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Similarity of materials 
and data‑quality assessment 
by fingerprinting
Martin Kuban, Šimon Gabaj, Wahib Aggoune, Cecilia Vona, 
Santiago Rigamonti, and Claudia Draxl* 

Identifying similar materials (i.e., those sharing a certain property or feature) requires 
interoperable data of high quality. It also requires means to measure similarity. 
We demonstrate how a spectral fingerprint as a descriptor, combined with a 
similarity metric, can be used for establishing quantitative relationships between 
materials data, thereby serving multiple purposes. This concerns, for instance, the 
identification of materials exhibiting electronic properties similar to a chosen one. 
The same approach can be used for assessing uncertainty in data that potentially 
come from different sources. Selected examples show how to quantify differences 
between measured optical spectra or the impact of methodology and computational 
parameters on calculated properties, like the density of states or excitonic spectra. 
Moreover, combining the same fingerprint with a clustering approach allows us 
to explore materials spaces in view of finding (un)expected trends or patterns. In 
all cases, we provide physical reasoning behind the findings of the automatized 
assessment of data.

Impact statement 
To predict novel materials with desired proper-
ties, data-centric approaches are in the process 
of becoming an additional fundament of materi-
als research. Prerequisite for their success are 
well-curated data. Ideally, one can make use of 
multiple data collections. Bringing data from dif-
ferent sources together, poses challenges on their 
interoperability which are routed in two out of 
the 4V of Big Data. These are the uncertainty 
of data quality (veracity) and the heterogeneity 
in form and meaning of the data (variety). To 
overcome this barrier, universal and interpret-
able measures must be established, which quan-
tify differences between data that are supposed 
to have the same meaning. Here, we show how 
a spectral fingerprint in combination with a simi-
larity metric can be used for assessing spectral 
properties of materials. Our approach allows for 
tracing back in computed as well as measured 
data, differences stemming from various aspects. 
It thus paves the way for automatized data-qual-
ity assessment toward interoperability. Based on 
this, in turn, materials exhibiting similar features 
can be identified.

Introduction
Finding materials for a specific application 
may be a long and tedious process. Typical 
time spans from the scientific invention to the 
market are 20 years, or even longer.1 Thus, 
there is urgent demand for speeding up the 
process to identify candidate materials that 
exhibit desired properties. This is particularly 
so in view of the enormous challenges aris-
ing from the world’s tremendously increas-
ing energy consumption and environmental 
problems. Overall, there is hardly any part of 
our society that is not concerned with mate-
rials, and the materials science community 
is dealing with a wide variety of materials 
classes, their properties, and functions.

For identifying materials with desired 
properties, data-centric  approaches2 are 

attracting a lot of attention. For being suc-
cessful on a large scale, a fundamental 
requirement is to make use of the research 
data from the entire community. Indeed, 
more and more publicly available data 
collections are being established, and 
efforts toward “FAIRification”3 are grow-
ing worldwide. This raises in particular 
the question of interoperability, the “I” in 
FAIR. Bringing together data from vari-
ous sources implies heterogeneity. In other 
words, variety and veracity, two of the 4V 
of Big Data are becoming an issue. There-
fore, it is crucial to assess and control the 
uncertainty in data.4 On the experimental 
side, variety concerns different methods to 
measure a physical property, and—within 
any such method—diverse instruments 
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together with a possible selection of measurement modes. 
Likewise, computing a specific property can be done by dif-
ferent methodologies and possible approximations, utilizing 
different software packages. Uncertainty in computed data, 
in turn, is related to algorithms, implementation, and compu-
tational parameters. These correspond to different resolution 
and measurement conditions (e.g., pressure, temperature, 
environment) on the experimental side. The latter is also 
concerned with the quality and growth condition or treat-
ment of the materials sample. All of these uncertainties need 
to be understood, and ideally be quantified, to allow for unre-
stricted interoperability. Obviously, this is an overwhelming 
task. It also illustrates the urgent need for benchmark data 
to quantify deviations from the ideal results. For the com-
putational materials side, the topics of  reproducibility5 and 
benchmarks for  solids6–9 are being pursued only in the last 
few years.

For the identification of materials with specific features, 
similarity is an important concept. Materials of interest for a 
given application should share specific properties (i.e., being 
similar in some aspects while they may be very different in 
others). To assess similarity in general and, in view of data-
centric approaches in particular, one needs to introduce ade-
quate descriptors and similarity  measures10–15 that go beyond 
that of the atomic structure.16

In this article, we show how both aspects—identify-
ing similar materials and quantifying uncertainties—can 
be addressed with methods and tools measuring similarity. 
Specifically, we assess similarity in electronic properties in 
terms of a spectral fingerprint. We demonstrate our approach 
by various scenarios such as identifying materials that are 
similar to a chosen one, measuring the impact of structural 
features as well as methodology or computational param-
eters on the accuracy and precision of computed properties, 
or highlighting differences in sample quality or measure-
ment details on experimental results. The same descriptor 
can also be combined with unsupervised learning to iden-
tify and analyze trends in large data sets as demonstrated 
recently.15 In all of our examples, we provide physical rea-
soning behind the data-based observations. Finally, we dis-
cuss how this approach can be used to enhance large-scale 
data collections.

Results
The following examples focus on exploring and understand-
ing data spaces on the one hand, and on highlighting effects 
that could potentially lead to veracity on the other hand. We 
emphasize that all calculations shown here are perfectly valid, 
but may differ in certain numerical aspects as each of them has 
been created for a specific purpose. The examples are neither 
chosen such to represent the best possible calculations nor to 
showcase inconsistencies, but only to highlight the respective 
scenario that we wish to demonstrate. They help to illustrate 
where differences between data that should mean or describe 

the same, may come from and how these differences can be 
quantified. This quantification is carried out by combining 
the spectral fingerprint with the Tanimoto coefficient (Tc) as 
a similarity measure,17 as described in the “Methods” sec-
tion. In short, Tc varies between 0 (completely different) to 
1 (identical).

Identifying similar materials
Our first case is about finding materials that share certain 
characteristics with a selected reference. Replacing, for 
instance, toxic or rare elements or components with less 
harmful or abundant ones, is one important aspect in the 
search of new materials. Here, we demonstrate how to find 
materials that share features of their electronic structure. 
Using the spectral fingerprint (see “Methods” section), we 
have searched about 1.8 million materials in the NOMAD 
Encyclopedia (corresponding to about 93% of the materi-
als available today) in order to find materials that have a 
similar electronic density of states (DOS). Figure 1 presents 
two selected results of this investigation. The top left panel 
shows the most similar materials to the semiconductor GaAs. 
We observe that all four compounds share the higher-lying 
valence band structure and differ either in the lower valence 
region or the conduction bands. As could be expected from 
the valence configurations of atoms from the same column 
of the periodic table of elements (PTE), GaP—also shar-
ing the same crystal structure—is a good candidate that 
indeed, turns out to be the material most similar to GaAs 
( Tc = 0.83 ). Maybe less expected are PbC ( Tc = 0.75 ) and 
NaBGe ( Tc = 0.74 ). To obtain a better understanding about 
what the observed Tc values mean, we provide a histogram 
(top right) that shows the distribution of Tanimoto coeffi-
cients of the reference DOS with that of all 1.8 million mate-
rials. Strikingly, materials with high similarity coefficients 
are exceptional. The red box indicates those with Tc > 0.7 . 
We note, however, that the distribution depends on the con-
sidered energy range (here from −10 to 5 eV). Choosing a 
narrower energy window to focus on specific features of the 
spectra may lead to a larger number of materials that are 
similar to the reference.

The lower panels of Figure 1 demonstrate how (dis)simi-
lar the two metals Au and CoFe are. Here, the spin properties 
govern the behavior. The majority spin exhibits a high simi-
larity of Tc = 0.80 , where the DOS reflects the akin character 
of the occupied 5d Au and 3d bands of Cu, respectively. In 
contrast, the minority spins ( Tc = 0.47 ) differ mainly due 
to a rigid shift of the partially filled Cu 3d minority band by 
about 2.5 eV such that the overall similarity is only moderate 
( Tc = 0.67).

Impact of methodology
Figure 2 compares the density of states of SiC,20 calculated 
by the local-density approximation (LDA) and the G0W0 
approximation of many-body perturbation theory. Both 
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results are obtained with 
the exciting  code,22 
using the same set of 
computational param-
eters. Hence, the differ-
ence in the two results 
can be solely assigned to 
the method. Only assess-
ing the valence-band 
region, gives a similarity 
coefficient of Tc = 0.96 . 
In contrast, the conduc-
tion region reveals the 
well-known opening of 
the electronic bandgap by 
G0W0 , leading to a small 
similarity coefficient of 
0.27 only. The overall 
similarity covering the 
entire energy range is 
moderate (i.e., Tc = 0.66).

The panel on the right 
draws a similar picture for 
PbI2 . Here, we explore on 
the one hand how account-
ing for spin-orbit coupling 
(SOC) changes the results. 
In essence, by decreasing 
the bandgap by as much 
as 0.68 eV, SOC showing 
up in a modest Tanimoto 
coefficient of Tc = 0.71 
when considering the entire 
energy range of −10 to 
10 eV . On the other hand, 
going from PBE to HSE06, 
the gap opens by 0.69 eV, 
blueshifting the DOS by 
this amount and leading, 
with PBE as the counter-
part, to Tc = 0.60 . Overall, 
the competition of the two 
effects, giving rise to can-
cellation of errors, explains 
why the Kohn–Sham gap 
obtained by PBE without 
SOC is rather close to exper-
iment.23–25 Considering the 
valence region only, both 
SOC and HSE have a signif-
icant impact, giving rise to 
Tc values of 0.75 (PBE ver-
sus PBE + SOC) and 0.73 
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Figure 1.  Density of states (DOS) of similar materials from a search within 1.8 million materials in the 
NOMAD Encyclopedia.18,19 The top left panel shows the three materials most similar to the semiconduc-
tor GaAs (i.e., GaP ( Tc = 0.83 ), PbC ( Tc = 0.75 ), and NaBGe ( Tc = 0.74)). The top right panel represents 
the distribution of Tc values of the reference with all considered materials (note the logarithmic scale). 
The red box indicates the most similar materials. The lower panels depict the metals Au and CoFe, which 
share high similarity in the majority spin ( Tc = 0.80 ), but owing to the very different minority spin channels 
( Tc = 0.47 ), the overall Tc is 0.67 only.
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Figure 2.  Density of states (DOS) of  SiC20 (left panel), calculated with the all-electron code  
exciting by employing the LDA (yellow) and the G0W0 approach (green). The overall similarity coef-
ficient is Tc = 0.66 . While the valence regions are nearly indistinguishable ( Tc = 0.96 ), the conduction 
bands, with a small Tc of 0.27, show the well-known upward shift by G0W0 . The right panel demon-
strates the strong impact of exchange-correlation (xc) functional (PBE versus HSE06, Tc = 0.60 ) and 
spin-orbit coupling (SOC) (PBE versus PBE + SOC, Tc = 0.71 ) in the case of PbI2.

21 The dashed verti-
cal lines indicate the Fermi energy.
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(PBE versus HSE). The conduction region is characterized by 
an upward shift of all bands by HSE ( Tc = 0.45 for PBE versus 
HSE) while SOC only affects the bands up to 5 eV ( Tc = 0.67 for 
PBE versus PBE + SOC), thus changing the shape of the DOS.

Obviously, these examples confirm in an automated 
way what we usually observe by visual inspection. At the 
same time, it illustrates a workflow that can be applied to 
large data sets, when visual inspection becomes unfeasible. 
Given very many calculations for many materials, our fin-
gerprint will eventually allow us to extract knowledge that 
we cannot obtain from individual calculations or publica-
tions. The longer-term goal here is to verify such observa-
tions on large data sets, and provide and implement auto-
mated tools to simplify the here presented analysis. This 
will enable us to detect, on a large scale, for which mate-
rial class what level of methodology is needed to provide 
a reliable result. In other words, we will learn what one 
can expect from the performance of a method for a given 
material or property, and what we can recommend to a nov-
ice user. In the following examples, we will take the idea 

further to also include computational parameters in these  
considerations.

Excitonic spectra
In Figure 3, we display how the optical spectra of h-BN in 
A′A stacking evolve as a function of the k-grid used in the 
calculations. The spectra are characterized by an absorption 
onset (solid vertical lines) far below the bandgap (dashed 
line), indicative of strong excitonic effects.26 The exci-
tonic binding energy decreases with improved sampling 
(i.e., the onset experiencing a blueshift). This seems in 
contradiction to the corresponding exciton wave functions 
displayed on the right that one would expect to become 
more delocalized. The latter is indeed the case. Looking, 
for instance, at the behavior in c direction, the reason for 
having the same electron distribution in every second plane 
is simply explained by the fact that the unit cell contains 
two such planes and, restricting ourselves to 1 k-point in 
this direction, we obtain replica of the same wave func-
tion in every other plane. In other words, the exciton is 

spatially not  much 
delocalized. The same 
applies to the in-plane 
directions where we 
also observe a seem-
ing delocalization. 
Only by considering 
a denser k-grid, the 
localized character 
becomes apparent.

Making use of the 
fingerprinting in the 
exact same manner as 
for the DOS, one can 
measure the conver-
gence behavior. The 
similarity coefficient 
between the 3× 3× 1 
and 6× 6× 2 results is 
0.18, increasing to 0.52 
between 6× 6× 2 , and 
12× 12× 4 and to 0.90 
between 12× 12× 4 
and 18× 18× 6 . The 
latter two spectra are 
spot on in the onset 
region and only slightly 
differ at higher ener-
gies, causing the devia-
tions from the optimal 
Tc value (ideally being 
1) as it is measured over 
the entire energy range. 
The gradual increase in 
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Figure 3.  Optical spectra of h-BN. Top left: In-plane component of the dielectric tensor computed with 
different k-point grids where the similarity coefficient between two adjacent curves is indicated on the 
right. The vertical dashed and solid lines represent the direct quasiparticle gaps and absorption onsets, 
respectively. The electron-hole wave functions in the top right show a changing degree of localization (note 
the main text). The electron density distribution is shown for the hole position fixed at the red dot. Bottom 
left: Converged spectra for different stacking motifs shown next to the graph. On the bottom right, the con-
tributions from valence and conduction bands involved in the lowest-energy exciton for two representative 
stackings are displayed together with the corresponding exciton wave functions.
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similarity indeed reflects the behavior of the exciton wave func-
tion. On the longer run, based on a large-enough data pool, we 
expect to learn optimal parameter settings for a given material 
class such to provide recommendations to users who want to 
carry out such computationally expensive calculations with high 
numerical precision at least possible effort.

The lower half of Figure 3 shows the impact of structural 
features on the optical spectra of h-BN. On the left, the BSE 
spectra of five different stackings are shown that are displayed 
next to the figure. From a first inspection, we can discriminate 
between two groups: (1) The spectra of the AB, AA′ and AA 
stackings have similar shape and intensity while (2) those of 
AB′ and A′B exhibit lower-energy excitations with smaller 
oscillator strength. As evident from the exemplary exciton 
wave function on the right, the intense peak at the absorption 
onset of the first group is characterized by a localized exciton 
with 2D distribution. In these cases, the degeneracy of the 
valence- and conduction-band edges is governed by how the 
B and N atoms are aligned in the out-of-plane direction.26 The 
resulting character of the initial and final states of the excita-
tion leads to its 2D distribution.26 The similarity coefficient 
between AB and AA′ results is 0.9 and only 0.51 between AA′ 
and AA. Despite the similar shape of the spectra, the absorp-
tion onset of the latter is lower in energy due to its smaller 
quasiparticle gap (dashed lines). The moderate similarity coef-
ficients between the spectra of the first and the second group 
reflects the differences in their band structure. The valence 
bands (conduction bands) in the AB′ (A′B) stackings are split, 
which is a consequence of the vertical alignment of atoms of 
the same species. This impacts the exciton distribution which 
is of 3D character in these cases and exhibit lower binding 
energy compared to the first group. Overall, this example 
shows the direct relationship between structural arrangement, 
band structure, absorption spectrum, and exciton character. 
The similarity coefficients are able to capture (or measure) the 
main differences between various results. On the longer term, 
based on the analysis of many spectra, one may be able to 
provide recommendations which configurations may generate 
bound excitons with localized/delocalized character.

Interoperability of experimental spectra
Interoperability of experimental data is even a bigger issue 
compared to computational results. For instance, one and the 
same physical property can be measured by different meth-
ods, giving rise to variety in the data. The dielectric function 
is a good example for this, as it can be obtained by several 
experimental probes, being optical absorption or reflection 
spectroscopy, ellipsometry, as well as electron-loss spectros-
copy. None of the measurements yields this property directly 
but only after some transformation steps or modeling behind, 
which adds a veracity problem. Overall, as pointed out in the 
Introduction, a measurement may depend on a huge number 
of parameters that need to be captured by metadata.

So, we may ask whether it is surprising or not that the 
optical spectra of silver displayed in Figure 4 exhibit so low 
similarity among each other. In the ideal world, one would 
expect spectra of an elemental, noble metal to be spot on. 
Reality tells us that this is not the case. While the measure-
ments displayed here all agree on the absorption onset of inter-
band transitions, the peak positions at higher energies differ up 
to several eV, and the oscillator strengths are within roughly a 
factor of two. Without further information, it is impossible to 
tell which of the measurements may be superior to others and 
why. Obviously, both sample quality as well as measurement 
conditions have a strong impact, and a full annotation of the 
measured data with metadata are key for a fair comparison of 
experimental data.

Veracity is also an issue when comparing measured and 
calculated data. It is needless to say that the dielectric function 
can be computed with various theoretical methods of different 
levels of sophistication. Here, we show an LDA result within 
the independent-particle approximation.31 Measuring its simi-
larity to the experimental data of  Robin28 and Werner et al.,31 
delivers Tc values of 0.63 and 0.78, respectively. The better 
agreement with the latter—the most recent of the experimental 
data sets—has been discussed elsewhere.31 We note that, to a 
large extent, the disagreement comes from the underestimated 
absorption onset by LDA, owing to the too high position of 
the Ag-d bands.

This example shows how heterogeneous experimental data 
of even very simple and well understood materials can be. This 
situation imposes the need for detailed annotation of measured 
data, and it also highlights the urgent need for a large variety 
of benchmark results that serve as reference data. Otherwise, 
an in-depth assessment of data quality on a large scale will 
remain difficult.
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Figure 4.  Optical spectra of the elemental solid silver from 
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Figure 5. Due to symmetry, only the upper off-diagonal elements 
of the matrix are shown. For comparison, a calculation within the 
independent-particle approximation based on LDA is shown. Its 
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Influence of code and computational parameters
To reveal the effects arising from computational parameters 
and tools, we study fcc Al. For this material, we find more than 
800 calculations in the NOMAD Repository.18,19 They have 
been carried out by different people with different codes and 
computational settings, depending on the individual purposes. 
Making use of the similarity coefficient, we can gather useful 
information about the impact of these parameters on the DOS. 
Again, in the ideal world, all calculations based on the same 
geometry should be identical. Figure 5 displays the corre-
sponding similarity matrix that shows that this is obviously not 
the case. On the left, the matrix is sorted according to the com-
bination of DFT code and xc functional. Two clusters become 
apparent, basically distinguishing between two different codes. 
The one stemming from FHI-aims32 calculations contain both 
LDA and GGA results. Their similarity suggests that for fcc 
Al, the choice of the semi-local functional has no notable 
effect on the DOS. In contrast, there is overall less similar-
ity between the  VASP33 and FHI-aims blocks. This behavior 
is rather unexpected and could be assigned to differences in 
the calculation of the DOS itself rather than in the electronic 
structure. Note that the pattern inside each block reflects all 
other differences in the calculations, such as volume, k-grid, 
computational parameters, etc.

The right panel of the figure shows the same data, now 
sorted by the total number of sampled k-points, Nkpt . We see 
that the first about 350 entries are characterized by low simi-
larity coefficients with all other data, with the exception of two 
smaller blocks that are formed by pure VASP and FHI-aims 
calculations, respectively. Above this index, the DOS of all 
calculations are very similar to each other, forming a signifi-
cant cluster. We conclude that at this threshold, convergence 

with respect to Nkpt is reached. Similar to the other example, 
here the patterns inside the bigger blocks stem from differ-
ences other than the k-grid. This explains the dark lines inside 
the block and the two features previously mentioned.

To conclude from this example, our framework quantifies 
and visualizes the effect of computational parameters on the 
DOS, which allows us to identify outliers and helps in choos-
ing representative parameters. We note in passing that the data 
in the NOMAD Repository are normalized (i.e., brought to 
the same file formats and units, and having the same energy 
zero ( EF = 0 eV)). Nevertheless, they still reflect individual 
implementations. For example, applying additional smearing 
to the here presented data, enhances their similarity.

Finding patterns in data
Applied to well-curated data sets, the spectral fingerprint can 
be used to explore materials spaces in an unbiased manner 
when being combined with unsupervised learning. Adopt-
ing a clustering approach for the learning task, this has been 
recently  demonstrated15 using data from the C2DB database.13 
Here, we provide another example of this kind to round off 
the potential of our descriptor and demonstrate how compact 
sets of materials can be found that are more similar to each 
other than a defined similarity threshold. The selected cluster 
was identified from a data set consisting of 3491 materials. 
It comprises three materials, Hf2Te6 , Zr2Te6 , and Zr2NSe2 . 
Their DOS and unit cells are depicted in Figure 6. Inspect-
ing their crystal structures and electronic configurations, we 
see that this cluster exhibits expected as well as unexpected 
trends. The cluster center (i.e., the material most similar to 
both others) is Hf2Te6 . On the one hand, the latter and Zr2Te6 
share the crystal symmetry (space group 59); also, Hf and Zr 

are isoelectronic. Thus, 
their high similarity of 
Tc = 0.85 in terms of 
the electronic struc-
ture could be antici-
pated. On the other 
hand, Zr2NSe2 neither 
shares one nor the 
other characteristics 
with the other cluster 
members, nevertheless 
exhibits high similar-
ity values of Tc = 0.79 
and Tc = 0.78 with 
Hf2Te6 and Zr2Te6   , 
respectively. Thus, it 
can be considered as 
an outlier. Outliers are 
particularly interesting 
in view of finding can-
didate materials with 
specific features in 
materials spaces where 
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one would not expect them. In fact, one of the great hopes is 
that data-driven analysis can guide researchers toward pos-
sibly interesting materials classes.

Conclusions and outlook
We have shown how a spectral fingerprint can be used in vari-
ous conditions to measure the similarity of materials in terms 
of their electronic and spectroscopic properties. Our examples 
comprise a broad range of applications. We have, for instance, 
identified materials that share the electronic properties of their 
valence electrons or the DOS of one spin-component. More-
over, we could demonstrate that the same approach allows 
for assessing data quality. More specific, with the examples 
of SiC and PbI2 , it was illustrated how different treatment of 
exchange-correlation effects affect the electronic properties 
of semiconducting materials. More than 800 calculations of 
fcc Al were used to demonstrate the impact of computational 
parameters on the numerical precision of computed properties. 
Likewise, we probed the effect of structural features on the 
excitonic spectra in terms of the layer stacking in h-BN. All 
these examples not only allow us to determine the degree of 
interoperability of materials data but also help us to quantify 
more generally, how approximations, implementation details, 
computational parameters, or structural features affect cal-
culations that are routinely carried out in numerous research 
groups all over the world. Automatizing such assessments 
would greatly enhance the understanding of computed results 
as they help in analyzing many more materials calculations 

than what can be done in case-by-case investigations and sin-
gle publications. The resulting findings will pave the way to 
incorporate physical reasoning into materials science data and 
annotate the data accordingly.

With the example of the noble metal silver, we also con-
fronted various measured optical spectra with each other. 
Finally, we have shown how the spectral fingerprint can be 
combined with unsupervised learning to explore large data 
spaces and identify clusters of similar materials.

What are the next steps for using and/or enhancing our 
tools? There are several open issues, and we address a few 
of them:

• Regarding the search for similar materials, one question 
concerns the choice of the reference calculation. What is 
a representative calculation? Ideally, one would choose 
(the) one carried out with the highest-level methodology, 
ensuring good convergence with respect to the computa-
tional parameters. Obviously, then also the calculations to 
compare with should fulfill the same criteria which in most 
cases would restrict the data space significantly. Thus, a 
milder criterion would be to use lower-level calculations as 
long as all calculations are from the same level of sophisti-
cation. To judge the impact of the method and parameters, 
in turn, the tools presented in sections “Impact of meth-
odology,” “Excitonic spectra,” or “Influence of code and 
computational parameters” can guide the choice.

• Obviously (see also the section “Identifying similar materi-
als”), the similarity coefficient depends on where we place 
the focus on. Thus, having a certain function in mind, one 
could focus on certain energy regions or features. They 
might be as different as the band edges in semiconductors, 
the absorption onset in optical spectra, or the DOS at the 
Fermi level in metals or superconductors. The construction 
of the fingerprint is flexible and prepared for all of this.

• Methodology-wise, we plan to consider additional similar-
ity metrics. Let us exemplify the need with the example of 
excitons. Weakly bound excitons are characterized by a 
redistribution of oscillator strength when compared to the 
independent-particle spectrum. This effect is well captured 
by the metric presented here. On the other hand, the rigid 
redshift of a strongly bound exciton is better captured by 
the Earth Mover’s Distance,34 also known as Wasserstein 
Distance. Therefore, a more complex metric is required 
that allows one to capture both types of excitonic effects 
or tell them apart.

To conclude, the here presented examples demonstrate that 
the spectral fingerprint can serve as a descriptor for a variety 
of scenarios. Besides the previously described enhancements, 
for the future, we propose and plan to define similar criteria 
for other physical properties toward data analysis and qual-
ity assurance of computed and measured results. They could, 
for instance, bring to light differences in sample preparation, 
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composition, dimensionality or other structural features, meas-
urement conditions, and more. On the other hand, exploring 
interoperable data by unsupervised learning will help in find-
ing either anticipated or unexpected trends in the data and may 
enable discoveries.

Methods
In order to identify materials that share favorable properties 
in a large number of materials, a numeric representation (i.e., 
a descriptor) of the investigated property is required. In this 
work, we focus on energy-dependent spectra that are here 
represented by a spectral fingerprint, analogous to the DOS 
fingerprint of Reference 15. It consists of a 2D raster image 
obtained through a special discretization of a spectrum, s(E): 
First, the spectrum is converted to a histogram, si , with energy 
bins of variable width

with si being the integrated spectrum in the interval [Ei,Ei+1) , 
with Ei = Eref + εi , Ei+1 = Ei +�εi , and ε0 = 0 . The inte-
ger-valued function n(εi,W ,N ) is equal to 1 for εi = 0 and 
approaches N monotonously for |εi| > W  . Defined in this 
way, the integer N ≥ 1 and the real number W > 0 allow for 
increased resolution of the fingerprint in a region of width 
W around Eref  . If N = 1 , a uniform resolution is achieved. 
Finally, a grid of pixels is obtained by discretizing every 
column of the histogram in a grid of Nρ intervals of height 
n(εi,WH ,NH )�ρmin . For the definition of the function n and 
additional details on the fingerprint, see Reference 15, where 
the spectral fingerprint is applied to the case of the electronic 
DOS.

To quantify the similarity between two spectra A and B, we 
make use of the Tanimoto coefficient:17

which, for dichotomous descriptors like the spectral finger-
print, is a metric that ranges from 0 (not similar) to 1 (identi-
cal). For an overview of other similarity measures (e.g., the 
Dice and cosine similarity), which are commonly applied in 
chemistry research, we refer to Reference 17. For our spe-
cific application, we note that the Tanimoto coefficient has 
several advantages. First, it is highly interpretable, as it can 
be understood as the intersection of the two DOS, divided 
by their union. Additionally, in contrast to, for example, the 
Dice coefficient, the Tanimoto coefficient obeys the triangle 
inequality, which is a favorable property for applications such 
as clustering. Furthermore, it is computationally cheap, as it 
can be calculated using only binary operations and bit counts, 
in contrast to, for example, the cosine similarity, that requires 
the calculation of a square root.

For the spectra shown in Figure 1, we use a nonuniform 
grid with �εmin = 0.05 , �ρmin ∼ 0.001 N = 21 , NH = 11 , 
Eref = − 2 eV , W = WH = 7 eV , Nρ = 256 , and a cutoff of 
−10 to 5 eV . For the spectra in Figure 2, we define the feature 

1�εi = n(εi,W ,N )�εmin,

2Tc(A,B) =
A · B

A
2 + B

2 − A · B
,

region by setting Eref = 0 eV , W = WH = 10 eV , Nρ = 512 , 
and the cutoff to −10 to 10 eV . The fingerprints used to com-
pare the optical spectra in Figure 3 employ uniform grids, 
that is, N = 1 , with �εmin = 0.02 eV , �ρmin = 3× 10

−3 , 
Nρ = 256 , and a cutoff of 4 to 8 eV . The fingerprints used for 
Figure 4 employ uniform grids with N = 1 , �εmin = 0.02 eV , 
�ρmin = 1× 10

−3 , Nρ = 256 , and a cutoff of 2.2 to 25 eV.
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