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The variational approach is a cornerstone of computational physics, considering both conventional and

quantum computing computational platforms. The variational quantum eigensolver algorithm aims to prepare the

ground state of a Hamiltonian exploiting parametrized quantum circuits that may offer an advantage compared

to classical trial states used, for instance, in quantum Monte Carlo or tensor network calculations. While,

traditionally, the main focus has been on developing better trial circuits, we show that the algorithm’s success,

if optimized within stochastic gradient descent (SGD) or quantum natural gradient descent (QNGD), crucially

depends on other parameters such as the learning rate, the number Ns of measurements to estimate the gradient

components, and the Hamiltonian gap �. Within the standard SGD or QNGD, we first observe the existence of

a finite Ns value below which the optimization is impossible, and the energy variance resembles the behavior of

the specific heat in second-order phase transitions. Second, when Ns is above such threshold level, and learning

is possible, we develop a phenomenological model that relates the fidelity of the state preparation with the

optimization hyperparameters and �. More specifically, we observe that the computational resources scale as

1/�2, and we propose a symmetry enhancement of the variational ansatz as a way to increase the closing gap. We

test our understanding on several instances of two-dimensional frustrated quantum magnets, which are believed

to be the most promising candidates for near-term quantum advantage through variational quantum simulations.
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I. INTRODUCTION

The task of preparing a quantum state on a qubit regis-

ter is of fundamental importance in quantum computing. To

this end, the variational quantum eigensolver (VQE) [1–3]

algorithm, of widespread use in several quantum application

domains, from chemistry and physics [4–6], machine learning

[7], combinatorial optimization [8], and finance [9] aims at

variationally preparing the ground state of a Hamiltonian Ĥ
[3,4,9–16]. While the VQE algorithm has already been imple-

mented on existing noisy devices, its importance will persist in

the future fault-tolerant regime as it is also necessary for more

advanced quantum algorithms such as eigenstate projection

methods [17,18].

The two essential ingredients of the method are (i) a

parametrized quantum circuit with variational parameters θ,

which produces a wave function |ψ (θ)〉 expressing the ground

state of the problem, and (ii) a learning procedure aimed at

optimizing the circuit variational parameters θ. This last step
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involves a feedback loop between the quantum and classical

resources.

The VQE is among the most widely used quantum algo-

rithms, and it has been adapted to many particular contexts

and models. Significant effort has been spent so far in de-

vising better variational forms, tailored to various application

domains [3,6,12,19–23] or hardware architectures [4,6]. In

addition, the optimization part of the algorithm has been stud-

ied [3], including works discussing the distribution of local

minima in the energy landscape [24,25], its behavior in the

overparametrized regime [26], and the concept of the barren

plateaus [27], manifested in gradients vanishing exponentially

fast with system size [28,29]. Importantly, this phenomenon

was reported only in the context of random circuit variational

forms. Recent works have proven an absence of such plateaus

in the quantum convolutional neural network architecture [30]

and circuits aimed at the study of quantum magnets [31,32].

However, significantly less attention has been paid to a

realistic scenario of optimization with sizable shot noise, and

to the relation between the optimization efficiency and the

problem’s physical regime, including the dependency on the

system gap � [28].

This paper aims to provide a phenomenological theory

underlying the efficiency of the training: (i) within several

optimization algorithms, (ii) in various regimes of model

parameters, and (iii) as a function of optimization hyper-

parameters such as the learning rate η or the number of

gradient-estimating samples Ns per optimization step.

2643-1564/2023/5(3)/033225(15) 033225-1 Published by the American Physical Society



NIKITA ASTRAKHANTSEV et al. PHYSICAL REVIEW RESEARCH 5, 033225 (2023)

We adopt the best-case scenario of a noise-free hard-

ware setting, i.e., we consider perfect gates and readout, and

study the stochastic gradient descent (SGD) and the stochas-

tic reconfiguration (SR) approach [33], as implemented on

quantum computers in the quantum natural gradient descent

(QNGD) approach [34]. In such a hardware-free noise setting,

the remaining obstacle for the state preparation is the inherent

statistical quantum measurement noise in the gradient estima-

tion [∇〈Ĥ〉] induced by a finite budget Ns of shots, i.e., circuit

repetitions [3,12,35].

In this paper, we only consider gradient-based optimiza-

tion. These methods are likely the only scalable approach

to VQE as, at least in the classical setting, they represent

the only practical strategy that provides stable optimization

of a large number of parameters [36–38]. Applications of

other gradient-free methods such as SPSA are restricted to the

problems of quantum chemistry with only a small number of

variational parameters [3].

In this scenario, we analyze how the performance of varia-

tional ground-state preparation is affected by the sample size

Ns per gradient component and the learning rate η of a gradient

descent step. First, we observe that the resulting fidelity shows

a critical behavior as a function of a suitably defined stochastic

energy fluctuations measure ǫ ∝ 1/Ns, namely, we show that

the fidelity vanishes when this measure is larger than a certain

threshold value, ǫ > ǫc, and shows a rapid growth instead at

ǫ < ǫc. Further in the text, we refer to this sharp change in the

algorithm performance as an algorithmic phase transition and,

somewhat loosely, call this behavior critical. We emphasize

that these algorithm performance regimes, as well as the tran-

sition between them and threshold (critical) ǫc, stem primarily

from the optimization hyperparameters such as η, Ns, and are

not related to conventional phase transitions in a medium.

To understand the mechanism behind this transition, in

this paper, we attempt to qualitatively reproduce some its

features for a given circuit with a simple distribution over the

parameter space given by the Boltzmann distribution �(θ) ∝
exp(−E (θ)/T ), with T being the effective temperature of the

system and E (θ) = 〈ψ (θ)|Ĥ |ψ (θ)〉 being the energy expecta-

tion. Second, we address estimating the sample size required

to reach a certain overlap with the ground state. For suffi-

ciently large samples, we observe that the circuit infidelity

behaves as Aǫ + I0, with I0 representing the circuit’s inability

to exactly express the quantum state.

By considering numerical simulations of different two-

dimensional frustrated spin-1/2 magnets, we observe that the

prefactor A has a universal behavior and, in the case of such

systems, grows as ∼1/�2 with the spectral gap �. Such

dependence imposes a constraint on the minimum circuit

shots number Ns required to reach certain fidelity and on the

class of quantum systems addressable with VQE. Based on

this observation, we also discuss symmetry-based strategies

to effectively increase �, thus, in some cases, significantly

reducing the required resources for the algorithm.

Before moving forward, let us comment on the choice

of two-dimensional frustrated spin–1/2 models as the re-

search focus. These models, to our belief, are among the most

promising candidates for near-term quantum advantage for

two reasons. (i) First, among the spin models, they represent

the most challenging systems for classical calculations [39].

This is in contrast to the one-dimensional or nonfrustrated

models in which the ground state can be efficiently computed.

(ii) Second, their qubit Hamiltonian remains local [40] (in-

volves only Pauli strings of O(1) length, which does not scale

with the number of degrees of freedom, provided that the

hardware qubit layout is consistent with the spin lattice).1 This

enables quantum circuits compatible with the current super-

conducting quantum platforms [43]. Moreover, the gradient

descent optimization in such problems requires measurement

of a relatively small number of Hamiltonian terms scaling

linearly, O(Nq), with the number of qubits.2

Therefore, we believe the assessments in this paper are

directly related to a highly relevant use-case of variational

quantum approaches, which at the same time has a large

potential to reach quantum advantage [45].

This paper is organized as follows. In Sec. II, we outline

the phenomenological theory for the observed algorithmic

phase transition and residual infidelity scaling. In Sec. III,

we introduce a model for two-dimensional frustrated mag-

nets and symmetry-enhanced circuits. Finally, in Sec. IV we

demonstrate numerical evidence for these claims, and we

draw conclusions in Sec. V.

II. PHENOMENOLOGY OF STATE PREPARATION

A. An effective stochastic temperature and algorithmic

phase transition

In stochastic optimization methods, such as variational

Monte Carlo or gradient-based machine learning, it is known

that the power spectrum of statistical noise, under cer-

tain assumptions, defines an effective temperature [46–48].

Concretely, we consider a variational circuit parametrized

with a vector of parameters θ and consider the update

law representing the SGD approach θt+1 = θt − η f t with

η being the learning rate. In the ideal case, the force

is given as the average over the full Hilbert space f t =
∇θ(t )〈ψ (θ(t ))|Ĥ |ψ (θ(t ))〉, while in the SGD algorithm the

force is obtained by averaging over Ns circuit shots. In

the actual multivariate VQE optimization, noise is gov-

erned by a θ–dependent and nondiagonal covariance matrix.

Here, to analytically examine the stochastic VQE optimiza-

tion dynamics, we assume that fk ∼ N (∇k〈Ĥ〉, σ ), i.e., that

the forces on the parameters, fk , are distributed normally

with a diagonal and uniform variance, σ 2 ≃ 1
Np

∑

k Var fk/Ns.

As mentioned above, in this paper, Ns stands for the

number of shots used for the estimation of each gradi-

ent component. The effective parameter’s pseudodynamics

1In quantum chemistry, there also exist the ansätze that only utilize

qubit-local operations such as the low-depth circuit ansatz (LDCA)

[41] or the quantum number preserving ansatz (QNP) [42]. In this

paper, importantly, locality of the qubit Hamiltonian stems from the

locality of the physical Hamiltonian.
2Quantum-chemistry applications are also among the important

candidates to reach quantum advantage thanks to the efficient mea-

surement grouping techniques such as proposed in Ref. [44], that

allow us to improve the scaling of the required number of mea-

sured Hamiltonian terms from O(N4
q ), which naturally arise from the

second-quantized chemistry Hamiltonian, to O(N3
q ).
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is therefore given by a Langevin equation of the form

θ t+1
k = θ t

k − η(∇k〈Ĥ〉 + N (0, σ )), (1)

where index k enumerates components of the variational pa-

rameters vector of length Np. In addition, we assume that

the gradient variances, Var fk , are approximately equal for

all parameters.3 Then, the stationary solution of Eq. (1) is

the Boltzmann distribution �(θ) ∝ exp(−E (θ)/T ), where we

defined

T =
1

Np

∑

k

Var fkη/Ns (2)

as an effective temperature of the system. Note that since the

learning rate has the dimension of inverse energy, the temper-

ature has the dimension of energy, as expected. This definition

agrees with the well-known expression for the effective tem-

perature in variational Monte Carlo optimization [47,48].

Without loss of generality, we assume that the ground-state

energy value is E = 0, and is also reached at θ = 0. We thus

write to the second order E (θ) = θT D̂ θ/2 = (1/2)
∑

k Dk θ̃
2
k ,

where we consider a basis θ̃ delivering a diagonal form to D̂
[49–51]. This implies that energy fluctuations are proportional

to the number of parameters Np with T/2 per degree of free-

dom,4 namely, 〈E (θ)〉θ = (1/2) NpT , where 〈. . .〉θ denotes

averaging over the parameters’ distribution.

Below we will provide numerical evidence supporting the

existence of an algorithmic phase transition as a function

of the energy fluctuations’ measure ǫ = (1/2)NpT , separat-

ing the ǫ > ǫc regime where the optimization is impossible

from the ǫ < ǫc regime where the algorithm finds a sizable

finite overlap with the ground state. Notably, the switch be-

tween the two regimes often occurs not through a smooth

crossover but is instead characterized by a sharp phase tran-

sition with a well-defined ǫc, also marked, similar to the heat

capacity behavior in second-order phase transitions, by a peak

in the energy variance 〈(E − 〈E〉θ(t ))
2〉θ(t ), where we average

over the parameters θ(t ) obtained during the optimization

process. We will also show that ǫc does not decrease expo-

nentially with the system size, keeping the state preparation

feasible while approaching the thermodynamic limit.

We emphasize that our numerical experiment setup is dif-

ferent from the standard thermodynamic case, where both the

energy fluctuations and the full problem Hamiltonian energy

scale 	 are proportional to the number of system degrees of

freedom, i.e., are both extensive quantities. In our setup, 	,

being a characteristic of a problem and not of the ansatz, is

independent of Np. In the meantime, the energy fluctuations

ǫ, depending on the ansatz, are linear in Np. Intuitively, the

trainable phase should satisfy ǫ ≪ 	. Since the latter is inde-

pendent of Np, the magnitude of the energy fluctuations ǫ =
(1/2)NpT , and not temperature T , sets a measure detecting

the algorithmic phase transition.

3This assumption is numerically well verified in the case of the

ansatz states considered in the following.
4Strictly speaking, the energy fluctuation should be the sum of

effective temperatures 〈E (θ)〉θ = (1/2)
∑

k Tk associated to the sys-

tem parameters. In our case, however, for simplicity, we assume all

temperatures equal.

Substituting the nondiagonal θ–dependent covariance ma-

trix with the diagonal uniform variance σ 2 is a major

approximation. We show, however, that sampling from the

Boltzmann distribution exp(−E (θ)/T ) defining the partition

function

Zθ =
∫

dθ exp (−E (θ)/T ) (3)

can reproduce some features of the original stochastic VQE

optimization, such as the mentioned parametrical regions

with vanishing training fidelity and the pronounced separation

from the trainable phase with the transition point marked

by a peak of energy variance. Thus, the reported behavior

manifests itself also within sampling the variational circuit

parameters from the thermal Boltzmann distribution �(θ) ∝
exp(−E (θ)/T ).

B. A phenomenological scaling law for the residual infidelity

In the ǫ < ǫc regime, when the optimization reaches siz-

able fidelity, we propose the following empirical scaling law

for the residual infidelity I = 1 − |〈ψ (θ)|ψ0〉|2:

I = Aǫ + I0, (4)

where I0 describes the ideal representational ineffectiveness

of a given variational circuit. It has been demonstrated in an

ideal exact gradient setup that I0 can be made arbitrarily small

with a suitable choice of the ansatz and the corresponding cir-

cuit depth [31,52,53]. However, in addition to the limitations

associated with the expressivity of the circuit, the measured

state infidelity also stems from the finite sample size of gradi-

ent estimates per component, Ns.

We argue that this residual infidelity depends on the same

effective energy fluctuations’ measure ǫ introduced above and

on the spectral properties of the system of interest, such as

the gap to the first excited state �. Our numerical experi-

ments suggest a fast scaling with the inverse gap, which to

a reasonable degree follows the A ∝ 1/�2 behavior. This pro-

portionality implies an increasing optimization complexity for

systems with a closing gap. This dependence is similar to the

one of the adiabatic theorem, which imposes the relation τ ∝
1/�2 on the smallest time extent of the quantum annealing

[54]. In the following, we also provide a recipe allowing one to

ameliorate this problem by employing symmetry projections

[23,55].

III. MODEL AND QUANTUM CIRCUITS

We perform numerical experiments on the j1 − j2 Heisen-

berg spin–1/2 model on a series of two-dimensional lattices.

We place both model and geometries in focus since (i) the

ground state of this model under certain conditions realizes

a quantum spin liquid, an exotic and long-sought phase of

matter [56,57], (ii) tuning the couplings ratio j1/ j2 allows

one, on each of these geometries, to explore different model

regimes, and to trigger gap closing, (iii) lattice models allow

for a controllable study of the thermodynamic limit.

033225-3
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The spin-1/2 Heisenberg model is described by the Hamil-

tonian

Ĥ = j1
∑

〈i, j〉

Ŝi · Ŝ j + j2
∑

〈〈i, j〉〉

Ŝi · Ŝ j, (5)

with 〈. . .〉 representing the j1 bonds and 〈〈. . .〉〉 representing

the j2 bonds. The range of ratios j2/ j1 is chosen, in each

particular case, to interpolate between the frustrated and mag-

netically ordered regimes. See Appendix A 1 for the definition

of the lattice geometries and for the description of the param-

eter regimes for which a gap closing is expected.

For numerical experiments with the SGD and SR tech-

niques, we symmetrize our wave function such that it

transforms as a specific irreducible representation of the lat-

tice symmetry group. Among the possible approaches to

symmetrization, one can highlight working with the gate set

that respects the desired symmetry [58,59] and working with

an arbitrary gate set and symmetrizing the wave function

after the application of all gates [23]. In this paper, we inves-

tigate the former approach, as it provides higher expressive

power to the ansatz at a relatively shallow depth [60].

The spin-spin interaction in the Hamiltonian [see Eq. (5)]

can be replaced by the SWAP operator P̂i j = 1
2
(Ŝi · Ŝ j + 1̂),

which induces an exchange of spin states between sites i and j.
Importantly, if the initial state is prepared in the total spin-zero

S = 0 sector, such as the dimer product state

|ψD〉 =
⊗

0�i<N/2

1
√

2
(| ↑2i↓2i+1〉 − | ↓2i↑2i+1〉), (6)

action of the eSWAP operators exp(iθ P̂i j ) preserves the total

spin and the wave function reads

|ψ (θ)〉 =

(

∏

α

eiθα P̂iα jα

)

|ψD〉, (7)

where to define the (iα, jα ) pairs we employ the checkerboard

decomposition of the Hamiltonian Eq. (5). Specifically, in

the case of a square lattice with periodic boundary condi-

tions (PBCs) in both directions, the Hamiltonian can—up to

a constant—be written as a sum of L × 4 SWAP operators

acting between pairs of qubits. We split this set of pairs into

eight layers of full coverings (when each qubit belongs to

exactly one pair), and treat these pairs as (iα, jα ). Note that all

eSWAP operators within one layer can be applied simultane-

ously. In addition to the fixed total spin quantum number, the

ansatz also allows one to fix the spatial point-group symmetry

representation of the wave function. We use the postcircuit

symmetrization protocol introduced by Ref. [23] (for details

of such fixation, optimization protocol and the definition

(iα, jα ) in the triangular, hexagonal, and open boundary con-

dition (OBC) cases, see Appendix A 2 for more details about

the gate layout).

This ansatz allows one to effectively change � (if the

symmetry is imposed, effective � is the energy of the first

excited state in the respective irreducible representation) and

improves the ability to express the ground state (decreases I0),

keeping Np relatively low. Importantly, the introduced ansatz

only shows a mild decay of the gradient norms with system

size, signaling the absence of the so-called barren plateau

issue, proven to emerge in a generic quantum circuit setup

[29]. The proposed circuit has a subexponential decay of gra-

dients, similarly to the case of the transverse field Ising model

reported in Ref. [61], as we demonstrate in Appendix A 3.

Other barren plateau-free circuits aimed at the study of frus-

trated two-dimensional magnets were also previously reported

[31,32]. Finally, we note that the eSWAP gates are simply

the restriction of the two-qubit rotation gates Ûi j (θ, ϕ) =
exp(iθ (X̂iX̂ j + ŶiŶj ) + iϕẐiẐ j ) to the SU(2)-symmetric case

ϕ = θ . These two-qubit gates are the standard choice for the

VQE studies of spin–1/2 Heisenberg magnets [23,31,62–64].

Therefore, the proposed ansatz Eq. (A2) represents a rather

general family of circuits with the additional advantage of the

imposed spin quantum number conservation.

IV. RESULTS

A. Small sample size regime: Critical behavior

The optimization of the circuit parameters requires the

estimation of the energy gradient with respect to the gate

parameters θ, for which a circuit is being executed Ns times

per gradient component. Therefore, the total number of cir-

cuit shots is NsNpar. Larger Ns leads to higher fidelity F =
|〈ψ (θ)|ψ0〉|2 (i.e., the squared overlap with the ground state),

as well as for expectation values of the form 〈ψ (θ)|Ô|ψ (θ)〉
for any given observable Ô. A naively expected behavior

in such a case would be a gradual growth of fidelity with

Ns. However, Ref. [60], which studies neural quantum states

[65] (an ansatz class used in classical computing) reported a

sharply different behavior with nearly zero fidelity for Ns <

Nc
s smaller than some critical Nc

s number of samples.5

1. Manifestation of the critical behavior

To test which scenario (a smooth transition or a critical

behavior) is realized with the quantum state preparation, we

perform optimization with SGD in the small-Ns regime.6 We

plot the circuit fidelity (or, similarly, infidelity) throughout

the Results section on the vertical axis. To obtain the circuit

fidelity, we employ the following protocol: Starting from a

random set of parameters, we optimize a circuit using the

SGD or SR approach until the sliding mean of fidelity with

a window of several hundred steps stabilizes.7

After such convergence, we use the mean over the next

thousand iteration steps as the circuit fidelity. The procedure

is repeated ten times to estimate the error bars. In Fig. 1(a),

we show the state fidelity as a function of Ns for various j2/ j1
on the 4 × 4 square lattice with the OBC in the first and PBC

in the second dimension to avoid geometrical frustrations in

the j2/ j1 = 0 pure nearest-neighbor case. One can see that

5Another prominent example of an algorithmic phase transition

occurring in an optimization problem is the so-called jamming tran-
sition reported for an artificial neural network training [66].

6In this regime of small Ns, the metric tensor inversion requires a

very large regularization (see Appendix A 2), effectively turning SR

into SGD.
7By stabilization, we assume that the relative fluctuations of the

sliding mean do not exceed 5% of the current sliding-mean value.
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FIG. 1. (a), (b) Fidelity and energy variance as a function of Ns for various j2/ j1 measured on the 4 × 4 square lattice with periodic

boundary conditions (PBCs) and with the circuit depth D = 8 (the number of parameters Np = 64). (c) Fidelity as a function of inverse

temperature β within simulations of the 4 × 4 square lattice at various j2/ j1 within direct sampling from the thermal partition function Eq. (3).

(d) Critical number of samples N c
s as a function of learning rate η on the 4 × 4 triangular lattice with PBC. (d) Inset: Critical number of samples

N c
s as a function of number of parameters Np on the 4 × 4 square lattice with PBC at j2/ j1 = 0.4. (e), (f) Circuit fidelity as a function of ǫ/ j1

within the L × 4 setup at j2/ j1 = 0.4 and the inverse critical fluctuation measure (ǫc/ j1)−1 as a function of 1/L.

the fidelity remains vanishingly small for Ns < Nc
s , followed

by a rapid growth afterwards. Such drastic change of pattern is

suggestive of a critical behavior (see Appendix A 4 for similar

behavior in other frustrated lattices). In Appendix A 4, we

also show that at the transition, some optimization attempts

manage to obtain nonzero fidelity, which nevertheless widely

oscillates during optimization. Note that the transitions hap-

pen in a small-Ns regime with tens of samples per gradient

component. There, the QNGD method requires large regular-

ization due to the ill conditioning and effectively implements

the SGD approach. This justifies only considering the SGD

optimization in Sec. II and in the present simulations.

To explore this transition in Ns, in Fig. 1(b) we show

cV /N2
s = Var E as a function of Ns, where cV is the effective

specific heat, and the variance is computed over the energy

values that were obtained during a long (converged) optimiza-

tion process. We observe that the peak of Var E coincides

precisely with Nc
s , defined as the departure point from the

zero-fidelity regime. The effective specific heat cV also shows

a peak in this region. This quantity generalizes the thermal

specific heat cβ

V = β2 Var E , where we assume that the inverse

number of samples, 1/Ns, plays the role of an effective temper-

ature, and β is the inverse temperature. We observe a similar

critical behavior across other cluster dimensions and geome-

tries under consideration. Notably, the reported algorithmic

phase transition is also accompanied by a qualitative change

in the distribution of the overlaps with higher excited states

Ok = |〈ψ (θ)|ψk〉|2, namely, it changes from being peaked at

1/|H| (with |H| being the size of the Hilbert space) to be

much wider (see Appendix A 4). Thus, at small Ns, the circuit

learns uniform overlap with all eigenstates, while at Ns > Nc
s

the circuit favors only several low-lying excitations. This is

consistent with the argument outlined in Sec. II, based on the

thermal partition function.

To substantiate this, we simulate the parametric partition

function Zθ defined in Eq. (3) using a Metropolis algo-

rithm that performs random walks in the parameter space.

In Fig. 1(c), we show the average fidelity computed along

the generated Markov chain at different temperatures for the

4 × 4 square lattice. We keep the number of parameters fixed

and thus present the data as a function of β = 1/T . Even

though the growth after the critical value βc is not as sharp

as observed in Fig. 1(a), we notice also in this case a region

of nearly zero fidelity for β < βc. Similarly to the case in

Fig. 1(b), the specific heat cβ

V has a pronounced peak at βc. The

histogram of overlaps Ok shows a similar qualitative change

between the two regimes (see Appendix A 4 for details).

We note that the abruptness of growth at Ns > Nc
s (β >

βc) is clearly dependent on j2/ j1, as seen from contrast-

ing the j2/ j1 = 0.6 and j2/ j1 = 0.0 curves demonstrated in

Figs. 1(a) and 1(c). However, the transition at j2/ j1 = 0 ap-

pears at Ns → 0, but at finite β. Furthermore, this sampling

fails to reproduce the maximum fidelities at large β. We be-

lieve this is due to the sampling from the thermal partition

function and neglecting correlation between the noise com-

ponents. Nevertheless, the clear separation between the two
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FIG. 2. Large-Ns regime study of the 4 × 4 square lattice. (a) Infidelity as a function of Ns for a set of depths D = Np/8 at j2/ j1 = 0.4

computed with η = 10−2. The dashed line shows fit with the ansatz Eq. (4). (b) Infidelity as a function of η for a set of j2/ j1 at D = 8. The

data was generated at Ns = 220 to ensure convergence and well conditioning of the metric tensor at any value of η under consideration.

algorithmic regimes marked by a peak of energy variance,

remains present.

To verify the effective temperature expression Eq. (2), in

Fig. 1(d), we plot Nc
s as a function of η for the 4 × 4 triangular

lattice. To estimate the transition position Nc
s , we take the

smallest Ns such that the averaged fidelity exceeds the double

inverse Hilbert space size. From Fig. 1(d), we observe a linear

dependence on the learning rate η. This supports the linear η

proportionality in Eq. (2). The inset shows Nc
s as a function

of Np. To vary Np = 8D, we change the circuit depth D, i.e.,

the number of parameter layers, as discussed in Appendix A 2.

As expected, we observe a linear dependence, while the vari-

ance per parameter, 1
Np

∑

k Var fk , remains mostly unchanged.

This behavior is also observed in other lattice geometries.

This shows a pronounced criticality in the energy fluctuations

measure ǫ = (1/2)T Np, rather than in the mere effective tem-

perature T .

2. Critical behavior in the thermodynamic limit

We aim to> extrapolate the critical energy fluctuations

measure ǫc to the thermodynamic limit. To this end, we con-

sider L × 4 square lattices with the x extent of the lattice

L = 3, 4, 5, and 6. As the circuit architecture, we select the

eight checkerboard decomposition layers of the Hamiltonian

in Eq. (5). Thus, due to the high computational cost otherwise,

the depth of the circuit does not scale with L. Additionally,

OBCs in the L direction and PBCs in the second direction

are imposed, ensuring the absence of geometric frustrations.

In Fig. 1(e), we report the state fidelity as a function of ǫ,

while in Fig. 1(f), we show the dependence of ǫc on the lattice

dimension L−1. We observe a saturation with 1/L and note

that the critical energy fluctuations do now grow exponen-

tially with system size.8 Note that the curves in Fig. 1(e)

approach different final asymptotic values F∞ for ǫ < ǫc,

8We note that ǫc/ j1 varies only mildly with j2/ j1, while the system

gap has a two orders of magnitude difference between j2/ j1 = 0.0

and 0.6. This suggests that in the trainable phase, in the definition

ǫ ≪ 	 given above, 	 is not the energy gap of Ĥ but rather some

other energy scale of the system.

while fair extrapolation to the thermodynamic limit should

ensure a nonvanishing (preferably same) saturation. Thus, as

L increases, one needs to employ deeper circuits, which would

correspondingly increase ǫc at a given L. However, due to

the high computational cost, we refrain from scaling up the

circuit depth at large cluster volumes L = 5, 6. Nevertheless,

we believe that such an increase in the circuit depth would not

change the overall subexponential scaling character of ǫc(L).

For instance, Ref. [67] reports that, to reach a certain fidelity

F with the ground state on the frustrated N-site kagome

lattice, only ∝
√

N gates are necessary. Thus, with such depth

adjustment, the saturating behavior of ǫc(L) shown in Fig. 1(f)

can only change to a polynomial dependence on L and not to

an exponential growth.

The main practical quantity of interest is Ntot(L) =
NSGD(Nc

s ) × Nc
s , the total number of samples required to train

a circuit in the course of NSGD(Nc
s ) SGD iterations, which is

proportional to the required hardware resources. We define

NSGD(Ns) as the number of SGD steps needed to reach 90%

of the saturated fidelity. We observe that NSGD(Ns) required to

saturate F∞ [as defined in Fig. 1(e)] shows no growth with

L (see Appendix A 5 for details). Thus, the obtained scaling

for ǫc(L) results in a polynomial scaling of Ntot(L). Note that

reducing η will allow reaching ǫc with a smaller number of

samples per SGD iteration. However, such convergence would

require proportionally more SGD steps NSGD, making Ntot(L)

a true lower bound on the required total number of samples.

B. Large sample-size regime

In this section, we provide numerical evidence to validate

Eq. (4) in the regime of accurate gradients. We employ the

symmetrized wave function and the SR approach proposed in

Ref. [33]. In this section, Ns has the meaning of the number

of shots per gradient component and per symmetry projection

(see Appendix A 2 for projection definition).

We consider the 4 × 4 square lattice at j2/ j1 = 0.4 with

a variable circuit depth. The circuit is built of the repeti-

tive applications of the checkerboard decomposition of the

Hamiltonian in Eq. (5) (a single decomposition is described

in Sec. III), restricting ourselves to a maximum of Np op-

timization parameters. The circuit depth is then D = Np/8.
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FIG. 3. (a) Dependence of the prefactor A introduced in Eq. (4) on the system spectral gap. The symbols denote sq. (tr.), 42: square 42 lattice

case with only translational symmetry imposed; sq. (pg.), 42: same with only point symmetry group imposed;, sq. (all), 42: same with both

translation and point group symmetries imposed; tr.-(1), 42: triangular 42 lattice with the full symmetry imposed with the starting dimerization

along the j1 bonds; tr.-(2): same with the dimerization along the j2 bonds; and hex., 32: 32 hexagonal lattice with the full symmetry group

imposed. (b) On the 4 × 4 square lattice, dependence the system gap ( j1/�)2 on j2/ j1 in the two cases: (i) with only point group symmetry

imposed, (ii) with only translational symmetry imposed. (c) Same for the resulting prefactor A.

In Fig. 2(a), we present the infidelity as a function of Ns.

To verify the proposed functional form for I (Ns), the data

are fitted with the expression in Eq. (4). To verify the power

law, we replace Ns → Nα
s and observe α ∼ 1 within the error

bars consistently within the fitting procedure. The residual

infidelity also decays exponentially with depth (for details, see

Appendix A 6). Then, we study the dependence of A on circuit

depth D (see Appendix A 6). We observe that the product

A(D)D2, which is proportional to the total number of measure-

ments required to estimate the metric tensor, changes slowly

with D. Therefore, as D grows, the individual components of

Gi j can be measured with smaller precision, which is leveled

out by the growing number of the matrix entries. Finally, in

Fig. 2(b) we fit infidelity with a linear function Cη, where C
is a fit constant. These fits support the functional form Eq. (4)

and provide an empirical way to verify the 1/Ns power law

dependence of the residual infidelity.

In the following, we investigate the dependence of pref-

actor A on the spectral gap �. To this end, in Fig. 3(a) we

present the offset A against (�/ j1)−1 for the different two-

dimensional lattices considered in this paper. We consider

different lattice geometries, different starting dimerization

patterns, and symmetry projectors. The fit with A0�
α yields

α ∼ −2. The black dashed line shows the A0/�
2 fit of the

data. We note that in the cases of other spin systems that we

considered, such as the j1– j2 Heisenberg chain, we observed a

scaling law significantly different from 1/�2 and being highly

depth dependent. We thus emphasize that our claim α ∼ −2

only concerns two-dimensional frustrated magnets.

From this observation, it follows that for increasingly

smaller gaps, the systems become intractable, in the sense

that it becomes harder to converge to the true ground state.

However, imposing symmetrization of the ansatz (see Ap-

pendix A 2) can alleviate this problem. We illustrate this

approach in the case of the 4 × 4 square lattice, where the

parameter regime j2/ j1 → 0.6 leads to a nearly closing gap,

accompanied by the emergence of a quantum spin liquid [68],

namely, we contrast the cases of (i) only point-group symme-

try imposed with eight terms in the projector against (ii) only

translations imposed with 16 terms in the projector. As seen in

Fig. 3(b) at j2/ j1 → 0.6, ( j1/�)2 diverges for case (ii), while

it remains well-behaving for case (i). This results in a dra-

matically different behavior for A( j2/ j1), with the latter being

moderate for (i) and exploding for (ii), as seen in Fig. 3(c).

This improvement in the prefactor A magnitude emphasizes

the importance of symmetries in the state preparation process

of systems with a vanishing gap. Summarizing, the residual

state infidelity, which is not due to the lack of representability

of the chosen ansatz, but rather to the optimization process,

scales as

I − I0 ∝
ǫ

�2
, (8)

where ǫ = (1/2)T Np, with T defined in terms of sampling

shots Ns and learning rate η, as in Eq. (2).

V. DISCUSSION

Variational state preparation is essential for various quan-

tum computing algorithms in near-term and fault-tolerant

regimes. Here we show that, besides the most apparent depen-

dency on the circuit architecture, the fidelity of the prepared

state strongly depends on the learning hyperparameters and

the system-dependent properties. We lay out a phenomenol-

ogy of state preparation as a function of two significant

factors: (i) the number of samples Ns used to estimate the

gradient of the variational parameters in an SGD step and

(ii) the fundamental gap � of the model Hamiltonian. In

particular, we explored the interplay of these two parameters,

focusing on the two-dimensional spin-1/2 frustrated quantum

magnets. These problems represent one of the most challeng-

ing cases for the classical approaches, while retaining locality

in the qubit form. These problems are therefore marked as

being among the most promising candidates to reach quan-

tum advantage in the variational quantum studies. To express

the ground state of such a model, we employ the SU(2)-

protecting circuit consisting of eSWAP gates, which is only

a mild restriction of the XXZ two-qubit rotations, standard

in the variational studies of the spin-1/2 Heisenberg models.
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This circuit is optimized using the SGD approach, a scalable

optimization method in the limits of the large parameters

number. Finally, we restrict our consideration to solely future

fault-tolerant devices.

We observe that, in the regime of small Ns (noisy gradient),

the stochastic optimization shows critical behavior with near-

zero state fidelity for Ns < Nc
s and rapid growth of fidelity

at Ns > Nc
s . The pace of fidelity growth is highly geometry-

and parameter-regime dependent. However, the zero-fidelity

region is always present and is pronouncedly separate from

the trainable phase. In addition, the point of transition, Nc
s ,

always features a peak of energy variance 〈(E − 〈E〉θ(t ))
2〉θ(t ),

resembling heat capacity behavior in second-order phase tran-

sitions. Together with the notion of effective temperature, this

separation allows us to discuss an effective algorithmic phase

transition on the energy fluctuations measure ǫ = (1/2)NpT
axis. In the case of a two-dimensional square lattice, we found

evidence that the critical energy fluctuation ǫc scales only

polynomially with system size [see Fig. 1(f)], providing the

basis for the possible applications of VQE in the study of

larger-size frustrated magnets, inaccessible to classical algo-

rithms.

To support the notion of the effective temperature, we

show that the observed criticality and energy variance peak

can be reproduced within sampling from a simpler parametric

partition function Eq. (3) with the classical circuit parameters

θ distributed according to the Boltzmann weight. We note that,

as mentioned in Sec. IV, this sampling does not reproduce the

maximum circuit fidelity and the correspondence between βc

and Nc
s . We thus provide a simplified picture explaining some

features of the reported algorithmic phase transition in ǫ.

The observed threshold Nc
s sets a minimum nonnegli-

gible runtime of a successful VQE algorithm on realistic

future quantum hardware. To see this, we consider a small

yet interesting case of a Nq = 10 × 10 square lattice. The

current reasonable estimation for a single eSWAP gate run-

time is in the order of 10−4 s in the fault-tolerant quantum

regime [69]. With the depth of the circuit of order Nq,

a single shot implies a wall time τ = 0.01 s. Therefore,

the total run time of each SGD iteration at Ns = Nc
s , is

of the order τ × Nc
s × Npar = 0.01 s × 20 × 5000 ∼ 10 min.

Here, we estimated the number of parameters as 5000 =
depth × (50 eSWAP dimer pairs on each layer) and Ns = 20

per gradient component. Of course, translationally invariant

architectures can be employed, to reduce Npar or the circuit

depth [70]. Nevertheless, our finding suggests the existence

of a nonvanishing minutes-order lower bound of quantum

processing time per optimization step in a potential case of

applying VQE to a classically-hard system.

The obtained timescale allows us to view the j1– j2 Heisen-

berg model on a two-dimensional lattice as a reasonable

candidate for applying quantum variational methods. In ad-

dition, Ref. [39] shows that the frustrated j1– j2 models are

the hardest spin models for the classical simulations, and

therefore good candidates to reach quantum advantage.

We have also observed that the approach to the exact

ground state in the large-Ns limit depends heavily on the

system spectral properties; namely, in the case studies of

two-dimensional frustrated magnets, the Ns-dependent con-

tribution to the residual infidelity Eq. (4) scales as 1/�2

with � being the energy gap of the studied system. We em-

phasize that this empirical dependence is only applicable to

two-dimensional magnets that were explored in this paper.

Moreover, even though we express A as the function of the

gap to the first excited state, �, the 1/�2 scaling is also related

to the growing contributions to the infidelity coming from the

higher-excited states other than the first excited state, namely,

as we show in Appendix A 7 that approaching the gap-closing

point on the j2/ j1 axis is accompanied by the growing low-

energy excited states density. The interplay between these two

factors might lead to the observed A scaling.

Importantly, there exist numerous improvements of the

QNGD method that allow us to reduce the shots budget, such

as surrogate models that keep track of the energy landscape on

the previous steps [71–73] or adaptive sampling that increases

the shots budget in the case of large uncertainty [74,75]. We

believe that while these methods will improve the overall pref-

actor, the problem of increasing hardness and divergence of Ns

at the closing gap � would remain, which would still require

the symmetry enhancement proposed in this paper. The cor-

responding numerical experiments of optimization with the

improved QNGD are beyond the scope of this paper and are

left to future works.

We note that the observed 1/�2 infidelity scaling is fun-

damentally different from the well-known runtime scaling

coincidentally appearing in the adiabatic quantum computing

[76] and incoherent quantum tunneling [77–79]. Moreover,

a simple two-level model would yield a 1/� scaling, also

observed in Ref. [80] [Eq. (25)]. This is because, if only the

first excited state plays a role, then 〈E〉θ = �〈I〉θ . Therefore,

since we have shown that 〈E〉θ ∼ 1/T ∼ 1/Ns, we arrive at

〈I〉θ ∼ 1/(�Ns), which yields the 1/� scaling of Ns with the

gap. In contrast, in the case of the systems considered in this

paper, higher excited states also contribute, which leads to a

worse, 1/�2, scaling.

This 1/�2 scaling poses a significant obstacle for the study

of systems with a closing gap. To address this problem, we

showed how a symmetry-enhanced wave function—in addi-

tion to not being susceptible to the barren plateaus issue—can,

in some cases, mitigate the effects of a closing gap, namely,

imposing symmetry projection can increase the effective sys-

tem gap � in this symmetry sector, relieving the exploding

A = 1/�2 prefactor and providing a significant improvement

in the algorithm efficiency, which can be quantified in several

orders of magnitude. This development will open possibilities

for using VQE to simulate complex many-body systems with

near-term quantum computers, which could otherwise be in-

tractable due to a closing gap.
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FIG. 4. Geometries of lattices considered in this paper. Solid

lines represent j1 bonds, while j2 bonds are represented by dashed

lines: (a) square lattice, (b) triangular lattice, (c) hexagonal lattice.

In the cases of L × L equilateral 4 × 4 triangle and 3 × 3 kagome

lattices considered in this paper, L is the number of one-site (triangle)

and three-site (kagome) unit cells in each lattice dimension. In the

case of the L × 4 square lattice, L is the number of unit cells in the

x-direction.
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APPENDIX

1. Two-dimensional geometries

In Fig. 4, we show the two-dimensional lattice geometries

considered in this paper: square, triangle, and hexagonal. The

j1 bonds are marked as solid lines, while the j2 bonds are

shown as dashed lines. Each lattice shows a near-vanishing

gap to the first excited state in the S = 0 sector in some

region of j2/ j1. For instance, in the case of a square lattice,

the vicinity of the j2/ j1 ≈ 0.55 fluctuations melt magnetic

orders and result in a frustrated phase, possibly gapless QSL

[68]. On the triangular lattice, gap shrinks in the vicinity of

j2/ j1 = 1.0, where the model is most frustrated [82] and in

the vicinity of j2/ j1 = 0.2 on the hexagonal lattice [83].

2. Symmetric circuit routines

Symmetrized wave function: In the Heisenberg Hamilto-

nian, spin-spin interaction can be replaced with the SWAP op-
erator P̂i j = 1

2
(Ŝi · Ŝ j + 1̂), exchanging spin states on the site

i and j. Notably, the SWAP operator commutes with

the total spin operator [P̂i j, Ŝ2] = 0, allowing for working

in the wave function sector with fixed total spin [23]. As a

result, the symmetry-enhanced ansatz for the system of N
spins is constructed by (1) first preparing the system in the

simple fully dimerized state

|ψD〉 =
⊗

0�i<N/2

1
√

2
(| ↑2i↓2i+1〉 − | ↓2i↑2i+1〉), (A1)

being the direct product of N/2 dimer pairs,9 and (2) action

of the string of parametrized eSWAP operators preserving the

9The exact dimerization pattern is chosen to maximize overlap with

the ground state.

FIG. 5. Decomposition of the Hamiltonian terms into eight lay-

ers of full dimerization in the case of the 5 × 4 square lattice with

PBCs (vertical) and OBCs (horizontal).

total spin S = 0:10

|ψ〉(θ) =

(

∏

α

eiθα P̂iα jα

)

|ψD〉. (A2)

To define iα and jα , we employ checkerboard decomposi-

tion of the Hamiltonian Eq. (5); namely, in the case of a square

lattice, we split the Hamiltonian terms into eight layers of full

dimerizations, when all eSWAP operators within one layer

can be applied simultaneously. Each of the eSWAP operators

in a layer is parametrized with a distinct angle θ , making all

rotation angles independent. First, we apply the four layers of

the horizontal and vertical bonds (in the order red-blue-green-

yellow) shown in Fig. 5 (left), and then the four layers of the

diagonal bonds Fig. 5 (right).

In the case of the triangular lattice, to construct the (iα , jα)

pairs, we effectively add the missing j2 bonds to recover the

square lattice setup and employ the same decomposition. In

the case of the 3 × 3 hexagonal lattice, we first apply three

layers of the j1 bonds (each of the layers builds a full nearest-

neighbor dimerization of the hexagonal lattice). Then, we note

that the j2 bonds act on two triangular sublattices. Therefore,

we apply these j2 bonds as the nearest-neighbor bonds of the

two copies of the square lattice.

When all of the Hamiltonian terms are applied in the form

of eSWAP (for the square lattice this happens at D = 8), to

further grow D, we start the procedure over.

In this paper, we consider OBC-PBC and PBC-PBC. For

instance, in the case of the 4 × 5 square lattice, the partition

of the Hamiltonian terms into eight layers is shown in Fig. 5.

The spatial symmetry projector operator is defined as

P̂ =
1

|G|
∑

g∈G

χgĝ, (A3)

where G is the spatial symmetry group, consisting of the

elementary unitary permutations ĝ and χg are the charac-

ters, depending on the desired projection quantum num-

ber. The projected wave function |ψP(θ)〉 = P̂√
N (θ)

|ψ (θ)〉 is

normalized with N (θ) = 〈ψ (θ)|P̂|ψ (θ)〉. The energy gradient

10To construct wave function in another spin sector, one needs to

prepare one (or more) electron pairs in spin-triplet state | ↑↑〉.
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FIG. 6. Circuit for measurement of 〈ψ |ĥ j ĝk |∂iψ〉. The Hadamard

scheme applied to the ancilla qubit allows us to obtain real and

(if necessary for connection and metric tensor) imaginary parts of

〈ψ |ĥ j ĝk |∂iψ〉.

reads

∂i〈E (θ)〉 = 2 Re

[

〈ψ (θ)|Ĥ P̂|∂iψ (θ)〉
N (θ)

− Ai(θ)〈E (θ)〉

]

,

(A4)

where Ai(θ) = 1
N (θ)

〈ψ (θ)|P̂|∂iψ (θ)〉 is the connection.

Finally, the metric tensor for natural gradient descent is

defined as

G(θ)i j =
〈∂iψ (θ)|P̂|∂ jψ (θ)〉

N (θ)
− A

∗
i (θ)A j (θ), (A5)

and is used to improve energy gradient θk+1 = θk −
η

∑

j
(Re G(θ))−1

i j ∂ j〈E (θ)〉 in the spirit of imaginary time evo-

lution within SR [33]. The metric tensor obtained within

sampling is regularized, Greg =
√

GG + β1̂, as suggested in

Ref. [84].

Sample quantum circuit: In the course of optimization,

it is required to measure expectation values of the kind

〈ψ (θ)|ĥ j ĝk|∂iψ (θ)〉, with ĥ j being the jth Hamiltonian term

(unitary SWAP operator) and ĝk being the kth unitary per-

mutation. Note that any ĝk permutation can be written as a

product of note, more than N − 1 pair SWAP operators. The

quantum circuit used to measure such quantity is shown in

Fig. 6. The real and imaginary parts of 〈ψ (θ)|ĥ j ĝk|∂iψ (θ)〉
are measured using the Hadamard test protocol.

3. Absence of barren plateaus

We investigate the possible presence or absence of barren

plateaus in the case of our ansatz applied to Heisenberg mod-

els on two-dimensional frustrated spin-1/2 magnets. To this

end, in Fig. 7 we plot the gradient magnitude per parameter

and qubit ||∇E ||/( j1NpNq) (i) within the 4 × 4 square lattice

setup at j2/ j1 = 0.4 as a function of Np and (ii) within the

L × 4 setup on a square lattice at j2/ j1 = 0.4 as a function

of L. To obtain the gradient magnitude, we individually draw

each angle from the uniform distribution θk ∼ U (−0.0, 0.1),

while the starting state is fully dimerized as suggested in

Sec. III. We then average over a hundred of such random

starting points.

We observe that in the first setup, the average gradient per

parameter increases and saturates as a function of the number

of circuit parameters Np. This is because a deep circuit allows

one to rapidly change the outcoming quantum state by only

small variations of the circuit parameters. In the meantime,

in the second setup, the gradients decay sub-exponentially

FIG. 7. The gradient magnitude per parameter and qubit

||∇E ||/( j1NpNq ) within the 4 × 4 setup on the square lattice with

j2/ j1 = 0.4 as a function Np. Inset: L × 4 setup on the square lattice

at j2/ j1 = 0.4 as a function of L.

with the number of qubits Nq. Such behavior was also reported

in the case of the transverse field Ising model [61]. Also, our

observation is in line with the circuit architectures applied

to frustrated two-dimensional spin-1/2 Heisenberg magnets

[31,32].

4. Algorithmic phase transition details

In this Appendix section, we provide additional details

concerning the observed algorithmic phase transition. In

Fig. 8, we plot fidelity as a function of Ns in two additional

frustrated lattices: kagome and triangular. We observe similar

clear separations of the regions with zero and nonzero fidelity.

In Fig. 9, we plot energy variance 〈(E − 〈E〉θ(t ))
2〉θ(t ) obtained

on the 4 × 4 square lattice within sampling from the classical

parametrical partition function Zθ. The maxima of the energy

variance coincide precisely with the separation between the

zero overlap and trainable phases observed in Fig. 1(c).

To get further insight into the algorithmic transition, in

Fig. 10 we show histograms of fidelity of the first hundred

S = 0 low-lying excited states above and below the transition

(Ns = 6 and Ns = 12) at j2/ j1 = 0.4 on the 4 × 4 square

FIG. 8. Fidelity as a function of Ns for various j2/ j1 measured on

the (a) 2 × 3 kagome lattice (18 sites) with PBC and on the (b) 4 × 4

triangular lattice with PBC.
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FIG. 9. Energy variance 〈(E − 〈E〉θ(t ))
2〉θ(t ) as a function of β on

the 4 × 4 square lattice within sampling from the classical paramet-

rical partition function Zθ. The positions of maxima correspond to

transition between the zero-overlap and trainable regimes.

lattice. We see that below the transition, the histogram is

very narrow with the variance σ = 10−3 and the small aver-

age overlap of μ = 10−3 ≈ 1/|H|, with |H| being the S = 0

Hilbert space size of the problem. This indicates that all states

that can possibly have overlap with our ansatz wave function

|ψ (θ)〉 are nearly of the same fidelity with a small variation.

On the contrary, after the algorithmic transition, the histogram

widens to σ = 0.036, showing selectivity and that only a few

low-energy states dominate the fidelity. This dramatic change

of the histogram between Ns = 6 and Ns = 12 highlights a

significant change in the stochastic VQE optimization perfor-

mance upon passing the algorithmic phase transition.

Additionally, in Fig. 11, we show fidelity as a function of

the iteration number at j2/ j1 = 0.4 on the 4 × 4 square lattice

with PBCs and D = 8 for various Ns = 7, 10, and 14, when

the system is, respectively, before, at, and after the algorithmic

FIG. 10. Histogram of overlaps with excited states Ok =
|〈ψk |ψ (θ)〉|2 for k corresponding to the lowest 100 states in the S = 0

sector measured at j2/ j1 = 0.4 on 4 × 4 square lattice with PBC at

Ns = 6 and Ns = 12.

transition. We see that below the transition, all optimization

attempts lead to zero fidelity, while at the transition, some

attempts are successful, but their fidelities widely oscillate

over time. Finally, after the transition, all attempts manage to

achieve stable fidelity.

5. Number of iterations to saturation

In Fig. 12, we investigate the number of SGD optimization

steps required to reach 90% of the final fidelity F∞ within the

L × 4 setup on the square lattice at j2/ j1 = 0.4 as a function

of inverse energy fluctuation characteristic. We observe no

pronounced dependence of NSGD(Ns) as a function of L at a

given ǫ.

This contributes to our argument that the total re-

quired amount of computational resources Ntotal(Ns) = Ns ×
NSGD(Ns) required to train a VQE wave function above the

algorithmic phase transition, scales only polynomially with

the system volume and thus the observed “noisy” phase with

near-zero overlap can be avoided on larger clusters with an

affordable circuit shots budget.

6. Large-Ns fit parameters

In the main text, we fit the overlap with the empirical

ansatz I (Ns) = C/Nα
s + I0. The α power was introduced to

verify the proposed 1/Ns scaling law. In Fig. 13, we show

α and I0 (inset) as functions of D = Np/8 for j2/ j1 = 0.4.

The inability to express the ground state I0, expectedly, de-

cays exponentially with D. In the meantime, α remains close

to 1 within error bars. Additionally, we explore the depen-

dence of the A fit parameter on the depth D. In Fig. 14,

we consider the case of the 4 × 4 square lattice with PBC,

j2/ j1 = 0.0, 0.2, 0.4 and point-group and translational sym-

metries applied. We plot A(D)D2 as a function of D and

observe that A(D)D2 depends on D only slightly, in contrast to

I0(D) which decays exponentially. The product A(D)D2 has

the meaning of the total number of measurements required

to estimate the metric tensor, since Ns in the expression for

I has the meaning of required measurements per gradient

component.

7. Phenomenology of the faster-than-1/� scaling

In this Appendix section, we present phenomenological

and numerical considerations behind the faster-than-1/� scal-

ing of the infidelity, which is well-described by the 1/�2

power in case of the two-dimensional frustrated magnets.

As the first step, let us consider a two-level system, and

a variational ansatz depending on a single parameter θ such

that θ = 0 corresponds to the ground state. The variational

wave function is decomposed into the ground state |ψ0〉 (with

the energy E0 = 0) and the first excited state |ψ1〉 (with the

energy E1 = �) as

N |ψ (θ )〉 = |ψ0〉 + θA|ψ1〉, (A6)

where A = 〈ψ1|∂θψ (θ = 0)〉 and N is the normalization. Ap-

plied to this wave function, the SR optimization performs
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FIG. 11. Fidelity as a function of the iteration number at j2/ j1 = 0.4 on the 4 × 4 square lattice with periodic boundary conditions and

D = 8 for various Ns = 7, 10, and 14, when the system is, respectively, before, at, and after the algorithmic transition. Different curves

correspond to several optimization attempts from random starting points.

imaginary-time evolution in the variational subspace

N θ̇ |∂θψ (θ )〉 = −�θA|ψ1〉, (A7)

which finally gives θ̇ = −�θ.

In the noisy optimization considered in this paper, the

Langevin equation therefore reads

θn − θn−1 = −�θn−1 + ξ n, (A8)

where ξ n ∼ N (0, σ ) is the random noise and σ 2 = Var θ̇/Ns.

The solution of this equation yields 〈θ2〉 = σ 2/� =
(Var θ̇ )/(Ns�). Since the infidelity in Eq. (A6) can be ex-

pressed as θ2|〈ψ1|∂θψ (θ = 0)〉|2, for the two-level model we

obtain

I =
|〈ψ1|∂θψ (θ = 0)〉|2(Var θ̇ )

Ns�
. (A9)

Such analysis in the case of a general many-level system is

cumbersome. However, to account for more excited states, we

FIG. 12. The number of SGD steps required to reach 90% of

the final fidelity F∞ within the L × 4 setup on the square lattice at

j2/ j1 = 0.4 as a function of inverse energy fluctuation (ǫ/ j1)−1.

assume that the ground state is given by θ = 0, and each of

the variational parameters θi �= 0 is responsible for obtaining

overlap with only a single excited state |ψi〉. In such case, the

infidelity generalizes the above expression as

I =
1

Ns

∑

i

|〈ψi|∂θiψ (θ = 0)〉|2(Var θ̇i )

�i
, (A10)

where �i is the energy of the ith excited state. The prod-

ucts |〈ψi|∂θiψ (θ = 0)〉|2 are ansatz specific, and remain near

constant as � → 0. The main contribution to the increasing

infidelity comes from the growing angles’ amplitudes 〈θ2
i 〉,

which are controlled by the inverse energies 1/�i.

As such, as the system enters the frustrated phase, the

overall infidelity can grow both due to the shrinking system

gap � and the accumulation of excited states in the region of

small energies. These two processes could lead to the faster-

than-1/� growth of the infidelity, as reported in this paper.

To substantiate this consideration, we consider the trans-

lation and symmetry-projected ansatz applied to the 4 × 4

square lattice with PBC. First, in Fig. 15 we plot the normal-

ized spectral function ρ(ω) =
∑

k
δ(ω − �Ek )|〈ψ (θ)|ψk〉|2,

FIG. 13. Depth dependence of the power α at j2/ j1 = 0.4 on a

4 × 4 square lattice. Inset: I0 as the function of depth.
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FIG. 14. Depth dependence of A(D)D2 at j2/ j1 = 0.0, 0.2, 0.4

on a 4 × 4 square lattice with symmetries applied.

where |ψk〉 is the kth excited state of the system, �Ek is

its energy distance to the ground state, |ψ (θ)〉 is the varia-

tional state and the overlap is averaged over numerous SR

optimization steps after convergence. This object resolves the

total infidelity over energies of the excited states. The delta

functions are smeared using the Gaussian approximation with

the width Ŵ = j1. For j2/ j1 = 0.45, on the y = 1 horizontal

axis, we mark the excited-state energies; for j2/ j1 = 0.5, we

do similarly at y = 0.

We see that the low-energy excited states have a much

greater overlap with the variational wave function, in accord

with our phenomenological theory.

We we mentioned above, at � → 0 the raise in the infi-

delity stems from excited states’ gaps and accumulation of

excited states. In the lower inset of Fig. 15, we plot Ñ (0),

which is the number of excited states below 10 j1. We indeed

FIG. 15. The normalized spectral function ρ(ω) for j2/ j1 =
0.45, 0.5 on the 4 × 4 square lattice. The delta-functions are smeared

using the Gaussian approximation with the width Ŵ = j1. For

j2/ j1 = 0.45, on the y = 1 horizontal axis we mark the excited states

energies, for j2/ j1 = 0.5 we do similarly at y = 0. The lower inset

shows Ñ (0), which is the number of excited states below 10 j1, while

the upper inset shows ρ̃(0) =
∫ 10 j1

0
ρ(ω)dω/Ñ (0), which represents

average overlap between the variational wave function and the low-

lying excited states.

observe rapid growth of the number of low-lying excited

states as � → 0. Then, in the upper inset of Fig. 15, we

plot ρ̃(0) =
∫ 10 j1

0
ρ(ω)dω/Ñ (0), which represents the aver-

age overlap between the variational wave function and the

low-lying excited states. Similarly, we observe that individ-

ual overlaps also grow at � → 0, which reflects an overall

decrease of the excited states’ energies.

This interplay of the two factors (shrinking system gap and

the growing low-energy excited states density) in the two-

dimensional frustrated magnets might lead to the observed

approximate 1/�2 growth of resource demand.
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