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IMT School for Advanced Studies Lucca
2023





Dedicado a la memoria de D. Miguel Ángel Valverde Vera y
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for always being available and a supportive colleague.

xxvii



The work presented in Chapter 3 is based on the article co-
authored with Prof. José Reinoso, Dr. Niraj Kumar Jha, Prof.
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Ángel y mi abuela Margarita. Descansad en paz, vuestro hijo
y nieto no os olvida.

xxx



Publications
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Abstract

Nowadays, cutting-edge industry processes cannot thrive with-
out the integration of multidisciplinary perspectives in all its
associated processes. Even the field of Mechanics is not ex-
empt from such approaches, since most recent studies now
incorporate considerations spanning multiple size scales (multi-
scale) and encompassing various branches such as Chemistry,
Biology, Electricity, and Magnetism, among others (multi-physics).

This is what constitutes the very essence of a coupled prob-
lem in Mechanics. The principal objective of this thesis is to
specifically explore their impact on structural integrity and
reliability in the field of Fracture Mechanics. Consequently,
it is necessary to establish a robust mathematical framework
to assess the mechanical behavior and failure strength, con-
sidering the intricate influence of the multi-scale and multi-
physics fields associated with each problem. To accomplish
this mission, we have primarily utilized the phase-field ap-
proach for fracture, alongside the continuum damage me-
chanics technique.

Our efforts have been devoted to shed light on representative
coupled problems in Fracture Mechanics. To exemplify the
breadth of this field, our research comprises a diverse spec-
trum of topics. First, the research deals on the problem of hy-
drogen embrittlement in polycrystalline materials. Moreover,
the residual stress influence on the integrity of soft cylindrical
tubes has been investigated. Furthermore, a computational
framework for incompressible materials has been proposed.
The final topic concerns the application of this last formula-
tion in the simulation of swelling of thermoresponsive hydro-
gels.
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Resumen

Hoy en dı́a, los procesos industriales más innovadores no
pueden prosperar sin la consideración de un punto de vista
multidisciplinar aplicado a todos sus procesos. Incluso el
campo de la Mecánica no se encuentra exento de ello, ya que
los estudios más recientes en esta rama incorporan evalua-
ciones a múltiples escalas de tamaño (ejemplos multi-escala)
y engloban diversas ramas como la Quı́mica, la Biologı́a, la
Electricidad y el Magnetismo, entre otras (multi-fı́sica).

Esto es lo que constituye la esencia misma de un problema
acoplado en la Mecánica. El objetivo principal que persigue
esta tesis es explorar especı́ficamente su impacto en la integri-
dad estructural en el campo de la Mecánica de la Fractura. En
consecuencia, es necesario establecer un marco matemático
sólido para evaluar el comportamiento mecánico y la resisten-
cia a la falla, considerando la influencia de los campos multi-
escala y multi-fı́sica asociados. Para ello, hemos utilizado
principalmente el método phase-field enfocado a fractura, junto
con la técnica de continuum damage mechanics.

Esta tesis se ha dedicado a analizar diversos problemas acopla-
dos representativos con un enfoque en la Mecánica de la Frac-
tura. Para ejemplificar la amplitud de este tema, esta investi-
gación abarca un espectro diverso de temas. En primer lugar,
se trata el problema de la fragilización por hidrógeno en ma-
teriales policristalinos. A continuación, se ha investigado la
influencia que tienen las tensiones residuales en la integridad
de tubos cilı́ndricos blandos. Además, se ha propuesto un
marco computacional para estudiar materiales incompresi-
bles. En el último capı́tulo se aplicará esta última formulación
en la simulación de hinchazón en hidrogeles termosensibles.
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Chapter 1

Introduction

1.1 A brief introduction to coupled problems in
Computational Mechanics

Material is the definition given to what possesses a form, a body, a vol-
ume and occupies a position in the space. The area of engineering ded-
icated to characterize them and study possible manners of innovation
is called Materials Engineering. Considering that the formation of such
substance is owed to an assembly of particles called molecules, there ex-
ists a multitude of criteria for categorizing them from different points
of view, being one of them based on scales: either through microscopic
or macroscopic approaches. The choice between one or another scope
depends on the specific engineering application’s interests and require-
ments. The former is studied by means of magnifying instruments such
a microscope, is efficient on the microscale level and is performed spe-
cially to explore a variety of physical phenomena reaching the atomic
level. Such perspective leans more towards the domain of Materials Sci-
ence.

Therefore, to enhance the engineering perspective, we can consider a
macroscopic system in which the very large number of molecules is re-
placed as a continuous medium characterized by certain field quantities
which are associated with the internal structure, giving birth to the disci-
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pline of Continuum Mechanics. This approach is employed to shed light
on various physical phenomena successfully without detailed informa-
tion on the complexity of the microstructure. The predictions that Con-
tinuum Mechanics provides for engineering systems are effective for the
design and the estimation of the service life for a wide range of materials
and structures. Nonetheless, it is crucial not to disregard the fact that the
macroscopic mechanical behavior depends on the microstructure, i.e.,
the physics and chemistry that they are built-on. In fact, materials are
not isolated systems that do not interact with their environment, because
that will be denying the existence of their microstructure. As a conse-
quence of this, nowadays, in numerical analysis, mathematical models
and computational techniques employing Continuum Mechanics are be-
ing exploited for solving coupled problems of multidisciplinary charac-
ter in science and engineering, combining both approaches in terms of
scale.

In order to express what are the ranges of such problems in a nu-
merical context, the words from profs. Zienkiewicz and Chan in [1] can
be recalled, stating the following: “Coupled problems are those appli-
cable to multiple domains and dependent variables which usually (but
not always) describe different physical phenomena”. Coupled problems
can be categorized following different criteria: whether their various do-
mains do completely, partially or not overlap at all, meaning that the cou-
pling happens via the partial differential equations used to describe the
different phenomena or by the interactions of the boundary conditions
imposed. Another standard to consider in their classification concerns if
all the involved phenomena are from identical or different physics. Even
they can be distinguished between for transient or steady-state solution
in the event that the coupling happens only in time-dependent forms or
once the steady state conditions are reached.

At this stage, it is instructive to include some typical examples of cou-
pled problems for illustrative purposes. First of all, for different physics,
we consider the classical thermo-mechanical coupling approach; under
the influence of temperature, thermal strains and stresses are introduced
into the mechanical model, subsequently changing the material response
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of the material. This can be observed for example, in plasticity, where
the thermal field affects the plastic flow of the material, due to the de-
pendence of the plastic entropy in this parameter, according to Simo and
Miehe [2]. On the other hand, following Li et al. [3], plastic deformation
by slip generates heat, so the points of the materials might act as a heat
source that should be considered for the thermal problem. Applications
within this context concern industrial processes such as the forming and
machining of steels and other alloys considering their microstructure.
Additional examples where the thermal field affects the mechanical re-
sponse can be observed in the behavior and integrity of polymers such
as short fiber polymer composites [4, 5], elastomers [6] and hydrogels [7,
8], to cite a few of them.

Concerning chemo-mechanical approaches, it is worth mentioning
corrosion phenomena, for instance, due to its practical impact. Referring
to one of the most common yet difficult to reproduce, multiple failure
mechanisms of several metals and alloys are associated with the expo-
sition to corrosive environments. Accordingly, the surrounding atmo-
sphere causes an electrochemical reaction with the material, leading to
the creation of small pits within the metal that affects the structural in-
tegrity of the material, as it compromises its ductility and toughness
and induces tensile stresses that lead to crack propagation. Examples
of chemo-mechanical approaches involving corrosion are pitting [9, 10],
stress-corrosion cracking [11, 12] and hydrogen embrittlement [13, 14].
Alternatively, chemo-mechanical approaches can involve another differ-
ent physics such as electrical fields, for example Lithium batteries mod-
elling [15, 16], or biological magnitudes, such as the bio-chemo-mechanical
analysis of animal cells [17]. In addition to this, we can have coupled
problems involving two different Mechanics fields modelled by differ-
ent techniques: a solid illustration of that can be located in the modelling
of the mechanics of arteries, as the growth and remodeling in the con-
text of the arterial wall tissue can cause the apparition of radial residual
stresses that can have fatal consequences in the form of aneurysms [18,
19, 20].

As mentioned above, coupled problems also exist through the inter-
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action of two or more phases by means of an interface. That includes, for
example, fluid-structure dynamic approaches, which have been vastly
covered in the literature in the form of deformations and stresses [21,
22, 23] or changes of geometry [24] induced by pressure or friction fluid
forces, to cite a few. Therefore, it could be envisaged that the term of
”coupled problems” encompasses a wide range of different topics, where
all the external or internal multiphysics affecting the material lead to
changes in its structure that are inherent to their microscopic nature and
that are reflected by the Continuum Mechanics theory in order to provide
the problem with an engineering viewpoint. One vital property that is
affected by these real life problems with a multidisciplinary vision is the
structural integrity of the material itself, leading us to the next Section of
this Chapter.

1.2 Fracture Mechanics in coupled problems

We have introduced thermal, electrical, chemical and biological concepts,
among others, while speaking about coupled problems in the previous
Section. For the sake of vividly illustrating the immensity and the com-
plexity of the issue, on Fig. 1, we can graphically envisage the wide
spectrum of possibilities to address (some of them have not been covered
yet) in coupled problems for Computational Mechanics, benefited with
the increase of multidisciplinary studies in both academic and industrial
environments.

Common to each one of these problems, from a theoretical viewpoint
reflected in Fig. 1, is the inherent existence of partial differential equa-
tions (PDEs) for their modelling. Such equations play a pivotal role in
the modern scientific understanding of their behavior. Through the com-
bination of this mathematical framework with the employment of a nu-
merical method such as the Boundary Element Method (BEM) or fast
Fourier transforms (FFT), among others, we can numerically solve the
PDEs to delve deeper into the intricate events of these phenomena while
gaining insight into their performance.
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Figure 1: Graphical diagram trying to capture the spectrum of possibilities
for fracture and damage modelling in Computational Mechanics for cou-
pled problems, encompassing the disciplines of physics, chemistry, biology,
fluid dynamics, magneticism and thermal and electrical energy, among oth-
ers. Arising from the diagram, an outline is plotted unveiling the possible
numerical techniques to carry out such analysis. The covered topics and
techniques inside this thesis are depicted within the frames on this pic-
ture.
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Throughout the content of this thesis, it is employed the numerical
technique of the Finite Element Method (FEM) to solve the PDEs referred
to some of the coupled problems exhibited in Fig. 1, with a prevailing fo-
cus in the field of Continuum Mechanics, specifically in the branch of
Fracture Mechanics. This is the field of Mechanics concerned with the
degree of safety of a structure against a crack, which represents a discon-
tinuity present on the material, serving as the point where brittle fracture
nucleates. It can vary from an extremely small size to much larger weld
or fatigue cracks. Another matter of interest for the discipline of Fracture
Mechanics are the conditions necessary for crack initiation, propagation
and arrest. Their comprehension is facilitated through the assessment
of the stress level, which measures the intensity of tensile stresses, nec-
essary for the fracture of the material. From such study, we can obtain
main fracture properties of the material such as the toughness, which is
the ability to carry loads or deform plastically in the presence of a notch,
a crucial feature in the design of materials.

The origin of the engineering field of Fracture Mechanics can be traced
back to the pioneering works made by Griffith [25], who seminally inves-
tigated the phenomenon of brittle fracture on glasses. Over a hundred
years after the publication of this theory, its relevance is still intact, as
it provides an essential tool on industry to shed light on the analysis of
flaws of manufactured pieces to discover which are safe and which are
liable to propagate and subsequently, collapse. On the research level,
the field of Fracture Mechanics has grown at an accelerated rate caused
by the advent of techniques of damage and fracture modelling in Me-
chanics, and proof of that is the overwhelming number of predictive
approaches and formulations derived from this theory that have been
applied to countless problems, including coupled problems.

1.2.1 Numerical methods stemmed from Fracture Mechan-
ics: synthesis of the current state of the art

Within failure analysis of cracking events, several methods have been
proposed from Fracture Mechanics to model crack propagation in solids
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employing the FEM. Following the outline plotted in Fig. 1, depending
on how cracks are modelled, it can be distinguished two main categories
of methods proposed within the related literature: discrete (cohesive
damage) and diffuse (continuum damage) methods. The first category of
techniques consist of methods which model the crack as a sharp disconti-
nuity that divides the solid into two crack surfaces and consider that frac-
ture propagation happens via separation of both surfaces. This kind of
methods encompasses techniques such as the weakest-link methods [26,
27], path-independent J-integral formulations [28, 29, 30], dislocation-
based models [31, 32], and, specially, cohesive zone methods [33, 34, 35,
36], that have been extensively applied in the literature for fracture for
coupled problems. Nevertheless, discrete methods display limitations
when dealing with complex conditions of fracture: first of all, they re-
quire the mesh generated for FEM analysis to conform with the crack
geometry (unlike other techniques such as the BEM), which is a difficult
task considering that crack propagation may happen in arbitrary direc-
tions. In addition to this, several complex conditions of practical appli-
cations may arise during this process, such as mixed mode, interacting
cracks, branching, among others, which require special yet computation-
ally costly modifications to perform in the model [37].

On the other category of techniques, we have smeared damage ap-
proaches that, contrary to the discrete methods, do not pretend to cap-
ture pre-defined cracks, but to incorporate internal damage parameters
to characterize the stiffness degradation of materials. Within this ap-
proach, fracture is conceived as the result of damage accumulation due to
the development of microcracks. As a consequence of this, dependence
on the mesh size and alignment sensitivity may happen once failure is
being approached. This may lead to a softening in the strain that can
be fixed by introducing an internal length scale on the system [38, 39].
Applied to coupled problems, techniques from this branch can be classi-
fied into Continuum Damage approaches (CDM) [40, 41], peridynamical
approaches [42, 43, 44] and phase field (PF) methods. Following the out-
line given in Fig. 1, as PF techniques have proven to be one of the most
suitable tools to model fracture in coupled problems, we have dedicated
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most of the work of this thesis to study them and subsequently, extend
the range of application of this technique in several multiphysics prob-
lems. On a smaller scale, some explorations have been performed with
the CDM method within this thesis, being them developed in Chapter 4
of the current manuscript.

1.2.2 The Phase Field approach for fracture

Basic definitions

The PF method is based on Griffith’s idea of competition between the
elastic strain energy density Ψ and fracture energy GC . According to Grif-
fith’s theory for brittle fracture [25], during crack propagation, fracture
energy increases because of the onset of crack surfaces, causing the elas-
tic energy within the solid to reduce. Therefore, this theoretical frame-
work establishes that a crack will propagate when this elastic energy is
reduced more or equally than the increase of the crack surface energy.
This parameter is referred to as G, being GC the critical value that leads
to crack propagation, also called fracture toughness, which is a property
of the material independent from the geometry. In terms of equations,
this competition can be expressed in the form of the global potential of
the problem Π:

Π(ε) =

∫
Ω/Γ

Ψ dV +

∫
Γ

GC dA︸ ︷︷ ︸
Πint

−Πext (1.1)

being ε the symmetric strain tensor; Ω, the solid domain; and Γ, a discrete
internal discontinuity within the body. The contribution to the internal
functional rendering of the energy dissipation due to fracture events is
recalled through the PF approach of fracture postulated by [45]. In or-
der to start with its approximation for fracture, consider Fig. 2, in a
one-dimensional setting the topology of a sharp and a diffusive crack
topology.

For the sharp crack (Fig. 2(a)), such behavior can be described by the
auxiliar field variable d(x) ∈ [0, 1] with
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Figure 2: Sharp (a) and diffusive (b) crack morphologies.

d(x) =

{
1 if x = 0

0 elsewhere
(1.2)

which is referred to as the crack PF parameter, with d = 0 and d = 1

denoting the pristine and broken states of the solid, respectively. The
smooth PF, in Fig. 2(b), representing a diffusive crack pathology can be
represented by the following function:

d(x) = e
|−x|

ℓ (1.3)

where the length scale parameter ℓ is what determines the width of the
smearing function and at the limit of ℓ → 0 approximates the discrete
crack topology.

The variational approach from Francfort and Marigo [45] substitutes
the idea of the sharp crack with a gradient region ranging from intact to
damaged material. Thus finding a global minimizer in the potential of
the problem, which following Griffith’s theory, the PF method relies on
the aforementioned competition postulated in Eq. (1.1). By regularizing
the crack functional in the solid, for the term of the surface energy, we
can perform: ∫

Γ

GC dA ≈
∫
Ω

GCγl(d,∇d) dV (1.4)

Here, γl(d,∇d) is the crack surface density function, which has the fol-
lowing expression, according to a Poisson-type equation:
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∫
Ω

γl(d,∇d) dV =

∫
Ω

1

cw

[
1

ℓ
w(d) + ℓ|∇d|2

]
dV (1.5)

where w(d) is called the geometric crack function, and can be written as:

w(d) = υd+ (1− υ)d2 (1.6)

where υ is a coefficient. w(d) determines the crack distribution according
to the PF parameter; and cw is the scaling parameter and is computed as:

cw = 4

∫ 1

0

w−1/2(d̂) dd̂ (1.7)

Recalling the previous derivations, the crack can be regularised by
this transition region, and therefore, the potential strain energy function
expressed in Eq. (1.1) can be rewritten as:

Π(ε, d) =

∫
Ω

g(d)Ψ(ε) dV +

∫
Ω

GCγl(d,∇d) dV −Πext (1.8)

where g(d) is the degradation function and its role is to reduce the elastic
strength of the material upon crack propagation.

As it is observed, there are several parameters that differ in the state
of art for the variational PF formulation. They can be split in the crite-
rion used to track the damaged material stiffness, in the conditions used
to enforce crack irreversibility and in the modelling of the sharp crack.
For all the works carried out within this thesis, in general (with some
modifications, as we will see in the forthcoming Chapters), the so called
AT-2 approach proposed by Bourdin et al. [46] is employed. This the-
oretical framework postulate that the degradation function will have a
quadratic dependence on d that reads

g(d) = (1− d)2 +K (1.9)

where K is a small parameter used to avoid ill-conditioning in the stiff-
ness matrix upon broken stage. In addition to this, this variational for-
mulation proposes the following value for γl
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∫
Ω

γl(d,∇d) dV =

∫
Ω

1

2ℓ
d2 +

ℓ

2
|∇d|2 dV (1.10)

meaning that the AT-2 approach considers c0 = 2 and w(d) = d2 (ob-
tained by considering ξ = 0). As stated by Bourdin et al. [46] and Miehe
et al. [47], by developing Eq. (1.8) and considering the Gauss divergence
theorem, the local governing functions of the problem can be obtained.
As can be observed in Eqs. (1.11)-(1.12), they are two partial differen-
tial equations: one for the stress equilibrium criterion, accounting for the
damage in the stiffness; and the energy dissipation equation, using to
compute the crack evolution:

∇ ·
{
[(1− d)2 +K]σ0

}
= 0 in Ω (1.11)

GC

(
1

ℓ
d− ℓ∇2d

)
− 2(1− d)Ψ = 0 in Ω (1.12)

where σ0 is the intact stress tensor. One of the most appealing aspects of
the PF formulation is its simplicity to model fracture, as it only requires
two Euler-type PDEs to model brittle fracture, serving as compelling ev-
idence for its exploitation to model a wide variety of different problems
concerning failure in Computational Mechanics.

Phase field studies: extensions, current boundaries and applications
for coupled problems

Upon the publication of the seminal variational framework by Franc-
fort and Marigo [45], important efforts have been dedicated towards this
technique to improve algorithm robustness [47, 48, 49], to implement
new methods for discretization [50, 51] and to propose new aspects for
implementation [46, 52, 53]. From these devoted efforts and the vari-
ous approximations, its original approach residing in Griffith’s thermo-
dynamics framework has been extended for ductile fracture [54, 55, 56],
dynamic fracture [57, 58], cohesive fracture [59], composite delamination
[60, 61, 62], among others.

In the light of all the previous advantages presented for PF modelling
and the extensions observed to model all kinds of failure within the solid,
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the expansion of its applicability to model fracture in coupled problems
is hardly unexpected. Such exploitation is due to, i) for multi-physics
problems involving electrical, thermal or chemical fields it normally only
requires to add the Euler-type PDE modelling its behavior, thus only
adding computational cost to the problem and ii) its straightforward im-
plementation to model problems involving different size-scales (meso-
scale problems, on the level of grain modelling), complex geometries
(that may lead to arbitrary cracking, such as corrosion pits) and, even,
with different phases. These two benefits have significantly eased the
implementation of the PF technique for the various multiphysics topics
that have been tackled within this thesis, which are the ones framed in
the graphic represented in Fig. 1.

With these advantages at hand, an introduction is provided in this
Section for the many fields where this approach for fracture has been ex-
ploited: concerning the classical thermo-mechanical approach, we have
the pioneering works from Miehe et al., where is presented a generalized
approach for thermo-elastic [63] and thermo-plastic [64] solids concern-
ing the crack driving force from the energetic definition coupled with
the heat conduction and convection with the crack surfaces. More ap-
plied frameworks concerning problems of this field can be found for ex-
ample in the works for anisotropic fracture of rock salt performed by
Na and Sun [65], in the simulation of chemo-thermo-mechanical frac-
ture in cement-based materials carried out by Nguyen et al. [66] and for
thermo-dynamic fracture implemented by Svolos et al. [67]. Recently,
the approach has been extended from solid formulation to solid shells in
the works performed by Kumar et al. to analyze thin-walled structures
[68] and functionally graded materials [69].

Moving on to diffusion-related problems, the literature of PF prob-
lems proposed in this literature is also relevant. Starting with fluid-
structure methods, we have the works of Miehe et al. on hydraulic frac-
ture of porous media [70, 71]. Similar to this is the problem for hydro-
gels, which will be covered in detail in this thesis. They are elastomeric
materials able to absorb an enormous quantity of water without alter-
ing its polymeric network, forming a swollen aggregate with the fluid

12



molecules called hydrogel. The modelling of its failure mechanisms em-
ploying the PF technique has been briefly studied [72, 73, 74].

Another important diffusion-related problem is hydrogen embrittle-
ment, a specific kind of corrosion involving the entrance of hydrogen
within the lattice of the solid, leading to a subsequent weaking of the
metallic bonds that causes a drop in the ductility and toughness of the
material. With all the sights pointing towards a hydrogen economy, it is
not surprising to see that the fracture induced by this phenomenon has
been properly covered within the literature in the form of macroscopic
approaches [75, 76, 77, 78]. However, as hydrogen embrittlement is a
problem for a microscopic viewpoint due to the size of the atom of hy-
drogen, it is necessary an approach for fracture combining both macro-
scopic and microscopic viewpoints to analyze its induced failure and that
is one of the topics will be digging within this thesis.

The thoughts that may come from this Section is that the PF method
is a robust and solid method to model all kinds of problems on the level
of Finite Element (FE) implementations. However, the main problem
that all continuum damage models held, PF approaches among them,
is that all the damage-associated variables are simply accumulated on
the Gauss integration points, different from the explicit representation of
fracture that one might get from discrete approaches such as the Cohe-
sive Zone Model. As a consequence of this, they are conceived to be less
accurate than discrete Fracture Mechanics methods to model failure of
pre-existent cracks.

However, one should not forget that fracture onset and subsequent
propagation in a material is strongly influenced by the presence of in-
homogeneities, such as grain boundaries, voids, inclusions, crack tortu-
osity... meaning that the toughness of the material can be increased or
reduced by these different phenomenon, thus meaning that the simplest
failure on the material level is not that elementary. Correspondigly, this
is where the PF approach for fracture comes handy, as it has proven its
utility in its robust performance to model fracture in different heteroge-
neous media [79, 80, 81, 82]. The modelling of heterogeneous materials
constitutes another motivation on why the PF technique is a fitting choice
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when dealing with coupled problems in fracture and why we have de-
cided to dedicate a thesis on its application to multiple multi-physics
applications.

1.3 Objectives

With the advent of new interdisciplinary research in the industrial field,
when designing a structure for commercial sectors such as the hydraulic
or ship-building industries, among others, the study dedicated to the
degree of safety cannot just be limited to the Mechanics field.

In light of this, the objective of this methodology relies on the de-
sign and testing of several materials taking into account the exposition
to several multi-physics fields encompassing thermal, chemical and bi-
ological concepts, among others. Within this context, the PF method, a
well-established technique for modeling fracture in the discipline of Con-
tinuum Mechanics, has been successfully exploited to monitor the crack
initiation and propagation in materials under different operational and
environmental conditions. This method has proven its applicability in
various coupled problems. Following this input, the primary goals of
the present thesis have been:

• The implementation and development of several innovative PF for-
mulations for modelling failure in coupled problems. This has been
performed by exploring complex multidisciplinary problems by in-
corporating the PDE that regulates their multiphysics behavior into
the PF variational formulation.

• Special focus is devoted to the insertion of the PF on coupled prob-
lems that have little connection between each one, as a manner
to quantify its potential. The rationale behind this decision stems
from the author’s recognition that the existing knowledge on this
subject remains somewhat shallow, given the immensity of the field
(and even after the completion of this thesis, the surface of the prob-
lem will have been merely scratched). Thus, the goal is to push the
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boundaries of the PF method in modeling different yet challenging
multiphysics issues, i.e., the ones framed in Fig. 1.

• The long-term objective of this research is to shed light into the
understanding of the tackled coupled problems. As the presented
topic is covered, by delving deeper into the peculiarities of the
physical and chemical constitutions inherent to these phenomena
will unveil additional insights for further research. Such plausi-
ble extensions will be displayed in the Section for Future develop-
ments tackled in Chapter 6.

The specific objectives of this thesis encompass relevant challenges
for the following scenarios:

• The modelling of hydrogen embrittlement phenomena consider-
ing the polycrystalline microstructure of metals following a micro-
embedded into macro-scale FE approach. Previous studies have
not accounted for the interactions between the grain boundaries
and the hydrogen in terms of structural integrity, which lead to a
competition between transgranular and intergranular fracture that
is thoroughly covered.

• Aiming to introduce PF theory into large strains formulation, the
simulation of pre-stressed cylindrical structures subject to axial pulling
loads is accomplished. The presence of such residual stresses is
owed to the manufacture and growth of such tubes and, among
other fields of investigation, they play an important role in arterial
failure, as they can trigger the formation and rupture of aneurysms.
Such events can give rise to life-threatening situations, serving as
compelling evidence for the utmost relevance and importance of
this study.

• This thesis seeks to include damage modeling within another non-
local diffuse fracture framework. In the light of this idea, employ-
ing the CDM approach, damage on hyperelastic materials vulnera-
ble to locking pathologies is addressed in this thesis by introducing

15



an innovative element technology that incorporates mixed interpo-
lation within the FEM.

• Finally, the culmination of this thesis involves the integration of the
theory for large strains with the mixed element technology in order
to model thermoresponsive hydrogels. These materials, to circum-
vent the locking pathologies inherent in single-field formulations,
need extra degrees of freedom (DOFs) along with special interpola-
tion to alleviate such inconveniences. This thesis is aimed to solve
them by leveraging the aforementioned element technology, with
the ultimate goal of extending its application to address fracture
within these materials.

Each one of these challenges for coupled problems are outlined in
Section 1.4.

1.4 Covered approaches

1.4.1 Hydrogen embrittlement

Hydrogen is at the core of the most promising solutions to the global
energy crisis. Hydrogen isotopes fuel the nuclear fusion reaction, the
most efficient potentially useable energy process. Moreover, hydrogen
is widely seen as the energy carrier of the future and the most versatile
means of energy storage. It can be produced via electrolysis from renew-
able sources, such as wind or solar power, and stored to be employed as
a fuel or as a raw material in the chemical industry. Hampering these
opportunities, hydrogen is known for causing catastrophic failures in
metallic structures. Through a phenomenon often termed hydrogen em-
brittlement, metals exposed to hydrogen containing environments expe-
rience a significant reduction in ductility, fracture toughness and fatigue
resistance [83, 84, 85]. In the presence of hydrogen, otherwise ductile
metals generally fail in a brittle manner, with cracking often nucleating
and propagating along grain boundaries [86, 27]. This ductile-to-brittle
shift of metallic alloys in hydrogeneous environments is arguably one of
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Figure 3: On the left, Cheesegrater Building, second tallest building in Lon-
don, UK. Source [89].

the biggest threats to the deployment of a hydrogen energy infrastruc-
ture, making it to the headlines of severe important journals around the
world. For example, in 2015, concerns were raised when the Cheeseg-
rater bulding (Fig. 3), the second tallest building in London, lost three
bolts due to fracture in less than three months [87]. Further studies re-
vealed that these failures were due to hydrogen embrittlement and while
there were no apparent satefy issues, dozens of long bolts of the struc-
ture were replaced after these series of incidents. A similar situation
happened in the San Francisco-Oakland Bay Bridge in 2008 (Fig. 4) [88],
where a number of rods installed earlier that year failed prematurely due
to the combination of hydrogen-induced fracture, while simultaneously
being immersed in water.

In order to analyze these phenomena, in Chapter 2 a combined PF
and cohesive zone formulation for hydrogen embrittlement that resolves

17



Figure 4: San Francisco–Oakland Bay Bridge in California, USA. Source
[90].

the polycrystalline microstructure of metals is presented. Unlike previ-
ous studies, the current deformation-diffusion-fracture modelling frame-
work accounts for hydrogen-microstructure interactions and explicitly
captures the interplay between bulk (transgranular) fracture and inter-
granular fracture, with the latter being facilitated by hydrogen through
mechanisms such as grain boundary decohesion. We demonstrate the
potential of the theoretical and computational formulation presented by
simulating inter- and trans-granular cracking in relevant case studies.
Firstly, verification calculations are conducted in order to analyze how
the framework predicts the expected qualitative trends. Secondly, the
model is used to simulate recent experiments on pure Ni and a Ni-Cu su-
peralloy that have attracted particular interest. We show that the model
is able to provide a good quantitative agreement with testing data and
yields a mechanistic rationale for the experimental observations. On Fig.
5, a graphic sketch of the problem presented in Chapter 2 for hydrogen
embrittlement and subsequent induced fracture of polycrystalline mate-
rials is depicted.
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Phase field

Cohesive zone model

Figure 5: Sketch summarising the modelling framework: the polycrys-
talline microstructure of metals exposed to hydrogen is explicitly simulated,
with the PF method being employed to describe the growth of ductile trans-
granular cracks while hydrogen-assisted grain boundary decohesion is cap-
tured by means of a cohesive zone model. Some of the key variables of the
model, that is covered in Chapter 3, are shown; namely, the PF order pa-
rameter d, the PF length scale ℓ (governing the size of the interface region),
the hydrogen coverage θH , and the cohesive tractions (σ, τ ) and separations
(δn, δt).

1.4.2 Residual stresses on cylindrical visco-hyperelastic
soft tissues

Cylindrical structures (tube mechanics) are elements of considerable in-
terest in applications concerning rubber-like materials and soft tissues
and can be categorized as either thin or thick-walled structures. Comply-
ing with this structural feature, the existence of residual stresses within
the body does affect its mechanical behavior. Residual stresses are as-
sociated with different processes used to manufacture materials [91] as
well as with living tissues growth [92], among other areas. Specifically,
within the biomechanics field, residual stresses can be revealed by cut-
ting (closed and unloaded) axial segments of arteries since they deform
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when they are slit [93]. It is well known that residual stresses play an im-
portant role in the biological process of homeostasis, which is the state
of steady internal, physical and chemical conditions maintained during
optimal functioning by living systems [94]. A matter of upmost impor-
tant to the scientific community (with a clear benefit for the society) is
the role that residual stresses, and other factors, play in the understand-
ing of arterial failure. From the mechanical standpoint, arterial failure
is affected by bulging- and bending-related instabilities of inflated and
extended tubes. These aspects have been lately investigated within the
context of aneurysms formation and rupture caused by high blood pres-
sure and weakening of the artery wall [95, 96, 97]. Critical clinical ap-
plications of such study are vital, for instance, to people who suffer the
Marfan syndrome, which is an inherited connective tissue disorder af-
fecting the heart tissues and can lead to aortic aneurysms, heart valve
diseases and, in the worst cases, to life-threatening aortic dissections (see
Fig. 6). Contrary to the metals modelled in Chapter 2 under small strains
theory, such tubes require to be modelled as visco-hyperelastic materials
with the more complex large strain theory, adding the visco-elastic con-
tribution from the microscopical description of the chains movement, be-
ing this microscopic-based approach embedded into the current contin-
uous framework of finite viscoelasticity coupled with the incorporation
of residual stresses.

Encompassing this investigation, in Chapter 3, the mechanical model-
ing of nonlinear visco-hyperelastic residually stressed materials obtained
from an invariant-based constitutive energy framework is coupled with
the PF approach to fracture. The main target regards the extension of
the PF method to simulate pre-stressed cylindrical structures subjected
to monotonic axial pulling load upon failure. This formulation is in-
corporated into a numerical procedure using the Finite Element Method
(FEM), in particular, it is implemented in the commercial FE package
ABAQUS as a user subroutine UMAT. Results suggest the dependence of
the mechanical behavior and the crack pattern of these structures on not
only viscous parameters like the relaxation time and the displacement
rate, but also on the strength of the residual stress field, which in turn
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Figure 6: Representation of an aortic aneurysm and an aortic dissection,
conditions to whom people suffering from Marfan syndrome are most vul-
nerable to. Residual stresses in arteries constitute an important risk factor
to this pathologies. Source [98].

depends on geometrical characteristics of the cylindrical structure such
as the radius or the length. A range of solutions related to crack propa-
gation is shown for different cylindrical structures, from azimuthal crack
propagation to axial one. The proposed framework aims to provide an
extended application for the already-defined visco-hyperelastic formula-
tion by the inclusion of residual stresses.

1.4.3 Volumetric and shear locking of hyperelastic mate-
rials

We have devoted the vast majority of this thesis on exhibiting the po-
tential that PF displays on modelling coupled problems. In line with it,
another diffuse failure approach called gradient-enhanced Continuum
Damage (CDM) has emerged as a robust formulation that ensures the
well-posedness of equations, avoiding strong mesh sensitivity and thus
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leading to vanishing localized failure regions by the employment of in-
ternal length scales accompanying an Euler-Lagrange equation [99, 100].
These kinds of contributions have been discussed in detail; see [101, 102,
103]. In particular, gradient-enhanced CDM has been successfully ex-
ploited for a countless variety of both geometrically linear [104, 105, 106]
and nonlinear models [107, 108, 109, 110, 111], including the extension to
gradient-enhanced damage plasticity [112, 113, 114, 115].

This similar approach to PF presents several yet-to-fully-tackle dam-
age applications. In Chapter 4, and on parallel to what has been pre-
sented for soft tissues in Chapter 3, we will cover damage on deformable
nearly incompressible and compressible hyperelastic materials prone to
volumetric and shear locking, respectively.

On volumetric locking, being amply reported in the related literature,
numerical modelling of nearly incompressible hyperelastic materials us-
ing displacement-based (single field) FE schemes suffer from the well-
known volumetric locking, which overestimates the stiffness of materials
when the Poisson ratio is high (ν ∼ 0.5) [116]. In engineering practice,
the problem can be solved by the use of meshless techniques [117, 118,
119, 120], smothered FE approaches (sFEM) [121, 122, 123], discontinu-
ous Galerkin methods [124, 125, 126, 127] or by lower integration algo-
rithms of the divergence terms, among other alternatives. In particular, a
mixed three-field displacement-pressure-Jacobian mixed FE formulation
which uses a lower-order approximation for the Lagrange multipliers
associated with the volumetric pressure [128, 129, 130, 131, 132, 133] has
been employed, being named Q1P0 or Simo-Taylor-Pister elements. In
Chapter 4, we have aimed for the development of a Q1Q1P0 formulation
with the combination of such elements with the gradient-enhanced CDM
technique with the target of modelling damage in nearly incompressible
hyperelastic materials avoiding volumetric locking issues.

Importantly, shear locking can also alter the compliance of the spec-
imen with bending effects in large deformation analysis [134]. In order
to overcome this shear locking pathology, several techniques have been
proposed in the last decades: use of higher order FE formulations [135,
136, 137], isogeometric analysis [138, 139, 140, 141], reduced integra-
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tion [142, 143] and the application of mixed methods and formulations,
such as the approach for incompatible modes [144] or the enhanced as-
sumed strain technique [145, 146, 147], among others. In Chapter 4, we
also aim at developing a full integration formulation combining the EAS
method considering 24 incompatible deformation modes, Q1E24, with a
gradient-enhanced CDM approach to analyze damage in samples under
bending loads which are prone to display shear locking phenomena, i.e.,
Q1Q1E24.

In summary, in Chapter 4, we will present the consistent formula-
tion and the assessment of the corresponding performance of (i) a mixed
displacement-enhanced assumed strain (EAS) Q1Q1E24 employing a to-
tal Lagrangian formulation, and (ii) a three-field mixed displacement-
pressure-Jacobian Q1Q1P0 formulation. The novel Q1Q1E24 and Q1Q1P0
formulations are consistently derived and numerically implemented, pro-
viding a satisfactory agreement with respect to ABAQUS built-in elements
handling the treatment of shear and volumetric locking, respectively,
in conjunction to the modelling damage phenomena via the use of a
penalty-based gradient-enhanced formulation. This performance is ex-
amined via several numerical applications. Furthermore, the final ex-
ample justifies the need for a formulation combining both mixed FE ap-
proaches to simulate problems encompassing both locking issues (shear
and volumetric locking), which can be performed using a combination
of the Q1Q1E24 and Q1Q1P0 herein proposed.

1.4.4 Thermoresponsive hydrogels

Elastomeric materials which can absorb large quantities of water with-
out disrupting their polymeric network form a swollen aggregate called
hydrogel. Their applications concern a wide range of different fields,
such as smart valves [148, 149, 150], sensors [151, 152, 153, 154], tissue
engineering [155, 156, 157, 158] and drug delivery systems [159, 160,
161, 162, 163]. The reason behind this displayed versatility is related
to their ability to withstand large deformations combined to the depen-
dence of their mechanical response on environmental changes in chem-
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ical fields and pH [164, 165], electric fields [166, 167], light [168, 169],
humidity [170, 171] and temperature [172, 173, 174], among others. Fo-
cusing on the latter property, there exists a subclass of hydrogels called
thermoresponsive hydrogels, which, when saturated in an aqueous solu-
tion, exhibit swelling to a large extent when being heated above or cooled
down a critical temperature Tc. The former ones exhibit an upper critical
swelling temperature (UCST) point, belonging to this behavior natural
hydrogels such as like agarose, agar, collagen and gelatin [175, 176, 177].
On the other side, hydrogels exhibiting a lower critical swelling temper-
ature (LCST) swells by a factor of ten times when they are cooled below
the typical temperature, being framed within this pattern considerably
employed hydrogels like poly(N-isopropylacrylamide) (PNIPAM) [178,
179, 180, 181] and polyethylene glicol (PEG) [182, 183, 184], among oth-
ers. The behavior of both thermoresponsive hydrogels is represented
graphically in Fig. 7 and on the course of our experiments to charac-
terize them, we have managed to capture this in the lab with agarose
experiments plotted in Fig. 8, where it is observed that in the interval
of 40ºC to 45.6ºC, the critical temperature is hit for this UCST hydrogel.
The proposed framework will be dedicated specially to the analysis of
thermoresponsive gels.

On Chapter 5 of the current thesis, a stable thermo-chemo-mechanical
user-element subroutine (UEL) dedicated to study the complex material
behavior of thermoresponsive hydrogels along several examples of tran-
sient diffusion-driven swelling deformations is presented, encompass-
ing the large strain theory developed in Chapter 3 with the idea of a
mixed formulation based in the content of Chapter 4. For this purpose,
the research focuses on the development of a new FE formulation that
approximates the displacement via quadratic shape functions and both
the chemical potential and the temperature by linear functions, all along
with a mixed variational approach, this new element presented is de-
noted as Q2Q1Q1. Throughout the content that encompasses this Chap-
ter, the proposed formulation will be validated by its capture of the LCST
and UCST behavior that the thermoresponsive hydrogels display and
subsequently, it will be used from a quantitative standpoint to address
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Figure 7: Symbolic graphic representation on the evolution against temper-
ature for UCST and LCST hydrogels.

its robustness and accuracy in capturing experimental tests with differ-
ent boundary conditions. Together with this new formulation and com-
plying with the outline of this thesis, we will be presenting the prelimi-
nary results that come from coupling this new formulation with the PF
method for fracture.

The extension that this Chapter aims to represent within the Com-
putational Mechanics field is to be first inf-sup stable formulation for
modelling on thermoresponsive hydrogels. In multi-field schemes, in-
stabilities often occur in the assumed strain and stress fields. When
dealing with incompressible materials, single-field formulations exhibit
what is called volumetric locking, which is the over-stiffening of the el-
ements of the material when the Poisson ratio ν is close to 0.5. In order
to remove this pathology, mixed formulations concerning the pressure
as a Lagrange multiplier are introduced. Nevertheless, these systems are
prone to suffer spatial instabilities, as they do not fulfill the inf-sup con-
dition, also called Ladyzhenskaya–Babuška–Brezzi (LBB) condition [185,
186], that is the sufficient condition that partial differential equation sys-
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Figure 8: Dependence on temperature for UCST hydrogel agarose. It is ob-
served that between the interval of 40ºC and 45.6ºC where the swelling ratio
is increased. Obtained from the collaboration with prof. Dortdivanlioglu
from the Soft Mechanics group in The University of Texas at Austin.

tems have to attain for a saddle point problem to have an unique solu-
tion to the problem. What happens with mixed formulations like linear
displacement-pressure elements is that, as they do not attain this con-
dition, they tend to suffer spurious oscillations in the result. Therefore,
the Q2Q1Q1 element aims to encompass an inf-sup stable element, while,
at the same time, to prove its accuracy with the physics by resolving and
capturing some representative experimental problems for thermorespon-
sive hydrogels. Such framework aims to be extended in the immediate
future to model fracture for these kind of gels, as there is no LBB-stable
user-element subroutine available in the literature that encompasses the
PF technique to model failure for UCST and LCST hydrogels.

1.5 Outline of the thesis

The content within this thesis is sorted according to the complexity of the
constitutive theory, arranged in ascending order. Chapter 2 delves into
the development of the hydrogen embrittlement phenomenon in poly-

26



crystalline materials comprising small strains theory with PF and CZM
methods. In Chapter 3, for a large displacement theory, the PF fracture
modelling of pre-stressed cylindrical soft tissues is introduced. Chap-
ter 4 presents the combination of the mixed element formulation with
the nonlocal diffuse damage framework of CDM. Consequently, Chap-
ter 5 progresses through the framework for thermoresponsive hydrogels
modelling built-on the integration of the mixed element technology with
the large strain theory. Lastly, Chapter 6 delves into the conclusions and
future developments for each one of the presented approaches, in both
English and Spanish languages.

27



Chapter 2

Hydrogen-induced fracture
in polycrystalline materials

Chapter 2 is based on our own publication [187].

The first coupled problem to address within this thesis is the Hy-
drogen Embrittlement (HE) issue, which has been known to be a cause
of fracture in metals since the 19th-Century [188]. This phenomenon
consists of a dangerous and unpredictable degradation of ductility and
strength caused by the presence of gaseous Hydrogen (H) in the local
environment [189]. It threatens the progress made on metallurgical opti-
mization, being this a negative effect on several industrial sectors, such
as the aerospace, transport, marine, and energy ones [190, 191, 192]. The
structural integrity of the employed materials for these areas is a highly
relevant multiphysics problem because of their interaction with corro-
sive environments. As of today, the micro-mechanism governing HE is
yet to be fully understood. Proof of that is the absence of a database on
the mechanical response of steels affected by HE [193]. Hence, there is
a strong need to understand, quantify, and model how hydrogen affects
the mechanical performance of metals, inducing fracture, and reduces its
durability.

A vast literature has been devoted to shed light into the physical
mechanisms behind HE [194, 32, 195, 192, 196, 197], and to develop
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mechanistic predictive models that can prevent failures and map safe
regimes of operation [198, 199, 200, 201, 78]. The vast majority of the com-
putational models developed for predicting hydrogen assisted cracking
fall into two categories: (i) discrete methods, such as cohesive zone mod-
els [13, 202, 203, 204], and (ii) diffuse approaches, such as phase field or
other non-local damage models [75, 205, 206, 76, 207, 77]. Cohesive zone
models and other discrete methodologies are suitable to describe the
nucleation and propagation of sharp cracks through a predefined path.
Phase field fracture methods have additional modelling capabilities and
can also deliver predictions when the crack trajectory is unknown, when
failure is triggered by defects of arbitrary shape, and when the fracture
process is complex (e.g., involving the interaction between multiple de-
fects). Both classes of models can be readily coupled with the hydrogen
transport equation and have been successful in qualitatively capturing
the main experimental trends, such as the sensitivity to loading rate, hy-
drogen concentration, and material strength. However, these modelling
studies treat materials as isotropic continuum solids, without resolving
the underlying microstructure. Microstructurally-sensitive works have
been recently carried out [208, 14, 209, 210, 211, 212, 213], but these
are limited to capture the interplay between diffusion and deformation,
and do not explicitly simulate fracture. The micromechanical fracture of
polycrystalline materials in hydrogen-containing environments has been
simulated in the works of Rimoli and Ortiz [214], Benedetti et al. [215],
and De Francisco et al. [216]. In these works, a cohesive zone formulation
was used to predict the failure of grain boundaries, neglecting transgran-
ular cracks.

On the mark of this thesis, we present a new microstructurally-sensitive
computational framework employing the small deformation theory for
predicting hydrogen assisted fractures. For the first time, the model
combines a phase field description of bulk fracture with a cohesive zone
model for intergranular cracking. This enables capturing both ductile
transgranular fracture and brittle intergranular fracture, and the tran-
sition from one to the other. The mechanical and hydrogen transport
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problems are strongly coupled, with the hydrostastic stress driving hy-
drogen transport and the hydrogen content reducing the grain bound-
ary strength. The fracture of polycrystalline solids is simulated, with the
bulk deformation response being characterised by von Mises plasticity
theory. All this theoretical information is provided in Section 2.1 and
Section 2.2 gives insight on the numerical tools used for the implementa-
tion of the model. Numerical experiments are conducted to gain insight
into the mechanisms of hydrogen-assisted grain boundary decohesion.
To validate the proposed formulation, we present some verification ex-
amples in the form of 10-grain and 50-grain single edge notched ten-
sion specimens in Section 2.3.1. Main focus is on Ni and Ni superalloys,
where hydrogen assisted failures are known to be governed by grain
boundary decohesion [86, 217]. Among other case studies, the model is
used to provide a mechanistic rationale to two recent sets of experiments
on Monel K-500 [218] (Section 2.3.2) and pure Ni [86] (Section 2.3.3) that
have attracted particular interest in the hydrogen embrittlement commu-
nity.

Nomenclature

Ω Body domain
Rn Collection of ordered lists of n real numbers
∂Ω Boundary of the solid
n Normal outward vector
Γℓ Discrete internal discontinuity
Γi Pre-existing interfaces
x Position vector
u Displacement field vector
∂Ωu Boundary region with a Dirichlet condition of prescribed displacements
∂Ωt Boundary region with a Neumann condition of prescribed tractions
t Traction vector
ε Small deformation tensor
∇ Gradient operator
d Phase-field parameter
ℓ Length scale parameter
∂Ωq Boundary region with a Neumann condition of prescribed hydrogen flux
J Hydrogen flux
∂ΩC Boundary region with a Dirichlet condition of prescribed hydrogen concentration
C Hydrogen concentration
γC Interfacial fracture energy
GC Bulk material toughness
Ψ Strain energy density

30



Nomenclature

Πint Internal potential energy
Π(b) Bulk potential energy
Π(i) Interface potential energy
D Diffusion coefficient
dV Differential of volume
dA Differential of area
∇ · [•] Divergence operator
q Concentration of flux exiting the body
µ Chemical potential
µ0 Chemical potential in the standard case
R Ideal gas constant
T Temperature
θL Occupancy of lattice sites
V̄H Partial molar volume of hydrogen in solid solution
σH Hydrostatic stress
N Number of lattice sites
Ψe Strain energy density term associated with the elastic part
Ψp Strain energy density term associated with the elastic part
λ First Lamé constant
G Second Lamé constant (shear modulus)
tr(•) Trace operator
σ Cauchy stress tensor
εe Elastic term of the small deformation tensor
εp Plastic term of the small deformation tensor
σf Current yield stress
σy Initial yield stress
εeq Accumulated equivalent plastic strain
E Young’s modulus
n Strain hardening exponent
WC Work required to create two new surfaces
g(d) Degradation function
γl Crack energy density functional
K Residual stiffness parameter
∂[•] Partial derivative operator
Ψe

+ Elastic part of the strain energy density associated with tensile states
Ψe

− Elastic part of the strain energy density associated with compressive states
K Bulk modulus
H History field variable
σ0 Undamaged Cauchy stress tensor
tn Normal cohesive traction
tnc Critical normal cohesive traction
tt Tangential cohesive traction
ttc Critical tangential cohesive traction
δnc Critical normal cohesive separation
δtc Critical tangential cohesive separation
γIC Mode-I interfacial fracture energy
γIIC Mode-II interfacial fracture energy
θH Hydrogen coverage
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Nomenclature

γC,0 Critical interfacial energy in absence of hydrogen
χ Hydrogen damage coefficient
∆g0b Gibbs free energy
N Shape functions
m Number of nodes
d Nodal displacements
d̂ Nodal phase field parameter
Ĉ Nodal hydrogen concentration
Bd Standard strain matrix
B Compatibility matrix
Rd Residual of the displacement field u

Rd̂ Residual of the phase-field parameter d
Kdd Displacement-displacement Jacobian term for global N-R scheme
C Local Jacobi tangent
Kd̂d̂ PF-PF Jacobian term for global N-R scheme
RĈ Residual of the hydrogen concentration C

KĈĈ Hydrogen concentration-hydrogen concentration Jacobian term for global N-R scheme
MĈĈ Hydrogen concentration capacity matrix
ν Poisson’s ratio
uy Vertical displacement
Cenv Environmental hydrogen concentration
at Transition flaw size
KIc Critical stress intensity factor
ux Horizontal displacement

2.1 Theoretical formulation

Complying with the infinitesimal deformation setting, the point of de-
parture of the current modeling framework concerns the consideration
of an arbitrary body Ω ∈ Rndim with a delimiting external surface ∂Ω ∈
Rndim−1 with outward normal n. It is also assumed the existence of a dis-
crete internal discontinuity Γl due to the potential development of frac-
ture events and pre-existing interfaces arranged in the set Γi. This body
is surrounded by a hydrogen-rich atmosphere that provokes the diffu-
sion of hydrogen concentration throughout the body. As detailed in the
forthcoming subsections, this leads to a three-field boundary value prob-
lem, where the displacement field, the fracture status, and the hydrogen
concentration are the primary unknowns.

Recalling basic aspects on the theoretical formulation, the position
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Figure 9: Schematic representation of the three-field boundary value prob-
lem: (a) displacement, (b) phase-field fracture, and (c) hydrogen diffusion.

of an arbitrary point in the bulk is noted by the vector x in the global
Cartesian setting (Fig. 9(a)). The delimiting surface of the body is de-
composed into: the region ∂Ωu, where the displacement u is prescribed
by Dirichlet-type boundary conditions (BCs) and ∂Ωt, where the traction
t is prescribed via Neumann-type conditions, such that ∂Ω = ∂Ωu ∪ ∂Ωt

and ∂Ωu ∩ ∂Ωt = ∅. The deformation process is characterized by the
small deformation tensor ε(x), which is defined as the symmetric part of
the displacement gradient: ε(x) := ∇sym

x u(x).

Concerning the cracking phenomena, the so-called phase-field frac-
ture approach is herewith exploited, which resembles a non-local dam-
age model. This approach triggers the occurrence of fracture using the
consideration of a scalar-valued variable d. This methodology allows the
regularization of sharp cracks within a diffusive region characterized by
the length ℓ (Fig. 9(b)), following the diffusive crack morphology stated
in Fig. 1(b).

Regarding the hydrogen concentration diffusion problem, the surface
of the body is divided into two parts: the region ∂Ωq , where the hydro-
gen flux J is prescribed featuring a Neumann-type boundary condition,
and the region ∂ΩC where the hydrogen concentration C is prescribed.
(Fig. 9(c)).

In addition to bulk fracture, our microstructurally-sensitive formu-
lation employs a cohesive zone model to describe the failure of grain
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boundaries. As shown in Fig. 5, we explicitly model the polycrystalline
microstructure of metals and predict intergranular and transgranular crack-
ing events. The phase field fracture method is used to describe transgran-
ular cracks, which are associated with a ductile fracture process, while
a cohesive zone model is employed to predict the decohesion of grain
boundaries. Since the latter correspond to a brittle failure and are trig-
gered by the presence of hydrogen, the interfacial fracture energy γC is
defined as a function of the hydrogen concentration C. Conversely, the
bulk material toughness GC is considered to be a hydrogen-insensitive
constant that characterises the resistance of the material to undergo mi-
crovoid cracking. Accordingly, for a solid with strain energy density
Ψ(ε, d), the internal functional of the mechanical system comprises the
bulk (Π(b)

int) and interfacial (Π(i)
int) contributions, reading

Πint(u, d, C) =

∫
Ω/Γl

Ψ(ε, d)dV +

∫
Γl

GCdΓl︸ ︷︷ ︸
Π

(b)
int

+

∫
Γi

γC(C)dΓi︸ ︷︷ ︸
Π

(i)
int

(2.1)

2.1.1 Material formulation: chemo-elastoplasticity

The deformation and diffusion problems are intrinsically coupled as hy-
drogen transport within the crystal lattice is driven by gradients of con-
centration and hydrostatic stress. We focus our attention on the transport
of diffusible hydrogen and consider the influence of traps in the cracking
process by using the Langmuir-Mclean isotherm to estimate the hydro-
gen coverage at grain boundaries. The role of microstructural traps upon
slowing down diffusion can also be taken into account through an appro-
priate choice of the (apparent) diffusion coefficientD. Mass conservation
requirements relate the rate of change of the hydrogen concentration C

to the hydrogen flux through the external surface,∫
Ω

dC
dt

dV +

∫
∂Ω

J · n dA = 0 (2.2)

The strong form of the balance equation can be readily obtained by
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making use of the divergence theorem and noting that the expression
must hold for any arbitrary volume,

dC
dt

+∇ · J = 0 (2.3)

For an arbitrary, suitably continuous, scalar field, δC, the variational
statement (Eq. (2.3)) reads,∫

Ω

δC

(
dC
dt

+∇ · J
)

dV = 0 (2.4)

Rearranging, and making use of the divergence theorem, the weak form
renders, ∫

Ω

[
δC

(
dC
dt

)
− J · ∇δC

]
dV +

∫
∂Ωq

δCq dA = 0 (2.5)

where q = J ·n is the concentration flux exiting the body across ∂Ωq . The
diffusion is driven by the gradient of the chemical potential ∇µ, with the
chemical potential of hydrogen in lattice sites being given by,

µ = µ0 +RT ln
θL

1− θL
− V̄HσH (2.6)

Here, θL is the occupancy of lattice sites, which is related to the concen-
tration and number of sites as θL = C/N . Also, µ0 denotes the chemical
potential in the standard case, and σH is the hydrostatic stress. The last
term of Eq. (2.6) corresponds to the so-called stress-dependent part of
the chemical potential µσ , with V̄H being the partial molar volume of
hydrogen in solid solution. The mass flux follows a linear Onsager rela-
tionship with µσ , which is often derived from Eq. (2.6) by adopting the
assumptions of low occupancy (θL ≪ 1) and constant interstitial sites
concentration (∇N = 0) (see, e.g., [219, 220]), such that

J = −DC
RT

∇µ = −D∇C +
D

RT
CV̄H∇σH (2.7)

where T is the absolute temperature and R is the ideal gas constant. Ac-
cordingly, the hydrogen transport equation becomes
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∫
Ω

[
δC

(
1

D

dC

dt

)
+∇δC∇C −∇δC

(
V̄HC

RT
∇σH

)]
dV = − 1

D

∫
∂Ωq

δCq dA

(2.8)

As evident from Eqs. (2.6)-(2.8), the presence of hydrostatic stresses
(or volumetric strains) brings a reduction in chemical potential and an
increase in hydrogen solubility. Thus, an appropriate description of the
stress state in the solid is needed to quantitatively estimate the hydrogen
distribution. Here, we choose to describe the deformation of the solid
using conventional von Mises plasticity. Accordingly, the total strain en-
ergy density of the solid is given by the sum of the elastic and plastic
parts,

Ψ = Ψe (εe)+Ψp (εp) =
1

2
λ [tr (εe)]2+G tr

[
(εe)

2
]
+

∫ t

0

(σ : ε̇p)dt (2.9)

where λ is the first Lamé parameter and G is the shear modulus. Also,
the Cauchy stress tensor is given by σ, and εe and εp respectively de-
note the elastic and plastic strain tensors. Isotropic power law hardening
behaviour is assumed by adopting the following hardening law:

σf = σy

(
1 +

Eεeq

σy

)(1/n)

(2.10)

where σf and σy are the current and initial yield stresses, E is Young’s
modulus, εeq is the accumulated equivalent plastic strain and n is the
strain hardening exponent. One should note that, for simplicity, we have
chosen to neglect the role of plastic strain gradients; however, large plas-
tic strain gradients arise in the vicinity of cracks and other stress concen-
trators and lead to large crack tip tensile stresses and hydrogen concen-
trations [221, 222]. The extension of the present framework to account
for the role of plastic strain gradients and geometrically necessary dislo-
cations (GNDs) will be addressed in future work.
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2.1.2 A phase field description of transgranular fractures

The phase field fracture method is used to regularise the internal discon-
tinuity Γℓ, representing the nucleation and growth of transgranular (duc-
tile) cracks. An auxiliary phase field variable d(x) is used to describe the
evolution of the solid-crack interface, taking the value of d = 0 for the
pristine state and of d = 1 for the fully damaged state. The evolution
of the phase field equation is dictated by the energy balance associated
with the thermodynamics of fracture, as first presented by Griffith [25]
and later extended to elastic-plastic solids by Orowan [223]. Thus, under
prescribed displacements, the variation of the total energy Π due to an
incremental increase of the crack area dA is given by, in the form of vari-
ational [45], Eq. (1.1); where we have two terms: the first one is related to
the stored strain energy density, while the second part denotes the ma-
terial toughness GC = dWC/dA, which can be as low as some tens of
J/m2 for brittle solids or as high as thousands of kJ/m2 for ductile met-
als where plastic dissipation enhances fracture resistance, being WC the
work required to create two new surfaces.

The energy balance is now global and fracture phenomena can be
predicted by minimizing the total energy Π. However, minimization of
Eq. (1.1) is hindered by the unknown nature of the discontinuous crack
surface Γ. The phase field regularization can then be exploited to smear
this sharp interface into a diffuse region, whose thickness is governed
by a phase field length scale ℓ. Accordingly, the energy balance can be
approximated as [46] states, mentioned in Eq. (1.8). We choose to adopt
the standard or AT2 phase field formulation, and accordingly make the
following constitutive choices,

g(d) = (1− d)2 +K , (2.11)

γl(d,∇d, ℓ) =
1

2ℓ
d2 +

ℓ

2
|∇d|2, (2.12)

where K is a small numerical parameter to retain residual stiffness when
d = 1, so as to avoid an ill-conditioned system of equations. Noting
that σ = ∂εψ, the strong form of the coupled deformation-fracture prob-
lem can be readily obtained by inserting Eqs. (2.11)-(2.12) into Eq. (1.8),
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taking the variation with respect to u and d, and applying Gauss theo-
rem. However, such a formulation would predict cracking also under
compressive stress states. Hence, we adopt the so-called volumetric-
deviatoric split [52] to decompose the elastic strain energy density into a
tensile part,

Ψe
+(ε

e) =
K

2
⟨tr[εe]⟩2+ +G[(εe)′ : (εe)′] (2.13)

and a compressive part,

Ψe
−(ε

e) =
K

2
⟨tr[εe]⟩2− (2.14)

Here, K is the bulk modulus, tr[•] is the trace operator, ⟨•⟩ = (• ± | • |)/2
and (εe)′ = εe − tr[εe]I/3. Furthermore, a history field H is defined to
enforce damage irreversibility. Among the various choices available (see,
e.g., [224, 55]), we choose to assume that fracture is driven by the energy
stored in the system, in consistency with the energy balance above [225];
accordingly: H = maxt∈[0,τ ] ψ

e
+(ε

e, t). The local governing equations
then read,

∇ ·
{
[(1− d)2 +K]σ0

}
= 0 in Ω (2.15)

GC

(
1

ℓ
d− ℓ∇2d

)
− 2(1− d)H = 0 in Ω (2.16)

where σ0 is the undamaged Cauchy stress tensor. As can be inferred by
inspecting Eq. (2.15)-(2.16), a so-called hybrid approach is used, where
the strain energy split is considered only in the phase field evolution
equation [54].

2.1.3 Hydrogen-sensitive interface formulation for grain
boundaries

In this modelling framework, the polycrystalline nature of the material
is resolved and the decohesion of grain boundaries is explicitly captured
by means of a cohesive zone model. Specifically, a traction-separation
law is adopted that assumes a tension cut-off relation [79]. This interface
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formulation assumes a linear and reversible (elastic) evolution until the
critical traction is reached. The damage criterion relates the normal tn
and tangential tt tractions with their critical counterparts as follows,(

tn
tnc

)2

+

(
tt
ttc

)2

= 1 (2.17)

Accordingly, a critical normal δnc and shear δtc separations can be
defined, which leads to the following definitions of fracture energy for
Mode I and Mode II fractures

γIC =
1

2
tncδnc, γIIC =

1

2
ttcδtc (2.18)

As sketched in Fig. 5, the role of hydrogen in weakening the grain
boundaries is accounted for by degrading the interface fracture energy.
Thus, the focus here is on materials that exhibit hydrogen assisted in-
tergranular fracture, such a Ni and Ni alloys [86]. Atomistic calculations
have shown a linear relationship between the surface (or fracture) energy
and the hydrogen coverage (see, e.g., [226, 227]). Accordingly, and fol-
lowing Martı́nez-Pañeda et al. [75], we define the following relationship
between the fracture energy and the hydrogen coverage θH ,

γC(θH) = γC,0(1− χθH) (2.19)

where γC,0 is the fracture energy in the absence of hydrogen and χ is
the so-called hydrogen damage coefficient. The same expression is em-
ployed for γIC and γIIC . Finally, the hydrogen coverage is estimated
from the hydrogen concentration by means of the Langmuir-McLean
isotherm:

θH =
C

C + exp

(
−∆g0

b

RT

) (2.20)

where ∆g0b is the Gibbs free energy difference between the interface and
the surrounding material, also referred to as the segregation energy. Un-
less indicated otherwise, a value of ∆g0b = 30kJ/mol is here employed,
based on the spectrum of experimental data available for the trapping
energy at grain boundaries [13, 75].
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2.1.4 Finite Element implementation

The Finite Element Method (FEM) is employed to solve the coupled deformation-
PF-transport problem. If Voigt notation is employed, the nodal values of
the displacements, phase-field parameter, and hydrogen concentration
are interpolated as follows

u =

m∑
i=1

N(ξ) · d, d =

m∑
i=1

N(ξ) · d̂, C =

m∑
i=1

N(ξ) · Ĉ (2.21)

where m stands for the number of nodes and N are the interpolation
matrices, which are diagonal matrices with nodal shape functions Ni as
components.

The corresponding gradient quantities may be discretized as

ϵ =

m∑
i=1

Bu(ξ) · d, ∇d =

m∑
i=1

B(ξ) · d̂, ∇C =

m∑
i=1

B(ξ) · Ĉ (2.22)

where B are the vectors with the spatial derivatives of the shape func-
tions, and Bu is the standard strain matrix.

Employing this technique, Eq. (2.15), i.e., the displacement equilib-
rium condition is rewritten as a residual concerning the displacement
field Rd.

Rd(d,∆d, d̂,∆d̂, Ĉ,∆Ĉ) =

∫
Ω

[(1− d)2 +K]BT
u · σ0 dV (2.23)

Similarly, the force residual with respect to the phase-field fracture
Rd̂ is obtained by modifying Eq. (2.16).

Rd̂(d,∆d, d̂,∆d̂, Ĉ,∆Ĉ) =

∫
Ω

[
−2(1−d)NTH+GC

(
1

ℓ
NTd+ℓBT·∇d

)]
dV

(2.24)
Components of the corresponding stiffness matrices are obtained by

differentiating the residuals with respect to the incremental nodal vari-
ables.
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Kdd =

∫
Ω

[(1− d)2 +K]BT
u · C ·Bu dV (2.25)

Kd̂d̂ =

∫
Ω

[(
2H+

GC

ℓ

)
NT ·N+ GCℓB

T ·B
]
dV (2.26)

where C denotes the local Jacobian tangent. The residual concerning the
Hydrogen concentration RĈ is obtained by discretizing Eq. (2.8).

RĈ =

∫
Ω

[
NT
(

1

D

dC

dt

)
+BT · ∇C −BT

(
V̄HC

RT
∇σH

)]
dV (2.27)

in which the stiffness matrix is herein denoted as

KĈĈ =

∫
Ω

(
BT ·B− V̄H

RT
∇σHBT ·N

)
dV (2.28)

This matrix is affected by the gradient of the hydrostatic stress, ∇σH ,
which is computed at the integration points from the nodal displace-
ments, extrapolated to the nodes by the employment of the shape func-
tions, and consequently, multiplied by B. 8-node quadrilateral finite ele-
ments with C0 continuity are employed in this framework for the bulk.

On the other hand, the concentration capacity matrix Mij may be
identified as

MĈĈ =

∫
Ω

1

D
NT ·NdΩ (2.29)

Consequently, the global equation for hydrogen renders as

KĈĈĈ+MĈĈ ˙̂C = 0 (2.30)

Lastly, after these discretizations of the three field equations, the fol-
lowing linear finite element system is herein proposed to be solved

Kdd 0 0

0 Kd̂d̂ 0

0 0 KĈĈ

dd̂
Ĉ

+

0 0 0
0 0 0

0 0 MĈĈ


 ḋ˙̂d
˙̂C

 =

Rd

Rd̂

RĈ

 (2.31)
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A time parametrization and an incremental-iterative scheme are em-
ployed in conjunction with the Newton-Raphson method to solve this
coupled problem, along with the staggered solution scheme proposed
by [53].

2.2 Numerical tools for the FEM implementa-
tion

The theoretical model presented in Section 2.1 is numerically implemented
in the commercial finite element package ABAQUS/Standard via a user
element (UEL) subroutine. In addition, the Abaqus2Matlab software
[228] is used to generate the input files and the MATLAB supplemen-
tary codes given in Ref. [80] are used to generate the microstructure.
Fig. 10 provides a flowchart of the steps followed in the definition and
analysis of the microstructure sensitive boundary value problems inves-
tigated. Specifically, the microstructure is generated by using a Voronoi-
based tessellation algorithm, programmed in MATLAB [80], and this step
is followed by the introduction of the resulting microstructure into the
ABAQUS input file using a Python script. The coupled deformation-
diffusion-fracture system is solved in a staggered fashion, with every
sub-problem being solved by means of a backward Euler solution scheme.
Typical calculation times are of a few hours.

2.3 Representative results

This Section comprises the outline of the presentation of representative
results. The main objective of the proposed computational analysis is re-
producing the transition between ductile and brittle fracture in polycrys-
talline materials associated with the effect of the presence of hydrogen-
rich environmental conditions. Due to the inherent microscopic nature
of this phenomenon, current FE computations rely on a microscopic de-
scription using Voronoi tessellations.

First, in Section 2.3.1, a benchmark example is analysed, whereby
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Figure 10: Flowchart that summarises the methodology adopted in the nu-
merical deformation-diffusion-fracture analysis of polycrystalline solids ex-
posed to hydrogen.

cracking is predicted in a single edged notched tension specimen con-
taining 10 and 50 grains, respectively, and exposed to various hydrogen-
containing environments. Second, we simulate recent slow strain rate
tests (SSRTs) on different Monel K-500 lots in Section 2.3.2, so as to as-
sess the ability of the model in providing a quantitative agreement with
experiments and shedding light into the suitability of SSRTs to measure
hydrogen susceptibility. Finally, in Section 2.3.3, the model is used to
simulate, for the first time, the seminal experiments by Harris et al. [86]
on pure Ni under cryogenic and ambient temperature conditions.

2.3.1 Benchmark: fracture of a multi-grained SENT plate

With the aim of assessing the capabilities of the proposed framework, a
parametric study regarding hydrogen concentration in the environment
has been conducted in a single edge notched tension (SENT) plate with
dimensions 0.5×0.5 mm (Fig. 11) that is specialized with Voronoi tessel-
lations for 10 and 50 grains. These verification examples aim to show
the competition between transgranular (ductile fracture) and intergran-
ular (brittle fracture) failure patterns in the presence of hydrogen-rich
environments and the dependence of such fracture patterns on the given
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Figure 11: Geometry for the 50-grained SENT place with dimensions in mm.

hydrogen concentration.
The load is applied by prescribing the vertical displacement at the

upper edge, at a rate of u̇y = 10−10 mm/s, while the vertical displace-
ment is constrained at the bottom edge. To prevent rigid body motion,
the horizontal displacement is constrained at the bottom-right corner.
The sample is exposed to hydrogen on its left side, where the notch is
located. No pre-charging time in considered, with both hydrogen and
mechanical charging starting simultaneously. The magnitude of the en-
vironmental hydrogen concentration Cenv is varied between 0 and 0.9
ppm wt with the aim of capturing a reduced critical load with increasing
hydrogen content, and a transition from ductile (bulk) fracture to inter-
granular cracking. The material properties assumed for the bulk and the
interface are given in Table 1.

10-grain models

For these first series of tests, 10 subdomains (grains) are considered within
the probe. 37,186 quadratic quadrilateral elements are employed for the
FE mesh.
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Table 1: Material properties of the bulk and the interface adopted in the
SENT benchmark case study.

Bulk properties

E (GPa) ν ℓ (mm) GC (kJ/m2) D (mm2/s) σy (MPa) n

185 0.3 0.025 0.05 1.3× 10−8 794.3 0.064

Interface properties

kn, kt (MPa/mm) tnc,0, ttc,0 (MPa) γIC,0, γIIC,0 (kJ/m2) χ

2× 108 2.25× 103 1.27× 10−2 0.86

The isocontour for the phase-field variable d during crack nucleation
and propagation is depicted in Figs. 12(a)-12(f) for C = 0 wppm, where
transgranular fracture events are identified. Analyzing these graphs,
it can be observed how the transgranular crack path evolves from the
notch, where a stress concentration is initially set, to the closest grain
front where the largest differences in stress states between adjacent grains
occur, see Figs. 12(a)-12(d). Subsequently, in Figs. 12(e)-12(f), the crack
propagates following the interface path of the grains: we believe that
such behavior is due to a stress mismatch that takes place between adja-
cent grains due to differences between the stiffness of the bulk and that
of the interface.

The case for C = 0.25 wppm is showed in Figs. 13(a)-13(f). This ap-
plication is characterized by the prediction of intergranular fracture pro-
cesses, where the crack evolution is represented. The crack nucleation
is predicted to occur in the junction close to the initial notch, see Fig.
13(a). This location is estimated due to both hydrogen concentration and
cohesive traction being considerably high in this region. Upon further
loading, Figs. 13(b)-13(f), the crack evolves following the grain bound-
aries until the fracture of the sample. This failure pattern is reproduced
for all the cases with H-charged (C > 0 wppm). Moreover, compared to
the previous application (C = 0 wppm), it is possible to identify a com-
pletely different failure mechanism. This phenomenon can be envisaged
by plotting the isocontour for the equivalent plastic strain in the final
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(a) u = 3.08×10−4 mm (b) u = 4.88×10−4 mm (c) u = 6.80×10−4 mm

(d) u = 7.17×10−4 mm
(1)

(e) u = 7.17×10−4 mm
(2)

(f) u = 7.17×10−4 mm
(3)

Figure 12: Crack evolution resulting in transgranular fracture for the 10-
grain benchmark sample with C = 0 wppm sorted by displacement. Plotted
is the phase-field parameter.

step in Figs. 14(a)-14(b), where transgranular fracture is remarked by the
appearance of plasticity (εeq > 0), whereas for intergranular failure this
value remains as zero, characteristic of brittleness. Particularly, the rea-
son the crack mechanism switches from transgranular to intergranular
is attributed to the effect of the undermining in the mechanical perfor-
mance of grain boundaries that hydrogen causes following the interface
law described in Section 2.1.3.

In order to quantify how HE affects the mechanical performance of
the samples, the reaction force-displacement curves are plotted for the
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(a) u = 3.35×10−4 mm
(1)

(b) u = 3.35×10−4 mm
(2)

(c) u = 3.35×10−4 mm
(3)

(d) u = 3.35×10−4 mm
(4)

(e) u = 3.35×10−4 mm
(5)

(f) u = 3.35×10−4 mm
(6)

Figure 13: Crack evolution resulting in intergranular fracture for the 10-
grain benchmark sample with C = 0.25 wppm sorted by displacement.

conducted tests in Fig. 15. Envisaging the degradation of the ductility
and strength of these samples, one can extract that this follows the be-
havior law for critical interfacial energy stated in Eq. (2.19). Similarly to
this, the increasing introduction of hydrogen in the atmosphere is asso-
ciated with a saturated state for high values of C.

50-grain models

Crack nucleation and growth in a SENT plate with a microstructure of 50
grains is investigated. Within this domain, 48,554 quadratic quadrilateral
elements are used for the parametric study.

The results obtained for the case of Cenv = 0 ppm wt are shown in
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(a) (b)

Figure 14: Isocontours depicting the equivalent plastic strain at the end of
the analysis for the patterns with a) brittle and b) ductile fracture for the
10-grains benchmark examples.

Figs. (16(a)-16(f)), in terms of the phase field contours. In the absence
of hydrogen, the crack nucleates inside of the grain, in the vicinity of
the notch tip, and propagates in a transgranular manner, analog to the
10-grain case previously presented.

Contrarily, as with the 10-grained case, when the sample is exposed to
hydrogen, cracking initiates along the grain boundaries and propagates
in an intergranular manner. This is shown in Fig. 17, where the defor-
mation and separation of the grains is shown as a function of the applied
displacement for the case of Cenv = 0.25 ppm wt. The crack nucleates
close to the notch, where both hydrogen content and tensile stresses are
large (see Fig. 17(a)). As the remote load increases, the crack spreads to
neighboring grain boundaries (Figs. 17(b)-17(e)) and eventually leads to
the complete failure of the specimen (Fig. 17(f)).

Finally, the resulting force versus displacement curves are shown in
Fig. 18. The result shows that the model not only captures the shift
in cracking patterns but can also predict the progressive degradation of
fracture properties with increasing hydrogen content. Furthermore, the
results also showcase the robustness of the numerical model, as the entire
fracture process can be captured, until the complete rupture and loss of
load carrying capacity.
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Figure 15: Predicted force versus displacement curves for the 10-grain
SENT benchmark. The results are presented as a function of the environ-
mental hydrogen concentration Cenv, and images are embedded to show-
case the different intergranular (IG) and transgranular (TG) cracking pat-
terns observed.

2.3.2 Virtual slow strain rate testing on Monel K-500 sam-
ples

Recent slow strain rate tests (SSRTs) on a Ni–Cu superalloy (Monel K-
500) have revealed significant intergranular cracking depths, much larger
than those expected from diffusion calculations for relevant exposure
times [218]. Hence, these experiments suggest that crack initiation is
likely to take place much before final failure, allowing for the hydrogen-
containing solution to reach significant depths by following the crack.
Early sub-critical crack growth would imply the need for a fracture anal-
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(a) u = 5.96×10−4 mm (b) u = 6.68×10−4 mm (c) u = 6.97×10−4 mm
(1)

(d) u = 6.97×10−4 mm
(2)

(e) u = 6.97×10−4 mm
(3)

(f) u = 6.97×10−4 mm
(4)

Figure 16: Crack evolution resulting in transgranular fracture for the 50-
grain benchmark sample with C = 0 wppm sorted by displacement. Plotted
is the phase-field parameter.

ysis, compromising the suitability of the SSRT experiment and its metrics
(e.g., time to failure) in assessing hydrogen embrittlement susceptibility.
The micromechanical formulation presented can be used to gain com-
plementary insight into these paradigmatic experiments and the early
cracking hypothesis. Mimicking the testing conditions, notched cylin-
drical specimens with the dimensions shown in Fig. 19(a) are considered
in our simulations. The samples are subjected to uniaxial loading and
thus one can take advantage of axially symmetric conditions. Accord-
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(a) u = 2.75×10−4 mm (b) u = 2.75×10−4 mm (c) u = 2.75×10−4 mm

(d) u = 2.75×10−4 mm (e) u = 2.75×10−4 mm (f) u = 2.75×10−4 mm

Figure 17: Crack evolution resulting in intergranular fracture for the 50-
grain benchmark sample with C = 0.25 wppm sorted by displacement.

ingly, the sample is discretised using axisymmetrical finite elements; a
total of 64,835 quadratic elements are employed. A microscopic region is
introduced near the notch, see Fig. 19(b). This region spans a width of
0.5 mm and includes 280 grains, while the remaining part of the solid is
modelled as an isotropic continuum without interfaces. In this way, the
model can capture the two cracking modes observed in the experiments;
in the absence of hydrogen, cracking occurred at the centre of the sample
due to plastic instabilities, while in the presence of hydrogen, cracking
took place near the notch tip and was of intergranular nature [218].

As in the experiments, the remote vertical displacement is applied at
the top edge with a rate of u̇y = 1 × 10−6 mm/s. On the other hand,
both vertical and horizontal displacements are constrained at the bot-
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Figure 18: Predicted force versus displacement curves for the 50-grain
SENT benchmark. The results are presented as a function of the environ-
mental hydrogen concentration Cenv, and images are embedded to show-
case the different intergranular (IG) and transgranular (TG) cracking pat-
terns observed.

tom edge. Also mimicking the experimental campaign, four Monel K-
500 material heats were considered (Allvac, NRL LS, TR2 and NRL HS),
with their macroscopic properties being given in Table 2. The reader
is referred to Ref. [218] for a comprehensive description on the different
ageing and heat treatments employed for each lot. The phase field length
scale is assumed to be equal to ℓ = 0.025 mm and the material diffusivity
equals D = 1.3 × 10−8 mm/s [218]. The remaining fracture properties
for the bulk and interface are calibrated as follows. First, GC is chosen so
as to reproduce the experimental force versus time response in air. Then,
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(a) (b)

Figure 19: Virtual SSRT experiments on Monel K-500: (a) geometry of the
specimens, with dimensions in mm, and (b) augmented view of the region
ahead of the notch, showcasing the division between macroscopic and mi-
croscopic regions.

Table 2: Material properties for the different heats of Monel K-500 consid-
ered.

Heat E (GPa) ν σy (MPa) n

Allvac 180 0.3 794.3 0.058
NRL LS 198 0.3 715.7 0.054

TR2 202 0.3 795 0.055
NRL HS 191 0.3 910.1 0.050

the cohesive interface parameters and the hydrogen damage coefficient
χ are calibrated with the experiments conducted at the most aggressive
conditions (applied potential ofEA = −1.1 VSCE), and subsequently used
to evaluate their predictive capabilities in other scenarios (different EA

values).

Each Monel K-500 heat was tested in four different environments: in
air (i.e., in the absence of a hydrogen-containing solution) and while be-
ing exposed to solutions with the applied potentials EA = −0.85 VSCE,
EA = −0.95 VSCE, and EA = −1.1 VSCE. The diffusible hydrogen con-
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Table 3: Diffusible C (wppm) for each Monel K-500 heat for each applied
potential EA.

Heat EA = −0.85 VSCE EA = −0.95 VSCE EA = −1.1 VSCE

Allvac 1.9 4.1 7.5
NRL LS 1.3 4.7 18.3

TR2 3.7 18.6 26.2
NRL HS 4.7 11.9 23.4

centration associated with each charging condition was experimentally
measured and used as input in the model - a prescribed Cenv magnitude
at the surface. The values measured are given in Table 3 (in ppm wt).

Current simulations are performed as follows:

• First, uncharged Hydrogen specimens are conducted in order to
calibrate the value of the critical energy release rate GC for the bulk.

• Subsequently, the Hydrogen-assisted cracking phenomenon is stud-
ied in these structures incorporating the cohesive traction-separation
law (TSL). The predicted interface properties are obtained utilizing
an adjustment procedure with respect to the experimental data by
directly correlating with the load-time curves and failure mecha-
nisms.

Simulations are first conducted in the absence of hydrogen. As shown
in Fig. 20, damage initiates at the centre of the sample for sufficiently
large loads, in agreement with experimental observations. The material
toughness GC for each Monel K-500 lot is chosen so as to quantitatively
reproduce the macroscopic force versus time curve, with the fitted val-
ues being 18.5, 18.1, 15.4 and 16.9 kJ/m2 for, respectively, Allvac, NRL
LS, TR2, and NRL HS. The force versus time curves obtained for each
material lot are shown in Fig. 21. A good agreement is attained with
experimental observations, with only small differences being observed
in the early stages due to the additional compliance brought in by the
machine displacement (an extensometer was not used [218]).
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Figure 20: Virtual SSRT experiments on Monel K-500: phase field fracture
contour at the time of crack initiation. In the absence of hydrogen, cracking
takes place at the centre of the sample, in agreement with experimental ob-
servations.

The samples with a higher degree of hydrogen uptake (those charged
atEA = −1.1 VSCE) exhibit an intergranular fracture pattern, as shown in
Fig. 22. A crack nucleates in a grain boundary adjacent to the notch tip
and subsequently propagates along neighboring grain boundaries. The
force versus time curves obtained for the four material lots under an ap-
plied potential of EA = −1.1 VSCE are shown in Fig. 23. In all cases the
failure is intergranular, starting at the notch tip and triggering a signif-
icant drop in the load carrying capacity before any noticeable increase
in the phase field variable is observed. Thus, the calibrated model is
also able to capture the ductile-to-brittle transition observed in this case
study.

Interestingly, the cracking event appears to occur rather suddenly,
with the intergranular crack propagating into regions with low hydrogen
content. This would suggest that the crack resulting from the decohe-
sion of the grain boundaries exposed to a high hydrogen content would
be sufficiently large to propagate in an unstable fashion through grain
boundaries that have only been negligibly weakened by hydrogen. If
that were to be the case, then these numerical results would suggest that
SSRT is not compromised by early cracking and thus remains a valid test
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(a) (b)

(c) (d)

Figure 21: Virtual SSRT experiments on Monel K-500: numerical and exper-
imental force versus time curves obtained in the absence of hydrogen for
each material lot; namely, (a) Allvac, (b) NRL LS, (c) TR2 and (d) NRL HS.

for measuring hydrogen embrittlement susceptibility. Additional, albeit
limited, insight can be gained by a simple estimate of the transition flaw
size at = K2

Ic/(πσ
2
Y ). For Monel K-500 exposed to a relatively uniform
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Figure 22: Virtual SSRT experiments on Monel K-500: representative result
of intergranular cracking for a sample exposed to an applied potential of
EA = −1.1 VSCE. A crack nucleates at a grain boundary adjacent to the
notch tip and then propagates in-between grains towards the centre of the
sample.

hydrogen distribution resulting from an applied potential of EA = −1.1

VSCE, the transition flaw size would be on the order of 0.04 mm (see Table
2 and the KTH measurements of Ref. [32]). However, this quantity can
increase to up to 4 mm in the absence of hydrogen. Thus, the magnitude
of at relevant to this scenario (a non-uniform distribution of hydrogen)
falls between those two limiting cases, and could therefore be higher or
lower than the crack extensions predicted (0.1-0.5 mm). Another source
of uncertainty is the specific traction-separation law adopted, as assum-
ing the existence of a damage dissipation region could add an additional
source of fracture resistance.

The interface parameters that provide a quantitative agreement with
experiments are given in Table 4. The damage coefficient χ was esti-
mated based on previous (microstructurally-insensitive) phase field sim-
ulations [218]. The values of χ used are higher than those estimated us-
ing atomistic calculations for most common types of Ni grain bound-
aries [227]. However, the choices of χ values are notably sensitive to
the magnitude of the grain boundary binding energy considered in Eq.
(2.20), and the estimation of this magnitude carries a degree of uncer-
tainty [229].
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(a) (b)

(c) (d)

Figure 23: Virtual SSRT experiments on Monel K-500: numerical and ex-
perimental force versus time curves obtained under an applied potential of
EA = −1.1 VSCE for each material lot; namely, (a) Allvac, (b) NRL LS, (c)
TR2 and (d) NRL HS.

The calibrated model is used to reproduce the entire experimental
campaign, conducting virtual experiments on the four material lots over
the four environments considered. We summarise the outcome of the
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Table 4: Interface material parameters, as estimated by quantitatively re-
producing the experiments conducted at an applied potential of EA = −1.1
VSCE.

Allvac NRL LS TR2 NRL HS

kn, kt (108 MPa/mm) 2.00 2.00 2.00 2.00
tnc,0, ttc,0 (104 MPa) 2.07 2.78 2.23 2.13
γIC,0, γIIC,0 (kJ/m2) 1.07 1.92 1.24 1.12

χ 0.85 0.82 0.86 0.79

Table 5: Virtual SSRT experiments on Monel K-500: predicted fracture
mechanism (IG = intergranular, TG = transgranular) for each combination
of material heat and environment. Green check marks and red crosses are
used to respectively denote when predicted mode of cracking agrees or dis-
agrees with the experimental observation.

EA (VSCE) Allvac NRL LS TR2 NRL HS

0 (Air) TG ✓ TG ✓ TG ✓ TG ✓
0.85 TG ✓ TG × TG ✓ -
0.95 TG ✓ IG ✓ IG ✓ TG ✓
1.1 IG ✓ IG ✓ IG ✓ IG ✓

simulations in Table 5, indicating the failure model predicted (brittle inte-
granular/IG or ductile transgranular/TG). Green check marks are used
to denote when the predicted mode of cracking agrees with the experi-
mental observation, with red crosses denoting otherwise. As observed,
the model is capable of predicting the occurrence of hydrogen-assisted
brittle failures in all but one case - the experiment on the NRL LS heat at
EA = −0.85 VSCE. As discussed in Ref. [218], this is a rare case as SEM
images of the fracture region reveal intergranular features but the time
to failure happens to be larger than that measured in the absence of hy-
drogen. It is thus concluded that the micromechanical model presented
is capable of predicting hydrogen embrittlement upon appropriate cali-
bration.
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2.3.3 Failure of pure Ni samples at ambient and cryogenic
temperatures

Finally, we employ the micromechanical cohesive zone - phase field for-
mulation developed to shed light on the interplay between diffusion, de-
formation, temperature, and embrittlement on pure Ni. Harris et al. [86]
investigated the contribution of mobile hydrogen-deformation interac-
tions to hydrogen-induced intergranular cracking in polycrystalline Ni
by testing hydrogen charged samples at both ambient (298 K) and cryo-
genic (77 K) temperatures. Their uniaxial mechanical tests showed that
embrittlement (hydrogen-assisted intergranular cracking) occurred even
at cryogenic temperatures, where dislocation-hydrogen interactions are
precluded. This suggests that hydrogen-assisted decohesion of grain
boundaries is a first-order mechanism in hydrogen embrittlement. It
was also found that intergranular microcrack evolution was enhanced
at room temperature, relative to 77 K, but a mechanistic interpretation of
this finding was deemed complicated due to the multiple factors at play.
Here, we examine the ability of our micromechanical model to quan-
titatively reproduce the seminal experiments by Harris et al. [86] and
use the numerical insight provided to gain further understanding on the
role of temperature in enhancing embrittlement. The material properties
adopted correspond to those reported by Harris et al. [86], which are
listed in Table 6 as a function of the temperature and the environment.
Two environmental conditions are considered: (i) samples tested in air,
without any hydrogen pre-charging, and (ii) samples exposed to a hy-
drogen content of 4000 appm (79.5 wppm). In the latter, gaseous hydro-
gen charging is used and the hydrogen is distributed uniformly within
the samples. Mimicking the experimental conditions, the uniaxial load
is prescribed by applying a remote vertical displacement with a rate of
u̇y = 0.0078 mm/s, while the bottom edge is completely constrained
(ux = uy = 0).

The samples are cylindrical bars with the dimensions given in Fig.
24(a). As in the previous case study, we take advantage of axial symme-
try and model half of the 2D section using axisymmetric elements. A to-
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Table 6: Material properties reported for polycrystalline Ni samples at the
two temperatures (77 and 298 K) and environments (79.5 wppm H and air)
considered.

Temperature 77 K RT

no H H no H H
E (GPa) 227 227 202 202

ν 0.3 0.3 0.3 0.3
σy (MPa) 222 233 182 192

n 0.159 0.159 0.140 0.140
D (mm2/s) 10−15 10−15 10−9 10−9

Table 7: Calibrated traction-separation law parameters to describe the de-
cohesion of pure Ni grain boundaries.

kn,kt (MPa/mm) tnc,0, ttc,0 (MPa) γIC,0, γIIC,0 (MPa × mm)

2× 108 7.83× 104 0.88

tal of approximately 80,000 quadratic axisymmetric elements are used to
discretise the model. As shown in Fig. 24(b), we introduce a microstruc-
tural domain of 200 grains in the central region of the sample. The phase
field length scale is taken to be equal to ℓ = 0.025 mm, and the toughness
GC is calibrated to reproduce the experiments in the absence of hydrogen,
rendering values of 4 kJ/m2 (77 K) and 2.5 kJ/m2 (RT). The interfacial co-
hesive properties are adjusted to reproduce the experiments at 77 K and
then used to see if the results at room temperature can be predicted. The
specific values used are given in Table 7 and, following the approach of
Ref. [78], a phenomenological degradation law is adopted, such that

γc(θH) = γC,0

(
17.52 exp(−2.75θH)

)
(2.32)

with the Gibbs free energy being equal to 17 kJ/mol [230].
As shown in Figs. 24(c)-24(d) and Fig. 25, the model is able to re-

produce experimental measurements beyond the regimes of calibration,
both qualitatively and quantitatively. Consider first the cracking patterns
shown in Fig. 24. In the absence of hydrogen (Fig. 24(c), failure takes
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(a) (b) (c)

(d)

Figure 24: Role of temperature on the failure of polycrystalline Ni samples:
(a) geometry with dimensions in mm, where d = 4 mm for 77 K and d =
3.6 mm for RT specimens [86], (b) augmented view of the microstructure re-
gion, with 200 grains, (c) ductile (transgranular) damage, as predicted by the
phase field, and (d) intergranular crack nucleation and growth, as assisted
by hydrogen. Representative results shown from calculations at ambient
temperature.

place due to the onset of ductile (transgranular) damage in the centre of
the sample, as predicted by the phase field order parameter. However,
when the sample is exposed to hydrogen, then cracking takes place in
an intergranular fashion, as a result of the failure of the cohesive zone
interfaces. The location of the grain boundary decohesion event that nu-
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Figure 25: Role of temperature on the failure of polycrystalline Ni samples:
engineering stress-strain curves for both H-charged and non-charged sam-
ples pulled to failure at 77K and at ambient temperature (298 K).

cleates the brittle crack is random. For the microstructure and conditions
of Fig. 24(d), it occurs close to the edge of the sample, with the crack
growing then both towards the outer surface and towards the centre of
the sample. This change from ductile transgranular damage to brittle in-
tergranular cracking due to hydrogen is observed at both 77 and 298 K,
as in the experiments.

The quantitative results obtained for the four scenarios are shown in
Fig. 25, in terms of the predicted and measured engineering stress-strain
curves. A very good agreement with the experiments is observed. In-
terestingly, the good agreement observed for the case of the hydrogen-
charged sample suggests that the higher degree of embrittlement ob-
served at room temperature can be rationalised by the additional accu-
mulation of hydrogen at grain boundaries due to diffusion, without the
need for additional contributions from mechanisms such as those associ-
ated with hydrogen-deformation interactions.
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Chapter 3

Fracture in pre-stressed
cylindrical bio-inspired
elastomer-like materials

Chapter 3 is based on our own publication [231].

In order to analyze, mitigate and potentially prevent failure of pre-
stressed cylindrical structures, the development of a rigorous and sophis-
ticated theoretical analysis, within the more complex large deformation
theory, is required. This is usually complemented with the advent of reli-
able numerical techniques to obtain a general modelling framework that
allows qualitatively and quantitatively different aspects such as the non-
linear behavior of (visco-hyperelastic) materials to be considered [232].
This constitutive material model is often related to its microstructure in-
cluding a network of highly flexible and mobile chains which are three
dimensional cross linked. Particularly, in polymers, the movement of the
chains is associated with viscous effects occurring in the rubber-like ma-
terial, see [233] and references therein. Moreover, as reported in [234], in
materials prone to experience viscous effects, the principal failure mech-
anism of a considerable number of elastomers is strongly affected by the
inelastic term and the rate of deformation. Accordingly, several rheolog-
ical models have been developed to describe the viscoelastic constitutive
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law for elastomers which can be split into linear [235, 236, 237, 238, 239]
and non-linear viscoelasticity [240, 241, 242].

Within failure analysis of cracking events, fracture in elastomer-like
materials is often related to either nucleation of cavities (cavitation) [243]
or crack propagation. The latter is the focus of this work and a macrome-
chanics approach is pursued. In the literature, several methods have
been proposed to model fracture for visco-hyperelastic materials [244].
These methods include fracture mechanics-based methodologies [245,
246], path-independent J-integral formulations [247, 248, 249], cohesive
methods [250, 251] and peridynamical approaches [252, 253], among oth-
ers. Recently, the phase field approach to fracture has emerged as a
new modelling technique to simulate rate-dependent fracture evolution.
Concerning the application to different kinds of materials, in addition to
brittle fracture [47, 254, 255, 256], it is known that the phase field tech-
nique has been extended to ductile fracture [224, 257, 55, 258, 259, 260,
261], anisotropic fracture [262, 263, 80, 264, 265, 266], dynamic fracture
[267, 268, 49], and failure of heterogeneous media [79, 269, 60, 270, 271,
272]. Therefore, it is not unexpected to see its implementation to sim-
ulate fracture phenomena in visco-elastic materials [273, 274, 275, 276,
277], along with another nonlocal damage techniques like the element
failure method [278, 279]. Arterial tissues are encompassed in the field
of visco-hyperelastic materials, and its fracture modelling by the phase
field technique has been already proposed in absence of residual stresses
[280].

We aim, by employing the current visco-hyperelastic theory, to for-
mulate a phase field model able to capture fracture events in hyperelastic
and visco-elastic solids, a topic broadly covered as has been aforemen-
tioned. Once this framework is implemented, the salient novelty of the
present research is the subsequent incorporation of residual stresses in
order to model fracture for pre-stressed cylindrical structures based in
arteries, being this combined modelling the main aim of the paper. For
that last purpose, we use a constitutive law for residually stressed hyper-
elastic materials given in terms of invariants, see [281, 282, 283, 284, 285,
20].
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In order to tackle the targets of this work, the phase field approach for
visco-elastic fracture proposed by [275] is combined with the rheological
approach given in [233]. Accordingly, a new model is generated enabling
the investigation of fracture phenomena for elastomers with viscous re-
sponse. Furthermore, the model is extended to simulate pre-stressed
cylindrical structures based in arteries using the constitutive framework
proposed in [281]. The viscoelastic effect and the residual stresses are
defined separately and are added subsequently to give the total energy
driving force of the system complying with thermodynamic restrictions
and establishing the corresponding modular format of the theoretical
framework.

Chapter 3 is structured as follows. The formulation, which consists
in the hyperelastic viscoelastic material law at hand, is developed in Sec-
tion 3.1. The phase-field governing functional along with its compu-
tational implementation in an UMAT subroutine is presented in Section
3.2. A benchmark example is carried out in Section 3.3.1 to verify the
hyper-visco elastic formulation. Cylindrical structures are simulated in
Section 3.3.2 where a deep parametric study is carried out for viscosity-
dependent parameters such as relaxation time and displacement rate and
for different residual stress fields. Since many vanguard technologies are
employing multi-layered structures with different mechanical and frac-
ture properties [286, 287], in Section 3.3.3, the analysis of a two-layer hol-
low thick-walled cylinder is executed to address the dependence of shear
modulus mismatch between the layers, as well as fracture energy mis-
match, and the presence of pre-stresses on the mechanical performance
of this structural element.

Nomenclature

Ω0 Body domain in the initial configuration
Rn Collection of ordered lists of n real numbers
X Arbitrary spatial point on the initial configuration
Γℓ Discrete internal discontinuity
t Current time
Ω Body domain in the current configuration
x Arbitrary spatial point on the current configuration
∂Ω0 Boundary of the solid in the reference configuration
N Initial normal outward vector
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Nomenclature

∂Ω0,u Boundary region with a Dirichlet condition of prescribed displacements in Ω0

u Displacement field
∂Ω0,t Boundary region with a Neumann condition of prescribed tractions in Ω0

T First Piola-Kirchhoff traction vector
φ Nonlinear deformation map
F Deformation gradient
∇X Gradient operator in the reference configuration
∇x Gradient operator in the current configuration
1 Second order identity tensor
H Material displacement gradient tensor
J Jacobian, determinant of F
det Determinant
C Right Cauchy-Green tensor
b Left Cauchy-Green tensor
t Cauchy traction vector
n Current normal outward vector
σ Cauchy’s stress tensor
P First Piola-Kirchhoff stress tensor
dA Differential of nominal area
da Different of engineering area
S Second Piola-Kirchhoff stress tensor
Π Total potential energy
Ψ Strain energy density
G Energy release rate
GC Material toughness
Πext External potential energy
d Phase-field parameter
ℓ Length scale parameter
γl Crack surface density function
w Geometric crack function
cw Phase-field scaling parameter
g(d) Degradation function
Ψhyp Strain energy density term dedicated to the constitutive hyperelastic branch
Ψvisco,α Strain energy density term dedicated to every viscous branch
n Number of viscous terms considered
α Viscous branch
Ψres Strain energy density term dedicated to the residual stresses
A Tensor that considers the microscopical stretches in the reference configuration
λ Chain stretch vector
σ0 Residual stress field
Ψvol Volumetric contribution for the strain energy density term
Ψiso Isochoric contribution for the strain energy density term
G Shear modulus
κ Bulk modulus
Īn Deviatoric n-th invariant
In N-th invariant
tr(•) Trace operator
p Probability function associated to the state of the polymeric chains
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Nomenclature

Lx Stretch space in the current configuration
LX Stretch space in the reference configuration
P̄ Microdeformation map tensor
P̄X Pre-microdeformation map tensor
F̄ Isochoric part of the deformation gradient
τα Relaxation time for the viscous branch α
P Fourth-order projector operator
∇ · [•] Divergence operator
f Weight of the invariants for the residual stresses
ΠΩ Term of the energy functional associated with the energy stored in the solid
ΠΓℓ

Term of the energy functional associated with the energy necessary to create a crack
H History variable parameter
tf Final time of test
Ψ+ Term of the strain energy density associated with tensile states
Ψ− Term of the strain energy density associated with compressive states
H+ History variable parameter associated to tensile states
K Residual stiffness
E Green-Lagrange strain tensor
χ Pseudo-viscous resistance
φ∗ Push-forward operator
ρ Mass density
cp Heat capacity
q Heat flux
k Heat conductivity
T Temperature
rT Spatial heat source
∆t Time increment
a Tensor that considers the microscopical stretches in the current configuration
δij Kronecker’s delta
Cijkl Material tangent
Cmat
ijkl Contribution of the visco-hyperelastic law to the material tangent

Cres
ijkl Contribution of the residual stresses to the material tangent

a Crack length
v Displacement rate
R,Θ, Z Cylindric coordinates
σ0RR Radial residual stress
σ0RZ Shear radial-axial residual stress
σ0ΘΘ Azimuthal residual stress
σ0ZZ Axial residual stress
σ0ΘZ Shear azimuthal-axial residual stress
σ0RΘ Shear radial-azimuthal residual stress
A Inner radius of the cylindrical structure
B Outer radius of the cylindrical structure
αc R-dependent dimensionless residual stress intensity parameter
αd Z-dependent dimensionless residual stress intensity parameter
L Length of the cylinder
H Thickness of the cylinder
ν Poisson’s ratio
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3.1 Governing equations and constitutive for-
mulation

This section outlines the fundamental concepts and definitions for hyper-
elastic and visco-hyperelastic solids within the scope of the phase field
approach to fracture.

3.1.1 Basic definitions

Complying with standard nonlinear Continuum Mechanics, the refer-
ence configuration of an arbitrary body is denoted by Ω0 ⊂ Rn, being the
arbitrary material points in the reference placement denoted by the vec-
tor X and it possesses an internal discontinuity Γℓ. Throughout the de-
formation process this reference configuration is mapped at an arbitrary
elapsed time t, with T = [0, t] onto the corresponding current configura-
tion Ω ⊂ Rn whose position vectors are identified by the vector x(X, t).
This transformation is exhibited in Fig. 26. With a reference normal out-
ward, N, the delimiting surface ∂Ω0 of the body is decomposed into: the
region ∂Ω0,u, where the displacement u is prescribed by Dirichlet-type
boundary conditions (BCs) and ∂Ω0,t, where the nominal tractions T is
prescribed via Neumann-type conditions.

The transformation of the differential line elements throughout the
deformation process is characterized by the deformation gradient F whose
definition renders

F := ∇Xφ(X, t) = 1+H(X, t) (3.1)

being 1 the second order identity tensor and H(X, t), the material dis-
placement gradient tensor. The Jacobian, i.e. the ratio of the deformed
to the undeformed volume, being the determinant of F fulfills the condi-
tion of J = det[F] > 0. In order to track the motion of the body from the
material to the spatial configuration at time t, the displacement vector is
defined as:

u(X, t) := x(X, t)−X (3.2)
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Figure 26: Deformation process from the reference configuration to the cur-
rent one.

Accordingly, the right and left Cauchy-Green tensors are obtained as,
respectively:

C := FT · F; b := F · FT (3.3)

The delimiting surface of the body is decomposed into two regions:
one where the displacements u are prescribed through Dirichlet-type
boundary conditions (BCs), ∂Ω0,u and one where the tractions T are pre-
scribed via a Neumann-type BC, ∂Ω0,t, such that ∂Ω = ∂Ω0,u ∪∂Ω0,t and
∂Ω0,u ∩ ∂Ω0,t = ∅. For the Neumann condition, we can establish a lin-
ear dependency between the nominal traction vector T and the reference
normal outward N through the following theorem:

T = P ·N (3.4)

where P is the first Piola-Kirchhoff stress tensor. Equivalently, the Cauchy
stress tensor σ can be defined via this theorem by performing a push-
forward operation to refer to the current configuration Ω:
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Figure 27: Schematic representation of the two-field large deformation
boundary value problem concerning residual stresses: (a) displacement
field and (b) phase field parameter for fracture.

t = σ · n with σ = J−1P · FT (3.5)

The relation between Eqs. (3.4) and (3.5) is obtained by considering
TdA = tda. In order to compute a symmetric Langragian tensor, the
second Piola-Kirchoff stress tensor S serves for this duty in the reference
configuration and it reads as

S = F−1 ·P = J F−1 · σ · F−T (3.6)

Crack events in the proposed modelling framework are accounted for
the consideration of the phase field approach [46]. The crack-phase field
variable is described via the material variable d(X, t):

d(X, t) : Ω0 × T → [0, 1] (3.7)

where the state d(X, t) = 0 identifies an intact stiffness at the material
point level, whereas d(X, t) = 1 denotes a fully deteriorated stiffness, all
of them referred to the reference configuration. The large deformation
problem is represented in Fig. 27 comprising the two fields to be solved:
the displacement field u and the phase field parameter d.
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Figure 28: Maxwellian rheological model of the response of the material
consisting of the elastic branches, representing the strongly cross-linked net-
work, and the viscous branches, representing the highly mobile with entan-
glements subnetwork.

3.1.2 Constitutive formulation

With regard to the constitutive formulation, this subsection presents the
particular visco-hyperlasticity model adopted from [233]. This formula-
tion relies on the consideration of its microstructure (highly mobile and
flexible macro-molecules). The resulting constitutive equations of rub-
ber viscoelasticity are obtained under the assumption of the polymer mi-
crostructure behaving like several idealized polymer networks. This me-
chanical response is characterized by macromolecules which are strongly
cross-linked in a network, where there is a sub-network with highly mo-
bile and temporary entanglement mechanisms. The cross-linking is re-
lated to the elastic response, whereas the subnetwork is responsible for
the viscous behaviour. The macroscopic representation of the system is
seen in Fig. 28. Following this definition, the macroscopic finite rubber
response can be defined based on a volumetric-isochoric decomposition,
where the latter part itself is decomposed into an elastic and a viscous
term, respectively.

Concerning the incorporation of residual stresses, a nonlinear consti-
tutive law that depends on a number of invariants is considered recall-
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ing the original framework developed in [288, 281]. This formulation
presents the following advantages: (i) it can be implemented into stan-
dard FE codes in a straightforward manner, (ii) it can be combined with
different kinds of mechanical problems, and (iii) it precludes the use of
the multiplicative descomposition as is proposed in [289]. With these ar-
guments, the Helmholtz free energy function Ψ(C,A,σ0) is postulated
as follows:

Ψ(C,A,σ0) = Ψhyp(C) +

n∑
α=1

Ψvisco,α(C,A) + Ψres(C,σ0) (3.8)

where we have the expression for the free energy divided in three terms
associated to the main features of the model: (i) Ψhyp, related to the
hyperelastic constitutive part; (ii) Ψvisco,α, dedicated to every α viscous
branch; and (iii) Ψres, referred to the residual stresses present in the model.
n makes reference to the number of viscous terms considered in the rhe-
ological model; A, to the tensor that considers the stretches λ from the
microscopical system of polymer chains; and σ0, to the residual stress
field in the reference configuration.

First, focusing on the hyperelastic term, Ψhyp, this also can be split
into the corresponding volumetric (Ψvol) and isochoric (Ψiso) contribu-
tions:

Ψhyp(C) = Ψiso +Ψvol (3.9)

which can be specialized to a standard neo-Hookean model:

Ψiso =
G

2
(Ī1 − 3), Ψvol =

κ

2
(J − 1)2 (3.10)

where G and κ denote the shear and the volumetric constant, respec-
tively; and Ī1 is the first invariant of the deviatoric left Cauchy-Green
tensor which has the value of Ī1 = J−2/3I1 = J−2/3tr[C].

The second Piola-Kirchhoff stress for the hyperelastic term Shyp is
evaluated as:

Shyp := 2
∂Ψhyp

∂C
= 2J−2/3G

(
1− I1C

−1

3

)
(3.11)
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For the second term in Eq. (3.8), the viscous part of the model, Ψvisco,
and the corresponding second Piola-Kirchhoff viscous overstress, Svisco,
is particularized without any loss of generality to the model proposed by
Linder and co-authors [233]. In this work, it is observed how the visco-
elastic contribution is constructed from the microscopical description of
the polymer chains movement, being this microscopic-based approach
embedded into the current continuous framework of finite rubber vis-
coelasticity. The temporary state of such system of polymer chains is
measured by a probability function p(λ, t) obtained from the diffusion
process. This magnitude is dependent from the stretch state of the chain
λ. By representing this probability function in a tensorial form, we can
associate a stretch space Lx connected locally to a material point with po-
sition x in the current configuration Ω ⊂ Rn and map his evolution from
the initial stretch space LX, linked to a material point with position X in
the reference configuration Ω0 ⊂ Rn, by means of the microdeformation
map P̄. More particular details are omitted here for the sake of brevity
and the reader is referred to [233]. Recalling this constitutive model, via
the definition of a so-called microdeformation map P̄, it is possible to
account for the micromechanics of the system by defining:

P̄ = F̄P̄X (3.12)

where P̄X stands for the pre-deformation map tensor, and F̄ is the iso-
choric part of the deformation gradient at the macroscopic level.

After some operations, one reaches the definition of the tensor A

A = P̄XP̄T
X. (3.13)

Note that the tensor A provides the information concerning the mi-
crodeformation of the visco-elastic subnetwork in the initial configura-
tion and it depends on macroscopic variables. Accordingly, the time evo-
lution equation of this tensor reads

Ȧ =
1

τα
(C̄−1 −A) (3.14)

where C̄−1 is the inverse of the isochoric part of the right Cauchy-Green
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tensor, and τα, the relaxation time associated to the viscous mechanism
α.

After the previous definitions, the viscous counterpart of the free en-
ergy density is obtained for every α polymer chain network

Ψvisco,α(C,A) =
1

2
Gvisco,α[(A(α) : C̄)− ln(detA(α))] (3.15)

being Gvisco,α the shear modulus for each mechanism.
After some algebraic manipulations, the resulting closed form expres-

sion for the viscous part of the hyperelastic energy allows the computa-
tion of the second Piola-Kirchhoff viscous overstress tensor S(visco,α) for
each α mechanism, which reads

S(visco,α) = J−2/3P :
(
Gvisco,αA(α)

)
(3.16)

where P is the fourth-order projector operator

P : (•) = • − 1

3
[(•) : C]C−1. (3.17)

Regarding the last term, associated with residual stresses, Ψres, in Eq.
(3.8), a few assumptions are made about the particular form of the stress
field σ0 that is defined in the reference configuration. Following [281],
this stress field is assumed to be symmetric, and fulfilling the conditions:

∇X · σ0 = 0 in Ω0, (3.18)

σ0 ·N = 0 on ∂Ω0,t (3.19)

Exploiting the previous assumptions, the particular form of Ψres(C,σ0)

is given by

Ψres(C,σ0) =
f

2
(I5 − trσ0) +

1− f

4
(I6 − trσ0) (3.20)

where I5 = tr(σ0C) and I6 = tr(σ0C
2) are the invariants associated

with the residual stress field and f is a parameter that accounts for the
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weight of these invariants in the equation. As this is a nonlinear problem,
the residual stresses are necessarily nonuniform and geometrically de-
pendent, and the elastic response of the system will be in-homogeneous
[282].

For the subsequent numerical implementation, the contribution of the
residual stresses to the Second Piola-Kirchhoff stress is computed as:

Sres = 2
∂Ψres

∂C
= 2J−1/3

(
fσ0

2
−fI5C

−1

6

)
+(1−f)J−2/3

(
1

4

∂I6
∂C

−I6C
−1

6

)
.

(3.21)
where we have needed the forthcoming expressions to account for the
derivative ∂Ψres

∂C
∂I5
∂C

= σ0,
∂I6
∂C

= σ0C+Cσ0 (3.22)

Considering Eqs. (3.11), (3.16) and (3.21), one reaches the complete
form of total second Piola-Kirchhoff stresses herein proposed:

S = Shyp +

n∑
α=1

Svisco,α + Sres. (3.23)

3.2 Phase-field: governing functional and im-
plementation details

3.2.1 Governing functional

The governing functional of the phase field approach to fracture (gov-
erning crack nucleation, propagation and branching) is recalled by the
definition of the corresponding energy functional [47, 57]. In line with
the ideas of [45], we define the energy functional Π(u,Γℓ) of the system
in the reference configuration as:

Π(u,Γℓ) = ΠΩ(u,Γℓ)+ΠΓℓ
(Γℓ) =

∫
Ω0

Ψ(C,A,σ0, d)dV+

∫
Ω0

GCγl(d,∇Xd)dV

(3.24)
where Ψ(C,A,σ0, d) refers to the expression defined in Eq. (3.8), GC

stands for the fracture energy (independent of viscoelastic parameters);
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and γl is the crack energy density functional. There are two different
terms in Eq. (3.24), being ΠΩ(u,Γℓ) the one that represents the energy
stored in the solid and ΠΓℓ

(Γℓ), the energy necessary to create the crack
according to Griffith theory.

Without loss of generality, the driving force for damage evolution is
assumed to be driven by the free energy function stated above, Ψ(C,A,σ0, d).
Therefore, upon the occurrence of cracking events, we postulate a degra-
dation function g(d) affecting to Ψ(C,A,σ0): Ψ(C,A,σ0, d) = g(d)Ψ(C,A,σ0).

Moreover, in order to prevent self-healing at the material point level,
the engineering formulation proposed by Miehe and co-authors [47] is
used. This formulation assumes a time-dependent t history variable pa-
rameter H:

H = maxt∈[0,tf ]Ψ(C,A,σ0, t). (3.25)

The so-called crack density functional defined above, γl(d,∇Xd), de-
pends upon the length-scale parameter ℓ and the continuous scalar-valued
phase field variable d. As we adopt the AT-2 approach [46], we adopt the
value for the crack density functional stated in Eq. (1.10), the degrada-
tion function stated in (1.9) and the values for the parameters w(d) = d2

and cw = 1
2 .

It is important to remark the necessity to propose a formulation where
crack growth only accounts while in a tension state. Therefore, to dis-
tinguish these states, we will consider the approach proposed by Bor-
den and co-authors [55]. In here, there is a decomposition of the elastic
strain energy density Ψ to distinguish between tensile Ψ+ and compres-
sive states Ψ−. With these ingredients at hand, Eq. (3.24) is reformulated
as:

Π(u, d) =

∫
Ω0

[g(d)Ψ+(C,A,σ0, J) + Ψ−(J)]dV

+

∫
Ω0

[
GC

2ℓ
d2 + GCℓ|∇Xd|2

]
dV.

(3.26)

In order to define the tensile and compressive states for the strain
energy density, we employ the isochoric-volumetric decomposition of
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Amor and co-authors [52]:

Ψ+(C,A,σ0, J) =

{
Ψhyp(C) +

∑n
α=1 Ψ

visco,α(C,A) + Ψres(C,σ0) if J ≥ 1

Ψiso(C) +
∑n

α=1 Ψ
visco,α(C,A) + Ψres(C,σ0) if J < 1

(3.27)

Ψ−(J) =

{
0 if J ≥ 1

Ψvol(J) if J < 1
(3.28)

where the expressions for the isochoric Ψiso and the volumetric Ψvol can
be found in Eq. (3.10).

Therefore, as the degradation function only multiplies the positive
cases Ψ+, the history field variable is defined upon them H+.

H+ = maxt∈[0,tf ]Ψ
+(C,A,σ0, t). (3.29)

The solution of Eq. (3.26) can be obtained by solving it as a minimiza-
tion problem.

Determine (u, d) from
(u∗, d∗) = argmin

S
Π(u, d), (3.30)

with S = {ḋ ≥ 0 for all X ∈ Ω0}.
Following a standard Galerkin procedure, the weak form of the cou-

pled displacement u and fracture problem d in Eq. (3.26) can be obtained
as:

δΠ(u, δu, d, δd) =

∫
Ω0

S : δEdV︸ ︷︷ ︸
δΠu

int

−

∫
Ω0

[g′(d)(δd)Ψ+]dV +

∫
Ω0

GCℓ

[
d

ℓ2
δd+∇Xd · ∇X(δd)

]
dV︸ ︷︷ ︸

δΠd
int

.

(3.31)
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where E refers to the Green-Lagrange strain tensor, which reads as E =
1
2 (C−1). Upon the exploitation of the product rule and the Gauss’ diver-
gence theory on Eq. (3.31), the phase field evolution equation is obtained
as

−2(1− d)Ψ+(C,A,σ0)︸ ︷︷ ︸
H+

+GC

(
1

ℓ
− ℓ∇2

Xd

)
= 0. (3.32)

Despite the robustness of the proposed formulation, convergence is-
sues may arise due to local instabilities. Therefore, according to [275], a
pseudo-viscous resistance against phase field evolution χ is added as a
positive viscous damping term. This is a parameter is employed in or-
der to increase the numerical stability and to account for the results of
quasi-brittle fracture, which are obtained for χ = 0. By increasing χ, the
fracture gets delayed compared to brittle fracture. However, χ should be
kept as a very small number, since large values of this parameter leads
to numerical instabilities in achieving equilibrum solutions. The term is
added to Eq. (3.32) and it yields

−2(1− d)Ψ+(C,A,σ0)︸ ︷︷ ︸
H+

+GC

(
1

ℓ
− ℓ∇2

Xd

)
+ χḋ = 0. (3.33)

3.2.2 Implementation details

This section briefly describes the numerical implementation of the cur-
rent phase field model for hyperelastic (rate independent) and visco-
hyperelastic (rate dependent) media including residual stresses.

General remarks

The numerical implementation of the current model complies with the
use of a thermo-mechanically coupled FE formulation. This scheme has
been already exploited by different authors, see Ostwald and co-authors
[290] for its application to nonlocal regularized damage models and Navidtehrani

79



and co-authors [291, 292] for phase field methods. In particular, we ex-
ploit a modified version of the numerical approach developed in [291] in
the software ABAQUS using a user material subroutine UMAT in conjunc-
tion to the functionality HETVAL, that provides an internal heat genera-
tion in heat transfer analysis at the integration point level 1. The princi-
pal reason motivating this option for the current numerical framework is
twofold: (i) from the user’s perspective, it is not required to implement
a user-defined element via the subroutine UEL of ABAQUS for the phase
field governing functional and, (ii) the use of the initial state dependent
variable routine SDVINI for the incorporation of residual stresses can be
employed without any restriction.

According to Navidtehrani and coauthors [291, 292], the resulting
coupled thermo-mechanical problem is solved using a staggered itera-
tive solution for the obtention of the solution of the displacement and the
phase field variables. Note that staggered iterative solution procedures
generally require the use of sufficiently small load increments in order to
ensure that the solution does not deviate from the equilibrium one [47].
Concerning the FE mesh characteristics, the present formulation are inte-
grated into first-order hexahedral (quadrangular in 2D) hybrid elements
with full integration.

Regarding the mechanical sub-problem, the mechanical user-defined
material model using the UMAT capability requires the computation of
the Cauchy stress tensor (STRESS in ABAQUS), the mechanical tangent
(DDSDDE in ABAQUS), and the state dependent variables vector STATEV.
In line with the derivation presented in Section 3.1.2, the material for-
mulation is formulated in terms of the right Cauchy-Green deformation
tensor C and the second Piola-Kirchhoff stress tensor S. The Cauchy
stress tensor σ can be obtained from a weighted push-forward of S such
that σ = J−1φ∗[S], see Eq. (3.36) for the corresponding definition. The
mechanical tangent can be accordingly derived as is presented in Section
3.1.2. Finally, a set of state dependent variables is also defined encom-
passing: (i) the current value of the free-energy function, (ii) the maxi-

1This is required since previous versions of ABAQUS 2019 do not compute properly the
volumetric heat generation.
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mum value of the driving force H throughout the loading process, (iii)
the fracture toughness, and (iv) the length scale parameter.

With respect to the thermal problem, we start the derivation from
the local spatial form of the heat equation. Assuming an homogeneous
and temperature independent mass density ρ, a homogenous and tem-
perature independent heat capacity cp, and thermal isotropy recalling
the Duhamel’s law of heat conduction that yields to Fourier’s law, q =

−k∇xT (where q is the heat flux, thermal conductivity k and ∇xT is the
gradient of the temperature T ), the heat equation can be expressed as:

ρcp
∂T

∂t
− k∇x · [∇xT ] = rT , (3.34)

where rT is the spatial heat source.
The governing equation, Eq.(3.33) for the phase field resembles the

form of the heat equation given in Eq. (3.34) after rearranging some of
the terms. The main difference between both expressions lies in the com-
putation of the gradient of phase field variable that should be mapped
onto the current configuration. For this purpose we recall standard push-
forward operations, where the gradient of the phase field in analogy with
the temperature:

∇xd = F−T∇Xd (3.35)

Moreover, in line with Hortig [293], a unit mass density can be de-
fined yielding to the identification of the variable χ with the heat capac-
ity cp, whereas the heat generation should be also activated and setting
as material property the thermal conductivity k equal to 1.

Derivation of the numerical implementation of the constitutive model

To fully implement the UMAT subroutine, the stress field and the Jacobian
matrix are required to be computed for the current system of coordinates.
For that reason, there is a need to perform a push-forward operation for
these magnitudes to obtain the Cauchy stress and the spatial constitu-
tive tensor. It is important to highlight that all the calculations are made
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for the reference configuration and then, we push-forward the required
variables at the end to adjust to the requirements of the UMAT subroutine.

Starting with the terms for the stresses, these are known to be easily
computed by doing the following product to the different terms for the
second Piola-Kirchhoff stress in Eq. (3.23)

σ = J−1F · S · FT. (3.36)

This operation is straightforward for the terms related to the hyper-
elastic (Eq. (3.11)) and the prestresses (Eq. (3.21)). However, it is im-
portant to highlight some remarks about the evolution in time of the vis-
cous stresses (Eq. (3.16)), regarding the time dependence of the tensor A,
which needs to be properly addressed. This magnitude is updated for
every iteration in the staggered scheme following the expression:

A
(α)
n+1 = A(α)

n +∆tȦ
(α)
n+1 (3.37)

which can be developed by considering the expression for Ȧ(α) in Eq.
(3.14) as

A
(α)
n+1 =

(
1

1 + ∆t/τ (α)

)[
A(α)

n +
∆t

τ (α)
(C̄−1

n+1)

]
. (3.38)

where ∆t is the time increment. Subsequently after this, we decide to
perform the push-forward operation in the tensor A(α) like: a

(α)
n+1 =

Fn+1A
(α)
n+1F

T
n+1. The reason on why performing this action here rather

than when computing S
(visco,α)
n+1 relies on a considerable improvement in

the convergence rate. Therefore, after doing some algebra, the expression
for the Cauchy viscous overstress in the UMAT is found

σ
(visco,α)
n+1 = J−5/3

(
Gvisco,α

1 + ∆t/τ (α)

)[
a
(α)
n+1 −

1

3
tr
(
a
(α)
n+1

)
1

]
. (3.39)

Next, in order to compute the material Jacobian in the current config-
uration, it is considered two separate terms: at first, one for the material
(hyper-viscoelastic law), which has the formula of
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Cmat
ijkl =

1

2
J−1

(
Flm

∂(Jσij)

∂Fkm
+ Fkm

∂(Jσij)

∂Flm

)
(3.40)

where

∂(Jσij)

∂Fkm
= GJ−2/3

(
δikFjm+δjkFim−2

3
δijFkm−2

3
bijF

−1
mk+

2

9
(tr b)δijF−1

mk

)
+ κδijF

−1
mk +

∑
α

{
J−2/3

(
Gvisco,α

1 + ∆t/τ (α)

)[
− 2

3
F−1
mk(Fn+1A

(α)
n FT

n+1)ij

+
2

9
F−1
mktr(Fn+1A

(α)
n FT

n+1)δij + δik(A
(α)
n FT

n+1)mj + (Fn+1A
(α)
n )imδjk

− 1

3
(A(α)

n FT
n+1)mkδij −

1

3
(Fn+1A

(α)
n )kmδij

]}
.

(3.41)

On the other hand, the other Jacobian term accounts for the residual
stresses contribution. Its stiffness matrix can be computed as

Cres
ijkl = Cc,res

ijkl +
1

2
(δikσ

res
lj + δilσ

res
kj + δjlσ

res
ik + δjkσ

res
il ), (3.42)

Cc,res
ijkl =

4

J
FiαFjβFkγFlδ

∂2Ψres

∂C2

∣∣∣∣
αβγδ

. (3.43)

For the second derivative, the following terms are needed

∂C−1

∂C

∣∣∣∣
ijkl

=
1

2
(C−1

ik C
−1
lj + C−1

il C
−1
kj ), (3.44)

∂2I6
∂C2

∣∣∣∣
ijkl

=
1

2
(δikσ0lj + δilσ0kj + δjlσ0ik + δjkσ0il). (3.45)

By employing them, one reaches
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Table 8: Mechanical properties of the double-notched plane strain speci-
men.

Property (Unit) G (MPa) κ (MPa) Gvisco (MPa) GC (N/mm) ℓ (mm) f χ

Value 0.41 3.96 0.36 20.0 2.0 0.5 10−16

∂2Ψres

∂C2

∣∣∣∣
αβγδ

= J−1/3

[
−f
6
(σ0⊗C−1+C−1⊗σ0)+

fI5
18

C−1⊗C−1−fI5
6

∂C−1

∂C

]
+(1−f)J−2/3

[
I6
9
C−1⊗C−1−1

6

(
C−1⊗∂I6

∂C
+
∂I6
∂C

⊗C−1

)
−I6

∂C−1

∂C
+
1

4

∂2I6
∂C2

]
.

(3.46)

Finally, both terms of Eqs. (3.40) and (3.42) are added to form the
material Jacobian

Cijkl = Cmat
ijkl + Cres

ijkl. (3.47)

3.3 Representative applications

3.3.1 Verification example

In order to verify the present hyperelastic and visco-hyperelastic formu-
lation, a benchmark application is first considered. For this purpose,
a two-dimensional plane strain example of a double-notched specimen
conducted by Hocine and co-authors [248] is taken as reference solu-
tion in conjunction with the corresponding correlation with experimental
data. The geometric description is displayed in Fig. 29(a), whereas the
material properties are listed in Table 8.

In line with previous phase field models [294, 295], the current formu-
lation is first validated under rate-independent fracture evolution condi-
tions. Fig. 29(b) shows the different load-displacement evolution curves
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(a) (b)

Figure 29: (a) Geometry setup of the double-notched specimen conducted
by [248] with (b) the corresponding load-displacement curves (numerical,
Num, and experimental, Exp) for verification, precluding viscous effects.

for different sizes of the initial notches, exhibiting a very satisfactory cor-
relation with respect to the available experimental tests for a = [12, 20, 28] mm.

This application is further analyzed in order to elucidate the rate-
dependent response, analyzing the effect of a series of relaxation times
τ = [0.05, 0.1] s and velocities v = [125, 250, 500, 1000] mm/s for a length
of the prescribed notch a = 20 mm considering only one viscous sub-
domain. The corresponding force-displacement evolution curves are de-
picted in Figs. 30(a)-30(b). Analyzing this graph it is possible to observe
that the maximum force increases and the peak displacement decreases
as the loading rate augments (both reported in Table 9).

Examining the mechanical response with respect to the relaxation
time, the behaviour of a specimen at a constant loading rate v = 500

mm/s is compared in Fig. 31 for relaxation times τ = [0.01, 0.05, 0.1, 0.5] s.
This graph evidences that smaller values of the relaxation times leads to
higher values for the maximum displacement and smaller lower forces
(see Table 10 for the values of these magnitudes). This response shows
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(a) (b)

Figure 30: Load-displacement curves for tests with (a) τ = 0.1 s and (b)
τ = 0.05 s and different displacement rates on the double-notched speci-
mens.

a very good qualitative correlation with the findings reported in [275].
The phase field evolution for one representative case is plotted in Fig.
32, where, as it is expected, the initiation and evolution of the crack com-
plies with Mode I fracture.

A further verification of this case is reported in Appendix A right
after Section 3.4, where this parametric study is repeated for a square
single-notched plate and the outlined results display a similar behavior
to the ones aforementioned in this Section.

3.3.2 Cylindrical structures

The main objective of this section concerns the simulation of pre-stressed
cylindrical structures using the current modelling framework. For this
purpose, a parametric analysis for hollow cylinders is conducted. Partic-
ularly, this is performed by modifying the viscous and residual intensity
parameters in order to assess their influence on the mechanical perfor-
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Table 9: Comparison of the maximum force and displacement for different
test rates on the double-notched specimen.

Displacement rate (mm/s) 1000 500 250 125
Relax time (s) 0.05 \ 0.1 0.05 \ 0.1 0.05 \ 0.1 0.05 \ 0.1

Maximum Force (N) 18.60 \ 19.57 17.60 \ 18.52 16.41 \ 17.58 15.38 \ 16.40
Maximum Displacement (mm) 37.60 \ 36.00 41.15 \ 36.75 45.95 \ 40.68 48.12 \ 45.68

Figure 31: Load-displacement curves for tests with v = 500 mm/s and
different relaxation times on the double-notched plane strain specimens.

mance of the structure.

The general features of the tests are presented up next, which are used
for the simulation of two baseline configurations: (i) intact hollow cylin-
drical structures and (ii) samples with a initial notch at the centre of the
major axis; it is worth mentioning that this initial notch is inserted via
setting a prescribed boundary condition on the phase field value d = 0.5.
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Table 10: Comparison of the maximum force and displacement for different
relaxation times of the double-notched specimen.

Displacement rate (mm/s) 500 500 500 500
Relax time(s) 0.01 0.05 0.1 0.5

Maximum Force (N) 18.95 18.58 17.60 15.36
Maximum Displacement (mm) 52.50 41.15 36.75 32.85

Figure 32: Zoom in the notched area during: Mode I (1) crack initiation and
(2) propagation for the case with parameters v = 500mm/s and τ = 0.1 s.
Plotted is the phase field parameter isocontour with the legend case, where
blue and red denote intact and broken states, respectively.

Test characteristics

This section describes the specimen geometry and the particular form of
the residual stress field henceforth considered. In conjunction with the
constitutive models for the bulk described above, we adopt the following
form for the residual stress field, adapted from [285, 296]:

σ0RR = αc(R−A)(R−B) (3.48)

σ0RZ =
αd

R
[(R−A)(R−B)(4Z3 − 6Z2L+ 2ZL2)] (3.49)
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Table 11: Mechanical properties of the cylindrical structures.

Property (Unit) G (MPa) κ (MPa) Gvisco (MPa) GC (N/mm) ℓ (mm) f χ

Value 25.00 616.67 21.74 3.0 2.0 0 10−10

σ0ΘΘ = αc[3R
2−2(A+B)R+AB]+αd[(R−A)(R−B)(12Z2−12ZL+2L2)]

(3.50)
σ0ZZ = −αd

R
[(2R−A−B)(Z(L− Z))2] (3.51)

σ0ΘZ = σ0RΘ = 0 (3.52)

where A and B are the inner and outer radius, respectively, of the cylin-
drical structure; αc and αd are coefficients which follow the formula
αc = Gᾱc/2BH and αd = Gᾱd/2L

4; and H and L are the thickness
and length of the cylinder.

The strength of the residual stress field is controlled by the dimen-
sionless parameters ᾱc and ᾱd which account for the dependence of the
system on the R and Z coordinates of the cylindrical system. It follows
that by setting ᾱd = 0, the pre-stress field only relies on R. Further re-
search on how to obtain a qualitative behavior of the residual stress field
for their different components can be found in [296].

Without any loss of generality, we prescribe the following dimensions
for the cylinder: length L = 150 mm, diameter D = 5 mm and thickness T
= 0.5 mm. Several simulations for the parametric tests are conducted by
changing the displacement rate, relaxation time and the residual stresses
field on cylinders with or without a phase field initial condition on the
center for d = 0.5.

The mechanical properties for the current applications are listed in Ta-
ble 11. Note that a nearly incompressible neo-Hookean material (ν=0.49)
is set. Concerning the spatial discretization of the system, we employ
23,250 8-node hexahedral elements with one viscous subdomain in the
bulk material description.

In line with [281], present computations consist of two steps: (i) the
first step is defined for the application of the residual stresses field pre-
sented in Eqs. (3.48)-(3.52), without prescribing any additional action,
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and (ii) the second step comprises the application of a pulling action
along the longitudinal axis of the cylinder till the complete failure of the
structure. Every numerical experiment requires one or two hours of com-
putational run in the aforementioned station until its completion.

The BCs configuration for the geometry is like it follows: for the first
step, the cylinder is restricted completely in the azimuthal direction in
both topmost and bottomost surfaces along the major axis in order to let
the radial coordinate free for the application of the residual stresses. For
the final step, the bottomost surface is fixed whereas the topmost surface
is pulled in the Z direction until the failure of the cylindrical specimen.

Pristine cylinders

Dependence on visco-elastic parameters The first series of parametric
tests concerns the analysis of rate-dependent effects on crack propaga-
tion, in line with Section 3.3.1. Without the application of residual stress,
the effect of different relaxation times τ = [0.05, 0.1, 0.2, 0.5] s and dis-
placement rates v = [10, 25, 500, 100] mm/s on the mechanical response
of the current hollow cylinders are examined.

Results for the reaction force-imposed displacement evolution curves
of the probes for different relaxation times and imposed velocities are
obtained. Fig. 33(a) shows these curves for the different relaxation times
setting v = 25 mm/s, whereas Fig. 33(b) depicts the results for τ = 0.1 s
and various displacement rates. Analyzing these plots, it can be seen
that the dependence of the results on these viscoelastic parameters is in
line with the verification results reported in Section 3.3.1, i.e. for higher
relaxation time or test velocity the estimated peak force increases but
ultimate displacement decreases. This trend is identified for all the cases
under consideration as it is reported in Tables 12 and 13.

A representative phase field isocontour at the end of the computation
is shown in Fig. 34 displaying that the crack initiates from the center of
the probe and propagates axially provoking the failure of the specimen.

Dependence on residual stress parameters Continuing with the nu-
merical tests for pre-stressed pristine cylinders, the next two series of
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(a) (b)

Figure 33: Load-displacement curves for cases with different (a) relaxation
times and (b) displacement velocities for the non pre-stressed cylinders.

Table 12: Comparison of the maximum force and displacement for the tests
with different relaxation times and v = 25 mm/s for the non pre-stressed
cylinders.

Relax time (s) 0.05 0.1 0.2 0.5

Maximum Force (N) 48.60 51.79 55.93 59.16
Maximum Displacement (mm) 16.90 16.30 14.55 12.25

parametric computations are dedicated to the examination of the depen-
dence of the results on both residual stress intensity factors ᾱc and ᾱd.
The effect of both parameters are analyzed separately in order to assess
the damage that they cause to the cylindrical structures.

First, results for cases with plane residual stresses are considered (ᾱc >

0 and ᾱd = 0) with a prescribed velocity equal to v = 25 mm/s and a
relaxation time of τ = 0.1 s. Current predictions qualitatively coincide
with that reported in [281] for the same residual stress field, whose von
Mises stress isocontour at the step of the application of the residual stress
is shown in Fig. 35. The reaction-force displacement curves for plane
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Table 13: Comparison of the maximum force and displacement for the tests
with different displacement rates and τ = 0.1 s for the non pre-stressed
cylinders.

Displacement rate (mm/s) 100 50 25 10

Maximum Force (N) 58.80 55.93 51.79 47.91
Maximum Displacement (mm) 12.70 14.55 16.30 16.90

Figure 34: Phase field isocontour at the moment of failure for the non pre-
stressed hollow cylinder.

residual stress cases are depicted in Fig. 36. This graph reveals that both
ultimate force and ultimate displacement decrease for greater values of
the coefficient ᾱc. This can be concluded as expected since the inclusion
of residual stresses is associated with a decrease in both strength and
stiffness properties, which leads to premature failure.

For the sake of quantifying the curves, in Table 14, it is plotted both
peak load and displacement for the overall experiment. It is worth high-
lighting that applications with higher residual stresses associated with
ᾱc > 3.5 have been carried out but they are not considered since an
abrupt change in the pattern of failure occurs, provoking in the model
a severe radial strain.
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Figure 35: Von Mises stresses distribution for a residual stress with ᾱc = 1.

Subsequently, specimens with both R- and Z-dependent residual stresses
(ᾱc = 0 and ᾱd > 0) are taken into consideration in this last series of
tests. Under these circumstances, a typical von Mises stresses isocontour
is shown in Fig. 37 exhibiting an increase in the value of this magnitude
(von Mises stress) while approaching the center of the major axis of the
cylinder. This is in accordance with the patterns displayed in [296].

In line with the previous analysis for plane residual stresses, cur-
rent load-displacement curves plotted in Fig. 38 show an overall similar
trend, with some nuances: the higher the value of ᾱd is set, the lower the
values of the maximum force and maximum displacement are obtained,
being considerably increased this difference for ᾱd > 50, when the peak
values collapse due to this effect (see Table 15 for exact results). In ad-
dition to this, it can be identified that the nucleation zone for failure is
more concentrated towards the centre of the major axis for higher values
of ᾱd, see Fig. 39.

Cylinders with a initial flaw prescribing the phase field values at the
center of the geometry

This section is focused on analyzing cases with a prescribed initial defect
at the center of the cylinder. This is incorporated into the simulation
by setting an initial value of the phase field variable at this location of
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Figure 36: Load-displacement curves for cylinders with different residual
stress intensity parameter ᾱc, along with the phase field isocontour in the
final step.

Table 14: Comparison of the maximum force and ultimate displacement for
the tests with different ᾱc.

ᾱc 0 1 2 3 3.5

Maximum Force (N) 51.79 45.47 36.41 30.91 27.19
Maximum Displacement (mm) 16.30 16.15 16.05 14.35 13.50

d = 0.5. Current simulations are carried out with a displacement rate of
v = 25 mm/s and a relaxation time τ = 0.1 s for a cylinder with the
material parameters given in Table 11.

The corresponding reaction-force displacement curves for these cases
are shown in Fig. 40. These results display that while the peak force
is reduced slightly with the application of the phase field initial condi-
tion, the main difference between scenarios with and without prescribed
initial defect concerns the premature failure of the structure, which is
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Figure 37: Von Mises stresses distribution associated with a residual stress
field in which ᾱd = 500.

Figure 38: Load-displacement curves for cylinders with different residual
stress intensity parameters ᾱd.

predicted to occur when the initial flaw is considered, see Table 16.

Figs. 41(a) and 41(b) depict the initial state of the phase field variable
and its propagation, respectively, in a representative case for a hollow
cylinder with an initial flaw.
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Table 15: Comparison of the maximum force and ultimate displacement for
the tests with different ᾱd.

ᾱd 0 10 25 50 100 250 500

Maximum Force (N) 51.79 51.39 50.79 49.70 44.93 28.94 14.12
Maximum Displacement (mm) 16.30 15.90 15.55 13.80 10.65 6.80 3.70

(a) ᾱd = 0 (b) ᾱd = 50

(c) ᾱd = 250

Figure 39: Phase field isocontour at the moment of failure for the residually
stressed hollow cylinder with different values of ᾱd.

3.3.3 Two-layered cylinders

Test characteristics

The simulation capabilities of the proposed model are further examined
by considering multilayered cylindrical structures. The two-layered cylin-
der systems are particularized as follows: (i) a prescribed flaw over the
thickness with a radius of 0.1 mm is defined at the center of the outer
layer, and (ii) a residual stress field with ᾱc = 0.5 and ᾱd = 40 is set
at the inner layer of the system, see the details displayed in Figs. 42(a)-
42(b). The goal is to show that the methodology at hand can be used
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Figure 40: Load-displacement curves comparing the tests on cylinders with
no residual stress, with ᾱc = 1 and ᾱd = 40 and additional cases with
d = 0.5 as it is indicated in the labels of the curves.

Table 16: Comparison of the maximum force and ultimate displacement
obtained in the tests with and without flaw for both pre-stressed and non
pre-stressed cylinders.

Residual stresses No ᾱc = 1 ᾱd = 50

d BC d = 0.5 d = 0 d = 0.5 d = 0 d = 0.5 d = 0
Maximum Force (N) 51.59 51.79 45.14 45.46 49.58 49.70

Maximum displacement (mm) 11.85 16.30 10.50 16.15 11.20 13.80

to handle these structures. A residual stress field is established in the in-
ner layer of the cylinder, which triggers a residual stress field in the outer
layer, as, in general, displacements and radial components of traction
have to be continuous through the interface. Numerically, some itera-
tions might be needed to establish the initial equilibrium of the residually-
stressed tube.

For the particularization of the system, a nearly incompressible neo-
Hookean material is employed (ν =0.49) using a finite element mesh of
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(a) (b)

Figure 41: Axial propagation of the phase field parameter for the cylinders
with the BC of d = 0.5: (a) first step and (b) last load step (axial propaga-
tion).

Table 17: Mechanical properties of the inner cylindrical layer.

Property (Unit) G (MPa) κ (MPa) Gvisco (MPa) GC (N/mm) ℓ (mm) f χ

Value 10 500 12 0.1 1.2 0 10−10

50,024 8-node hexahedral elements. Each test requires a run time in the
aforementioned station between 1-2 hours for its the completion.

The test conditions are as follows: a displacement rate of v = 25 mm/s
and a relaxation time τ = 0.1 s for only one viscous subdomain are
employed. The BCs do coincide with those presented in Section 3.3.2,
with the exception that now in the step for the application of the residual
stresses, only the inner bottomost and topmost surfaces are restricted in
the azimuthal direction.

A parametric study is conducted to analyze the influence of the mis-
match in several mechanical parameters on the behaviour of the sample,
in particular, on the crack initiation region and on the mechanical perfor-
mance of the sample. Special attention is paid to the effect of: (i) different
shear modulus ratios and (ii) different critical fracture energy ratios.

For the current parametric analysis, the inner region is kept unchanged
in terms of some mechanical properties with respect to previous analy-
ses, and those values are listed in Table 17. The only parameter that
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(a) (b)

Figure 42: (a) Isommetric and (b) zoomed-in-the-notch view of the cylindri-
cal structure with two layers, distinguishing the layer by the color.

takes different values (compared to the previous cases) is the residual
stress field since it is considered simultaneously that ᾱc = 0.5-ᾱd = 40

[296]. Hoop (σθθ0) and radial (σRR0) stresses are represented across the
thickness of the cylinder at Z = L/4 in Fig. 43. Results for both stresses in
the inner layer of the cylinder

(
R−A
T ≤ 0.5

)
replicate qualitatively those

obtained in Figure 10 of [281], and shows that the procedure captures
the initial stress field. In the outer layer, it is observed the presence of
residual stresses. To compliment this result, the von Mises stresses in the
inner and outer layer are displayed in Figs. 44(a)-44(b), where the differ-
ence in the magnitude of the stress field for both layers is pinpointed in
the legend box of both isocontours.

Shear modulus influence

First, it is analyzed the role of the shear modulus ratio between both lay-
ers G1/G2, where the index 1 refers to the outer layer and the index 2
refers to the inner layer. The particular cases that are henceforth detailed
concern the ratios: G1/G2 = [0.2, 0.5, 1, 2, 5]. Note that as the bulk mod-
ulus κ depends on G and a fixed ratio of Gvisco/G = 1.2 is considered,
these parameters are also affected by the mismatch between G1 and G2.

Load-displacement curves for cases without residual stresses are de-

99



Figure 43: Values of hoop and radial residual stresses along the thickness of
the cylinder structure for a path located at Z = L/4.

(a) (b)

Figure 44: Von Mises stress isocontourn for (a) the inner and (b) the outer
layer, respectively, for a pre-stressed bi-layered cylindrical structure.

picted in Fig. 45. The failure displacement is increased for decreasing
values of the ratio G1/G2 and, as it is expected, results feature a com-
pliant response since the greater the ratio G1/G2 is, the greater is the
mismatch between other corresponding mechanical properties ratios be-
tween the two layers. Failure reaction and imposed displacements are
reported in Table 18 for several cases. From a qualitative point of view,
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Figure 45: Reaction force-imposed displacement curves for the parametric
study changing the shear modulus ratio without residual stress.

the phase field isocontour at the final step is plotted, which displays a

damage initiation region concentrated around the initial flaw for both
outer and inner layers.

The residual stress field at the inner layer notably affects the response
of the system. Force-displacement evolution curves are shown in Fig. 46,
which exhibit the same behaviour as the non pre-stressed cases. Never-
theless, the effect of the residual stress can be appreciated in the specific
failure magnitudes detailed in Table 19, where the values for both peak
force and displacement are subtly smaller than the bi-layered cylinders
without residual stress (see Table 18).

The effect of the shear modulus ratio on the pre-stressed cylinder is
shown in Figs. 47(a)-47(e). From these graphs, it can be observed that the
crack is captured to be initiated at the center, where the notch is located.
Note also that the peak residual von Mises stress is at the center in the
inner layer, see Fig. 44(a). Analyzing all the cases, one envisages that the
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Table 18: Comparison of the maximum force and displacement for non pre-
stressed two-layered cylinders with different G1/G2 ratios.

G1/G2 0.2 0.5 1 2 5

Maximum Force (N) 6.83 7.84 9.35 11.94 17.95
Maximum Displacement (mm) 8.36 7.36 6.26 4.94 3.28

Figure 46: Reaction force-imposed displacement curves for the paramet-
ric study changing the shear modulus ratio with residual stress parameters
ᾱc = 0.5-ᾱd = 40.

Table 19: Comparison of the maximum force and ultimate displacement for
residually stressed (ᾱc = 0.5−ᾱd = 40) two-layered cylinders with different
G1/G2 ratios.

G1/G2 0.2 0.5 1 2 5

Maximum Force (N) 6.10 7.07 8.52 11.03 16.91
Maximum Displacement (mm) 6.34 5.66 4.86 3.92 2.70
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(a) (b)

(c) (d)

(e)

Figure 47: Crack pattern for the different critical Shear Modulus ratios with
residual stress parameters ᾱc = 0.5-ᾱd = 40. Here displayed (a) G1/G2 =
0.2, (b) G1/G2 = 0.5, (c) G1/G2 = 1, (d) G1/G2 = 2 and (e) G1/G2 = 5.

G ratio influences the crack initiation and propagation mode, displaying
a dominant azimuthal pattern for G1/G2 < 1 (Figs. 47(a)-47(b)) which
is switched to a Mixed-Mode propagating crack with both axial and cir-
cumferential modes for greater values of G1/G2 (Figs. 47(d)-47(e)).
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Figure 48: Reaction force-imposed displacement curves for the parametric
study changing the critical energy release rate ratio without residual stress.

Critical energy release rate influence

Considering now the role of GC , a mismatch of this parameter between
both layers is studied, in particular, it is considered GC,1/GC,2 = [0.2, 0.5, 1, 2, 5].
In the load-displacement curves depicted in Fig. 48 for cases without
residual stresses, it is exhibited an expected behavior: when the GC ratio
(toughness) is increased the area under the curve grows i.e. the maxi-
mum load and displacement augment, being these values quantified in
Table 20. Regarding a qualitative standpoint, by taking a look at the crack
pattern, it is observed that nucleation is again located at the area (for both
inner and outer layers) close to the notch, in agreement with the results
for non pre-stressed probes in Fig. 45.

Taking into account residual stresses (ᾱc = 0.5 and ᾱd = 40), the
load-displacement curves are plotted in Fig. 49. These curves follow the
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Table 20: Comparison of the maximum force and displacement for the tests
with different GC ratios in non pre-stressed two-layered cylinders.

GC,1/GC,2 0.2 0.5 1 2 5

Maximum Force (N) 5.90 7.90 9.35 10.55 11.61
Maximum Displacement (mm) 3.44 5.04 6.26 7.28 8.18

Figure 49: Reaction force-imposed displacement curves for the parametric
study changing the critical energy release rate ratio with residual stress pa-
rameters ᾱc = 0.5-ᾱd = 40.

same behavior than the curves of Fig. 48 for non pre-stressed tubes, in
the sense that peak force and displacement are directly proportional to
the ratio of critical strength (see Table 21).

Nevertheless, the effect of the residual stresses is clearly observed in
the crack pattern plotted for each case in Figs. 50(a)-50(e). The crack pat-
terns display a fracture propagating azimuthally from the flawed region,
being again consistent with the Von Mises stresses isocontourn displayed
in Figs. 44(a)-44(b). The failure mechanism for different GC,1/GC,2 ratios
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Table 21: Comparison of the maximum force and ultimate displacement for
residually stressed (ᾱc = 0.5−ᾱd = 40) two-layered cylinders with different
GC ratios.

GC1/GC2 0.2 0.5 1 2 5

Maximum Force (N) 5.76 7.39 8.52 9.44 10.25
Maximum Displacement (mm) 2.88 3.98 4.86 5.62 6.32

is observed in the fracture initiation region, which shrinks for increasing
values of the critical energy ratio.

3.4 Appendix A: Additional benchmark exam-
ple

Further verification simulations are carried out on a square single-notched
plate, whose dimensions are shown in Fig. 51(a). The discretization of
the plate has been performed using 10,000 elements for these series of
examples with a common element size of 2.5 mm, see Fig. 51(b). The me-
chanical properties can be found in Table 22. These computations have
been carried out with the exclusive consideration of hyper-viscoelastic
effects for verification purposes using a staggered solution scheme. Re-
garding the boundary conditions of the 2-D model: the bottommost sur-
face is fixed along the Y-direction, with the right corner also being in
X-direction; and the topmost surface is submitted to a monotonically in-
creasing vertical displacement.

A parametric study has been done to study the rate-dependency of
phase field approach. Therefore, a set of relaxation times τ = [0.05, 0.1, 0.2]

h and displacement rates v = [5, 10, 20] mm/h are applied.
The phase field isocontour evolution at the crack initiation and propa-

gation is shown in Figs. 51(c)-51(d). The crack starts at the notch tip and
propagates straight towards the end of the notch. This finding agrees
with what is found in similar cases in viscoelastic phase field fracture
like [260] and with alternative phase field models without including vis-
coelastic effects [248, 47].
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(a) (b)

(c) (d)

(e)

Figure 50: Crack pattern for the different critical energy release rate ratios
with residual stress parameters ᾱc = 0.5-ᾱd = 40. Here displayed (a)
GC1/GC2 = 0.2, (b) GC1/GC2 = 0.5, (c) GC1/GC2 = 1, (d) GC1/GC2 = 2
and (e) GC1/GC2 = 5.

The reaction forces comparing the tests at different relaxation times
with v = 10 mm/h (Fig. 52) and at different displacement rates with
τ = 0.1 h (Fig. 53) show the clear effect of the viscosity on the specimen
response. Analyzing these plots, it can be seen that for higher relaxation
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(a) (b)

(c) (d)

Figure 51: (a) Dimensions in mm, (b) mesh (c) and phase field isocontour
for Mode I crack initiation and d) propagation of the single edge notched
plate.

time, the peak force increases but the ultimate displacement becomes
lower. Related to the velocity, both the final displacement and maximum
force increase along with the increasing of the strain rate. The postpeak
behavior shown at both of these curves, where the failure of the structure
is prolonged, is in good agreement with the experimental results of [274]
in a qualitative manner.
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Table 22: Mechanical properties of the single edge notched square plate.

Property Value

G (MPa) 480
κ (MPa) 1440
Gvisco (MPa) 576
Gc (MPa · mm) 5
ℓ (mm) 1
f 0.5
χ 10−5

Figure 52: Load-displacement curves for tests of the single-notched square
plate with different relaxation times.
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Figure 53: Load-displacement curves for tests of the single-notched square
plate with different testing rates.
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Chapter 4

Another nonlocal method
for failure:
gradient-enhanced damage
models in compressible and
nearly incompressible
hyperelastic materials

Chapter 4 is based on our own publication [297].

We have observed in Chapter 3 that soft materials are of major interest
for biomechanics applications due to their high deformability and sus-
ceptibility to experience damage events under different loading scenar-
ios. In this Chapter, we will present a study concerned with modelling
damage evolution processes in these nonlinear materials whose struc-
tural responses are prone to locking when low-order kinematic interpo-
lation is employed in the context of nonlinear Finite Element schemes.
For this mission, we have employed a similar method for diffuse fracture
called gradient-enhanced Continuum Damage (CDM) technique, which,
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like the phase-field method, disposes of length scale parameters to regu-
larize the region for failure.

Depending on the Poisson ratio of the structure, a hyperelastic speci-
men is prone to exhibit volumetric or shear locking. The first pathology
is displayed when, for testing a nearly incompressible material (ν ∼ 0.5),
it is employed a displacement-based (single field) FE scheme, causing
the specimen to be stiffer than what actually is. In order to cover this
pathology, we have employed the Q1P0 or Simo-Taylor-Pister elements.
This formulation, pioneered by the aforementioned authors [129] and
enhanced by Simo and Taylor [298], and Miehe [299], is based on a lo-
cal multiplicative split of the deformation gradient into deviatoric and
volumetric parts, considering both the pressure and the Jacobian, which
appear in the volumetric contribution, as primary unknowns, besides
the displacement field. A disadvantage of the Q1P0 formulation is that
it might provide unphysical solutions for compressible problems [300].
Being recently applied to model ductile damage [301] and fracture by
means of a PF approach [302, 303, 304], we have implemented a Q1Q1P0
formulation. It should be mentioned that the proposed formulation for
Q1Q1P0 element differs from the one utilized by ABAQUS hybrid ele-
ments, as the latter only employs a two-field displacement-pressure for-
mulation, being it employed to model CDM by Ostwald et al. [290].

The other pathology, called shear locking, is shown when bending
loads are applied to the sample, causing another overstiffening in the
mechanical behavior of the material. To overcome this problem, we have
adopted the Enhanced Assumed Strain (EAS) technique in the Finite El-
ement formulation. Also named Q1E[•], being • the number of incom-
patible modes considered, is a method developed by Simo and Armero
[146] for nonlinear continuum elements which, relying on the Hu-Washizu
variational principle, enrich the deformation modes stemming from the
single field displacement solution by means of several incompatible de-
formation modes at the element level. This method relies crucially on
an additive decomposition of the deformation gradient into a conform-
ing and an enhanced part which accounts for these incompatible modes.
The resulting formulation corrects the over-stiffening of the structure by
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avoiding the phenomenon of shear locking. This technique has been
widely applied to solid shells in order to suppress shear locking associ-
ated with bending modes [305, 306, 307, 308, 309, 310]. This technique’s
major drawback lies in the instability associated with rank deficiency in
the stiffness matrix which appears under compressive states [311], which
remains an open question in the Computational Mechanics field. EAS
has also been applied to non-local damage approaches such as PF frame-
works [269, 35, 69] and very recently to CDM with reduced integration
schemes [312].

In light of this discussion and after addressing potential locking events
in CDM using non-local formulations, we present in this Chapter two
non-local gradient-enhanced CDM approaches to solve locking issues.
They are tailored within the geometrically nonlinear setting based on
the work of Dimitrijević and Hackl [109], but by introducing an inter-
nal damage variable based on the model of Liebe et al. [313], in the line
of the work by Waffenschmidt et al. [111]. Within the cited approach, the
concept of enhancing the energy function via a gradient term of the in-
dependent damage variable is combined with a penalty parameter that
simulates the equivalence between the local and non-local damage pa-
rameter, being this approach in line with the micromorphic gradient-
type dissipative framework proposed by Forest [314]. This coupled two-
equation (linear momentum and non-local damage balance) framework
for large deformations is formulated in a weak form. The hyperelastic
constitutive response is affected by the non-local damage scalar, which
is approximated via an exponential law that triggers the deterioration of
the structure when it overpasses a threshold.

To summarize, two displacement-continuum damage approaches are
built over this primary framework to capture damage in hyperelastic
materials prone to shear and volumetric locking. For the former ap-
plication, the EAS technique is included to encompass 24 incompatible
deformation modes, implementing a formulation Q1Q1E24 that is suit-
able to model compressible samples subjected to bending. Then, sep-
arately, the mixed three-field Q1Q1P0 approach is formulated to tackle
volumetric locking in nearly incompressible samples. The resulting cou-
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pled, highly nonlinear system of equations is solved via two Newton-
Raphson type solution schemes: one local and one global employing
a user-element subroutine UEL in the FE commercial software ABAQUS.
In summary, we are presenting in this Chapter the first full-integration
enhanced assumed strain (Q1Q1E24) and a novel mixed displacement-
pressure-Jacobian (Q1Q1P0) schemes for gradient-enhanced CDM mod-
elling and we have tested their performance by comparing them with the
already-formulated standard CDM damage approach, i.e., Q1Q1.

This Chapter is structured as follows. The basic theory, which in-
cludes the constitutive behavior, the non-local gradient-enhanced dam-
age formulation, and the thermodynamical postulates for the standard
Q1Q1 element, is developed in Section 4.1. Section 4.2 displays the vari-
ational theorems for this Q1Q1 formulation and the two proposed ones,
i.e., Q1Q1E24 and Q1Q1P0, providing a further insight on the numerical
implementation in Section 4.3. To validate and test the potential of the
proposed frameworks, a wide variety of numerical examples which con-
sists of compressible and nearly incompressible large deformation prob-
lems prone to exhibit volumetric and shear locking have been addressed
in Section 4.4.

Nomenclature

x Arbitrary spatial point on the current configuration
φ Nonlinear deformation map
X Arbitrary spatial point on the initial configuration
t Current time
Ω0 Body domain in the initial configuration
Rn Collection of ordered lists of n real numbers
Ω Body domain in the current configuration
F Deformation gradient
∇X Gradient operator in the reference configuration
∇x Gradient operator in the current configuration
1 Second order identity tensor
H Material displacement gradient tensor
J Jacobian, determinant of F
det Determinant
u Displacement field
C Right Cauchy-Green tensor
b Left Cauchy-Green tensor
∂Ω Boundary of the solid
∂Ωu Boundary region with a Dirichlet condition of prescribed displacements
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Nomenclature

∂Ωt Boundary region with a Neumann condition of prescribed tractions
t̄ Cauchy traction vector
n Current normal outward vector
σ Cauchy’s stress tensor
P First Piola-Kirchhoff stress tensor
T First Piola-Kirchhoff traction vector
N Initial normal outward vector
dA Differential of nominal area
da Different of engineering area
S Second Piola-Kirchhoff stress tensor
Ψloc Local free energy function
G Second Lamé parameter
λ First Lamé parameter
K Bulk modulus
In N-th invariant
C Material description for the Jacobian of the constitutive law
c Spatial description for the Jacobian of the constitutive law
fd Damage function
κ Local damage variable
κd Local damage threshold
Ψnloc Nonlocal free energy function
Ψnloc

grd Nonlocal free energy contribution containing the gradient of ϕ
ϕ Nonlocal damage parameter
Ψnloc

plty Nonlocal free energy contribution containing the penalty term
cd Damage regularisation parameter
βd Correlation parameter between local and nonlocal damage
γd Switch parameter between local and nonlocal gradient-enhanced model
Ψ Free energy function
Y Damage-like vector field in the material configuration
Y Scalar damage-like variable in the material configuration
y Damage-like vector field in the spatial configuration
y Scalar damage-like variable in the spatial configuration
Dint Local internal dissipation energy
∂[•] Partial derivative operator
Dred Reduced local dissipation energy
g Thermodynamic force for local damage variable
d Scalar damage variable
q Thermodynamic force for scalar damage variable
Φd Damage flag
λd Local damage Lagrange multiplier
ηd Exponential saturation parameter
Π Total potential of the system
Πint Internal potential of the system
Πext External potential of the system
FV Body force in the initial configuration
T̄ Traction vector in the initial configuration
Vu Space of admissible displacement variation
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Nomenclature

Vϕ Space of admissible nonlocal damage variation
fV Body force in the current configuration
E Green-Lagrange strain tensor
Eu Displacement-derived contribution to Green-Lagrange strain tensor
Ẽ Enhancing counterpart contribution to Green-Lagrange strain tensor
VẼ Space of admissible enhanced strains
p̃ Lagrange multiplier for the pressure variable
J̃ Lagrange multiplier for the Jacobian variable
[•]iso Isochoric contribution
[•]vol Volumetric contribution
∆t Time increment
[•]n+1 Current increment
[•]n Previous increment
[•]und Intact variables
r Residual in the local Newton-Raphson scheme
dγr Jacobian of the residual in the local N-R scheme
ξ Parametric space
ξ, η, ζ Parametric coordinates
N Shape functions
m Number of nodes
d Nodal displacements
ϕ̂ Nodal nonlocal damage
Je Material Jacobian of the isoparametric transformation
je Spatial Jacobian of the isoparametric transformation
Rd Residual of the displacement field u

Rϕ̂ Residual of the nonlocal damage parameter ϕ
L̂ Lie’s derivative operator
Rd Residual of the displacement field u

Rϕ̂ Residual of the nonlocal damage parameter ϕ
Kdd Displacement-displacement Jacobian term for global N-R scheme
Kdϕ̂ Displacement-nonlocal damage Jacobian term for global N-R scheme
Kϕ̂d Nonlocal damage-displacement Jacobian term for global N-R scheme
Kϕ̂ϕ̂ Nonlocal damage-nonlocal damage Jacobian term for global N-R scheme
∆u Nodal displacement variation
∆ϕ̂ Nodal nonlocal damage variation
M Matrix operator to interpolate nodal incompatible strains
ς Nodal incompatible strains
T0 Storage matrix for Je

∆ς Nodal incompatible strains variation
Rς Residual of the incompatible strains
Kdς Displacement-incompatible strain Jacobian term for global N-R scheme
Kϕ̃ς Nonlocal damage-incompatible strain Jacobian term for global N-R scheme
Kςd Incompatible strain-displacement Jacobian term for global N-R scheme
Kςϕ̃ Incompatible strain-nonlocal damage Jacobian term for global N-R scheme
Kςς Incompatible strain-incompatible strain Jacobian term for global N-R scheme
Rp̃ Residual of the pressure
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Nomenclature

N p̃ Shape function for interpolation of the pressure
RJ̃ Residual of the dilatation
N J̃ Shape function for interpolation of the dilatation
Kdp̃ Displacement-pressure Jacobian term for global N-R scheme
Kp̃d Pressure-displacement Jacobian term for global N-R scheme
Kp̃J̃ Pressure-dilatation Jacobian term for global N-R scheme
KJ̃p̃ Dilatation-pressure Jacobian term for global N-R scheme
KJ̃J̃ Dilatation-dilatation Jacobian term for global N-R scheme
∆p̃ Nodal pressure variation
∆J̃ Nodal pressure dilatation
uz Vertical displacement

4.1 Theoretical formulation

This section outlines the fundamental concepts and definitions of the cur-
rent numerical framework addressing the use of gradient-enhanced for a
standard CDM scheme, being specialized later for EAS and mixed u-p-J
formulations. The proposed numerical methodology is specialized for
hyperelastic material models.

4.1.1 Basic definitions and constitutive formulation at lo-
cal level

In order to avoid repetition, to track the mapping and the deformation
of the non-linear problem, we refer the reader to Section 3.1.1 (Eqs. (3.1)-
(3.6) and Fig. 26).

We postulate the existence of the local free energy function Ψloc. With-
out loss of generality, we consider a nonlinear compressible neo-Hookean
constitutive law. This expression is plotted in Eq. (4.1)

Ψloc(C) =
G

2
(I1 − 3)−G ln(J) +

λ

2
ln2(J) (4.1)

where G and λ are the shear constant and λ = K − 2
3G, respectively,

with K as the volumetric constant; and I1 is the first invariant of the
right Cauchy-Green tensor that is defined as I1 := tr[C]. The particular
form given in Eq. (4.1) also holds for the spatial configuration taking the
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left Cauchy-Green strain tensor as the main argument, i.e, Ψloc(b) and
therefore, I1 = tr[b].

From Eq. (4.1), the second Piola-Kirchhoff tensor S can be computed
as follows

S := 2
∂Ψloc(C)

∂C
= G

(
1−C−1

)
+ λ ln JC−1 (4.2)

For the spatial configuration, a push-forward operation is performed
to obtain the Cauchy stress tensor σ

σ = J−1F · S · FT =
G

J
(b− 1) +

λ ln J

J
1 (4.3)

In order to compute an ABAQUS UEL subroutine, the local tangent
operators, which are required in order to compute the Jacobians, can be
computed directly from the derivation from the material description:

C := 2
∂S

∂C
= λC−1 ⊗C−1 + 2(G− λlnJ)I

sym
C (4.4)

where I
sym
C is a fourth-order tensor that has the following expres-

sion: I
sym
C := −∂C−1/∂C = [C−1⊗C−1 + C−1⊗C−1]/2 = [C−1

ik C
−1
jl +

C−1
il C

−1
jk ]/2, which employs the non-standard dyadic products. To ob-

tain the spatial counterpart c, we perform the push-forward operation
on Eq. (4.4)

c =
λ

J
(1⊗ 1) +

2

J
(G− λlnJ)Isym (4.5)

where Isym = [1⊗1+1⊗1]/2 denotes the fourth-order symmetric identity
tensor.

Based on Liebe et al. [313], we define a scalar damage function fd(κ),
which recalling [111], fd(κ) should be at least twice differentiable, and
tracks the material degradation relying on the evolution of a local vari-
able κ ∈ [0,∞], and whose evolution is ruled by the achievement of a
threshold value κ > κd in order to cause a loss in the stiffness of the
structure. Therefore, we can state:

fd(κ) : R+ −→ (0, 1] |
{
fd(0) = 1, lim

κ→∞
fd(κ) = 0

}
(4.6)
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These conditions guarantee two clearly differentiated states: fd = 1

identifies an intact stiffness at the spatial point level, whereas fd = 0 de-
notes a fully deteriorated stiffness state. This belongs to the formulation
of the local damage model, whose linking procedure with the non-local
damage framework will be envisaged in the subsequent sections.

4.1.2 Gradient-enhanced non-local formulation

In line with the approach proposed by Dimitrijević and Hackl [109], a
regularized damage material response is achieved by the definition of a
gradient-enhanced non-local function term Ψnloc(ϕ,∇Xϕ, κ) in the refer-
ence configuration:

Ψnloc(ϕ,∇Xϕ, κ) = Ψnloc
grd (∇Xϕ) + Ψnloc

plty(ϕ, κ) (4.7)

This non-local contribution can be split into two separate terms: Ψnloc
grd (∇Xϕ)

containing the material gradient of the non-local damage field variable
ϕ, which stands for the first term of a Taylor series expansion of ϕ at the
material point; and Ψnloc

plty(ϕ, κ) is a penalty term which correlates the lo-
cal damage variable κ with the non-local damage variable ϕ. The energy
terms are specified as follows:

Ψnloc
grd (∇Xϕ) =

cd
2
∇Xϕ · ∇Xϕ (4.8)

Ψnloc
plty(ϕ, κ) =

βd
2
(ϕ− γdκ)

2 (4.9)

where cd consists in a parameter that characterises the non-local char-
acter of the formulation; βd, a penalty parameter that enforces the lo-
cal damage κ and non-local damage ϕ variables to be equivalent; and
γd, a switch parameter that is introduced to range between a local and
non-local gradient-enhanced model, respectively and the corresponding
value is ranged like γd ∈ {0, 1}.

Consequently, the expression for the internal free energy function
considering the previous non-local terms is given by
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Ψ(C, ϕ,∇Xϕ, κ) = Ψloc(C, κ) + Ψnloc(ϕ,∇Xϕ, κ)

= fd(κ)Ψ
loc(C) + Ψnloc

grd (∇Xϕ) + Ψnloc
plty(ϕ, κ)

(4.10)

With these expressions at hand, we define the material expressions
for the damage-like vector field Y and the scalar damage-like variable
Y :

Y =
∂Ψnloc

∂∇Xϕ
= cd∇Xϕ (4.11)

Y = −∂Ψ
nloc

∂ϕ
= −βd(ϕ− γdκ) (4.12)

whose spatial values y and y are obtained via push-forwarding Eqs.
(4.11)-(4.12)

y = cdJ
−1∇xϕ · b (4.13)

y = −βd(ϕ− γdκ)J
−1 (4.14)

4.1.3 Thermodynamic consistency

The thermodynamic consistency of the constitutive framework outlined
above is examined through the exploitation of the Clausius-Plank in-
equality (local internal dissipation (Dint) inequality) [109], which under
isothermal conditions is given by

Dint = [S− ∂CΨ] : Ċ− ∂κΨκ̇ ≥ 0 (4.15)

Following [111], we focus our attention on the corresponding damage-
related terms leading to the definition of a reduced local dissipation Dred:

Dred = gκ̇ ≥ 0 (4.16)

where we have introduced the thermodynamic force g as the derivative
with respect to the local damage variable κ:
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g = −∂κΨ (4.17)

We now define a thermodynamic force q ≥ 0, which is conjugated to
the classical scalar damage variable d, as follows:

q = −∂dΨ = −∂κΨ∂dκ = g∂dκ (4.18)

Accordingly, the Clausius-Plank inequality holds when the reduced
dissipation condition satisfies Dred ≥ 0, if ∂dκ > 0. In fact, q takes the
interpretation of the energy release rate, consisting of the addition of a
local and a non-local contribution that reads as

qloc = Ψloc; qnloc = βdγd[ϕ− γdκ]∂dκ (4.19)

Complying with these equations, we can now define the damage con-
dition:

Φd = q − κ ≤ 0 (4.20)

where Φd < 0 stands for the purely elastic behavior and Φd = 0 notes
a damaged state. According to Simo and Hughes [315], an optimization
problem regarding a Lagrange multiplier λd can be proposed to repre-
sent the evolution of the damage variable

κ̇ = λd
∂Φd

∂q
= λd for κ|t=0 = κd (4.21)

where κd concerns the initial damage threshold. This last equation gives
rise to the Karush-Kuhn-Tucker (KKT) conditions to model both the ini-
tiation and termination of damage.

λd ≥ 0; Φd ≤ 0; λdΦd = 0 (4.22)

which, can be expressed in a more detailed way as
Φd < 0, elastic case

Φd = 0 and


λd < 0, elastic unloading
λd = 0, neutral loading
λd > 0, damage loading

(4.23)
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The continuous formulation for damage is completed with the defi-
nition of the damage function itself fd(κ), which follows an exponential-
type law.

fd(κ) = 1− d = exp[ηd(κd − κ)] (4.24)

with ηd > 0 standing for the exponential saturation parameter. It is worth
mentioning that we have introduced a damage threshold parameter κd
that differs from the proposed approach by Dimitrijević and Hackl [109]
and that was introduced in Waffenschmidt et al. [111], in order to avoid
over-compensation of the damage curve due to the logarithmic expres-
sion in Ψloc (Eq. (4.1)) that may lead to enhance the stress-strain curve,
rather than weakening it.

4.2 Variational formulation

4.2.1 Variational formulation of standard gradient-enhanced
damage models: material and spatial formulations

The total potential energy of a system, Π, is obtained from the combi-
nation of an internal contribution Πint, which considers the action of in-
ternal forces, and an external contribution Πext due to the addition of
volume and surface forces, i.e., Π = Πint −Πext.

Restricting the analysis of conservative loading cases, we can express
the total potential of the system in the reference position of the arbitrary
body under consideration as follows

Π(u, ϕ,∇Xϕ, κ) =

∫
Ω0

Ψ(C(u), ϕ,∇Xϕ, κ) dΩ

−
∫
Ω0

F
V · udΩ−

∫
∂Ω0

T · ud∂Ω

(4.25)

Since the problem is governed by the principle of minimum potential en-
ergy, the expression for the equation concerning the mechanical problem
in the material configuration is obtained as
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δΠ =
∂Π

∂u
· δu++

∂Π

∂ϕ
δϕ+

∂Π

∂∇Xϕ
· ∇Xδϕ− δΠext = 0 (4.26)

that, can be particularized for each independent field as:

δΠu(u, ϕ,∇Xϕ, κ) =

∫
Ω0

(S · FT) : ∇XδudΩ︸ ︷︷ ︸
δΠu

int

−
∫
Ω0

F
V · δudΩ−

∫
∂Ω0

T · δud∂Ω︸ ︷︷ ︸
δΠu

ext

= 0

(4.27)

δΠϕ(u, ϕ,∇Xϕ, κ) =

∫
Ω0

Y · ∇XδϕdΩ︸ ︷︷ ︸
δΠϕ

int

−
∫
Ω0

Y δϕdΩ︸ ︷︷ ︸
δΠϕ

ext

= 0 (4.28)

Let Vu =
{
δu ∈ [H1(Ω0)] : δu = 0 on ∂Ω0,u

}
be the space of admissi-

ble displacement variations, and Vϕ =
{
δϕ ∈ [H1(Ω0)] : ∇Xδϕ ·N = 0 on ∂Ω0

}
,

the space of admissible test functions for non-local damage function.
Furthermore, in the previous expression, the second Piola-Kirchhoff stress
tensor renders S := 2fd(κ)∂CΨ

loc, and F
V

and T denote the body force
and the traction vectors in the reference volume Ω0 and surface ∂Ω0, re-
spectively.

The previous system of equations can be expressed in the spatial con-
figuration by applying a standard push-forward operation:

δΠu(u, ϕ,∇xϕ, κ) =

∫
Ω

σ : ∇xδudΩ︸ ︷︷ ︸
δΠu

int

−
∫
Ω

f
V · δudΩ−

∫
∂Ω

t · δud∂Ω︸ ︷︷ ︸
δΠu

ext

= 0

(4.29)

δΠϕ(u, ϕ,∇xϕ, κ) =

∫
Ω

y · ∇xδϕdΩ︸ ︷︷ ︸
δΠϕ

int

−
∫
Ω

yδϕdΩ︸ ︷︷ ︸
δΠϕ

ext

= 0 (4.30)

expressed in the current volume Ω and surface ∂Ω and with σ identifying
the Cauchy stress tensor that is accordingly affected by the degradation
function fd(κ).

123



Upon the use of the product rule and the divergence theory on Eqs. (4.27)-
(4.28), the governing equations for the balance of linear momentum (Eqs.
(4.31)-(4.32)) and evolution of the non-local damage field ϕ (Eqs. (4.33)-
(4.34)) are expressed in the reference configuration Ω0

∇X · (F · S) + F
V
= 0 in Ω0 (4.31)

(F · S) ·N = T on ∂Ω0 (4.32)

∇X ·Y + Y = 0 in Ω0 (4.33)

Y ·N = 0 on ∂Ω0 (4.34)

Replicating the previous procedure for Eqs. (4.29)-(4.30) in the case
of the current configuration, the Euler-Lagrange equations in the spatial
form are given by

∇x · σ + f
V
= 0 in Ω (4.35)

σ · n = t on ∂Ω (4.36)

∇x · y + y = 0 in Ω (4.37)

y · n = 0 on ∂Ω (4.38)

being N and n both the normal vectors in the material and spatial con-
figuration, respectively.

4.2.2 Variational formulation of gradient-enhanced dam-
age models for enhanced assumed strain formula-
tions

This section tailors the already established standard CDM model by com-
bining it with the EAS method. Regarding this novel application, it is
performed to alleviate shear locking pathologies in damage using low-
order displacement interpolation in the subsequent finite element dis-
cretization scheme.

We focus our development on the additive decomposition of the Green-
Lagrange strain tensor into a displacement derived (Eu) and an enhanc-
ing counterpart Ẽ as follows [316]: E = Eu + Ẽ. This differs from the al-
ternative EAS scheme proposed by Simo and Armero [146] that accounts
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for the additive decomposition of the deformation gradient F = Fu + F̃.
Moreover, note that in the following derivation, the free-energy func-
tion is expressed in terms of the Green-Lagrange strain tensor. However,
there exists a direct relation concerning the right Cauchy-Green tensor.

The point of departure of the formulation is based on the construction
of the multi-field Hu-Washizu functional, where the displacement, the
enhancing strain, the stress, and the non-local damage variable are the
independent fields. This functional is given by

Π(S, Ẽ,u, ϕ,∇Xϕ, κ) =

∫
Ω0

[
fd(κ)Ψ

loc(E(u)) +
cd
2
∇Xϕ · ∇Xϕ−

βd
2
[ϕ− γdκ]

2

]
dΩ

−
∫
Ω0

S : ẼdΩ−Πext(u)

(4.39)
where Πext(u) identifies the external contribution due to the prescribed
domain and boundary actions.

Let Vu =
{
δu ∈ [H1(Ω0)] : δu = 0 on ∂Ω0,u

}
be the space of admis-

sible displacement variations; VẼ = [L2(Ω0)], the space of the admissi-
ble enhancing strain; and Vϕ =

{
δϕ ∈ [H1(Ω0)] : ∇Xδϕ ·N = 0 on ∂Ω0

}
,

the space of admissible test functions for non-local damage function. The
first variation of the total potential energy with respect to independent
fields gives the following general expression:

δΠ =
∂Π

∂u
· δu+

∂Π

∂Ẽ
: δẼ+

∂Π

∂S
: δS+

∂Π

∂ϕ
δϕ+

∂Π

∂∇Xϕ
· ∇Xδϕ− δΠext = 0

(4.40)
The previous expression can be particularized as follows from Eq. (4.39):

δΠ(S, Ẽ,u, ϕ,∇Xϕ, κ) =

∫
Ω0

fd(κ)
∂Ψloc(E(u))

∂E
: δEu dΩ

+

∫
Ω0

(
fd(κ)

∂Ψloc(E(u))

∂E
− S

)
: δẼdΩ−

∫
Ω0

δS : ẼdΩ

+

∫
Ω0

cd∇Xϕ · ∇XδϕdΩ−
∫
Ω0

βd[ϕ− γdκ]δϕdΩ

− δΠext(u) = 0, ∀δu, ∀δẼ, ∀δS, ∀δϕ
(4.41)
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Exploiting the orthogonality condition between the stress field S and
the enhancing strain field Ẽ [146], the weak form of the coupled IBVP
(Initial Boundary Value Problem) can be reduced to three independent
fields, namely the displacement, the enhancing strain, and the non-local
damage fields.

The weak form given in Eq. (4.41) (recalling S := 2fd(κ)∂CΨ
loc =

fd(κ)∂EΨ
loc) is given by

δΠu = δΠu
int − δΠu

ext =

∫
Ω0

S : δEu dΩ− δΠext(u) = 0 (4.42)

δΠẼ = δΠẼ
int − δΠẼ

ext = −
∫
Ω0

S : δẼdΩ = 0 (4.43)

δΠϕ = δΠϕ
int − δΠϕ

ext =

∫
Ω0

cd∇Xϕ · ∇XδϕdΩ−
∫
Ω0

βd[ϕ− γdκ]δϕdΩ = 0.

(4.44)
In Eqs. (4.42)-(4.44), δΠ∗

int and δΠ∗
ext stand for the internal and exter-

nal contributions of the generic field (∗). In what follows, we turn our
interest to the internal contribution of each independent field.

4.2.3 Variational formulation of gradient-enhanced dam-
age models for penalty-based mixed formulations
for nearly incompressible materials

The second presented methodology concerned in this investigation is the
mixed Jacobian-pressure formulation originally proposed by Simo et al.
[129]. In line with this work, we first perform a modification in the lo-
cal strain energy density Ψloc to a nearly incompressible neo-Hookean
approach:

Ψloc(b̄) =
G

2
(Ī1 − 3)︸ ︷︷ ︸
Ψloc

iso

+
K

4
(J2 − 1− 2 lnJ)︸ ︷︷ ︸

Ψloc
vol

(4.45)

where Ī1 is the first invariant of the isochoric left Cauchy-Green tensor b̄
and reads as Ī1 = J−2/3I1 = J−2/3tr[b].
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For the current three-field variational problem, we consider three fields
as primary unknowns of the system {u, p̃, J̃}, where:

• p̃ is the Lagrange multiplier that accounts for the pressure response

p =
∂Ψloc

vol
∂J .

• J̃ is the dilatation, a constraint variable for the Jacobian of the ma-
terial J(u).

For convenience, we express the total potential of the system in the
current configuration:

Π(u, p̃, J̃ , ϕ,∇xϕ, κ) =

∫
Ω

[
fd(κ)

[
Ψiso(b(u))

]
+Ψvol(J̃) +

p̃

J
[J(u)− J̃ ]

+
cd
2J

∇xϕ · ∇xϕ · b− βd
2J

[ϕ− γdκ]
2
]

dΩ−Πext

(4.46)
Again we denote: (i) Vu =

{
δu ∈ [H1(Ω)] : δu = 0 on ∂Ω0,u

}
is the

space of admissible displacement variations, (ii) δp̃ ∈ L2(Ω) stands for
the space of virtual pressure, (iii) δJ̃ ∈ L2(Ω) regards the space of virtual
dilatation and (iv) Vϕ =

{
δϕ ∈ [H1(Ω)] : ∇xδϕ · n = 0 on ∂Ω

}
the space

of admissible test functions for non-local damage function.
The first variation of the functional with respect to independent fields

renders

δΠ =
∂Π

∂u
·δu+ ∂Π

∂J̃
δJ̃+

∂Π

∂p̃
δp̃+

∂Π

∂ϕ
δϕ+

∂Π

∂∇xϕ
·∇xδϕ−δΠext = 0 (4.47)

The previous expression can be expanded as follows.

δΠ(u, p̃, J̃ , ϕ,∇xϕ, κ)=

∫
Ω

[
(fd(κ)σiso + p̃1︸︷︷︸

σvol

) · ∇xδu+
(J(u)− J̃)

J
δp̃

]
dΩ

+

∫
Ω

[(∂Ψloc
vol

∂J̃
− p̃
)

J
δJ̃

]
dΩ +

∫
Ω

cd
J
∇xϕ · b · ∇xδϕdΩ

−
∫
Ω

βd
J
[ϕ− γdκ]δϕdΩ− δΠext = 0 ∀δu, ∀δJ̃ , ∀δp̃, ∀δϕ

(4.48)
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The weak form of the coupled IBVP (Initial Boundary Value Problem)
can be reduced to four independent fields, namely the displacement, the
pressure, the dilatation and the non-local damage fields. It is given by

δΠu = δΠu
int − δΠu

ext =

∫
Ω

[
(fd(κ)σiso + p̃1) · ∇xδu dΩ− δΠext(u) = 0

(4.49)

δΠp̃ = δΠp̃
int =

∫
Ω

(J(u)− J̃)δp̃

J
dΩ = 0 (4.50)

δΠJ̃ = δΠJ̃
int =

∫
Ω

(
∂Ψloc

vol

∂J̃
− p̃
)

J
δJ̃ dΩ = 0 (4.51)

δΠϕ = δΠϕ
int−δΠ

ϕ
ext =

∫
Ω

cd
J
∇xϕ ·b ·∇xδϕdΩ−

∫
Ω

βd
J
[ϕ−γdκ]δϕdΩ = 0.

(4.52)
with the isochoric contribution of the Cauchy stress σiso being easily ob-
tained from the derivation of the local strain energy density as

σiso = 2J−1b
∂Ψloc

iso

∂b
= Gb̄− Ī1

3
1 (4.53)

In addition to this, it is worth highlighting the expressions for the
Jacobians obtained by the volumetric and isochoric contributions:

cvol = p̃(1⊗ 1− 2Isym) (4.54)

ciso =
2

3J

[
Ī1[I

sym − (1⊗ 1)/3]− σiso ⊗ 1− 1⊗ σiso

]
(4.55)

It is observed how the damage function term fd only multiplies the
isochoric term. Therefore, for the forthcoming expressions in Section
4.3.1, when we refer to damaged stress and stiffness, they refer to the
isochoric terms. The volumetric contribution is left unchanged.
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4.3 Algorithmic treatment and finite element im-
plementation details

This section outlines the description of the algorithmic description for the
general gradient-enhanced damage formulation (Section 4.3.1), and sub-
sequently, in Section 4.3.2, we describe the finite element implementation
details describing the resulting operators and the interpolation schemes
for each of the formulations given in Sections 4.2.1-4.2.3.

4.3.1 Gradient-enhanced damage framework - algorithmic
setting

This section details the algorithmic scheme within the context of an iter-
ative and sequential solution scheme using nonlinear FE. In the sequel,
we provide condensed information concerning the material and spatial
formulations given in Section 4.2.1 in line with the salient results of Waf-
fenschmidt et al. [111].

Recalling Eq. (4.21), this expression represents a nonlinear differen-
tial equation that should be numerically integrated within the time step
interval ∆t = tn+1 − tn ≥ 0 where tn+1 is the current time step and tn

is the previous equilibrium solution of the system relying on a Newton-
Rahpson-based solution of the corresponding nonlinear FE formulation.
The backward Euler integration scheme of the damage variable κ at the
current time step n+ 1 renders

κn+1 = κn + γn+1 with κ|t0 = κd (4.56)

where γn+1 = ∆tλd,n+1 is the Lagrange multiplier at time tn+1. There-
fore, the incremental Karush–Kuhn–Tucker conditions take the form:

γn+1 ≥ 0; Φd,n+1 ≤ 0; γn+1Φd,n+1 = 0 (4.57)

The flux and source equations can be updated for a material descrip-
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tion:

Sn+1 = fd(κn+1)S
und
n+1 (4.58)

Yn+1 = cd∇Xϕn+1 (4.59)

Yn+1 = −βd[ϕn+1 − κn+1γd] (4.60)

where the superscript [•]und refers to undamaged variables.
The spatial approach is obtained by just push-forwarding the magni-

tudes:

σn+1 = fd(κn+1)σ
und
n+1 (4.61)

yn+1 = cd∇xϕn+1/Jn+1bn+1 (4.62)

yn+1 = −βd[ϕn+1 − κn+1γd]/Jn+1 (4.63)

where κn+1 = κn for an elastic incremental step. Complying with Eq.
(4.20), for our incremental scheme, the incremental Lagrange multiplier
γn+1 is obtained by fulfilling the consistency equation:

Φd,n+1 = qn+1 − κn+1 = Ψloc
n+1 +

βdγd
ηdfd(κn+1)

[ϕn+1 − γdκn+1]− κn+1 = 0

(4.64)
This nonlinear equation is solved by means of a Newton-Raphson (N-

R) iterative scheme at the material point level: expanding Eq. (4.64) in a
first-order Taylor series at γkn+1 for a k-th N-R iteration, we obtain

γk+1
n+1 = γkn+1 − [dγrkn+1]

−1rkn+1 (4.65)

where rkn+1 = Φd,n+1(κ
k
n+1) is the residual in the k-th iteration step and

dγrkn+1 is the Jacobian of this residual, which reads

dγrkn+1 =
βdγd

ηdfd(κn+1)
[ηd[ϕn+1 − γdκn+1]− γd]− 1 (4.66)

Now that we can calculate γn+1, the N-R scheme checks if the resid-
ual is below a pre-defined tolerance, and accordingly, the internal dam-
age variable (Eq. (4.56)) and the flux and source terms for stresses and
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non-local damage magnitudes (Eqs. (4.58)-(4.63)) are updated. We now
have all the ingredients for the global algorithm setting that is thoroughly
summarised in Algorithm 1. For this, we compute the derivatives for all
the source values required to complete the Jacobian formulation. For the
sake of brevity, we consider fd(κn+1) = fd in this series of equations.
Complying with a material configuration approach:

2
∂Sn+1

∂Cn+1
= fdCn+1+ηdfdβdSn+1 ⊗ Sn+1 (4.67)

∂Sn+1

∂ϕn+1
= 2

∂Yn+1

∂Cn+1
= βdγdθdSn+1 (4.68)

∂Yn+1

∂ϕn+1
= −

[
βd + (βdγd)

2(ηdfd)
−1θd

]
(4.69)

∂Yn+1

∂∇Xϕn+1
= cd1 (4.70)

and applying a push-forward for the spatial approach:

2
∂σn+1

∂(Fn+1Cn+1FT
n+1)

= fdcn+1+Jn+1ηdfdβdσn+1 ⊗ σn+1 (4.71)

∂σn+1

∂ϕn+1
= 2

∂yn+1

∂(Fn+1Cn+1FT
n+1)

= βdγdθdσn+1 (4.72)

∂yn+1

∂ϕn+1
= −[βd + (βdγd)

2(ηdfd)
−1θd]/Jn+1 (4.73)

∂yn+1

∂∇xϕn+1
= cdbn+1/Jn+1 (4.74)

with

θd = −1− ηdfd
βdγd[γd(1 + ηdκn+1)− ηdϕn+1]

(4.75)
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Algorithm 1 Algorithmic box for the local N-R scheme for gradient-
enhanced damage constitutive model. MS = material scheme, SS = spa-
tial scheme.

1: Input: Fn+1, ϕn+1, ∇Xϕn+1 (MS), ∇xϕn+1 (SS), κn (κ|t0 = ϕ|t0 = κd)
2: Compute Ψloc

n+1 (Eq. (4.1)), Sund
n+1 (MS, Eq. (4.2)), σund

n+1 (SS, Eq. (4.3)),
Cund
n+1 (MS, Eq. (4.4)) and cund

n+1 (SS, Eq. (4.5))
3: Calculate driving force

qn+1 = Ψloc
n+1+

βdγd
ηdfd(κn)

[ϕn+1−γdκn]; fd(κn) = exp[ηd(κd−κn)]

(4.76)
4: Comprobate damage function:

Φd,n+1 = qn+1 − κn (4.77)

Set κn+1 = κn. If Eq. (4.77) ≤ 0, go to Step 6. Otherwise, go to Step 5.
5: Compute local N-R to obtain incremental Lagrange multiplier γn+1

iteratively
a: Compute residual rkn+1

rkn+1 = Ψloc
n+1 +

βdγd
ηdfd(κkn+1)

[ϕn+1 − γdκ
k
n+1]− κkn+1;

fd(κ
k
n+1) = exp[ηd(κd − κkn+1)]

(4.78)

b: Comprobate the tolerance: if |rkn+1| < TOL, go to Step 6, if not,
continue to Step 5c.
c: Calculate Jacobian of residual dγrkn+1 (Eq. (4.66)).
d: Compute the variation for the incremental Lagrange multiplier

∆γkn+1 = −[dγrkn+1]
−1rkn+1 (4.79)

e: Update internal damage variable

κkn+1 = κkn +∆γkn+1 (4.80)

and go back to Step 5a.
6: Compute flux and source equations (Eqs. (4.58)-(4.60) for MS or Eqs.

(4.61)-(4.63) for SS).
7: Compute tangent moduli (Eqs. (4.67)-(4.70) for MS or Eqs. (4.71)-

(4.74) for SS).
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4.3.2 Finite Element formulation and implementation de-
tails

This section addresses the FE derivation and the main implementation
details of the proposed coupled system of nonlinear equations for each
of the variational formulations proposed in Section 4.2.

The baseline kinematic description for the displacement approxima-
tion complies with standard first-order 3-D 8-node hexahedral elements.
The parametric space is defined as: A := {ξ = (ξ, η, ζ) ∈ R3 | − 1 ≤
ξ, η, ζ ≤ +1; i = 1, 2, 3}. The related literature has deeply reported
the poor performance of this fundamental displacement formulation for
bending-dominated applications and nearly incompressible elasticity, mo-
tivating the development of several mixed FE formulations.

For the sake of clarity, we specify the main differences between the
three approaches herewith proposed:

• A nonlinear CDM approach for the spatial configuration using the
formulation of Section 4.2.1.

• A novel nonlinear CDM approach for the material configuration
considering the enhanced assumed strain (EAS) technique (Section
4.2.2).

• A novel nonlinear CDM approach for the spatial configuration con-
sidering a mixed Finite Element formulation that accounts for the
influence of the hydrostatic pressure p and the Jacobian J (Section
4.2.3).

First, we outline the interpolation of the displacements and the non-
local damage variable that holds for the standard gradient-enhanced dam-
age model and for the mixed formulations herein proposed. Subsequently,
we will detail for the discrete representations encompassing the residu-
als and the Jacobian matrices given for each one of the three different
proposed approaches.
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Discretisation scheme for the displacement and the non-local damage
variable

Complying with standard isoparametric FEM, the reference and the cur-
rent geometries can be interpolated using standard trilinear shape func-
tions N I (N(ξ) in matrix notation) as

X =

m∑
I=1

N I(ξ)XI = N(ξ) · X̂ and x =

m∑
I=1

N I(ξ)xI = N(ξ) · x̂, (4.81)

where XI and xI stands the nodal positions in the reference and the
current configurations, respectively, and setting m = 8 is the number
of nodes. These nodal locations can be expressed in the corresponding
vectors: X̂ and x̂.

The interpolation of the displacements u and the non-local damage
variable ϕ renders

u ≈ N(ξ) · d, ϕ ≈ N(ξ) · ϕ̂ (4.82)

where d represents the nodal displacement vector, and ϕ̂ represents the
nodal values of the non-local damage variable; both defined at the ele-
ment level.

The material and spatial gradients of the shape functions N can be
read as

∇XN = Je
-T · ∇ξN(ξ), ∇xN = je

-T · ∇ξN(ξ) (4.83)

with ξ referring to the parametric coordinate system with coordinates
ξ = {ξ, η, ζ}; and Je and je as the material and spatial Jacobians of the
isoparametric transformation, which allow the computation of the defor-
mation gradient F as follows:

F = je · Je
−1 with J = det[F] =

det[je]
det[Je]

(4.84)

With the previous definitions at hand, the corresponding material
gradient quantities can be discretized as, for a material description,

∇Xδu ≈ δd⊗∇XN, ∇Xδϕ ≈ δϕ̂⊗∇XN (4.85)
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whereas the spatial gradients render

∇xδu ≈ δd⊗∇xN, ∇xδϕ ≈ δϕ̂⊗∇xN (4.86)

FE formulation of the gradient-enhanced damage model for spatial
configuration - Q1Q1

The point of departure for the finite element formulation of the displacement-
based gradient-enhanced damage model recalls the variational formal-
ism defined in Eqs. (4.29)-(4.30), defining a coupled problem.

The insertion of the interpolation scheme for u and ϕ leads to a dis-
crete version of the residual forms denoted by Rd and Rϕ̂ that are de-
fined as:

Rd(d, δd, ϕ̂) =

∫
Ω

∇xN
T · σ dΩ−

∫
Ω

NT · fv dΩ−
∫
∂Ω

NT · td∂Ω = 0

(4.87)

Rϕ̂(d, ϕ̂, δϕ̂) =

∫
Ω

∇xN
T · y dΩ−

∫
∂Ω

NTy d∂Ω = 0 (4.88)

For the application of Newton-type solution algorithms for the iter-
ative solution of the boundary value problem, the linearization of the
weak form is computed as follows:

L̂[Rd](d, δd,∆d, ϕ̂,∆ϕ̂) = Rd(d, δd, ϕ̂)+∆dR
d ·∆d+∆ϕ̂R

d ·∆ϕ̂ (4.89)

L̂[Rϕ̂](d, ϕ̂, δϕ̂,∆ϕ̂) = Rϕ̂(d, ϕ̂, δϕ̂) + ∆dR
ϕ̂ ·∆d+∆ϕ̂R

ϕ̂ ·∆ϕ̂ (4.90)

where ∆∗[•] denotes the directional derivative operator with respect to
the field ∗.

Computing the derivatives of the residuals, we reach the Jacobian
expressions that are required to solve the global N-R scheme:
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Kdd =
∂Rd

∂u
=

∫
Ω

∇xN
T · c · ∇xNdΩ +

∫
Ω

[
∇xN

T · σ · ∇xN
]
· 1dΩ

(4.91)

Kdϕ̂ =
∂Rd

∂ϕ
=

∫
Ω

∇xN
T · ∂σ

∂ϕ
·NT dΩ (4.92)

Kϕ̂d =
∂Rϕ̂

∂u
=

∫
Ω

N · 2 ∂y

∂(FCFT)
· ∇xNdΩ (4.93)

Kϕ̂ϕ̂ =
∂Rϕ̂

∂ϕ
=

∫
Ω

∂y

∂ϕ
NT ·N dΩ +

∫
Ω

∇xN
T · ∂y

∂∇xϕ
· ∇xN dΩ (4.94)

which leads to the following linearised system of equations that is solved
by the global iterative N-R monolithic scheme[

Kdd Kdϕ̂

Kϕ̂d Kϕ̂ϕ̂

] [
∆d

∆ϕ̂

]
= −

[
Rd

Rϕ̂

]
(4.95)

FE formulation of the gradient-enhanced damage model EAS-based el-
ements - Q1Q1E24

For its numerical implementation and in line with the previous investi-
gations for Enhanced Assumed Strain (EAS) mixed FE formulations, we
herewith recall a material formulation defined in the reference configu-
ration of the body. This formulation has been exploited for its usage in
the modelling for solid shells [146, 317, 309, 269, 318, 310, 319, 68, 35], as
it is proven to block the appearance of shear locking in structures under
bending configurations.

Recalling from Section 4.2.2, the Cauchy-Green right tensor is com-
puted as follows:

C = Cu + C̃ = 2(Eu + Ẽ) + 1 (4.96)

The current definition of the enhancing part of the Green-Lagrange
tensor relies on the formulation proposed by Andelfinger and Ramm
[305] and Bischoff and Ramm [316], whose specific details are omitted
for brevity reasons.
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The enhanced strain field is defined at the element level via the matrix
operator M(ξ)

Ẽ ≈ M(ξ) · ς, δẼ ≈ M(ξ) · δς, ∆Ẽ ≈ M(ξ) ·∆ς. (4.97)

where

M =
detJ0

detJe
T-T

0 ·Mξ (4.98)

where T-T
0 is the transpose of the inverse of a matrix that accounts for the

terms of the Jacobian from the initial configuration Je that reads:

T0 =



J2
0 11 J2

0 21 J2
0 31 2J0 11J0 21 2J0 21J0 31 2J0 11J0 31

J2
0 12 J2

0 22 J2
0 32 2J0 12J0 22 2J0 22J0 32 2J0 12J0 32

J2
0 13 J2

0 23 J2
0 33 2J0 13J0 23 2J0 23J0 33 2J0 13J0 33

J0 11J0 12 J0 21J0 22 J0 31J0 32 J0 11J0 12 + J0 21J0 12 J0 21J0 32 + J0 31J0 22 J0 11J0 32 + J0 31J0 12
J0 12J0 13 J0 22J0 23 J0 32J0 33 J0 12J0 23 + J0 22J0 13 J0 22J0 33 + J0 32J0 23 J0 12J0 33 + J0 33J0 13
J0 11J0 13 J0 21J0 23 J0 31J0 33 J0 11J0 23 + J0 21J0 13 J0 21J0 33 + J0 31J0 23 J0 11J0 33 + J0 31J0 13


(4.99)

Without any loss of generality, we recall the incompatible strain modes
defined in [305] encompassing 24 incompatible modes leading to the fol-
lowing particular form of the matrix Mξ:

Mξ =


ξ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ξη ξζ 0 0 0 0 0 0 0
0 η 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ξη ηζ 0 0 0 0 0
0 0 ζ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ξζ ηζ 0 0 0
0 0 0 ξ η 0 0 0 0 ξζ ηζ 0 0 0 0 0 0 0 0 0 0 ξη 0 0
0 0 0 0 0 0 0 ξ ζ 0 0 0 0 ξη ζη 0 0 0 0 0 0 0 0 ξζ
0 0 0 0 0 η ζ 0 0 0 0 ξη ξζ 0 0 0 0 0 0 0 0 0 ηζ 0


(4.100)

Therefore, the incompatible strains ς are added into the FE implementa-
tion as an extra degree of freedom. The consistent linearization of this
system is obtained through the Gateaux directional derivative concept,
resulting in

L̂[Rd](d, δd,∆d, ϕ̂,∆ϕ̂, ς,∆ς) = Rd(d, δd, ϕ̂, ς) + ∆dR
d ·∆d

+∆ϕ̂R
d ·∆ϕ̂+∆ςR

d ·∆ς
(4.101)

L̂[Rς ](d,∆d, ϕ̂,∆ϕ̂, ς, δς,∆ς) = Rς(d, ϕ̂, ς, δς) + ∆dR
ς ·∆d

+∆ϕ̂R
ς ·∆ϕ̂+∆ςR

ς ·∆ς
(4.102)
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L̂[Rϕ̂](d,∆d, ϕ̂, δϕ̂,∆ϕ̂, ς,∆ς) = Rϕ̂(d, ϕ̂, δϕ̂, ς) + ∆dR
ϕ̂ ·∆d

+∆ϕ̂R
ϕ̂ ·∆ϕ̂+∆ςR

ϕ̂ ·∆ς,
(4.103)

The linearised system of equations solved for the global N-R mono-
lithic scheme readsKdd Kdϕ̂ Kdς

Kϕ̂d Kϕ̂ϕ̂ Kϕ̂ς

Kςd Kςϕ̂ Kςς


∆d

∆ϕ̂
∆ς

 = −

Rd

Rϕ̂

Rς

 (4.104)

where the term for the residual of the incompatible strains Rς is given by

Rς(d, ϕ̂, ς, δς) =

∫
Ω0

MT · SdΩ (4.105)

and the tangent terms that form part of the Jacobian matrix read as

Kςd =

∫
Ω0

MT · C · ∇XN dΩ (4.106)

Kςϕ̂ =

∫
Ω0

MT · C ·N dΩ (4.107)

Kςς =

∫
Ω0

MT · C ·M dΩ (4.108)

where ∇XN accounts for the nonlinear term that is added to the expres-
sion defined in Eq. (4.83), specific for material configuration schemes
[134]. This is expressed for every node by:

∇XNi =


Ni,xF11 Ni,xF21 Ni,xF31

Ni,yF12 Ni,yF22 Ni,yF32

Ni,zF13 Ni,zF23 Ni,zF33

Ni,xF12 +Ni,yF11 Ni,xF22 +Ni,yF21 Ni,xF32 +Ni,yF31

Ni,yF13 +Ni,zF12 Ni,yF23 +Ni,zF22 Ni,yF33 +Ni,zF32

Ni,xF13 +Ni,zF11 Ni,xF23 +Ni,zF21 Ni,xF33 +Ni,zF31


(4.109)

where Ni,j is the derivative of the nodal shape function Ni with respect
to the j-coordinate and Fij accounts for the terms of the deformation gra-
dient F. This expression is also included in his respective terms for the
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internal residuals and their associated Jacobians for the reference config-
uration.

Following the approach proposed by [309], since inter-element conti-
nuity is not required for the enhanced strains, they can be removed as a
DOF through a standard static condensation process, thus reaching the
system of equations proposed in Eq. (4.95), having the element stiffness
contributions like

K̃dd = Kdd −Kdς · (Kςς)−1 ·Kςd (4.110)

K̃dϕ̂ = (K̃ϕ̂d)T = Kdϕ̂ −Kdς · (Kςς)−1 ·Kςϕ̂ (4.111)

K̃ϕ̂ϕ̂ = Kϕ̂ϕ̂ −Kϕ̂ς · (Kςς)−1 ·Kςϕ̂ (4.112)

and the newly defined residuals as

R̃d = Rd −Kdς · (Kςς)−1 ·Rς (4.113)

R̃ϕ̂ = Rϕ̂ −Kϕς · (Kςς)−1 ·Rϕ̂ (4.114)

FE formulation of the gradient-enhanced damage model for spatial
configuration employing a mixed FE formulation - Q1Q1P0

For the second novel approach that we have developed, the present for-
mulation relies on the fundamental derivations by Simo et al. [129] and
subsequently exploited by Miehe [299], whose effectiveness for mod-
elling quasi-incompressible materials (ν → 0.5) has been profusely as-
sessed in the last two decades. In this concern, we recall a particular
model where the primary unknowns are: (i) the displacement field u, (ii)
the Lagrange multiplier for pressure p̃, and (iii) the independent kine-
matic variable J̃ .

In line with the two previous approaches, we start by getting the
residuals for these three primary unknowns by discretising from Eq. (4.48):
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Rd(d, δd, ϕ̂, p̃) =

∫
Ω

∇xN
T · (σiso + σvol) dΩ

−
∫
Ω

NT · fV dΩ−
∫
∂Ω

NT · t d∂Ω = 0

(4.115)

Rp̃(d, δp, J̃) =

∫
Ω

N p̃(J(d)− J̃)

J
dΩ = 0 (4.116)

RJ̃(p̃, J̃ , δJ̃) =

∫
Ω

N J̃
(

∂Ψloc
vol

∂J̃
− p̃
)

J
dΩ = 0 (4.117)

The consistent linearization of this system is obtained through the
Gateaux directional derivative concept, resulting in

L̂[Rd](d, δd,∆d, ϕ̂,∆ϕ̂, p̃,∆p̃) = Rd(d, δd, ϕ̂, p̃) + ∆dR
d ·∆d

+∆ϕ̂R
d ·∆ϕ̂+∆p̃R

d ·∆p̃
(4.118)

L̂[Rp̃](d,∆d, δp̃, J̃ ,∆J̃) = Rp̃(d, δp, J̃) + ∆dR
p̃ ·∆d

+∆J̃R
p̃ ·∆J̃

(4.119)

L̂[RJ̃ ](p̃,∆p̃, J̃ , δJ̃ ,∆J̃) = RJ̃(p̃, J̃ , δJ̃) + ∆p̃R
J̃ ·∆p̃

+∆J̃R
J̃ ·∆J̃

(4.120)

L̂[Rϕ̂](d,∆d, ϕ̂, δϕ̂,∆ϕ̂) = Rϕ̂(d, ϕ̂, δϕ̂) + ∆dR
ϕ̂ ·∆d

+∆ϕ̂R
ϕ̂ ·∆ϕ̂

(4.121)

By deriving the residuals, we reach the expression for the Jacobian
matrices:
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Kdd =

∫
Ω

∇xN
T · c · ∇xNdΩ

+

∫
Ω

[
∇xN

T · (σiso + σvol) · ∇xN
]
· 1dΩ

(4.122)

Kdp̃ = (Kp̃d)T =

∫
Ω

(∇xN
T) · 1N p̃ dΩ (4.123)

K p̃J̃ = K J̃ p̃ = −
∫
Ω

N p̃N J̃

J
dΩ (4.124)

K J̃J̃ =

∫
Ω

N J̃ ∂2Ψloc
vol

∂J̃2
N J̃

J
dΩ (4.125)

What is observed in this formulation is that in addition to the normal
formulation, we have to introduce shape functions for the interpolations
for the mixed variables related to the pressure N p̃ and the dilatation N J̃ .
However, since they do not have to satisfy the continuity between the
elements, we can suppose that their values, N p̃ and N J̃ , have a constant
scalar value of 1.

As outlined above, this mixed finite element is herewith reformu-
lated in order to accommodate gradient-enhanced damage models, tak-
ing Eq. (4.48) as the basis for its derivation. Therefore, we obtain that
the baseline three-field mixed formulation is coupled with the non-local
gradient-enhanced damage model, leading to a system of four residual
equations.

Kdd Kdϕ̂ Kdp̃ 0

Kϕ̂d Kϕ̂ϕ̂ 0 0

Kp̃d 0 0 K p̃J̃

0 0 K J̃ p̃ K J̃J̃



∆d

∆ϕ̂
∆p̃

∆J̃

 = −


Rd

Rϕ̂

Rp̃

RJ̃

 (4.126)

As inter-element continuity is not required for both the pressure and
the dilatation DOFs, they can be removed from the system of equations
by employing a standard static condensation process, reaching the sys-
tem proposed in Eq. (4.95), obtaining both the residual and stiffness con-
tributions like
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R̃d = Rd +KKdp̃Rp̃ −Kdp̃(K p̃J̃)−1RJ̃ (4.127)

K̃dd = Kdd +KKdp̃ ·Kp̃d (4.128)

where K = (K p̃J̃)−1K J̃J̃(K J̃ p̃)−1.

4.4 Numerical examples

The forthcoming section is dedicated to the resolution of several numer-
ical simulations involving compressible and incompressible hyperelas-
tic materials in order to test the capabilities in damage modelling of the
Q1Q1, Q1Q1E24 and Q1Q1P0 schemes.

The first of the experiments consists of a validation example employ-
ing a nearly-incompressible block under a compressive state, adopted
from the work in Section 4.2 of Reese et al. [320]. Furthermore, this in-
stance does not consider the gradient-enhanced CDM approach, and we
aim to validate the mixed u-p-J formulation.

The next numerical experiment consists of a series of parametric stud-
ies carried out on a plate with a hole to study the influence of the regu-
larisation properties of the model. We adopt the example in Section 5.2
of the work by Waffenschmidt et al. [111], replicating the dependence on
the mechanical behavior for the compressible samples and analyzing the
performance for nearly incompressible materials.

The last experiment aims to simulate a challenging example for a
large deformation problem vulnerable to both shear and volumetric patholo-
gies. For this, based on the proposed example in Section 4.1 in the work
by Reese et al. [320], we propose a notched cylindrical shell subjected to
an extreme bending load.

4.4.1 Benchmark example - Nearly incompressible block
under compression

Taken from Reese et al. [320], it is modelled the quarter of a cubic brick
(symmetry conditions are considered on the planes X and Y) with 1,000
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Figure 54: Scheme for the block under compressive load modelled. The area
in bold corresponds with the region where the compressive uz is applied on.
The dimensions are given in mm. Dotted lines correspond to the regions
generated by symmetry.

brick elements under a compressive status, i.e., a displacement of uz =

−0.5 mm is applied on the area in bold of Fig. 54, where it is observed
the bottommost surface as fixed in the cubical structure. Mimicking
the properties of the reference example, we consider a Shear Modulus
G = 80.194 MPa and a Poisson ratio ν = 0.49999, thus considering a
nearly incompressible material. Since this model aims to analyze the
potentiality of the three proposed approaches in modelling this highly
deformed state, avoiding locking pathologies, no damage interaction is
proposed within this example. This means that we model Q1, Q1E24 and
Q1P0 FE formulations.

In order to quantify the differences in performance among the three
proposed frameworks, it is plotted the deformed configuration (Fig. 55)
and the reaction force-displacement curves (Fig. 56) for every algorithm.
Emphasizing the main advantages and disadvantages of them, it is item-
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Figure 55: Isommetric view from the deformed of the benchmark problem
run with (a) Q1 and (b) Q1P0 algorithms, respectively.

ized for every technique, in particular, the results obtained, also compar-
ing with one sample run with ABAQUS C3D8H hybrid elements:

• Q1 formulation: It can be envisaged that the performance here is
not satisfying overall. Starting from the left image in Fig. 55, it is
observed a high deformation on the outer surfaces of the block due
to the over-stiffening of the structure caused by the large deforma-
tion process. Confirming this aspect with the force-displacement
curve in Fig. 56, it is deduced that the main reason for this behavior
is the volumetric locking that exhibits the solid by employing this
algorithm, whose force-displacement curve highly overestimates
the mechanical answer of the material, compared with the result
obtained for the ABAQUS hybrid element.

• Q1E24 Formulation: There were not found any results for this
scheme due to convergence issues since the correction that the EAS
method does on the global N-R scheme is considerably high in or-
der to find an approximate solution for the software under incom-
pressibility. To tackle this issue, it was tried to run the simulation
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Figure 56: Reaction force-displacement curves for the benchmark prob-
lem run with Q1 and Q1P0 algorithms compared with ABAQUS C3D8H ele-
ments, respectively.

with different element sizes, but without any improvement in the
convergence of the scheme, displaying the unsuitability of this for-
mulation to model incompressible specimens.

• Q1P0 Formulation: Without any doubt, the mixed u-p-J FE formu-
lation proves to comply as the most robust performance in order
to avoid the volumetric locking pathology. Its deformed configu-
ration (right image, Fig. 55) captures the performance of a mate-
rial under a compressive load in the center of the upper surface.
Furthermore, it shows a strong correlation in the mechanical be-
havior (see Fig. 56), yet considerably better performance in terms
of convergence, with the hybrid two-field ABAQUS elements, as
this latter shows, through mid-testing, premature failure (Fig. 57).
These results exhibit that the mixed u-p-J formulation has a worth-
mentioning potentiality in quantifying the response of the incom-
pressible sample and, at the same time, avoiding locking patholo-
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Figure 57: Top view from the deformed of the benchmark problem run with
(a) ABAQUS C3D8H and (b) Q1P0 algorithms, respectively. See in (a) the
unphysical behavior in the ABAQUS element.

gies, unlike Q1 discretization and the ABAQUS C3D8H element, thus
providing its solid capability in modelling nearly incompressible
hyperelastic materials under large deformation states.

4.4.2 Plate with a hole - compressible hyperelastic mate-
rial

Test details

As for the second numerical example, the deformation of a plate with a
hole under a traction load is considered. The geometry and boundary
conditions for the full model are exhibited in Fig. 58. In line with the
previous example, considering symmetry conditions on both X, Y, and
Z planes, specifically, only one eighth part of the sample is modelled for
the sake of reducing the computational cost. The bottommost surface
is considered to be clamped, whereas the topmost one is subjected to a
vertical displacement uz up until the post-peak behavior of the sample.
The material properties employed for this approach are plotted in Table
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Figure 58: Geometry and BCs for the plate with a hole. The dimensions are
in mm, and only an eighth of the sample is modelled, the region in red.

Table 23: Material properties employed for the plate with a hole.

G (MPa) K (MPa) βd (MPa−1) γd

176.2 734.2 1000 1

23 for a Poisson ratio of ν = 0.25. Among the parameters for the non-
local damage:

• The βd parameter has been calibrated in order to ensure a solid
convergence for the local N-R monolithic scheme.

• γd has the value of the unity to guarantee a non-local damage frame-
work if cd > 0.

These compressible specimens will be run with algorithms encom-
passing both Q1Q1 and Q1Q1E24 formulations, not considering Q1Q1P0
as they are not suitable to model problems with ν < 0.45. The param-
eters related to the damage law i.e., both the damage threshold κd and
the saturation ηd magnitudes along with the non-local regularisation pa-
rameter cd will be modified throughout these series of tests where the
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first aim will be the validation of the proposed CDM models with the
constitutive behavior of the elements from ABAQUS, on one side, and the
failure pattern, on the other. Once they are verified, a quick study to test
the mesh objectivity is carried out. We study the mechanical performance
of the sample with different discretizations. Subsequently, with the most
suitable algorithm and in line with [111], we will run several numerical
examples changing cd in order to test the influence of this magnitude in
the compressible specimens.

Quantitative and qualitative validation

First, in order to validate the CDM approaches, it is required to verify the
mechanical performance of the proposed algorithms with the theoretical
ABAQUS elements. To establish a quantitative standpoint with them, the
damage parameters of both κd and ηd have to be adjusted properly. Ac-
cording to [111], higher values of ηd do accelerate the onset of the damage
process, being deviated from the purely neo-Hookean response plotted
by the ABAQUS elements at lower stages of the corresponding loading
process. On the contrary, really small saturation parameters approximate
the curve to the theory but do delay the damage onset considerably after
the deformation range considered. In addition to this, by considering a
damage threshold of κd = 0 MPa, i.e., the damage onset happens upon
loading, not augmenting the stiffness of the mechanical curve. Thus, we
have fixed a value of ηd = 0.1 MPa−1 and κd = 0 MPa for these vali-
dation tests with a discretization of 9,525 hexahedral elements and a reg-
ularisation parameter of cd = 1000 MPa−1mm2. Having conducted all
of them successfully, we display the reaction force-displacement curves
for the samples with standard CDM (Q1Q1) and CDM + EAS (Q1Q1E24)
formulations in comparison with the purely neo-Hookean response run
with ABAQUS C3D8 elements and it is envisaged the same performance
for each scheme, see Fig. 59. Both formulations display a solid equiva-
lence with the ABAQUS elements’ curve on the first stages of testing and,
upon damage propagation, they both manage to capture the post-peak
softening of the curve. Even though we get the same quantitative results,
the most advantageous model for these configurations without shear
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Figure 59: Reaction force-displacement curves for the compressible plate
with a hole for the validation probes conducted with a standard CDM
(Q1Q1) and CDM + EAS (Q1Q1E24), respectively, compared with ABAQUS
C3D8 elements. Employed non-local damage parameters encompass: ηd =
0.1 MPa−1, κd = 0 MPa and cd = 1000 MPa−1mm2.

locking is the Q1Q1 formulation, as the CDM + EAS model (Q1Q1E24)
considers incompatible strains, which add up computational cost to the
problem.

Having tested the verification quantitatively with ABAQUS samples,
for a qualitative address, we plot the evolution of crack propagation for
three different displacements, see Figs. 60(a)-60(c). In order to get a clear
damage pattern, we have calibrated the non-local damage parameters for
a final failure around uz = 20 mm, employing for this: ηd = 1 MPa−1,
κd = 1 MPa and cd = 500 MPa−1mm2. Following an expected behavior,
the first isocontour at Fig. 60(a) reveals its nucleation near the notched
region (a stress concentrator) only to be continued by a mode I prop-
agation, see Fig. 60(b). In the end, it is observed that upon reaching
the end of the width of the plate, the crack grows in the direction of the
height of the specimen, see Fig. 60(c). Therefore, with these micrographs
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Figure 60: Isocontour plots for the damage function fd of a plate with a hole
plotting the crack pattern for several displacements: (a) uz = 7.32 mm, (b)
uz = 8.42 mm and (c) uz = 19.10 mm. Employed non-local damage param-
eters encompass: ηd = 1 MPa−1, κd = 1 MPa and cd = 500 MPa−1mm2

of a foreseeable failure pattern, we can also verify the proposed CDM
approach qualitatively, obtaining similar results for Q1Q1 and Q1Q1E24

formulations. It is important to highlight that a tolerance in the function
fd < 0.05 has been established to avoid ill-conditioning in the equations;
the reader is referred to [111] for further information on this aspect.

Mesh objectivity

Another required calibration for CDM approaches concerns the verifica-
tion for mesh independence, as the condition for mesh-objectivity is asso-
ciated with the damage evolution being independent of the discretisation
for high enough regularisation parameters cd. Therefore, we run a test
for three different hexahedral meshes employing the non-local damage
properties exhibited in Table 24: one coarse (810 elements), one medium-
sized (9,595 elements) and one considerably refined (75,360 elements)
mesh. The three simulations are compared by plotting the damage func-
tion isocontour fd for a displacement of uz = 8 mm in Fig. 61, and
they turn out to be practically identical for both formulations Q1Q1 and
Q1Q1E24, thus providing that the dissipation energy is independent of
the size of the element.
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Table 24: Non-local damage properties employed for the tests for verifica-
tion of mesh objectivity.

cd (MPa−1mm2) κd (MPa) ηd (MPa−1)

500 1 1

Figure 61: Isocontour plots for the damage function fd comparing a (a)
coarse, (b) medium-sized, and (c) fine discretisation of a plate with a hole
with a fixed displacement of uz = 8 mm. The obtained results are similar
for Q1Q1 and Q1Q1E24 formulations.

Parametric study on the regularisation parameter cd

Having proven that the results reasonably adjust to the theoretical non-
linear elastic behavior and that the proposed frameworks are mesh-objective,
with the medium-sized discretisation (9,525 hexahedral elements), we
have carried out a parametric analysis by leaving the degree of regular-
isation parameter cd as a free variable. As in [111], in order to quantify
the dependence of the mechanical behavior to this parameter, a paramet-
ric analysis is made with a range of cd = {10, 100, 500, 1000} MPa−1mm2

for the three different proposed formulations with the mechanical prop-
erties in Table 23. The employed parameters for the degradation law are
ηd = 1 MPa−1 and κd = 1 MPa.

Looking to prove the validity of both standard CDM and CDM + EAS
approach to model this specimen, we exhibit the reaction-force displace-
ment curves for values of cd = 1000 MPa−1mm2, cd = 500 MPa−1mm2
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Figure 62: Reaction force-displacement curves for the compressible plate
with a hole problem comparing standard CDM (Q1Q1) and CDM + EAS
(Q1Q1E24) formulations varying cd.

Figure 63: Isocontour plots for the damage function fd for plates with a hole
with different regularisation parameter cd at uz = 6.5 mm. In here: (a) cd =
100 MPa−1mm2, (b) cd = 500 MPa−1mm2 and (c) cd = 1000 MPa−1mm2.

and cd = 100 MPa−1mm2 plotted in Figs. 62(a)-62(c), respectively. In
fact, we can establish that both the standard CDM approach referred to
as the current configuration, and the combined CDM + EAS approach,
referred to as the reference configuration, do manage to capture the full
mechanical behavior of the specimen until the failure of the sample, even
though this last one requires more computational cost due to the calcu-
lation of the incompatible strains.

Staying with the most computationally efficient formulation i.e., Q1Q1,
we realize a further comparison for the results with different cd in Figs.
63-64. For the first series of images (Fig. 63), we have plotted several con-
tour plots of the damage function fd for different cd and, nucleating from
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Figure 64: (a) Reaction force-displacement and (b) minimum value of fd
curves for the plate with a hole problem run with a standard spatial CDM
approach for different cases of cd = {10, 100, 500, 1000} MPa−1mm2.

the notched region, the major difference is observed in the range of the
affected region, being the gradient wider for lower values of cd, and the
minimum value of fd, decreasing as the cd parameter is augmented. Fur-
thermore, by plotting the reaction force-displacement (Fig. 64(a)) and the
minimum fd value (Fig. 64(b)), we basically obtain that the failure of the
specimen gets delayed by just increasing this regularisation parameter,
increasing the maximum force and softening the collapse of the graph,
being this result in line with what is exhibited in [111]. In addition to
this, it is worth noting that the result for cd = 10 MPa−1mm2 falls short
of reaching the peak behavior of the curve as it displays convergence is-
sues, being this due that the mesh is not discretised enough for this low
value of cd, meaning that for this mesh, the limit value of cd for total
convergence falls between this value and cd = 100 MPa−1mm2.

4.4.3 Plate with a hole - quasi-incompressible hyperelas-
tic material

Test details

The next numerical example that we have considered is an incompress-
ible version of the previous example, i.e., we increase the value of the
bulk modulus K up to a value ∼ 107 MPa, associated with a Poisson ra-
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tio of ν = 0.49999. With only that subtle change, the same experiments
that were carried out for the Section 4.4.3 are repeated, keeping the same
geometry as Fig. 58 and the same material properties plotted in Table 23,
except the aforementioned K.

For these series of tests, the schemes employed consist in both Q1Q1

and Q1Q1P0 formulations, as the EAS technique has been checked not
to be appropriate to model nearly incompressible specimens (see Section
4.4.1). In line with the previous section for compressible samples (Section
4.4.2), we start with the verification of the CDM models by comparing
them with the hybrid elements from ABAQUS. Upon verification, we re-
peat the parametric analysis of the previous sections where we study the
dependence of cd on the mechanical behavior of the now nearly incom-
pressible specimens, where we end up elucidating which is the better
formulation to conduct these numerical experiments.

Quantitative and qualitative validation

For the comparison between the standard (Q1Q1) and the three-field mixed
CDM formulations (Q1Q1P0) with the referential two-field ABAQUS C3D8H

element, required for computations with ν > 0.475, we plot the force-
displacement curves in Fig. 65 for the conducted experiments run with
damage properties: ηd = 0.5 MPa−1, κd = 0 MPa and cd = 1000MPa−1mm2.
It is observed that although the graphs manage to capture the post-peak
behavior, it is the Q1Q1P0 formulation the better performer for this prob-
lem, as at the early stages of the curve, it solidly matches the ABAQUS

referential graph, unlike the Q1Q1 which slightly overestimates the tra-
jectory due to volumetric locking pathologies caused by ν ∼ 0.5. The
failure pattern for both formulations resembles the one plotted in Fig.
60, which are not shown here for the sake of brevity but do provide the
qualitative check for the testing of nearly incompressible specimens.

Parametric analysis on the regularisation parameter cd

Considering the parameters for the degradation law to be ηd = 1 MPa−1

and κd = 1 MPa, we perform the tests of extensive pulling for the nearly
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Figure 65: Reaction force-displacement curves for the nearly incompress-
ible plate with a hole for the validation probes conducted with a standard
(Q1Q1) and the mixed u-p-J CDM formulations (Q1Q1P0), respectively, com-
pared with ABAQUS C3D8H elements. Employed non-local damage param-
eters encompass: ηd = 0.5 MPa−1, κd = 0 MPa and cd = 1000 MPa−1mm2.

incompressible plates, conducting a parametric analysis in a range of
cd = {10, 100, 500, 1000} MPa−1mm2. The results for both Q1Q1 and
Q1Q1P0 formulations at (a) cd = 1000 MPa−1mm2, (b) cd = 500 MPa−1mm2

and (c) cd = 100 MPa−1mm2 are represented in Fig. 66. According
to what was aforementioned in the validation examples, standard CDM
formulation provides an over-stiffened curve due to the incompressibil-
ity of the model that leads to the phenomenon of volumetric locking that
does not address this scheme. For that reason, the most robust scheme to
model this problem is deduced to be the Jacobian-pressure mixed frame-
work. Even though that Q1Q1 theory provides a more prolonged soft-
ening of the curve during crack propagation, it is deduced from these
results that the Q1Q1P0 element covers the volumetric locking pathol-
ogy by considering both pressure and dilatation terms, see Eqs. (4.127)-
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Figure 66: Reaction force-displacement curves for the compressible plate
with a hole problem comparing standard CDM (Q1Q1) and mixed u-p-J +
CDM (Q1Q1P0) formulations varying cd.

Figure 67: (a) Reaction force-displacement and (b) minimum value of fd-
displacement curves for the nearly incompressible plate with a hole prob-
lem run with a mixed u-p-J CDM (Q1Q1P0) approach for different cases of
cd = {10, 100, 500, 1000} MPa−1mm2.

(4.128), and that is proven by the reduction in the stiffness of the consti-
tutive response of the sample shown in all the examples in Fig. 66.

Subsequently, it is exhibited the (a) reaction force-displacement curves
and (b) the evolution of the minimum value of the damage function fd

associated with every displacement in Fig. 67, where is envisaged an
overall analogous pattern than the one plotted for the compressible cases
conducted with the standard CDM formulation, see Fig. 64, i.e., both
peak force and displacement are augmented monotonically with the in-
crease of the regularisation parameter. In addition to this, the slope for
the decrease of the minimum value of fd for changing displacements is
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also increased. Although not so robust on convergence as the Q1Q1 for-
mulation for compressible specimens, with the quantitative and qualita-
tive results provided in this section, Q1Q1P0 has provided to be a more
solid formulation to model these incompressible experiments.

4.4.4 Cylindrical shell under a bending load - compress-
ible materials

Test details

With the objective of addressing the further potential of the present frame-
works (so far, the Q1Q1 and the Q1Q1E24 formulations have been proven
to model large deformation problems for compressible specimens, while
the Q1Q1P0 scheme have performed very robustly with volumetric lock-
ing pathologies in an incompressible problem), we aim to model the chal-
lenging problem of a cylindrical shell under a bending load. For this, a
notched cylindrical specimen with the geometry and BCs exhibited in
Fig. 68 is analyzed under extreme bending conditions to capture the
capabilities of both EAS and three-field mixed FE formulations in mod-
elling this large deformation problem prone to show locking pathologies.
In line with the previous example, we have modelled both series of com-
pressible and nearly incompressible material specimens. The notch has
been considered to induce the onset of damage happening in the center.

Starting with the former cases, we have carried out several experi-
ments with the material and damage properties plotted at Table 25 for
specimens with a discretisation of 12,328 hexahedral elements. In or-
der to avoid boundary effects, for the extremities of the cylindrical shell
(where the fixed and the displacement conditions are applied), the dam-
age saturation parameter ηd has been increased, so the damage pattern is
not affected by these phenomena. The final deformed configuration with
the mesh for the bending experiments is displayed in Fig. 69, exhibiting
the amount of deformation in the sample experiments.

In line with the plate tests, we have started this subsection by simulat-
ing this experiment to establish a comparison between the formulations
suitable for compressible specimens modelling, i.e., Q1Q1 and Q1Q1E24,
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(a) (b)

Figure 68: Geometry with boundary conditions and dimensions in mm with
(a) profile and (b) frontal view.

Table 25: Material and fixed damage properties employed for the cylindri-
cal shells.

G (MPa) K (MPa) βd (MPa−1) γd κd (MPa) cd (MPa−1 mm−2)

40000 66667 1000 1 0 500

with the referential ABAQUS elements, additionally presenting the failure
isocontour for this problem. Subsequently, a parametric analysis on ad-
dressing the damage saturation parameter ηd is carried out, where the
main pursued aim is the comparison of both algorithms in displaying
their potentiality to model this large deformation complex problem.

Quantitative and qualitative validation

To compare with a referential standpoint, we have conducted several
tests with a damage saturation parameter ηd = 0.1 MPa−1 with Q1Q1

and Q1Q1E24 formulations, along with the theoretical ABAQUS elements
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Figure 69: Cylindrical shell: undeformed and deformed configuration.

with (C3D8I) and without (C3D8) incompatible deformation modes.
The displayed force-displacement curves, exhibited in Fig. 70, do

reveal that the standard CDM approach (Q1Q1) follows the trajectory
described by the ABAQUS C3D8 element in the early stages. However,
both elements are affected by parasitic shear locking, showing an over-
stiffening of the curve caused by this pathology. Concerning the CDM
+ EAS formulation (Q1Q1E24), it is observed a solid correlation between
the mechanical performance of this element with the curve of the ABAQUS
C3D8I element, which is the one required to model this kind of problems
prone to locking, i.e., under bending loads. It is worth highlighting that
the match of these two curves is not perfect due to the EAS contribution
being regularised via fd, affecting the terms in Eqs. (4.105)-(4.108), as
these are multiplied by the function damage, meaning that the correction
gets reduced as soon as the material gets damaged, being the EAS contri-
bution eliminated upon total damage. This regularisation is done in or-
der to avoid the convergence issues that arise by using this formulation,
as the correction in the stiffness curve grows considerably throughout
the experiment. However, this aspect does not undermine the potential-
ity of the CDM + EAS approach to model compressible materials under
shear locking, as the correlation is very robust with the referential curve.

The damage evolution of the specimen during the test is displayed
in Figs. 71(a)-71(c). The crack onset occurs in the center of the width of
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Figure 70: Load-displacement curves for the cylindrical shell test conducted
for Q1Q1 and Q1Q1E24 formulations compared with the ABAQUS theoretical
curves with (C3D8I) and without considering incompatible modes (C3D8).
The employed saturation parameter has been ηd = 0.1 MPa−1.

the sample (Fig. 71(a)), being propagated afterwards in Mode I in the
Z-direction, first to the extremities of the specimen (Fig. 71(b)) and then,
in the direction towards the notch (Fig. 71(c)). These isocontours have
been obtained from a test conducted by employing the for the Q1Q1E24
formulation with a damage saturation parameter of ηd = 0.5 MPa−1,
demonstrating to be consistent with analysis until failure of a specimen
under extreme bending conditions.

Parametric analysis on the saturation parameter ηd

This section is focused on analyzing the role of the saturation parame-
ter in the mechanical performance of the specimen. Varying this ηd pa-
rameter in a range of ηd = {0.5, 1, 2} MPa−1 for both the Q1Q1 and the
Q1Q1E24 formulations. The differences among them for ηd = 0.5 MPa−1

(Fig. 72(a)), ηd = 1 MPa−1 (Fig. 72(b)) and ηd = 2 MPa−1 (Fig.
72(c)) are exhibited by means of the force-displacement curves, where
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Figure 71: Isocontour plots for the evolution of the damage function fd for
a compressible cylindrical shell under bending load. It has been employed
a saturation parameter for damage of ηd = 0.5 MPa−1 for the Q1Q1E24
formulation.

Figure 72: Load-displacement curves for compressible cylindrical shells un-
der bending load conducted with formulations for standard CDM (Q1Q1)
and the CDM + EAS (Q1Q1E24) approaches, respectively with different ηd.

it can be deduced that the CDM + EAS formulation (Q1Q1E24) is veri-
fied to be a very effective tool to conduct the problem of extreme bending
for compressible notched cylindrical shells, as is the better performer to
tackle the shear locking phenomenon that causes an over-stiffening in
the curves.

Intending to plot the ηd dependence on one single image, we put to-
gether the reaction force-displacement curves for the Q1Q1E24 formula-
tion, along with the evolution of the minimum value of fd in Figs. 73(a)
and 73(b). It is deduced that the role of this parameter is similar to the
one of cd, progressively delaying the failure of the sample along with
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Figure 73: (a) Reaction force-displacement and (b) minimum value of
fd-displacement curves for compressible cylindrical shells under bending
loads conducted with a CDM + EAS (Q1Q1E24) approach for different cases
of ηd = {0.5, 1, 2} MPa−1.

augmenting the peak force when this saturation magnitude is increased.

4.4.5 Cylindrical shell under a bending load - incompress-
ible materials

Test details

The last series of experiments consists of the modelling of the previous
examples in Section 4.4.4, now for nearly incompressible specimens, car-
ried out in order to test the validity of the mixed u-p-J CDM formulation
(Q1Q1P0) to model this tricky problem. Employing the same configura-
tion as in Figs. 68(a)-68(b) and the same properties as in Table 25, but this
time, changing the bulk modulus K up to a value of ∼ 107 MPa, asso-
ciated with an established Poisson ratio of ν = 0.49999 and in line with
what has been realized in the previous sections, we start by comparing
the results of Q1Q1 and Q1Q1P0 schemes with the same tests conducted
with ABAQUS elements. Once this demonstration has been fulfilled, a last
parametric analysis addressing the dependence on the saturation param-
eter ηd is conducted.
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Figure 74: Load-displacement curves for the incompressible cylindrical
shell test conducted for Q1Q1 and Q1Q1P0 formulations compared with the
ABAQUS hybrid theoretical curves with (C3D8IH) and without considering
incompatible modes (C3D8H). The employed saturation parameter has been
ηd = 0.1 MPa−1.

Quantitative and qualitative validation

Displaying the same failure pattern as the one exhibited for compress-
ible specimens (see Fig. 70, which is not included here for the sake of
brevity), we focus now on a quantitative viewpoint with the two pro-
posed formulations along with the referential ABAQUS elements, see Fig.
74. First, we can definitely conclude that Q1Q1 formulation is not suitable
to model this problem as both the volumetric and shear locking cause a
very abrupt rise of the load of the sample, justifying the invalidation of
this formulation.

Concerning the mixed u-p-J CDM (Q1Q1P0) formulation, it can be ob-
served that it covers the volumetric locking solidly, as the curve is below
the one related to the behavior of the hybrid element ABAQUS C3D8H.
However, it falls short of covering the shear locking, as this graph is con-
siderably less compliant than the hybrid ABAQUS element that considers
incompatible deformation modes (C3D8IH), i.e., the one required to run
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Figure 75: (a) Reaction force-displacement and (b) minimum value of fd-
displacement curves for incompressible cylindrical shells under bending
loads conducted with a mixed u-p-J CDM (Q1Q1P0) approach for differ-
ent cases of ηd = {0.5, 1, 2}MPa−1.

this simulation. Observing how robustly did perform the Q1Q1E24 for-
mulation in the compressible cases analyzed in Section 4.4.4, the exten-
sion of the present formulation of Q1Q1P0 to Q1Q1P0E24 is proposed to
model these specimens and will be addressed in future work.

Parametric analysis on the saturation parameter

Considering the same range for the damage saturation parameter ηd =

{0.5, 1, 2} MPa−1, at last, we plot in a single curve all the load-displacement
curves for different ηd conducted by Q1Q1P0 (see Fig. 75(a)), along with
the minimum value of the degradation law fd for every displacement
(see Fig. 75(b)). What is envisaged in this last representation is an anal-
ogy of what was exhibited before for the compressible specimens: with
the reduction in ηd, the softening in the quantitative response associated
with the mechanical performance is delayed. Therefore, even though
there is no solid correlation with the theory, the Q1Q1P0 formulation has
proven to be the one among the three conducted schemes to proportion-
ate conclusive results for the large deformation bending tests applied on
cylindrical shells.
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Chapter 5

Swelling on
thermoresponsive
hydrogels

The last coupled problem, encompassing the large deformation theory
presented in Chapter 3 along the mixed element technology developed
in Chapter 4, to be addressed within this thesis concerns the modelling
of thermoresponsive hydrogels. As discussed in the introductory Chap-
ter, these materials can be classified within two categories depending on
their swelling behavior: some of them exhibit an upper critical swelling
temperature (UCST), meaning that the extent of swelling is increased
above this point; whereas there are others that display a lower critical
swelling temperature (LCST), as the degree of swelling is augmented
when they are cooled down that point.

Thermoresponsive hydrogels find their scope of application in biomed-
ical uses, as their high water content and possible control over the swelling
kinetics makes them very attractive. Several of them such as chitosan
and cellulose-derivatives have shown their potential on the tissue en-
gineering field as a role for cell carriers. Hydrogels based on poly(N-
isopropylacrylamide) (pNiPAAm) can be useful for applications such as
drug delivery systems, where the physiological temperature plays an
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important role in stimulating and activating the liberation of the fluid
content within the hydrogel onto the physiological environment. An ex-
tended literature review for the applications of the thermoresponsive hy-
drogels can be found in [176].

Within the field of Computational Mechanics, several proposed FEM
simulations of the equilibrium swelling of gels have been developed
so far. The variational formulation derived by Kang and Huang [321]
and the pivotal works by Chester and Anand, first for isothermal prob-
lems [322], and, then for, thermoresponsive hydrogels [7] establish the
landmark in considering the problem of hydrogel swelling as a coupled
deformation-diffusion problem. This means that, for the numerical mod-
eling of a thermo-responsive model, both the displacement, the chemi-
cal field and the temperature require separate approximation as the pri-
mary field driving forces of the chemo-thermomechanical problem [8,
323]. The short time behavior of hydrogels make them resemble a fully
incompressible or quasi-compressible hyperelastic materials, as the dif-
fusion of water occurs for a limited time. To tackle this, mixed methods
are adopted to solve volumetric locking issues related to the incompress-
ible limit, such as the F-bar method developed by [324] that is imple-
mented in the referential work from Chester and Anand [7]. However,
in addition to this, it is important to highlight that this independent dis-
cretization of primary fields carries the risk of the appearance of spuri-
ous oscillations in the solution of the chemical potential field, thus re-
sulting in a violation of the Ladyzshenskaya-Babuška-Brezzi (LBB) con-
ditions, also called the inf-sup condition [325, 326]. Therefore, in order
to properly simulate hydrogel formulations with a fully coupled chemo-
thermo-mechanical nature, the modelling of the continuous mass flow
requires the usage of higher order interpolations to satisfy the balance of
mass and, at the same time, fulfill the LBB conditions. Some examples of
higher order stable mixed FE applied for hydrogels can be observed in
the mixed element formulation based on the Enhanced Assumed Strain
technique developed by Krischok and Linder [327] or in the multiple
works carried out by Bouklas et al. [328, 329] where it is employed a
Taylor-Hood element with quadratic displacement and a linear chemical
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potential field.

Based on the previous arguments, a mixed displacement-pressure-
temperature Finite Element to tackle such problem by employing a quadratic
interpolation for the displacements and a linear interpolation for the pres-
sure and the temperature is proposed. Such implementation is adopted
in order to overcome volumetric locking issues, characteristic of the com-
putational modelling for incompressible materials, while, at the same
time, fulfilling LBB conditions in order to guarantee uniqueness of the so-
lution for a saddle point problem. Throughout the content that encloses
this Chapter, the proposed formulation will be validated by its capture
of the LCST (also, extendable to UCST hydrogels) behavior that the ther-
moresponsive hydrogels display and subsequently, it will be used from
a quantitative standpoint to address its robustness and accuracy in cap-
turing experimental tests with different thermo-chemo-mechanical test
conditions. The extension that this Chapter aims to represent within the
Computational Mechanics field is to be the first inf-sup stable formu-
lation for modelling of thermoresponsive hydrogels, while at the same
time, proving its accuracy with the physics by resolving and capturing
some representative experimental problems.

Chapter 5 is structured as follows. The basic concepts where we in-
troduce the three-field problem and the local equations is included in
Section 5.1. Section 5.2 displays the development of the balance of en-
ergy to shape the constitutive behavior and the material model and the
derivation of the variational formulation to introduce the weak form of
the problem. Further insight on the implementation is provided in Sec-
tion 5.3, where the Q2Q1Q1 element is presented to model the problem of
thermoresponsive hydrogels. Within the range of covered examples, Sec-
tion 5.4 is aimed to simulate simple numerical examples to verify the pro-
posed numerical formulation and Section 5.5 compares the experimental
results of free swelling for PNIPAAm hydrogels changing its crosslinking
density with the numerical ones obtained out from the proposed varia-
tional formulation. At last, Section 5.6 provides the future implementa-
tion for fracture on these type of material among with its first preliminary
results.
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Nomenclature

x Arbitrary spatial point on the current configuration
φ Nonlinear deformation map
X Arbitrary spatial point on the initial configuration
t Current time
Ω0 Body domain in the initial configuration
Rn Collection of ordered lists of n real numbers
Ω Body domain in the current configuration
∂Ω0 Boundary of the solid in the initial configuration
∂Ω Boundary of the solid in the current configuration
u Displacement field
e Unit vector field
F Deformation gradient
∇X Gradient operator in the reference configuration
∇x Gradient operator in the current configuration
1 Second order identity tensor
H Material displacement gradient tensor
J Jacobian, determinant of F
det Determinant operator
C Concentration field
µ Chemical potential
T Temperature
C Right Cauchy-Green tensor
b Left Cauchy-Green tensor
∂Ωu Boundary region with a Dirichlet condition of prescribed displacements
∂Ωt Boundary region with a Neumann condition of prescribed tractions
t Cauchy traction vector
n Current normal outward vector
σ Cauchy’s stress tensor
P First Piola-Kirchhoff stress tensor
T First Piola-Kirchhoff traction vector
N Initial normal outward vector
dA Differential of nominal area
da Differential of engineering area
S Second Piola-Kirchhoff stress tensor
∂Ωp Boundary region with a Dirichlet condition of prescribed chemical potential
∂Ωj Boundary region with a Neumann condition of prescribed species flux
j Spatial species out-flux
jn Scalar mass flux
jR Material species out-flux
M Mobility tensor
∂ΩT Boundary region with a Dirichlet condition of prescribed temperatures
∂Ωq Boundary region with a Neumann condition of prescribed heat flux
q Spatial heat flux
qn Scalar heat flux
Q Material heat flux
K Thermal conductivity tensor for the initial configuration
ρ0 Density field in the reference configuration
ρ Density field in the current configuration
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Nomenclature
˙[•] First time derivative operator
∇ · [•] Divergence operator
F

V Prescribed body forces
ηR Entropy
p̄ Fluid pressure
ν Number of solvent molecules per volume reference unit
e Specific internal energy
R External heat supply
D Dissipation energy
Dloc Dissipation due to local actions
Dcond Dissipation due to heat conduction
Ddiff Dissipation due to mass diffusion
Ψ Free energy density
∂[•] Partial derivative operator
cp Heat capacity
H Latent heat
Z Second-order tensor associated with displacement-temperature coupling
Y Scalar term associated with mass transport-temperature coupling
Π Total potential of the system
Πint Internal potential of the system
Πext External potential of the system
∆t Time interval
tn+1 Time in increment n+ 1. This subscript is used in other variables with the same meaning
tn Time in increment n. This subscript is used in other variables with the same meaning
ϕ Convex dissipation potential
p Interpolated fluid pressure
p Gradient of the fluid pressure in the current configuration
Ψelas Free energy density term associated to elastic stretching
In N-th invariant
N Number of chains segments per unit reference volume
kB Boltzmann constant
Ψmix Free energy density term associated to polymer mixing
χ Interaction parameter
χL Lower limit for the interaction parameter
χT Upper limit for the interaction parameter
Tc Critical temperature
∆ Width of the transition in critical temperature in swelling behavior
Ψtemp Free energy density term associated to thermal contribution
T0 Reference temperature
α Coefficient for thermal expansion
κ Bulk modulus
C Local tangent operator in the reference configuration
D Diffusivity coefficient
P Nominal gradient of the fluid pressure
k Thermal conductivity tensor for the current configuration
F0 Deformation gradient associated with the pre-swelling state
F∗ Deformation gradient associated with the deformation in the dry state
λ0 Isotropic stretches
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Nomenclature

D [•] Gateaux derivative operator
Nd Shape functions for displacements
d Nodal displacements
Np Shape functions for fluid pressure
p̂ Nodal fluid pressure
NT Shape functions for temperature
T̂ Nodal temperature
ξ Parametric coordinate system
ξ, η, ζ Parametric coordinates
Je Material Jacobian matrix for the isoparametric transformation
je Spatial Jacobian matrix for the isoparametric transformation
Rd Residual force associated with the nodal displacements
Rp̂ Residual force associated with the nodal fluid pressure p̂

RT̂ Residual force associated with the nodal fluid pressure T̂

L̂ Operador for Lie derivative
Kdd Displacement-displacement Jacobian term for global N-R scheme
Kdp̂ Displacement-pressure Jacobian term for global N-R scheme
KdT̂ Displacement-temperature Jacobian term for global N-R scheme
Kp̂d Pressure-displacement Jacobian term for global N-R scheme
Kp̂p̂ Pressure-pressure Jacobian term for global N-R scheme
Kp̂T̂ Pressure-temperature Jacobian term for global N-R scheme
KT̂d Temperature-displacement Jacobian term for global N-R scheme
KT̂ p̂ Temperature-pressure Jacobian term for global N-R scheme
KT̂ T̂ Temperature-temperature Jacobian term for global N-R scheme
p0 Initial fluid pressure
∆d Nodal displacement variation
∆p̂ Nodal fluid pressure variation
∆T̂ Nodal temperature variation
L Square length
he Element size
G Shear modulus
GC Critical energy release rate
d Phase-field parameter
ℓ Length scale parameter
γl Crack surface density function
w Geometric crack function
υ Coefficient in geometric crack function
cw Scaling parameter in crack density functional
g(d) Degradation function
K Residual stiffness
H History field variable
Rd̂ Residual force associated with the nodal phase-field parameter d̂
Nd Shape functions for phase-field parameter
d̂ Nodal phase-field values
∆d̂ Nodal phase-field variation
Kd̂d̂ PF-PF Jacobian term for global N-R scheme
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Nomenclature

uy Vertical displacement

5.1 Theoretical formulation

This section outlines the fundamental concepts and definitions of the cur-
rent numerical framework addressing the use of a mixed displacement-
mass diffusion-temperature formulation for the large deformation anal-
ysis of diffusion in solids. The ultimate goal is to specialize this formula-
ton for the analysis of thermoresponsive hydrogels.

5.1.1 Basic definitions

Complying with standard nonlinear Continuum Mechanics, let an arbi-
trary spatial point defined in the current configuration be defined as x :=

φ(X, t), being φ(X, t) the nonlinear deformation map which projects the
material points X from the initial configuration Ω0 ⊂ Rn to the current
one Ω ⊂ Rn. This transformation is plotted in Fig. 26. The transforma-
tion of the differential line elements throughout the deformation process
is characterized by the deformation gradient F whose definition is intro-
duced in Eq. (3.1).

The boundary-value problem for the modelling of this problem is
treated as a coupled four-field problem, characterized by the displace-
ment field u, the concentration field C, the chemical potential µ and the
temperature T . Adopting the approach of Miehe et al. at [330], the tran-
sition of the Cahn-Hilliard-type to standard Fickian-type is made for the
degeneration of the definition of the chemical potential. As the chemical
potential drives the flux Ċ of the species, this transformation is made by
optimizing the chemical potential with respect to the concentration, per-
forming its local update at the integration points, defining a condensed
incremental potential that only depends on the displacement field, the
chemical potential and the temperature. The reader is referred to [330]
for further information regarding this operation.

Following the scheme plotted in Fig. 76, we make a brief description
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Figure 76: Schematic representation of the three-field boundary value prob-
lem: (a) displacement, (b) mass transport, and (c) temperature.

of the problem for both three fields. For the mechanical perspective, in
order to track the motion of the body and the deformation of the non-
linear problem, the reader is referred to Section 3.1.1 (Eqs. (3.1)-(3.6) and
Fig. 26) for the sake of brevity.

Moving to the diffusion problem, again, this can be divided into two
sub-domains: one where the chemical potential µ is prescribed through
a Dirichlet BC, ∂Ω0,p; and ∂Ω0,j , where we perform an analogous opera-
tion to the nominal tractions theorem (Eq. (3.4) to obtain the referential
species out-flux jR, that depends linearly on the outward normal N

Jn = jR ·N (5.1)

where Jn denote the scalar mass flux. The spatial species flux j relies on
a analogous relation to the Cauchy stress, therefore its definition yields
as

j = J−1F · jR (5.2)

Assuming that the fluid transport follows a Darcy-type relation, we
can establish a relation to obtain the nominal fluid flux jR from the prod-
uct of the mobility tensor M with the variation of the chemical potential

jR = −M · ∇Xµ (5.3)
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The remaining unknown in this three-field mixed-formulation prob-
lem is the thermal field and also can be traced into two sub-domains: the
region ∂Ω0,T , where the temperature T is prescribed using a Dirichlet
BC, and the region ∂Ω0,q , where the evolution of the heat flux Q follows
the same structure as mass flux, considering the Stokes flux with the fol-
lowing definition.

Qn = Q ·N (5.4)

where Qn denotes the scalar heat flux for the problem. Then, the spatial
heat flux q can be obtained as

q = J−1F ·Q (5.5)

And then, by establishing a Fourier-type relation, we trace the value
of Q by the product of the thermal conductivity tensor K with the varia-
tion of the temperature

Q = −K · ∇XT (5.6)

5.1.2 Local equations and balance of energy

The general equations that drive the coupled deformation-diffusion-temperature
problem are presented in their local form for the reference configuration.
Before the balance of total energy, we need to define some local balances
for every field. The conservation of solid mass reads as:

ρ0 = Jρ (5.7)

where ρ(x, t) and ρ0(X) are the density fields in the current and refer-
ence configuration, respectively. From here, we can obtain the material
version of the balance of linear momentum, which adopts the form of:

ρ0φ̈ = ∇X ·P+ ρ0F
V
= 0 (5.8)

where the operator ∇· [•] denotes the divergence operator; and F
V

iden-
tifies the prescribed body forces per unit of reference volume.

173



For the mass transport, we consider c as the concentration of fluid
content inside the hydrogel, i.e. the number of moles of fluid molecules
absorbed by the polymer network, reckoned per unit volume of the dry
reference configuration. For this field, the balance species content equa-
tion takes the local form of

Ċ = −∇X · jR (5.9)

For the balance in the temperature, we refer to the entropy variable
ηR by introducing the second law of thermodynamics as

˙ηR ≥ −∇X ·
[
Q

T

]
+
Qn

T
(5.10)

All this information that we collect for the three-field formulation
global balance is plotted in the box below as a summary in the reference
configuration for this quasi-static problem

1. Balance of solid mass: ρ0 = Jρ

2. Balance of species content: Ċ = −∇X · jR

3. Balance of entropy: ˙ηR ≥ −∇X ·
[
Q

T

]
+
R

T

4. Balance of linear momentum: ρ0φ̈ = ∇X ·P+ ρ0F
V
= 0

5. Constitutive stress: S = 2∂CΨ(C, C,∇XC, T )

6. Chemical potential: µ = ∂CΨ(C, C,∇XC, T )

7. Entropy: ηR = −∂TΨ(C, C,∇XC, T )

8. Fourier’s Law: Q = −K · ∇XT

9. Darcy’s Law: jR = −M · ∇Xµ

(5.11)

(5.12)

(5.13)

(5.14)
(5.15)
(5.16)
(5.17)
(5.18)
(5.19)

With these expressions at hand in the box, we can express the local form
of the balance of the total energy like

ρ0ė = S : ∇Xu−∇X ·Q+R+ µĊ − jR · ∇Xµ (5.20)

where e is the specific internal energy, being given his temporal rate by
the magnitude ė and R the external heat supply per unit reference vol-
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ume. The expression can be developed upon considering the second law
of Thermodynamics, where the equation for the evolution of the entropy
(Eq. (5.17)) can be extended as:

∇X ·
[
Q

T

]
+
R

T
=

1

T
(R−∇X ·Q) +

1

T 2
Q · ∇XT (5.21)

Then, by considering Legendre transformation: Ψ = e−TηR, and Eq.
(5.20), we reach the expression for the Clausius-Duhem inequality that
guarantees the local consistency of the equation, where the local dissi-
pated global potential D is expressed as:

D = S : ∇Xu+ µĊ − jR · ∇Xµ− 1

T
Q · ∇XT − ρ0(Ψ̇ + Ṫ ηR) ≥ 0 (5.22)

Note that D can be split into three parts due to: (i) local actions Dloc,
(ii) heat conduction Dcond and (ii) mass diffusion Ddif:

Dloc = S : ∇Xu+ µĊ − ρ0(Ψ̇ + Ṫ ηR) ≥ 0 (5.23)

Dcond = − 1

T
Q · ∇XT ≥ 0 (5.24)

Ddiff = −jR · ∇Xµ ≥ 0 (5.25)

where Eq. (5.23) is known as the Clausius-Planck inequality, Eq. (5.24)
stands for the Fourier inequality and Eq. (5.25) is the Darcy inequality.

5.2 Constitutive formulation

5.2.1 Objective free energy function

The constitutive equations are constructed such that the dissipation con-
dition recalled in Eq. (5.22) is a priori satisfied for all processes. The free
energy is thought to depend on the primary variables and their gradients

Ψ = Ψ̃(C,∇XC, C,∇XC, T,∇XT ) (5.26)
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at X ∈ Ω0. With a view towards determining the restrictions imposed
by the local free energy imbalance (Eq. (5.22)), the temporal rate of Eq.
(5.26) can be expressed as:

Ψ̇ =
∂Ψ

∂C
: Ċ+

∂Ψ

∂C
: Ċ +

∂Ψ

∂T
: Ṫ (5.27)

Substituting Eq. (5.27) into Eq. (5.22) and considering ∂[•] as the partial
derivative operator, we obtain

D =

[
1

2
S−∂CΨ

]
: Ċ+[ηR−∂TΨ] : Ṫ+[µ−∂CΨ] : Ċ−jR·∇Xµ−

1

T
Q·∇XT ≥ 0

(5.28)
This inequality should hold for all values of C, C, T , ∇Xµ and ∇XT .
Since there is a linear dependence on the temporal rates of deforma-
tion gradient, concentration and temperature, the terms between brack-
ets must vanish, thus reaching the expressions for Eqs. (5.15)-(5.17). In
addition to this, the expressions for the constraint on the fluid-flux in-
equality render

Q · ∇XT < 0 when ∇XT ̸= 0 (5.29)

and the heat-flux inequality

jR · ∇Xµ < 0 when ∇Xµ ̸= 0 (5.30)

Further derivations can be done by considering the previous Legen-
dre transformation carried out, where we reached the balance for the
entropy

ρ0 ˙ηRT = R−∇X ·Q− jR · ∇Xµ (5.31)

From the previous result, the rate of entropy yields

ρ0 ˙ηR = ρ0[−∂2TTΨṪ − 1

2
∂2TCΨ : Ċ− ∂2TCΨĊ] (5.32)

The left-hand side of Eq. (5.31) may be expressed as
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ρ0 ˙ηRT = cpṪ − ρ0H (5.33)

where the heat capacity cp and the latent heat H are expressed as

cp := −ρ0T∂2TTΨ; H =
1

2
T∂2TCΨ : Ċ+ T∂2TCΨĊ =

1

2
TZ : Ċ+ TY Ċ

(5.34)
where Z and Y relate to the second-order tensor and the scalar term as-
sociated with the coupling of the motion and the mass transport in the
Helmholtz free energy function, respectively. From here, the final expres-
sion for the transient heat equation reads

cpṪ := ρ0H +R−∇X ·Q− jR · ∇Xµ (5.35)

5.2.2 Material model

The total potential of the system can be divided into internal Πint and
external contributions Πext

Π(u, C, µ, T, t) = Πint(u, C, µ, T, t)−Πext(u, C, µ, T, t) (5.36)

Complying with the formulation proposed by Miehe and coauthors
[330] for Cahn-Hilliard diffusion-type problems, the proposed poten-
tial in Eq. (5.36) can be adjusted for a displacement-potential-density-
temperature problem or gradient type-dissipative solids at a time inter-
val ∆t = tn+1 − tn.

Π(C, µ,∇Xµ,C,∇XC, T,∇XT ) =Ψ(C, T,∇XT )− µ(Cn+1 − Cn)

−∆t ϕ(∇Xµ,Fn, Cn) + ρ0 ˙ηRT
(5.37)

where ϕ is the convex dissipation potential. From here on, the subscript
n refers to magnitudes of the previous increment.

Since the proposed framework is dedicated for hydrogels, the atten-
tion is driven to materials with a quasi-incompressible behavior. To ac-
count for this, they are considered to change their volume only due to
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swelling when absorbing solvents, since both the cross-linked polymer
network and the solvent molecules are incompressible [331, 7]. Thus,
this constraint is introduced as follows:

J = 1 + νC (5.38)

Considering the incremental character of the proposed model, this con-
straint is modified to:

Jn+1 − Jn = ν(Cn+1 − Cn) (5.39)

With the consideration of Eq. (5.39), the potential proposed in Eq.
(5.37) can be postulated by reducing the set of arguments

Π(C, p, T,∇XT ) = Ψ(C, T,∇XT )−p(Jn+1−Jn)−∆t ϕ(p,Fn, T )+ρ0 ˙ηRT

(5.40)
where p is the fluid pressure in the form of a scaled chemical potential.
This magnitude and its gradient are introduced as follows:

p =
µ

ν
; p = −∇xp (5.41)

where ν is the number of solvent molecules per volume reference unit.
Expressing the approach on the current configuration, based on the for-
mulation proposed by Flory and Rehner [332], we postulate the existence
of a local free energy function Ψ, which has three contributions, one as-
sociated to the stretching of the polymer Ψelas, which reads

Ψelas(C) =
1

2
NkBT (I1 − 3− 2 log J) (5.42)

and another one related to the mixing of the polymer and solvent molecules
Ψmix [333, 334]

Ψmix(C, T ) =
kBT

ν

[
(J − 1) log

(
J − 1

J

)
+
χ(T )(J − 1)

J

]
(5.43)
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where I1 is the first invariant of the left Cauchy-Green tensor that is de-
fined as I1 := tr[C], N is the number of chains segments per unit refer-
ence volume, kB is the Boltzmann constant and χ(T ) refers to a material-
specific and temperature-dependent interaction parameter. χ(T ) will fol-
low the following expression proposed for LCST hydrogels in [7]:

χ(T ) =
1

2
(χL + χH)− 1

2
(χL − χH) tanh

(
T − Tc

∆

)
(5.44)

whereas, for UCST, the formula reads as

χ(T ) =
1

2
(χL + χH) +

1

2
(χL − χH) tanh

(
T − Tc

∆

)
(5.45)

where χL and χH are the lower and upper limits of the parameter; Tc,
the LCST/UCST temperature and ∆ is the width of temperature in the
transition from both limits.

The final contribution of the energy is composed of the thermal con-
tribution Ψtemp, which follows a classical thermoelastic contribution

Ψtemp(C, T ) = cp

[
(T − T0)− T log

T

T0

]
− 3κα(T − T0) log J (5.46)

where α stands for the coefficient for thermal expansion, κ is the bulk
modulus of the gel and T0 denotes the reference temperature.

The sum of these three contributions makes the expression for the
local free energy function, for the term in Eq. (5.40)

Ψ = Ψelas +Ψmix +Ψtemp (5.47)

Then, from Eq. (5.47), the second Piola-Kirchhoff stress tensor S can
be computed as follows
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S : = 2
∂Ψ(C)

∂C
− pJC−1

= NkBT (1−C−1) +

[
kBT

ν

[
log

(
J − 1

J

)
+

1

J
+
χ(T )

J2

]

− 3κα(T − T0)− p

]
JC−1

(5.48)

In order to implement the present model into the general purpose FE
software, ABAQUS via the UEL subroutine, the local tangent operator C

is required to compute the Jacobians. C can be obtained directly from the
derivation of Eq. (5.48) :

C =2
∂S

∂C
=2J

[
NkBT − kBT

ν

[
log

(
J − 1

J

)
+

1

J
+

χ

J2

]
+ 3κα(T − T0) + p

]
I

sym
C

−

[
kBT

ν

[
χ

J2
− log

(
J − 1

J

)
− 1

J − 1

]
+ 3κα(T − T0) + p

]
JC−1 ⊗C−1

(5.49)
where I

sym
C is a fourth-order tensor that has the following expression:

I
sym
C := [C−1⊗C−1 + C−1⊗C−1]/2 = [C−1

ik C
−1
jl + C−1

il C
−1
jk ]/2, which

employs the non-standard dyadic products.
For the mass diffussion problem, a dissipation function ϕ is postu-

lated

ϕ(p, T ) =
1

2
(Jn − 1)

Dν

kBT
|p|2 (5.50)

where D is the diffusivity coefficient. From this expression, one can de-
rive it to obtain the true flux vector j = J−1

n
∂ϕ
∂p , that reads as

j =
(Jn − 1)

Jn

Dν

kBT
p (5.51)

by doing the pull-back operation, we obtain the nominal mass flux jR

jR = F−T
n (Jn − 1)

Dν

kBT
F−T

n · P (5.52)
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where P = −∇Xp.
Finally, in order to account for the thermal problem, the entropy ηR is

obtained from the derivation of the temperature on Eq. (5.46)

ηR = −∂Ψ
∂T

= 3κα log J + cp log
T

T0
− 1

2
NkB(I1 − 3− 2 log J)

− kB
ν

[
(J − 1) log

(
J − 1

J

)
+
χ(T )(J − 1)

J

]
− (J − 1)kBT

Jν

∂χ(T )

∂T

(5.53)

Therefore, from this expression, the latent heat H reads

H =
1

2
T∂2TCΨ : Ċ+ T∂2TCΨ : Ċ =

1

2
Z : Ċ (5.54)

Obtained from Eq. (5.53), only the deformation problem contributes
to the latent heat, therefore Y = 0 and Z (i.e., the structural heating for
hydrogels) is easily obtained by deriving Eq. (5.48) with respect to the
temperature. To conclude with the temperature part, we define the ex-
pression for the current heat flux which reads

q = −k · ∇xT (5.55)

and by performing the pullback operation we reach the nominal flux Q

Q = −JF−1 · k · F−T · ∇XT (5.56)

where k is the thermal conductivity tensor for the current configuration.
It is a common practice to not identify reference coordinates with a gel
in the dry state, due to Ψmix being singular for J = 1 [335]. Therefore,
there is a huge convenience in establishing a pre-swollen state in chemo-
mechanical equilibrium as a referential state [336], which results in the
decomposition for the deformation gradient as

F∗ = F · F0 (5.57)

where F0 = λ01 refers to the pre-swollen contribution dependent on the
initial isotropic stretches λ0 and F∗ is the deformation gradient of the
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total deformation referred to the dry state, establishing the superscript
[•]∗ to refer to all the magnitudes in this state. By defining this reference
point, the expression for the potential is now expressed as

Π∗(C∗, p,F0,Fn, T,∆T ) =
1

J0
Ψ(C∗, T,∆T )− p(Jn+1 − Jn)

− 1

J0
∆t ϕ(F0,Fn, T ) + ρ0 ˙ηRT

(5.58)

resulting this in an alternative representation for the stress, the mass flux
and the displacement-temperature coupling tensor

S :=
NkBT

J0
(J

2/3
0 1−C−1)

+

[
kBT

ν

[
log

(
JJ0 − 1

JJ0

)
+

1

JJ0
+
χ(T )

J2J2
0

]
− 3κα(T − T0)

J0
− p

]
JC−1

(5.59)

jR =
Jn
J0

(JnJ0 − 1)

JnJ0

Dν

kBT
F−T

n · F−T
n · P = mF−T

n · F−T
n · P (5.60)

Z =
NkB
J0

(J
2/3
0 1−C−1) +

kBJ

ν

[
log

(
J − 1

J

)
+

1

J
+
χ(T )

J2

]
C−1

− kBTJ

νJ2J2
0

χL − χH

2∆ cosh2
(
T−Tc

δ

)C−1 − 3κα1

(5.61)
with m = Jn

J0

(JnJ0−1)
JnJ0

Dν
kBT .

5.2.3 Variational formulation

In this subsection, the variational basis of the mixed coupled displacement-
pressure-temperature problem is outlined. The total potential of the sys-
tem can be expressed in the reference position of the arbitrary body un-
der consideration as follows
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Π(u, p, T, t) =

∫
Ω0

Πint(u, p, T, t)dV −Πext(u, p, T, t) (5.62)

Since the problem is governed by the principle of minimum poten-
tial energy, the expression for the equation concerning the mechanical
problem in the material configuration is obtained as

Determine (u, p, T ) from

(u∗, p∗, T ∗) = arg

(
inf
Ψ

sup
p

inf
T

Π(u, p, T )

)
, (5.63)

The problem is ruled via the linear momentum equilibrium for the
mechanical part, defined in Eq. (5.8); for the dissipation function for the
mass transport, postulated in Eq. (5.50); and the energy balance in en-
tropy form for the thermal part, defined in Eq. (5.35). By combining
these three terms, we define the expression for total internal potential
postulated in Eq. (5.37), and from here, we define the weak form of both
equations, which stand for the most convenient setting to write the corre-
sponding numerical approximation based on FEM based on the standard
Galerkin procedure. We consider that for the thermal part there are no
heat sources (R = 0).

DΠ(δu) =

∫
Ω0

[
DΨ(δu)− pD J [δu]

]
dV − F

V
(δu) = 0 ∀δu (5.64)

DΠ(δp) =

∫
Ω0

[
−(J−Jn)D p(δp)−∆tDϕ(δp)

]
dV−DΠext(δp) = 0 ∀δp

(5.65)

DΠ(δT ) =

∫
Ω0

[
cpDṪ (δT ) + D ∇ ·Q(δT )− DT (δT )Z : Ċ

− Dm∇µ(δT )
]
dV − DΠext(δT ) = 0 ∀δT

(5.66)
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where the operator DΠ(δ•) denotes the Gateaux derivative which reads
as

DΠ(δ•) = ∂

∂ι
Π(•+ ι∂•)|ι=0 (5.67)

By introducing the second Piola-Kirchhoff stress S, the nominal heat
flux Q and the nominal mass flux jR, it is obtained the weak form of the
coupled displacement-pressure-temperature problem for large deforma-
tion solids with diffusion problems:∫

Ω0

S : ∇Xu(δu) dV − F
V
(δu) = 0 ∀δu (5.68)

∫
Ω0

[
− (J −Jn)δp+∆t jR ·∇Xp(δp)

]
dV −DΠext(δp) = 0 ∀δp (5.69)

∫
Ω0

[
cpṪ (δT )−

1

2
TZ : Ċ(δT ) + J∇XT ·K · ∇XT (δT )

− jR(δT ) · ∇Xp
]
dV − DΠext(δT ) = 0 ∀δT

(5.70)

5.3 Finite Element formulation and implemen-
tation details

5.3.1 Discretisation scheme

Being the domain discretized into finite elements, for which the displace-
ment, fluid pressure and the temperature are approximated by Galerkin’s
method as it follows:

u =

n∑
i=1

Nd · d, p =

m∑
i=1

Np · p̂, T =

m∑
i=1

NT · T̂ (5.71)

where d represents the nodal displacement vector; p̂ is the nodal val-
ues of the pressure variable and T̂ stands for the nodal interpolation of
the temperature. In order to satisfy the Babuska-Brezzi conditions [135]
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Figure 77: 2-D illustration of a u-p-T mixed finite element, displaying the
degrees of freedom and the Gauss quadrature points. 8-node biquadratic
element is used for the displacement while 4-node bilinear quadrilateral el-
ements are utilized for pressure and temperature.

and avoid poor numerical performance, we employ a Taylor-Hood ele-
ment discretization, where the displacement shape functions are taken
to correspond to a biquadratic 8-node serendipity element (20-node in
3-D), while for temperature and fluid pressure we employ bilinear shape
functions for a 4-node quadrilateral element (8-node in 3-D). A schematic
illustration of the discretization for two dimensions is provided in Fig.
77.

The material and spatial gradients of the shape functions N can be
read as

∇XN = Je
-T · ∇ξN(ξ), ∇xN = je

-T · ∇ξN(ξ) (5.72)

with ξ referring to the parametric coordinate system with coordinates
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ξ = {ξ, η, ζ}; and Je and je as the material and spatial Jacobians of the
isoparametric transformation. With the previous definitions at hand, the
corresponding material gradient quantities can be discretized as, for a
material description,

∇Xδu ≈ δd⊗∇XNd, ∇Xδp ≈ δp⊗∇XNp, ∇XδT ≈ δT⊗∇XNT

(5.73)

where N[∗] denote the shape functions employed for the [∗] driving field
variable.

5.3.2 Consistent linearization of the coupled displacement-
pressure-temperature problem

Considering a finite time increment ∆t := tn+1 − tn > 0, where all the
DOFs at tn are assumed to be known. The target is to obtain the in-
dependent variables at the time tkn+1 for the k-th iteration. To do so,
we solve the coupled problem through the use of the incremental and
iterative solvers. This requires the computation by the consistent liner-
alization of the previous residual equations in the sense of the Gateaux
directional derivative. Within this frame, the temporal variation of the
displacement, pressure and temperature reads

ḋ =
dn+1 − dn

∆t
; ˙̂p =

p̂n+1 − p̂n
∆t

;
˙̂
T =

T̂n+1 − T̂n
∆t

(5.74)

The point of departure for the finite element formulation of the displacement-
pressure recalls the variational formalism defined in Eqs.(5.68)-(5.70), defin-
ing a coupled problem. The insertion of the interpolation scheme for u,
p and T leads to a discrete version of the residual forms denoted by Rd,
Rp̂ and RT̂ that are defined as:
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Rd(d, δd, p̂, T̂ ,∆T̂ ) =

∫
Ω0

∇XNT
d · SdV −

∫
Ω0

NT
d · FV

dV −
∫
∂Ω0

NT
d ·Td∂V = 0

(5.75)

Rp̂(d, p̂, δp, T̂ ) =

∫
Ω0

−NT
p(J − Jn) dV +

∫
Ω0

∆t

J0
F−T

n · ∇XNT
p · jR dV = 0

(5.76)

RT̂ (d, p, T, δT,∆T̂ ) =

∫
Ω0

NT
TcpṪ dV +

∫
Ω0

∇XNT
T ·K · ∇XT dV

−
∫
Ω0

NT
T

2
(ZT : Ċ)T dV +

∫
Ω0

NT
T · jR · ∇Xp dV = 0

(5.77)

For the application of Newton-type solution algorithms for the iter-
ative solution of the boundary value problem, the linearization of the
weak form are computed as follows by the Lie’s derivative operators:

L̂[Rd](d, δd,∆d, p̂,∆p̂, T̂ ,∆T̂ ) = Rd(d, δd, p̂, T̂ ,∆T̂ ) + ∆dR
d ·∆d

+∆p̂R
d ·∆p̂+∆T̂R

d ·∆T̂
(5.78)

L̂[Rp̂](d,∆d, p̂, δp,∆p, T̂ ,∆T̂ ) = Rp̂(d, p̂, δp̂, T̂ ) + ∆dR
p̂ ·∆d

+∆p̂R
p̂ ·∆p̂+∆T̂R

p̂ ·∆T̂
(5.79)

L̂[RT̂ ](d,∆d, p̂,∆p̂, T̂ , δT̂ ,∆T̂ ) = RT̂ (d, δd, p̂, T̂ , δT̂ ,∆T̂ ) + ∆dR
T̂ ·∆d

+∆p̂R
T̂ ·∆p̂+∆T̂R

T̂ ·∆T̂
(5.80)

where ∆∗[•] denotes the directional derivative of the residual form •
from the field ∗. This leads to the following linearised system of equa-
tions that is solved by the global N-R monolithic schemeKdd Kdp̂ KdT̂

Kpd Kp̂p̂ Kp̂T̂

KT̂d KT̂ p̂ KT̂ T̂


∆d
∆p̂

∆T̂

 = −

Rd

Rp̂

RT̂

 (5.81)

187



The linearized system of equations in matrix form is given by

Kdd =
∂Rd

∂u
=

∫
Ω0

∇XNT
d · C · ∇XNd dV +

∫
Ω0

[
∇XNT

d · S · ∇XNd

]
· 1dV

(5.82)

Kdp̂ =
∂Rd

∂p
=
∂Rp̂

∂u
= (Kp̂d)T = −

∫
Ω0

J ∇XNT
d ·C−1 ·NT

p dV (5.83)

KdT̂ =
∂Rd

∂T
=

∫
Ω0

∇XNT
d · Z ·NT

T dV (5.84)

Kp̂p̂ =
∂Rp̂

∂p
= −

∫
Ω0

∆t m Jn
J0

F−T
n · ∇XNT

p · F−T
n · ∇XNp dV (5.85)

Kp̂T̂ =
∂Rp̂

∂T
= −

∫
Ω0

∆t

TJ0
F−T

n · ∇XNT
p · jR dV (5.86)

KT̂d =
∂RT̂

∂d
= −

∫
Ω0

T

∆t
NT

T · ZT · ∇XNT
d dV (5.87)

KT̂ p̂ =
∂RT̂

∂p̂
=

∫
Ω0

mNT
T · jR · F−T

n · ∇XNp dV (5.88)

KT̂ T̂ =
∂RT̂

∂T
=

∫
Ω0

NT
T

cp
∆t

·NT −
∫
Ω0

NT
T

(ZT : Ċ)

2
· NT dV

+

∫
Ω0

∇XNT
T ·K · F−T · ∇XNT dV −

∫
Ω0

NT
T · jR · ∇Xp

T
·NT dV

(5.89)

The Q2Q1Q1 fully-coupled element that we are presenting in here is
programmed via an UEL user element subroutine from the FE commer-
cial package ABAQUS. The solution scheme employed for the aforemen-
tioned simulation is an incremental-iterative Newton-Raphson and the
performance of the presented formulation will be put into test in the next
two sections via the conduction of various numerical examples concern-
ing several applications of thermoresponsive hydrogels.
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Figure 78: Configuration for the 2-D free swelling and thermal deswelling
problem.

5.4 Verification examples

5.4.1 Verification: free swelling and thermal deswelling

The first of the experiments consists of a validation example employing
the Q2Q1Q1 element under a free swelling state and subsequent deswelling
caused by a temperature gradient, made in order to display the function-
ality of the proposed formulation. Adopted from the work in Section 10.4
of the work by Chester and Anand [7], it is modelled the quarter of a 2-D
plane-strain square brick of L = 20 mm (symmetry conditions are consid-
ered on the planes X and Y), depicted in Fig. 78, with a discretization of
1,600 Q2Q1Q1 elements. The initial condition for the pressure with p0 for
the whole domain in a stress-free equilibrium state is p0 = −188.86 MPa
with the material properties employed in Table 26, characteristic of a Ni-
PAAm gel. As a consequence of being a LCST hydrogel, Eq. (5.44) is
employed for the interaction parameter. Regarding the chemical bound-
ary conditions, the fixed edges are prescribed to a zero fluid flux, while
the edges in contact with the solvent, the pressure is decreased via def-
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Table 26: Material properties employed for a LCST hydrogel subject to
isothermal square under free transient swelling and thermal-deswelling
conditions.

NkBT = G (MPa) Nν T (K) χL ≈ χ D (mm2/s) λ0

0.4 0.01 298 0.1 5× 10−3 1.001

inition of a linear ramp in t = 300 s from p0 to 0 MPa with a fixed time
increment of ∆t = 3 s, applied in this time lapse for numerical reasons,
a phenomenon of interest that will be discussed in the following section.
Subsequently, the solid is subject to free swelling for 24 h.

Concerning thermal BCs, the entire body is prescribed to a temper-
ature of T0 = 298 K under isothermal conditions (i.e., no external flux,
Z = 0), this means that the hydrogel is below the LCST temperature,
therefore, according to Eq. 5.44, we can approximate χL ≈ χ. Then,
when the model has swollen for 24 h, simulating a heating of the solvent,
the edges in contact with it are prescribed for a linear ramp in tempera-
ture from T0 to 333 K in 1 h, thus meaning that the hydrogel will overpass
the LCST, reducing its swelling rate considerably. This last temperature
is held for 24 h to analyze properly how the hydrogel will react to this
thermal ramp. Therefore, by adding up all, the test takes 49 hours to
complete.

Figs. 79(a)-79(f) depict the contour of the hydrostatic pressure, p, plot-
ted on the deformed solid after different times: (a) 0 s; (b) 300 s; (c) 12 h;
(d) 24 h; (e) 25 h; (f) 49 h. In summary, the whole evolution of the square
during the test can be observed. Fig. 79(a) shows the application of the
initial p0 conditions, while Fig. 79(b) exhibits the results of the decrease
of the pressure in the edges in contact with the solvent. Figs. 79(c)-79(d)
exhibit the swollen body at the middle and at the end of the swelling
step; and we can relate that the sample loses its square shape due to
the fluid flux that is coming from both edges in contact with the solvent
to the center of the sample. We can see from Figs. 79(b)-79(c) that the
specimen grows more than from Figs. 79(c)-79(d), due to the major dif-
ference in mass flux that is on the former state. Subsequently, the results
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Figure 79: Steps of the swelling-deswelling process: states for (a) 0 s, (b) 300
s, (c) 12 h, (d) 24 h, (e) 25 h and (f) 49 h. Represented within this plots is the
solvent pressure p.

from thermal deswelling are observed in the last pair of images, Figs.
79(e)-79(f). Both images exhibit that once the LCST of Tc = 320 K has
been surpassed, there is a decrease of size in the swollen state, approach-
ing again the initial square configuration of the body. The results that

191



Figure 80: 1-D representation of the diffusion length problem.

we have displayed in this Section matches qualitatively with those pre-
sented in the aforementioned paper of Chester and Anand [7]. However,
some remarks need to be addressed regarding the presented framework,
being covered in the forthcoming subsections.

5.4.2 The diffusion length problem

The next particularity that we have to address for the presented chemo-
thermomechanical mixed formulation has not been covered yet for dif-
fusion problems in hydrogels: the diffusion length problem. Specifically,
for smaller diffusivity coefficients D, as the diffusion length rate is de-
creasing, the mesh size is required to be finer in order to capture the
transport problem.

Represented for a 1-D configuration in Fig. 80, we plot two elements
with a size he which are experiencing mass diffusion under a referential
flux jR. The problem states that in order to have a smooth transport
problem, for an increment ∆t, the flux should be fast enough to diffuse
from at least one element of the mesh, meaning that the element size
should be refined according to this. From here, a rule is obtained he ≤√
D∆t to establish the minimum discretization that is required to model

this. The failure to meet this condition causes oscillations in the pressure
field that leads to convergence issues for the loading step.

To test the mesh dependence, various discretizations of the 2-D square
block disposed to free swelling are simulated, with the properties plotted
in Table 26. The main target is to assess the pressure oscillations of the
specimen in the step for the unloading pressure linear ramp in the edges
of the hydrogel exposed to the solvent from p0 to 0 MPa. Adopting a fi-
nal time of tf = 50 s with a fixed time increment of ∆t = 0.5 s, we obtain
from the condition that the maximum element size required to model the
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Figure 81: First increment of unloading pressure ramps conducted for dis-
cretizations with element sizes: (a) he = 0.25, (b) he = 0.15, (c) he = 0.1
and (d) he = 0.05 mm with a time step of ∆t = 0.5 s. It is observed how by
increasing discretization, the variation of the pressure becomes smooth.

hydrogel pre-swelling step is he = 0.05 mm. It is important to highlight
that now we consider the full thermomechanical model, i.e., Z ̸= 0, this
means that heat sources are considered. However, as no special thermal
BCs are added, we do not address the thermal particularities, leaving
that for the following Section.

Displaying the pressure isocontour for the first step of the unload-
ing step in Fig. 81, it can be identified for the first maps that when the
boundaries of the specimen are put in contact with the solvent, the pres-
sure gradient in that area becomes irregular due to oscillations that are
happening within this magnitude. These are due to the diffusion length
problem that we are addressing in this section, since the aforementioned
condition is not fulfilled. It is observed when the specimen is refined,
this transition becomes less rough, leading to a total stable sample for
Fig.81(d), when such criterion is met. A quantitative approach of this
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Figure 82: Evolution of the pressure for a vertical path in the sample at
x = L − he mm for different discretizations at the first increment of the
pressure unloading step with a time step of ∆t = 0.5 s. Oscillations in
pressure are observed for coarser meshes near the top right corner.

phenomenon can be observed in Fig. 82, where we plot the evolution of
the pressure from a vertical path in x = L − he mm; it is observed how
the oscillations in the top right corner are regularised when the sample
is refined, in addition with a reduction in the minimum of the pressure
reached in the bottomost edges of the specimen. Therefore, it is con-
cluded that the only discretization that does not show any visible oscil-
lations is the finest one, he = 0.05 mm, proving this that the condition of
he ≤

√
D∆t is required to ensure pressure stability of the sample.

Repeating the test, now for even a smaller time step: ∆t = 0.15 s
for a final unloading time of tf = 15 s, we conduct again the tests for
the different discretizations. According to the condition, the maximum
element size to guarantee a stabilized simulation is hmax = 0.027 mm.
Therefore, none of the previous discretizations satisfy such constraint,
so we will include in the simulations h = 0.025 mm. In line with the
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Figure 83: First increment of unloading pressure ramps conducted for dis-
cretizations with element sizes: (a) h = 0.15, (b) h = 0.1, (c) h = 0.05 and
(d) h = 0.025 mm with a time step of ∆t = 0.15 s. It is observed how by
increasing discretization, the variation of the pressure becomes smooth.

previous test, we commence by plotting the isocontours for pressure near
the top right corner in Fig. 83 and we observe that as we decrease the
time steps, the oscillations are intensified for the coarser discretizations
and further refinement is required to meet the conditions, leading it to
a heavily refined model of 160,000 elements, that is characterized by a
huge computational cost, meaning that reducing the time steps leads to
an increase of this. The evolution of the pressure in the width of the
thickness is quantified in Fig. 84 for a vertical path at the point x = L −
he, confirming the discoveries of our finding and reinforcing the theory
that such condition is required to meet the conditions for stability of the
element.

It is worth highlighting another aspect that relies on the refinement
of the mesh, but which is more visible during the swelling step: the ap-
pearance of swelling induced surface instabilities, a phenomenon due to
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Figure 84: Evolution of the pressure for a vertical path in the sample at
x = L − he mm for different discretizations at the first increment of the
pressure unloading step with a time step of ∆t = 0.15s. Oscillations in
pressure are observed for coarser meshes near the top right corner.

the induction of compressive in-plane stresses. These instabilities have
been deeply studied in the bibliography and have appeared in the form
of creasing [337, 338, 339, 340] and wrinkling [341, 342] in several exper-
iments and numerical methods have addressed their appearance based
on energy or equilibrium settings [343, 344, 345, 328, 346, 347, 348]. What
is stated in the numerical approaches is that the appearance of these in-
stabilities earlier during the swelling stage due to mesh refinement ap-
proaches the theoretical prediction of a instantaneous instability. Since
unlike the diffusion length issue, this phenomenon has been deeply ad-
dressed in the theory, we just mention it here for the readers’ consider-
ation and do not address it further since we believe that the study of
surface induced instabilities is out of the scope of the current investiga-
tion.
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Figure 85: Isocontour displaying the temperature field (a) without and (b)
with considering the fluid flow and elastic stretching influence on the tem-
perature.

5.4.3 Influence in temperature terms of displacement and
pressure field

The additional particularity to be addressed is the inclusion of the last
two terms in Eq. (5.77), i.e. the temperature variation due to fluid flow
and elastic stretching. The referential works of Chester and Anand [7]
claims that both terms could be dismissed due to their relative minor
influence on the hydrogel behavior compared to the other terms on the
residual terms. This statement has been proven to be in line with other
tests conducted for thermo-mechanical simulations of polymers such as
[68, 36]. However, for hydrogels, our findings have revealed that both
terms have a considerably major performance on the material behavior
due to the properties of the hydrogel itself (lower shear modulus G).
In order to address this claim, the comparison between the swelling-
deswelling results of Section 5.4.1 is conducted with and without con-
sidering these coupling terms. The isocontours for the temperature field
at the beginning of the swelling step may be observed in Fig. 85, where
it is observed that by neglecting both terms, we have an isothermal case,
whereas by considering both, we have a considerable temperature profile
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Figure 86: Time evolution of the vertical displacement in the top right node
for the swelling-deswelling test with (red, continuous line) and without
(green, dashed line) considering the fluid flow and elastic stretching influ-
ence on the temperature.

of around 8ºC. If we were running this analysis near the critical temper-
ature Tc, such gradient could cause the transition of the LCST which will
lead to a dramatic change of the solvent capacity to make the hydrogel
swell. Therefore, the consideration of these terms cause, by taking a look
just on the temperature field itself, significant thermal changes that al-
ter the swelling behavior, this is explained by the instantaneous change
from a poor to good solvent and viceversa. Based on this argument the
thermal fields should not be dismissed.

In addition to this, we pay attention on the time evolution of the
displacement in the top right node during the full test on Fig. 86 and
we observe that, now in the mechanical field, there are also quantitative
modifications in the material behavior. It is envisaged how the trajectory
for both tests is slightly different between both approaches, reaching a
5% difference on the peak of the specimen, and decaying quicker during
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the deswelling stage for the full model. In addition to this, on numer-
ical terms, it is important to highlight that the convergence of the ap-
proach considering both influences is more robust than the one dismiss-
ing both terms, which leads to more difficulties on conducting the test.
We believe that with the distinct performances that we display here, we
have presented solid arguments to encourage the usage of a full formu-
lation considering all the involved terms. However, we expect to inten-
sify the differences between both approaches when studying a problem
with contact, where the thermal part is of a major importance than here;
such task is currently being conducted for an experimental-numerical
approach and will be presented in future works.

5.5 Experimental correlation: Free swelling of
PNIPAAm hydrogels

After the validation of the functionality of the proposed framework and
addressed its particularities, we will now focus to show the ability of
our model to capture some experimental results, establishing a quanti-
tative correlation with the experimental data reported by [349], where
they study the effect of crosslinking density in the swelling behavior for
PNIPAAm hydrogels for different temperatures.

It is well-known that the PNIPAAm/water system show the type
of swelling for a LCST hydrogel. Therefore, for this system, Oh et al.
[349] synthetized various N-isopropylacrylamide gel particles with var-
ious crosslinking concentrations and measured the free swelling behav-
ior of these materials to predict the swelling equilibrium of the hydro-
gel/solvent system. The magnitude that they employ to measure the
degree of swelling is the volume ratio of gel particles. Their study shows
that, for temperatures below the LCST, hydrogels with less crosslinking
density become considerably more swollen. However, when the tem-
perature is increased above the LCST, the influence of the crosslinking
density is almost negligible, as the volume that these systems grow is
considerably minor compared to cooler temperatures.

Heading back to the current modelling framework, in order to cap-
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Table 27: Material properties employed for the 3-D block under free tran-
sient swelling conditions associated to displacement-mass diffusion fields.

NkBT = G(MPa) χL χH D (mm2/s) λ0

0.4 0.05 0.85 5× 10−2 1.01

Table 28: Material properties employed for the 3-D block under free tran-
sient swelling conditions associated to thermal fields.

Tc (K) ∆ (K) cp

(
J/(mm3 · K)

)
α (K−1) K

(
W/(mm·K)

)
305 5 5.02 73× 10−6 0.35× 10−3

ture this experimental behavior and correlate with the main findings of
[349], we propose the following approach: as the experimental work
gives not enough details regarding the geometry and dimensions of the
sample, we assume that the authors mean that the swelling properties
do not depend on these characteristics, but in the material itself. There-
fore, we have modelled one-eighth of a 3-D square block swelling of
20x20x20 mm, imposing symmetry conditions on the X, Y and Z plane.
The employed displacement-mass diffussion-related properties are plot-
ted in Table 27, with the thermal ones being depicted in Table 28.

Imposed chemical BCs are quite similar with respect to those de-
fined in Section 5.4.1, but now for 3-D: symmetry surfaces are imposed
zero flux conditions, whereas in the surfaces in contact with the solvent,
a pressure of p = 0 MPa is prescribed for an initial swelling ratio of
λ0 = 1.01, meaning that they are in equilibrium with the solvent. As the
temperature has to remain constant for the whole analysis for proper cor-
relation with the experiments, isothermal BCs are applied for the whole
domain, meaning that Z = 0. In accordance with the mesh sensitivity
analysis carried out, a mesh of 8,000 20-node Q2Q1Q1 elements is em-
ployed for the whole analysis. The sample is represented in Fig. 87 with
both the un-swollen and swollen configuration.

The parameter of our model that is related to the crosslinking density
of our model is Nν; therefore, it is the one to be adjusted to capture the
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Figure 87: 3-D mesh for the block subject to free swelling: both un-swollen
and swollen configurations are represented.

experimental results. To compare with the experimental results that re-
fer to volume change, we have plotted in Fig. 88 the Jacobian J on the
swollen state under equilibrium (remember that is the magnitude that
maps the volume variation from the reference configuration to the cur-
rent one like dv = JdV ) in front of the imposed temperature on the hy-
drogel. Experimental results study a experimental crosslinking of 1.23%,
2.50% and 3.88% and we have calibrated such change. The results re-
veal that when reducing the Nν parameter, that is equivalent to reduce
the crosslinking and then, the swelling ratio J of the hydrogel increases
considerably when cooled below the LCST. In addition to this, above the
LCST, it is observed how the results for the three analyzed samples do
coincide, exhibiting the independence of this parameter when the hydro-
gel is heated above this temperature. Overall, it can be observed a strong
correlation between the experiments and the numerical model, display-
ing the solidness that the proposed framework provides in capturing the
behavior of thermosensitive hydrogels.
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Figure 88: Volume of free-swelling hydrogel depending on temperature for
different crosslinking densities. To adjust for the different experiments of
[349], we have changed the parameter Nν.

5.6 A preliminary formulation for fracture of ther-
moresponsive hydrogels

To close up this Chapter of the thesis, a preliminary theory for phase-
field modelling of fracture of thermoresponsive hydrogels is presented.
In order to avoid repetition, we refer the reader for the global potential
postulated in Eqs. (1.1)-(1.8). As we are applying the AT-2 approach
proposed by Bourdin et al. [46], the degradation function adopted is
proposed in Eq. (1.9) and the crack density energy is included in Eq.
(1.10). With these expressions at hand, we modify the hydrogel swelling
formulation proposed in this Chapter to model fracture with a staggered
scheme.
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5.6.1 Inclusion of the phase-field technique in the varia-
tional formulation

With the addition of the phase-field parameter, the developed three-field
formulation (see Fig. 76) is converted into a four-field element, whose
DOFs are the displacement field u, the fluid pressure p, the temperature
T and the phase-field parameter d. Keeping the same material model as
the one stated in Section 5.2.2, the variational basis of the mixed coupled
displacement-pressure-temperature-phase field problem finds the total
potential

Π(u, p, d, T, t) =

∫
Ω0

Πint(u, p, d, T, t)dV −Πext(u, p, d, T, t)

=

∫
Ω0

g(d)Ψ(C, T,∇T ) dV +

∫
Ω0

GCγl(d,∇xd) dV

− p(J − Jn)−∆t d(p,Fn, T ) + ρ0η̇T −Πext

(5.90)

leading to an objective by the principle of minimum potential energy

Determine (u, p, d, T ) from

(u∗, p∗, d∗, T ∗) = arg

(
inf
Ψ

sup
p

inf
d
inf
T

Π(u, p, d, T )

)
(5.91)

The problem now is ruled via the linear momentum equilibrium pro-
posed in Eq. (5.8); the dissipation function for mass transport, postu-
lated in Eq. (5.50); the energy balance in entropy form for the thermal
part, defined in Eq. (5.35); and the fracture energy density contribution,
expressed in Eq. (1.12).

5.6.2 Consistent linearization of the coupled displacement-
pressure-temperature-phase field problem

As mentioned before, the variational formulation encompasses four terms,
this quadruplet set (u∗, p∗, d∗, T ∗) is solved by taking a first derivative of
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the total functional by assuming regularity of the involved fields. As the
variable d possesses the irreversibility property, for any admissible test
function, we reach the following residuals for the multi-field problem:

Rd(d, δd, p̂, d̂, T̂ ,∆T̂ ) =

∫
Ω0

∇XNT
d · g(d)SdV

−
∫
Ω0

NT
d · FV

dV −
∫
∂Ω0

NT
d ·Td∂V = 0

(5.92)

Rp̂(d, p̂, δp, T̂ ) =

∫
Ω0

−NT
p(J − Jn) dV +

∫
Ω0

∆t

J0
F−T

n · ∇XNT
p · jR dV = 0

(5.93)

Rd̂(d, p̂, d̂, δd̂, T̂ ,∆T̂ ) =

∫
Ω0

GC

[
1

ℓ
NT

dd+ ℓ∇XNT
d · ∇Xd

]
dV

−
∫
Ω0

2(1− d)HNT
dd dV

(5.94)

RT̂ (d, p̂, d̂, T̂ , δT̂ ,∆T̂ ) =

∫
Ω0

NT
TcpṪ dV +

∫
Ω0

g(d)∇XNT
T ·K · ∇XTdV

−
∫
Ω0

g(d)
NT

T

2
(ZT : Ċ) TdV +

∫
Ω0

NT
T · jR · ∇Xp dV = 0

(5.95)

where the history field variable H is found in the problem as

H = maxt∈[0,tf ]Ψ(C, T,∆T, t). (5.96)

where the expression for the local free energy function can be found in
Eq. (5.47).

The element that we are presenting on this last Section of the chapter
is Q1Q1Q1Q1, meaning that we employ the linear interpolation for the
displacement, phase-field parameter, fluid pressure and temperature. It
is based on the recently UHYPER/UMAT element subroutine presented by
Zheng et al. [73, 74] along with the coupling of temperature presented
in [69]. The main reason why we are presenting on this Chapter a for-
mulation that clearly lacks the fulfillment of the LBB conditions is to es-
tablish a comparative standpoint with a future Q2Q2Q1Q1(quadratic in-
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terpolation for phase-field) or Q2Q1Q1Q1 (linear interpolation for phase-
field) formulations that we will develop on a subsequent paper, high-
lighting the performance and stability of both schemes. However, at the
time of presenting this thesis, we only have developed the scheme for a
Q1Q1Q1Q1 element, but we have discovered that the findings for frac-
ture in our numerical examples do shed light on the problem of fracture
in thermoresponsive hydrogels.

Within the FE framework, Eq. (5.71), now we include the expression
to interpolate the phase-field parameter from the nodal results. Such
variable is included in the residuals previously expressed within this Sec-
tion:

d =

n∑
i=1

Nd · d̂ (5.97)

along with its temporal variation

˙̂d =
d̂n+1 − d̂n

t
(5.98)

Now, for the application of Newton-type solution algorithms for the
iterative solution of the boundary value problem, in order to linearize
the weak form we have to consider also the phase-field parameter:

L̂[Rd](d, δd,∆d, p̂,∆p̂, d̂,∆d̂, T̂ ,∆T̂ ) = Rd(d, δd, p̂, d̂, T̂ ,∆T̂ ) + ∆dR
d ·∆d

+∆p̂R
d ·∆p̂+∆d̂R

d ·∆d̂

+∆T̂R
d ·∆T̂

(5.99)

L̂[Rp̂](d,∆d, p̂, δp,∆p, T̂ ,∆T̂ ) = Rp̂(d, p̂, δp̂, T̂ ) + ∆dR
p̂ ·∆d

+∆p̂R
p̂ ·∆p̂+∆T̂R

p̂ ·∆T̂
(5.100)

L̂[Rd̂](d,∆d, p̂,∆p̂, d̂, δd̂,∆d̂, T̂ ,∆T̂ ) = Rd̂(d, p̂, d̂, δd̂, T̂ ,∆T̂ ) + ∆dR
d̂ ·∆d

+∆p̂R
d̂ ·∆p̂+∆d̂R

d̂ ·∆d̂

+∆T̂R
d̂ ·∆T̂

(5.101)
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L̂[RT̂ ](d,∆d, p̂,∆p̂, d̂,∆d̂, T̂ , δT̂ ,∆T̂ ) = RT̂ (d, δd, p̂, d̂, T̂ , δT̂ ,∆T̂ ) + ∆dR
T̂ ·∆d

+∆p̂R
T̂ ·∆p̂+∆d̂R

T̂ ·∆d̂

+∆T̂R
T̂ ·∆T̂

(5.102)

This leads to the following linearised system of equations represented
by the global N-R monolithic scheme


Kdd Kdp̂ Kdd̂ KdT̂

Kp̂d Kp̂p̂ Kp̂d̂ Kp̂T̂

Kd̂d Kd̂p̂ Kd̂d̂ Kp̂T̂

KT̂d KT̂ p̂ KT̂ d̂ KT̂ T̂



∆d
∆p̂
∆d̂

∆T̂

 = −


Rd

Rp̂

Rd̂

RT̂

 (5.103)

which, in order to reduce the computational cost and the number of it-
erations required upon solving [49], we opt for a staggered scheme by
employing only the terms in the diagonal. The system of equations now
is expressed as:


Kdd 0 0 0
0 Kp̂p̂ 0 0

0 0 Kd̂d̂ 0

0 0 0 KT̂ T̂



∆d
∆p̂
∆d̂

∆T̂

 = −


Rd

Rp̂

Rd̂

RT̂

 (5.104)

where the Jacobian stiffness matrix have the following expression
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Kdd =
∂Rd

∂u
= g(d)

[ ∫
Ω0

∇XNT
d · C · ∇XNd dV +

∫
Ω0

[
∇XNT

d · S · ∇XNd

]
· 1dV

]
(5.105)

Kp̂p̂ =
∂Rp̂

∂p
= −

∫
Ω0

∆t m Jn
J0

F−T
n · ∇XNT

p · F−T
n · ∇XNp dV (5.106)

Kd̂d̂ =
∂Rd̂

∂p
=

∫
Ω0

[
2
GC

ℓ
H
]
NT

d ·Nd dV +

∫
Ω0

2GCℓ ∇XNT
d̂
· ∇XNd dV

(5.107)

KT̂ T̂ =
∂RT̂

∂T
=

∫
Ω0

NT
T · cp

∆t
·NT −

∫
Ω0

g(d)NT
T · (Z

T · Ċ)

2
· NT dV

+

∫
Ω0

g(d)∇XNT
T ·K · F−T · ∇XNT dV −

∫
Ω0

NT
T · jR · ∇Xp

T
·NT dV

(5.108)

5.6.3 Numerical fracture of hydrogels: 2-D single edge
notched gels

The effectiveness of the proposed Q1Q1Q1Q1 formulation to model frac-
ture in hydrogels is put into test by performing an analysis into a single
edge notched tension (SENT) sample, based on the example in Section
4.1 of the work by Zheng et al. [73]. The geometry the sample is plotted
in Fig. 89(a) and is set up like this: with an initial crack length of 20 mm
and by benefitting from symmetry conditions, we fix the bottomost side
of the specimen, while we apply to the topmost edge a vertical displace-
ment of uy = 20 mm. The test is carried out on isothermal conditions,
with a temperature of T = 298 K prescribed for the whole specimen. For
this experiment, we employ a discretization of 8,540 first order quadrilat-
eral elements, with a remeshing made in the area around the crack path
of h = 0.1 mm; such mesh can be observed in Fig. 89(b). Concerning
properties, the mechanical properties of the specimen are given in Table
29 and the thermal properties are the same as the ones displayed in Table
28.
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(a)

(b)

Figure 89: (a) Geometry of the SENT specimen with dimensions in mm; and
(b) employed mesh. We depict the full probe and the conducted sample,
with symmetry conditions applied.

Table 29: Material properties employed for the SENT specimen conducted
to fracture associated to displacement-mass diffusion-phase-field fields.

NkBT = G(MPa) Nν χL ≈ χ D (mm2/s) GC(N/mm) ℓ(mm)

0.4 0.01 0.1 5× 10−2 2.4 1

The experiment encompasses two steps, analog to the previous ex-
amples observed within this Chapter: the first one consists in the free
swelling, absent from stresses and damage, where depending on the
concentration of solvent present within the hydrogel, i.e. the param-
eter of λ0, the specimen will get more or less swollen. Such step en-
compasses a total time of t = 300 s. Then, for a maximum time of 2
hours, in the second and final step, the specimen is pulled from the top
upon total fracture of the hydrogel sample; for the tension step, aiming
for the best convergence possible, we will employ a fixed time step of
∆t = 0.72 s, resulting the experiment in a maximum of 10,000 steps. We
will conduct four different tests varying the initial stretch parameter as
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Figure 90: Phase-field isocontours depicting the (a) initiation, (b) propaga-
tion and (c) final states in crack propagation of the SENT hydrogel specimen
with λ0 = 2.1544.

λ0 = [2.1544, 1.7100, 1.4938, 1.3572].
From a qualitative standpoint, we have plotted the phase-field pa-

rameter at the deformed configuration of the hydrogel for the different
cases changing λ0. First, in the hydrogel with more solvent content,
λ0 = 2.1544, the pulling test runs smooth, with barely any complications
in convergence until the end of test. In Fig. 90 is exhibited the crack evo-
lution in the specimen; nucleating from the initial notch tip (Fig. 90(a))
and propagating in Mode I (Fig. 90(b)) until the solid is divided into
two parts (Fig. 90(c)). Even though the Q1Q1Q1Q1 formulation is known
for not being LBB stable, it still manages to run this experiment without
displaying any local instabilities.

As we reduce the content of water within the solvent, local instabili-
ties start to show up during the crack fracture process, with elements in
the crack notch tip becoming more distorted as the gradient of stresses
increase. This is illustrated in Fig. 91, where, for λ0 = 1.3572, we can
observe the excessive distortion of such elements when the crack starts
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Figure 91: Illustration of the instability due to volumetric locking in the
notch tip of the SENT hydrogel with initial stretch λ0 = 1.3572.

to nucleate in the notch tip. The appearance of such instabilities is due
to first order displacement interpolation schemes not fulfilling the LBB
conditions in nearly incompressible materials for hydrogels modelling
and, subsequently, leading to volumetric locking [327], that complicates
convergence, causing the analysis to stop prematurely upon passing the
maximum applied load on the model. Such imperfections also appear
for the specimens with λ0 = 1.7100 and λ0 = 1.4938, but the analysis
converges until the end, with a slight increase in the required number
of iterations. We believe that by increasing the order of the displacement
and the phase-field interpolation up to quadratic (Q2Q2Q1Q1 element) or
even, just, the displacement (Q2Q1Q1Q1 element) could fix this problem.
Therefore, this is proposed for the continuation of this project.

In order to compare quantitatively the performance of all the samples,

210



Figure 92: Reaction force-displacement curves for all the conducted SENT
hydrogel tests for different initial stretch conditions λ0. We have included
also the micrographs for the evolution of crack fracture along with the in-
stability.

we have plotted in Fig. 92 the force-displacement graphs for all the run
SENT tests. In general, it is observed that as the water content is reduced,
the stiffness of the curve increases considerably, leading to an augment in
the maximum loading force and a slightly earlier failure. While the curve
with λ0 = 2.1544 does not show it, displaying a smooth crack propaga-
tion, all the other three graphs display an elbow in the middle of their
trayectory, around the value for uy ≈ 3 mm, being this due to the appear-
ance of the local instability caused by the volumetric locking of the speci-
men, an event that will be tackled in future approaches involving hydro-
gels modelling. It can be deducted that the combination of both quanti-
tative and qualitative results for the SENT fracture modelling leaves the
field open for a future implementation of a Q2Q2Q1Q1/Q2Q1Q1Q1 ele-
ment, being this covered series of experiments a suitable framework for
comparison of the performance of both schemes.
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Chapter 6

Conclusions and future
developments (ENG) /
Conclusiones y desarrollos
futuros (ESP)

6.1 Conclusions and future developments (ENG)

The research work in this thesis has been dedicated to the application
of diffuse damage models, specifically the phase-field and the contin-
uum damage techniques, to diverse coupled problems in science and
engineering. With the advent of multidisciplinary approaches in the in-
dustrial sector, there is a growing attention on the influence of chemical,
electrical, biological fields, among others, in the structural integrity of the
materials and a solid proof of that influence has been demonstrated by
the performed computation of multi-physics failure by these continuum
damage techniques.

The results for all the covered coupled approaches in this thesis are
addressed in the forthcoming Sections, along with a brief discussion on
likely future improvements.
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6.1.1 Summary and final remarks for hydrogen-induced
fracture in polycrystalline materials

Conclusions

We have presented in Chapter 2 a new microstructurally-sensitive deformation-
diffusion-fracture formulation to predict hydrogen embrittlement in elastic-
plastic solids. The modelling framework is able to explicitly resolve
the microstructure and capture the transition from ductile transgranu-
lar fracture to hydrogen-assisted brittle intergranular cracking. This is
achieved by combining a phase field description of transgranular cracks
with a cohesive zone model that simulates decohesion at the grain bound-
ary interfaces. The capabilities of the model in bringing new insight
and understanding are demonstrated by addressing three representative
boundary value problems.

First, the competition between transgranular and intergranular crack-
ing is investigated with a single edge notched tension specimen that con-
tains 10 and 50 grains. The expected qualitative trends are captured,
with cracking mechanisms changing as a function of the environment.
Second, recent slow strain rate test (SSRT) experiments on a Ni-Cu su-
peralloy (Monel K-500) [218] are simulated to demonstrate the ability of
the model to quantitatively predict failure times for different environ-
ments and material heats. The model is also used to discuss the suit-
ability of SSRT experiments, showing that cracks nucleating along grain
boundaries located near the surface can rapidly propagate inwards and
significantly reduce the load carrying capacity. Finally, the paradigmatic
experiments by Harris et al. [86] on polycristalline Ni samples at ambi-
ent and cryogenic temperatures are reproduced. The model is shown to
predict both the qualitative cracking modes and the quantitative stress-
strain responses for the four conditions (with and without hydrogen, at
77 K and 298 K). Furthermore, mechanistic insight into the embrittlement
of polycrystalline Ni is gained, showing that grain boundary decohesion
is a first order effect, and that the differences between the responses ob-
served at ambient and cryogenic temperatures can be rationalised by the
additional content of hydrogen accumulated in grain boundaries due to
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diffusion. The numerical experiments conducted also showcase the com-
putational robustness of the method, with significant cracking being pre-
dicted without convergence issues.

Further developments

Further insights will comprise deeper investigations concerning the in-
terplay of the hydrogen diffusion with the microstructural phase. First,
some preliminary studies have been carried out with the benchmark
specimens concerning the trajectory of the crack during the transgranu-
lar fracture, see Figs. 12 and 16, where is observed that during its growth,
while fracture follows a path within the grain, it goes along the direction
of the grain boundaries. This is contrary to what is observed in sem-
inal works such as the one by Harris et al. [86]. In their study, they
observed that during ductile fracture, the nucleation and coalescence of
the voids happening in the domain led to crack propagation splitting the
grain into two different subdomains. Preliminary works represented in
Fig. 93 for the 50-grain specimen conducted in Section 2.3.1 for a refined
mesh of he = 0.01 mm exhibit a clear dependence of the crack trajec-
tory in the length scale of the specimen. In fact, these micrographs reveal
that the numerical example matches the experiment when ℓ = he, see
Fig. 93(c), as for these values, the crack propagates through the mid-
dle of the grains. This states that in order to obtain results closer to the
experiments, the mesh refinement is a high priority when dealing with
polycrystalline structures, as that is a condition to reduce ℓ in the ana-
lyzed specimen. Due to this numerical issue not being covered yet in the
bibliography, we aim to address it in forthcoming journal publications
concerning HE phenomena in polygrain specimens.

In parallel to this, some other phenomena favouring or hindering HE
are to be addressed in further works employing this multiscale approach
as a base. One of them is hydrogen trapping, that consists in the event
where, upon diffusing through the lattice, hydrogen atoms may reside at
either lattice sites or microstructural trapping sites such as dislocations,
voids or grain boundaries. Whether HE is governed by each one of these
methods is still a matter of debate [86, 206, 78], but the concentration of
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Figure 93: (ENG) Dependence of the crack propagation on the length scale
ℓ: results for a mesh refinement of he = 0.01mm / (ESP) Dependencia en
la propagación de grieta del parámetro length scale ℓ: resultados para una
malla refinada de he = 0.01mm.

hydrogen in lattice sites is generally in equilibrium with the concentra-
tion in trapping sites [350]. As hydrogen trapping has been covered in
the biliography concerning structural integrity issues [351, 352], the au-
thors find that the developed deformation-diffusion-fracture framework
combining the PF method for transgranular fracture and the CZM for
intergranular fracture could be extended to model hydrogen trapping
comprising the crystal plasticity (CP) formulation. This multi-scale pro-
cess, consisting of a number of grains with random shapes and orienta-
tions with different mechanical properties assigned to each one of them,
accounts for the role of dislocations at the atomic scale in controlling fea-
tures of plastic deformation such as the glide planes, slip and twinning of
dislocations, dislocation mobility, among other essential factors for crys-
tallographic crack initiation and growth [353, 354]. The implementation
of the CP approach into the framework of Chapter 2 along with the con-
sideration of hydrogen trapping is currently under development.
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6.1.2 Fracture in pre-stressed cylindrical bio-inspired elastomer-
like materials: final remarks and future applications

Conclusions

Phase field methods for fracture simulation have evidenced several ap-
pealing aspects stemming from its inherent versatility to accommodate
different mechanical behavior at the material point level. Exploiting a
modular formalism, in Chapter 3, a novel coupled phase field approach
has been developed to simulate fracture events for residually stressed
hyperelastic (rate independent) and visco-hyperelastic (rate dependent)
hollow cylinders. The current computational model relies on the already
proposed visco-hyperelasticity theoretical formulation and it has been
extended to consider residual stress fields in terms of an invariant-based
formulation.

The proposed methodology was first validated against available ex-
perimental data featuring quasi-static fracture evolution. Subsequent
parametric analysis examined the role of different mechanical aspects
of the system in line with other works that use alternative phase field
models for hyperelastic and visco-hyperelastic solids. Current simula-
tions assessed the fracture of one-layered and two-layered cylindrical
structures evaluating both viscous (τ and u̇) and mechanical (GC and µ

mismatch) effects for several residual stress fields (which depend on the
coordinates R and Z of the cylinder). Interestingly, the incorporation of
residual stress fields in multi-layered cylindrical systems led to (a priori)
unexpected results in terms of crack initiation and propagation mecha-
nisms. This evidenced the need of the development of robust numerical
frameworks that can take into consideration such effects.

Further developments

Therefore, growing from the last sentence of the previous Section, further
extensions of this research would concern the application of this code to
the analysis of bending and bulging instabilities in these kind of struc-
tures to simulate the fracture of arteries which suffer aneurysms. Based
on the work carried out by Desena-Galarza et al. [296], the main goal
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Figure 94: (ENG) Bulging instability ocurring at the middle of a cylinder.
Image taken from a numerical analysis from Desena-Galarza et al. [296].
/ (ESP) Inestabilidad de hinchazón sucediendo en el medio de un cilindro.
Imagen tomada de un análisis numérico llevado a cabo por Desena-Galarza
et al. [296].

of this analysis would be to establish a correlation of the structural in-
tegrity, computed by the PF method, with the initiation of arterial wall
bifurcation in these cylindrical tubes, which is due to the onset of bulges
like the one plotted in Fig. 94.

Another approach of interest that resembles a potential extension of
the residual stress framework is the incorporation of anisotropic mate-
rial laws in the layer-definition. In fact, the implementation of nonlinear
anisotropic laws, such as the Gasser-Ogden-Holzapfel (GOH) [355], orig-
inally developed to model arterial tissue, holds significant importance
within this formulation. This choice allows for a more precise represen-
tation of the complex and heterogeneous material behavior exhibited by
the arterial wall. According to the GOH model, it separates the contribu-
tions of the extracellular matrix material and embedded collagen fibers,
treating them as distinct components responsible for the material char-
acteristics of the arteries [356]. The GOH model along with the study of
bulding and bending instabilities is being currently implemented in the
UMAT presented for Chapter 3.
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6.1.3 Conclusions and future developments for gradient-
enhanced damage models in compressible and nearly
incompressible hyperelastic materials

Conclusions

Within Chapter 4, a duo of gradient-enhanced continuum damage for-
mulations has been developed to model failure in compressible and in-
compressible isotropic hyperelastic specimens, with the main focus of
addressing the volumetric and shear locking pathologies. Among these
experiments, the samples have been tested to a wide range of different
types of loading, including traction, compression, and bending, compar-
ing the two novel schemes, Q1Q1E24 and Q1Q1P0, with the Q1Q1 refer-
ential CDM formulation.

Making a one-by-one analysis of the performance of the aforemen-
tioned schemes, first the spatial standard CDM framework (Q1Q1), based
on the one proposed by [111], has been validated in this work to be a
remarkable instrument in modelling damage in compressible structures
subject to extensive pulling. However, it has exhibited both volumetric
and shear locking in incompressible specimens under compression and
bending status, respectively.

Therefore, in order to overcome these locking pathologies, the 24-
incompatible modes EAS technique Q1Q1E24 and the mixed displacement-
Jacobian-pressure FE formulation Q1Q1P0 have been proposed for their
use. Q1Q1E24 scheme is proven to solve the shear locking phenomenon
in compressible samples, while the employment of Q1Q1P0 formulation,
by considering both the pressure and the dilatation as separate DOFs, has
been demonstrated to be a more than a remarkable instrument in mod-
elling complex incompressible cases, correcting the volumetric locking
pathology.

Further developments

During our analysis, it has also been demonstrated that Q1Q1E24 ele-
ment performs poorly in predicting damage in incompressible materials,
while Q1Q1P0 overestimates the curve in structures subject to bending
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Figure 95: (ENG) Degradation of the electric response and increasing crack
pattern at different bending cycles caused by fatigue. Taken from [358]. /
(ESP) Degradación en la potencia eléctrica con el aumento de los ciclos de
flexión a fatiga. Tomado de [358].

loads, i.e., displaying shear locking. Therefore, to tackle this, further
approaches combining EAS with the mixed Jacobian-pressure formu-
lations are to be proposed in the future. In addition to this, an exten-
sion to model anisotropic hyperelastic almost incompressible materials
is proposed here for future work, being envisaged as a compelling but
challenging extension of the proposed frameworks, considering the dis-
tortion that such kind of materials exhibit during pure pressure loading
[357].

Aiming for more practical applications, the large deformation model
for fracture along with the mixed formulations of displacement-pressure-
Jacobian or the EAS interpolation is envisaged as a potential candidate
to address the multi-scale and multi-physics problem for reliable frac-
ture prediction and simulation of solar photovoltaic (PV) systems. PV
structures generally operate in a multifield environment (including me-
chanical, thermal and electrical phenomena), subjected to different ser-
vice conditions that can lead to degradation from different signatures
where defects such as micro-cracks and delamination introduce signifi-
cant power loss [358], see Fig. 95. As the solar pannels are comprised
by a laminate disposal for silicon (Si) exhibited in Fig. 96, they are prone
to display locking pathologies as their thickness is relatively small to the
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Figure 96: (ENG) Assembly of the laminate of a Si-based PV-module. /
(ESP) Ensamblaje de un laminado de panel fotovoltaico de silicio.

other dimensions. This is where mixed interpolations, such as the EAS-
ANS solid-shell elements [359], prove to be invaluable for modelling of
laminates.

Considering these events, the next main goal of the CDM approach
developed in Chapter 4 is to attain the simulation of such solar lami-
nates by adapting it to solid shell formulation with either the CDM or the
PF approach for analysis of the structural integrity of solar PV systems.
The complex behavior of PV systems, with different scales of observa-
tions and multi-material arrangement, has motivated the use of numeri-
cal the application of homogenization-based multiscale and global-local
methodologies for high-fidelity micromechanical analysis of silicon pan-
nels. In the light of such approaches, currently, we are developing this
multi-scale and multi-physics framework for solar pannels by consider-
ing the global-local approach implemented by Liu et al. for solid shells
[360].
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6.1.4 Swelling of thermoresponsive hydrogels: main re-
sults and future improvements

Conclusions

We have presented in Chapter 5 an inf-sup stable element for the mod-
elling of thermoresponsive hydrogels in the form of a UEL subroutine.
Specifically, we have adapted a mixed displacement-temperature-fluid
pressure theory for its FE implementation in the analysis of transient
free swelling in hydrogels. In order to achieve fulfillment of the LBB
conditions and thus, gain inf-sup stability, we have adopted a quadratic
interpolation for the displacement field and a linear interpolation for the
temperature and the fluid pressure fields, thus employing a Q2Q1Q1 for-
mulation.

First, the functionality of the Q2Q1Q1 element has been tested by ana-
lyzing a free swelling state followed by a subsequent deswelling caused
by a temperature gradient, performing very solidly. Subsequently, the
dependence of the diffusion length on the mesh, a topic that has hastily
been covered, has been evaluated by checking the pressure variations
in the specimen, proving the importance of picking an appropiate dis-
cretization to avoid any visible oscillations in the fluid pressure. To con-
clude the verification part, we have compared the importance in the free
swelling behavior of the temperature variation due to fluid flow and elas-
tic stretching, coupled terms that have been ignored in the referential
works due to their minor influence; we have found that due to the low
stiffness that hydrogels present, such terms should be considered for an
appropiate swelling test, not only in terms of accuracy, but also in conver-
gence. In addition to this, the model has achieved accuracy in capturing
experimental results by correlating the effect of the cross-linking density
on the swelling behavior for PNIPAAm hydrogels, varying temperature.

Simultaneously, the branch to model fracture of thermoresponsive
hydrogels by employing the PF technique has been opened. In the light
of this, we have developed a preliminary PF Q1Q1Q1Q1 scheme to model
them. Whereas the proposed displacement-phase field-temperature-fluid
pressure scheme reaches conclusive results on the conduction of a SENT
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specimen until fracture, important concerns regarding the inf-sup stabil-
ity of the formulation are raised, which are reasoned in the forthcoming
Section.

Further developments

Although the Q1Q1Q1Q1 element manages to fully model fracture for the
SENT specimens, it does not guarantee inf-sup stability. From here, we
can extract that to fulfill this condition, the degree of interpolation will
have to be increased, making the element Q2Q1Q1Q1 or Q2Q2Q1Q1 (the
difference between both elements relies on the degree of interpolation
for the PF DOFs). The choice of either discretization along with the real-
ization of more representative examples is currently under development
and will be presented in future journal articles.

Moving to more practical applications, an experiment that we are
aiming to cover is the dependence on the temperature for the compres-
sion of agarose spheres, an UCST thermoresponsive hydrogel; currently
under development in the lab, the main objective is to see how the decay
in the swelling ratio by cooling down the specimen (see Fig. 8) affects
the results of this mechanical test. In the context of fracture studies, an-
other primary objective in applying the PF approach to model fracture
of thermoresponsive hydrogels is to establish a correlation of the numer-
ical results with experimental observations. To achieve this, we will em-
ploy the universal testing machine depicted in Fig. 97. Cleared to model
fracture of hydrogels, these experiments will involve the use of a video
extensometer and will encompass both tension and compression tests
conducted until failure occurs. Furthermore, these tests will be carried
out at various temperatures to establish a quantitative standpoint of the
structural integrity with the swelling ratio.

6.1.5 To conclude

The efforts devoted in this thesis to implement the phase-field theory to
model fracture in coupled problems are the pure reflection of the progress
made in multidisciplinary processes, specifically in the concerns on the
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Figure 97: (ENG) Instron 68SC-5 universal testing machine [361], which will
be employed for hydrogel tensile and compressive experiments. / (ESP)
Máquina de ensayos universal Instron 68SC-5 [361], que será utilizada para
ensayos a tracción y compresión en hidrogeles.

structural integrity influenced by other fields. The conclusive results
achieved in the branches of swelling of thermoresponsive hydrogels, frac-
ture induced by hydrogen and failure of hyperelastic compressible and
incompressible materials not only establish the phase-field technique as
a versatile and accurate method to tackle this kind of problems, but also
relatively straight forward to implement as the Euler-type equation can
be modified to account for these outer variables. In summary, for the
present, phase-field approach for fracture comprises a cutting edge ap-
plication ideal for Computational Mechanics problems relying on multi-
physical material laws. To make a prediction of where the future land-
scape for phase-field coupled approaches is leading to, besides the clas-
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sical empirical material modeling step of conventional computing, it is
worth stating that the data-driven methods, such as Deep Learning or
Machine Learning, currently being exploited on another areas, will be
of vital importance for the development of this research in the near fu-
ture, with some preliminary works already being published [362, 363,
364, 365].

To close up this thesis, we start by referring the reader again to Fig.
1. Upon examining all the possible applications and at the same time,
all the covered approaches from this work, one may extract that only the
”top of the iceberg” has been addressed here, in this work. While that
statement is true, it cannot be denied that the complexity that surrounds
every coupled problem endows them with an importance that just the
resolution for just one of them may constitute the central topic for a thesis
by itself and given the wide range that this diagram presents, trying to
cover the whole spectrum for coupled problems in Fracture Mechanics is
a never ending task. Therefore, from this statement, we can extract that
whilst multi-physics problems in Computational Fracture Mechanics still
comprise a relevant subject in the literature, there will be always room for
further research on this matter.

6.2 Conclusiones y desarrollos futuros (ESP)

El trabajo de investigación llevado a cabo en esta tesis se ha dedicado
al estudio y a la aplicación de modelos de daño difuso: el método phase-
field, principalmente, y la técnica de daño continuo; a diversos problemas
acoplados en ciencia e ingenierı́a. Con el surgimiento de los enfoques
multidisciplinares en el sector industrial, está habiendo un creciente in-
terés en la influencia que campos quı́micos, eléctricos, biológicos, entre
otros, pueden tener sobre la integridad estructural de los materiales. Una
sólida prueba de ese impacto ha sido demostrado mediante el estudio
a fractura en estos problemas de temática multi-fı́sica empleando estas
técnicas de daño difuso.

Los resultados de todos los problemas acoplados cubiertos en esta
tesis se abordarán en las siguientes secciones, junto con una breve dis-
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cusión sobre posibles implementaciones futuras.

6.2.1 Resumen y observaciones finales sobre la fractura
inducida por hidrógeno en materiales policristali-
nos.

Conclusiones

Hemos presentado en el Capı́tulo 2 una nueva formulación a microescala
considerando deformación, difusión de hidrógeno y fractura para prede-
cir la fragilización por hidrógeno en sólidos elasto-plásticos. Este marco
es capaz de resolver explı́citamente la microestructura y capturar la tran-
sición entre fractura dúctil transgranular a fractura frágil intergranular
inducida por hidrógeno. Esto se logra mediante la combinación de una
implementación de phase-field para modelar grietas transgranulares junto
con un modelo de zona cohesiva (cohesive zone model) que simula la deco-
hesión de los lı́mites de granos. Las capacidades del modelo para ayudar
a entender mejor el problema se han demostrado abordando tres proble-
mas representativos.

En primer lugar, se investiga la competencia entre fractura transgran-
ular e intergranular en una probeta a tracción que presenta una entalla
en el borde. Se han evaluado dos tipos de estructura: una con 10 granos y
otra con 50 granos. En estos casos, se han capturado las tendencias cuali-
tativas esperadas, con los mecanismos de fractura cambiando en función
de la concentración de hidrógeno en el entorno. A continuación, se han
simulado los recientes experimentos a velocidad de deformación lenta
(slow strain rate test (SSRT)) estudiados para una super-aleación de Ni-
Cu (Monel K-500) [218] con el objetivo de evaluar la capacidad del mod-
elo para predecir cuantitativamente los tiempos de fallo para diferentes
entornos y materiales. El modelo también se ha utilizado para discutir
la idoneidad de los experimentos de SSRT, demostrando que las grietas
que se originan a lo largo de los lı́mites de grano cercanos a la super-
ficie pueden propagarse rápidamente hacia el interior y reducir signi-
ficativamente la capacidad de carga. Finalmente, se han reproducido los
experimentos paradigmáticos de Harris et al. [86] en muestras de Ni
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policristalino a temperaturas ambiente y criogénicas. Se demuestra que
el modelo predice tanto los mecanismos de fractura ası́ como las curvas
de tensión-deformación para las cuatro probetas analizadas (con y sin
hidrógeno, a 77 K y 298 K). Además, se obtiene una mayor comprensión
de la fragilización del Ni policristalino, mostrando que la decohesión en
los lı́mites de grano es un efecto de primer orden y que las diferencias
entre las respuestas observadas a temperaturas ambiente y criogénicas
pueden explicarse por la mayor cantiduad de hidrógeno acumulada en
los lı́mites de grano debido a la difusión. Los experimentos numéricos
realizados también demuestran la robustez computacional del método,
ya que predice una fractura significativa sin problemas de convergencia.

Desarrollos futuros

Se pretende llevar a cabo una investigación más profunda sobre la in-
teracción entre la difusión de hidrógeno con la fase microestructural.
En primer lugar, se han llevado a cabo algunos análisis preliminares en
relación a la trayectoria de la grieta durante la fractura transgranular
en los ejemplos de referencia representados en las Figs. 12 y 16. Aquı́
se observa que, durante su crecimiento, mientras la fractura sigue una
trayectoria dentro del grano, esta va pegada y paralela a la dirección
de los lı́mites de grano. Esto difiere con lo que se observa en trabajos
seminales como el de Harris et al. [86]. En su estudio, observaron que
durante la fractura dúctil, la nucleación y coalescencia de las cavidades
en el dominio es lo que lleva a la propagación de la grieta por el centro,
dividiéndose el grano en dos subdominios diferentes. Las micrografı́as
representadas en la Fig. 93 para la muestra de 50 granos estudiada en
la Sección 2.3.1, ahora con una malla refinada de he = 0.01 mm, mues-
tran una clara dependencia de la trayectoria de la grieta con el parámetro
length-scale. De hecho, estos contornos revelan que el ejemplo numérico
coincide con el experimento cuando ℓ = he, véase la Fig. 93(c), ya que
para estos valores, la grieta se propaga por el centro de los granos. Esto
indica que, para obtener resultados más cercanos a los experimentos, el
refinamiento de la malla debe ser tenido en cuenta al tratar con estruc-
turas policristalinas, ya que esa es una condición necesaria para reducir
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ℓ en la muestra analizada. Debido a que este problema numérico aún no
se ha abordado en la bibliografı́a, tenemos como objetivo analizarlo para
ası́ poder incluir estos resultados en revistas cientı́ficas relacionadas con
los fenómenos de fragilización por hidrógeno.

Paralelamente a esto, se abordarán en futuros trabajos algunos otros
fenómenos que favorecen o dificultan la fragilización por hidrógeno uti-
lizando un enfoque multiescala como base. Uno de ellos son las tram-
pas de hidrógeno, que surgen de la competición que ocurre cuando los
átomos de hidrógeno difunden a través de la red cristalina, ya que pueden
residir o bien en sitios de la red o en trampas microestructurales como
dislocaciones, cavidades o lı́mites de grano. Si la fragilización de hidrógeno
está gobernada principalmente por uno de estos mecanismos es todavı́a
un motivo de debate [86, 206, 78], pero se puede establecer que la con-
centración de hidrógeno en los sitios de la red generalmente está en
equilibrio con la concentración en los sitios donde está capturado [350].
Dado que las trampas de hidrógeno han sido estudiadas en la bibli-
ografı́a en problemas de integridad estructural [351, 352], consideramos
que el marco desarrollado de deformación-difusión-fractura, que com-
bina el método phase-field para la fractura transgranular y el modelo de
zona cohesiva para la fractura intergranular, podrı́a extenderse para mod-
elar las trampas de hidrógeno incorporando la formulación de plastici-
dad cristalina (crystal plasticity). Esta formulación a multiescala consid-
era la estructura policristalina con formas y orientaciones aleatorias ası́
como con diferentes propiedades mecánicas asignadas a cada grano. La
plasticidad cristalina aplicada a fractura se centra en el papel que las dis-
locaciones tienen en el control de parámetros de la deformación plástica
a escala atómica como: los planos de deslizamiento, el deslizamiento y
unión de dislocaciones, la movilidad de las dislocaciones, entre otros
factores esenciales, para la iniciación y propagación de grietas crista-
lográficas [353, 354]. La implementación de CP en el marco del Capı́tulo
2, junto con la consideración de las trampas de hidrógeno, se encuentra
actualmente en desarrollo.
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6.2.2 Fractura en tubos cilı́ndricos de elastómero con ten-
siones residuales: observaciones finales y aplicaciones
futuras.

Conclusiones

Los métodos de phase-field para la simulación de fractura han demostrado
varias ventajas derivadas de su inherente versatilidad para implemen-
tar diferentes comportamientos mecánicos. Por ello, en el Capı́tulo 3, se
ha implementado un novedoso enfoque de la técnica de phase-field para
simular fractura en cilindros huecos residualmente tensionados de ma-
terial hiperelástico (independientes de la velocidad) y viscohiperelástico
(dependientes de la velocidad). El modelo computacional parte de la for-
mulación teórica ya propuesta de viscohiperelasticidad y se ha extendido
para considerar campos de tensiones residuales, introducidos mediante
una formulación basada en invariantes.

La metodologı́a propuesta se ha validado primero con datos exper-
imentales de probetas con una evolución de fractura bajo condiciones
cuasiestáticas. A continuación, se han llevado a cabo varios análisis paramétricos
para analizar la influencia que tienen diferentes propiedades mecánicas
del sistema, estando esto en lı́nea a lo que se hace con otros trabajos que
utilizan la técnica de phase-field para materiales hiperelásticos y visco-
hiperelásticos. Las simulaciones llevadas a cabo han evaluado la frac-
tura en estructuras cilı́ndricas con una y dos capas, evaluando tanto las
magnitudes viscosas (τ y u̇) ası́ como las mecánicas (GC y µ) y también
para varios campos de tensiones residuales (que dependen de las coor-
denadas R y Z del cilindro). Curiosamente, llaman la atención los re-
sultados (a priori) inesperados en cuanto a los mecanismos de iniciación
y propagación de las grietas cuando se incorporan campos de tensiones
residuales en estructuras cilı́ndricas multicapa. Esto pone de manifiesto
la necesidad de desarrollar un marco numérico robusto que tenga en
cuenta tales disposiciones.
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Desarrollos futuros

Partiendo de la última oración de la sección anterior, esta .ı́nea de inves-
tigación se centrará en el futuro en la extensión de este código para el
análisis de inestabilidades de flexión e hinchazón en este tipo de estruc-
turas, con el fin de simular la fractura de arterias que sufren aneurismas.
Basándonos en el trabajo realizado por Desena-Galarza et al. [296], el
objetivo principal de este análisis serı́a establecer una correlación entre
la integridad estructural, calculada mediante el método phase-field, y el
inicio de la bifurcación de la pared arterial en estos tubos cilı́ndricos, que
se debe al inicio de abultamientos como el que se muestra en la Fig. 94.

Otra aplicación de interés derivada de este marco de tensiones resid-
uales es la consideración de leyes de material anisotrópico en la definición
de capas. De hecho, la implementación de leyes anisotrópicas no lineales,
como el material de Gasser-Ogden-Holzapfel (GOH) [355], concebido
para modelar tejido arterial, tienen una importancia significativa. Esta
aplicación logra una representación más fidedigna del heterogéneo com-
portamiento que presenta el material modelado como una pared arterial.
Según el modelo GOH, se separan las contribuciones del material de la
matriz extracelular y de las fibras de colágeno embebidas, contribuyendo
de forma separada al comportamiento del tejido arterial [356]. El modelo
GOH junto con las inestabilides de flexión y torsión está siendo imple-
mentando actualmente en la UMAT presentada en el Capı́tulo 3.

6.2.3 Conclusiones y futuros desarrollos para modelos de
daño continuo de tipo gradiente aplicados a materi-
ales hiperelásticos compresibles y cuasi incompresi-
bles

Conclusiones

Dentro del Capı́tulo 4, se han desarrollado dos formulaciones de daño
continuo de tipo gradiente para modelar la falla en materiales hiperelásticos
compresibles y cuasi incompresibles, con un enfoque principal en abor-
dar los problemas de volumetric locking y shear locking que presentan dichas
probetas. En estas simulaciones, se ha testado con las muestras sometiéndolas
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a varios tipos de cargas diferentes, incluyendo tracción, compresión y
flexión, comparando estos dos elementos novedosos, Q1Q1E24 y Q1Q1P0,
con el de referencia, Q1Q1.

Se ha realizado un análisis pormenorizado del rendimiento de cada
esquema propuesto. Primero, se ha validado el elemento de referen-
cia de daño continuo (Q1Q1), basado en el propuesto por [111]. Se ha
demostrado que es un instrumento más que notable para modelar el
daño en estructuras compresibles sometidas a tracción. Sin embargo, ha
mostrado volumetric locking y shear locking en muestras incompresibles
bajo compresión y flexión, respectivamente.

Por lo tanto, para solucionar estas patalogı́as de locking, se han prop-
uesto la técnica de enhanced assumed strain empleando 24 modos incom-
patibles de deformación (Q1Q1E24) y la formulación de elementos fini-
tos mixta que considera los campos de desplazamiento, presión y Jaco-
biano Q1Q1P0. El esquema Q1Q1E24 se ha demostrado que resuelve
el fenómeno de shear locking para materiales compresibles, mientras que
con la formulación Q1Q1P0, al considerar tanto la presión como la dilat-
ación como grados de libertad por separado, se ha demostrado que es
un instrumento muy válido para modelar probetas incompresibles, cor-
rigiendo la patologı́a de volumetric locking.

Desarrollos futuros

Durante nuestro análisis, también se ha descubierto que el elemento Q1Q1E24
no es adecuado para el modelado de daño continuo en materiales incom-
presibles, mientras que Q1Q1P0 sobreestima la curva fuerza-desplazamiento
en estructuras sometidas a cargas de flexión, es decir, muestra shear lock-
ing. Por lo tanto, para solucionar esto, se propone una formulación que
combine tanto el EAS como las formulaciones mixtas de Jacobiano y
presión. Además de esto, se propone aquı́ una extensión para mode-
lar materiales hiperelásticos casi incompresibles anisotrópicos. Dicha ex-
tensión se muestra desafiante, debido a la distorsión que este tipo de
materiales exhibe durante la carga de presión pura [357].

Con miras a aplicaciones más prácticas, este modelo de grandes de-
formaciones para fractura junto con la formulación mixta de desplazamiento-
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presión-Jacobiano o la interpolación EAS se concibe como un candidato
potencial para abordar el problema multi-escala y multi-fı́sica centrado
en el modelado de fractura en paneles solares fotovoltaicos. Estas es-
tructuras generalmente operan en un entorno multifı́sico (que incluye
fenómenos mecánicos, térmicos y eléctricos, entre otros) y se encuen-
tran sometidas a diferentes condiciones de servicio que pueden causar
degradación en el servicio prestado, donde defectos como las microgri-
etas y la delaminación inducen una pérdida de potencia significativa
[358], véase la Fig. 95. Dado que los paneles solares están compuestos
por un laminado de silicio (Si) como se muestra en la Fig. 96, estos son
propensos a mostrar problemas de locking ya que su espesor es relati-
vamente pequeño en comparación con las otras dimensiones. Aquı́ es
donde las interpolaciones mixtas, como los elementos tipo EAS-ANS solid
shells [359], demuestran ser de mucha utilidad para su modelización.

Teniendo en cuenta lo expresado en este apartado, el próximo obje-
tivo principal del marco de daño continuo desarrollado en el Capı́tulo
4 es lograr la simulación de paneles solares adoptándolo a una formu-
lación de solid shell con cualquier técnica de daño difuso para evaluar
la integridad estructural de dichos sistemas. El comportamiento com-
plejo de las placas solares, con diferentes escalas y materiales en su com-
posición, ha motivado la aplicación de metodologı́as numéricas multi-
level y global-local basadas en homogeneización para conseguir un anali-
sis micromecánico de alta fidelidad. A la luz de tales propuestas, se está
desarrollando un marco multi-escala y multi-fı́sica para paneles solares
considerando la formulación de solid shells implementada por Liu et al.
empleando el enfoque global-local [360].

6.2.4 Hinchazón de hidrogeles termorresponsivos: prin-
cipales resultados y mejoras futuras

Conclusiones

Se ha presentado en el Capı́tulo 5 un elemento estable inf-sup para el
modelado de hidrogeles termorresponsivos empleando una subrutina
UEL. Concretamente, se ha adaptado una interpolación mixta de desplaza-
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miento, temperatura y presión de lı́quido para su implementación en el-
ementos finitos con el objetivo de analizar el hinchazón en hidrogeles.
Para cumplir con las condiciones LBB y, por lo tanto, obtener la estabil-
idad inf-sup, se ha utilizado una interpolación cuadrática para el campo
de desplazamiento y una interpolación lineal para los campos de tem-
peratura y presión de fluido, empleando ası́ una formulación Q2Q1Q1.

En primer lugar, se ha estudiado la funcionalidad del elemento Q2Q1Q1
a través de la realización de un ensayo de hinchazón sin fuerzas externas
aplicadas seguido de un desinflado causado por un gradiente de temper-
atura, obteniendo unos resultados sólidos. Posteriormente, se ha evalu-
ado la dependencia de la discretización de la malla de elementos finitos
en las oscilaciones en presión observadas en la muestra, demostrándose
la importancia de seleccionar una malla apropiada para evitar cualquier
oscilación que lleve a inestabilidades locales del hidrogel. Para finalizar
con la verificación, se ha estudiado la importancia que los cambios de
temperatura asociados a la difusión de lı́quido y al estiramiento elástico
tienen en el comportamiento de inflado del gel. Este estudio se debe a
que dichos gradientes fueron ignorados en los trabajos de referencia de-
bido a su aparente influencia menor, afirmación que contrasta con lo de-
mostrado aquı́, ya que debido a la baja rigidez que presentan los hidro-
geles, tales contribuciones deben considerarse no solo por términos de
precisión, sino también por convergencia. Además de esto, el modelo ha
demostrado precisión y robustez al replicar resultados experimentales
correlacionando el efecto que tiene la densidad de entrecruzamiento en
el comportamiento de inflado de hidrogeles de PNIPAAm, variando la
temperatura.

Asimismo, también se ha estudiado la fractura de hidrogeles termor-
responsivos empleando la técnica phase-field. A la luz de esto, se ha de-
sarrollado un esquema preliminar Q1Q1Q1Q1 para modelar el análisis a
falla de dichos materiales. Mientras que aplicando el marco propuesto a
ensayos a tracción de una probeta de hidrogel con una entalla se obtienen
resultados conclusivos, no se puede decir lo mismo de la estabilidad inf-
sup de la formulación, lo cual se argumenta en la siguiente sección.
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Desarrollos futuros

Aunque el elemento Q1Q1Q1Q1 logra modelar completamente la frac-
tura, no garantiza la estabilidad inf-sup. A partir de aquı́, se puede de-
ducir que para cumplir con dicha condición, el grado de interpolación
deberá aumentarse, haciendo que el elemento sea Q2Q1Q1Q1 o Q2Q2Q1Q1
(la diferencia entre ambos elementos radica en el grado de interpolación
para el phase-field nodal). La elección entre estas discretizaciones, junto
con la realización de ejemplos más representativos, se encuentra actual-
mente en desarrollo y se presentará en futuros artı́culos.

Enfocando a aplicaciones más prácticas, un experimento que se está
realizando consiste en la dependencia de la temperatura en la compresión
de esferas de agarosa, un hidrogel termorresponsivo UCST; actualmente
en desarrollo en el laboratorio. La meta principal consiste en observar
como la disminución de la hinchazón al enfriar la muestra (ver Fig. 8)
afecta a los resultados de esta prueba mecánica. En el contexto de estu-
dios de fractura, otro objetivo principal del estudio de estos materiales es
aplicar el enfoque con la técnica phase-field para modelar la falla de hidro-
geles termorresponsivos y establecer una correlación de los resultados
numéricos con experimentos. Para lograr esto, se utilizará la máquina de
ensayos universal que se muestra en la Fig. 97. Diseñados para mode-
lar la fractura de hidrogeles, estos experimentos involucrarán el uso de
un videoextensómetro y comprenderán tanto pruebas de tensión como
de compresión hasta fallo. Además, dichos tests se llevarán a cabo a di-
versas temperaturas para establecer un punto de vista cuantitativo en el
que comparar la integridad estructural con el grado de hinchazón del
hidrogel.

6.2.5 Para concluir

Los esfuerzos dedicados en esta tesis para implementar la técnica de
phase-field para modelar fractura en problemas acoplados son el fiel re-
flejo del progreso realizado en procesos multidisciplinarios, especı́ficamente
en aquellos que conciernen a la integridad estructural. Los sólidos resul-
tados alcanzados en los estudios de inflado de hidrogeles termorrespon-
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sivos, fractura inducida por hidrógeno y falla de materiales hiperelásticos
compresibles e incompresibles no solo dotan a la técnica de phase-field de
una versatilidad sobresaliente para abordar estos problemas, sino también
de una sencillez particular para implementar. En resumen, en la actual-
idad, las aplicaciones de phase-field a fractura están a la vanguardia para
problemas de Mecánica Computacional que dependen de leyes multifı́sicas.
Para hacer una predicción de hacia donde se dirigen los marcos basados
en esta técnica, vale la pena resaltar los métodos basados en datos ya
recogidos (data-driven science), como el Deep Learning o Machine Learning,
que ya se están explotando en otras áreas. Se prevee que los métodos
de aprendizaje avanzado serán de vital importancia para el desarrollo
de esta investigación en el futuro inmediato, considerando que algunos
trabajos preliminares ya se han publicado [362, 363, 364, 365].

Para concluir esta tesis, comenzamos refiriendo nuevamente al lec-
tor a la Fig. 1. Al examinar todas las posibles aplicaciones y, al mismo
tiempo, todos las propuestas abordadas en este trabajo, se puede de-
ducir que solo se ha cubierto la ”punta del iceberg” en este trabajo. Si
bien esa afirmación es cierta, no se puede negar que la complejidad que
rodea cada problema acoplado les otorga una importancia tal que la res-
olución de solo uno de ellos podrı́a constituir el tema central de una tesis
en sı́ misma. Dado el amplio espectro que presenta este diagrama, in-
tentar abarcar todo el espectro de problemas acoplados en Mecánica de
Fractura es una tarea interminable. Por lo tanto, a partir de esta afir-
mación, podemos deducir que mientras que los problemas multifı́sicos
en la Mecánica de Fractura Computacional sigan siendo un tema rele-
vante en la literatura, siempre habrá espacio para investigaciones adi-
cionales sobre este asunto.
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[38] Zdeneǩ P. Bazǎnt and Gilles Pijaudier-Cabot. “Nonlocal Contin-
uum Damage, Localization Instability and Convergence”. In: Jour-
nal of Applied Mechanics 55.2 (June 1988), pp. 287–293. ISSN: 0021-
8936. DOI: https://doi.org/10.1115/1.3173674.

[39] Milan Jirásek. “Nonlocal models for damage and fracture: Com-
parison of approaches”. In: International Journal of Solids and Struc-
tures 35.31 (1998), pp. 4133–4145. ISSN: 0020-7683. DOI: https:
//doi.org/10.1016/S0020-7683(97)00306-5.

[40] S.C. Yuan and J.P. Harrison. “A review of the state of the art in
modelling progressive mechanical breakdown and associated fluid
flow in intact heterogeneous rocks”. In: International Journal of Rock
Mechanics and Mining Sciences 43.7 (2006), pp. 1001–1022. DOI: ht
tps://doi.org/10.1016/j.ijrmms.2006.03.004.

[41] V.H. Nguyen, B. Nedjar, and J.M. Torrenti. “Chemo-mechanical
coupling behaviour of leached concrete. Part II: Modelling”. In:
Nuclear Engineering and Design 237.20-21 (2007), pp. 2090–2097.
DOI: https://doi.org/10.1016/j.nucengdes.2007.
02.012.

[42] Yongxiang Wang and Haim Waisman. “From diffuse damage to
sharp cohesive cracks: A coupled XFEM framework for failure
analysis of quasi-brittle materials”. In: Computer Methods in Ap-
plied Mechanics and Engineering 299 (2016), pp. 57–89. DOI: https:
//doi.org/10.1016/j.cma.2015.10.019.

[43] Selda Oterkus, Erdogan Madenci, and Erkan Oterkus. “Fully cou-
pled poroelastic peridynamic formulation for fluid-filled fractures”.
In: Engineering Geology 225 (2017), pp. 19–28. DOI: https : / /
doi.org/10.1016/j.enggeo.2017.02.001.

[44] Yan Gao and Selda Oterkus. “Fully coupled thermomechanical
analysis of laminated composites by using ordinary state based
peridynamic theory”. In: Composite Structures 207 (2019), pp. 397–
424. DOI: https://doi.org/10.1016/j.compstruct.
2018.09.034.

240

https://doi.org/https://doi.org/10.1002/nme.2030
https://doi.org/https://doi.org/10.1115/1.3173674
https://doi.org/https://doi.org/10.1016/S0020-7683(97)00306-5
https://doi.org/https://doi.org/10.1016/S0020-7683(97)00306-5
https://doi.org/https://doi.org/10.1016/j.ijrmms.2006.03.004
https://doi.org/https://doi.org/10.1016/j.ijrmms.2006.03.004
https://doi.org/https://doi.org/10.1016/j.nucengdes.2007.02.012
https://doi.org/https://doi.org/10.1016/j.nucengdes.2007.02.012
https://doi.org/https://doi.org/10.1016/j.cma.2015.10.019
https://doi.org/https://doi.org/10.1016/j.cma.2015.10.019
https://doi.org/https://doi.org/10.1016/j.enggeo.2017.02.001
https://doi.org/https://doi.org/10.1016/j.enggeo.2017.02.001
https://doi.org/https://doi.org/10.1016/j.compstruct.2018.09.034
https://doi.org/https://doi.org/10.1016/j.compstruct.2018.09.034


[45] G.A. Francfort and J.-J. Marigo. “Revisiting brittle fracture as an
energy minimization problem”. In: Journal of the Mechanics and
Physics of Solids 46.8 (1998), pp. 1319–1342. ISSN: 0022-5096. DOI:
https://doi.org/10.1016/S0022-5096(98)00034-9.

[46] B. Bourdin, G.A. Francfort, and J-J. Marigo. “Numerical exper-
iments in revisited brittle fracture”. In: Journal of the Mechanics
and Physics of Solids 48.4 (2000), pp. 797–826. ISSN: 0022-5096. DOI:
https://doi.org/10.1016/S0022-5096(99)00028-9.

[47] C. Miehe, F. Welschinger, and M. Hofacker. “Thermodynamically
consistent phase-field models of fracture: Variational principles
and multi-field FE implementations”. In: International Journal for
Numerical Methods in Engineering 83.10 (2010), pp. 1273–1311. DOI:
https://doi.org/10.1002/nme.2861.

[48] T. Gerasimov and L. De Lorenzis. “A line search assisted mono-
lithic approach for phase-field computing of brittle fracture”. In:
Computer Methods in Applied Mechanics and Engineering 312 (2016).
Phase Field Approaches to Fracture, pp. 276–303. ISSN: 0045-7825.
DOI: https://doi.org/10.1016/j.cma.2015.12.017.

[49] Philip K. Kristensen and Emilio Martı́nez-Pañeda. “Phase field
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[66] Thanh-Tung Nguyen, Danièle Waldmann, and Tinh Quoc Bui.
“Computational chemo-thermo-mechanical coupling phase-field
model for complex fracture induced by early-age shrinkage and
hydration heat in cement-based materials”. In: Computer Methods
in Applied Mechanics and Engineering 348 (2019), pp. 1–28. ISSN:
0045-7825. DOI: https://doi.org/10.1016/j.cma.2019.
01.012.

243

https://doi.org/https://doi.org/10.1016/j.compstruct.2017.08.095
https://doi.org/https://doi.org/10.1016/j.compstruct.2017.08.095
https://doi.org/https://doi.org/10.1016/j.compstruct.2019.02.007
https://doi.org/https://doi.org/10.1016/j.compstruct.2019.02.007
https://doi.org/https://doi.org/10.1016/j.compstruct.2020.112446
https://doi.org/https://doi.org/10.1016/j.compstruct.2020.112446
https://doi.org/https://doi.org/10.1016/j.cma.2014.11.016
https://doi.org/https://doi.org/10.1016/j.cma.2014.11.017
https://doi.org/https://doi.org/10.1016/j.cma.2014.11.017
https://doi.org/https://doi.org/10.1016/j.cma.2017.12.022
https://doi.org/https://doi.org/10.1016/j.cma.2017.12.022
https://doi.org/https://doi.org/10.1016/j.cma.2019.01.012
https://doi.org/https://doi.org/10.1016/j.cma.2019.01.012


[67] Lampros Svolos, Curt A. Bronkhorst, and Haim Waisman. “Thermal-
conductivity degradation across cracks in coupled thermo-mechanical
systems modeled by the phase-field fracture method”. In: Jour-
nal of the Mechanics and Physics of Solids 137 (2020). DOI: https:
//doi.org/10.1016/j.jmps.2019.103861.

[68] Pavan Kumar Asur Vijaya Kumar et al. “Nonlinear thermo-elastic
phase-field fracture of thin-walled structures relying on solid shell
concepts”. In: Computer Methods in Applied Mechanics and Engineer-
ing 396 (2022), p. 115096. ISSN: 0045-7825. DOI: https://doi.
org/10.1016/j.cma.2022.115096.

[69] Pavan Kumar Asur Vijaya Kumar et al. “Thermo-elastic solid shell
formulation with phase field fracture for thin-walled FGMs”. In:
Thin-Walled Structures 179 (2022), p. 109535. ISSN: 0263-8231. DOI:
https://doi.org/10.1016/j.tws.2022.109535.

[70] Christian Miehe, Steffen Mauthe, and Stephan Teichtmeister. “Min-
imization principles for the coupled problem of Darcy-Biot-type
fluid transport in porous media linked to phase field modeling of
fracture”. In: Journal of the Mechanics and Physics of Solids 82 (2015),
pp. 186–217. DOI: https://doi.org/10.1016/j.jmps.
2015.04.006.

[71] Christian Miehe and Steffen Mauthe. “Phase field modeling of
fracture in multi-physics problems. Part III. Crack driving forces
in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated
porous media”. In: Computer Methods in Applied Mechanics and En-
gineering 304 (2016), pp. 619–655. DOI: https://doi.org/10.
1016/j.cma.2015.09.021.
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