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INTRODUCTION

Spinal cord injury (SCI) lesions are broadly classi-
fied as either incomplete or complete. Incomplete
SCI lesions spare surrounding neural tissue and
residual axon projections. This spared tissue is
capable of rescuing varying degrees of lost func-
tion, which is augmented through rehabilitation
training in animals'~® and humans.*-8 Conversely,
complete injuries spare little to no neural tissue,
resulting in permanent and irreversible loss of mo-
tor, autonomic, and sensory functions for which
rehabilitation is not effective. It is universally
agreed that biologic repair is necessary to recon-
struct damaged circuits and restore lost function.

Understanding why central nervous system
(CNS) axons fail to regrow following injury and
developing repair strategies to overcome this fail-
ure has been a heavily studied topic for much of
the past century. Pioneering work in the 1980s
by Aguayo and colleagues® ' reported that CNS
axons could be coaxed to regrow into peripheral
nerve grafts. This suggested two things: the envi-
ronment of the mature CNS is not supportive to
axon regrowth, and the CNS environment created
by trauma is devoid of growth supportive factors
that are required for axon regrowth.

Axon regeneration is required for functional recovery following severe spinal cord injury.
Functional recovery mediated by axon regeneration is not robust.

Central nervous system (CNS) neurons are heterogeneous and possess multiple subtypes.
A greater understanding of subtype-specific regenerative responses is needed.

Research in the 1980s to 2000s focused heavily
on identifying and trying to neutralize potential
inhibitory molecules around CNS lesions and
associated with degenerating myelin.'>~'® This
was followed by work on digesting chondroitin sul-
fate proteoglycans, which were reported to be
potent inhibitors of axon growth in vitro and are
present around lesion sites and engulf perineuro-
nal nets in the gray matter.’®"” Although neutral-
izing inhibition was initially hoped to be a singular
solution to axon regeneration, it has not held the
test of time and replication, although its effect on
axon sprouting has been well documented. 61819
The search for other factors involved in suppress-
ing regeneration led to the identification and
manipulation of several growth-repressing
signaling pathways®°22 and growth factors3-2°
whose augmentation resulted in impressive de-
grees of axon regeneration. As discussed in
more detail later, these technologies have trans-
formed the field. It is now clear that promoting suc-
cessful axon regeneration through regions of injury
involves modulation of the traumatic environment
and increasing neuronal regenerative capacity.
Yet, despite impressive axon regeneration in
models of severe SCI, robust functional recovery
is lacking. Exactly what is missing remains to be
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discovered. This review outlines the neuropatho-
logic response to SCI and argues that a more
nuanced understanding of neuron subtype-
specific regenerative responses is needed to
mediate biologic repair capable of restoring lost
functions.

PATHOLOGY: CELLULAR AND MOLECULAR
RESPONSES TO SPINAL CORD INJURY

The pathologic response to SCI consists of the im-
mediate mechanical injury of the spinal cord, fol-
lowed by a secondary phase that takes place
shortly thereafter, evolves over a period of months,
and comprises a series of biochemical and cellular
events.?® The initial injury, generally in the form of
compression or laceration of the spinal cord, is fol-
lowed by an immediate immune response, subse-
quent cell proliferation, scar formation, and tissue
remodeling.?” During the immediate inflammatory
phase, cells within the lesion die from internally
programmed suicide (apoptosis), and neurons go
through Wallerian degeneration, whereby axons
“die-back” from the lesion (Fig. 1A). Axons at the
epicenter of the injury are transected, whereas
those in the periphery become demyelinated. Dur-
ing the initial inflammatory phase, various mole-
cules and then cells penetrate the injury site to
begin the process of debris clearance. Blood-
borne molecules are the first to infiltrate and signal
to local cells to produce components of the extra-
cellular matrix, such as laminins, fibronectins, and
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collagens, which then function as a scaffold by
which inflammatory macrophages then enter.

Cell proliferation begins approximately 2 days
postinjury and leads to the formation of the fibrotic
scar and surrounding astroglial scar-border.
Fibrotic scar is formed by the proliferation of non-
neural cells including endogenous fibroblasts,
pericytes, and endothelial cells that occupy the
central compartment of CNS lesions,?® whereas
the astrocyte scar-border serves to demarcate
areas of damaged tissue and to sequester viable
(neural tissue) from nonviable (fibrotic) tissue.?*>"
The end result of this scarring segregates the spi-
nal cord lesion into three major lesion compart-
ments: (1) the central lesion cavity, referred to as
the nonneural lesion core or fibrotic scar; (2) the
surrounding astroglial scar-border; and (3) a region
of spared but reactive and reorganizing neural tis-
sue®”*>3% (see Fig. 1A). The following sections
discuss in more detail astrocyte scar-border and
fibrotic scar formation, and highlight some of the
challenges these are thought to present in regards
to axon regeneration.

CELL REACTIVITY: ASTROCYTE SCAR-BORDER
FORMATION

Astrocytes are a type of glial cell that tile the entire
CNS, where they occupy individual, nonoverlap-
ping territories and assist in maintaining normal
circuit function. Long thought to be mere support
cells for neurons, astrocytes have now been impli-
cated in almost every facet of neurologic function.
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Fig. 1. Axon regeneration after SCI. (A) Scheme depicts axon regenerative failure following SCI. The nonneural
lesion core is surrounded by an astrocyte scar border that demarcates damaged tissue from reactive and remod-
eling neural tissue that has been spared from the injury. Axons fail to regrow because of a combined lack of (1)
neuronal growth capacity, (2) supportive substrate, and (3) chemoattraction. Photomicrograph depicts RFP-
labeled propriospinal axons stopping at the lesion scar border. (B) Scheme depicts biologic repair strategy that
targets (1) upregulation of intrinsic neuronal growth capacity by viral overexpression of IGF-1/OPN/CNTF, (2) up-
regulation of supportive substrate via biomaterial delivery of EGF/FGF2, and (3) chemoattraction via biomaterial
delivery of GDNF. Photomicrograph depicts RFP-labeled propriospinal axons growing into and through nonneu-
ral lesion cores and toward chemoattractant below the lesion.
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Astrocytes are widely known for their response to
injury and disease, which they respond to with a
process referred to as astrogliosis. Previously
believed to be a homogeneous and detrimental
event resulting in scar formation, evidence gath-
ered over the past 30 years has demonstrated
the contrary.®* It is now clear that astrogliosis is
not a single uniform event, but is a highly heteroge-
neous process that depends largely on the
severity and type of CNS insult. At the lower end
of the spectrum, mild to moderate astrogliosis re-
sults in cell hypertrophy and changes in gene
expression that are reversible and subside over
time. Severe astrogliosis, such as what occurs af-
ter SCI, results in cell proliferation, scar-border for-
mation, and permanent tissue reorganization. This
is a major and well-studied pathology of many
neurodegenerative diseases and is a prominent
feature of SCI."6:31:82:35

Transgenic and genomic techniques have
allowed progress to be made in understanding
the mechanisms of astrocyte function and scar-
border formation. Following severe CNS insults,
astrocytes divide and form a dense meshwork of
interwoven cells surrounding the lesion perimeter.
Scar-border-forming astrocytes do not migrate
from other areas of the CNS, but rather derive
from newly proliferated astrocytes located at and
near the injury site. There has been some contro-
versy suggesting that scar-border-forming astro-
cytes originate from ependymal cells located in
the central canal.>®” However, recent work has
reported that when the ependyma is not directly
severed, ependymal cells contribute extremely
minimally to astrocyte scar-border formation.®®

Loss of function studies have demonstrated that
the role of astrocyte scar-border formation is to
seal off the lesion area to prevent inflammation
from further damaging areas of healthy tissue. Pre-
venting or attenuating astrocyte scar-border for-
mation results in increased inflammation, cell
death, demyelination, and worsened behavioral
recovery.?%30:%5 However, this protective function
has long been balanced by the widespread belief
that scar-border formation is a key contributor to
regenerative failure. The notion of astrocyte-
mediated inhibition was initially caused by its
barrier-like appearance and was further propa-
gated by reports that astrocytes upregulate chon-
droitin sulfate proteoglycans, which inhibit axon
growth in vitro and in vivo.'63°

Recent evidence supports the notion that scar-
border-forming astrocytes may not be the primary
inhibitor to axon regrowth that they were once
thought. Loss-of-function studies have directly
tested this hypothesis and have reported that
attenuation or ablation of scar-border-forming

astrocytes does not result in spontaneous axon
regeneration. Rather, when intrinsic neuronal
growth capacity is stimulated and chemoattractive
growth factors are provided, the formation of the
astroglial scar-border in fact supports the
regrowth of regenerating sensory axons into non-
neuronal SCI lesion cores.®' Preventing or attenu-
ating astrocyte scar-border formation also
attenuates this stimulated regeneration. This
similar concept has also been found to be true
for propriospinal axons (Fig. 1B),>® suggesting
that the growth-supportive nature of scar-border-
forming astrocytes is likely beneficial for most if
not all types of CNS axons.

CELL REACTIVITY: FIBROTIC SCAR
FORMATION

Considerably less attention has been given to the
fibrotic component of the scar. However, recent
studies have highlighted the inhibitory nature of
the fibrotic scar,?%#%4! which document regener-
ating axons specifically avoiding areas of fibrotic
tissue. Mechanistic information regarding the
origin and function of the fibrotic scar is gradually
accumulating.

Following CNS injury, fibroblasts from locally
damaged meninges are recruited by macrophages
and then migrate into the lesion site where they
proliferate and form the fibrotic scar.*? The fibrotic
scar is characterized by an array of nonneural cells
(predominantly fibroblast-lineage cells, endothelia,
fibrocytes, pericytes, and inflammatory cells) and
these produce extracellular matrix molecules.
Similar to the astrocytic scar-border, this fibrotic
component is thought to serve protective and
detrimental roles following CNS injury. It protects
nearby tissue and assists in resealing the blood
brain barrier (BBB).*> However, it is also believed
to be inhibitory for axon growth.?”** Fibroblasts
have been reported to express multiple inhibitors
of axon growth, including NG2, phosphacan,
tenascin-C, semaphorin 3A, and EphB2. Strate-
gies targeting the attenuation of fibrotic scar
have reported beneficial results.

The microtubule stabilizing pharmacologic com-
pounds taxol*® and epothilone B*® have been re-
ported to reduce fibrotic scar formation, which
was correlated with enhanced sensory and seroto-
nergic axon innervation and functional recovery
following SCL.*° Another interesting study*’ re-
ported that moderate reduction of type A pericyte
scar formation results in less extracellular matrix
deposition and enhanced regrowth of corticospi-
nal tract (CST) and RST: reticulospinal tract (RST)
axons into and around SCI lesions, resulting in
increased electrophysiologic connectivity and
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functional recovery. This suggests that it may be
possible to achieve functional axon regeneration
in the absence of promoting neuronal growth ca-
pacity. However, therapeutic strategies targeting
fibrotic scar need to strike a delicate balance be-
tween mild to moderate attenuation, because too
much attenuation has been reported to cause the
failure of wound healing and expand the injury
site, negatively impacting neural repair and func-
tional recovery.37:47:48

NEURONAL HETEROGENEITY: LESSONS
FROM THE OPTIC NERVE

CNS neurons are distinct in their morphology,
physiology, gene expression, and function.
Furthermore, different neuronal subtypes display
heterogeneous regenerative responses and
possess specific activation requirements.?49:50
A comprehensive understanding of the molecular
architecture of CNS neurons is pivotal to devising
targeted regenerative strategies to manipulate
their growth. Retinal ganglion cells (RGCs) have
been extensively characterized, and their mecha-
nistic dissection over the past several decades
provides an ideal conceptual framework that
would be beneficial to apply to other CNS neurons.

Survival or Death

Before a neuron can regenerate, it must first sur-
vive axotomy. Work initially performed by David
Aguayo’s group®’ demonstrated that most
(>80%) RGCs die following axotomy, and that
this is at least partially caused by a lack of neuro-
tropic support. RGC survival is enhanced via exo-
geneous delivery of brain-derived neurotrophic
factor,°2 and axon sprouting is enhanced with
certain growth factors.®® This principle has been
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subsequently confirmed for corticospinal neu-
rons®*%® and spinal motor neurons,®®*” where
specific growth factors, but not others, enhance
their survival following axotomy. Survival corre-
lates with the distance of the neuronal soma from
the site of axotomy. This may partially explain
why most RGCs die following optic nerve crush,>?
and some short propriospinal neurons following
SCI,%8 whereas long descending propriospinal,®®
corticospinal, and rubrospinal neurons®®%° have
been reported to survive following axotomy at
the spinal level. Although some neurons respond
to particular growth factors, this is dependent on
the level of receptor expression in the soma, and
neurons vary in the degree to which they express
specific receptors.* A more thorough under-
standing of growth factor receptor expression
levels across cell types is needed to develop tar-
geted repair strategies (Fig. 2).

The recent revolution in single cell RNA
sequencing has revealed multiple and previously
unknown types of neurons within the optic
nerve®'-%2 and spinal cord.®3-° More than 40 tran-
scriptionally distinct types of RGC have been iden-
tified, and their ability to survive or die following
axotomy varies greatly among subtypes. Although
most RGCs that survive are «RGCs, certain sub-
types of these also die, suggesting that factors
beyond transcriptional proximity contribute to sur-
vival ability.®" Although there are some correlative
similarities in cellular morphology and physiology
among surviving RGCs, no single factor predicted
survival, suggesting that even within subtypes that
survived, they did so via differing mechanisms.
Recent advances in the analysis of bioinformatic
datasets may prove valuable in prioritizing cell
types based on their ability to respond to experi-
mental perturbations,®® and their development

Subtype specific
growth requirements

GF 2

Fig. 2. Neuronal heterogeneity and subtype-specific activation requirements. (A) Photomicrograph depicting spi-
nal cord neuronal populations on a cross-section of mouse spinal cord tissue immunohistochemically stained for
GFAP (green) and NeuN (red). (B) Uniform manifold approximation and projection (UMAP) visualization of
single-nucleus sequencing of mouse spinal cord neurons depicting more than 40 transcriptionally distinct neuronal
subtypes. (C) Scheme depicting how different neurons within the spinal cord may have different receptors for spe-
cific growth factors (GF) to induce their regeneration.
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and widespread use will shed light on how hetero-
geneous cellular populations respond to experi-
mental manipulations and will be instrumental in
guiding cell specific repair strategies.

Influencing Regeneration

Although several neurotropic factors (brain-
derived neurotrophic factor, glial derived neurotro-
phic factor (GDNF), Ciliary neurotrophic factor
(CNTF), and fibroblast growth factor-1 [FGF-1])
aid in promoting neuronal survival, most have clas-
sically failed at promoting any meaningful regener-
ation.®” Nonetheless, some axons regenerate into
peripheral nerve grafts,’%® suggesting a limited
degree of growth capacity is maintained. RGCs
undergo a developmental decline in their regener-
ative ability and adult RGCs do not extend axons
by default but require the presence of neurotropic
cues.®-%%71 various factors have been identified
that promote a degree of regeneration, including
zymosan,®” angiotensin 1I,’> and others, and
combining these with peripheral nerve grafts
further potentiates this growth.

Although initial successes in RGC regeneration
seemed promising, the overall growth was
modest.”? Similar findings proved true in the
context of SCI, where a combination of permissive
cell grafts and neurotropic factors elicited a limited
degree of regenerative growth.®*%7374 Nonethe-
less, in both injury models and in all types of neu-
rons studied, it was abundantly clear that an
increase in growth by several orders of magnitude
would be required to achieve a clinically meaning-
ful result capable of restoring lost function.

Elegant work from Zhigang He’s laboratory
spearheaded the discovery and application of fac-
tors regulating intrinsic neuronal growth programs.
Numerous molecular regulators of axon growth
have been and continue to be identified. An in-
depth discussion of these is beyond the scope of
this review and has been discussed else-
where.”>~"7 Briefly, deletion of PTEN,”® SOCS3,”°
c-myc,®° DCLK,®' and members of the KLF fam-
ily®2 have been reported to robustly increase the
amount of regeneration of RGCs following optic
nerve crush, and combinations of these manipula-
tions have been reported to further augment this
growth.?’80 Recent work has led to the identifica-
tion of different combinations of growth factors,
such as Insulin-like growth factor-1 (IGF-1), osteo-
pontin (OPN), and CNTF, which act on similar mo-
lecular pathways and yield similar degrees of
regeneration,?®25°% a key step toward eventual
clinical translation.

Nevertheless, although these manipulations
result in extensive regeneration, they do not act

on all types of neurons equally, and subtype-
specific responses have emerged.?>°%8% PTEN
deletion results in the survival and regeneration
of RGCs following axotomy, but is restricted pri-
marily to ®RGCs, which constitute just 6% of the
total RGC population.®® PTEN acts by elevating
mTOR activity, which declines following develop-
ment. aRGCs have naturally high levels of mTOR
activity, and this may partially explain their robust
growth response in comparison with other types
of RGCs. Forced overexpression of the growth
factors OPN and IGF-1 results in a similar degree
of regeneration as PTEN deletion, and aRGCs
selectively express receptors for both these
growth factors. Together, these findings suggest
that signaling pathways regulating growth are not
uniform among CNS neurons, or even among sub-
types of the same class of neuron. Finding the
appropriate permutations to elicit a more compre-
hensive regenerative response across RGC sub-
types requires a highly nuanced understanding of
the specific signaling pathways regulating
subtype-specific growth, and needs to be
balanced by positive and negative effects different
perturbations may have. For example, overexpres-
sion of the transcription factor Sox11 results in the
death of «RGCs, but in the regeneration of non-
aRGCs.%% Although more work needs to be done
in this area, it is intriguing to imagine that given
the limited amount of neurons currently capable
of regenerating, the field has only seen a fraction
of what is theoretically possible.

NEURONAL HETEROGENEITY: APPLICATION
TO SPINAL CORD INJURY

Most effective manipulations currently applied to
SCI were initially discovered from studies in the
optic nerve. Compared with the eye, these manip-
ulations are not as effective in the context of SCI,
likely caused by differing lesion pathologies.
Although lesions to the optic nerve result in a
spared contiguous bridge of reactive astroglia
along which regenerating axons grow across, se-
vere and complete SCI lesions often do not have
spared tissue bridges, and the nonsupportive na-
ture of the fibrotic scar poses a significant barrier
to regeneration.

SCI lesions are grafted with various cells, and
combining these with delivery of neurotropic fac-
tors results in some growth of ascending and
descending axons into grafts.*® Similar to findings
from the optic nerve, all neurons do not regenerate
equally, and observations of heterogeneous
growth responses are emerging. A traditional
belief is that corticospinal neurons are the most re-
fractory to regeneration, whereas dorsal root
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ganglion neurons and raphespinal (serotonergic)
neurons the most responsive to regeneration.
This idea, however, is largely based on sponta-
neous and correlative growth responses, where
corticospinal axons die back considerably,
whereas serotonergic and sensory axons remain
in close proximity to lesion borders.>"

The notion of refractory versus responsive
regeneration may be somewhat misguided.
Emerging evidence suggests the issue lies more
in dissecting appropriate requirements to trigger
the regenerative programs of different subtypes
of neuron. Although corticospinal neurons are
considered the most refractory type of CNS
neuron, PTEN deletion results in robust regrowth
of corticospinal’®?? axons following SCI, but is
ineffective at promoting propriospinal axon
growth,?® which are considered to have a naturally
high regenerative capacity.®* Currently, a manipu-
lation that induces robust regrowth from multiple
tracts, including the corticospinal tract, is grafts
of caudalized neural stem cells.®>% This is
achieved partially by transforming the regenerat-
ing corticospinal neuron to an embryonic tran-
scriptional state,®” but the exact mechanisms of
how the neuron regenerates, or what neurotropic
cues are secreted by the graft, are not known.

Chemoattraction and growth factor specificity
have also become recognized as important ele-
ments in overcoming regenerative failure.
Achieving regeneration of propriospinal®® and sen-
sory®! axons into nonneural lesion cores requires
the presence of chemoattractive cues in combina-
tion with upregulation of intrinsic neuronal growth
programs. Propriospinal neurons, activated by
overexpression of IGF-1, OPN, and CNTF and
chemoattracted by GDNF, grow robustly into and
through SCI lesions (see Fig. 1B), whereas 5HT
neurons do not.?® This suggests that a major issue
to solving regeneration lies in finding the right
combination of factors that are specific to the
cell population being studied (see Fig. 2C).

Although the field of SCI has made tremendous
advances in achieving regeneration, the normal-
ized percentage of regeneration relative to an
intact spinal cord is still modest. The reason for
this is not clear. One likely reason is that, similar
to RGC neurons in the optic nerve, supraspinal
and intraspinal neurons comprise a heteroge-
neous mix of cells that likely respond differently
to growth factors and transcriptional manipula-
tions. It has been reported that there are more
than 40 different types of neurons in the lumbar
spinal cord of the adult mouse,®* and each of
these subtypes vary in growth factor receptor
levels (see Fig. 2A-C). Exploiting single cell tech-
nology to identify genetic programs that drive

regeneration is important in finding candidate mol-
ecules or growth factors that can be used to target
different neuron subtypes.

SUMMARY

There is now compelling evidence suggesting that
different neuronal subtypes display heteroge-
neous regenerative responses and possess spe-
cific activation requirements. Although the level
of regeneration currently achievable is impressive,
it fails to yield robust functional recovery. Given
what is known about cellular heterogeneity, cur-
rent strategies are likely biased to cell types with
a particular transcriptomic profile. More informa-
tion on growth programs within specific neuronal
populations is required to overcome this barrier
to growth. Going forward, it will be useful to
develop a deeper and more nuanced understand-
ing of the genetic and functional diversity that ex-
ists within the numerous populations of CNS
neurons. This will enable researchers to create
tailored and cell type-specific regenerative inter-
ventions that have the potential to restore func-
tions lost through SCI.

CLINICS CARE POINTS

e Biological repair strategies which stimulate
axon regrowth across lesion sites will be key
to allowing recovery of function following se-
vere SCI.

Currently, no such strategies exist for human
patients with SCI.

The requirements to achieve regeneration
among different types of neurons are not
the same, and a in depth dissection of these
regeneration requirements will be necessary
to foster functional recovery following severe
Scl.
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