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Integrated global assessment of the natural 
forest carbon potential

 

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land 

use and climate have considerably reduced the scale of this system1. Remote-sensing 

estimates to quantify carbon losses from global forests2–5 are characterized by 

considerable uncertainty and we lack a comprehensive ground-sourced evaluation to 

benchmark these estimates. Here we combine several ground-sourced6 and satellite- 

derived approaches2,7,8 to evaluate the scale of the global forest carbon potential 

outside agricultural and urban lands. Despite regional variation, the predictions 

demonstrated remarkable consistency at a global scale, with only a 12% difference 

between the ground-sourced and satellite-derived estimates. At present, global forest 

carbon storage is markedly under the natural potential, with a total deficit of 226 Gt 

(model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C)  

of this potential is in areas with existing forests, in which ecosystem protection can 

allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in 

regions in which forests have been removed or fragmented. Although forests cannot 

be a substitute for emissions reductions, our results support the idea2,3,9 that the 

conservation, restoration and sustainable management of diverse forests offer 

valuable contributions to meeting global climate and biodiversity targets.

The continuing climate and biodiversity crises threaten ecosystems and 

human society10,11. Representing 80–90% of the global plant biomass1 

and much of Earth’s terrestrial biodiversity12, forests play a key role in 

both climate-change mitigation and adaptation. So far, humans have 

removed almost half of Earth’s natural forests13,14, and we continue to 

lose a further 0.9–2.3 Gt C each year (about 15% of annual human carbon 

emissions) through deforestation15. In response to these pressing chal-

lenges, international environmental initiatives such as the UN Decade 

on Ecosystem Restoration16, the Kunming-Montreal Global Biodiversity 

Framework17 and the Glasgow Leaders’ Declaration on Forests and Land 

Use18 have been established to reduce deforestation and revitalize eco-

systems. A key step in guiding such environmental targets is gaining 

a comprehensive understanding of the global distribution of existing 

forest carbon stocks, as well as the potential for carbon recapture if 

healthy ecosystems are allowed to recover3,19.

Remote-sensing observations have been central to the development 

of spatially continuous models of global forest biomass2,7,8. Building 

on these satellite-derived observations, a growing body of research 

has begun to use statistical extrapolations to estimate the potential 

extent of forest carbon stocks under natural conditions2–4. In recent 

years, refs. 3,4 combined remote-sensing forest-area estimates with 

coarse (ecoregion-level or country-level) carbon-storage estimates to 

approximate the global carbon potential. More recently, Walker et al.2 

used satellite-derived biomass estimates from natural forested regions 

to statistically extrapolate potential forest biomass in the absence of 

human disturbance. Despite yielding carbon potential estimates rang-

ing from 200 to 300 Gt C, inherent strengths and weaknesses of each 

approach have given rise to uncertainty across studies, with sugges-

tions that these estimates may be up to 4–5 times too high5,9,20,21. As a 

result, confidence in the carbon potential of forest ecosystems remains 

low. Without an independent, bottom-up assessment of global forest 

carbon potential built directly from ground-sourced data, evaluating 

and benchmarking these satellite-derived trends remains challeng-

ing. Overcoming this controversy requires consideration of various 

independent approaches to identify the extent of confidence and 

uncertainty across different land uses around the world.

Another key challenge in the development of potential biomass esti-

mates is how to approximate the ‘natural’ state of vegetation stocks. 

To do this, recent extrapolations of forest potential have been built 

from data collected in protected land3 or areas with minimal human 

disturbance2. However, a limitation of such approaches is that the 

focus on undisturbed areas restricts data to a few regions, which can 

bias results towards environments systematically avoided by humans. 

Protected areas may, for example, often exist in regions of marginal 

agricultural value or that possess unique ecological features22. An alter-

native approach to avoid such biases is to use observations across the 

full gradient of human disturbance and then use statistical techniques 

to remove the human footprint23. This method has proved successful 

in assessing the impact of historical human land use on soil carbon 

storage23. By allowing the inclusion of larger datasets across a broader 

range of environmental conditions, this approach has the potential 

to improve the statistical strength of biomass potential estimates. 

Consideration of the results from these different modelling datasets 

and approaches will be necessary to develop a comprehensive under-

standing of the global forest carbon potential.

Here we used a combination of independent modelling approaches 

to generate spatially explicit estimates of potential forest biomass 

worldwide. The first set of analyses was based on ‘bottom-up’ models  

built directly from ground-sourced (denoted GS) aboveground live 

biomass estimates from forest inventory data of the Global Forest  

Biodiversity initiative (GFBI)6. This was contrasted with three 

‘top-down’ models built from the latest satellite-derived (denoted SD),  
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high-resolution aboveground forest biomass maps, namely, the Euro-

pean Space Agency’ Climate Change Initiative (ESA-CCI)7, Walker et al.2 

and harmonized8 products. As our GS model operates independently 

from satellite information, it serves as a benchmark for evaluating the 

satellite-driven approaches. For all four datasets, we then approxi-

mated forest biomass under hypothetical natural conditions through 

two distinct methods: (1) representing human-disturbance indices as 

independent variables (model type 1) and (2) building models exclu-

sively using data from undisturbed areas (model type 2). We define 

‘natural’ forest potential as that which might exist in the absence of 

extensive anthropogenic degradation. Using each of these databases, 

we then scaled to total forest carbon potential using spatially explicit 

global estimates of root mass fraction24, soil carbon potential23 and 

biome-level estimates of dead wood and litter19. By contrasting these 

diverse approaches and comparing the results against previous evalu-

ations using a meta-analysis, we aimed to provide an integrated assess-

ment of the natural forest carbon potential.

Mapping the human impact on tree biomass

The underlying goal of our analysis was to investigate the impact of 

human land-use change on forest carbon stocks globally. Of course, 

many indigenous populations and local communities live in sustain-

able harmony with natural forests, often with beneficial impacts 

on ecosystem structure. However, we aimed to isolate the effects 

of extensive land-use change and anthropogenic degradation. To 

achieve this, we used a partial-regression approach in the first step, 

testing for the relationship between aboveground forest biomass 

and anthropogenic degradation, while controlling for the effects of  

climate, topography and soil conditions (Fig. 1d,g and Methods). This 

analysis revealed a consistent decline in tree carbon density along the 

anthropogenic degradation gradient across all biomes, evident in both 

the ground-sourced and the satellite-derived biomass observations  

(Fig. 1e,h).

Our GS models of potential forest biomass combine plot-level 

aboveground forest carbon measurements with spatially explicit 

data reflecting climate, soil conditions, topography, forest canopy 

cover and human disturbance, using random-forest machine-learning 

models to interpolate our biomass measurements across the globe 

(see Methods). In the first set of models (GS1), we estimated the global 

forest carbon potential in the absence of human activity by statisti-

cally accounting for the impact of human disturbance23, setting all 

variables directly reflecting human disturbance to zero. By contrast, 

the second set of GS models (GS2) extrapolated the global forest car-

bon potential from data derived from protected areas with minimal 

human disturbance2,3. To account for uncertainties in canopy-cover 

estimates from the forest inventory plots, we incorporated upper and 

lower boundaries of canopy cover in each pixel, resulting in a total of 

four GS models: GS1Upper, GS1Lower, GS2Upper and GS2Lower. We extended this 

combination of approaches to evaluate the biomass potential for each 

of the three satellite-derived biomass products (ESA-CCI, Walker et al. 

and harmonized). The models included either all terrestrial regions 

(SD1) or only regions with minimal human disturbance (SD2), using 

the same set of predictor variables as covariates included in the GS 

models. This resulted in a total of six SD models: SD1ESA-CCI, SD1Walker, 

SD1Harmonized, SD2ESA-CCI, SD2Walker and SD2Harmonized.

The full combination of models allowed us to disentangle the effects 

of deforestation and forest degradation on tree carbon losses while rep-

resenting data and model uncertainties. The total tree carbon potential 

was determined by summing the forest carbon that would naturally 

exist (1) outside existing forests (restoration potential) and (2) in exist-

ing, degraded forests (conservation potential). The resulting maps 

provide models of tree carbon potential under current (1979–2013) 

climate conditions in the hypothetical absence of human disturbance 

(Fig. 2a).

The coefficients of variation from a bootstrapping procedure showed 

that existing and potential carbon stocks were estimated with confi-

dence across all models. For 90–100% of the pixels inside the existing 
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Fig. 1 | The global distribution of tree carbon observations and the impact 

of human disturbances. a, Map of ground-sourced aboveground tree  

carbon observations (GFBI data; aggregated to 30-arcsec (1-km2) resolution). 

b, Satellite-derived ESA-CCI map of current aboveground tree carbon stocks 

(1-km resolution). c,f, Observed biome-level tree carbon densities in existing 

forests based on ground-sourced (c) and satellite-derived (f) data. d,g, Principal 

component analysis (top two principal components shown) of the eight human- 

activity variables either directly or indirectly reflecting human-caused forest 

disturbances or the lack thereof, such as land-use change, human modification, 

cultivated and managed vegetation and wilderness area, to detect the effect of 

human disturbance on tree carbon densities for the ground-sourced (d) and 

satellite-derived data (g). e,h, Partial regression of the global variation in forest 

carbon density along the human-disturbance gradient (represented by the first 

principal component of the eight human-activity variables; see panels d and g) 

for the ground-sourced (e) and satellite-derived data (h), controlling for 40 

environmental covariates. Relative carbon density is the observed carbon 

density divided by the global average.
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and potential forest area, the coefficients of variation were below 20% 

(Supplementary Figs. 1 and 2). A spatial-validation procedure (spatially 

buffered leave-one-out cross-validation (LOO-CV)), accounting for 

the potential effects of spatial autocorrelation on model-validation 

statistics, showed that the GS and SD models explained 70–77% or 

82–87% of the spatial variation in tree biomass, respectively (Sup-

plementary Table 1 and Supplementary Fig. 3). Furthermore, when 

specifically considering disturbed regions with human-disturbance 

levels ranging from 10% to 60%, the explained variation in tree biomass 

remained high (>60%), showing that our models effectively captured 

the variation of carbon stocks in regions with high human footprint 

(Supplementary Fig. 4).

Comparison between models

Despite discrepancies in certain regions, there was high overall agree-

ment between the ground-sourced and satellite-derived biomass esti-

mations at the global scale (average R2 of 0.72 at a spatial resolution 

of approximately 1 km2; Supplementary Figs. 5–9). This agreement 

translated to similar estimates of existing live tree biomass: 367 Gt C 
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in the absence of humans. a,b, The total living tree carbon potential of 600 Gt C 
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between current and potential tree carbon stocks, totalling 217 Gt C. e,f, The 

difference of tree carbon potential between the GS and SD models, subtracting 

the mean values of the six SD models from the mean values of the four GS 

models. Blue colours indicate that the GS models predict higher potential than 

the SD models, whereas red colours indicate the opposite. b,d,f, Latitudinal 

distributions (mean ± standard deviation) of the total tree carbon potential for 

the GS1, GS2, SD1 and SD2 models (b), the difference between current and 

potential tree carbon (d) and the difference of tree carbon potential between 

the GS and SD models (f). Maps represent the average estimates across all GS 

and SD models and are projected at 30-arcsec (about 1-km2) resolution. We 

show dryland and savannah biomes with stripes to denote that many of these 

areas are not appropriate for forest restoration. Where trees would naturally 

exist, they often exist far below 100% canopy cover, and restoration of forest 

cover should be limited to natural conditions.
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(model range = 334–400 Gt C) for the GS models and 394 Gt C (model 

range 355–445 Gt C) for the SD models (<7% difference). A compari-

son of existing biomass estimates across the latitudinal gradient also 

showed high inter-model consistency, with the GS model predicting 

slightly higher biomass values than the SD model for the equatorial 

zone and lower biomass values at high-latitude regions of the Southern 

Hemisphere (>40 °S) (Supplementary Fig. 6). On average, the models 

predicted that 69% of live tree biomass is stored in tropical regions, 

with temperate, boreal and dryland regions accounting for 18%, 11% 

and 1%, respectively (Supplementary Table 3).

Using all sets of GS and SD models, we could estimate the total 

potential living tree carbon that would exist in the absence of 

human influence. Our models projected considerable gains in 

the hypothetical natural forest biomass, with a mean estimate 

for total potential living tree carbon of 600 Gt C (model range =  

487–712 Gt C). The individual model estimates were as follows: GS1Upper =  

487 Gt C, GS1Lower = 595 Gt C, GS2Upper = 517 Gt C, GS2Lower = 647 Gt C,  

SD1Harmonized = 552 Gt C, SD1ESA-CCI = 578 Gt C, SD1Walker = 669 Gt C,  

SD2Harmonized = 596 Gt C, SD2ESA-CCI = 645 Gt C and SD2Walker = 712 Gt C 

(Figs. 3 and 4 and Supplementary Tables 2 and 3). The highest estimates 

were derived from the Walker et al.2 map, with the GS, harmonized 

biomass and ESA-CCI estimates being 19%, 17% and 11% lower, respec-

tively. Overall, we predict that, under current climate conditions, a 

further 217 Gt (model range = 153–267 Gt) of living tree carbon could 

potentially exist in the absence of humans (Fig. 5b). Of this potential, 

123 Gt C (99–153 Gt C) can be attributed to tropical regions, 55 Gt C 

(40–66 Gt C) to temperate regions, 14 Gt C (5–25 Gt C) to boreal 

regions and 25 Gt C (9–41 Gt C) to dryland regions (Supplementary  

Table 3).

Despite the broad consensus on the global top-down and bottom-up 

carbon potential estimates, considerable spatial variations were 

observed in the models. The SD models tended to predict higher 

potential carbon stocks than the GS models across 82% of pixels, par-

ticularly in South American tropical forests (Fig. 2e,f), suggesting pos-

sible overestimation of satellite-derived biomass potential in these 

regions. More ground-sourced data are needed from tropical areas 

to improve accuracy and balance the high sample sizes available for 

temperate regions7,25. On the other hand, the GS models predicted 

slightly higher potential than the SD models in subtropical regions 

and temperate forests of Europe.
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Fig. 3 | The living tree carbon potential estimated from the ground-sourced 

(GS1 and GS2) and satellite-derived (SD1 and SD2) models. a, Total estimated 

living tree biomass potential of the GS1, GS2, SD1 and SD2 models. Error bars 
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from a bootstrapping procedure. Colours represent the different input datasets, 

that is, upper or lower canopy cover boundaries (GS models) and ESA-CCI, 
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indicate the difference between current and potential tree carbon stocks.  

b, Meta-analysis showing literature estimates of living tree carbon potential 

based on ensemble models4,53,54, inventory data19,55–61 and mechanistic62–67 or 

data-driven2 models. The horizontal dashed line represents the average existing 

living tree carbon of 443 Gt C estimated in these publications. c, Differences 

between current and potential tree carbon stocks. d, Literature estimates for 

the difference between current and potential tree carbon stocks from ref. 4 

(ensemble models), refs. 1,53,58,61 (inventory data), refs. 63,64 (mechanistic 

models) and ref. 2 (data-driven models).
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We also show that the type 1 models (GS1 and SD1) predicted a 47 Gt C 

lower potential than the type 2 models (GS2 and SD2; Fig. 3). The focus 

on ‘undisturbed’ regions in the type 2 models may introduce bias by 

favouring regions with unusually high biomass. By contrast, the type 1 

models incorporated observations across the full human-disturbance 

gradient, potentially resulting in an underestimation of potential in 

regions with incomplete historic-disturbance data. Furthermore, we 

imposed a constraint on forest biomass potential by limiting forest 

growth to the potential tree cover range projected in a previous analy-

sis3. If this spatial constraint is removed to compare our model with 

the estimate of Walker et al.2 of 796 Gt C (without such constraints), 

our SD2Walker model generates a similar total potential of 760 Gt C (<5% 

difference). Thus, our mean estimate of Earth’s total potential living 

tree carbon of 600 Gt C from the ensemble of modelling approaches 

is probably conservative.

Total ecosystem carbon potential

To determine the total carbon storage potential of natural woody eco-

systems, we converted our estimates of living tree biomass into total 

ecosystem carbon stocks by incorporating global data on soil carbon23, 

dead wood and litter19. To represent the various sources of uncertainty 

(Fig. 4), we considered: (1) model type (types 1 and 2); (2) input data 

(upper and lower canopy cover boundaries for GS models; ESA-CCI, 

Walker et al. and harmonized for SD models); (3) aboveground biomass 

potential (bootstrapping); (4) tree root biomass; (5) dead wood and 

litter; and (6) soil carbon23. The GS and SD models exhibited similar 

uncertainty contributions globally, with 21.2% and 19.0% attributed 

to aboveground living tree biomass potential, 21.6% and 23.9% to dead 

wood and litter, 22.8% and 20.7% to aboveground biomass input data, 

15.0% to soil carbon, 12.1% and 11.8% to root biomass and 7.3% and 9.6% to 

model type. Soil carbon emerged as the primary source of uncertainty 

in regions with high latitudes and elevation. By contrast, aboveground 

biomass input data and dead wood and litter were the primary sources 

of uncertainty in dry and humid tropical areas, respectively (Fig. 4).

Considering all carbon pools together, we estimate that current 

forest carbon storage is 328 Gt (221–472 Gt) lower than the full natural 

potential (Fig. 5 and Table 1). Of this difference, 226 Gt C (151–363 Gt C) 

exist outside urban and agricultural areas, with 61% in forested regions 

in which sustainable management and conservation can promote car-

bon capture through the recovery of degraded ecosystems and 39% in 

regions in which forests have been removed (Table 1). These estimates 

highlight that forest conservation, restoration and sustainable man-

agement can help achieve climate targets by mitigating emissions and 

enhancing carbon sequestration.

Carbon potential in existing forests

Previous work has suggested that up to 80% of the world’s forests are 

secondary systems that have undergone anthropogenic degradation26. 

Our models corroborate these findings, revealing a considerable poten-

tial for carbon capture in existing forests by allowing these degraded 

ecosystems to regenerate to maturity. The difference between cur-

rent and potential ecosystem carbon stocks amounts to 139 Gt C 

(108–228 Gt C) in existing forests, representing 61% of the total dif-

ference when excluding urban and agricultural areas (Table 1). Of the 

total 139 Gt, 11 Gt (8%) can be attributed to biomass loss in existing 

forest plantations, in which restoring diverse ecosystems could lead 

to further carbon capture. The remaining 128 Gt can be attributed to 

human degradation in other forest ecosystems. These findings high-

light the importance of forest conservation for carbon capture, as 

ecosystems are allowed to recover to their mature states. It suggests 

that a substantial proportion of carbon capture can be achieved with 

minimal land-use conflicts. However, it is essential to acknowledge 

that the demand for wood and other forest-based products imposes 

limitations on this potential, given their climate benefits as substitutes 

for carbon-intensive materials such as fossil fuels and concrete5. None-

theless, evidence shows that reductions in harvesting intensity and 

forest degradation can deliver important climate benefits27. Moreover, 

our model might underestimate the extent of degradation owing to 

challenges in capturing historical land-use legacies and limited data 

availability on plantations in certain countries28. These observations 

reinforce the importance of effective forest conservation and man-

agement not only in reducing future carbon emissions15,29 but also in 

removing carbon that has already been released into the atmosphere.

Carbon potential in converted lands

In areas in which forests have been removed, the difference between  

the current and potential forest carbon stocks amounts to 189 Gt C  

(112–269 Gt C). Of this difference, 30% (57 Gt C) can be attributed to 

cropland areas, 28% (53 Gt C) to areas experiencing low anthropo-

genic pressure at present, 23% (43 Gt C) to pasture land, 18% (34 Gt C) 

to rangeland and 1% (2 Gt C) to urban areas (Fig.  5, Table  1 and  

Supplementary Fig. 10). It is important to recognize that the scale of this 

potential is contingent on social land-use constraints. Socially respon-

sible ecosystem restoration must be driven by the land-use decisions of 

local communities, especially indigenous communities that often face 

marginalization. Sustainable economic development that promotes 

approaches that work with nature (for example, agroforestry, ecotour-

ism etc.) can provide critical avenues for long-term financial security 

as a result of healthy nature. Also, it is important to acknowledge that 

forests can lead to reductions in surface albedo30,31, which generally 

have warming effects in high-latitude regions. Conversely, the local 

biophysical cooling effects of forests in warmer regions32 probably 

enhance the climate-adaptation benefits in the global south.
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Fig. 4 | Sources of uncertainty in forest carbon potential for the GS and SD 

models. a,b, Relative contribution of individual uncertainty sources to the 

overall uncertainty in carbon potential for the GS (a) and SD (b) models:  

(1) model approach (type 1 versus type 2 models); (2) input data (current 

aboveground tree carbon input, that is, upper and lower canopy cover 

boundaries for GS models and ESA-CCI, Walker et al.2 and harmonized for  

SD models); (3) aboveground biomass potential estimates (bootstrapping);  

(4) belowground biomass (accounting for uncertainties in both root mass 

fraction and aboveground biomass); (5) dead wood and litter (accounting for 

uncertainties in both dead wood and litter-to-tree biomass ratios and tree 

biomass); and (6) soil organic carbon potential23. The maps show the top 

uncertainty source within each pixel. The pie charts show the relative 

contribution of uncertainties worldwide.
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Taking into account the future food and feed demand, the Intergov-

ernmental Panel on Climate Change (IPCC) highlights a range of meas-

ures to improve ecosystem health and carbon storage in the land-use 

sector33. This will require a diverse range of approaches, including 

sustainable diets, reducing food waste, rewetting, improved soil health, 

methane reduction and promoting the use of wood in construction. 

We estimate that approximately 41% of the difference between cur-

rent and potential ecosystem carbon stocks outside existing forests, 

within the areas of the world that would naturally be forested, can be 

attributed to livestock grazing areas (pasture and rangelands). Also, 

36% of the world’s crop yields are being used for animal feed34. This 

impact of animal husbandry on forest ecosystems underscores the 

potential implications of transitioning to more plant-based diets. 

Besides reducing greenhouse gases that directly stem from animal 

farming (methane emissions, food production), a reduction in meat 

consumption could reduce emissions from land-use change and create 

large carbon sinks if ecosystems were allowed to regenerate on former  

pasture lands35,36.

 
Comparison with previous estimates

Our integrated estimate of the difference between current and 

potential global living tree biomass (217 Gt C) falls at the lower end of 

the range of previous estimates, which ranged from 150 to 446 Gt C 

(Fig. 3c,d). Also, our estimate of the extra potential for total ecosys-

tem carbon storage outside urban and agricultural land (226 Gt C) 

aligns closely with recent global-scale estimates of 205 and 287 Gt C 

(refs. 2,3). However, it is worth noting that three previous data-driven 

approaches, not included in this meta-analysis because of methodo-

logical differences, have suggested carbon potential values below 

this range. Specifically, Lewis et al.9 considered more rigorous social 
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Fig. 5 | Contribution of land-use types, forest types, carbon pools and 

countries to the difference between current and potential ecosystem-level 

carbon stocks. a, Of the 328 Gt C discrepancy between current and potential 

carbon stocks, 226 Gt C is found outside urban and agricultural (cropland and 

pasture) areas, with 61% in forested regions in which the recovery of degraded 

ecosystems can promote carbon capture (conservation potential) and 39% in 

regions in which forests have been removed (restoration potential). b, Relative 

contribution of forest degradation (conservation potential; blue area) and 

land-cover change (orange colours) to the difference between current and 

potential ecosystem-level carbon stocks. The darker blue area represents the 

conservation potential of 10.5 Gt C in forest plantation regions. c, Relative 

contribution of tropical, temperate, boreal and dryland forests to the total 

forest conservation potential. d, Relative contribution of the three main 

carbon pools (living biomass, dead wood and litter, and soil) to the difference 

between current and potential carbon stocks. e, The nine countries 

contributing more than 50% to the difference between current and potential 

carbon stocks.
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constraints and estimated that natural restoration of 350 Mha of 

deforested, tropical land could capture 42 Gt C in living tree biomass. 

Scaling this estimate to 900 million hectares yielded a potential of 

89–108 Gt tree carbon20, which is comparable with our estimate of 

tree biomass restoration potential of 91 Gt C outside existing forest, 

urban areas and cropland regions (Table 1). Similarly, Roebroek et al.5 

recently reported that the carbon potential in existing forests could 

be as low as 44 Gt C. Their estimate is considerably lower than our 

conservation potential estimate of 139 Gt C. This difference arises 

because Roebroek et al.5 focused only on aboveground tree biomass 

(excluding soil, roots, dead wood and leaf litter) and only consid-

ered the tree cover of existing forested regions. When we narrow 

our analysis to aboveground biomass in these forests, we recover a 

similar estimate of forest potential of 50 (39–63) Gt C. Nonetheless, 

when we consider studies that focused on the total ecosystem poten-

tial in all forest regions, our analysis reveals a distinct overlap that 

provides confidence in the scale of carbon losses from the global  

forest system.

Discussion

Understanding the potential for carbon storage in natural forests is 

crucial for comprehending their role in combating climate change. Our 

combined modelling approach, including ten estimates from this study 

and nine others from previous studies, allows us to identify the extent 

of overlap across diverse approaches and increases our confidence 

about the scale of the forest carbon potential across the globe. We 

found that total forest carbon storage is, at present, 328 Gt C (model 

range = 221–472 Gt C) below its full potential. Of this potential, 102 Gt C 

(69–134 Gt C) exist in urban areas, cropland and permanent pasture 

sites, in which substantial restoration is highly unlikely. Yet, a potential 

of 226 Gt C (151–363 Gt C) is in existing forests and regions with low 

human pressure (Table 1). Of this constrained forest carbon potential, 

139 Gt C (61%) can be found in regions that are already forested. This 

highlights that the prevention of deforestation does not only contribute 

to the reduction of carbon emissions but has large carbon drawdown 

potential if ecosystems can be allowed to return to maturity. Improved 

forest management and restoration to reconnect fragmented forest 

landscapes contribute a considerable 87 Gt (39%) to the extra carbon 

drawdown potential. We stress that, despite considering the broad 

land-use types, we cannot identify detailed land-use activities at a high 

resolution, so different social and economic considerations may place 

further constraints on the scale of this potential. Nevertheless, this 

work highlights the potential contribution of forest conservation, 

restoration and sustainable management in capturing carbon from 

the atmosphere.

The development of current and natural forest carbon maps 

involved several approaches and data sources with varying strengths 

and weaknesses. This ensemble of modelling approaches can help 

to identify the extent of agreement and uncertainty across model-

ling approaches, enabling a comprehensive understanding of carbon 

potential at a global scale. As new satellite technologies, such as the 

Global Ecosystem Dynamics Investigation (GEDI) project37, begin to 

reveal high-resolution information about forest structure, it will be 

increasingly important to refine the spatial and temporal resolution of 

these carbon stock models. Our multimodel and multidata comparison 

pinpoints regional variation in the main sources of uncertainty in forest 

carbon potential, highlighting the need for improved aboveground 

data-sampling efforts in the tropics and soil carbon sampling at high 

latitudes (Fig. 4). As such, continuing efforts to refine the confidence in 

this forest carbon potential require advancements in remote-sensing 

instrumentation7, field-monitoring strategies with sustained funding 

for research teams and field workers, especially in the Global South38,39, 

better representation of temporal dynamics in carbon stocks, espe-

cially in ecosystems prone to natural disturbances40, and methodology 

to allow for strict and verifiable integration of ground data and remote 

sensing into comprehensive carbon stock estimates41. Fair and equi-

table funding support for sustaining and sharing tropical forest data 

is vital to reduce global sampling biases in forest inventory efforts38,39 

(Supplementary Fig. 11).

It is important to note that our estimates of potential carbon cap-

ture in woody ecosystems pertain only to the biophysical potential 

and do not account for future changes in human pressure that may 

threaten forests42,43. Moreover, our estimations are based on recent 

climate conditions (1979–2013). If fossil fuel emissions continue to 

rise, the capacity of ecosystems to capture and store carbon will be 

threatened by climate-change-induced factors such as increasing 

temperature, drought and fire risks44,45. CO2 fertilization also has the 

potential to further change this system46. The dynamic and vulner-

able nature of forests underscores the urgency of conserving existing 

ecosystems to maintain their carbon sink potential and highlights 

the urgent need to uphold no-deforestation pledges at the 26th UN 

Climate Change Conference of the Parties (COP26), including public 

and private-sector commitments to end forest loss as soon as 2025 

(refs. 18,47,48).

Given the positive effect of biological diversity on ecosystem pro-

ductivity6,49, the magnitude of the estimates presented here can only 

be achieved in ecosystems that support a natural diversity of species. 

Indeed, almost half of global forest production can be directly or indi-

rectly attributed to the role of biodiversity6, highlighting that the full 

carbon potential cannot be achieved without a healthy diversity of 

species. Ecologically responsible forest restoration does not include 

the conversion of other natural ecosystem types, such as grasslands, 

peatlands and wetlands, that are equally essential. Restoration can take 

many forms, including the protection of land to allow natural vegeta-

tion recovery, soil microbiome enhancement, enrichment planting 

or reintroducing wild animals33,50. It also includes a vast array of active 

management practices, such as sustainable agroforestry, silviculture or 

permaculture practices, to promote biodiversity in managed systems. 

Ultimately, the protection and restoration of forest ecosystems are 

complex social, political and economic challenges that require the 

development of land-management policies that give priority to the 

rights and wellbeing of local communities and indigenous people51. 

Only when healthy biodiversity is the preferred choice for local people 

Table 1 | Differences between current and potential carbon 
stocks for living tree biomass, dead wood and litter, soil 
(0–2 m depth) and total ecosystem carbon in different 
land-use types

Land-use 

types

Living tree 

biomass

Dead wood 

and litter

Soil Total

Urban 1.1  
(0.8–1.4)

0.3  
(0.2–0.4)

0.3  
(0.2–0.5)

1.7  
(1.2–2.2)

Cropland 38.3 
(25.5–50.7)

10.1  
(6.7–13.3)

8.5  
(5.4–12.6)

56.8  
(37.5–76.6)

Pasture 29.8 
(21.0–36.5)

7.6  
(5.3–9.2)

6.0  
(3.5–9.4)

43.3  
(29.8–55.1)

Rangeland 24.6 
(11.4–38.7)

6.1  
(2.8–9.5)

3.1  
(1.9–4.6)

33.7  
(16.0–52.9)

Low-human- 
pressure land

37.0 
(18.8–54.4)

12.2  
(6.0–17.2)

4.2  
(2.4–10.5)

53.3  
(27.2–82.1)

Existing forest 84.7  
(68.7–105.0)

26.9  
(25.9–32.3)

27.3  
(13.5–91.1)

138.9  
(108.1–228.4)

Sum 216.7  
(153.0–266.8)

61.8  
(41.3–76.2)

49.3  
(26.8–128.7)

327.8  
(221.1–471.7)

Values show the means (in Gt C) of the four GS and six SD model predictions. Values in brackets 

show the full range of estimates across the ten models. For soil carbon, the uncertainty range 

(absolute errors) was based on ref. 23.
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can ecosystem-restoration initiatives be sustainable in the long term52. 

When built in a socially and ecologically responsible way, the promo-

tion of diverse forests can contribute substantially to achieving our 

combined climate and biodiversity goals.
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Methods

Ground-sourced tree biomass

Forest inventory data. Plot-level forest inventory records were  

obtained from data compiled in the GFBI database6 (http://www. 

gfbinitiative.org), which hosts information for 1,188,771 plots (median 

plot size = 250 m2) from every continent except Antarctica (Fig. 1). Each 

plot contains information on stem diameter at breast height (DBH) 

for each tree6. Individuals with a DBH < 5 cm were removed from the 

analysis. Quality controls of tree density values were conducted and 

we removed plots with tree densities that fell outside the median ± 2.5 

times the median absolute deviation (moderately conservative  

threshold)68 in each biome (6% of total plots). This resulted in retaining 

a total of 25,779,993 tree observations in 1,089,026 plots.

Biomass estimation for individual trees. For extratropical biomes, we 

used 430 species-specific DBH-based allometric equations obtained 

from the GlobAllomeTree database69 to estimate the aboveground 

biomass of each tree, W. These allometric equations use a common 

logarithmic equation for estimating aboveground biomass from DBH 

measures70:

W β βln( ) = + × ln (1)
0 1

DBH

in which W is the predicted individual aboveground biomass (kg dry 

weight), DBH is the measured diameter at breast height (cm), ln is the 

natural logarithm and β0 and β1 are the parameter estimates.

Following ref. 70, we applied back calculation to generate a pseudo 

dataset for biomass changes along DBH gradients based on each of the 

430 allometric equations. To generate the pseudo data, we applied the 

following rules: (1) for a DBH between 5 and 25 cm, each centimetre 

was assigned a corresponding pseudo biomass value; (2) for a DBH 

between 25 and 100 cm, every 5 cm was assigned a corresponding value; 

(3) for a DBH between 100 and 300 cm (maximum DBH), every 10 cm 

was assigned a corresponding value. We then trained biome-specific 

allometric equations (varying in the β0 and β1 parameter estimates) 

based on the pseudo DBH and biomass dataset71 (Supplementary Fig. 12 

and Supplementary Table 4).

Biomass estimations for the tropics followed the allometric model 

for pantropical regions from ref. 72, which is available through the 

R package BIOMASS (ref. 73). These equations require information 

on wood density, which came from the Global Wood Density Data-

base74 and the Biomass And Allometry Database (BAAD)75. To match 

the binomial species names between the GFBI and the wood density 

databases, we standardized species binomials using the Taxonomic 

Name Resolution Service (TNRS)76.

Plot-level tree biomass calculation. After computing the above-

ground dry biomass for all approximately 28 million individuals in 

our dataset, plot-level biomass values were obtained by summing the 

biomass of all individuals in the respective plot. For plots that con-

tained data for several years, we calculated the mean of these years. The  

median year of observation across all plots was 2002. Subsequently, 

the biomass densities (in t ha−1) of each plot were obtained by dividing  

the total aboveground biomass (W) by the plot area. Carbon values were 

obtained by multiplying tree biomass by biome-specific wood carbon 

concentrations, ranging from 45.6% in tropical moist broadleaf forest 

to 50.1% in temperate conifer forest77 (see Supplementary Table 5). The 

spatial modelling was performed at 30-arcsec (about 1-km2) resolution 

and we therefore averaged tree carbon-density values for plots located 

in the same 30-arcsec pixel.

To avoid overestimation of carbon densities, we removed (1) values 

larger than the maximum carbon density ever recorded for forests 

(1,867 t C ha−1) and (2) values that fell outside the median ± 2.5 times 

the median absolute deviation (moderately conservative threshold) 

in each biome68,78. Small outlier values were kept, however, if they 

fell in human-modified non-forest landscapes, that is, regions with a 

human-disturbance index >10% and canopy cover <10%. This was done 

to avoid the underestimation of current carbon in croplands, pasture 

lands and urban areas that can contain notable amounts of existing 

biomass in trees outside forests79. To obtain normally distributed data, 

the carbon-density values were log-transformed before the median 

absolute deviation was calculated, using the following equation (Sup-

plementary Fig. 13):

x x= log( + 1) (2)transformed

This removed 6.4% of the data (0–6% in biomes), resulting in a total 

of 527,767 spatially distinct carbon-density values used for the final 

analysis.

Environmental and human-disturbance variables

Environmental covariates. In total, 40 layers, reflecting climate, soil 

and topographic features, were used as covariates in our analyses (Sup-

plementary Table 6). All layers were standardized to 30-arcsec resolu-

tion (1 km2 at the equator). Layers for 19 bioclimatic variables came from 

the CHELSA version 1.2 open climate database (www.chelsa-climate.

org)80, topographic information (elevation, slope, roughness, eastness, 

northness, aspect cosine, aspect sine and profile curvature) from the 

EarthEnv (www.earthenv.org/topography) database81, cloud cover  

(annual mean, inter-annual standard deviation and intra-annual stand-

ard deviation) from the EarthEnv (www.earthenv.org/cloud) database 

and ref. 82, depth to the water table from ref. 83, the annual mean of 

solar radiation and wind speed from the WorldClim database (version 

2)84, absolute depth to bedrock and soil texture (clay content, coarse 

fragments, sand content, silt content and soil pH), averaged for the 

depth between 0 to 100 cm below surface, from the SoilGrids database85 

and the Global Aridity Index from the Global Aridity Index and Potential 

Evapotranspiration (ET0) Climate Database version 2.0 (refs. 86,87).

Human-disturbance covariates. To represent human disturbance in 

our models, we used eight global layers that directly reflect anthropo-

genic effects on the environment. Information on the proportion of 

cultivated and managed vegetation and urban built-up areas in each 

pixel came from the EarthEnv database88. These maps integrate four 

global land-cover products to represent accuracy-weighted consensus 

information on the prevalence of land-cover classes at 1-km resolution 

across the globe (except for Antarctica). By representing the propor-

tional area of anthropogenic modification in each pixel (urban area 

or managed vegetation), the maps provide information on the spatial 

extent of human disturbance within pixels.

Information on agricultural land use (cropland, grazing, pasture and 

rangeland layers transformed to the percentage of agricultural land in 

each pixel) came from the HYDE database version 3.1 (refs. 89,90). Each 

layer represents the proportional area of cropland, grazing, pasture or 

rangeland in each pixel, thus allowing us to account for the individual 

impacts of agricultural land-use types.

Information on human modification, reflecting the overall inten-

sity of human activity, came from ref. 91. Rather than representing 

the impact of individual human-modification classes, such as urban 

areas or cropland, this map provides a cumulative measure of human 

modification based on models of the physical extent of 13 anthropo-

genic stressors in five main classes: (1) human settlement (population 

density, built‐up areas); (2) agriculture (cropland, livestock); (3) trans-

port (major roads, minor roads, two tracks, railroads); (4) mining and 

energy production (mining, oil wells, wind turbines); and (5) electrical 

infrastructure (power lines, night-time lights).

All variables were scaled to represent a continuous gradient of human 

impact, whereby values of zero indicate no human impact in the respec-

tive pixel and values of 1 indicate maximum human impact. Also, we 
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included information on the regions with minimal human disturbance 

across the globe, using the global protected area map from the World 

Database on Protected Areas92,93. Protected areas were treated as a 

binary variable of whether the respective pixel is intentionally disturbed 

by humans or not (that is, strict nature reserve or wilderness area)94.

Geospatial modelling of existing tree carbon

Ground-sourced tree carbon density model. To represent the uncer-

tainty in canopy cover of the forest inventory plots, we used upper and 

lower boundaries of canopy cover in each pixel at approximately 30-m 

resolution to convert C per plot to C per pixel95. We either assumed the 

canopy cover (% forested) of each forest inventory plot to represent 

the maximum canopy cover observed for the respective 1-km2 pixel 

(termed ‘upper canopy cover estimate’) or the mean canopy cover of 

the forested part (≥10% canopy cover) of the respective pixel (‘lower 

canopy cover estimate’). This canopy cover range ensured that our 

estimates represent the range of feasible sampling designs, as forest 

inventory plots can be biased towards high canopy cover sites within 

pixels rather than representing the average forest canopy cover. To 

convert C per plot into C per pixel, we divided the C per plot by the 

canopy cover within the plot (assuming either upper or lower canopy 

cover) and multiplied by canopy cover of the entire pixel, that is, C per 

pixel = (C per plot)/(canopy cover within plot) × (% forested per pixel). 

Thus, the resulting carbon value is inversely related to the canopy cover 

of the forest inventory plots: if the plot locations are assumed to reflect 

the maximum canopy cover in the pixel, then the resulting carbon esti-

mate is the smallest; if instead the plots reflect the mean canopy cover, 

then the resulting carbon estimate is the largest. Note that we do not 

consider the scenario in which the plots are preferentially located in 

areas with minimum forest canopy cover, as this would lead to unrealis-

tically high pixel-level carbon estimates (and carbon potential values) 

and is also unrealistic given the study design of the forest inventories 

underpinning the data. All subsequent analyses were conducted using 

C per pixel derived from both the upper and lower plot-level canopy 

cover estimates, allowing us to represent the uncertainty associated 

with canopy cover.

To train spatially explicit tree carbon models across the world’s for-

ests, we ran random-forest machine-learning models using Google 

Earth Engine96. The models included 40 environmental layers (rep-

resenting climate, soil and topographic features), eight human dis-

turbance layers, and canopy cover as predictors. In random forest, 

unlike traditional regression, correlation among variables does not 

affect the model accuracy. Indeed, the ability to use many correlated 

predictors is one of the key benefits of machine-learning models97. 

When variables are correlated, the effect of these variables is ‘shared’ 

across the trees in the random forest. Because random forest does not 

estimate coefficients as in regression, this correlation does not hinder 

model fit or performance but, rather, complicates efforts to quantify 

variable importance, which is also shared across correlated variables 

(see Supplementary Fig. 14 for an evaluation of variable importance 

using a reduced, uncorrelated set of variables). Thus, including numer-

ous variables, even if correlated, can improve the predictive power of 

the model to accurately quantify current carbon.

The model had the following form:

⟶ ⟶ ⟶

∑ ∑C α β γ= Var + Var + Var (3)
i

n

i i
j

m

j jCurrent
=1

→ Env

=1

→ Human → CanopyCover

in which CCurrent is the current forest tree carbon density in each pixel, 

Var
Env⟶

 are the environmental variables, Var
Human⟶

 are the variables 
directly representing human disturbance (see ‘Environmental and 

human-disturbance variables’ section for details) and 
⟶

Var
CanopyCover

 is 
the current canopy cover for the year 2010 (ref. 95).

In a first step, we tested for the existence of spatial autocorrela-

tion in model residuals, which can bias model-validation statistics98.  

This was done by calculating the Moran’s I index of the residuals from 

generalized additive models at different spatial scales (0–1,000 km). 

The Moran’s I indices indicated residual spatial autocorrelation at dis-

tances of up to 80 km for all GS models (Supplementary Fig. 15a–d). To 

avoid any bias introduced by the influence of spatial autocorrelation and 

correct for the uneven sampling across regions, we therefore applied 

bootstrapped spatial subsampling (100 iterations) to predict both cur-

rent and potential tree carbon densities (see ‘Geospatial modelling of 

tree carbon potential’ section). The spatial subsampling was conducted 

by subsampling one random observation inside each 0.7-arcdegree 

(about 78-km) grid, resulting in approximately 4,500 observations 

for each subsample. Given that the model was run with 100 iterations, 

this resulted in a total of about 450,000 samples used to build our GS 

models. Parameter tuning for each model was performed through the 

grid-search procedure of Google Earth Engine96 to explore the results 

of a suite of machine-learning models trained on the 49 covariates. For 

each of the models, we ran 48 discrete parameter sets covering the total 

grid space of 700 possible parameter combinations. Performance of 

each model was assessed using the coefficient of determination (R2) 

values from tenfold cross-validation (Supplementary Table 1) and we 

retained the best models from each bootstrapped spatial subsample. All 

R2 values reported throughout the manuscript represent the coefficient 

of determination relative to the 1:1 line of observed versus predicted 

values, which is equivalent to a standardized mean squared error.

As an alternative to testing whether spatial autocorrelation in model 

residuals affects model-validation statistics, we applied spatially buff-

ered LOO-CV using the respective autocorrelation distances as buffer 

radii (Supplementary Table 1). In this procedure, each data point is 

predicted by a model that uses all data outside the buffer radius of the 

respective data point as training data. To run the LOO-CV, we used the 

hyperparameter settings of the best-performing random-forest model 

based on random tenfold cross-validation.

To create the final maps of current tree carbon density, we used an 

ensemble approach, whereby we averaged the global predictions from 

the 100 best random-forest models. By taking the average prediction 

across several models, ensemble methods minimize the influence of 

any single prediction, thereby stabilizing variation and minimizing 

bias that can otherwise arise from extrapolation or overfitting when 

using a single machine-learning model99. Geospatial mapping was also 

performed in Google Earth Engine96.

To account for tree carbon stored belowground as roots, we mul-

tiplied our aboveground tree carbon predictions by the pixel-level 

means or the upper and lower confidence bounds of the proportional 

contribution of root carbon, using a spatially explicit map of tree root 

mass fraction24 (Supplementary Fig. 16). This map was derived from 

random-forest models based on 5,170 spatially explicit observations of 

tree biomass ratios between roots and shoots, covering all continents 

except Antarctica. Confidence ranges of the pixel-level root mass frac-

tion estimates were based on sampling uncertainty, using a stratified 

bootstrapping procedure (see methods in ref. 24 for details).

To generate the final ground-sourced map of existing total living 

tree carbon (aboveground and belowground biomass in t C ha−1) at 

30-arcsec resolution (about 1 km2), the total carbon stored at present 

in living trees (Cexisting) was then calculated as:

∑C D= ( × Area ) (4)
p

m

existing

=1

existing Pixel

in which Dexisting is the living tree carbon density in each pixel and AreaPixel 

is the area of each pixel.

To evaluate the extent of model interpolation versus extrapola-

tion, that is, how well our training data represent the full multivariate 

environmental covariate space, we performed an approach based on 

principal component analysis (PCA)100. To do so, we performed PCA on 

the 49 covariates represented in our training data, using the centring 
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values, scaling values and eigenvectors to transform the 49 covariates 

into the same PCA spaces. Then we created convex hulls for each of the 

bivariate combinations from the top 19 principal components (which 

collectively covered more than 90% of the sample-space variation). 

Using the coordinates of these convex hulls, we classified whether each 

pixel falls within or outside each of these convex hulls. In total, 92% of 

the potential canopy cover area fell within ≥95% of the 171 PCA convex 

hull spaces computed from our training data (representing the range 

of environmental conditions in our training data), with most of the 

outliers existing in arid regions (Supplementary Fig. 17a).

We also tested how well the training data span the variation in the 

eight human-disturbance layers. In total, 90% of the potential canopy 

cover area fell within ≥95% of the ten PCA convex hull spaces computed 

from our training data (Supplementary Fig. 17b).

Satellite-derived tree carbon density models. To compare and bench-

mark our ground-sourced tree carbon models against satellite-derived 

predictions, we used three state-of-the-art products of current above-

ground forest biomass: (1) the latest ESA-CCI forest biomass map 

published in 2022 by the European Space Agency’s Climate Change 

Initiative7,101; (2) a woody carbon stock map published in 2022 by  

Walker et al.2; and (3) a harmonized woody carbon stock map published 

in 2020 by Spawn et al.8.

The ESA-CCI map represents aboveground living tree biomass for the 

year 2010 and was produced using satellite data from ALOS-2/PALSAR-2 

and a physical-based inversion model that estimates biomass from 

growing stock volume, wood density and biomass expansion factors, 

with bias adjustment following the validation framework in ref. 7. The 

map was averaged from 100-m to 1-km2 spatial resolution to match the 

resolution of the covariates. The 1-km2 ESA-CCI map was assessed fol-

lowing the validation framework in ref. 7, wherein map bias is predicted 

using a model-based approach based on global reference data. This 

step reduces mapping bias in areas with statistically significant predic-

tion bias and particularly reduces the underestimation of biomass at 

high-biomass forests >350 t ha−1. The map comes with an uncertainty 

layer that accounts for spatially correlated errors during spatial averag-

ing. To convert the living tree biomass estimates to carbon, we multi-

plied tree biomass with biome-specific wood carbon concentrations77 

(see Supplementary Table 5).

The Walker et al.2 map represents woody aboveground carbon stocks 

for the year 2016 and was created by combining field measurements 

using airborne and spaceborne (NASA ICESat Geoscience Laser Alti-

meter System; GLAS) lidar data to yield spatially explicit estimates 

of aboveground biomass density at the GLAS footprint (about 60-m  

diameter) scale. Regression models were then used to relate the 

GLAS-based estimates of aboveground biomass to satellite imagery 

by the Moderate Resolution Imaging Spectroradiometer (MODIS), 

ultimately allowing to generate spatially explicit estimates of global 

aboveground biomass density at a resolution of approximately 500 m. 

The map was aggregated from 500-m to 1-km2 spatial resolution to 

match the resolution of the covariates and came with an uncertainty 

layer that accounts for the spatially modelled error, representing the 

95% quantile intervals generated by quantile regression forests2.

The harmonized map8 represents aboveground woody carbon stocks 

for the year 2010 and was based on the GlobBiomass102 map and refined 

using remotely sensed data for Africa103 (see ref. 8 for details). The map 

was aggregated from 300-m to 1-km2 spatial resolution to match the 

resolution of the covariates and came with an uncertainty layer that rep-

resents the uncertainty associated with the harmonization correction8.

Geospatial modelling of tree carbon potential

To map the tree carbon potential in the hypothetical absence of 

humans, we developed four data-driven modelling approaches, with 

two sets of models developed from ground-sourced data (GS1 and GS2) 

and two from satellite-derived data (SD1 and SD2).

GS models. After training and parameterizing the GS model of current 

tree carbon density using equation (3), we estimated the potential 

tree carbon density in forests that could exist in the absence of human 

disturbance by modifying this equation setting human-disturbance 

variables to zero and replacing existing canopy cover with potential 

canopy cover (GS1):

→ →∑ ∑C α β γ= Var +
→
Var + Var (5)

i

n

i i
j

m

j jPotential
=1

Env

=1

zeroHuman CanopyCover⟶ ⟶ ⟶

in which Var
Env⟶

 are the environmental variables, 
⟶

Var
zeroHuman

 are the 

scaled human-disturbance variables set to zero and Var
CanopyCover⟶

 is 
the current canopy cover95, which was replaced by potential canopy 
cover3 after model training for the prediction of the total carbon poten-

tial. This allowed us to train the model including information on current 

(2010) forest canopy cover95 and then to predict the tree carbon poten-

tial inside the potential canopy cover by replacing current canopy cover 

with the ‘natural’ canopy cover expected in the absence of humans3.

For the second GS model of potential tree carbon density (GS2), we 

included only data from regions with minimal human disturbance and 

used the 40 environmental covariates and canopy cover as predictors:

→ →∑C α γ= Var + Var (6)
i

n

i iPotential
=1

Env CanopyCover⟶ ⟶

in which Var
Env⟶

 are the environmental variables and Var
CanopyCover⟶

 is the 

current canopy cover95, which was replaced by potential canopy cover3 

after model training.

The GS2 model differs from the GS1 model in a reduced number 

of observations (only pixels with minimal human disturbance) and 

a reduced number of predictors (no human-disturbance variables). 

Regions with minimal human disturbance were defined as pixels located 

in: (1) a protected area, that is, strict nature reserve or wilderness area94; 

(2) intact forest, that is, contiguous forest with no remotely detected 

signs of human activity and a minimum area of 500 km2 (ref. 26); and/or 

(3) pixels in which human modification is <1% following ref. 91. To mini-

mize the influence of uneven distribution of observations and spatial 

autocorrelation on model training, we applied bootstrapped spatial 

subsampling (100 iterations), similar to the GS1 models, whereby—

for each subsample—we randomly sampled one observation in each 

0.25 arcdegree, which resulted in about 4,500 observations for each 

subsample.

As for the predictions of current tree carbon, for both the GS1 and 

GS2 models, we added root carbon24 to generate maps representing 

total living tree carbon potential in the absence of human disturbance.

SD models. The two types of SD model were run with the ESA-CCI18, 

Walker et al.2 and harmonized maps8 of current woody carbon as input 

data, resulting in six model combinations (two model types and three 

input datasets). As for the GS1 model, model structure and param-

eterization of the first SD model of potential living tree carbon (SD1) 

followed equation (5). Similarly, as for the GS2 model, the second SD 

model of potential tree carbon density (SD2) followed equation (6), 

and we trained the model using only biomass density information from 

areas with minimal human disturbance inside protected areas (strict 

nature reserve or wilderness area)94 and/or intact forest landscapes26.

For both the SD1 and SD2 models, we conducted a bootstrap sub-

sampling approach similar to the GS models, whereby about 4,500 

sample points were drawn 100 times with replacement. For the SD1 

model, observations were drawn randomly, given that the models were 

built from global maps for which data are distributed equally across all 

global forest areas. For the SD2 model, we applied spatial subsampling, 

randomly sampling one observation in each 1-arcdegree grid to account 

for the uneven distribution of areas with minimal human disturbance 

across the globe. For each subsample, we ran 48 discrete parameter sets 



covering the total grid space of 700 possible parameter combinations 

and kept the parameter set with the highest coefficient of determina-

tion (R2) based on tenfold cross-validation. To obtain the final predic-

tions, we averaged the predictions from the 100 random-forest models.

To test for spatial autocorrelation in model residuals, we calculated 

the Moran’s I index of the residuals from generalized additive models 

at different spatial scales (0–1,000 km) and, for each model, found 

spatial autocorrelation at distances of up to 550–900 km (Supple-

mentary Fig. 15e–j). To test for the effect of spatial autocorrelation 

on model validation statistics, we then ran LOO-CV models for each 

of the 100 bootstrapped subsamples, using the respective autocor-

relation distances as buffer radii and the hyperparameter settings of 

the best-performing random-forest model based on random tenfold 

cross-validation (Supplementary Table 1).

Adding dead wood, litter and soil carbon to scale living tree 

carbon to total ecosystem carbon

Dead wood and litter biomass. To account for forest carbon 

stored in dead wood and litter, we obtained forest-type-level carbon  

ratios from previous studies19,104. Means and confidence ranges of the 

ratios between dead wood and litter carbon and living tree carbon for 

tropical, temperate and boreal forests were calculated from forest-type 

estimates of total living biomass, dead wood and litter from Table S3 

in ref. 19. Means and confidence ranges for dryland forests were cal-

culated from Table 1 in ref. 104, using all sites for which data on plant 

aboveground and belowground biomass and litter was available. The 

ratios between dead wood and litter carbon and living tree carbon were 

22% (95% confidence range = 15–33%), 33% (30–37%), 80% (68–94%) 

and 21% (2–40%) for tropical, temperate, boreal and dryland forests, 

respectively. We then multiplied pixel-level living tree carbon values 

by these percentages to estimate the means and confidence bounds 

of dead wood and litter carbon for each pixel (Table 1).

Soil carbon. Using the soil potential map ref. 23, which represents the 

effects of anthropogenic land-use and land-cover changes on soil organ-

ic carbon in the top 2 m (ref. 23) over the past 12,000 years, we extracted 

estimates of soil carbon potential in the absence of humans (difference 

between soil carbon 10,000 BC and current soil carbon) for all pixels 

that would naturally support trees (potential canopy cover3 ≥ 10%; 

Table 1). Associated spatial-prediction uncertainties (absolute errors) 

were calculated by fitting a spatial-prediction model to the prediction 

residuals of the cross-validated original model and applying this error 

model over the whole area of interest23.

Model uncertainty

For each of the GS and SD models, the 100 bootstrapped models of 

aboveground tree carbon potential were used to calculate per-pixel 

coefficient-of-variation values (standard deviation divided by the 

mean predicted value) as a measure of sampling uncertainty (hereaf-

ter referred to as bootstrap prediction uncertainty; Supplementary 

Figs. 1 and 2). Using the bootstrapped models, we also calculated 95% 

confidence ranges of estimates, allowing us to represent uncertainty 

ranges for each aboveground carbon model. To represent the uncer-

tainty in canopy cover of the forest inventory plots, we ran the GS1 and 

GS2 models for both the upper and lower canopy cover estimates. To 

represent data uncertainty of the SD models, we ran the SD1 and SD2 

models using three different input datasets (ESA-CCI18, Walker et al.2 

and harmonized biomass maps8). Uncertainty in belowground tree 

carbon was derived by multiplying the upper and lower confidence 

ranges of aboveground tree carbon values with the upper and lower 

confidence ranges of spatially explicit root mass fractions24, thus rep-

resenting uncertainties in both root mass fraction and aboveground 

biomass. Using the entire confidence range of total (aboveground 

and belowground) living tree carbon, including sampling and data 

uncertainty, we then calculated the uncertainty in dead wood and  

litter biomass by multiplying the upper and lower confidence ranges 

of total living tree carbon values with the upper and lower confidence 

ranges of the forest-type-specific ratios between dead wood and  

litter carbon and living tree carbon (see ‘Dead wood and litter biomass’  

section). Dead wood and litter biomass uncertainty was thus the result 

of uncertainties in both dead wood and litter-to-tree biomass ratios and 

tree biomass. Spatially explicit uncertainties in soil carbon potential 

were derived from maps of absolute errors in organic carbon density 

at 0–200 cm soil depth provided in ref. 23. Propagation of uncertainty 

was done by summing all individual uncertainties and assuming that 

they are uncorrelated.

To quantify the relative contribution of the different sources of 

uncertainty to the overall uncertainty in our models, we divided the 

absolute uncertainty of each uncertainty type by the sum of all uncer-

tainties (Fig. 4). This partitioning allows for relative comparison in 

uncertainty among sources, but otherwise does not necessarily reflect 

total model uncertainty owing to overlap and correlation across sources 

of uncertainty.

Carbon potential partitioning

On the basis of our carbon models, we could generate estimates of (1) 

the relative contribution of forest degradation (that is, reduced tree 

carbon within the existing canopy cover) to the difference between 

current and potential carbon stocks (hereafter referred to as conserva-

tion potential) and (2) the relative contribution of deforestation (that 

is, declines in canopy cover owing to land-use change in areas that 

would naturally support trees) to the difference between current and 

potential carbon stocks (hereafter referred to as restoration potential). 

Specifically, to estimate the relative contribution of forest degradation 

(conservation potential) and deforestation (restoration potential) to 

the difference between current and potential carbon stocks, we first 

attributed the proportional amount of the extra carbon predicted by 

our model to the extra canopy cover expected in the absence of humans. 

For example, for a pixel in which potential canopy cover is twice as high 

as current canopy cover and for which the predicted potential carbon is 

also twice as high as current carbon, the extra carbon is attributed only 

to the difference in canopy cover (restoration potential). For pixels in 

which the potential increase in tree carbon exceeded the proportional 

increase in canopy cover, the carbon potential fraction exceeding the 

proportional increase in canopy cover was equally distributed across 

the total potential canopy cover of the pixel. For pixels in which poten-

tial canopy cover was the same as current canopy cover, we attributed 

the difference between current and potential tree carbon stocks to 

forest degradation (conservation potential).

Throughout the text, we refer to conservation potential as the differ-

ence between current and potential carbon in existing forests, which 

was computed by subtracting the carbon stored at present inside exist-

ing forests from the expected carbon in these forests in the absence of 

human disturbance. We refer to restoration potential as the difference 

between current and potential carbon outside existing forests, which 

was estimated as the expected carbon in non-forest areas that would 

naturally support trees in the absence of human disturbances3. Finally, 

the total difference between current and potential carbon refers to 

the sum of the conservation and restoration potentials (Figs. 3 and 5).

To estimate the existing and potential carbon within biomes (Sup-

plementary Table 2), forest classes (tropical, temperate, boreal and 

dryland; Supplementary Table 3) and countries (Fig. 5e), we used the 

World Wide Fund for Nature (WWF) biome definitions71 and country 

boundaries from the world boundary map105. Forests were classified 

into four broad categories (tropical, temperate, boreal and dryland)71. 

Tropical forest includes six biomes: tropical and subtropical moist 

broadleaf forest, tropical and subtropical dry broadleaf forest, tropical 

and subtropical coniferous forest, tropical and subtropical grassland, 

savannah and shrubland, flooded grassland and savannah, and man-

groves; temperate forest includes four biomes: temperate broadleaf 
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and mixed forest, conifer forest, temperate grassland, savannah and 

shrubland, and montane grassland and shrubland; boreal forest 

includes two biomes: boreal forest/taiga and tundra; dryland refers 

to the two biomes Mediterranean forest, woodland and scrub, and 

desert and xeric shrubland.

To partition potential carbon stocks into different land-cover 

types, we integrated four land-cover maps88–90,106, providing infor-

mation on the relative area of a pixel that is covered by urban area, 

cropland, permanent pasture, rangeland, urban area, forest, water 

body and ice and snow. The difference between current and potential 

tree carbon stocks predicted by our models was then allocated to the 

land-cover types urban area, cropland, permanent pasture, range-

land, urban area and forest in proportion to their relative pixel cov-

erage. Low-human-pressure land was defined as the proportion of a 

non-forest pixel (<10% canopy cover) that could not be attributed to 

pasture, rangeland, cropland, urban area, water body or ice and snow. 

All areas in forest pixels that could not be attributed to pasture, range-

land, cropland, urban area, water body or ice and snow were attributed 

to forest. Global information on forest plantations came from ref. 28 

and we only considered plantations if they covered more than 10% of 

the canopy area in a pixel.

Meta-analysis of previous studies on the global carbon potential

To gain insight into the forest carbon potential estimated by previous 

studies, we reviewed publications that applied diverse approaches to 

quantify the potential carbon storage capacity of global forests. These 

studies fall into two types of estimate. The first type included studies 

reporting the total carbon that could be stored in global forests in the 

absence of human activities (Fig. 3b). The second type encompassed 

studies reporting the extra potential carbon that could be stored in the 

global forests, that is, the difference between current and potential car-

bon stocks (Fig. 3d). In total, we found 20 estimates of the total carbon 

potential and nine estimates of the difference between current and 

potential carbon stocks. These estimates were derived from four dif-

ferent approaches: inventory-based empirical estimates, mechanistic 

models, ensemble models and data-driven models. Inventory-based 

estimates comprise studies that estimated the global carbon potential 

from maximum forest carbon densities observed in climate zones 

or ecoregions based on inventory data1,55,58. Mechanistic-model esti-

mates included studies that used mechanistic models, such as Earth 

system models, to estimate the carbon potential of global forests64,67. 

Ensemble-model estimates consisted of studies that used a variety of 

existing biomass maps to estimate the global carbon potential from 

maximum forest carbon densities in climate zones or ecoregions4. 

Last, the data-driven model category encompassed studies that used 

extensive global carbon density observations to train global models 

based on environmental covariates2. References to the studies included 

in this meta-analysis are shown in the legend of Fig. 3 and Supplemen-

tary Table 7.

All analyses were conducted in Google Earth Engine96 and R  

(v. 3.6.3)107. All figures were created in R (v. 3.6.3)107.

Data availability

Data and code are available at GitHub: https://doi.org/10.5281/

zenodo.10021968.
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