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Abstract

Shadow prices are well understood and are widely used in economic ap-

plications. However, there are limits to where shadow prices can be applied

assuming their natural interpretation and the fact that they reflect the first

order optimality conditions (FOC). In this paper, we present a simple ad-

hoc example demonstrating that marginal cost associated with exercising

an optimal control may exceed the respective cost estimated from a ratio

of shadow prices. Moreover, such cost estimation through shadow prices is

arbitrary and depends on a particular (mathematically equivalent) formula-

tion of the optimization problem. These facts render a ratio of shadow prices

irrelevant to estimation of optimal marginal cost. The provided illustrative

optimization problem links to a similar approach of calculating social cost

of carbon (SCC) in the widely used dynamic integrated model of climate
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and the economy (DICE).
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1. Introduction

The concept of shadow prices is widely known and has extensive applications

in economics. There is a large body of literature devoted to exploration of

properties and limitations of shadow prices in various settings e.g. in com-

petitive general equilibrium models [1], valuation of nonmarket goods [2],

industrial pollutants [3], environmental efficiency [4], carbon pricing and

abatement costs [5], land use regulation [6], land allocation [7], cost of soil

erosion [8], patent and knowledge stock valuation [9], water supply [10],

power system reliability assessment [11], portfolio optimization [12], social

cost of carbon (SCC) estimation [13], [14].

In economic applications formulated as a constrained optimization prob-

lem, a shadow price is the change in the optimal value of the objective func-

tion (e.g. utility) per unit of a constraint that is relaxed by an infinitesimal

amount p.452 in [15]. In the context of continuous time optimal control

problems, shadow price depends on time and is referred to as a “costate

variable” [16].

In this paper, we focus on a non-linear constrained optimization problem

similar to DICE [13], [14] and extend the analysis [18] to further explore the

method of estimating optimal cost based on shadow prices. Such method

involving a ratio of two shadow prices (or marginal values) is employed in

DICE for estimation of the social cost of carbon. A similar approach of
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deriving a crop price as a ratio of two shadow prices is suggested in [7]. The

possibility of such derived price to deviate from an (exogenous) market price

is admitted in that paper, whereas explanation of this deviation is suggested

to be in the area of non-market values.

The main driving question for the following analysis is whether the cost

estimate of an optimal action obtained via shadow prices would be equal to

the actual cost corresponding to an optimal solution. To answer that ques-

tion, we (1) construct a simple utility maximization problem, (2) solve that

problem numerically, (3) check first-order optimality conditions to ensure

high accuracy of the obtained solution, (4) compare the cost of optimal con-

trol versus its cost estimate obtained via shadow prices, and (5) demonstrate

that the latter is an underestimate of the former. We further illustrate that

the cost estimated through shadow prices is an arbitrary number, because

it depends on a particular (mathematically fully equivalent) formulation of

the optimization problem and can be lower, equal, or higher than the opti-

mal cost. We finally conclude that despite shadow prices are derived from

the first-order optimality conditions, the cost estimate obtained as a ratio

of two shadow prices is, generally speaking, a not optimal arbitrary number

and, as such, is of no use in applications.

2. Optimization problem formulation

We consider a hypothetical fruit storage facility operating in two time peri-

ods i = {1, 2} and in these periods carrying pi ton of product (e.g. apples).

The storage facility manager has to protect apples from fruit flies and in

doing so they decide on the pesticide application rate µ ∈ [0, 1]. Apples,

not fully treated with pesticides support flies’ reproduction and so virtually
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”emit” ei flies, described by the flies emission rate σ per ton of untreated

apples. Flies in quantity ei produce damage to the stored product, which

is described by the share d(ei) of stored apples that are damaged by flies.

Pesticides treatment cost is described by the cost function g(µ). The share

of product saved from consumption (selling) in period 1 is described by the

saving ratio s, which is a control variable along with µ. There is no pesti-

cides treatment in the period 2 and all product left from period 1 (less the

share damaged by flies) is consumed (sold) in period 2. Flies are completely

removed after the end of the 1st period and before beginning of the 2nd

period, so that e1 does not have impact on the 2nd period. The objective of

the fruit storage facility manager is to maximize utility, which depends on

consumption ci in each of the two time periods. Mathematical formulation

of the problem is presented below:

maximizeµ,s
√
c1 +

√
c2, (1)

c1 = [1− d(e1)]p1(1− s)− p1g(µ), (2)

e1 = σp1(1− µ), (3)

p1 = const, (4)

p2 = [1− d(e1)]p1s, (5)

c2 = [1− d(e2)]p2, (6)

e2 = σp2, (7)

0 ≤ µ ≤ 1, 0 ≤ s ≤ 1, (8)

µ, s : c1 ≥ 0, c2 ≥ 0. (9)
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3. Optimal cost of control and its estimate from shadow prices

Let’s consider the problem (1) – (9) for a simple set of functions and con-

stants:

d(ei) = ei, (10)

p1 = 1, (11)

g(µ) = µ2, (12)

σ = 1. (13)

So the problem (1) – (9) can be formulated as

maximizeµ,s
√
c1 +

√
c2, (14)

c1 = (1− e1)(1− s)− µ2, (15)

e1 = 1− µ, (16)

c2 = (1− e2)µs, (17)

e2 = µs, (18)

0 ≤ µ ≤ 1, 0 ≤ s ≤ 1, (19)

µ(1− s)− µ2 ≥ 0. (20)

The problem (14) – (20) can be rewritten as

maximizeµ,s f(µ, s) (21)

f(µ, s) =
√
µ(1− s)− µ2 +

√
(1− µs)µs, (22)

0 ≤ µ ≤ 1, 0 ≤ s ≤ 1, (23)

1− s ≥ µ. (24)

The function f(µ, s) is strictly concave in the specified domain (23), (24)

as illustrated by the plot of this function in Figure 1. Therefore, there is a
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unique solution to the problem (14) – (20) which is an internal point of the

domain (23), (24) or, equally, of the domain (19), (20).
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Figure 1: Function f(µ, s) in the maximization problem (21) - (24), here we denoted

µ ≡ m.

Let’s consider an internal maximum point of the problem (14) – (20)

i.e. when the constraints of the type of inequality (i.e. (19) and (20))

are strictly satisfied. In this case Lagrange multipliers corresponding to

inequality constraints are all zeros, and the first order optimality conditions

(FOC) can be expressed through the Lagrange function L employing only

four multipliers λ1, λ2, ξ1, and ξ2 as follows:
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L = −
√
c1 −

√
c2 − λ1[(1− e1)(1− s)− µ2 − c1]

− ξ1[1− µ− e1]

− λ2[(1− e2)µs− c2]

− ξ2[µs− e2], (25)

∂L

∂µ
= 2λ1µ+ ξ1 − λ2(1− e2)s− ξ2s = 0, (26)

∂L

∂s
= λ1(1− e1)− λ2(1− e2)µ− ξ2µ = 0, (27)

∂L

∂c1
= − 1

2
√
c1

+ λ1 = 0,
∂L

∂c2
= − 1

2
√
c2

+ λ2 = 0, (28)

∂L

∂e1
= λ1(1− s) + ξ1 = 0,

∂L

∂e2
= λ2µs+ ξ2 = 0. (29)

The problem (14) – (20) was solved numerically using GAMS1 and all equa-

tions and inequalities (15) – (20) have been checked manually along with

the FOC (26) – (29) and found to be all satisfied with high precision in the

order of 10−8. Inequality constraints (23), (24) and, equally, (19), (20) are

strictly satisfied: µ = 0.5, s = 0.206. This indicates that the solution found

numerically has high precision.

According to the meaning of the Lagrange multipliers [15], λ1 and ξ1 are

increments in the optimal value of the objective function (14) when one unit

is added to the right hand side of the equations (15) and (16) respectively.

Let’s pose the question on how many units of consumption x (expressed in

apples or equally in dollars) would need to be added to the consumption

equation in the first period (15) to compensate one unit of flies added to

the equation (16) so that the resulting value of the objective function (14)

1https://www.gams.com
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would not change. The answer is provided by the following equation relying

on the meaning of λ1 and ξ1 (where increment of the objective function

corresponding to λ1 is scaled to x units)

xλ1 + ξ1 = 0. (30)

This equation holds for ”sufficiently small” λ1 and ξ1 with increasingly high

precision2 and states that the added quantities of one unit of ”flies” and x

apples (dollars) lead together to zero increment in the optimal value of the

objective function (utility). So, x dollars compensate one unit of ”flies”,

i.e. x can be seen as the price compensating one ton of more flies and is

expressed as

x = − ξ1
λ1

= 0.794 ($/ton). (31)

Despite this kind of ”cost estimate” x (cost incurred by one ton of flies)

is calculated using optimal values λ1 and ξ1, it is not the optimal cost a

decision maker would pay at the optimum for reducing one ton of flies,

which is expressed as

− dg(µ)

dµ

/
de1(µ)

dµ

∣∣∣∣
µ=0.5

= 1.000 ($/ton). (32)

The minus sign in front of the equation serves the purpose of having the cost

expressed as a positive number since de1(µ)/dµ < 0. From (31) and (32) it

can be concluded that equation (30) along with the shadow prices λ1 and

ξ1 do not define the optimal pesticide treatment cost (expressed in dollars

per ton of flies reduction).

2In mathematical terms, that means that the absolute deviation of the left-hand side of

the equation from zero is constrained as |xλ1 + ξ1| ≤ γ(λ2
1 + ξ21) for some constant γ > 0.

8



4. Arbitrariness of cost estimate from shadow prices

It turns out that the value of the cost estimate from shadow prices depends

on which of the fully equivalent definitions of the problem (14) – (20) is

used for such estimate. Table 1 presents the respective values obtained from

equivalent optimization problems where one of the equations (17) or (18)

(or both) were substituted with their respective equivalents:

c2 = (1− e2)(1− e1)s, (17.a)

e2 = (1− e1)s. (18.a)

As evidenced by these results, depending on a particular way of specifying

the same problem, there are cases when the cost estimate is less than, greater

than, or equal to the optimal cost (32). This fact is easily explained by the

meaning of Lagrange multipliers (marginal values to equations), which are

linked to a perturbed problem that substantially depends on a particular

equivalent formulation of the original problem.

Table 1: Optimal cost estimates obtained as a ratio of shadow prices from four equivalent

formulations of the original problem (14) – (20) where alternative equation formulations

(17.a) and (18.a) were optionally replacing the original formulations (17) and (18).

Equations formulation Cost estimate −ξ1/λ1

(17), (18) 0.794

(17), (18.a) 0.767

(17.a), (18) 1.027

(17.a), (18.a) 1.000
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5. Discussion and conclusion

The example optimization problem analysed in this paper is rather simple as

compared to e.g. DICE model [13], [14]. However, even that simple problem

appears to be analytically intractable. A numerical solution of that problem

can be easily found with sufficiently high precision and FOC can be checked

numerically to ensure the validity of the obtained solution. The marginal

cost of the optimal control can be analytically expressed and calculated. The

”cost estimate” x obtained from the concept of matching marginal quantities

added to problems’ equations and preserving the optimal utility, that is, an

optimal cost estimation method employing a ratio of two marginal values

(Lagrange multipliers) leads to an estimate clearly deviating from the true

cost of optimal control. Moreover, such an estimate is ill-defined, because

it’s arbitrary (non-unique) and depends on a particular way of expressing

exactly the same problem i.e. a formulation that for all controls (inputs)

delivers the same trajectories (outputs).

While the considered example is rather hypothetical i.e. the overall

model and particular functions employed to describe damage to fruit, flies

reproduction, and economic cost of pesticides application were not validated,

and the measurement units (e.g. tons of flies) might sound awkward, the

purpose of this theoretical ad-hoc construction is to demonstrate a setting

in which shadow prices are being used in practice.

The semi-analytical example provided here substantially limits the ap-

plication of marginal values (shadow prices) for optimal cost estimate ap-

proaches similar to (30) including the SCC calculation approach imple-

mented in the DICE model [18].

10



Acknowledgments

The authors acknowledge early discussions around the DICE model with

their IIASA colleagues Elena Rovenskaya, Artem Baklanov, Fabian Wag-

ner, Thomas Gasser, and Petr Havlik. These discussions have spurred the

interest to the application of shadow prices in DICE that ultimately re-

sulted in the presented analysis. The authors are grateful to their IIASA

colleagues Johannes Bednar, Michael Kuhn, Stefan Wrzaczek, and Michael

Freiberger for useful discussions and feedback. The authors acknowledge

William Nordhaus for making the DICE source code and documentation

openly available as well as the clean and transparent model structure that

all made the present research possible. The authors acknowledge arXiv for

hosting the earlier work on this topic [17].

Funding

Austrian Science Fund (FWF): P31796-N29/“Medium Complexity Earth

System Risk Management” (ERM).

Author contributions

NK has conceptualized the problem and carried out the investigation; MO

has contributed to funding acquisition; NK, AS, and MO have discussed

the results in the process of investigation; NK has drafted the paper; all

co-authors have contributed to writing the manuscript.

Competing interests

Authors declare no competing interests.

11



References

[1] Alasdair Smith. “Shadow Price Calculations in Distorted Economies.”

The Scandinavian Journal of Economics, vol. 89, no. 3, 1987, pp.

287–302. JSTOR, https://doi.org/10.2307/3440199. Accessed 2 Sep.

2022.

[2] David A. Starrett. “Shadow Pricing in Economics.” Ecosystems, vol. 3,

no. 1, 2000, pp. 16–20. JSTOR, http://www.jstor.org/stable/3658662.

Accessed 2 Sep. 2022.

[3] Dan Wu, Shuwei Li, Li Liu, Jiyao Lin, Shiqiu Zhang, Dynam-

ics of pollutants’ shadow price and its driving forces: An analy-

sis on China’s two major pollutants at provincial level, Journal of

Cleaner Production, Volume 283, 2021, 124625, ISSN 0959-6526,

https://doi.org/10.1016/j.jclepro.2020.124625.

[4] Elvira Silva, Manuela Magalhães, Environmental Efficiency,
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http://www.econ.yale.edu/ñordhaus/homepage/homepage/

documents/DICE Manual 100413r1.pdf

[15] C. Simon and L. Blume, Mathematics for Economists, W. W. Norton

& Company, New York, 1994.

[16] Dieter Grass, ed. Optimal Control of Nonlinear Processes: With Appli-

cations in Drugs, Corruption, and Terror. Berlin: Springer, 2008. ISBN:

978-3-540-77646-8.

[17] Nikolay Khabarov, Alexey Smirnov, Michael Obersteiner, Social Cost

of Carbon: What Do the Numbers Really Mean? ArXiv; DOI:

10.48550/arXiv.2001.08935

[18] Nikolay Khabarov, Alexey Smirnov and Michael Obersteiner (2022),

Social cost of carbon: A revisit from a systems analysis perspective.

Front. Environ. Sci. 10:923631. DOI:10.3389/fenvs.2022.923631

14

http://www.econ.yale.edu/~nordhaus/homepage/homepage/

	1 Introduction
	2 Optimization problem formulation
	3 Optimal cost of control and its estimate from shadow prices
	4 Arbitrariness of cost estimate from shadow prices
	5 Discussion and conclusion

