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Abstract

Vesicular trafficking and membrane fusion are well-characterized, versatile, and sophisticated means of ‘long range’ intracellular
protein and lipid delivery. Membrane contact sites (MCS) have been studied in far less detail, but are crucial for ‘short range’ (10–
30 nm) communication between organelles, as well as between pathogen vacuoles and organelles. MCS are specialized in the non-
vesicular trafficking of small molecules such as calcium and lipids. Pivotal MCS components important for lipid transfer are the VAP
receptor/tether protein, oxysterol binding proteins (OSBPs), the ceramide transport protein CERT, the phosphoinositide phosphatase
Sac1, and the lipid phosphatidylinositol 4-phosphate (PtdIns(4)P). In this review,we discuss how these MCS components are subverted
by bacterial pathogens and their secreted effector proteins to promote intracellular survival and replication.

Keywords: Chlamydia, Coxiella, Dictyostelium discoideum, endoplasmic reticulum, FFAT motif, Legionella, Legionnaires’ disease, lipid
transfer proteins, membrane contact site, oxysterol binding proteins, pathogen vacuole, phosphoinositide, Sac1 phosphoinositide
phosphatase, Salmonella, VAP

Membrane contact sites in health and
disease

The ability for organelles to interact and communicate is essential

for maintaining cellular homeostasis. One of the major means of

intracellular communication, and the focus of research for many

years, is vesicular trafficking. In general, vesicular trafficking in-

volves two distinct membranes or membrane-bound organelles

and occurs via three highly regulated steps: vesicle budding,

transport, and fusion (Fig. 1A). During vesicle budding, coat pro-

teins are recruited from the cytosol to the membrane surface and

cause the deformation of the membrane to form a rounded bud

(Springer et al. 1999,Kirchhausen 2000, Bonifacino and Lippincott-

Schwartz 2003, McMahon and Mills 2004). After budding off from

themembrane, vesicles are trafficked along cytoskeletal elements

(actin andmicrotubules) bymolecular motors such as dynein and

kinesin to their target membrane (Hammer and Wu 2002, Mata-

nis et al. 2002, Short et al. 2002). Upon arrival at the target mem-

brane, the vesicle fuses with the target membrane through the

presence of cognate SNARE (soluble N-ethylmaleimide-sensitive

factor attachment protein receptors) proteins on the vesicle and

target membrane (Jahn and Scheller 2006).

Another important means of inter-organelle communication is

the direct interaction of two closely associated organelles, referred

to as membrane contact sites (MCS) (Fig. 1B). Studies describing

associations between organelles were first published in the 1950 s

(Bernhard and Rouiller 1956,Copeland andDalton 1959).However,

a lack of functional significance for these associations at the time

delayed further advances until the 1990 s, when associations be-

tween the ER and mitochondria were identified as sites of phos-

pholipid synthesis and calcium transfer (Vance 1990, Rizzuto et

al. 1998). MCS have since gained recognition due to their impor-

tant implications in cell homeostasis, and several human diseases

have been linked toMCS dysfunction (Area-Gomez et al. 2012, Sto-

ica et al. 2014, Castro et al. 2018).

Specifically, MCS are zones of close apposition between the

membranes of two organelles (10–30 nm) without membrane fu-

sion (Prinz 2014, Scorrano et al. 2019). Functional inter-organellar

contact is ubiquitous, with organelles forming MCS with at least

one other organelle (Valm et al. 2017, Shai et al. 2018). MCS can

be either homotypic, occurring between two identical organelles,

or heterotypic, occurring between two different membranes or

organelles. Similar contacts can also occur between membrane-

bound organelles and non-membrane-bound organelles (Ma and

Mayr 2018); however, these contacts are likely divergent from

other cellular MCS and are not included in this review. The major-

ity of cellular MCS include the ER, thus ER-containing MCS are the

most well studied. For example, the ER forms membrane contact

sites with mitochondria, endosomes, the Golgi, and the plasma

membrane (PM) (Phillips and Voeltz 2016,Wu et al. 2018) (Fig. 1B).

Membrane contacts sites not involving the ER have also been iden-

tified in recent years, such as mitochondria-PM, mitochondria-

peroxisome, and lipid droplet (LD)-peroxisome MCS (Eisenberg-

Bord et al. 2016).

The formation and function of MCS are dependent on the

unique molecular composition of the two membranes involved.

However, there are several general classes of MCS components:
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Figure 1. Vesicle trafficking and MCS formation. (A) Representation of the major vesicular trafficking events occurring between the ER, the Golgi, the
plasma membrane, endosomes and multivesicular bodies. Inset: Representation of vesicle budding assisted by a coat protein from the donor
membrane, long-range (µm scale) trafficking of the coated vesicle, and coat disassembly prior to SNARE-mediated fusion to the recipient membrane.
(B) Representation of MCS occurring between the ER and the PM, the Golgi, mitochondria, endosomes and multivesicular bodies. Please note that
additional MCS exist but are not represented here. Inset: Representation of the short-range (nm scale) transfer of small molecules at MCS, which is
facilitated by structural (tether), functional (lipid/ion transfer) and regulatory components.
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structural components, functional components, and the newly

emerging class of regulatory components (Scorrano et al. 2019)

(Fig. 1B). Structural components often act as tethers between the

two membranes, maintaining them in close proximity (Scorrano

et al. 2019). Functional components include lipid transfer proteins,

ion channels, and metabolite channels/transporters, and these

components have direct roles in ion, lipid, or metabolite exchange

(Scorrano et al. 2019). Regulatory components act dynamically to

regulate the formation of MCS and the activity of other MCS com-

ponents (Honscher and Ungermann 2014, Honscher et al. 2014,

Giorgi et al. 2015). Post-translational modification plays a major

role in the regulation of protein interactions; thus, kinases and

phosphatases often act as regulators at MCS (Kumagai et al. 2014,

Duan and Walther 2015, Wu et al. 2018, Kors et al. 2022). It is im-

portant to note that these component classifications are not mu-

tually exclusive, and many components can be placed in multiple

classes.

MCS play diverse roles throughout the cell, some of the most

notable being the regulation of intracellular calcium and non-

vesicular lipid trafficking (Srikanth and Gwack 2012, Prakriya

2013, Hanada 2018, Wu et al. 2018). Although the bulk of lipid

transfer likely occurs via vesicular trafficking, the non-vesicular

lipid transfer occurring at ER-containing MCS plays an important

role in maintaining lipid homeostasis in the absence of vesicu-

lar transport (Funato et al. 2020). MCS also play additional roles

in organelle fission, such as the regulation of mitochondrial and

endosomal fission at ER-mitochondria and ER-endosomeMCS, re-

spectively (Friedman et al. 2011, Murley et al. 2013, Rowland et al.

2014, Lewis et al. 2016). Additionally, MCS also have roles in or-

ganelle positioning (Friedman et al. 2010, Valm et al. 2017). For ex-

ample, low levels of cellular cholesterol can result in endosomes

forming MCS with the ER rather than continuing to be trafficked

along microtubules (Rocha et al. 2009). Important for this review,

there is increasing evidence that MCS play crucial roles in host

pathogen interactions, with both viral (Amako et al. 2009, Roulin

et al. 2014, McCune et al. 2017, Ishikawa-Sasaki et al. 2018) and

bacterial pathogens (Auweter et al. 2012, Elwell and Engel 2012,

Derré 2017, Justis et al. 2017, Stanhope and Derré 2018, Ende et al.

2022, Vormittag et al. 2023) using MCS to establish and maintain

infection.

In this review we will introduce several MCS components, fo-

cusing on those most relevant to host pathogen interactions, as

there are excellent reviews that cover additionalMCS components

(Scorrano et al. 2019, Prinz et al. 2020). We will also discuss how

bacterial pathogens exploit these components and MCS forma-

tion to promote and support their intracellular survival.

Components of membrane contact sites

The VAP receptor
VAP (Vesicle-associated membrane protein (VAMP)-associated)

proteins are a family of ER-resident receptor/tether proteins that

commonly play a role in the formation of ER-containing MCS

through interaction with partner proteins on the opposing or-

ganelle (Murphy and Levine 2016) (Fig. 2). Two of the VAP family

proteins, VAPA and VAPB, are highly homologous and are com-

monly referred to together as VAP (Murphy and Levine 2016).

VAP proteins contain a globular domain with homology to ma-

jor sperm protein (MSP domain), a predicted coiled-coil domain,

and a transmembrane domain that anchors it in the ER (Kaiser

et al. 2005). The formation of ER-MCS in the absence of VAP in-

dicated that additional VAP variants or other proteins play a role

in ER-MCS formation (Eden et al. 2016, Dong et al. 2016b). In fact,

recent studies have identified three new homologs of VAP, motile

sperm domain-containing proteins MOSPD1, MOSPD2, and MO-

SPD3, thus adding to the list of VAP-family proteins (Di Mattia et

al. 2018, Cabukusta et al. 2020).

FFAT motif containing protein partners of the
VAP receptor
VAP family proteins form tethering complexes through the inter-

action of the MSP domain with FFATmotifs in partnering proteins

such as oxysterol-binding protein (OSBP) (Loewen et al. 2003,Mur-

phy and Levine 2016) (Fig. 2). FFAT (two phenylalanines (FF) in an

Acidic Tract) motifs are linear peptide motifs with an E1-F2-F3-

D4-A5-X6-E7 consensus core sequence flanked by adjacent acidic

residues that create an acidic tract (Loewen et al. 2003, Loewen

and Levine 2005). While deviation from the consensus core se-

quence is shown to be well tolerated, the residue in position two

is considered essential and must be either a phenylalanine (F) or

a tyrosine (Y) (Loewen and Levine 2005, Murphy and Levine 2016).

Significant variation in the core FFAT motif sequence has become

increasingly reported (Slee and Levine 2019, James and Kehlen-

bach 2021). Recent work identified phospho-FFAT motifs, where

the residue in the fourth position of the motif core is a phos-

phorylatable serine or threonine, which upon phosphorylation fa-

vored the interaction with VAP (Di Mattia et al. 2020). Additionally,

MOSPD1 and MOSPD3 favor interactions with proteins containing

FFATmotifs referred to as FFNT (two phenylalanines (FF) in a Neu-

tral Tract) motifs, where the residues flanking the core of the FFAT

motif are neutral amino acids rather than acidic (Cabukusta et al.

2020).

The diversity of FFAT motif containing proteins contributes to

the wide range of VAP-interacting partners, including soluble lipid

transfer proteins as well as transmembrane proteins (James and

Kehlenbach 2021). Thus, the role of VAP-FFAT interactions at MCS

goes beyond tethering, especially during non-vesicular lipid trans-

fer as discussed in the next section.

Oxysterol binding and related proteins
In 1985 OSBP was identified as a receptor for oxysterols (Taylor

and Kandutsch 1985) (Fig. 2A). Since then, a multitude of OSBP-

related proteins (ORP) have been identified. OSBP and ORPs are

conserved in mammalian cells, the yeast Saccharomyces cerevisiae

(de Saint-Jean et al. 2011, Tong et al. 2013) and the social amoeba

Dictyostelium discoideum (Fukuzawa and Williams 2002, Vormittag

et al. 2023)—the evolutionary relationship among these proteins

is outlined in Vormittag et al. 2023. Most of our knowledge about

OSBP and ORPs structure and function comes from characteriza-

tion of the mammalian proteins.

OSBP and the 11 human ORPs were classified into six subfami-

lies based onDNA sequence similarity and gene structure: family I

(OSBP and ORP4), II (ORP1 and ORP2), III (ORP3,ORP6 and ORP7), IV

(ORP5 and ORP8), V (ORP9) and VI (ORP10 and ORP11). All proteins

contain multiple domains that are critical for membrane anchor-

ing.With the exception of ORP5 and ORP8,which have transmem-

brane domains,most of themammalianORPs contain a pleckstrin

homology (PH) domain (Fig. 2A) that interacts with phosphoinosi-

tide (PI) lipids and/or proteins in non-ER organelle membranes

(Lemmon 2004, Olkkonen and Li 2013). Additionally, OSBP, ORP1-

4, ORP6, ORP7, and ORP9 contain a FFAT motif (Fig. 2A), which is

necessary for ER anchoring via binding to VAP (Wyles et al. 2002,

Lehto et al. 2004, Wyles and Ridgway 2004, Lehto et al. 2005).
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Figure 2.OSBP- and CERT-mediated lipid exchange at ER-Golgi MCS. (A) OSBP-meditated lipid exchange at ER-Golgi MCS implicates the FFAT motif and
the ORD domain of OSBP, which binds to VAP and promotes lipid exchange, respectively. The Sac1 PI(4)P phosphatase maintains a PI(4)P lipid gradient
between the two adjacent membranes. (B) CERT-mediated lipid exchange at ER-Golgi MCS implicates the FFAT motif and the START domain of CERT,
which binds to VAP and promotes ceramide transfer, respectively. The sphingomyelin synthase SMS maintains a ceramide gradient between the two
adjacent membranes.

The primary known function of OSBP and ORPs is lipid trans-

fer,which ismediated by core lipid binding domains (ORD) sharing

70% identify within each ORP family (Laitinen et al. 1999, Jaworski

et al. 2001, Lehto et al. 2001), as well as the ORP signature motif

EQVSHHPP. In addition to lipid binding, some ORD domains have

been shown to interact with specific protein partners (Olkkonen

et al. 2012, Pietrangelo and Ridgway 2019, D’Ambrosio et al. 2020).

The ORD domains are also flanked by conserved regions of un-

known functions. Several ORPs exist as long (L) and short variants

(S), which differ in their cellular localization and interaction part-

ners.

The long variant of ORP1, ORP1L, localizes to ER-late endo-

some (LE)/lysosome contact sites by interaction of its N-terminal

ankyrin repeat domain (ARD) with the late endosome small GT-

Pase Rab7 (Johansson et al. 2005). ORP1L also interacts with VAP

through its FFAT motif after a conformational change due to low

cholesterol conditions (Johansson et al. 2003, Johansson et al.

2005, Rocha et al. 2009, Vihervaara et al. 2011). The short variant

of ORP1,ORP1S, lacks the PH domain as well as the FFATmotif and

the ARD (Lehto et al. 2001, Loewen et al. 2003, Jansen et al. 2011).

ORP1S localizes in the cytoplasm and in the nucleus and acts at

ER-PM and LD-PM contact sites as well as at LE/lysosome-PM con-

tact sites (Jansen et al. 2011, Zhao et al. 2020). Both ORP1 variants

bind cholesterol or phosphatidylinositol 4-phosphate (PtdIns(4)P)

through their ORD (Suchanek et al. 2007, Vihervaara et al. 2011,

Zhao and Ridgway 2017, Dong et al. 2019).

ORP2 binds cholesterol, oxysterols, PtdIns(4)P, and PtdIns

(4,5)P2 through its ORD (Wang et al. 2019). ORP2 only exists as a

short variant consisting of an ORD and a FFAT motif (Lehto et al.

2001) and might act at ER-PM, LD-ER and endosome-PM contact

sites (Laitinen et al. 2002,Hynynen et al. 2005,Hynynen et al. 2009,

Wang et al. 2019).

ORP3 localizes to ER-PM contact sites after phosphorylation

by protein kinase C (Lehto et al. 2008, Weber-Boyvat et al. 2015,

Gulyas et al. 2020). ORP3 contains a FFAT motif, a PH domain, and

an ORD that binds sterol, PtdIns(4)P and possibly phosphatidyl-

choline (PC) (Suchanek et al. 2007, D’Souza et al. 2020, Gulyas

et al. 2020). Furthermore, ORP3 recruits the small GTPase R-Ras

and thus contributes to the control of cell adhesion and migra-

tion (Lehto et al. 2008, Weber-Boyvat et al. 2015).

The long form of ORP4, ORP4L, localizes to ER-Golgi and ER-PM-

contact sites (Zhong et al. 2016a, Zhong et al. 2016b, Pietrangelo

and Ridgway 2018). The short variant, ORP4S, lacks the FFATmotif

and interacts with vimentin intermediate filaments (Wang et al.

2002). An additional variant, ORPM, lacks a functional PH domain

(Wyles et al. 2007, Charman et al. 2014). All ORP4 variants bind

sterols or PtdIns(4)P through their ORD (Wyles et al. 2007, Goto et

al. 2012, Charman et al. 2014).

ORP5 harbours a C-terminal transmembrane domain, thereby

being constitutively anchored to the ER (Yan et al. 2008, Du et

al. 2011). ORP5 acts at ER-PM contact sites (Maeda et al. 2013,

Chung et al. 2015). OPR5 ORD binds phosphatidylserine (PS) and

PtdIns(4)P, and its PH domain recognizes PtdIns(4)P as well as

PtdIns(4,5)P2 (Ghai et al. 2017, Lee and Fairn 2018, Sohn et al. 2018).

ORP5 also localizes to ER-mitochondria (Galmes et al. 2016), and

ER-LD contact sites by interaction of its ORD with the LD mono-

layer (Du et al. 2020).

ORP6-11 have been studied in less detail. ORP6 localizes to ER-

PM contact sites, its ORD likely binds PtdIns(4)P and it associates

with ORP3 or itself (Lehto et al. 2004). Little is known about ORP7,

except that it localizes to ER-PM contact sites (Lehto et al. 2004).

ORP8 displays ER localization and acts at ER-mitochondria and

ER-PM contact sites exchanging PS for PtdIns(4,5)P2 (Yan et al.

2008, Galmes et al. 2016, Ghai et al. 2017, Sohn et al. 2018). The

long variant of ORP9,ORP9L, localizes to ER-Golgi contact sites and

binds sterols and PtdIns(4)P through its ORD (Wyles and Ridgway

2004, Ngo and Ridgway 2009, Liu and Ridgway 2014). The short

variant, ORP9S, lacks a PH domain and also localizes to ER-Golgi

contact sites (Liu and Ridgway 2014). ORP10 acts at ER-Golgi con-

tact sites, lacks a FFAT motif and binds PS as well as PtdIns(4)P
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through its ORD (Maeda et al. 2013, Venditti et al. 2019). ORP10

possibly heterodimerizes with ORP9 to overcome its inability to

bind VAP (Nissila et al. 2012). ORP11 acts at ER-Golgi contact sites,

lacks a FFATmotif and can interact with ORP9L. ORP11 ORD likely

binds PtdIns(4)P and possibly sterols and PS (Suchanek et al. 2007,

Maeda et al. 2013).

Unicellular eukaryotic fungi and protists, such as S. cerevisiae

and D. discoideum, respectively, have also contributed to OSBP and

ORPs characterization. In addition to elucidating their function at

MCS, studies of the S. cerevisiae oxysterol-binding protein homolog

(Osh) proteins were critical in providing structural insights into

themechanisms of lipid binding.The structure of theORDdomain

of Osh4p revealed that it is comprised of a conserved β-barrel

capped with a N-terminal lid (de Saint-Jean et al. 2011, Tong et al.

2013), in which cholesterol is bound in a ‘head-first’ orientation

where the iso-octyl side chain interacts with the lid. In compari-

son, PtdIns(4)P is bound in a ‘tail-first’ orientation,where the inos-

itol 4-phosphate headgroup interacts with two histidine residues

close to the entrance (de Saint-Jean et al. 2011). D. discoideum pro-

duces short OSBPs, termed OSBP1-12,which contain ORDwith the

signature motif EQVSHHPP, but lack PH domains and FFAT motifs

(Fukuzawa and Williams 2002, Vormittag et al. 2023).

Another important MCS lipid transport protein in mammalian

cells is the ceramide transfer protein (CERT). CERT localizes to ER-

Golgi contact sites (Hanada et al. 2003) (Fig. 2B). CERT interacts

with VAP on the ER via its FFAT motif and with PtdIns(4)P at the

Golgi through its PH domain. Once anchored at ER-Golgi MCS, the

START domain of CERT binds, extracts, and transfers ceramide

from the ER to the Golgi (Hanada et al. 2003, Kawano et al. 2006,

Kudo et al. 2008). At the Golgi, a sphingomyelin synthase converts

ceramide into sphingomyelin and thus maintains a ceramide gra-

dient between the two adjacent membranes (Hanada 2018).

The phosphoinositide phosphatase Sac1
Sac1 is an integral membrane protein, which anchors to the ER

through two C-terminal transmembrane helices (Whitters et al.

1993, Nemoto et al. 2000, Konrad et al. 2002) (Fig. 2A). Sac1 is

a phosphoinositide (PI) lipid phosphatase that contains the cat-

alytical motif CX5R(T/S) (Nemoto et al. 2000). Sac1 binds the coat

protein complex I and II (COPI and COPII, respectively), thereby

cycling between the ER and the Golgi (Rohde et al. 2003, Weixel

et al. 2005, Blagoveshchenskaya et al. 2008, Cheong et al. 2010).

Human Sac1 preferentially dephosphorylates PtdIns(4)P and to a

lesser extent also PtdIns(3)P (Rohde et al. 2003). Importantly, the

hydrolysis of PtdIns(4)P results in a PI lipid concentration gradi-

ent between two membranes and is the driving force for the lipid

exchange activity of OSBP (Mesmin et al. 2013) (Fig. 2A).

Lipid transport at membrane contact sites
Various lipids, including sterols, ceramide, PS, and PIs are trans-

ported by lipid transfer proteins at MCS (Fig. 2). The precursor of

PIs, phosphatidylinositol (PtdIns), is primarily synthesized in the

ER and transported by vesicular trafficking or via lipid transfer

proteins to distinct membranes (Di Paolo and De Camilli 2006).

Phosphoinositide lipids contain a hydrophobic membrane anchor

and a D-myo-inositol head group, which can be phosphorylated

at position 3, 4, and/or 5 resulting in seven different PIs (De Mat-

teis and Godi 2004, Behnia and Munro 2005, Raiborg et al. 2016).

PI lipids can be modified by kinases, phosphatases, and lipases,

which are recruited by small GTPases (Christoforidis et al. 1999,

Godi et al. 1999, Jones et al. 2000, Murray et al. 2002).

The different PI lipids are spatially organized in the cell

and show distinct subcellular localizations (Balla 2013). The PM

contains PtdIns(4,5)P2, PtdIns(4)P, PtdIns(3)P, PtdIns(3,4)P2 and

PtdIns(3,4,5)P3, while the Golgi is rich in PtdIns(4)P and to a lesser

extent also harbours PtdIns(4,5)P2. Early endosomes are rich in Pt-

dIns(3)P, late endosomes accumulate PtdIns(3,4)P2, and PtdIns(5)P

is found on the nuclear membrane (De Matteis and Godi 2004,

Behnia and Munro 2005, Di Paolo and De Camilli 2006, Weber et

al. 2009b, Balla 2013). Sterols and PtdIns(4)P are synthesized at dif-

ferent membranes in the cell, giving rise to lipid gradients upon

close contact of membranes of different lipid composition. Fur-

ther in agreement with a counter exchange model of lipid trans-

fer, reconstitution experimentswith proteoliposomes showed that

sterol and PtdIns(4)P are exchanged only when present on differ-

ent membranes (in trans), but not on the same membrane (in cis)

(de Saint-Jean et al. 2011, Mesmin et al. 2013, Moser von Filseck et

al. 2015, Mesmin et al. 2017) (Fig. 2A).

Sterols comprise up to 40 mol% of lipids in the trans-Golgi and

PM but only low levels (<5 mol%) in the ER (Radhakrishnan et al.

2008, van Meer et al. 2008,Mesmin andMaxfield 2009). This distri-

bution arises in part from the presence of lipid components stabi-

lizing cholesterol in the PM, like sphingolipids and phospholipids

with saturated acyl chains, while the ER is rich in unsaturated

lipids (van Meer et al. 2008, Holthuis and Menon 2014). Sterols in-

crease the membrane thickness and decrease permeability to so-

lutes. If present in excess, cholesterol ismodified to cholesteryl es-

ter by acyl coenzyme A and stored in the ER or LDs (Kreutzberger

et al. 2015, Stratton et al. 2016).

Ceramide is synthesized in the ER and converted at the Golgi

to sphingomyelin by the sphingomyelin synthase SMS (Fig. 2B),

or to glycoceramides by various other enzymes (Jeckel et al. 1990,

Wang et al. 2021). PS accumulates in the PM inner leaflets and in

lower concentrations in the membranes of many other organelles

(Leventis and Grinstein 2010). Upon undergoing apoptosis, cells

flip PS to the outer leaflet, and the exposed PS is recognized by

phagocytes (Brouckaert et al. 2004, Birge et al. 2016).

Subversion of membrane contact sites by
bacterial pathogens

A vast majority of intracellular bacterial pathogens create dis-

tinct replication-permissive compartments termed pathogen vac-

uoles. Although, the composition and features of these pathogen-

derived vacuoles are specific to each pathogen, interactions with

cellular membranes are a commonality.While the interception of

host vesicular trafficking is a well-documented and characterized

process, the formation of MCS, in particular with the ER, is emerg-

ing as a novel mechanism by which bacterial pathogens establish

their replicative niche. In the following chapters, we review how

the bacterial pathogens Chlamydia, Legionella,Coxiella, and possibly

Salmonella, use secreted effector proteins to redirect cellular com-

ponents of ER-Golgi, ER-PM, or ER-endosome contact sites to their

distinct vacuoles, thereby assembling MCS between the pathogen

vacuole and the ER.

Membrane contact sites of the Chlamydia
inclusion with the ER
The Gram-negative, obligate intracellular pathogen Chlamydia tra-

chomatis is the causative agent of the most common sexually

transmitted infection of bacterial origin in the United States and

leading cause of infectious blindness worldwide (Wright et al.

2008, Mishori et al. 2012, Malhotra et al. 2013, Cheong et al. 2019).
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Upon entering the host cell, Chlamydia resides within a vacuole

termed the inclusion (Moulder 1991, Abdelrahman and Belland

2005, Moore and Ouellette 2014, Gitsels et al. 2019) (Fig. 3). To es-

tablish and maintain its intracellular niche, Chlamydia interacts

with host cell factors and organelles. These interactions, as well

as maturation of the inclusion, are facilitated by Chlamydia type

III secretion system (T3SS)-translocated effectors (Lara-Tejero and

Galan 2019). A subset of these effectors, called inclusion mem-

brane (Inc) proteins are embedded within the inclusion mem-

brane and are characterized by the presence of two or more bi-

lobed transmembrane domains and cytosolic tails that enable in-

teractions with host factors (Bannantine et al. 2000, Dehoux et al.

2011, Lutter et al. 2012, Moore and Ouellette 2014, Bugalhao and

Mota 2019).

Inc proteins have been shown to play a role in the direct inter-

action of the Chlamydia inclusion membrane with the ER (Fig. 3).

This direct interaction was first observed by electron microscopy

showing smooth and rough ER vesicles in close contact with the

inclusion (Peterson and de la Maza 1988). Additional studies have

identified patches of the ER maintained in close proximity (10-

20 nm) to the inclusion in the absence of membrane fusion (Giles

andWyrick 2008,Derré et al. 2011, Elwell et al. 2011,Dumoux et al.

2012, Dumoux et al. 2015). Due to the morphological and molecu-

lar similarities with cellularMCS, these sites of direct contact have

been referred to as ER-Inclusion MCS (Derré et al. 2011, Agaisse

and Derré 2015).

Studies designed to characterize the molecular composition of

ER-Inclusion MCS have identified several Chlamydia Inc proteins

and host factors enriched at these sites.The Inc protein IncD inter-

acts with the host lipid transfer protein CERT, which in turn binds

VAP on the ER (Derré et al. 2011, Agaisse and Derré 2014) (Fig. 3).

Depletion of CERT or VAP resulted in a significant decrease in in-

clusion size and infectious progeny production (Derré et al. 2011,

Elwell et al. 2011). Based on the role of CERT and VAP at ER-Golgi

MCS, the IncD-CERT-VAP complex is proposed to function in the

non-vesicular trafficking of host lipids to the inclusion, a process

essential for intracellular growth (Derré et al. 2011, Elwell et al.

2011, Agaisse and Derré 2014).

The host ER calcium sensor STIM1, a known component of ER-

PM MCS, has also been shown to localize to ER-Inclusion MCS

(Agaisse and Derré 2015). While its role at ER-Inclusion MCS re-

mains unclear, STIM1 has been proposed to play a role in ex-

trusion of the Chlamydia inclusion from the host cell (Nguyen et

al. 2018). Recently STIM1 has also been implicated in preventing

store-operated, calcium entry-dependent NFAT (nuclear factor of

activated T cells) nuclear translocation in C. trachomatis-infected

cells (Chamberlain et al. 2022). Finally, as this manuscript was un-

der review, Cortina et al. reported the inclusionmembrane protein

IncS as STIM1-interacting partner at ER-Inclusion MCS (Cortina

and Derré 2023), although the role of the IncS-STIM1 complex re-

mains elusive.

The Chlamydia Inc protein IncV is also enriched at ER-Inclusion

MCS (Stanhope et al. 2017) (Fig. 3).Work by Stanhope et al. demon-

strated that IncV directly interacts with VAP through the presence

of two FFAT motif cores in the C-terminal cytosolic tail of IncV

(Stanhope et al. 2017). One of the FFATmotif cores is similar to the

canonical sequence of eukaryotic FFAT motif cores, whereas the

second motif diverges from the canonical sequence and was orig-

inally termed a non-canonical FFAT (Stanhope et al. 2017). Over-

expression of IncV resulted in a dramatic increase in VAP and ER

recruitment to the inclusion. Mutation of the essential position

two of the IncV FFAT motifs disrupted the IncV-VAP interaction,

supporting the notion that the IncV-VAP interaction functions as

a tether between the inclusion and the ER (Stanhope et al. 2017).

The IncV-VAP interaction serves as a prime example of molecular

mimicry, where a bacterial pathogen displays eukaryotic motifs

on the surface of its vacuole to allow for MCS formation.

Recently, Ende et al. showed that multiple layers of host cell

kinase-mediated phosphorylation regulate the assembly of the

IncV-VAP tethering complex and ER-Inclusion MCS formation

(Ende et al. 2022). Previous work by Mirrashidi et al. predicted that

IncV interacted with multiple host kinases, including all three

subunits of the host kinase CK2 (Mirrashidi et al. 2015) (Fig. 3).Mu-

tation of predicted CK2 phosphorylation motifs in the C-terminal

region of IncV indicated that CK2 is recruited to the inclusion by

IncV (Ende et al. 2022). Co-immunoprecipitation and electron mi-

croscopy further revealed that the phosphorylation of IncV by CK2

was required for establishing the IncV-VAP interaction at the in-

clusion (Ende et al. 2022). Phosphomimetic mutations in IncV in-

dicated that phosphorylation of IncV by CK2 occurs within one of

the FFATmotif cores and serine-rich tracts immediately upstream

of IncV FFATmotif cores (Ende et al. 2022). Interestingly, IncV pos-

sesses phosphorylatable serine tracts, rather than acidic tracts,

upstream of the two FFAT motif cores (Ende et al. 2022). Phospho-

mimetic mutation of these serine tracts to aspartic acid residues

resulted in IncV remaining trapped within the bacteria and fail-

ing to be properly translocated, suggesting that the serine tracts

allow for the mimicry of eukaryotic FFAT motifs while ensuring

T3SS-mediated translocation of IncV to the inclusion membrane

(Ende et al. 2022).

Overall, ER-Inclusion MCS resemble cellular MCS. The two

membranes are tethered through VAP-FFAT interactions, and the

presence of the IncD-CERT-VAP complex suggests that these MCS

most likely play a role in non-vesicular lipid transfer. However,

ER-Inclusion MCS do notably differ from cellular MCS. For ex-

ample, in naïve cells, CERT and STIM1 localize to distinct MCS,

namely ER-Golgi and ER-PM MCS, respectively. However, during

Chlamydia infection these seemingly unrelated MCS components

are both redirected to ER-Inclusion MCS, highlighting the capac-

ity of the pathogen to bypass cellular ‘rules’. Additionally, un-

like most eukaryotic FFAT motifs that contain tracts of acidic

residues, the IncV FFAT motifs contain tracts of phosphorylat-

able serine residues, presumably to accommodate IncV secretion,

further highlighting how pathogens have evolved to successfully

hijack cellular molecules and pathways beneficial to their intra-

cellular replication. Including these features in current FFAT mo-

tif identification algorithms could potentially identify additional

FFAT motif containing proteins. Importantly, because pathogens

often mimic cellular processes, the regulatory role of host kinase

CK2 at ER-Inclusion MCS may indicate a role for CK2 at cellular

MCS as well.

The Legionella-containing vacuole-ER membrane
contact sites
Legionella pneumophila is a Gram-negative, rod-shaped, non-

encapsulated, and flagellated bacterium, which upon inhalation

of contaminated aerosols replicates in alveolar macrophages and

can cause a severe pneumonia called Legionnaires’ disease (New-

ton et al. 2010, Hilbi et al. 2011, Mondino et al. 2020). L. pneu-

mophila is a facultative intracellular bacterium that replicates in

environmental free-living protozoa, such as Acanthamoeba, Hart-

mannella, Vahlkampfia and Tetrahymena species, as well as in the

social amoeba D. discoideum (Steinert and Heuner 2005, Hoffmann

et al. 2014a, Boamah et al. 2017, Swart et al. 2018). In mammalian

and protozoan host cells, transmissive (virulent and motile) L.
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Figure 3. Formation of the Chlamydia ER-Inclusion MCS. Intracellular replication of C. trachomatis comprises the following steps: (I) uptake, (II)
formation of the Chlamydia inclusion and transition of Chlamydia elementary bodies (EBs) to reticulate bodies (RBs), (III) RB replication and ER-Inclusion
MCS formation, (IV) further RB replication, inclusion expansion and transition of RBs to EBs, and (V) bacterial exit through lytic or non-lytic (extrusion)
pathways. The ER associates with the inclusion throughout the infection cycle. Several protein complexes localize to ER-Inclusion MCS. The
T3SS-translocated Chlamydia Inc protein IncD recruits CERT to the inclusion membrane by binding to the PH domain of CERT. IncD bound CERT
associates with the ER by binding to VAP via its FFAT motif. The IncD-CERT-VAP complex most likely functions in lipid transfer from the ER to the
inclusion. The T3SS-translocated Chlamydia Inc protein IncV, which contains two FFAT motifs, directly associates with VAP. The IncV-VAP complex
functions as a tether. The assembly of the IncV-VAP tether is positively regulated by IncV phosphorylation by the host kinase CK2. Through an
unknown mechanism, the ER calcium sensor STIM1 also localizes to ER-Inclusion MCS.

pneumophila establishes a unique compartment, the Legionella-

containing vacuole (LCV), wherein which the bacteria switch to a

replicative form (Isberg et al. 2009,Hubber and Roy 2010,Hilbi and

Buchrieser 2022) (Fig. 4). As replication ceases, the bacteria switch

back to the virulent form, and a transmissive bacterial subpop-

ulation escapes the LCV and lyses the host cell (Striednig et al.

2021).

LCV formation is controlled by the bacterial Icm/Dot type IVB

secretion system (T4BSS) (Segal et al. 2005, Kubori and Nagai

2016). The Icm/Dot T4BSS translocates approximately 330 dif-

ferent ‘effector’ proteins into host cells, where they subvert piv-

otal processes, including the endocytic, secretory, retrograde and

autophagy pathways, cytoskeleton dynamics, metabolism, tran-

scription, translation, and apoptosis (Ge and Shao 2011, Hilbi and

Haas 2012, Finsel and Hilbi 2015, Escoll et al. 2016, Personnic et al.

2016, Bärlocher et al. 2017, Qiu and Luo 2017, Swart et al. 2020).

A decisive step during LCV maturation is the diversion from the

endocytic pathway and the interception of the secretory pathway,

along with a PI lipid conversion from endosomal PtdIns(3)P to se-

cretory PtdIns(4)P (Weber et al. 2006, Weber et al. 2014, Steiner et

al. 2018, Swart and Hilbi 2020) (Fig. 4).

PI lipid conversion of the LCV is catalysed by several Icm/Dot-

translocated effectors: the PtdIns 3-kinase MavQ (Li et al.

2021), the PtdIns(3)P 4-kinase LepB (Dong et al. 2016a), and the

PtdIns(3,4)P2 3-phosphatase SidF (Hsu et al. 2012), as well as

possibly by host PI-metabolizing enzymes: the PtdIns 4-kinases

PI4KIIIβ (Brombacher et al. 2009) and PI4KIIIα (Hubber et al. 2014),

and the PtdIns(4,5)P 5-phosphatase OCRL (Weber et al. 2009a,Choi

et al. 2021). A number of Icm/Dot-translocated effectors also an-

chor to the LCV membrane by binding to distinct PI lipids (Swart
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Figure 4. Formation of the Legionella-containing vacuole-ER MCS. Intracellular replication of L. pneumophila comprises the following steps: (I) uptake, (II)
PI conversion and formation of the Legionella-containing vacuole (LCV), (III) transition of virulent/transmissive to replicative L. pneumophila, ER
recruitment, and LCV-ER MCS formation, (IV) intracellular bacterial replication and LCV expansion, (V) transition of replicative to
virulent/transmissive L. pneumophila, and (VI) host cell lysis and bacterial exit. At the LCV-ER MCS the VAP protein localizes to the LCV membrane as
well as to the ER. OSBP7, OSBP8, the PI lipid phosphatase Sac1, and the large fusion GTPase Sey1 localize to the ER, while OSBP11 and
T4BSS-translocated L. pneumophila effector proteins localize to the LCV.

and Hilbi 2020). Accordingly, the ubiquitin ligase SidC (Weber et

al. 2006, Ragaz et al. 2008, Dolinsky et al. 2014, Luo et al. 2015), the

Rab1 GEF/AMPylase SidM (Brombacher et al. 2009, Schoebel et al.

2010, Del Campo et al. 2014) and the phytate-activated protein

kinase Lpg2603 (Hubber et al. 2014, Sreelatha et al. 2020)

bind to PtdIns(4)P. On the other hand, the retromer

interactor RidL (Finsel et al. 2013), the Atg8 phos-

phatidylethanolamine deconjugase RavC (Choy et al. 2012,

Horenkamp et al. 2015), and the glycosyltransferases SetA

(Jank et al. 2012) and LtpM (Levanova et al. 2019) bind to

PtdIns(3)P.

Uponmaturation, the LCV undergoes a conversion from a tight

to a spacious compartment (Lu and Clarke 2005, Ragaz et al. 2008,

Case et al. 2016) and intimately associates with the ER (Swanson

and Isberg 1995, Abu Kwaik 1996, Solomon and Isberg 2000, Lu

and Clarke 2005, Robinson and Roy 2006). The ER does not fuse

with the PtdIns(4)P-positive LCV membrane for at least 8 h post

infection (Weber et al. 2014) (Fig. 4). Intriguingly, the contact sites

of the LCV with the ER are connected by periodic ‘hair-like’ struc-

tures (Tilney et al. 2001), and ER elements remain attached to LCVs

even after immuno-affinity purification of intact pathogen vac-

uoles (Urwyler et al. 2009, Hoffmann et al. 2014b, Schmölders et

al. 2017). Taken together, these findings suggested that the LCV

forms MCS with the ER.

Using a proteomics approach and dually fluorescence-labelled

D. discoideum amoeba, Vormittag et al. recently analysed the role

of selected MCS proteins for LCV-ER MCS formation and vacuole

remodelling (Vormittag et al. 2023). Comparative proteomics anal-

ysis of LCVs purified from a D. discoideum parental strain or from

a strain lacking the ER-residing large fusion GTPase Sey1/atlastin

(Steiner et al. 2017, Hüsler et al. 2021) indicated the presence of

the MCS proteins OSBP7, OSBP8 and the PtdIns(4)P 4-phosphatase

Sac1 (Vormittag et al. 2023). The study also revealed that at

LCV-ER MCS VAP localized to both the ER and the LCV mem-

brane, while Sac1, OSBP7, and OSBP8 preferentially localized to
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the ER, and OSBP11 preferentially localized to the LCVmembrane

(Fig. 4).

VAP, Sac1 and OSBP11 promoted initial LCV expansion and in-

tracellular replication of L. pneumophila, whereas OSBP8 restricted

these processes (Vormittag et al. 2023). Furthermore, stainingwith

the sterol probes filipin and GFP-D4H∗ (Tweten 1988, Shatursky et

al. 1999) revealed that sterols are depleted from the LCVwithin 2 h

post infection in the parentalD. discoideum strain, as well as inmu-

tant strains lacking VAP,OSBP7,OSBP8 or OSBP11,while PtdIns(4)P

accumulated in parallel (Vormittag et al. 2023). In addition to

Sac1, the L. pneumophila PtdIns 4-kinase LepB and the PtdIns(4)P-

binding effector SidC also promoted initial LCV expansion, since L.

pneumophila mutant strains lacking these effectors were impaired

for this process (Fig. 4). In summary, the study indicated that a

Legionella- and host cell-driven PtdIns(4)P gradient generated at

LCV-ERMCS promotes VAP-, OSBP- and Sac1-dependent LCVmat-

uration (Vormittag et al. 2023).

Finally, L. pneumophila effectors not only localize to LCV-ER MCS

but also target mitochondria-ER contact sites (Murata et al. 2022).

Mitochondria-ER-associated membranes (MAMs) are implicated

in various cellular functions, including lipid synthesis and traf-

ficking,mitochondrial morphology, inflammasome activation, au-

tophagosome formation, and apoptosis (Escoll et al. 2017). The L.

pneumophila effector Lpg1137 binds the MAM- and mitochondria-

enriched phospholipid phosphatidic acid and proteolytically de-

grades theMAM-localizing SNARE syntaxin 17 (Murata et al. 2022).

Membrane contact sites of the
Coxiella-containing vacuole
Coxiella burnetii is a Gram-negative, coccobacillary, obligate intra-

cellular bacterium and the causative agent of Q fever (Delsing

et al. 2011). After uptake, C. burnetii resides within a replication-

permissive compartment, the Coxiella-containing vacuole (CCV)

(Heinzen et al. 1999, Voth and Heinzen 2007). The nascent CCV

fuses with early and late endosomes, lysosomes and autophago-

somes and adopts an acidic pH of ∼4.5, which activates the

Icm/Dot T4BSS (Voth and Heinzen 2007, Newton et al. 2013) and

the translocation of over 130 effector proteins into the host cyto-

plasm (Segal et al. 2005, Beare et al. 2011, Qiu and Luo 2017).

ORP1L is recruited to the CCV in a T4BSS-dependent manner

prior to pathogen vacuole expansion (Justis et al. 2017). The as-

sociation of ORP1L with the CCV occurs through its N-terminal

ARD domain, which interacts with active Rab7 localized at the

CCV (Beron et al. 2002, Johansson et al. 2005, Justis et al. 2017).

Because ORP1L contains a FFAT motif and binds to VAP on the ER,

it is possible that ORP1L is part of a protein complex that medi-

ates lipid transfer and/or tethering of the CCV to the ER, leading

to the formation of CCV-ER MCS.

The role of ORP1L in lipid transfer to the CCV is supported

by the fact that the CCV is rich in sterols, as determined by fil-

ipin staining, and by the reduction of CCV size upon depletion of

ORP1L, although bacterial growth was not affected (Justis et al.

2017). The reduction of C. burnetii growth observed upon knock-

down of the cholesterol transporter NPC-1 or pharmacological de-

pletion of cholesterol, does however support the importance of

sterols for bacterial growth (Howe and Heinzen 2006, Czyz et al.

2014).

It is not known if Coxiella effectors plays a role in ORP1L recruit-

ment to the CCV or in CCV-ER MCS biology at wide. Of the many

Coxiella effectors only a few have been characterized (Qiu and Luo

2017). Of interest, the Icm/Dot substrate ElpA (ER-localizing pro-

tein A) is present in most C. burnetii strains and disrupts ER struc-

ture and function during infection (Graham et al. 2015). Addition-

ally, the C. burnetii effector Coxiella vacuolar protein B (CvpB) binds

PtdIns(3)P and PS on CCVs and early endosomal compartments

(Martinez et al. 2016). CvpB also inhibits the activity of the PtdIns

5-kinase PIKfyve tomanipulate PtdIns(3)Pmetabolism and to pro-

mote CCV expansion. Based on the preliminary characterization

of ElpA and CvpB, it will be interesting to investigate their poten-

tial role in CCV-ER interactions.

Modulation of the Salmonella-containing vacuole
by OSBP and VAP
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a

Gram-negative, facultative intracellular bacterial pathogen and

the cause of gastroenteritis and diarrhea (Hohmann 2001). During

infection, S. Typhimurium forms a replication-permissive com-

partment, the Salmonella-containing vacuole (SCV) in phagocytic

and epithelial cells (Knodler and Steele-Mortimer 2003, Bakowski

et al. 2008, LaRock et al. 2015). SCV formation is controlled

by two type III secretion systems (T3SSs), located on Salmonella

pathogenicity island (SPI)1 and SPI2 (Jennings et al. 2017, Galan

and Waksman 2018). SPI1 is required for the initial invasion, and

SPI2 is produced after internalization. SPI2 translocates approx-

imately 30 different effector proteins into the host cytoplasm

(LaRock et al. 2015, Jennings et al. 2017).

Bacterial growth in the SCV is promoted by effectors translo-

cated by the SPI2 T3SS. These effectors prevent fusion with bac-

tericidal lysosomes, direct the SCV to close proximity with the

Golgi apparatus and trigger the formation of membrane tubules

(Salmonella-induced filaments, Sifs), a process, which requires the

effectors SseF and SseG (Kuhle et al. 2004,Deiwick et al. 2006). SseF

and SseG as well as SifA have been shown to intercept secretory

trafficking from the Golgi to the PM (Kuhle et al. 2006, Bakowski

et al. 2008). SifA, SseJ and to a lesser extend SseL are also neces-

sary for cholesterol accumulation at the SCV (McEwan et al. 2015,

Walch et al. 2021). SseJ esterifies cholesterol due to its deacylase

activity and increases the formation of LDs (Ohlson et al. 2005,

Nawabi et al. 2008). This enzymatic activity and the localization

of SseJ to the SCV requires binding to active RhoA GTPase (LaRock

et al. 2012).

OSBP localizes to the SCV in a process mediated by SseJ and

SseL (Auweter et al. 2012, Kolodziejek et al. 2019). SseJ binds OSBP

at the coiled-coil domain independent of RhoA (Kolodziejek et

al. 2019), and SseL binds OSBP at the coiled-coil domain as well

as at the FFAT motif (Rytkonen et al. 2007, Auweter et al. 2012).

OSBP has been shown to support intracellular replication of S. Ty-

phimurium (Auweter et al. 2012). Additionally, infection of OSBP-

depleted, or VAPA/B double knockout cells resulted in increased

cytoplasmic S. Typhimurium, suggesting a stabilization role of

OSBP and VAPA/B for the SCV (Kolodziejek et al. 2019).While these

findings suggest the formation of SCV-ER MCS, they could also re-

flect indirect effects via ER-GolgiMCS disruption, calling for future

studies to further characterize SCV-ER interactions.

Conclusions

MCS are characterized by discrete stretches of membrane contact

between two apposing organelles to facilitate the non-vesicular

trafficking of small molecules such as calcium and lipids. The ex-

tensive characterization of a multitude of MCS in mammalian

cells and yeast that occurred over the past decade, resulted in

a comprehensive, yet constantly evolving, structural, molecular,

and functional landscape of the MCS. Lipid transfer at MCS is a
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complex and highly regulated process. By anchoring to each of the

contacting organelles, via binding to receptors (e.g. VAP) on one

organelle, and specific PI lipids on the other, specific lipid trans-

fer proteins (e.g. OSBP, ORPs, CERT) mediate the transfer of lipids

(e.g. sterols, PtdIns(4)P, PE, ceramide, etc) from one organelle to

another. Phosphoinositide phosphatases such as Sac1 further

modify the lipid composition of the donor or recipient membrane.

The short range (10-30 nm) lipid exchange that establishes along

a gradient is key to membrane remodelling and organelle matu-

ration to adopt specific functions.

Intravacuolar bacterial pathogens such as Chlamydia, Legionella,

Coxiella, and Salmonella, have evolved to mimic and/or hijack

these non-vesicular trafficking processes to establish their dis-

tinct replication-permissive compartments. The mechanisms re-

ported so far include the formation of MCS between the pathogen

vacuole and the ER, the recruitment of specific cellular MCS com-

ponents to pathogen vacuoles aided by the translocation of bacte-

rial effector proteins, and/or the establishment of a lipid gradient

between the pathogen vacuole and the ER.

Future studies will continue to investigate the complex compo-

sition and architecture of MCS in naïve or infected cells, using pro-

teomics approaches as well as high-resolution fluorescence mi-

croscopy and cryo-EM technology. To assess functional aspects of

MCS, bacterial effectors targeting MCS components might serve

as versatile tools. Hence, in addition to generating cell biological

insights into MCS components, architecture and function, the so-

phisticatedways bacterial pathogens subvertMCSwill also be elu-

cidated.
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