

definite) total emission probability.

– 4 –
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momenta.2 Consequently, |Ji|
2 is invariant under longitudinal boosts along the direction

of the momenta of the two hard partons in their centre-of-mass frame.

Owing to these invariance properties of the soft current, it is convenient to introduce

kinematical variables that are longitudinally boost invariant. For an arbitrary (i.e., off-

shell) d-dimensional momentum kν we define

m2
T =

2(p1 · k)(p2 · k)

p1 · p2
, k2

T = m2
T − k2 , y =

1

2
ln

p2 · k

p1 · k
, (2.8)

where mT is the transverse mass, y is the rapidity and kT is the (modulus of the) transverse

momentum with respect to the direction of the hard partons.

At the leading order (LO) in QCD perturbation theory, we have to consider only the

radiation of a single soft gluon (with momentum k) and the corresponding LO squared

current |Ji(k)|2(LO). The LO differential probability dPi,LO of soft radiation is obtained by

supplementing |Ji(k)|2(LO) with the corresponding d-dimensional phase space, and we have

dPi,LO =
ddk

(2π)d−1
δ+(k2) |Ji(k)|2(LO) ≡ dy dm2

T dk2
T

1

2
wi,LO(k; ϵ) . (2.9)

In the right-hand side of eq. (2.9) we have introduced the kinematical variables of eq. (2.8)

and we have defined the LO probability density wi,LO, which embodies the complete d-

dimensional dependence on the phase space. Since the phase space factor is

ddk =
1

2
dy dm2

T dk2
T Nϵ(kT ) , Nϵ(kT ) =

π1−ϵ(k2
T )−ϵ

Γ(1 − ϵ)
, (2.10)

where Γ(z) is the Euler gamma function, we have

wi,LO(k; ϵ) =
Nϵ(kT )

(2π)d−1
|Ji(k)|2(LO) δ+(k2) . (2.11)

The LO expression of the renormalised squared current is (see, e.g., ref. [43])

|Ji(k)|2(LO) = 8π
p1 · p2

p1 · k p2 · k
(Sϵ)

−1 Ci αS(µ2
R) (µ2

R)ϵ , (2.12)

where Sϵ is defined in eq. (2.2) and Ci is the Casimir coefficient of the radiating hard parton

i (Ci = CA if i = g, and Ci = CF if i = q or q̄). Therefore, inserting eq. (2.12) in eq. (2.11),

the expression of the LO probability density is

wi,LO(k; ϵ) =
2

m2
T

δ(m2
T − k2

T ) Ci
αS(µ2

R)

π

(
µ2

R

k2
T

)ϵ

c(ϵ) , (2.13)

where

c(ϵ) ≡
eϵγE

Γ(1 − ϵ)
= 1 −

π2

12
ϵ2 −

1

3
ζ3 ϵ3 + O(ϵ4) , (2.14)

2Such invariance is evident by using the eikonal approximation for the computation of the soft current

(see, e.g., ref. [43]).

– 5 –
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and ζk is the Riemann ζ-function. We note that wi,LO(k; ϵ) does not depend on the rapidity

of the soft momentum k. The rapidity independence is a consequence of the boost invari-

ance properties of soft radiation and it persists at any perturbative orders. The density

wi(k; ϵ) depends on m2
T and k2

T . The factor 1/m2
T in the right-hand side of eq. (2.13) simply

follows from the eikonal factor (p1 · k p2 · k/p1 · p2)−1 in the squared current of eq. (2.12).

The mT and kT dependence of wi,LO(k; ϵ) is directly constrained by the on-shell condition

δ(k2) = δ(m2
T − k2

T ) for single soft-gluon emission. At higher perturbative orders the total

momentum k of the soft partons is not on-shell and, consequently, wi(k; ϵ) has a non-trivial

dependence on m2
T and k2

T (see section 3).

At the next-to-leading order (NLO) in QCD perturbation theory the probability of

soft radiation receives contributions from single-parton and double-parton emissions. The

renormalised squared current |Ji(k)|2 for single-gluon emission has the following perturba-

tive expansion:

|Ji(k)|2 = |Ji(k)|2(LO) + |Ji(k)|2(NLO) + . . . , (2.15)

where |Ji(k)|2(LO) is given in eq. (2.12), the NLO term |Ji(k)|2(NLO) is obtained from the

one-loop soft-gluon current [39, 40] and the dots stand for higher-order terms (the two-loop

soft-gluon current is computed in refs. [44, 45]). In the case of double-parton radiation,

we have to consider the squared current |Jgg
i (k1, k2)|2(LO) for double-gluon emission and

the squared current |Jqq̄
i (k1, k2)|2(LO) for the emission of a quark-antiquark pair of a given

flavour. The renormalised LO expressions of these two-parton squared currents are directly

proportional to the tree-level squared currents of ref. [43], and we write

|Jgg
i (k1, k2)|2(LO) = |Ji(k1)|2(LO) |Ji(k2)|2(LO) + W gg

i (k1, k2)(LO) , (2.16)

|Jqq̄
i (k1, k2)|2(LO) ≡ W qq̄

i (k1, k2)(LO) . (2.17)

In the right-hand side of eq. (2.16), the first term is the contribution of the independent

emission of the two soft gluons and, therefore, W gg
i (k1, k2) is the irreducible-correlation con-

tribution to |Jqq̄
i (k1, k2)|2. In eq. (2.17) the irreducible-correlation component W qq̄

i (k1, k2)

is equal to the entire squared current |Jqq̄
i (k1, k2)|2 since the soft quark and antiquark can-

not be radiated independently (i.e., the soft current for emission of a quark or an antiquark

vanishes).

We consider the differential probability dPi of correlated emission of an arbitrary num-

ber and type of soft partons. At fixed value of the total momentum k of the soft partons,

dPi can be expressed through the all-order probability density wi(k; ϵ), which generalizes

the LO expressions in eqs. (2.9) and (2.11). We write

dPi = dy dm2
T dk2

T

1

2
wi(k; ϵ) , (2.18)

where wi has the following perturbative expansion:

wi(k; ϵ) = wi,LO(k; ϵ) + wi,NLO(k; ϵ) + . . . , (2.19)

and the dots denote higher-order terms.

– 6 –
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The NLO contribution wi,NLO to the probability density wi in eq. (2.19) is given in

terms of the correlation component of the single-emission and double-emission soft factors

in eqs. (2.15)–(2.17). Specifically, we have

wi,NLO(k;ϵ)=Nϵ(kT )

{
1

(2π)d−1
δ+(k2)|Ji(k)|2(NLO) (2.20)

+

∫
ddk1

(2π)d−1
δ+(k2

1)
ddk2

(2π)d−1
δ+(k2

2)

(
1

2
W gg

i (k1,k2)(LO)+nF W qq̄
i (k1,k2)(LO)

)
δ(d)(k−k1−k2)

}
,

and the explicit computation of wi,NLO is presented in section 3.

The general all-order definition of the probability density wi(k; ϵ) was given in ref. [21],

where wi(k; ϵ) was called web function. We have

wi(k;ϵ) = Nϵ(kT )

{
1

(2π)d−1
δ+(k2) |Ji(k)|2 (2.21)

+
+∞∑

N=2

∑

{a1,...,aN }

Sa1,...,aN

∫ [ N∏

i=1

ddki

(2π)d−1
δ+(k2

i )

]
W a1...aN

i (k1, . . . ,kN ) δ(d)
(

k −
N∑

j=1

kj

)}
,

where W a1...aN

i (k1, . . . , kN ) denotes the irreducible-correlation component of the squared

current |Ja1...aN

i (k1, . . . , kN )|2 for emission of a set of N partons with flavours a1, . . . , aN

(ai = g, qf , q̄f and qf denotes a quark of flavour f). At fixed soft-parton multiplicity

N , eq. (2.21) involves the sum over all parton configurations {a1, . . . , aN } and Sa1,...,aN
is

the customary Bose symmetry factor for identical partons in each parton configurations

(e.g., Sa1,...,aN
= 1/N ! if all partons are gluons). The N -parton irreducible correlation

W a1...aN

i (k1, . . . , kN ) is directly extracted from |Ja1...aN

i (k1, . . . , kN )|2 by subtracting the

contributions from independent emission and from correlations of a lower number M (M <

N) of partons (see, e.g., ref. [42] for explicit expressions with N ≤ 4 and eqs. (8.1)–(8.5)

therein for general N).

Note that |Ji(k)|2 and W a1...aN

i (k1, . . . , kN ) in eq. (2.21) are all-order renormalised ex-

pressions, and they have their customary perturbative expansion in terms of contributions

at LO, NLO and so forth (see, e.g., eq. (2.15)). The virtual radiative corrections embodied

in |Ji(k)|2 and W a1...aN

i (k1, . . . , kN ) lead to IR divergences and corresponding ϵ poles in the

limit ϵ → 0. However the probability density wi(k; ϵ) is an infrared and collinear-safe quan-

tity. Therefore, in eq. (2.21) the virtual IR divergences are cancelled by the IR divergences

that are produced by the integration over the momenta ki of the real-emission partons in

W a1...aN

i (k1, . . . , kN ). The cancellation of the IR divergences takes place order-by-order in

the perturbative expansion with respect to αS(µ2
R), and at each perturbative order wi(k; ϵ)

is finite at ϵ = 0. Throughout the paper we consider the general d-dimensional function

wi(k; ϵ), although it is well defined in the physical four-dimensional limit ϵ → 0.

The probability density wi(k; ϵ) can be used to define soft-gluon effective couplings [21,

22], which generalise the NLO CMW coupling A
CMW
i in eq. (1.1). As previously observed,

wi(k; ϵ) depends on two kinematical scales, namely, the transverse momentum kT and

the transverse mass mT . The soft effective couplings are obtained by integrating wi(k; ϵ)

with respect to one of these two scales. Following ref. [22], we consider the d-dimensional

– 7 –
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effective couplings ÃT,i(αS; ϵ) and Ã0,i(αS; ϵ), which are defined as

ÃT,i(αS(µ2); ϵ) =
1

2
µ2
∫ ∞

0
dm2

T dk2
T δ(µ2 − k2

T ) wi(k; ϵ) , (2.22)

Ã0,i(αS(µ2); ϵ) =
1

2
µ2
∫ ∞

0
dm2

T dk2
T δ(µ2 − m2

T ) wi(k; ϵ) , (2.23)

where ÃT,i(αS; ϵ = 0) corresponds to the four-dimensional effective coupling introduced in

ref. [21].

The definitions in eqs. (2.22) and (2.23) differ only in the kinematical variable that

is kept fixed in the integration procedure over k: ÃT,i(αS(µ2); ϵ) is defined at fixed value

kT = µ of the transverse momentum, while Ã0,i(αS(µ2); ϵ) is defined at fixed value mT = µ

of the transverse mass. In this paper, we also propose a generalised version of the couplings

ÃT,i and Ã0,i, which is introduced by keeping fixed a scale µ that depends on both kT and

mT . The generalised effective coupling ÃF ,i is defined as follows:

ÃF ,i(αS(µ2); ϵ) =
1

2
µ2
∫ ∞

0
dm2

T dk2
T δ

(
µ2 −

k2
T

F(k2
T /m2

T )

)
wi(k; ϵ) , (2.24)

where F(k2
T /m2

T ) is a generic smooth function of k2
T /m2

T that is equal to unity in the

limit kT → mT of on-shell radiation (k2 → 0), namely, F(k2
T /m2

T ) = 1 at kT = mT (see

more comments in section 4). The coupling in eq. (2.24) reduces to ÃT,i and Ã0,i for

F(k2
T /m2

T ) = 1 and F(k2
T /m2

T ) = k2
T /m2

T , respectively. In general, the effective coupling

ÃF ,i(αS(µ2); ϵ) measures the intensity of inclusive correlated emission of soft partons at

the momentum scale µ2 = k2
T /F(k2

T /m2
T ).

As mentioned in ref. [22], the effective coupling Ã0,i has direct applications in the

context of threshold resummation [4–6]. Similarly, the coupling ÃT,i is directly rele-

vant for transverse-momentum resummation [7–9, 46]. By properly choosing the function

F(k2
T /m2

T ) in eq. (2.24), one can introduce soft effective couplings ÃF ,i that can be useful

for resummed calculations of different classes of hard-scattering observables. The gener-

alised definition in eq. (2.24) is also relevant to highlight more formal properties of the

soft-gluon effective couplings (see section 4).

In the right-hand side of eqs. (2.22)–(2.24), the factor µ2 is introduced for dimensional

reasons, so that the effective coupling3
Ãi is dimensionless. In the definitions of eqs. (2.22)–

(2.24) the renormalisation scale µR of the QCD coupling αS is set to the value µR = µ.

Obviously, the soft coupling Ãi(αS(µ2); ϵ) is a renormalisation group invariant quantity, so

that, at the perturbative level, it can equivalently be expressed in terms of the running

coupling αS(µ2
R) and the ratio µ2/µ2

R (i.e., αS(µ2) can be re-expressed in terms of αS(µ2
R)

and µ2/µ2
R).

The effective coupling Ãi in eqs. (2.22)–(2.24) is defined to all perturbative orders in

an arbitrary number d = 4 − 2ϵ of space-time dimensions. The integration over mT and

kT in eqs. (2.22)–(2.24) is infrared and collinear safe and, consequently, the limit ϵ → 0 is

3We use the notation Ãi without subscript T, 0 and F if we consider features that refer to all the effective

couplings ÃT,i, Ã0,i and ÃF,i.
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finite and well defined. By simply setting ϵ = 0 in Ãi, we have

Ai(αS) ≡ Ãi(αS; ϵ = 0) , (2.25)

which defines the soft-parton effective couplings AT,i(αS),A0,i(αS) and AF ,i(αS) in the

physical four-dimensional space-time. The perturbative expansions of Ãi and Ai are writ-

ten as

Ãi(αS; ϵ) =
∞∑

n=1

(
αS

π

)n

Ã
(n)
i (ϵ) , Ai(αS) =

∞∑

n=1

(
αS

π

)n

A
(n)
i , (2.26)

where the coefficient Ã
(n)
i (ϵ) depends on ϵ and A

(n)
i = Ã

(n)
i (ϵ = 0).

The LO coefficients Ã
(1)
i (ϵ) and A

(1)
i are obtained by inserting the LO expression

wi,LO(k; ϵ) of eq. (2.13) in eqs. (2.22)–(2.24), and we get

Ã
(1)
F ,i(ϵ) = Ci c(ϵ) , A

(1)
F ,i = Ci ≡ A

(1)
i , (2.27)

where c(ϵ) is given in eq. (2.14). We note that Ã
(1)
F ,i(ϵ) is completely independent of the

specific form of the function F(k2
T /m2

T ) in eq. (2.24) (we recall that F(k2
T /m2

T ) = 1 at kT =

mT ). This independence simply follows from the fact that the lowest-order contribution

to wi(k; ϵ) is proportional to δ(k2) = δ(m2
T − k2

T ). Therefore, all the d-dimensional soft

effective couplings that we are considering are exactly equal at the LO. The ϵ dependence of

Ã
(1)
i (ϵ) in eq. (2.27) is due to c(ϵ) and it is entirely of kinematical origin, since it arises from

the d-dimensional phase space of the total soft momentum k. In the four-dimensional case,

the coefficient A
(1)
i is simply equal to the Casimir charge Ci of the radiating hard parton i.

The computation of the d-dimensional couplings Ãi(αS; ϵ) at NLO is presented in

section 3. We anticipate that, in the physical four-dimensional space time, the NLO soft

coupling AF ,i is also completely independent of the specific function F . Therefore, all

the four-dimensional soft couplings Ai defined through eqs. (2.22)–(2.24) are equal to the

CMW coupling A
CMW
i up to O(α2

S), and we have

A
(2)
F ,i = A

(2)
i . (2.28)

where

A
(2)
i =

1

2
Ci K =

1

2
Ci

[(
67

18
−

π2

6

)
CA −

10

9
TRnF

]
. (2.29)

The origin of the NLO equality of the four-dimensional soft effective couplings is discussed

in sections 3 and 4.

3 Perturbative results

The NLO probability density wi,NLO receives contributions from soft single-gluon emission

at the one-loop level and from the soft emission of two gluons and a quark-antiquark pair.

The corresponding soft-current factors in eq. (2.20) can be found in refs. [40, 43]. We can
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cast them in the following form:

|Ji(k)|2(NLO) = −αS(µ2
R)

[
c(2ϵ)

2c(ϵ)
CA

π cos(πϵ)

sin2(πϵ)

(
µ2

R(p1 ·p2)

2(p1 ·k)(p2 ·k)

)ϵ

+
β0

ϵ

]
|Ji(k)|2(LO) , (3.1)

W qq̄
i (k1,k2)(LO) = (4π αS(µ2

R)µ2ϵ
R S−1

ϵ )2 Ci Ĵµ(k1 +k2)Πµν(k1,k2)Ĵν(k1 +k2) , (3.2)

W gg
i (k1,k2)(LO) = (4π αS(µ2

R)µ2ϵ
R S−1

ϵ )2 CA Ci

×
[
−Ĵµ(k1 +k2)Π̃µν(k1,k2)Ĵν(k1 +k2)+2 S̃(k1,k2)

]
, (3.3)

where Ĵµ(k) is proportional to the LO current,

Ĵµ(k) =
pµ

1

p1 · k
−

pµ
2

p2 · k
, (3.4)

and we have defined

Πµν(k1,k2)=
TR

(k1 ·k2)2
(−gµνk1 ·k2+kµ

1 kν
2 +kν

1kµ
2 ) , (3.5)

Π̃µν(k1,k2)=−
1

(k1 ·k2)2
(−4gµν(k1 ·k2)+(1−ϵ)kµ

1 kν
2 +(1−ϵ)kµ

2 kν
1 ) , (3.6)

S̃(k1,k2)=−
(p1 ·p2)2

2(p1 ·k)(p2 ·k)

(
2

(p1 ·k1)(p2 ·k1)
+

1

(p1 ·k1)(p2 ·k2)

)
+

(p1 ·p2)

k2

2

(p1 ·k1)(p2 ·k2)

−
(p1 ·p2)

2k2(p1 ·k)(p2 ·k)

((p1 ·k1)(p2 ·k2)−(p1 ·k2)(p2 ·k1))2

(p1 ·k1)(p2 ·k2)(p1 ·k2)(p2 ·k1)
+(k1 ↔k2), (3.7)

with k = k1 + k2.

While the phase space integration for the single-gluon emission at one loop is elemen-

tary, similar to the case of wi,LO, in the contributions arising from the emission of two soft

partons we need to carry out an additional integration over k1 and k2 at fixed k = k1 + k2.

These integrals have been computed in ref. [47] in the context of the evaluation of the soft

contributions to heavy-quark production. In the following we highlight the main steps of

their computation.

We start from the qq̄ contribution. Since we want to integrate at fixed k = k1 + k2,

the factors Jµ(k1 + k2) can be trivially integrated by using the delta function

∫
ddk1

(2π)d−1
δ+(k2

1)
ddk2

(2π)d−1
δ+(k2

2)|Jqq̄
i (k1, k2)|2(LO)δ

(d) (k − k1 − k2) (3.8)

= (4π αS(µ2
R) µ2ϵ

R S−1
ϵ )2 Ci

Ĵµ(k)Ĵν(k)

(2π)d−1
F µν(k)

and we only need to compute the following quantity

F µν(k) =

∫
ddk1 ddk2

(2π)d−1
δ+(k2

1)δ+(k2
2)Πµν(k1, k2)δ(d) (k − k1 − k2) . (3.9)

The tensor F µν depends only on k, and in addition satisfies kµkνF µν = 0. This

implies that its structure is F µν(k) = C(−gµν + kµkν/k2), with C being a constant to
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be determined. We can extract the value of C, for instance, from the computation of

gµνF µν(k). We find

C =
TR (1 − ϵ)(k2)−1−ϵ

Γ(5
2 − ϵ)161−ϵ π

3

2
−ϵ

. (3.10)

We now consider the integration of the double-gluon current. The procedure to com-

pute the integral of the first term is identical to the one we just described, the only difference

being the structure of the tensor Π̃µν with respect to Πµν . By following the same steps, it

can be proven that its contribution to wi,NLO can be simply obtained by replacing

nF TR → −CA
11 − 7ϵ

4(1 − ϵ)
(3.11)

in the qq̄ result. The replacement in eq. (3.11) also includes the symmetry factor 1/2 in

eq. (2.20), due to the emission of two identical gluons.

The last remaining contribution in the double-gluon soft current is the one proportional

to S̃(k1, k2). We proceed by integrating over k1 against the momentum conservation delta

function. Then, we consider the rest frame of k and integrate the energy component and

the modulus of the (d − 1) spacial components against the two remaining delta functions.

In this way, we are left only with angular integrals. By following the procedure described

above, we arrive to the intermediate expression,
∫

ddk1

(2π)d−1
δ+(k2

1)
ddk2

(2π)d−1
δ+(k2

2)δ(d)(k −k1 −k2) S̃(k1,k2) = (3.12)

=
π−11/2+3ϵ

641−ϵΓ(1
2 −ϵ)

(k2)−1−ϵ(p1 ·p2)

(p1 ·k)(p2 ·k)

[(
2−

k2(p1 ·p2)

(p1 ·k)(p2 ·k)

)
Ω+

11 −2
k2(p1 ·p2)

(p1 ·k)(p2 ·k)
Ω−

11 +2Ω10

]
,

where the angular integrals Ω±
ij are defined as

Ω±
i,j =

∫ π

0
dθ

∫ π

0
dϕ

sind−3 θ sind−4 ϕ

(1 − cos θ)i(1 ± cos χ cos θ ± sin χ sin θ cos ϕ)j
, (3.13)

with

cos χ = 1 −
k2(p1 · p2)

(p1 · k)(p2 · k)
. (3.14)

The results for the required angular integrals can be found for instance in ref. [48].

After putting together all the pieces whose calculation was described above, we arrive

to the following d-dimensional result:

wi,NLO(k; ϵ) = Ci

(
µ2

R

k2
T

)2ϵ
c(2ϵ)

k4
T

(
αS(µ2

R)

π

)2

(3.15)

×

{
−

(
µ2

R

k2
T

)−ϵ
c(ϵ)

c(2ϵ)

(11CA − 4TRnF )

6ϵ
− CA

π2 cos(πϵ)

sin2(πϵ)


 δ(1 − t)

− ((12 − 9ϵ)CA − 4TRnF ϵ)
(1 − ϵ)2Γ(1 − 2ϵ)

ϵΓ(4 − 2ϵ)
(1 − t)−1−ϵt2+ϵ + CA

2π

sin(πϵ)
(1 − t)−1−2ϵt2+2ϵ

+ CA

[
2

1 + ϵ
2F1(1, 1; 2 + ϵ; 1 − t) −

1

1 − ϵ
2F1(1, 1; 2 − ϵ; 1 − t)

]
(1 − t)−ϵt2+ϵ

}
,
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where we have introduced the dimensionless variable t, which is defined as

t = k2
T /m2

T , 0 ≤ t ≤ 1 . (3.16)

The expression in eq. (3.15) is apparently singular: there are explicit poles of the dimen-

sional regularisation parameter ϵ, plus there are endpoint divergences at t = 1 for which

keeping the expression in d-dimensions seems necessary for their regularisation. However,

this is not the case, and we can make a more direct connection to the d = 4 result by ex-

panding the factors (1− t)−1−aϵ in terms of plus distributions and rearranging the different

terms. We arrive to the following result

wi,NLO(k; ϵ) = Ci

(
µ2

R

k2
T

)2ϵ
c(2ϵ)

k4
T

(
αS(µ2

R)

π

)2

t2+ϵ(wa
NLO + wb

NLO) , (3.17)

where wa
NLO

and wb
NLO

are given by

wa
NLO =

67CA − 20TRnF − (44CA − 16TRnF ) ϵ

6(3 − 2ϵ)(1 − 2ϵ)
δ(1 − t) (3.18)

−
11CA − 4TRnF − (7CA − 4TRnF ) ϵ

6 − 8(2 − ϵ)ϵ
[(1 − t)−1−ϵ]+

+CA(1 − t)−ϵ
(

2

1 + ϵ
2F1(1, 1; 2 + ϵ; 1 − t) −

1

1 − ϵ
2F1(1, 1; 2 − ϵ; 1 − t)

)
,

wb
NLO = δ(1 − t)


(11CA − 4TRnF )

6ϵ


1 −

c(ϵ)

c(2ϵ)

(
µ2

k2
T

)−ϵ

+ ϵ2CAf(ϵ)


 (3.19)

+2CA
1

ϵ

(
πϵ

sin(πϵ)
tϵ[(1 − t)−1−2ϵ]+ − [(1 − t)−1−ϵ]+

)
,

with f being a function of ϵ defined as

f(ϵ) =
1

ϵ4

(
2 −

π ϵ

sin(π ϵ)
− cos(π ϵ)

(π ϵ)2

sin2(π ϵ)

)
=

7π4

180
+ O(ϵ2) . (3.20)

In order to take the d → 4 limit, we can directly replace ϵ = 0 in wa
NLO

. The expression

of wb
NLO

still has explicit poles in ϵ, though it is straightforward to show upon expansion

that it is also finite in the ϵ → 0 limit.

Using our result in eq. (3.17) for wi,NLO(k; ϵ), we can compute the soft-gluon effective

coupling at order α2
S. We consider the generalised definition in eq. (2.24). It is possible

to obtain compact results for the functional form F(k2
T /m2

T ) = (kT /mT )2p, which corre-

sponds to the definition of ÃT,i and Ã0,i for p = 0 and p = 1, respectively, and it smoothly

interpolates between them for p ∈ (0, 1). The integrals over k2
T and m2

T in eq. (2.24)

can be performed in a relatively straightforward way (one of them is trivial due to the

presence of the delta function). The most complicated terms are those containing hyper-

geometric functions in eq. (3.18), and the computation is more easily carried out by using

an integral representation of 2F1 and exchanging the order of integration, thus leading to
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hypergeometric functions of the type 3F2. We obtain the following result:

Ã
(2)
F(t)=tp,i(ϵ) = Ci

{
−

c(ϵ)(11CA−4TRnF )

12ϵ
+

c(2ϵ)g(ϵ,p)

ϵ

[CA(11−7ϵ)−4TRnF (1−ϵ)]

4(3−2ϵ)(1−2ϵ)
(3.21)

+
CAc(2ϵ)g(ϵ,p)rp(ϵ)

2(1−2pϵ)
−

CAc(2ϵ)

2ϵ2

[
(πϵ)2cos(πϵ)

sin2(πϵ)
+

(πϵ)g(2ϵ,p/2)

sin(πϵ)
−2g(ϵ,p)

]}
,

with

rp(ϵ) =
2

1+ϵ
3F2(1,1,1−ϵ;2−2pϵ,2+ϵ;1)−

1

1−ϵ
3F2(1,1,1−ϵ;2−2pϵ,2−ϵ;1) , (3.22)

g(ϵ,p) =
Γ(1−ϵ)Γ(1+ϵ−2pϵ)

Γ(1−2pϵ)
. (3.23)

Its ϵ expansion up to O(ϵ2) is

Ã
(2)
F(t)=tp,i(ϵ)=A

(2)
i +ϵCi

[
CA

(
101

27
−

11π2

144
(1+4p)−

7ζ3

2

)
+2TRnF

(
−

14

27
+

π2

72
(1+4p)

)]

+ϵ2Ci

[
CA

(
607

81
−

67π2

216
(1+2p)−

11ζ3

36
(7−6p+12p2)−

π4

360
(21−31p+20p2)

)

+2TRnF

(
−

82

81
+

5π2

108
(1+2p)+

ζ3

18
(7−6p+12p2)

)]
+O(ϵ3). (3.24)

The results in eqs. (3.21) and (3.24) for the particular cases p = 0 and p = 1 were anticipated

in ref. [22].

4 Properties of the generalised soft effective coupling

In this section we discuss some general features of the soft-gluon effective coupling.

We consider the generalised effective coupling in eq. (2.24). The scale µ of the effective

coupling is specified through the function F(t) with t = k2
T /m2

T . The function F(t) is a

smooth function of t in the interval 0 ≤ t ≤ 1, with the following behaviour at the endpoints

t = 0, 1. In the limit t → 0 we have t lnn F(t) → 0 for any positive integer n = 1, 2, . . . , so

that the integrand in the right-hand side of eq. (2.24) is integrable in the highly off-shell

region where mT ≫ kT . In the limit t → 1 (i.e., in the on-shell limit k2 → 0) we have

F(t) → F(1), where F(1) is a finite (non-vanishing) constant value. The finite value of F(1)

is a consequence of the fact that in the on-shell region we have kT = mT and, therefore, in

this region there is basically only a single scale (modulo its overall normalisation) that can

be used to define the effective coupling through the integration of the probability density

wi(k; ϵ). Actually, even the overall normalisation of the scale has a trivial effect on the

effective coupling, since from eq. (2.24) we have

ÃF ,i(αS(µ2); ϵ) = ÃF/F(1),i(αS(µ2F(1)); ϵ) . (4.1)

Therefore, as already mentioned below eq. (2.24), in the following we limit ourselves to

considering the case with F(1) = 1 (the more general case with F(1) ̸= 1 can be simply

recovered through the replacements F(t) → F(t)/F(1), µ2 → µ2F(1)).
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The generalised soft effective coupling is obtained through eq. (2.24) by integrating the

probability density wi(k; ϵ). We introduce the rescaled density ŵi(k; ϵ), which is defined as

follows

ŵi(k; ϵ) ≡
1

2
m4

T wi(k; ϵ) . (4.2)

The function ŵi(k; ϵ) is dimensionless, and it depends on the renormalisation scale µR of αS

and on the scales kT and mT . We find it convenient to specify the perturbative expansion

of ŵi(k; ϵ) in the following form:

ŵi(k; ϵ) = ÃT,i(αS(k2
T ); ϵ) δ(1 − t) +

+∞∑

n=2

(
αS(k2

T )

π

)n [
ŵ

(n)
T,i (t; ϵ)

]
+

, (4.3)

where ÃT,i is the effective coupling in eq. (2.22), and
[
ŵ(n)(t; ϵ)

]
+

is the plus-distribution

over t of the function ŵ(n)(t; ϵ).

The structure of eq. (4.3) can be easily explained. To introduce the perturbative expan-

sion in eq. (4.3) we have first set µR = kT in the scale of αS. Then the corresponding pertur-

bative coefficients are dimensionless and depend on the variables t and ϵ. As we know from

the explicit LO and NLO computations of wi(k; ϵ) (see sections 2 and 3), the t dependence

of these perturbative coefficients includes singular distributions such as δ(1 − t) and plus-

distributions of singular functions at t = 1 (e.g., [(1−t)−1 lnk(1−t)]+). In eq. (4.3) the t de-

pendence is entirely expressed in terms of δ(1−t) and plus-distributions of generic functions

ŵ
(n)
T,i (t; ϵ), which are not necessarily singular functions of t in the limit t → 1. We note that

the series in the right-hand side of eq. (4.3) has n ≥ 2, since the LO term with n = 1 is fully

proportional at δ(1 − t). Inserting eqs. (4.2) and (4.3) in eq. (2.22), we note that the terms[
ŵ(n)(t; ϵ)

]
+

give vanishing contributions to the integration over mT and, consequently, the

factor in front of δ(1−t) in eq. (4.3) is (by definition) the effective coupling ÃT,i of eq. (2.22).

The explicit expression of the NLO function ŵ
(2)
T,i(t; ϵ) in eq. (4.3) directly follows from

eqs. (3.17)–(3.19), and we have

ŵ
(2)
T,i(t; ϵ) =

Ci

2
c(2ϵ) tϵ

{
−

11CA − 4TRnF − (7CA − 4TRnF ) ϵ

6 − 8(2 − ϵ)ϵ
(1 − t)−1−ϵ

+CA(1 − t)−ϵ
(

2

1 + ϵ
2F1(1, 1; 2 + ϵ; 1 − t) −

1

1 − ϵ
2F1(1, 1; 2 − ϵ; 1 − t)

)

+2CA
1

ϵ
(1 − t)−1−ϵ

(
πϵ

sin(πϵ)
tϵ(1 − t)−ϵ − 1

)}
. (4.4)

In particular, in the four-dimensional case we have

ŵ
(2)
T,i(t; ϵ = 0) =

Ci

2(1 − t)

[
−

1

6
(11CA − 4TRnF ) + CA ln

t

(1 − t)2

]
. (4.5)

The perturbative representation in eq. (4.3) can be used to obtain a general master

formula that relates soft effective couplings that are specified by different scale functions

F(t). Inserting eqs. (4.2) and (4.3) in eq. (2.24), we straightforwardly obtain

ÃF ,i(αS(µ2); ϵ) − ÃT,i(αS(µ2); ϵ) =
+∞∑

n=2

1

πn

∫ 1

0
dt
[
αn

S(µ2F(t)) − αn
S(µ2)

]
ŵ

(n)
T,i (t; ϵ) . (4.6)
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Then, considering eq. (4.6) for two different functions F1(t) and F2(t), we equivalently

obtain

ÃF1,i(αS(µ2); ϵ) − ÃF2,i(αS(µ2); ϵ) =
+∞∑

n=2

1

πn

∫ 1

0
dt
[
αn

S(µ2F1(t)) − αn
S(µ2F2(t))

]
ŵ

(n)
T,i (t; ϵ) .

(4.7)

We note that the coupling αS(k2
T ) in eq. (4.3) becomes the t-dependent function αS(µ2F(t))

after its insertion in eq. (2.24). Then, the action of the plus-distribution of ŵ
(n)
T,i (t; ϵ) leads

to the subtraction term [αn
S(µ2F(t)) − αn

S(µ2F(1))] (we recall that we set F(1) = 1) in the

right-hand side of eq. (4.6).

The master formula in eq. (4.6) (or, equivalently, eq. (4.7)) gives a relation between

the soft effective couplings. In particular, the difference between the soft effective couplings

is directly controlled by the difference of the QCD coupling αS at the scales that specify

the effective couplings. This implies that the difference in the soft effective couplings has

basically an UV origin from the running behaviour of αS. This feature is somehow expected

since the soft effective coupling is IR/collinear safe and dimensionless and, therefore, the

dependence on the corresponding scale momentum function F(k2
T /m2

T ) can only occur

through the scaling violation due to the scale dependence of αS.

Using eq. (4.6) or (4.7), we can derive important relations between the soft effective

couplings, the cusp anomalous dimension and the CMW coupling. We discuss these rela-

tions in turn.

The cusp anomalous dimension is a relevant quantity that controls the evolution of the

parton distribution functions in the soft limit [24–26], the renormalisation of cusped light-

like Wilson line operators [27] and the IR divergences of QCD scattering amplitudes [10, 28–

31]. The cusp anomalous dimension Ai(αS) can be expressed as a power series expansion

in αS in the following form:

Ai(αS) =
+∞∑

n=1

(
αS

π

)n

A
(n)
i , (4.8)

and it is presently known up to O(α4
S) [33, 34]. We recall that up to O(α2

S) the cusp

anomalous dimension is equal to the CMW coupling [3]. Beyond O(α2
S), Ai(αS) is not

directly related to physical observables, since it refers to IR or UV divergent quantities

and, in particular, it is related to MS-scheme factorisation of IR and UV divergences in

the context of dimensional regularisation in d = 4 − 2ϵ space-time dimensions.

Using eq. (4.6) and the results of ref. [22], we obtain the following all-order relation

between the cusp anomalous dimension and the d-dimensional soft effective coupling:

ÃF ,i(αS; ϵ = β(αS)) = Ai(αS) . (4.9)

In this relation the d-dimensional soft effective coupling is evaluated at the conformal point

ϵ = β(αS), where the d-dimensional QCD β-function β(αS) − ϵ vanishes. The relation in

eq. (4.9) implies that all soft effective couplings are equal at the conformal point ϵ = β(αS)

and, moreover, they are equal to the cusp anomalous dimension. The relation (4.9) is not

specific of QCD, and it also applies to other gauge theories. In particular, in the case of
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N = 4 maximally supersymmetric Yang-Mills theory we have β(αS) = 0 and, therefore,

the cusp anomalous dimension coincides with the physical (four-dimensional) soft effective

coupling: AF (αS) = A(αS).

The equality between Ai(αS) and the two effective couplings ÃT,i and Ã0,i was first

pointed out in ref. [22]. Therefore eq. (4.9) generalises this result by adding that all the

soft effective couplings are equal at the conformal point. The conformal-point equality of

the soft effective couplings is a straightforward consequence of eq. (4.7). Indeed, setting

ϵ = β(αS), the d-dimensional QCD coupling αS(µ2) does not depend on the scale µ and,

consequently, the difference [αn
S(µ2F1(t)) − αn

S(µ2F2(t))] in the right-hand side of eq. (4.7)

vanishes.

In the right-hand side of eqs. (4.6) or (4.7) we can express the d-dimensional QCD

coupling αS(µ2F) in terms of αS(µ2) and F , and we can obtain the difference between the

soft effective couplings order-by-order in perturbation theory.

At O(α2
S) we find the following relation between the perturbative coefficients Ã

(2)
F ,i of

the effective couplings:

Ã
(2)
F1,i(ϵ) − Ã

(2)
F2,i(ϵ) =

∫ 1

0
dt
[
(F1(t))−2ϵ − (F2(t))−2ϵ] ŵ

(2)
T,i(t; ϵ)

= 2 ϵ

∫ 1

0
dt ln

[
F2(t)

F1(t)

]
ŵ

(2)
T,i(t; ϵ = 0) + O(ϵ2) , (4.10)

where ŵ
(2)
T,i is explicitly given in eqs. (4.4) and (4.5). We note that the difference in eq. (4.10)

is of O(ϵ) and, therefore, all the physical (four-dimensional) soft effective couplings are equal

up to O(α2
S) (the equality at O(αS) follows from eq. (2.27)), as anticipated in eqs. (2.28)

and (2.29). We recall that A
(2)
T,i [21, 22] and A

(2)
0,i [22] are equal to the second-order coeffi-

cient of the CMW coupling and, consequently, the remarkable F independence of A
(2)
F ,i is

consistent with the universality of the CMW coupling [3].

Expanding eq. (4.7) up to O(α3
S) we can directly relate the perturbative coefficients

A
(3)
F ,i of the four-dimensional soft effective couplings. We find

A
(3)
F1,i − A

(3)
F2,i = 2πβ0

∫ 1

0
dt ln

[
F2(t)

F1(t)

]
ŵ

(2)
T,i(t; ϵ = 0) . (4.11)

We note that the difference between the effective couplings AF ,i at O(α3
S) is proportional

to the first-order coefficient β0 of the QCD β-function. In particular, eq. (4.11) shows how

this third-order difference can be computed from the knowledge of the probability density

w(k; ϵ) at O(α2
S) (i.e., without knowing w(k; ϵ) at O(α3

S)). The third-order coefficients A
(3)
T,i

and A
(3)
0,i are known from refs. [21, 22] and [22], respectively. Using these third-order results

and the simple t-integral in eq. (4.11), one can straightforwardly evaluate A
(3)
F ,i for various

scale momentum functions F(t). For instance, considering the function F(t) = tp (as in

section 3) and the expression of ŵ
(2)
T,i in eq. (4.5), we obtain

A
(3)
F=tp,i − A

(3)
T,i = −2πβ0 p

∫ 1

0
dt ln t ŵ

(2)
T,i(t; ϵ = 0) = −

π2

3
p (πβ0)2 Ci . (4.12)
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Setting p = 1 in eq. (4.12) we recover the difference (A
(3)
0,i − A

(3)
T,i) that was first computed

in ref. [22]. In the case of generic values of p, eq. (4.12) is a new result. We note that the

difference in eq. (4.12) is proportional to β2
0 (rather than simply to β0 as in eq. (4.11)): such

proportionality is ‘accidental’ since it is due to the fact that the integral
∫ 1

0 dt ln t ŵ
(2)
T,i(t; ϵ =

0) turns out to be proportional to β0.

In four space-time dimensions the difference [αn
S(µ2F) − αn

S(µ2)] is proportional to the

coefficients of β(αS). Therefore, eq. (4.7) shows that, in general, the difference A
(n)
F1,i −A

(n)
F2,i

with n ≥ 4 is proportional to the coefficients β0, β1, · · · , βn−3.

5 All-order expressions in the large-nF limit

In this section, we present results for the probability density wi and the soft coupling ÃF ,i

in the large-nF limit nF ≫ 1. In this framework, it is possible to obtain compact results

at any order n in the αS expansion and to sum them to get expressions valid at all orders.

Only two different structures contribute to this limit at fixed perturbative order: those

coming from the renormalisation of αS and those arising from multiple quark-bubble in-

sertions to the quark-antiquark soft current. Within the renormalisation procedure of αS

only the contributions that depend on β0 are relevant in the large-nF limit. The resulting

series of terms with an increasing number of powers of β0 can be summed at all orders as a

geometric series, leading to a factor (1 + β
(nF )
0 αS/ϵ)−1, where β

(nF )
0 = −TRnF /(3π) is the

nF -dependent part of the coefficient β0. The contribution coming from the sum of bubble

insertions into the gluon propagator is also a geometric series at the amplitude level, since

only quark loops contribute in this limit. We find

∞∑

n=0

wi,NnLO(k; ϵ)
∣∣∣
nF ≫1

=
2Cic(ϵ)

k4
T

αS

π

(
1 +

β
(nF )
0

ϵ
αS

)−1(
µ2

R

k2
T

)ϵ{
δ(1 − t) (5.1)

−
sin(πϵ)

π
h(αS, ϵ)

(
µ2

R

k2
T

)ϵ

t

(
1 − t

t

)−1−ϵ
∣∣∣∣∣1 − h(αS, ϵ) eiπϵ

(
µ2

R

k2
T

)ϵ (
1 − t

t

)−ϵ
∣∣∣∣∣

−2}
,

where we have defined:

h(αS, ϵ) = −
Γ2(2 − ϵ)

Γ(4 − 2ϵ)

π

sin(πϵ)

αS

π

(
1 +

β
(nF )
0

ϵ
αS

)−1

c(ϵ) 2TRnF . (5.2)

The last factor in the second term of eq. (5.1) comes from squaring the (complex) geometric

sum that contributes at the amplitude level. It can be rewritten in a more convenient way

as follows

∞∑

n=0

wi,NnLO(k; ϵ)
∣∣∣
nF ≫1

=
2Cic(ϵ)

k4
T

αS

π

(
1 +

β
(nF )
0

ϵ
αS

)−1(
µ2

R

k2
T

)ϵ{
δ(1 − t) (5.3)

−
t2

1 − t

1

π
Im



(

1 − h(αS, ϵ) eiπϵ

(
µ2

R

k2
T

)ϵ (
1 − t

t

)−ϵ
)−1



}

.
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We note that in eqs. (5.1) and (5.3) for the probability density wi, the strong coupling αS is

always evaluated at the arbitrary renormalisation scale µR. For compactness, this explicit

dependence is omitted and we simply write αS(µ2
R) = αS.

We now compute the soft-gluon effective coupling at large nF , based on the result in

eq. (5.3). We start by considering a generic function F(t) and we apply the definition of

the soft coupling (eq. (2.24)) to each term of the geometric series present in the second

term of eq. (5.3). After some simplification and explicitly taking the imaginary part, we

arrive to the following result:

∑

n≥1

[(
αS

π

)n

Ã
(n)
F ,i(ϵ)

∣∣∣
nF ≫1

]
= Ci c(ϵ)

αS/π

1 − 1
ϵ

αS

π TR
nF

3

{
1 +

∑

m≥1

(
− sin(mπϵ)

π
(5.4)

× [h(αS, ϵ)]m
∫ 1

0
dt [F(t)]−(1+m) ϵ tm ϵ (1 − t)−1−m ϵ

)}
.

where the first term in the curly bracket arises from the δ(1 − t) term in eq. (5.3) and

we have used F(1) = 1, while the remaining terms in the sum are the ones coming from

the second term in the bracket of eq. (5.3). In the equation above, as well as in the

following results for the soft-gluon effective coupling, αS is evaluated at the scale µ given

by µ2 = k2
T /F(k2

T /m2
T ). This dependence is left implicit for compactness, and we simply

write αS(µ2) = αS.

Considering explicit forms for the function F(t), the expression in eq. (5.4) can be

further worked out. For the particular case F(t) = tp, the integral over t can be performed

in a closed form and we find
∑

n≥1

[(
αS

π

)n

Ã
(n)
F(t)=tp,i(ϵ)

∣∣∣
nF ≫1

]
= Ci c(ϵ)

αS/π

1 − 1
ϵ

αS

π TR
nF

3

∑

m≥0

[h(αS, ϵ)]m

×
Γ(1 + mϵ(1 − p) − pϵ)

Γ(1 + mϵ)Γ(1 − p(1 + m)ϵ)
. (5.5)

In the p = 0 case the series in eq. (5.5) can be explicitly summed to obtain

∑

n≥1

[(
αS

π

)n

Ã
(n)
T,i (ϵ)

∣∣∣
nF ≫1

]
=

αS

π
Ci c(ϵ)

(
1

1 + αS

π TR
5
9nF k(ϵ)

)
, (5.6)

where the function k(ϵ) takes the form

k(ϵ) = −
3

5ϵ
+

9eϵγE (1 − ϵ)Γ(1 + ϵ)Γ2(1 − ϵ)

5ϵ(3 − 2ϵ)Γ(2 − 2ϵ)
= 1 +

(
28

15
−

π2

20

)
ϵ + O(ϵ2) , (5.7)

and the coefficients in the expansion are given by

Ã
(n)
T,i (ϵ)

∣∣∣
nF ≫1

= Ci c(ϵ)

(
−

5

9
TRnF

)n−1

[k(ϵ)]n−1 , n ≥ 1 . (5.8)

We note that starting from eq. (5.6) it is possible to take the conformal limit by setting

ϵ = −αSβ
(nF )
0 and we obtain the following all-order result

ÃT,i(αS; ϵ = −αSβ0)
∣∣∣
nF ≫1

=
Ci αS

π

Γ(4 + 2αSβ
(nF )
0 )

6 Γ(1 − αSβ
(nF )
0 )Γ(1 + αSβ

(nF )
0 )Γ2(2 + αSβ

(nF )
0 )

,

(5.9)
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which is exactly the all-order expression for the cusp anomalous dimension Ai(αS) in the

large nF limit as obtained in ref. [49].

In the case with p = 1, we use eq. (5.5) and we find the following results for the

perturbative coefficients of the soft coupling:

Ã
(n)
0,i (ϵ)

∣∣∣
nF ≫1

= Ci c(ϵ)

(
TR

nF

3ϵ

)n−1 n−1∑

k=0

(
n − 1

k

)[
−6eϵγE

Γ2(2 − ϵ)Γ(1 + ϵ)

Γ(4 − 2ϵ)

]k

×
Γ(1 − ϵ)

Γ(1 + kϵ)Γ(1 − (k + 1)ϵ)
. (5.10)

The equivalence between eq. (5.10) and eq. (5.5) (for p = 1) can be proven by performing

the sum over n in eq. (5.10) and exchanging the order of the k and n sums. Considering

the coupling Ã0,i to all orders in αS and for generic values of ϵ, we are not able to obtain

expressions that are more compact than eqs. (5.5) and (5.10).

For ϵ = 0 we can write very compact results for both p = 0 and p = 1. In the case of

AT,i this is trivially obtained by setting ϵ = 0 in eq. (5.6):

∑

n≥1

[(
αS

π

)n

A
(n)
T,i

∣∣∣
nF ≫1

]
=

αS

π
Ci

(
1

1 + αS

π
5
9TRnF

)
. (5.11)

In the case of A0,i, we find the following result:

∑

n≥1

[(
αS

π

)n

A
(n)
0,i

∣∣∣
nF ≫1

]
=

αS

π
Ci

[
3

αS TRnF
arctan

(
αS TRnF

3

1

1 + αS

π
5
9TRnF

)]
. (5.12)

The derivation of eq. (5.12) is rather cumbersome and not particularly enlightening and

therefore, for the sake of brevity, it is not reported here. However, starting from eq. (5.5)

it is rather straightforward, after expanding in αS and ϵ, to check the validity of eq. (5.12)

to an arbitrary large power of the strong coupling.

The coefficients of the perturbative expansion of AT,i and A0,i can be obtained by

computing the derivatives of eqs. (5.11) and (5.12) with respect to αS. After some manip-

ulation, they can be written as follows

A
(n)
T,i

∣∣∣
nF ≫1

= Ci

(
−

5

9
TRnF

)n−1

, n ≥ 1 . (5.13)

A
(n)
0,i

∣∣∣
nF ≫1

= Ci

(
−

5

9
TRnF

)n−1
(

1 +
9π2

25

)n/2
5

3π

1

n
sin

[
n arctan

(
3π

5

)]
(5.14)

= Ci

(
−

5

9
TRnF

)n−1 5i

6πn

[(
1 −

3πi

5

)n

−

(
1 +

3πi

5

)n]
, n ≥ 1 .
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The first few coefficients of eq. (5.14) read

A
(1)
0,i

∣∣∣
nF ≫1

= Ci , (5.15)

A
(2)
0,i

∣∣∣
nF ≫1

= Ci

(
−

5

9
TRnF

)
, (5.16)

A
(3)
0,i

∣∣∣
nF ≫1

= Ci

(
−

5

9
TRnF

)2
(

1 −
3π2

25

)
, (5.17)

A
(4)
0,i

∣∣∣
nF ≫1

= Ci

(
−

5

9
TRnF

)3
(

1 −
9π2

25

)
, (5.18)

A
(5)
0,i

∣∣∣
nF ≫1

= Ci

(
−

5

9
TRnF

)4
(

1 −
18π2

25
+

81π4

3125

)
, (5.19)

and the results for n ≤ 4 agree with the large-nF limit of the corresponding exact result [22].

6 Summary

In this paper we have studied extensions of the soft-gluon effective coupling in the context

of soft-gluon resummation beyond NLL accuracy. Up to NLL accuracy the intensity of soft

radiation is controlled through the CMW coupling [3] and is universal, i.e., the soft coupling

takes the same form in the resummation program for different hard-scattering observables.

Beyond NLL order there is no unique extension of the soft-gluon coupling. Starting from the

probability density wi(k; ϵ) of correlated soft emission, we have introduced an entire class

of soft-gluon effective couplings that are specified by a scale that depends on the transverse

momentum and the transverse mass of the inclusive soft radiation. These couplings are

relevant for resummed QCD calculations of different hard-scattering observables.

We have shown that all these couplings are equal at the conformal point where the

d-dimensional QCD β function vanishes, thereby extending the result of ref. [22]. We have

presented explicit results for the probability density wi(k; ϵ) and the soft couplings at the

second order in the QCD coupling αS in d space-time dimensions. We have also shown

that at this perturbative order all the soft couplings are equal to the CMW coupling in

the physical four-dimensional space-time. In d = 4 dimensions, we have derived an explicit

relation between the soft couplings at O(α3
S). This relation and the O(α3

S) results for

AT,i [21, 22] and A0,i [22] directly give the O(α3
S) result for any soft coupling of the class

that we considered in this paper.

Finally, we have computed the all-order structure of the probability density wi(k, ϵ)

in the large-nF limit and we have presented explicit results for the soft couplings AT,i(αS)

and A0,i(αS) at large nF to all perturbative orders. We have also shown that, as expected,

our large-nF results at the conformal point are consistent with the known structure of the

cusp anomalous dimension [49].
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