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A B S T R A C T   

Introduction: Cerebral small vessel disease (cSVD) is a growing epidemic that affects brain health and cognition. 
Therefore, a more profound understanding of the interplay between cSVD, brain atrophy, and cognition in 
healthy aging is of great importance. In this study, we examined the association between white matter hyper-
intensities (WMH) volume, number of lacunes, entorhinal cortex (EC) thickness, and declarative memory in 
cognitively healthy older adults over a seven-year period, controlling for possible confounding factors. Because 
there is no cure for cSVD to date, the neuroprotective potential of an active lifestyle has been suggested. Sup-
porting evidence, however, is scarce. Therefore, a second objective of this study is to examine the relationship 
between leisure activities, cSVD, EC thickness, and declarative memory. 
Methods: We used a longitudinal dataset, which consisted of five measurement time points of structural MRI and 
psychometric cognitive ability and survey data, collected from a sample of healthy older adults (baseline N =
231, age range: 64–87 years, age M = 70.8 years), to investigate associations between cSVD MRI markers, EC 
thickness and verbal and figural memory performance. Further, we computed physical, social, and cognitive 
leisure activity scores from survey-based assessments and examined their associations with brain structure and 
declarative memory. To provide more accurate estimates of the trajectories and cross-domain correlations, we 
applied latent growth curve models controlling for potential confounders. 
Results: Less age-related thinning of the right (β = 0.92, p<.05) and left EC (β = 0.82, p<.05) was related to less 
declarative memory decline; and a thicker EC at baseline predicted less declarative memory loss (β = 0.54, 
p<.05). Higher baseline levels of physical (β = 0.24, p<.05), and social leisure activity (β = 0.27, p<.01) pre-
dicted less thinning of right EC. No relation was found between WMH or lacunes and declarative memory or 
between leisure activity and declarative memory. Higher education was initially related to more physical activity 
(β = 0.16, p<.05) and better declarative memory (β = 0.23, p<.001), which, however, declined steeper in 
participants with higher education (β = –.35, p<.05). Obese participants were less physically (β = –.18, p<.01) 
and socially active (β = –.13, p<.05) and had thinner left EC (β = –.14, p<.05) at baseline. Antihypertensive 
medication use (β = –.26, p<.05), and light-to-moderate alcohol consumption (β = –.40, p<.001) were associated 
with a smaller increase in the number of lacunes whereas a larger increase in the number of lacunes was observed 
in current smokers (β = 0.30, p<.05). 
Conclusions: Our results suggest complex relationships between cSVD MRI markers (total WMH, number of 
lacunes, right and left EC thickness), declarative memory, and confounding factors such as antihypertensive 
medication, obesity, and leisure activitiy. Thus, leisure activities and having good cognitive reserve counter-
acting this neurodegeneration. Several confounding factors seem to contribute to the extent or progression/ 
decline of cSVD, which needs further investigation in the future. Since there is still no cure for cSVD, modifiable 
confounding factors should be studied more intensively in the future to maintain or promote brain health and 
thus cognitive abilities in older adults.  
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1. Introduction 

Against the background of demographic changes that currently take 
place in our society, cerebral small vessel disease (cSVD) is a growing 
age-associated epidemic that is linked to cognitive impairment. Given 
that cSVD compromises brain health, a more profound understanding of 
cSVD has become an increasing focus of scientific interest. CSVD is 
common in the elderly population and affects the arterioles, capillaries, 
and venules of the brain (Shi and Wardlaw, 2016). Further, there is 
increasing evidence that cSVD plays a role in Alzheimer’s disease (AD) 
(Liu et al., 2018; Rizvi et al., 2021; Wardlaw et al., 2013). Therefore, the 
present paper focusses on cerebral small vessel disease and its relation to 
aging, lifestyle, and health status. 

Following the “STandards for ReportIng Vascular changes on nEu-
roimaging” (STRIVE), cSVD magnetic resonance imaging (MRI) markers 
include recent small subcortical infarcts, white matter hyperintensities 
(WMH) of presumed vascular origin, lacunes of presumed vascular 
origin (lacunes), perivascular spaces, cerebral microbleeds, and brain 
atrophy (Wardlaw et al., 2013). In the current analysis, we included 
WMH, lacunes, and thinning of the entorhinal cortex (EC) as a focal 
atrophy measure. CSVD increases with age (Brickman et al., 2008; 
Chowdhury et al., 2011), and is related to traditional risk factors for 
vascular brain health, such as hypertension, obesity and the associated 
disease type-2 diabetes (Ling and Chabriat, 2020; van Harten, Ooster-
man, Potter van Loon, Scheltens, and Weinstein, 2007). Studies are 
demonstrating associations amongst cSVD markers (as WMH, lacunes, 
brain atrophy) (Appelman et al., 2009; Hotz et al., 2021; Kloppenborg 
et al., 2012; Rizvi et al., 2021), and between cSVD markers and cognitive 
decline (Bangen et al., 2018; Hamilton et al., 2021; Jokinen et al., 2011; 
Rizvi et al., 2018), but longitudinal studies with cognitively healthy 
older adults are scarce. From clinical research, we know that atrophy of 
the EC is thought to represent the earliest neuropathological changes in 
AD (Braak and Braak, 1991a, 1991b; Kaufman et al., 2018; Singh et al., 
2006; Zhou et al., 2016), which in turn leads to poorer performance on 
declarative memory tasks that phenotypically resemble the most 
prominent symptom of AD (Brickman, 2013; Garnier-Crussard et al., 
2022; YL. Wang et al., 2020). As EC atrophy precedes and predicts 
hippocampal atrophy (Pennanen et al., 2004), is measurable several 
years before clinical AD symptoms in cognitively healthy participants 
(Kulason et al., 2020; M. I. Miller et al., 2013; Pettigrew et al., 2016; 
Soldan et al., 2015) the interplay between cSVD, neurodegeneration (i. 
e., gray matter atrophy), and cognition is important for healthy aging. 
CSVD and AD also often coexist and share common vascular risk factors 
(Garnier-Crussard et al., 2022). Cross-sectional studies indicate that 
there is spatial overlap between cSVD MRI markers (i.e. WMH volume 
and areas of atrophy) in normal aging and AD (Rizvi et al., 2018; 
Tuladhar et al., 2015). It is therefore of interest to examine whether, in 
cognitively healthy older adults, an increase in WMH volume and/or 
number of lacunes is associated with thinning of the AD-prone region of 
the EC and with declarative memory loss. 

Since no cure for cSVD exists to date (Zanon Zotin et al., 2021), 
treatment is aimed at controlling symptoms and preventing further 
damage. In addition to medication, modifiable healthy lifestyle factors 
such as being physically active can help control the symptoms of cSVD 
and reduce the risk of stroke (Hasbani et al., 2022). On the other hand, 
unhealthy lifestyle habits such as smoking (Gons et al., 2011; Jeer-
akathil et al., 2004; Moroni et al., 2018), excessive alcohol consumption 
(Livingston et al., 2020), and poor sleep quality (Gottesman and 
Seshadri, 2022) can negatively impact vascular brain health. However, 
comprehensive evidence including different leisure activities (physical, 
social, and cognitive), and their association with cSVD MRI markers and 
cognitive ability (i.e., memory performance) over the course of several 
years is missing. 

Most studies are limited to a single leisure activity, mainly leisure 
physical activity (LPA), which has been associated with smaller WMH 
(Sexton et al., 2016), larger brain volume (Colcombe et al., 2003; Doi 

et al., 2015; Gu et al., 2020), thicker cortices (Gu et al., 2020), and a 
slower cognitive decline (Kraal et al., 2021; Palta et al., 2019). However, 
the findings are not fully consistent. For example, two recent longitu-
dinal studies (Arild et al., 2022) showed no association between LPA and 
cSVD MRI markers, whereas a review suggests that LPA and/or leisure 
cognitive activity (LCA) may attenuate relations between different brain 
measurements and cognition (Song et al., 2022). However, most of the 
previous studies summarized in the reviews by Sexton et al. (2016) and 
Song et al. (2022) referred to cross-sectional study designs, and none of 
these studies examined all three leisure activities in healthy older adults. 
Given the lack of a standardized approach regarding the measurement 
and analysis of leisure activities, single activities have been treated and 
classified inconsistently, which could explain these large between-study 
differences. Some studies explicitly assign single activities to one ac-
tivity dimension (e.g., leisure social activity (LSA) or LCA), others assess 
single activity items without categorizing them, and some combine ac-
tivities into one construct (e.g., socio-intellectual activity). The different 
operationalizations have drawbacks. For example, a strict assignment of 
activity items into one superior activity dimension neglects the multi-
dimensionality of a single activity (e.g., team sports involve physical, 
but also social and cognitive aspects), effects can be suppressed when 
activities are aggregated, and specificity is reduced when several ac-
tivity dimensions are combined into one. To be able to examine the 
influence of physical, cognitive and social activity separately and to 
minimize the risk of attenuated effects, we consider the activity di-
mensions as distinct but related constructs. To the best of our knowl-
edge, in the domain of brain and cognitive aging, no longitudinal study 
with more than two measurement occasions has yetconsidered the three 
dimensions (physical, social, and cognitive) of single leisure activities 
and explored their differential effects. 

In the current seven-year study with five measurement time points 
including cognitively healthy older adults, we investigated how total 
WMH volume, number of lacunes, and thickness of the EC are related 
and whether these areas are associated with poorer declarative memory, 
including confounding factors (age, sex, education, antihypertensive 
medication, obesity, hazardous alcohol consumption, current smoking, 
poor sleep quality, leisure time activities). We hypothesized that WMH 
and lacunes would be associated with increasing EC thinning and that 
increasing EC thinning would be associated with poorer declarative 
memory. 

Regarding the association between leisure activity, WMH, lacunes, 
EC thickness and declarative memory, we hypothesized that more LPA 
would be associated with less cSVD and a thicker EC and a more 
favorable development over time. For LCA and LSA, we chose an 
exploratory approach due to the small number of studies and inconsis-
tent results. 

2. Material and methods 

2.1. Participants 

Data from five measurement time points (i.e., baseline, 1-year 
follow- up, 2-year follow-up, 4-year follow-up, 7-year follow-up) were 
taken from the Longitudinal Healthy Aging Brain (LHAB) Database 
Project (Zöllig et al., 2011) – a prospective longitudinal 
community-based study describing the development of behavior and 
brain anatomy and function of cognitively healthy older adults. The 
project has been ongoing since 2011 and focuses on researching 
domain-overlapping links between measures of brain and behavior. 

At each measurement time point, participants underwent brain im-
aging and completed an extensive battery of neuropsychological, psy-
chometric, and motor tests. In addition to the behavioral and brain data, 
a broad range of additional information is available (e.g., self-report 
measures on leisure activity, lifestyle factors, well-being, health etc.). 
The brain imaging session was conducted in close temporal proximity to 
the behavioral assessments (difference between behavioral and MRI 

I. Hotz et al.                                                                                                                                                                                                                                     



NeuroImage 284 (2023) 120461

3

assessments in days (M±SD): 2.2 (±5.2), at the 1-year follow-up: 2.6 
(±5.2), at the 2-year follow-up: 4.3 (±13.0), at the 4-year follow-up: 4.6 
(±9.3), and at the 7-year follow-up: 6.7 (±8.0)). 

Inclusion criteria for study participation at baseline were age ≥ 64 
years, right-handedness, fluent German language proficiency, a score of 
≥ 26 on the Mini Mental State Examination (MMSE; (Folstein et al., 
1975) no self-reported neurological disease of the central nervous sys-
tem and no contraindications to MRI. Also on the basis of other cognitive 
domains analyzed in previous reports using this dataset, the sample can 
be regarded as cognitively healthy (Hotz et al., 2021; Jäncke et al., 2020; 
Malagurski et al., 2020a, 2020b; Oschwald et al., 2019). The study was 
approved by the ethical committee of the canton of Zurich. Participation 
was voluntary and all participants gave written informed consent in 
accordance with the declaration of Helsinki. 

The LHAB baseline dataset included 232 participants (mean age at 
baseline: M = 70.85, range = 64 – 87, F:M = 114:118). Self-reported 
physical and mental health of the sample at baseline, as measured by 
the SF-12 (Ware et al., 1996) were 50.8 ± 7.4 (M ± SD) and 54.8 ± 6.2, 
respectively, which indicates above-average health compared to a 
normative population (Ware et al., 1996). As expected, sample means 
for these general health indicators slightly declined over time, but still 
indicated above-average health at 7-year follow-up (physical health 
score: 48.4 ± 8.4, mental health score: 52.9 ± 7.7, MMSE: 28.2 ± 1.7). 
At 7-year follow-up, the dataset still comprised 53.88 % of the baseline 
sample (n = 125). As reported in other publications with this sample 
(Malagurski et al., 2020b; Oschwald et al., 2019), selectivity analyzes 
showed that the participants remaining in the study did not substantially 
differ from the baseline sample in terms of age, education or physical 
and mental health. 

For the present analysis, participants were excluded if either struc-
tural MRI or cognition data were missing for all measurement time 
points. The MR images were reviewed by a neuroradiologist with over 
30 years of experience to assure that they are free of intracranial hem-
orrhages, intracranial space occupying lesions, multiple sclerosis lesions 
or large chronic, subacute or acute infarcts. Five T1-weighted (T1w) 
images had to be excluded due to insufficient MRI data quality. Eight 
data points had to be excluded, due to WMH segmentation errors. The 
average educational attainment was higher than would be expected for a 
representative sample, with 51.4% holding a bachelor’s, master’s, or 
doctoral degree. 

2.2. Brain imaging 

2.2.1. MRI acquisition 
Longitudinally structural MRI data were acquired at the University 

Hospital of Zurich on a Philips Ingenia 3.0T scanner (Philips Medical 
Systems, Best, The Netherlands) using the dsHead 15-channel head coil. 
The 2D fluid-attenuated inversion recovery (FLAIR) sequence, was used 
for WMH quantification, and acquired with the following parameters: 
Repetition time (TR): 11,000 ms, echo time (TE): 125 ms, inversion time 
(TI): 2800 ms, 180 × 240 × 159 mm3 field of view (FOV), 32 transverse 
slices, in-plain resolution: 560 × 560, voxel size: 0.43 × 0.43 × 5.00 
mm3, interslice gap: 1 mm, scan time: ~5:08 min. 3D T1w images, used 
for WMH quantification and for the computation of EC thickness, were 
recorded with: 3D T1w turbo field echo (TFE) sequence, TR: 8.18 ms, TE: 
3.799 ms, FA: 8◦, 160 × 240 × 240 mm3 FOV, 160 sagittal slices, in- 
plain resolution: 256 × 256, voxel size: 1.0 × 0.94 × 0.94 mm3, scan 
time: ~7:30 min. The 3D FLAIR sequence was partially considered for 
the distinction between perivascular spaces and lacunes and recorded 
with the following parameters: TR: 4800 ms, TE: 281 ms, TI: 1650 ms, 
250 × 250 mm FOV, 256 transverse slices, in-plain resolution: 326 ×
256, voxel size: 0.56 × 0.98 × 0.98 mm3, scan time: ~4:33 min. 

2.2.2. Cerebrovascular small vessel disease MRI marker 
WMH were automatitically segmented with UBO Detector (UBO: 

unidentified bright objects) (Jiang et al., 2018) using T1w and 2D FLAIR 

images. UBO Detector co-registers FLAIR images to T1w, extracts 
WMH-related intensity features mainly from FLAIR images (best WMH 
contrast) and requires T1w images for white matter, gray matter, and 
cerebrospinal fluid (CSF) segmentation. To distinguish between peri-
vascular spaces and lacunes we used a combination of T1w, 2D and 3D 
FLAIR images. The detailed procedure for WMH volumetric quantifi-
cation as well as the validation of the segmentation quality have been 
previously outlined (Hotz et al., 2021, 2022). In short, WMH volumes 
were automatically segmented with UBO Detector– a k-nearest neighbor 
(k-NN) algorithm. We employed a «Diffeomorphic Anatomical Regis-
tration through Exponentiated Lie» template (Ashburner, 2007) and a 
gray matter mask to reduce the possibility of false positive voxels. The 
customization of the WMH probability maps was done in our previous 
study (Hotz et al., 2022) evaluating different thresholds and nearest 
neighbors (k) between manually segmented WMH and the WMH 
outputted by UBO Detector using different accuracy measures. The best 
performance was achieved with a threshold of 0.9 and a NN of k = 3. 
According to Dadar et al. (2017), the Dice Similarity Coefficient (DSC) 
between manually and automatically segmented WMH was very good 
(DSC = 0.531) for the rather low WMH load of our participants. WMH 
volumes outputted by UBO Detector are in DARTEL space and therefore 
do not need to be adjusted for intracranial volume. To assure that all 
lacunes were correctly removed from the WMH segmentation, each 
WMH map was visually checked for false positives using FSLeyes 
(McCarthy, 2018). 

Lacunes were manually segmented on T1w images, and the number 
of lacunes was extracted and outputted with Python (Van Rossum et al., 
2009) (version 3.7.4) using pandas (The pandas development team, 
2020). Based on the STRIVE (Wardlaw et al., 2013) we distinguished 
perivascular spaces from lacunes, assessing size (3–15 mm), signal in-
tensity on MR images (similar to CSF on all sequences and usually a 
hyperintense rim), and orientation using a combination of FLAIR (2D 
and 3D) and T1w images. In addition, we examined inter-rater reliability 
in 13 randomly selected scans with lacunes and perivascular spaces as 
follows: Rater 1 marked 100 lesions that could be either a lacune or a 
perivascular spaces with a voxel on the axial T1w scan. Rater 2 and 3 
independently divided the lacunes and perivascular spaces into two 
categories (0 = perivascular spaces; 1 = lacunes) (Cohen’s kappa =
0.94). For more details on the assessment of the lacunes, see Hotz et al. 
(2021). 

Right and left hemisphere EC thickness were derived applying 
FreeSurfer’s recon-all pipeline to the individual T1w scans (FreeSurfer 
v6.0.1; Fischl 2012). To ensure unbiased registration between the 
measurement time points, FreeSurfer’s longitudinal analysis stream was 
employed. For the parcellation of the right and left EC the 
Desikan-Killiany atlas (Desikan et al., 2006) was used. EC thickness was 
corrected for mean cortical thickness before analysis for each time point 
to determine a specific effect of EC thickness on the associations inde-
pendent of total cortical thickness. We did not additionally correct for 
estimated total intracranial volume (eTIV), since cortical thickness 
measures generally do not correlate significantly with head size (Barnes 
et al., 2010; Jäncke et al., 2019; Schwarz et al., 2016; Westman et al., 
2013), and this correction is therefore not recommended (Buckner et al., 
2004; Schwarz et al., 2016). 

The cSVD measurements were undertaken on a Supermicro X8QB6 
workstation with 4 × Intel Xeon E57–4860 CPU (4 × 10 cores, 2.27 GHz) 
and 256 GB RAM. The computing host was a KVM virtualized guest 
instance with Ubuntu 18.04.4 LTS with 32 x Intel Xeon E7–4860 CPU 
(2.27 GHz) and 92 GB RAM. 

2.3. Definition of predictors 

The demographic factors we controlled for were age, sex, and edu-
cation. Education was assessed according to the International Standard 
Classification for Education (ISCED) with a scale from 1 to 3 (1 = high 
school with or without vocational education, 2 = higher education 
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entrance qualification, business school or university of applied sciences, 
3 = university degree). Antihypertensive medication was obtained from 
a medication questionnaire (self-reported physician prescription). 
Height and weight were used to calculate the body mass index (BMI) 
(weight-height-ratio in kg/m2) to define obesity (≥ 30 kg/m2) according 
to the WHO (WHO, 2000). A hazardous alcohol consumption was 
determined by the Alcohol Use Disorders Identification Test (AUDIT) 
(Babor et al., 2001). According to the AUDIT, a score of 1 or more on 
question 2 or question 3 indicates consumption at a hazardous level. 
This refers to drinking three or more standard drinks per day, or 
consuming six or more standard drinks on one occasion even if this 
occurs less than monthly. Current smoking was defined as daily or 
non-daily use of cigarettes (Gmel et al., 2017). Poor sleep quality was 
assessed using the Pittsburgh Sleep Quality Index (PSQI; > 5 points =
poor sleep quality) – a self-report questionnaire to assess sleep quality 
over the past month – was used (Buysse et al., 1989). It consists of items 
concerning subjective sleep quality, sleep latency, sleep duration, 
habitual sleep efficiency, sleep disturbances, use of sleeping medication 
and daytime dysfunction. Age was the only metric variable; all other 
variables were dichotomous. Data on alcohol consumption and current 
smoking were only available for the baseline measurement, while the 
remaining data were assessed at each measurement time point and 
averaged to represent time-invariant predictors. 

2.4. Definition of leisure activity 

Leisure activity was assessed with the German Version of the 
«Expanded Victoria Longitudinal Study Activity Questionnaire» (Jopp 
and Hertzog, 2010). For information on data imputation, questionnaire 
adaptations, and correlations between dimensions of leisure activities, 
see Inline Supplementary Text 1. The questionnaire was used to collect 
current (e.g., in the last year) leisure activity in eight areas: sports, craft, 
games, TV, cultural activity, social activity, knowledge gain, and various. For 
each single leisure activity item (e.g., «reading the newspaper»), par-
ticipants were asked to indicate the frequency of engagement (never, 
occasionally, once a month, once a week, several times a week, daily). 
To facilitate the summarizing across leisure activities, the original fre-
quency of engagement (6-point-scale) was transformed into «activity per 
week», with «never» and «daily» being recoded to 0 and 7 activities per 
week, respectively (once a month = 0.25, once a week = 1, several times 
a week = 3.5). «Occasionally» was also recoded to 0 activities per week, 
since it corresponds to a very low frequency (less than once a month). 

To reduce the dimension of the data and extract meaningful infor-
mation, we chose an approach, in which we captured the physical, social 
and cognitive activity aspects of the single leisure activities. This 
approach was guided by the work of Karp et al. (2006) and Fratiglioni 
et al. (2004), who emphasized the multidimensional profile of a given 
leisure activity, qualified by specific combinations of mental, social and 
physical involvement. The single leisure activity items were rated by 
four psychologists. As proposed by Karp et al. (2006) and Fratiglioni 
et al. (2004) scores from «0» (no involvement) to «3» (high involve-
ment) were assigned to indicate how physically, socially, or cognitively 
demanding a given leisure activity is. Accordingly, for each rater, this 
resulted in three scores per single leisure activity. The ratings were 
evaluated using Kendall’s coefficient of concordance W (Kendall and 
Gibbons, 1990) and revealed high agreement for all three aspects 
(physical, social, cognitive) among the four raters: Wphysical = 0.888 (p <
.001), Wsocial = 0.873 (p < .001), Wcognitive = 0.759 (p < .001). Because of 
the good rater agreement, the four rater scores assigned to a given lei-
sure activity were averaged, separately, for the three activity 
dimensions. 

Subsequently, the individual activity frequencies (activity per week) 
were multiplied by the rating scores (i.e., «3.5 activity per week» 

multiplied by the physical aspect score «3» results in a weighted fre-
quency value of «10.5»). Finally, physical (LPA), social (LSA) and 
cognitive (LCA) leisure activity scores were computed by adding up the 

weighted frequency values across all single leisure activities for each 
participant at each measurement time point. To facilitate comparison 
and interpretation, the three scores were converted to T-scores such that 
the values at baseline are scaled to M = 50 and SD = 10. A summary of 
the items and the ratings can be found in Inline Supplementary Table 1. 

There are two major advantages of this analysis approach. On the 
one hand, the leisure activities are considered three-dimensional since 
several aspects can co-occur in a single leisure activity. For example, the 
leisure activity «ball games» comprises not only physical, but also social 
aspects (e. g., when carried out as a team sport). If we would only 
consider the dominant aspect of an activity, we would neglect the other 
activity aspects. On the other hand, the rating of physical, cognitive and 
social involvement from zero to three assures that the profiles reflect 
different levels of involvement. For example, the activity «use a calcu-
lator» is less cognitively demanding than «reading a job-specific book». 
Consequently, the profile for the latter activity contains a higher 
weighting score for «cognitive involvement». 

2.5. Definition of declarative memory 

Declarative memory was assessed with the Verbal Learning and 
Memory Test (VLMT) (Helmstaedter and Durwen, 1990), a German 
adaption of the Rey Auditory Verbal Learning Test (AVLT) (Rey, 1958; 
Schmidt, 1996), and the DCS figural memory test (Diagnosticum für 
Cerebralschädigung; Weidlich and Lamberti, 2001). The VLMT consists 
of five immediate recall trials (15 items / words of list A) and one im-
mediate recall interference trial (15 items / words of list B) followed by 
another recall of the list A items. After a delay of 20–30 min, one delayed 
recall trial (list A) is conducted as well as a test of recognition. For the 
current analyzes, we used the delayed recall performance (number of 
correctly free recalled words). The DCS consists of six immediate recall 
trials (nine items / figures). The figures are visually presented and 
participants need to re-build the figures with five wooden sticks. The 
learning performance (number of correctly reproduced figures after five 
learning trials) was used for the current analysis. 

The individual VLMT and DCS scores were standardized to T scores 
(M = 50, SD = 10) regarding baseline and averaged to calculate domain- 
average composite scores for declarative memory performance. 

2.6. Statistical analysis 

The statistical analysis was carried out in R version 4.1.0 (R Core 
Team, 2020). To obtain normally distributed volumes of WMH and 
lacunes, a natural log-transformation [loge(x)] was applied before 
implementing the statistical procedures. The threshold of the p-value 
was set to p ≤ 0.05 for all statistical analyzes. The estimated effects of the 
predictors on the latent intercepts and slopes, as well as the correlations 
of the latent factors, were reported as standardized effect estimates (β) to 
provide comparable unit-independent effects. 

2.6.1. Description of the subsample with lacunes 
Since not all participants had lacunes, the subsample with lacunes (n 

= 61) was compared with the one without lacunes (n = 170). This was to 
determine whether the samples differed systematically. The continuous 
variables (age, brain measures, declarative memory, leisure activity) 
were compared using a Welch two-sample t-test. For categorical vari-
ables (sex, education, obesity, hazardous alcohol consumption, antihy-
pertensive medication, current smoking, poor sleep quality) the 
Pearson’s Chi-squared test (χ2-test) with Yates’ continuity correction 
was applied. 

2.6.2. Latent growth curve modeling 
We calculated univariate and bivariate latent growth curve (LGC) 

models in the structural equation modeling (SEM) framework using the 
lavaan package version 0.6–12 (Rosseel, 2012) to understand the com-
plex relationships between different variables over time, see Fig. 1. The 
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aim of the univariate models was to obtain an estimate of the intercept, 
the slope and the influences of the predictors on the variables of interest 
(e.g., do the predictors explain variance in the intercept or the slope?). 
The objective of the bivariate models was to estimate the in-
terrelationships of the variables of interest (e.g., is the change in one 
variable related to the change of another variable?). Note that the pre-
dictors are also included in the bivariate models to control the re-
lationships for these influences. Because the selectivity analysis did not 
indicate a systematic drop-out, we assumed missing values to be missing 
at random (MAR) (Little, 1995) and applied Full Information Maximum 
Likelihood Estimation (FIML) (Finkbeiner, 1979; Schafer and Graham, 
2002) to preserve as much data as possible. 

The univariate LGC models for WMH, number of lacunes, right and 
left EC thickness, and declarative memory each contained two latent 
factors: a latent intercept with factor loadings fixed to one (1,1,1,1,1) 
and a latent slope with factor loadings according to the time intervals 
(0,1,2,4,7). Both the intercept and the slope were allowed to vary be-
tween participants, allowing for an additional correlation estimation 
between the intercept and the slope. The means of the observed vari-
ables (residuals) at each time point were set to zero and the variance was 
held constant over time, assuming strict measurement invariance. We 
added regression paths to estimate the effects of demographic factors, 
antihypertensive medication, risk factors, and leisure activity on the 
intercepts and slopes of cSVD indicators, and declarative memory. The 

following regressors were added to the model: age entry (mean centered, 
0 = 70.84 years), sex (0 = female, 1 = male), education (set to level 2 – 

medium level), antihypertensive medication (0 = no, 1 = yes), obesity 
(0 = no, 1 = yes), hazardous alcohol consumption (0 = no, 1 = yes), 
current smoking (0 = no, 1 = yes), poor sleep quality (0 = no, 1 = yes), 
and mean leisure activity score (LPAM, LSAM, LCAM, M = 50). Note that 
LPAM, LSAM and LCAM refer to manifest predictors (mean leisure activity 
scores). 

Latent leisure activity scores – referred to as LPA, LSA, LCA – were 
estimated to better understand the effects of leisure activity, to examine 
the influence of the predictors and to assess bivariate relationships with 
cSVD markers and declarative memory. Again, two latent factors 
(intercept and slope) were estimated for all three leisure activity di-
mensions and the predictors mentioned above were included, except for 
the mean leisure activity score. 

To assess the cross-sectional and longitudinal relationship between 
the above-mentioned variables, we combined two univariate models in 
each case. Thus, four latent factors were estimated (two intercepts and 
two slopes) per model, resulting in six correlations between the latent 
factors. The residual variances were kept constant for both variables 
studied in the models and the residual covariances were set to zero, 
implying that the residuals of the examined variables are uncorrelated. 

To evaluate the adequacy of the models, we used the ratio of the 
χ2-test to the respective degrees of freedom (χ2/df) (Jöreskog and 

Fig. 1. Simplified path diagram of latent growth curve (LGC) models associating the trajectories of the variables of interest (VOI) A and B over five-time points (0 =
baseline, 1 yr = 1-year follow-up, 2 yr = 2-year follow-up, 4 yr = 4-year follow-up, 7 yr = 7-year follow-up). Included VOI were: White matter hyperintensities 
(WMH), lacunes, right entorhinal cortical thickness (EC right), left entorhinal cortical thickness (EC left), declarative memory, leisure physical activity (LPA), leisure 
social activity (LSA), and leisure cognitive activity (LCA). 
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Sörbom, 1993; Marsh and Hocevar, 1985), the Comparative Fit Index 
(CFI) (Bentler, 1990), and the root-mean-square error of approximation 
(RMSEA) (Browne and Cudeck, 1992; Steiger and Lind, 1984). Model fit 
was found to be good when: χ2/ df ≤ 2, CFI > 0.97, RMSEA ≤ 0.05, and 
adequate fit was defined as: χ2/df ≤ 3, CFI > 0.95, RMSEA 0.05 – 0.08 
(Hu and Bentler, 1998; Jöreskog and Sörbom, 1993; Schermelleh-Engel 
et al., 2003). 

We did not statistically control for multiple comparisons over the 
sequential tests and fitted models. To date, there is no consensus 
guidelines on how to best control for multiple comparisons in complex 
multivariate SEM models. Therefore, most researchers working with 
these models do not apply Type I error control, see Smith and Cribbie 
(2013). While there is one recommendation to control for the number of 
hypothesis tests within an SEM model (Cribbie, 2007) it is a subjective 
decision whether this number is based on the structural or measurement 
model. 

On the one hand, leisure activities (LPAM, LSAM, LCAM) were 
included as time-invariant predictors into the models to estimate the 
influence on intercept (I) and slope (S) (mu;μ) of brain measures and 
declarative memory. On the other hand, we modeled latent intercepts 
and slopes for each leisure activity dimension (LPA, LSA, LCA) to esti-
mate more in-depth associations. Note that for these models LPAM, LSAM 
and LCAM were not included as predictors (separated by dashed line). 

The diagram shows the univariate models (thin lines), the bivariate 
models (thin + bold lines), and the predictors. Note that in the bivariate 
models, two VOI were modeled simultaneously, referred to as VOI1 and 
VOI2. Circles represent latent variables, and squares observed variables. 
One-headed arrows stand for regression paths, two-headed arrows show 
variances and covariances of latent variables (sigma; σ). Parameters 
with the same label are fixed to be equal. Intercept and slope of VOI are 
controlled for the predictors. Correlated residuals of the same manifest 
indicator over time were estimated. The residual variance (epsilon; ε) 
was held constant over time. 

3. Results 

3.1. Characteristics of the participants at baseline 

Analyzes were performed on a dataset containing 231 participants. 
Characteristics of the participants at baseline are displayed in Table 1. 
The number of participants per measurement time point and variable 
can be taken from the Inline Supplementary Table 2. 

According to the AUDIT evaluation, 33.3 % (77/231) of participants 
reported hazardous alcohol consumption at baseline. Because this per-
centage seemed very high, we conducted further tests to examine 
alcohol consumption using the standard classification into light, mod-
erate, and heavy drinkers by “NHIS - Adult Alcohol Use,” (2018), which 
accounts for differences between women and men. Using this definition, 
53.3 % (41/77) of AUDIT-defined hazardous alcohol drinkers were 
assigned to the light-to-moderate drinkers group and the percentage of 
hazardous alcohol drinkers in our total sample dropped to 15.6 % 
(36/231), see Inline Supplementary Table 3. Within participants with 
lacunes, 61.6 % (16/26) are light-to-moderate drinkers when using the 
standard definition, see also Inline Supplementary Table 3. 

According to the inferential statistical results, at baseline, partici-
pants with lacunes (n = 61; 72.9 years) were significantly older (t 
(90.88) = 3.443, p < .001) than participants without lacunes (n = 170; 
70.1 years). Consequently, the sample with lacunes does not exactly 
represent the same population as the sample without lacunes. All other 
characteristics were not significantly different, see Inline Supplementary 
Table 4. 

3.2. Univariate latent growth curve models 

Using the univariate LGC models, we detected significant changes in 

all variables over the duration of the study; WMH volume and number of 
lacunes increased, while EC thickness and declarative memory 
decreased. Leisure activity tended to decrease, but not significantly. The 
right EC showed to be thicker on average than the left EC at baseline (t 
(230) = 4.130, p = < 0.001), and this difference remained significant 
over the seven years (t(119) = 2.511, p = .013). All variables revealed 
differences between participants at baseline (intercept); over the seven 
years (slope), only the cSVD MRI markers showed interindividual dif-
ferences. For the estimates of intercepts, annual changes, and intercept 
and slope variance, see Table 2. Plots of individual trajectories of cSVD, 
EC thickness, declarative memory and leisure activity over the seven 
years, separately for women and men, are shown in Inline Supplemen-
tary Fig. 1. Model estimates and fit parameters for univariate LGC 
models are listed in Inline Supplementary Table 5, and Inline Supple-
mentary Table 6. 

Univariate analyzes showed that participants younger at baseline 
had lower WMH volume, fewer lacunes, larger right and left EC thick-
ness, and a better declarative memory. In addition, participants younger 
at baseline showed a less steep increase in the number of lacunes, less 
thinning of the right and left EC, and less decline in declarative memory 
over the seven years. Women showed larger baseline WMH volumes, 
fewer lacunes, and a thinner right and left EC compared with men. 
Higher educated participants initially had larger WMH volumes and a 
thinner right EC, but showed fewer lacunes, which also increased less 
over the study course, better baseline declarative memory but also more 
declarative memory loss over the seven years, and more LPA. Partici-
pants taking antihypertensive medication had fewer lacunes at baseline 
and less increase over the study course and a thicker left EC at baseline. 
Obese participants demonstrated a less steep increase in the number of 
lacunes, a thinner left EC at baseline, and less baseline LPA and LSA. 
Alcohol consumers had fewer baseline lacunes, and a less steep increase 
in the number of lacunes. In contrast, current smokers showed more 

Table 1 
Characteristics of the participants (full sample, N = 231) at baseline.  

Variable Label Baseline 
Demographic Factors   
Age Years, mean (SD) 70.8 (5.1) 
Sex Female, n (%) 113 (48.9) 
Education (1) Secondary with/without 

apprenticeship, n (%) 
(2) High schools, secondary 
technical schools, n (%) 
(3) Bachelor, Master, or 
Doctorate, n (%) 

(1) 64 
(28.4) 
(2) 46 
(20.4) 

(3) 115 
(51.1) 

Antihypertensive Medication Yes, n (%) 89 (40.6) 
Risk Factors   
Obesity, BMI ≥ 30 kg/m2 Yes, n (%) 21 (9.1) 
Hazardous alcohol consumption Yes, n (%) 77 (33.3) 
Current smoking Yes, n (%) 31 (13.4) 
Poor sleep quality Yes, n (%) 93 (40.3) 
Cerebral Small Vessel Disease MRI Marker 
White matter hyperintensities cm3, mean (SD) 11.5 (11.9) 
Number of participants with 

lacunes 
Number, n (%) 61 (26.41) 

Lacunes number Mean number, [range] 4.11 
[1–14] 

Entorhinal cortical thickness 
(right)a 

mm, mean (SD) 3.58 (0.34) 

Entorhinal cortical thickness 
(left)a 

mm, mean (SD) 3.50 (0.32) 

Memory Performance T scores (M = 50, SD = 10), mean 
(SD) 

50 (10) 

Leisure Activity (Physical, 
Social, Cognitive) 

T scores (M = 50, SD = 10), mean 
(SD) 

50 (10)  

a Uncorrected thickness of the entorhinal cortex. 
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baseline lacunes, and a steeper increase in the number of lacunes. Poor 
sleep quality, LPAM, LSAM and LCAM showed no association with any 
other variable. For all results the standardized effect estimates, and p- 
values of univariate analysis are listed in Table 3. 

3.3. Bivariate latent growth curve models 

Bivariate analyzes showed that larger baseline WMH volumes were 
predictive of more lacunes (intercept-intercept) at baseline and over 
time (intercept-slope). The right and left EC were positively correlated 
cross-sectionally (intercept-intercept) and longitudinally (slope-slope), 
and a thicker right EC was predictive of less thinning of the left EC and 
vice versa (intercept-slope). A thicker right and left EC correlated with 
better declarative memory (intercept-intercept), a thicker right EC was 
predictive of a more favorable development of declarative memory over 
the 7 years (intercept-slope), and thinning of the right and left EC was 
associated with a greater decline in declarative memory (slope-slope). 
Better baseline declarative memory was predictive of less declarative 
memory loss. 

Further bivariate analyzes were run to test associations between 
leisure activity scores, cSVD MRI markers, and declarative memory. 
Here, the analyzes show that higher baseline LPA, and LSA, scores 
correlated with less thinning of the right EC over time (intercept-slope). 

For all results the standardized effect estimates, and p-values of 
bivariate cross-domain and univariate inner-domain correlations are 
listed in Table 4. Model estimates and fit parameters for bivariate LGC 
models are listed in Inline Supplementary Table 7. 

4. Discussion 

In this seven-year, five-wave longitudinal study of cognitively 
healthy community-dwelling participants, we examined how cSVD MRI 
markers (total WMH, number of lacunes), right and left EC thickness, 
and declarative memory were associated with different confounding 
factors (age, sex, education, antihypertensive medication, obesity, 

hazardous alcohol consumption, current smoking, poor sleep quality, 
leisure time activities). In addition, longitudinal relationships between 
cSVD MRI markers, declarative memory, and leisure activity were 
examined, controlling for potential confounders using LGC models. To 
our knowledge, this is the first multi-wave longitudinal study of cogni-
tively healthy participants to relate physical, social, and cognitive lei-
sure activity to brain health and declarative memory, considering risk 
and protective factors. 

4.1. Declarative memory and cSVD 

We found a significantly thicker right EC at baseline, which was 
maintained over the seven years. Reduced lateralization was observed in 
individuals with AD and mild cognitive impairment (MCI) (Long et al., 
2013; Thompson et al., 2007). Hasan et al. (2016) and Wang et al. 
(2019) found a thicker right EC, larger right surface area of the EC 
(Simic et al., 2005; Wang et al., 2019), and larger right EC volume 
(Wang et al., 2019), but on the left EC more number of neurons (Simic 
et al., 2005). The exact reason for this right-left asymmetry is still 
elusive, but in the healthy aging brain genetic risk factors such as clin-
ically silent apolipoprotein E (APOE) especially ε2 and ε4 allele might be 
involved (Corder et al., 1993; Donix et al., 2013; Shaw et al., 2007). 

Thicker right and left ECs were related to each other and to declar-
ative memory cross-sectionally and longitudinally, and that an initially 
thicker right EC was predictive for a more favorable development of 
declarative memory over the study course. The present study shows that, 
within participants, less thinning of the right and left EC is associated 
with less declarative memory decline over the seven-year study period, 
controlling for possible confounders. These results can be seen in 
context, as one of the first clinical symptoms in AD is the onset of 
declarative memory loss (Jahn, 2013), which is associated with very 
early aggregation of tau proteins and neuronal degeneration in the EC 
(Igarashi, 2023; Kaufman et al., 2018; Llorens-Martín et al., 2014). In 
the five-year study by Rodrigue and Raz (2004) with two measurement 
time points, a greater annual rate of atrophy in EC volume (but not 

Table 2 
Estimates of intercepts and annual changes with 95 % confidence intervals [CI], percentage change over the seven years and p-values 
interindividual differences in intercepts and slopes for cSVD MRI markers, and declarative memory.  

Variable Intercept Slope Per Year Slope Over 7 Years in% Intercept Variance Slope Variance 
WMH 
Estimate 9.195 0.114 8.679 0.506 0.001 
[CI] [8.496; 9.895] [0.072; 0.157] [5.932; 11.107] [0.415; 0.596] [0.000; 0.001] 
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
LAC No.a 

Estimate 8.403 0.556 46.317 6.092 0.026 
[CI] [3.264; 13.542] [0.205; 0.908] [43.964; 46.935] [2.889; 9.295] [0.016; 0.035] 
p-value 0.001 0.002 0.002 < 0.001 < 0.001 
EC Right 
Estimate 3.542 –0.054 –13.621 0.085 0.001 
[CI] [3.184; 3.907] [–0.097; –0.041] [–21.325; –7.346] [0.077; 0.116] [0.000; 0.001] 
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
EC Left 
Estimate 3.451 –0.039 –10.542 0.076 0.001 
[CI] [3.125; 3.780] [–0.087; –0.017] [–19.488; –3.148] [0.065; 0.103] [0.000; 0.001] 
p-value < 0.001 0.004 0.004 < 0.001 < 0.001 
Memory 
Estimate 48.922 –1.288 –18.429 42.613 0.063 
[CI] [42.112; 55.731] [–2.190; –0.385] [–36.403; –4.836] [32.728; 52.498] [−0.164; 0.290] 
p-value < 0.001 0.005 0.005 < 0.001 0.585 

Abbreviations: WMH = white matter hyperintensities; LAC No. = number of lacunes; EC Right = right entorhinal cortex thickness; EC Left 
= left entorhinal cortex thickness, Memory = declarative memory. 
Note: «Slope Over 7 Years in%» was calculated as follows: 7 times the slope divided by the intercept and multiplied by 100. «Intercept 
Variance » and «Slope Variance» list the significance of the variance in the intercept and the slope estimates. The estimates of intercept and 
slope are in the following units: WMH in cmlog3 , number of lacunes in number, entorhinal cortex thickness in mm, declarative memory and 
leisure activity in T-scores. 

a Subgroup of participants with lacunes (n = 61). 

I. Hotz et al.                                                                                                                                                                                                                                     



NeuroImage 284 (2023) 120461

8

hippocampal or prefrontal volume) predicted a poorer memory in 
healthy adults controlling for age. They concluded that even mild 
age-related atrophy of EC volume is a sensitive predictor of memory loss 
in a healthy and educated population. Our finding that individuals with 
better declarative memory at baseline showed less memory decline over 
the 7 years, may indicate cognitive reserve. According to Stern et al. 
(2019), these initially better declarative memory skills – acquired before 
the onset of EC neurodegeneration – may serve as a protection against 
the loss of brain function and delay it. Other studies have further shown 
that higher premorbid IQ, education, or occupational level is related to a 
lower risk of developing dementia (Deary et al., 2004; Stern, 1994; 

Valenzuela and Sachdev, 2006), a later onset of dementia (Xu et al., 
2020), and a slower age-related cognitive decline in general (Zahodne 
et al., 2015). Cognitive reserve as well as maintenance (Stern et al., 
2019) may also be reflected in our above mentioned results of 
cross-sectional and longitudinal relationships between thicker right/left 
EG and better declarative memory. 

In our analyzes, we did not find associations between WMH / lacunes 
and declarative memory, which is in line with recent studies showing 
that individuals with cSVD exhibit a typical pattern of cognitive decline, 
specifically showing impairments in attention, processing speed, and 
executive functions, while memory functions remain relatively 

Table 3 
Representation of the results of the univariate LGC models with the predictors. Listed are the standardized effect estimates (β) for intercept (I) and slope (S). To the left 
of the bold line are the effects of the predictors on the cSVD MRI markers and declarative memory. To the right of the bold line are the effects of the predictors on LPA, 
LSA, and LCA as latent factors.  

Abbreviations: AHM = antihypertensive medication; Alcohol = hazardous alcohol consumption; Smoking = current smoking; Sleep = poor sleep quality; LPAM = mean 
leisure physical activity score; LSAM = mean leisure social activity score; LCAM = mean leisure cognitive activity score. WMH = white matter hyperintensities; LAC No. 
= number of lacunes; EC Right = right entorhinal cortex thickness; EC Left = left entorhinal cortex thickness, Memory = declarative memory; LPA = leisure physical 
activity; LSA = leisure social activity; LCA = leisure cognitive activity. 
Note: Beta (β), 0.10 = weak effect, 0.30 = moderate effect, 0.50 = strong effect size (Cohen, 1992). 
*p < .05; **p < .01; ***p < .001. 
aSubgroup of participants with lacunes (n = 61). 
bBecause participants with higher educational levels showed a faster decline in declarative memory, it was evaluated whether the point of convergence (intersection of 
the different educational groups) occurred within seven years. Therefore, post-hoc t-tests were conducted at the seven-year follow-up. The results showed that the more 
highly educated still had better declarative memory at the seven-year follow-up. This indicates that the convergence point occurs after the observed 7 years. Education 
level 1 vs. level 2: t(230) = −2.56, education level 1 vs. level 3:  p = .012; . education level 2 vs. level 3: t(230) = −2.48, p = .015; t(230) = 0.77, p = .446.  
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unimpaired (Hamilton et al., 2021; Sachdev et al., 2014). 
In contrast, the studies by Rizvi et al. (2018, 2021) reported a direct 

effect of WMH volume on memory performance in a sample that 
included cognitively healthy individuals and individuals with MCI. 
Interestingly, however, in their earlier publication the authors also re-
ported indirect associations between WMH and memory performance 
mediated by averaged right and left EC thickness (using mediation 
analysis). Thus, it may well be that the lack of association between WMH 
(and number of lacunes) and declarative memory in this study is due to a 
mediation via cortical atrophy. 

According to our analyzes, neither lacunes nor WMH were related to 
thinning of the EC in cognitively healthy older adults. However, both 
cSVD MRI markers – WMH and lacunes – were associated at baseline, 
and greater WMH volume predicted more lacunes over time. This 
finding is supported by other studies (Hotz et al., 2021; Xia et al., 2020) 
that reflect complex nesting and interaction of these two cSVD markers 
with a possible common underlying pathology. 

4.2. Declarative memory and confounding factors 

We demonstrated that higher education was associated with better 
declarative memory at baseline, but with a steeper declarative memory 
loss over time. Post-hoc t-tests of declarative memory scores at seven- 
year follow-up showed that participants with higher education still 
had better declarative memory after the seven years observation. 
However, these findings point to a convergence point outside this 
observed seven-year interval to which individuals converge regardless 
of education. This observation is in line with the neural compensation 
model of cognitive reserve (Stern, 2009), which assumes that there are 
differences between individuals in the ability to use alternative brain 

structures or networks when brain pathology is present that underlie 
specific task performance. That is, individuals with higher education 
may cope with normal age-related decline in memory by using other 
intact cognitive areas, effectively reducing the rate of memory decline 
until these secondary functions also begin to decline. However, the in-
fluence of education on change in cognition is not yet fully understood 
and alternative effects (e.g., no differences in change between different 
levels of education or slower decline for higher levels of education) have 
been reported (for a review, see Lenehan et al. 2015). Overall, the 
findings highlight the importance of education as a modifiable protec-
tive factor against memory loss and as a determinant of cognitive 
reserve, since education can improve cognitive reserve and postpone 
dementia (Gottesman et al., 2014). 

4.3. Leisure activity, cSVD, and declarative memory 

We found that higher engagement in physical and social leisure ac-
tivity was linked to less thinning of the right EC over time. This indicates 
that especially sports, which in later life oftentimes also includes social 
aspects, and an active leisure time with friends and family are beneficial 
for brain health and thus may be protective against neurodegeneration 
of the EC later in life. Sport und CT (Bashir et al., 2021; Hillman et al., 
2008; Rabin et al., 2019; Raffin et al., 2023; Walhovd et al., 2014). 
However, we found no associations for leisure activity with WMH, 
number of lacunes, left EC thickness, and memory. Previous research on 
this topic is mixed. Some studies have found associations between 
physical activity and brain health and/or cognition (Casaletto et al., 
2020; Colcombe et al., 2003; Colcombe and Kramer, 2003; Doi et al., 
2015; Erickson et al., 2011; Gu et al., 2020) whereas two recent longi-
tudinal studies found no relation between either a five-year supervised 

Table 4 
Combined summary covariances between cSVD MRI markers, declarative memory, and leisure activity. All significant 
bivariate cross-domain correlations and the univariate inner-domain correlations between intercept and slope are described 
in standardized effect estimates (β).  

Variables WMH LAC No.a EC Right EC Left Memory 
Intercept ~ ~ Intercept      
WMH  0.451** –0.062 0.084 –0.107 
LAC No.a   –0.040 –0.117 –0.010 
EC Right    0.578** 0.198* 
EC Left     0.288** 
Memory      
LPA –0.022 –0.081 0.059 0.078 0.079 
LSA –0.092 –0.140 0.035 –0.017 0.049 
LCA –0.060 –0.165 –0.041 –0.003 –0.072 
Intercept ~ ~ Slope      
WMH –0.247* 0.452** –0.105 0.050 –0.102 
LAC No.a –0.463 0.506** 0.016 0.128 –0.273 
EC Right 0.040 –0.078 0.222 0.391** 0.537* 
EC Left –0.193 0.095 0.106 0.504*** 0.389 
Memory 0.005 –0.024 0.204 0.110 0.930** 
LPA –0.096 –0.289 0.239* 0.190 0.576 
LSA –0.115 –0.051 0.270** 0.117 0.254 
LCA –0.169 0.028 0.182 0.078 0.295 
Slope ~ ~ Slope      
WMH  –0.288 –0.132 –0.239 –0.005 
LAC No.a   –0.080 0.229 –0.166 
EC Right    0.577*** 0.915* 
EC Left     0.821* 
Memory      
LPA 0.189 0.261 0.060 –0.093 –0.748 
LSA –0.251 –0.048 –0.162 –0.008 –0.321 
LCA –0.100 –0.294 0.164 0.230 –0.408 

Abbreviations: WMH = white matter hyperintensities; LAC No. = number of lacunes; EC Right = thickness of right entorhinal 
cortex; EC Left = thickness of left entorhinal cortex, Memory = declarative memory; LPA = leisure physical activity; LSA =
leisure social activity; LCA = leisure cognitive activity. 
Note: Beta (β), 0.10 = weak effect, 0.30 = moderate effect, 0.50 = strong effect size (Cohen, 1992). 
*p < .05; **p < .01; ***p < .001. 

a Subgroup of participants with lacunes (n = 61). 
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physical activity intervention and WMH growth (Arild et al., 2022) or 
between surveyed physical activity and executive functioning, pro-
gression of cSVD MRI markers, or microstructural integrity after 
correction for confounding factors over a nine-year follow-up (Landman 
et al., 2021). The review by Song et al. (2022) of 18 studies examining 
LPA and/or leisure cognitive activity (LCA) suggests emerging evidence 
for both LPA and LCA being protective for different brain markers and 
cognition (Colcombe and Kramer, 2003; Gu et al., 2020; Song et al., 
2022). Similarly, Sexton et al. (2016) reported small positive effects of 
LPA on white matter volume and white matter lesions. However, most of 
the previous studies summarized in the reviews by Sexton et al. (2016) 
and Song et al. (2022) referred mostly to cross-sectional study designs, 
and none of these studies examined all three leisure activities in healthy 
older adults. In contrast to LPA and LCA, leisure social activity (LSA) is 
less investigated. A review and meta-analysis with mainly 
cross-sectional studies that combined LSA and LCA into a single 
construct reflecting socio-intellectual activity showed associations with 
total white matter (volume and lesions), hippocampal volume, and 
regional gray matter volume in the major brain lobes, but not with 
global gray matter volume (Anatürk et al., 2018; Colcombe and Kramer, 
2003; Sexton et al., 2016). In addition, the meta-analysis by Brown et al. 
(2012) with older adults showed that change in social activity was 
related to memory performance in only two of four longitudinal studies, 
and they concluded that there is little evidence that social activity im-
proves cognitive function (Brown et al., 2012). 

To conclude, LPA is the most studied leisure activity compared to 
LCA and LSA, however, the effects of all leisure activities on brain or 
cognitive abilities seem to be rather small, and with a low overall cer-
tainty (Duffner et al., 2023). A fundamental challenge in inferring po-
tential effects of leisure time activity is the large inter-study variability. 
This large inter-study variability can be seen in terms of the population 
studied (e.g., different demographic factors), the study design (longi-
tudinal vs. cross-sectional), the outcome measures used (cognitive 
abilities or brain measurements), and the operationalization of leisure 
activity. To counter variability and better understand the effects of lei-
sure activities, standardization in the operationalization of leisure ac-
tivities would be particularly desirable (Song et al., 2022). 

We would like to point out that the effectiveness of regular physical 
activity in primary and secondary prevention of various chronic diseases 
(e.g. cardiovascular diseases, diabetes, cancer, hypertension, obesity, 
depression, and osteoporosis) and premature death is considered un-
disputed (Anderson and Durstine, 2019; Warburton et al., 2006). 

4.4. Leisure activity and confounding factors 

Interestingly, leisure activity was the only age-independent predictor 
and did not change significantly over time. In addition, participants with 
a higher education initially engaged more in physical leisure activity, 
but not in cognitive or social leisure activity, than participants with a 
lower education. The association of physical activity and level of edu-
cation in young to early old age has been reported previously (Blasko 
et al., 2014; Shaw and Spokane, 2008). Expectedly, our analysis showed 
that obese participants engage less in physical and social activity at 
baseline, which is in line with previous studies showing that overweight 
and obesity in adults are related to low levels of physical activity, high 
television viewing and poor sleep duration (Cassidy et al., 2017). In the 
study by Thedinga et al. (2021), obese participants reported staying 
away from sports and exercise due to traumatic experiences with stigma. 
These results underscore both the social component in sport and a 
possible pattern of avoidance due to self-discriminatory behaviors in 
sport, as well as in the amount of social activity. 

4.5. CSVD and confounding factors 

The larger initial WMH volumes in women found in this study, have 
also been reported in other studies (Alqarni et al., 2021; de Leeuw et al., 

2001; Longstreth et al., 1996; Sachdev et al., 2009), and may reflect 
genetic and/or hormonal risk factors (V. M. Miller et al., 2013; Sachdev 
et al., 2016; Seo et al., 2013; Ten Kate et al., 2018). Men had thicker 
right and left EG than women at baseline, with no sex differences in the 
trajectories over the seven years of the study. This is in accordance with 
the result of the study by Wang et al. (2019). In return, men initially 
showed more lacunes than women, which is consistent with the study by 
Hao et al. (2021), in which the overall mortality rate for silent lacunar 
infarcts after five years was twice as high in men as in women. 

Although participants with higher education had larger WMH vol-
umes and a thinner right EC at baseline, there was a (non-significant) 
tendency for the WMH volumes to increase less over the seven years 
than in participants with a lower education. However, higher educated 
participants showed fewer initial lacunes with a smaller increase over 
time. Therefore a longitudinal protective effect of higher education on 
WMH and lacunes can be assumed. 

Obesity was associated cross-sectionally with a thinner left EC in our 
study. Further, the initial thickness of the left EC as well as the number of 
lacunes at baseline and over time appeared to benefit from a possible 
protective effect of antihypertensive medication intake. Previous studies 
point to an association between antihypertensive medication intake and 
smaller declines of hippocampal volume (Korf et al., 2004), lower risk of 
dementia and AD (Ding et al., 2020; Ou et al., 2020), lower incidence of 
hemorrhagic and ischemic stroke (Perry et al., 2000), slowing of WMH, 
but inconsistent findings on total brain volume (van Middelaar et al., 
2018). Considering that our participants with lacunes were on average 
older than the participants without lacunes, the possible longer intake of 
antihypertensive medication could explain the significant protective 
effect on the number of lacunes not found in the WMH. According to the 
standard definition by “NHIS - Adult Alcohol Use,” (2018) our partici-
pants tend to a light (≤ 3 drinks per week) to moderate (women: > 3 and 
≤ 7 drinks per week, men: > 3 and ≤ 14 drinks per week) alcohol 
consumption rather than a hazardous alcohol consumption as proposed 
when using the AUDIT. This is reflected by the beneficial effect of 
alcohol consumption on the number of lacunes at baseline and over 
time. This positive impact is consistent with numerous studies showing 
reduced risk of different cardiovascular disease outcomes with 
light-to-moderate alcohol consumption (Bell et al., 2017; O’Keefe et al., 
2014; Ronksley et al., 2011; Scoccianti et al., 2016; Wood et al., 2018; 
Zhang et al., 2014). The association between moderate alcohol con-
sumption and a lower risk of cardiovascular disease has also been 
observed in older individuals (Mukamal et al., 2006). It has been pro-
posed that this is due to an increase in high-density lipoprotein (HDL) 
cholesterol that accompanies alcohol consumption, which has been 
associated with protection against heart disease and improvement in 
factors that influence blood clotting, which is the cause of many heart 
attacks and the most common strokes (Booyse et al., 2007). Another 
possible mechanism was suggested in a recent study by Mezue et al. 
(2023) that major cardiovascular events are reduced in individuals with 
light to moderate alcohol consumption compared with individuals with 
no or high alcohol consumption by lower activity of stress-associated 
brain areas. Although we showed that light to moderate alcohol con-
sumption reduces lacunes in older healthy adults, adverse effects on 
noncardiovascular disease, particularly cancer, are observed in the 
population aged 50 years and older (GBD 2016 Alcohol Collaborators, 
2018). In principle, there is no safe level of alcohol consumption 
(Anderson et al., 2023). 

In contrast, current smoking resulted in more lacunes at baseline and 
over time, indicating a higher risk of cardiovascular disease in smokers. 
For example, smoking damages blood vessels with the risk that they 
thicken and narrow, causing the heart to beat faster, blood pressure to 
rise, and clots to form, which can lead to stroke (Centers for Disease 
Control and Prevention (US), National Center for Chronic Disease Pre-
vention and Health Promotion (US), & Office on Smoking and Health 
(US), 2010; U.S. Department of Health and Human Services, 2014). 

We found no association between poor sleep quality on cSVD MRI 
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markers or declarative memory controlled for all confounders. Although 
an association with brain health is assumed, the direction of the asso-
ciation between sleep disturbance and brain health is still unclear, with 
the possibility of reverse causality – such as longer sleep duration being 
an early marker of neurodegeneration (Gottesman and Seshadri, 2022). 

5. Strength and limitations 

An advantage of this longitudinal study is that due to the long 
observation period of seven years and the five measurement time points, 
statistical procedures using LGC models could be applied, which makes 
the error variance highly predictable. To minimize distortion of the true 
relationship, all associations were corrected for potential confounders. 
Another advantage is the quantification of WMH volumes with UBO 
Detector, an algorithm which we validated and customized in a previous 
work on the same sample (Hotz et al., 2022). Importantly, leisure ac-
tivity was not handled one-dimensionally, allowing a weighted oper-
ationalization of physical, social, and/or cognitive aspects in one single 
activity, reducing overestimation and underestimation of effects. How-
ever, there are some limitations to consider. A long follow-up period 
carries the risk that older and less medically healthy participants are 
more likely to drop out of the study, which could lead to selection bias 
and obscure the strength and direction of the association between leisure 
activity, declarative memory, and brain health. However, previously 
conducted selectivity analyzes on our sample show that the dropout was 
not systematically biased in terms of physical and mental health. 
Although structured questionnaires are valid and commonly used 
methods to assess leisure activity, participants’ responses may be biased 
and/or erroneous because social desirability may lead to overestimation 
and memory effects. Furthermore, the three leisure activity dimensions 
(LPA, LSA, LCA) are content-driven and correspond to previous 
research, but they are still arbitrary in number. 

We did not control for multiple comparisons in the models, as there is 
little consensus on how to best control for multiple comparisons in 
complex multivariate structural equation models, and thus most re-
searchers do not apply Type I error control (Smith and Cribbie, 2013). It 
should further be noted that the generalizability of the present study is 
limited by the selective sample of highly educated, cognitively healthy 
adults living in Switzerland with a high socioeconomic standard. Thus, 
our results reflect healthy and successful rather than typical aging. Due 
to the observational nature of this study, no causal relationships can be 
established, and therefore the associative results should be interpreted 
accordingly. To further investigate our findings, randomized controlled 
trials (RCTs) are recommended to test the effectiveness of leisure ac-
tivity on brain health and memory. 

6. Conclusion 

The presented five-wave longitudinal analysis with cognitively 
healthy older participants explored the complex associations of cSVD 
MRI markers (total WMH volume, number of lacunes, right and left EC 
thickness), declarative memory, leisure activity, and confounding fac-
tors using LGC models. We found evidence of neuroprotective effects, 
with physical and social leisure activities being predictive of less thin-
ning of the right EC over seven years. Further beneficial effects over time 
were shown for higher education, antihypertensive medication use and 
light-to-moderate alcohol consumption, while smoking and obesity were 
associated with disadvantageous outcomes. These findings have yet to 
be replicated. Given that there is no cure for cSVD, modifiable con-
founding factors should be intensively studied in the future to maintain 
and promote brain health in old age. 
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visueller Lern- und Gedächtnistestnach Nach F. Hiller. Hans Huber, Bern, 
Switzerland.  

Westman, E., Aguilar, C., Muehlboeck, J.S., Simmons, A., 2013. Regional magnetic 
resonance imaging measures for multivariate analysis in Alzheimer’s disease and 
mild cognitive impairment. Brain Topogr. 26 (1), 9–23. https://doi.org/10.1007/ 
s10548-012-0246-x. 

WHO, 2000. Obesity: preventing and managing the global epidemic. Report of a WHO 
consultation. World Health Organ. Tech. Rep. Ser. 894 i–xii, 1.  

Wood, A.M., Kaptoge, S., Butterworth, A.S., Willeit, P., Warnakula, S., Bolton, T., 
Emerging Risk Factors Collaboration/EPIC-CVD/UK Biobank Alcohol Study Group, 
2018. Risk thresholds for alcohol consumption: combined analysis of individual- 
participant data for 599 912 current drinkers in 83 prospective studies. Lancet 391 
(10129), 1513–1523. https://doi.org/10.1016/S0140-6736(18)30134-X. 

Xia, Y., Shen, Y., Wang, Y., Yang, L., Wang, Y., Li, Y., Dong, Q., 2020. White matter 
hyperintensities associated with progression of cerebral small vessel disease: a 7-year 
Chinese urban community study. Aging 12 (9), 8506–8522. https://doi.org/ 
10.18632/aging.103154. 

Xu, H., Yang, R., Dintica, C., Qi, X., Song, R., Bennett, D.A., Xu, W., 2020. Association of 
lifespan cognitive reserve indicator with the risk of mild cognitive impairment and 
its progression to dementia. Alzheimer Dementia 16 (6), 873–882. https://doi.org/ 
10.1002/alz.12085. 

Zahodne, L.B., Stern, Y., Manly, J.J., 2015. Differing effects of education on cognitive 
decline in diverse elders with low versus high educational attainment. Neuropsychol. 
29 (4), 649–657. https://doi.org/10.1037/neu0000141. 

Zanon Zotin, M.C., Sveikata, L., Viswanathan, A., Yilmaz, P., 2021. Cerebral small vessel 
disease and vascular cognitive impairment: from diagnosis to management. Curr. 
Opin. Neurol. 34 (2), 246–257. https://doi.org/10.1097/WCO.0000000000000913. 

Zhang, C., Qin, Y.Y., Chen, Q., Jiang, H., Chen, X.Z., Xu, C.L., Zhou, Y.H., 2014. Alcohol 
intake and risk of stroke: a dose-response meta-analysis of prospective studies. Int. J. 
Cardiol. 174 (3), 669–677. https://doi.org/10.1016/j.ijcard.2014.04.225. 

Zhou, M., Zhang, F., Zhao, L., Qian, J., Dong, C., 2016. Entorhinal cortex: a good 
biomarker of mild cognitive impairment and mild Alzheimer’s disease. Rev. 
Neurosci. 27 (2), 185–195. https://doi.org/10.1515/revneuro-2015-0019. 
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