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Abstract

Lateral voltage spread in electrically coupled retinal horizontal cell networks is the substrate of center-surround
antagonism in bipolar and ganglion cells. We studied its spatial and temporal properties in more detail in turtle L1
horizontal cells by using a contrast border as light stimulus. Experimental data were contrasted with expectations
from a linear continuum model to specify the impact of nonlinearities. The assumptions for the diffusion term of the
continuum model were justified by neurobiotin labeling. Measured voltage spread revealed two different length
constants L� and L0, under illuminated and nonilluminated regions of the retina, respectively, as predicted by the
linear model. Length constants in the illuminated region showed strong temporal dynamics. For the initial phase of
the horizontal cell responses L� was larger than Lo. This was also in accordance with the model. Right at the peak
of the response, however, L� dropped below Lo and did not change any more. It is this temporal reversal of
asymmetry in voltage spread and not the decrease of L� itself that is lacked by the linear model. The observed
independence of the mean ratio L�0Lo from light intensity in both the peak and the plateau phases of horizontal
cell responses contradicts the linear assumption, too. These two effects have to be addressed to local nonlinearities
in the horizontal cell network like a negative feedback loop from photoreceptors and0or voltage-dependent
conductances. Due to the failure of the linear model, firm conclusions about the membrane resistance and the
coupling resistance of the horizontal cell network cannot be drawn from length constant measurements.
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Introduction

Electrical coupling of retinal horizontal cells through gap junctions
has been confirmed by many studies (Tomita, 1957; Boroviagin,
1966; Naka & Rushton, 1967; Raviola, 1976; Norton et al., 1968;
Kaneko, 1971). It allows for voltage spread over several milli-
meters across the retina, playing a major role in the genesis of
center-surround antagonism of bipolar and ganglion cell receptive
fields (Naka & Witkovsky, 1972; Werblin, 1974; Thibos & Wer-
blin, 1978; Mangel, 1991) and in gain control of photoreceptor
synapses (Wu, 1992, 1994; Burkhardt, 1993; Piccolino, 1995). In
the turtle retina all horizontal cell types are homologically coupled,
constituting separate conducting networks (Byzov, 1975; Gerschen-
feld et al., 1982; Piccolino, 1995; Ammermüller & Kolb, 1996).
Since the coupling is nonrectifying (Kaneko, 1971; DeVries &
Schwartz, 1989) and voltage spreads over several cells, these
networks can be considered as a continuum and the lateral network

currents can be modeled by a simple diffusion equation (Naka &
Rushton, 1967; Lamb, 1976).

Besides the diffusion through the syncytium, voltage spread is
also influenced by the membrane conductances of the horizontal
cells. These include nonlinear voltage-gated channels (Byzov &
Trifonov, 1981; Winslow & Knapp, 1991; Akopian et al., 1997)
and postsynaptic channels, driven by photoreceptors, which again
may be modulated by feedback mechanisms from the horizontal
cells (Wu, 1992; Burkhardt, 1993; Piccolino, 1995; Verweij et al.,
1996a; Kamermans & Spekreijse, 1999; Kamermans et al., 2001).

The linear continuum model introduced by Naka and Rushton
(1967) and simplified by Lamb (1976) does not consider any of the
possible nonlinear mechanisms. However, it has long been used for
analysis of voltage spread in horizontal cells (Lamb & Simon,
1976; Owen & Hare, 1989; Lankheet et al., 1990; Andreu et al.,
2000). The model connects the microscopic properties membrane
resistance rm and sheet resistance Rs of the syncytium directly with
the characteristic length of the macroscopically observed exponen-
tial voltage decay—the length constant l. Provided the assumption
of a linear membrane is valid, it is possible to gain some infor-
mation about rm and Rs by means of l. Two methods for deter-
mining l were introduced in the past: light bars moved across the
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retina and spots of increasing diameter (Byzov & Shura-Bura,
1983; Piccolino et al., 1984; Lankheet et al., 1990; Perlman &
Ammermüller, 1994). Both methods assume a constant membrane
resistance, implying that neither the stimulating light or feedback
mechanisms have an effect on l. This simple model, however,
failed to explain experimental data (Marmarelis & Naka, 1972;
Yagi & Kaneko, 1987; Lankheet et al., 1993; Kamermans et al.,
1996; Umino & Ushio, 1998). The measured length constant is
dynamic during the response time of the horizontal cells and
depends on intensity in several species (Lamb, 1976; Byzov &
Shura-Bura, 1983; Perlman & Ammermüller, 1994; Reifsnider &
Tranchina, 1995; Ammermüller et al., 1996; Verweij et al., 1996b;
Kamermans et al., 1996; Umino & Ushio, 1998). Compartmental
modeling, taking time- and voltage-dependent conductances into
account, predicted an increase of l with time and increasing
background illumination (Winslow & Knapp, 1991). Such com-
partmental models, on the other hand, still contain a large number
of quantitatively unknown, free parameters, which makes interpre-
tation very difficult.

In this study, we derived the continuum model in more detail to
work out all the involved assumptions. The geometrical conditions
of the continuum approximation were examined by neurobiotin
labeling of the horizontal cell network. We extended the linear
continuum model to the general case where the length constant
depends on the photoreceptors’ activity via the membrane resis-
tance rm of the horizontal cells. In this case, the length constants
observed in dark regions should be smaller than those in illumi-
nated regions of the retina. This expectation was tested by directly
measuring voltage spread in illuminated and nonilluminated parts
of the horizontal cell syncytium. By this way, we determined
precisely to what extent the linear model is capable to explain the
experimental data, and where nonlinear effects have to be taken
into account.

Methods

Model

In the continuum limit, the membrane potential V in horizontal cell
networks can be modeled by a diffusion-like two-dimensional
partial differential equation—the plate equation—with global pa-
rameters t (time constant), l (length constant), and E (full-field
potential):

t]V0]t � l2DV � V � E, (1)

where D is the Laplacian, the second-order spatial derivative
(Naka & Rushton, 1967; Lamb, 1976; Lamb & Simon, 1976). A
detailed derivation of the plate eqn. (1) is provided in the Appen-
dix. The total membrane resistance rm per unit area of the sheet
(not the membrane of the cells!) is given by 10rm �(i 10ri , where
the ri are the resistances for all different types of channels in the
horizontal cell membrane. These can be simple Ohmic leakage
channels as well as postsynaptic channels driven by transmitter
release from photoreceptors or voltage-gated channels. In the
steady state ~t]V0]t � 0!, while the whole retina is illuminated
with constant light intensity ~l2DV � 0!, the membrane voltage V
equals the full-field potential E � rm(i Ei 0ri , with Ei the corre-
sponding reversal potentials over ri . The time constant of the sheet
t� cm rm depends on the membrane capacitance cm, which is also
given per sheet area. The spatial properties of the network are
reflected in the length constant l�!grm 0~Rs � Re !, where Rs is

the coupling resistance and Re is the corresponding resistance for
the extracellular medium. The factor g is determined by the
geometry of the lattice ~g � 302; 1; and 304 for a triangular,
quadratic, and hexagonal network, respectively).

A few assumptions are necessary for deriving the plate equation
(see Appendix for details), especially for the existence of the
continuum limit: (1) The network has to be homogeneous and
isotropic. (2) Adjacent cells are coupled by a constant sheet
resistance Rs. (3) The length constant l has to be greater than the
distance between two neighboring cells. Furthermore, the func-
tional dependencies of rm, t, l, and E on the amount of transmitter
released by the photoreceptors and0or the membrane potential V
have to be defined.

To analyze the effects of nonlinearities due to feedback mech-
anisms and0or voltage-gated channels, the experimental results
were compared with a linear version of the plate equation. So, the
crucial assumption of a linear membrane and simple feedforward
input from the photoreceptors to the horizontal cells was made;
that is, the membrane resistance and therefore t, l, and E directly
depend on illumination intensity (Naka & Rushton, 1967).

For a theoretical solution to the model, we considered one-
dimensional stimuli such as slits and contrast borders in the steady
state where t]V0]t � 0. Under these conditions, an exponential
voltage decay with a decay constant equal to the length constant l
inside a region of constant light is the basic solution of the
stationary plate equation, where the value of l depends on light
intensity. To test this, a contrast border was used in the experiments
where one side is completely dark and the other has a defined light
intensity. For such an illumination paradigm, the potential is
expected to decay in both regions exponentially with length con-
stants l0 and l� to the corresponding dark and illuminated
full-field potentials E0 and E�, respectively:

V~x, t � `!� �c� e�x0l� � E� , x � 0 illuminated

c0 e�x0l0 � E0, x � 0 dark
(2)

with the coefficients

c� � �
E� � E0

1 � l0 0l�

c0 � �
E� � E0

1 � l� 0l0

ensuring continuity of voltage and its spatial derivative at location
x � 0. This is theoretically valid for an infinitely extended retina
only. However, if the retina spans more than four-times the length
constant on both sides of the contrast border, eqn. (2) is still a very
good approximation. Using this kind of stimulus, qualitative and
quantitative effects of feedback mechanisms or membrane nonlin-
earities on voltage spread in the steady state can be detected by
deviations from the expectations of the linear plate equation.

In addition, the temporal dynamics of the responses and length
constants were computed numerically from the linear plate equa-
tion. For that purpose the time courses of the three parameters t,
l, and E are needed. In the linear model, these parameters are
determined by the resistance rp of the postsynaptic channels driven
by the photoreceptor’s activity. The corresponding reversal poten-
tial of these synaptic channels is close to zero, Ep � 0 mV
(Miyachi & Murakami, 1991; Golard et al., 1992; Miyachi et al.,
1994). Then the numerator E of the full-field potential E is constant
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and E depends as well as t and l only on the total membrane
resistance rm:

E � rm�Ep 0rp �(
i

Ei 0ri�� rm(
i

Ei ri :� rm e.

This simplification can be achieved also for a nonzero synaptic
reversal potential, if Ep instead of the extracellular potential is used
as the reference potential. By means of this relation, the values of
t, l, and E are connected via

t0t0 � l20l0
2 � E0E0 � rm 0rm,0 , (3)

where t0, l0, E0, and rm,0 are the values of the parameters in the
dark. Using this relation the time course of the full-field potential
E~t ! can be calculated from experimentally measured full-field
responses, where the diffusion term in the plate equation vanishes:

E~t ! �
V~t !

1 �
t0

E0

]V~t !

]t

. (4)

Due to eq. (3), E~t ! completely determines the response V~x, t !
of the linear plate eqn. [eqn. (1)], which was computed by Euler
backward integration from

t0
E~x, t !

E0

]V

]t
� l0

2
E~x, t !

E0
DV � V � E~x, t !, (5)

where eqn. (3) is used again. In the dark region ~x � 0!, E~x, t ! is
set to the dark full-field potential E0, and in the illuminated region
E~x, t ! is set to the time course of the illuminated full-field
potential, which is calculated from experimental data using eqn. (4).
As for the experimental data, length constants of the potential
spread in the model can be obtained by fitting eqn. (2) to the
computed response V~x, t !. For the dark full-field potential, we
used E0 � �20 mV, which was the average dark resting potential
from our recordings. The value of l0 just scales space and was set
to the experimentally obtained steady-state value. For the time
constant t0, we used three values: 5, 10, and 20 ms.

Preparation

Experiments were carried out on everted eyecup preparations of
fresh water turtles Pseudemys scripta elegans according to Euro-
pean Communities Council Directive (8606090EEC). The eyecup
was prepared as described previously (Itzhaki & Perlman, 1984;
Ammermüller & Kolb, 1995). The eye was hemisected with a
razor blade and the anterior part was discarded. After removing the
vitreous humor, the posterior eyecup was everted over a balsawood
dome and placed in a chamber. A continuous flow of normal turtle
saline solution was directed over the preparation (Perlman &
Ammermüller, 1994).

Light stimulation

The photostimulation system consisted of two light beams origi-
nating from a single light source (100-W halogen). The contrast
border was formed in the first (� test) beam by a completely dark
field opposite to an illuminated field of 649-nm spectral light
which was produced with a narrow-band interference filter. Inten-

sity of the illuminated field could be changed by neutral density
filters. Dark and illuminated fields were larger than the retina,
respectively. The image of the contrast border was focussed on the
retina, perpendicular to the visual streak. Contrast was controlled
with a CCD array, and it was assured that no stray light reached the
retina. Focus on the retina was controlled through a binocular.
Between flashes the contrast border could be moved to new retinal
positions with a microdrive. Movement steps ranged from 33 mm
to 65 mm on the retina. This resulted also in a size change of the
illuminated and dark fields on the retina. Direction of movement
was parallel to the visual streak to ensure the symmetry of the
recording and stimulation procedure and eliminate regional retinal
variations. The second (� control) beam of 621 nm was used to
illuminate the entire retina and elicit responses in the dynamic
range of the cells. Test and control stimulus duration was 800 ms
and 600 ms, respectively, separated by an 800-ms dark period.
Electronically operated shutters controlled flash duration and in-
terstimulus intervals. The next stimulus pair with the moved
contrast border followed after a 1.2-s dark period. Light intensity
was measured with a calibrated photodiode at the location of the
retina and is expressed as logarithm of the relative intensity (log.
rel. int. � 0 was 3.4 mW0cm20s at 649 nm for the test, and 2.1
mW0cm20s at 621 nm for the control stimuli).

Data acquisition

Sharp glass microelectrodes filled with 3 M potassium acetate
(electrode resistances � 100–300 MV) were used for intracellular
recordings. Amplified signals were digitized at 2000 Hz and stored
on a Macintosh PC (MacLab; ADInstruments, Hastings, UK). All
recordings were made from the dorsal retina, opposite to the optic
nerve head, with the visual streak as landmark. Only data from
L1-type horizontal cells, which correspond morphologically to the
electrically coupled syncytium of H1 horizontal cell axon termi-
nals, were included in this analysis (Ammermüller & Kolb; 1996).
They were identified following previously established criteria
(Fuortes & Simon, 1974; Itzhaki & Perlman, 1984; Perlman et al.,
1994).

After identification of an L1-type horizontal cell with light
stimuli from the control beam, the contrast border from the test
beam was centered on the electrode tip and stimulation with the
test0control light flashes started. Fig. 1a shows an example of such
an unfiltered response pair.

After every stimulation period the contrast border was moved
and the next stimulus pair followed. This was repeated until a total
deflection of 1.5–2 mm on each side of the centered position was
reached. After one complete scan, inclusive control stimuli at the
centered position, the intensity of the illuminated field was changed,
and the whole series was repeated. This was done for as many
intensities as possible. Each scan consisted of 50–100 responses to
the stimulation pair.

Data analysis

Specific software was developed in ANSI-C to simplify data
processing, using gnuplot for graphical output. The first pass
determined resting potentials, peak amplitudes, and plateau ampli-
tudes of test and control responses (see Fig. 1a). The averaged
potential in the 100-ms interval before stimulus onset was taken as
the resting potential. It was subtracted from the response data, and
a 45-Hz low pass filter was applied yielding the relative response.
From these smoothed data, the peak amplitude was determined as
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the maximum amplitude during light ON. For the plateau, a
straight line was fitted into the unsmoothed data in a 150-ms time
window right before the end of the response. Its value at response
offset was used as plateau amplitude. As a measure of smoothness,
the square root of the mean-squared difference of the unfiltered
response to the smoothed one was calculated for the 100-ms
interval before stimulus onset. This was divided by the standard
deviation of the resting potential. Cells with a smoothness ratio
below 0.9 were discarded from analysis since their peak and
plateau values were disturbed by too much high-frequency noise.

Peak and plateau amplitudes were corrected for fluctuations in
resting potential and response strength. The measured resting
potentials of two succeeding responses were linked with a straight
line to get a first-order approximation of the resting potential
during the response. Differences of this estimated resting potential
at peak and plateau to the measured one before response onset
were subtracted from the peak and plateau amplitudes, respec-
tively. Mean differences divided by their maximum response am-
plitudes had to be smaller than 0.12. Changes in response strength
were determined by dividing peak and plateau amplitudes of the
control responses by the amplitudes of the first control response.
Peak and plateau amplitudes of the corresponding test responses

were then multiplied by the resulting correction factors. By this
way response amplitudes were standardized to the first response,
provided the fluctuations were not too large and not too fast. Only
data of cells whose correction factors ranged from 0.67 to 1.5, and
whose mean difference of the correction factors of two succeeding
responses was less than 0.1, were analyzed. In our experience, no
stable recording could be obtained from cells with values outside
these ranges for a sufficient period of time.

From the corrected relative peak and plateau amplitudes at the
various border positions, the length constants were obtained by
fitting the steady-state solution of the plate equation [eqn. (2)] to
each of the data sets. The central location of the contrast border
was ascertained as the turning point of the curve for the peak
amplitudes, which was determined using a symmetrical second-
order Savitzky-Golay filter (Press et al., 1992). Straight lines were
fitted to the last eight data points at the two extreme contrast
border positions. To guarantee that the extension of the data to both
sides of the contrast border was large enough for the fitting
procedure, the slopes of the lines had to be less than 7.5 mV0mm.
The illuminated full-field potential E� was set to the value of the
corresponding fitted line at the last data point, while the dark
full-field potential Eo was set to zero. The remaining fit parameters
were the length constants for the illuminated ~L�! and nonillumi-
nated ~Lo! parts of the retina. A simplex procedure was used for an
initial fit and the Levenberg-Marquard method (Press et al., 1992)
was applied for the finishing touches. To use a cell for analysis, at
least two complete scans with different intensities inclusive control
measurements were required. In the results, the data from 54
complete scans at various intensities obtained from 11 L1-type
horizontal cells that fulfilled all the criteria are shown.

Controls

Assuming a constant extracellular resistance Re, voltage spread in
the horizontal cell syncytium is determined by rm and Rs. To see
effects of changes in the sheet resistance Rs three experiments were
performed with dopamine superfusion which is known to increase
Rs, thereby uncoupling horizontal cells (Dowling, 1991). Under
the influence of 100 mM dopamine, light responses to a centered
contrast border became more transient and increased in amplitude
(Fig. 1b). This is due to increased Rs, reducing lateral voltage
spread (Dowling, 1991; Ammermüller et al., 1995). This was
never seen in the responses to centered test stimuli in the untreated
retinas (Fig. 1c). Even after prolonged experimental time response
shape and amplitude remained constant. This demonstrates that
intercellular coupling did not change significantly during the
experiments.

Geometrical homogeneity of the L1 horizontal cell network
was studied in one retina by injecting neurobiotin (Vector Labo-
ratories, Burlingame, CA) into several identified L1 horizontal
cells. Electrodes were filled with 4% neurobiotin in 0.4 M KCl,
and positive current pulses (�10 to �50 nA; 500-ms duration)
were applied at 1 Hz. The retina was fixed for 1 h in 4%
paraformaldehyde in 0.1 M phosphate buffer, pH 7.4, washed in
buffer, and labeled with the streptavidin–horseradish complex
(Jackson Lab., West Grove, PA; 1 : 2 000; containing 0.1% Triton-X)
for 12 h. This was followed by a buffer wash and the standard
diamino-benzidine0H2O2 peroxidase reaction. The neurobiotin la-
beling showed large networks of coupled H1-axon terminals,
which are the morphological correlates of L1 cells (Fig. 2a). Their
two-dimensional coverage was analyzed at different retinal loca-
tions. Still pictures of selected areas (1.5 mm � 1.1 mm) were

Fig. 1. Experimental protocol and control experiments. (a) Responses of a
L1 horizontal cell to a test contrast border (left response) and control (right
response) light stimulus. Measuring points for peak and plateau potentials
are indicated. Stimulus wavelength was 649 nm for the test, and 621 nm for
the control stimulus. Log. rel. int. � �0.5 for both stimuli. (b) Effects of
network uncoupling by dopamine on response shape. The response to the
centered contrast border became more transient under the influence of
100 mm dopamine, and its amplitude increased. (c) Response shape and
amplitude did not significantly change during the course of the length
constant measurements. Responses to the contrast border at the beginning
of the experiment and after 23 min are shown.
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digitized with a color video camera (Kappa Electronics, Göttingen,
Germany) at predefined gain and sensitivity values. Neurobiotin
injection always resulted in a strong labeling of axon terminals and
a weak labeling of H1 cell somata (arrows in Fig. 2a). To measure
the homogeneity of the axon terminal network, we processed the
images with the program “GraphicConverter” on an Apple PC.
After transformation to 16 gray levels, image contrast was en-
hanced to 100% and gamma to 1.9. This eliminated weakly labeled
somata without severely disturbing the axon terminal images.
Sometimes somata with stronger labeling had to be erased by hand.
A threshold was set and the image was transformed to a black-
and-white picture (Fig. 2b). The ratio (number of black pixels)0
(number of total pixels) gave us a value for the relative coverage
of the axon terminal system. These values are underestimates of
the real coverage, since small axon terminal processes out of the
focal plane were also eliminated during the procedure. At each
indicated retinal location, the coverage of five adjacent areas was
measured to determine the variability of this procedure.

Results

Since geometrical homogeneity is one main assumption in the
continuum approximation, the relative coverage of the neurobiotin-
labeled axon terminal network was measured at different retinal
locations, more or less parallel to the visual streak region, where
the recordings were made (Fig. 2c). We found no significant
change in coverage from center to periphery, over a distance of
approximately 8 mm (Fig. 2d). The mean coverage ranged around
0.5 at all locations, which was a good indication that the L1

horizontal cell network is geometrically homogeneous along the
axis where the contrast border was moved.

By scanning the retina with the contrast border, voltage distri-
butions as shown in Fig. 3 were obtained. The data points show
peak and plateau responses to the contrast border flashed at
different retinal positions x (schematically shown for one position
in the inset of Fig. 3a). Response amplitudes are expressed relative
to the dark full-field potential E0 which was set to zero as
explained in the Methods (Fig. 1a). The electrode position was set
to x � 0. Positive position values indicate increased area of
illumination; negative values indicate decreased area of illumina-
tion. The vertical lines and shaded areas illustrate the peak and
plateau voltage distribution in the network if a contrast border
were flashed centrally at position zero, and one could measure
simultaneously at many positions in the dark and illuminated fields
of the horizontal cell network. The data points were fitted with the
solutions for the contrast border [eqn. (2)] and are shown sepa-
rately for the peak and plateau potentials (lines in Figs. 3a and 3b).
Two length constants L� and L0 were determined from the fits for
the illuminated and nonilluminated regions, respectively. Since it
has not been proven at this point that the length constants obtained
by these fits are indeed those from the model, which equal
!rm 0RS , the measured length constants are denoted with capital
lambdas L� and Lo. The fits were always very close to the data
points. Fits with a single length constant were also performed (not
shown). The quality of the fits was estimated by using !x20n as
a measure of the mean standard deviation of the data points from
the fit curve ~n � number of data points). These numbers were
compared for the single and the two length constants, using the
Wilcoxon-Matched-Pairs-Signed-Rank test. The difference be-

Fig. 2. Relative coverage of H1 axon terminal net-
works. (a) Video still picture of neurobiotin-labeled
axon terminal network obtained after injection of
neurobiotin into a L1 horizontal cell. Arrows indi-
cate some of the more weakly labeled H1 somata.
Scale � 0.2 mm. (b) One-bit representation of the
same picture after image processing and erasing
some obvious somata by hand. (c) Schematic repre-
sentation of the analyzed retinal locations 1–7. At
each location, five neighboring areas were mea-
sured. Gray ellipse indicates visual streak and black
circle optic nerve head. (d) Relative coverage6 SD
~n � 5) at the seven analyzed locations.
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tween the fits using one length constant and those using two length
constants was highly significant ~P � 0.0001). The !x20n values
of the fits with L� and L0 were smaller (0.306 0.03 SEM; n � 54)
than those of the fits with one length constant (0.346 0.03 SEM;
n � 54). This shows that two length constants, L� and L0, are
better measures for lateral voltage spread in the horizontal cell
syncytium under differentially illuminated regions than a single
length constant.

Three important results can be seen in the example of Fig. 3:
(1) The voltage spread expressed as L� and Lo was different for
the peak and plateau phase of the response indicating temporal
dynamics. (2) The length constants were asymmetrical for both the
peak and plateau phase of the response, indicating different voltage
spread in illuminated and nonilluminated regions. (3) This asym-
metry reversed with time from the peak to the plateau phase of the
response.

Light-intensity dependence of lateral voltage spread, based
on single length-constant calculations, has been shown previ-
ously (Byzov & Shura-Bura, 1983; Perlman & Ammermüller,
1994; Reifsnider & Tranchina, 1995; Ammermüller et al., 1996;
Kamermans et al., 1996). This effect was also found for both
L� and Lo. For one example, this is shown in Fig. 4. The
relative peak and plateau responses to full-field illumination
were used as a measure of light intensity. For both voltage
spread under steady-state conditions (plateau phase) and at the
peak response phase, the length constants L� and Lo increased
with response amplitude and, therefore, with light intensity. The
single length constant for the peak phase was also determined
for comparison (crosses in Fig. 4a). Its value ranged between
those of L� and Lo and also increased with intensity. Several
simple regression models for the function of the increase were
tested. Among linear, power, exponential, logarithmic, and recip-
rocal models, the linear model yielded the best regression coef-
ficients for describing the experimental data points.

The collected data from all experiments are summarized in
Table 1. It shows the characteristic values of the linear-regression

Fig. 3. Dependence of response amplitude on contrast border position for
peak (a) and plateau (b) response. The inset illustrates how the data points
were obtained. The flashed contrast border stimulates the retina (circle) at
various positions x. The electrode (arrowhead) records at position x � 0.
Relative peak and plateau response amplitudes (see Fig. 1a) are plotted
against stimulus positions. At the most positive and negative x values, the
retina is fully illuminated or not illuminated at all, respectively. Data points
(diamonds) were fitted with eqn. (2) in order to yield Lo and L� for both
peak and plateau responses (lines). Shading illustrates the equivalent
situation if one could record simultaneously at many x positions, and the
same contrast border (but with the dark side on the left and the bright side
on the right) were flashed at position zero.

Fig. 4. Dependence of the length constants on light response amplitude for a single L1 horizontal cell. (a) Length constants determined
from the peak responses increase with response amplitude in the illuminated ~L�; open triangles) and nonilluminated ~Lo; filled
triangles) regions of the retina. The single length constant l (crosses) is also shown for comparison. (b) Length constants determined
from the plateau responses also increase with response amplitude for illuminated ~L� ; open circles) and nonilluminated ~Lo; filled
circles) regions, respectively. Data were best fitted with a linear regression line.
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lines which describe the light-intensity dependence of L� and Lo,
both for peak and plateau.

Plotting all cells together resulted in a much larger scatter of the
data points than taking data from only a single cell. However,
again both length constants, L� and Lo, increased with intensity
(slope b in Table 1). Linear regressions were better for the peak
than for the plateau phase ~R2 in Table 1). At the peak response
phase L� was on average larger than Lo, and in the plateau phase
L� was on average smaller than Lo (intercept a in Table 1). This
was confirmed by comparing the L� and Lo pairs from each cell
with the Wilcoxon-Matched-Pairs-Signed-Rank test. The results
were that L� was significantly ~P � 0.0001; n � 54) larger than
Lo during the peak phase, and significantly ~P � 0.0001; n � 54)
smaller during the plateau phase.

Within the statistical errors, the regression lines were parallel to
each other, so both L� and Lo probably showed the same light-
intensity dependence. This is illustrated in Fig. 5a where the
individual ratios L�0Lo are plotted against the response ampli-
tudes. This figure depicts the normalized spatial asymmetry of
voltage spread for two points of time, the peak and plateau phase.
A ratio of L�0Lo � 1 indicates symmetrical voltage spread with
respect to the contrast border, and a single length constant would
be sufficient to describe it. The measured ratio L�0Lo for the peak,
however, was on average 1.216 0.02 SEM ~n � 54), and for the
plateau phase 0.76 6 0.02 SEM ~n � 54). Testing with the
Wilcoxon-One-Sample test yielded a highly significant ~P �
0.0001) difference to L�0Lo � 1 for both cases. We found no
statistical indication that the ratios changed with response ampli-
tude. Therefore the asymmetry of voltage spread was light inten-
sity independent, although the absolute L� and Lo values increased
with intensity.

The asymmetry in voltage spread was, however, time depen-
dent (see also Figs. 3 and 4). At some point in time between the
peak and plateau phase, the ratio L�0Lo reversed. To see if these
temporal changes were due to changes in both or in one of the
length constants, the ratios Lpeak0Lplateau were plotted for L� and
Lo, respectively, against the peak amplitudes (Fig. 5b). Evidently,
Lo was nearly the same for both time points. Most of the temporal
change in asymmetry was due to changes in L�, which decreased
from peak to plateau. At the end of the plateau phase, the mean
ratio of Lpeak0Lplateau for L� was 1.536 0.05 SEM ~n � 54), that
is, during the peak phase voltage spread into the illuminated region
was 53% larger than during the plateau phase. In contrast, Lo did
not change very much with time. For Lo, the average peak0plateau
ratio was 0.90 6 0.02 SEM ~n � 54). Voltage spread in the
nonilluminated region was 10% larger during the plateau phase
compared to the peak phase. Both mean values were significantly
different to one ~P � 0.0001; Wilcoxon-One-Sample test with H0:
x � 1). The impression that the peak0plateau ratio of both length

constants slightly increased with peak response was not statisti-
cally significant.

To obtain a better resolution of the temporal dynamics, 34 scans
from six cells were analyzed with more points in time. Fig. 6
shows one example, where the temporal dynamics of voltage
spread in illuminated and nonilluminated regions becomes clearer.

Fig. 5. Dependence of spatial and temporal dynamics of voltage spread on
response amplitude and, therefore, on light intensity. (a) The spatial
asymmetry ~L�0Lo! reversed with time from the peak phase to the plateau
phase but did not depend on light intensity. (b) The temporal dynamics is
shown as the ratio Lpeak0Lplateau, both for L� and Lo. Lo did not change
much from peak to plateau, while L� was larger during peak than during
plateau. There was no significant dependence on light intensity.

Table 1. Characteristic values of the linear regression equation L � a � b{6relative response6 from all dataa

Peak response phase Plateau response phase

Intercept a
(mm) SEM

Slope b
(mm0mV) R2

Intercept a
(mm) SEM

Slope b
(mm0mV) R2

L� 389 30.0 5.13 0.303 304 32.2 3.28 0.074
Lo 313 25.8 4.69 0.328 399 28.2 4.59 0.231

aIt describes the light intensity dependence of Lo and L� for the peak and plateau response phases, respectively ~n � 54).
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This example was chosen because its average ratios of L�0Lo and
Lpeak0Lplateau were similar to the mean values of these ratios in
Fig. 5 ~L�0Lo at peak � 1.39; L�0Lo at plateau � 0.76; Lpeak0
Lplateau � 1.67 under illumination; and Lpeak0Lplateau � 0.94 in
dark).

In Fig. 6a, the voltage response during illumination with the
contrast border is shown. The peak of the response was reached
after 125 ms and steady state approximately after 600 ms .
Interestingly, the maximum value of L� preceded the peak re-
sponse voltage, which is indicated by the arrows in Fig. 6. Imme-
diately after its peak, L� dropped below Lo and both length
constants approached a steady-state value. The temporal dynamics
of asymmetry is shown in Fig. 6c. Again, the largest deviation of

L�0Lo from one, indicating the degree of asymmetry, appeared
before the peak response. In this example, it lasted for more than
50 ms. Shortly after peak response, voltage spread in illuminated
and nonilluminated regions was symmetrical for a short period of
time. Finally, the steady-state condition was approached, where
voltage spread was larger in the nonilluminated region than in the
illuminated region ~L�0Lo � 1). The same qualitative results were
seen in 26 out of the 34 scans. In all the remaining eight cases, L�

at the peak was larger than Lo, however, the ratio did not com-
pletely reverse during the plateau phase.

To understand where the nonlinear mechanisms come into play,
we computed the length constants from the voltage response using
the linear plate equation and compared them with the observed
time courses (Fig. 7). The time course of the input E~t ! was
calculated from the experimentally measured dark and illuminated
full-field responses as described in the Methods section, using
three different values for the membrane time constant at rest ~t0 �
5, 10, and 20 ms; Fig. 7a). By this way, it was possible to directly
compare the results from the linear model with the experimental
data for each individual cell and light intensity.

E~t ! was always larger than V~t ! at the transient response
phases, because it has to charge the membrane. The simulated time
course of the length constant in the dark, L0, is close to the
experimental data (Fig. 7b). There is a tendency for the simulated
length constant to approach steady state faster, especially for
smaller values of t0. For the length constant in the illuminated
region, L�, the situation is strikingly different (Fig. 7c). During
the first part of the horizontal cell response V~t !, before it reaches
its peak value, the time courses are quite similar. While at peak
time the measured length constant L� rapidly falls below L0, the
simulated ones still increase before they slowly decrease to a
steady-state value which is, as expected, well above L0. This peak
in the time course of the length constant obtained from the linear
model is due to the very transient input E~t !, which is needed to
produce the transient in the full-field response V~t ! (see Fig. 7a).
Note that the peak in L� from the linear model is higher and
occurs always later than in the experimental data. This peak is less
pronounced for larger time constants t0 and for less transient
voltage responses of the cells. Due to this peak, there exists also
some temporal dynamics of asymmetry ~L�0Lo! in the linear
model (Fig. 7d). Asymmetry, however, never reverses from peak
to plateau as it was the case in the experimental data.

Discussion

The plate equation

The plate equation [eqn. (1)] for the membrane potential of the
horizontal cell syncytium is an ordinary current balance equation
for the membrane capacitance and ion currents, extended by a
diffusion term l2DV for lateral current spread through gap junc-
tions. The basic form of the plate equation is not restricted to a
linear membrane. All properties of the membrane channels, which
may depend locally on the membrane potential of the horizontal
cell and on the amount of transmitter released from photoreceptors
or other cells, can be described by an appropriate definition of the
membrane resistance rm. In this case, additional equations are
necessary to describe the dynamics of the channels. It is important
to note that the global parameters t (time constant), l (length
constant) and E (full-field potential) all depend on the membrane
resistance rm. Therefore these parameters are in general not con-
stant. This makes the plate equation different from the very similar

Fig. 6. Temporal dynamics of voltage spread. (a) Light response to the
contrast border at position x�1.4mm, which corresponds to a full-field
illumination condition. Time zero indicates light onset. Stimulus duration
was 800 ms. (b) Temporal dynamics of the two length constants for the
illuminated region ~L� solid line) and the nonilluminated region ~Lo

dashed line) of the retina during light on. (c) Time course of asymmetry,
expressed as the L�0Lo ratio, followed the dynamics of L�. Arrows
indicate time of peak response from (a).
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cable equation used for modeling passive cables (Rall, 1977).
While in the cable equation, all three parameters are constant and
the cable is stimulated by point-like current injections, the syncy-
tium is stimulated continuously in space via changes of all three
parameters.

The geometric details of the horizontal cell network are re-
flected by the value of l via the scaling factor g (see Methods and
Appendix) and the sheet resistance Rs. Therefore changes in
geometry, that is, the network pattern, and changes in Rs result in
a different scaling of space. The qualitative behavior of the mem-
brane potential remains unchanged as long as the assumptions for
the continuum limit are fulfilled (see below). So, the existence of
the continuum limit justifies the use of quadratic or triangular grids
for simulation studies (Lamb & Simon, 1976; Winslow & Knapp,
1991; Oshima et al., 1995; Kamermans et al., 1996) as an approx-
imation of the real horizontal cell network. More realistic grids are
only needed for a better description of quantitative effects or in
conditions where the continuum limit is not valid (Ammermüller
et al., 1996; Andreau et al., 2000). It is also sufficient to use
one-dimensional grids to study the membrane potential for one-
dimensional stimuli such as slits.

The diffusion term

The diffusion term relies on some assumptions: (1) The horizontal
cell network has to be homogeneous and isotropic. (2) Adjacent
cells are coupled by a constant sheet resistance Rs. (3) The length
constant l has to be greater than the distance between two neigh-
boring cells. This is the essential restriction, which justifies the use
of the continuum limit. Our experimental results confirmed indeed
these assumptions:

1. The area density was homogeneous across the analyzed area
of the retina (Fig. 2d). The control experiments with dopa-
mine superfusion showed that the global coupling of the
horizontal cell syncytium under the same stimulus condi-
tions did not change with time. There still exists the possi-
bility that the bipartite field produced heterogeneous coupling
of the horizontal cell syncytium by closing gap junctions in
the illuminated region of the retina. This would produce a
decrease of L�. Several modulators like dopamine (Picco-
lino et al., 1984), nitric oxide (Pottek et al., 1997), retinoic
acid (Weiler et al., 1999), calcium (DeVries & Schwartz,
1992), or pH (Hampson et al., 1994) are known to influence
horizontal cell coupling. Many arguments speak against a
role of dopamine in heterogeneous uncoupling under our
experimental conditions. In the turtle retina, only wide-field
A28 amacrine cells with dendritic diameters in the range of
0.5 mm contain dopamine (Kolb et al., 1987, 1997). It is
released in the inner plexiform layer (IPL) and has to reach
the outer plexiform layer (OPL) by diffusion (Witkovsky
et al., 1987, 1993). Therefore, it is very unlikely that the
putative action of dopamine is restricted to the illuminated
part. Global uncoupling of the syncytium, however, would
have been detected in the control experiments. A second
argument arises from the fast onset of the change in L�,
which occurs around 120 ms after light ON (Fig. 6b). The
A28 amacrine cell response has a latency of around 50–
100 ms (Kolb et al., 1997), leaving only 20–70 ms for
dopamine release, diffusion from the IPL to the OPL, and for
triggering the entire dopamine0cAMP cascade. This time
seems much too short for us. It takes several tens of seconds

Fig. 7. Comparison of the measured time courses with those calculated
from the linear model. (a) Time course of the computed full-field potentials
E~t ! (solid lines) needed to evoke the measured full-field response V~t !
(dashed line) for three different values of t0 used for the computation (5,
10, and 20 ms as indicated). (b) Time course of the length constant Lo in
the nonilluminated part. The computed length constants from the linear
model [solid lines, to as in (a)] were very similar to the experimentally
obtained one (dashed line). Computed length constants reached steady state
a little bit earlier for to � 5 or 10 ms. (c) Time course of L� in the
illuminated part of the retina. At the beginning computed length constants
[solid lines, to as in (a)] are similar to the measured one (dashed line), but
shortly before the full-field response reached its peak value (indicated by
the arrow), the measured length constant decreased and dropped below the
values of Lo. The computed length constants decreased only slightly and
finally stayed at values larger than Lo. (d) Asymmetry of voltage spread,
expressed as the L�0Lo ratio, did not reverse in the linear model, as it was
the case in the experiment.
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during constant superfusion with dopamine until an initial
effect can be observed. The full effect needs several minutes
to develop (Piccolino et al., 1984; Ammermüller et al.,
1995). Much less is known about the cellular origins and the
mechanisms of release and action of the other possible
modulators. A final argument, however, speaks against any
heterogeneity in coupling between illuminated and nonillu-
minated parts of the horizontal cell syncytium, that is, a
modulation of the sheet resistance due to illumination inten-
sity. A strong dependence of asymmetry (the L�0Lo ratio)
on peak or plateau potential would be expected, since the
horizontal cell response reflects illumination intensity. This
was clearly not the case (Fig. 5a). This also excludes the
possibility that differences in horizontal cell potential be-
tween illuminated and nonilluminated regions per se pro-
duced heterogeneity in coupling. Since there is no indication
for nonisotropy of gap junction density or conductance of the
L1 horizontal cell syncytium, we assume that the conditions
of homogeneity and isotropy are fulfilled under our experi-
mental conditions.

2. Kaneko (1971) showed that the sheet resistance is indeed
Ohmic, that is, the sheet currents are linear. As long as the
transjunctional voltage is less than 620 mV, gap junctions
form Ohmic resistances (DeVries & Schwartz, 1992; Bruz-
zone et al., 1996). The physiological range of transjunctional
voltage of neighboring horizontal cells was estimated to be
less than 20 mV in the worst case. As shown in the Appendix
[eqn. (A9)], additional currents for hypothetical capacities of
the gap junctions can be neglected. Therefore, the sheet
resistance is indeed constant.

3. As can be seen from Figs. 2a and 3a, the distance a between
two adjacent axon terminals is less than 100 mm and thus
smaller than the L values which range between 250 and
700 mm, yielding L0a ratios larger than 1 (see also Piccolino
et al., 1984). Therefore, the condition for the continuum limit
is given (see Fig. A-2 in Appendix).

Taking all arguments together, we conclude that under our
experimental conditions the continuum limit is valid. There is no
reason to question the general plate equation. All effects of voltage
spread dynamics that differ from expectations of the linear model
have to be attributed to nonlinearities in the membrane current Im.

Length constants

The reported dependence of lambda on illumination intensity
suggested that voltage spread in the horizontal cell network is
different in illuminated and nonilluminated parts of the retina
(Lamb, 1976; Byzov & Shura-Bura, 1983; Perlman & Ammer-
müller, 1994; Reifsnider & Tranchina, 1995; Ammermüller et al.,
1996; Kamermans et al., 1996). In the most simple scenario,
illumination leads to decreased transmitter release from the photo-
receptors, thereby closing ionotropic glutamate receptor channels
of the horizontal cells (Lasater & Dowling, 1982; Slaughter &
Miller, 1983; Miyachi, 1988; Zhou et al., 1993; Krizaj et al., 1994)
and increasing the membrane resistance rm in the illuminated area.
Based on a linear continuum model, which takes such changes of
rm into account, one would expect for the steady state that (1) two
different length constants exist for illuminated and nonilluminated
parts of a retina stimulated with a contrast border; (2) l�, the

length constant in the illuminated part, increases with increasing
intensity; (3) lo, the length constant in the nonilluminated part, is
independent of intensity; (4) l� is larger than lo. These expecta-
tions as proposed by Naka and Rushton (1967) have never been
validated experimentally, since Lamb (1976) introduced the sim-
plification l� � lo for dim illumination (which was inspired by
cable theory, where current like stimuli only attribute to E and not
to rm!.

Here we found that the description of voltage spread under a
contrast border is indeed more accurately described by exponential
functions with two length constants L� and Lo than with a single
length constant. Although the peak phase of the response is not
covered by the steady-state solutions from the linear model, the fits
proved to be as good as those in the plateau phase. So, L� and Lo

can be used to describe temporal dynamics of voltage spread under
differently illuminated areas phenomenologically. Both L� and Lo

increased with light intensity in peak and plateau as shown for the
single length constant (Lamb, 1976; Perlman & Ammermüller,
1994; Ammermüller et al., 1995). In addition, voltage spread was
asymmetrical with respect to the contrast border. The asymmetry
was not intensity dependent, but showed strong temporal dynamics
and reversed with time. This temporal change is mainly carried by
L�, that is, in the illuminated part of the retina.

Altogether, the last two expectations from the steady-state
solution of the linear model were contradicted by the experiments.
In the peak response phase, however, where the steady-state con-
dition is not strictly fulfilled, the last prediction that L� is larger
than Lo was also supported. This partial failure of the linear plate
equation makes it impossible to identify the measured length
constants L with those from the model l. So, direct conclusions
about the membrane resistance rm and the sheet resistance Rs via
the well-known formula l � !rm 0RS are not valid.

Dynamics of length constants

In Fig. 7 the input for the linear model, E~t !, was calculated to
result exactly in the measured full-field response. If only synaptic
conductances are changed, then E~t ! is directly proportional to the
total membrane resistance rm [eqn. (3)]. Therefore, E~t ! resembles
its time course, including effects of obviously existing nonlinear-
ities. For the linear model, this full-field input is assumed to be the
same for all illuminated cells. However, in real horizontal cells the
feedback strength and0or the state of voltage-gated channels are
determined by the illumination strength and the membrane poten-
tial. Due to the spatially different potential their effective input
varies across the contrast border. Neglecting these effects at the
moment, then as a linear network E~t ! is exactly what the hori-
zontal cells in the illuminated region should get from the photo-
receptors. Isolated cones show transient light responses, even
without a feedback signal from horizontal cells (Nakatani & Yau,
1988; Matthews et al., 1988, 1990; Schnapf et al., 1990). So, the
required transient time course of E~t ! is plausible. It is this
transient behavior of the input E~t ! which is the reason for a peak
in L�. Even with this transient input, however, the linear model
failed to reproduce three features of the experimental data. First,
the large decrease of L� after an initial peak, leading to the
temporal reversal of asymmetry, is in contrast to the linear model.
Second, the time course of L� reaches its peak before the mem-
brane potential, whereas in the simulation it lags behind. Third, the
linear model cannot explain the intensity dependence of Lo. On the
other hand, the linear model reproduced the early phase of L� and
the total time course of Lo very well (Fig. 7).
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Implications of nonlinearities

Since there is no reason to question the diffusion term of the plate
equation, the differences result from the assumption of linearity
used for modeling the membrane current Im. To explain the exper-
imental findings, voltage-dependent nonlinearities must exist. These
could be mediated directly by voltage-gated channels, especially
potassium and calcium channels in the horizontal cell membrane
(Byzov & Trifonov, 1981; Winslow & Knapp, 1991; Golard et al.,
1992; Akopian et al., 1997). On the other hand, strong indications
exist for an indirect negative feedback pathway via the photorecep-
tors. The mechanisms and parameters of feedback are still under
discussion (Wu, 1992; Burkhardt, 1993; Piccolino, 1995; Verweij
et al., 1996a; Kamermans & Spekreijse, 1999; Kamermans et al.,
2001).

Due to such nonlinearities, the spatial voltage distribution in the
horizontal cell syncytium leads to a spatially nonuniform mem-
brane resistance, especially in the neighborhood of the contrast
border. In Fig. 8, the consequences of this effect are illustrated
schematically for the steady-state condition using a simple model.
We have to emphasize that this illustration is not aimed to repro-
duce or explain our findings, but to show some basic principles.
The quantitative results will depend on the exact reversal poten-
tials and the transfer functions and0or voltage dependence of the
nonlinearities. Using appropriate parameters, nearly any results
can be obtained. In this illustration, we assumed a simple feedback
which reduced the membrane resistance rm by an amount propor-
tional to the horizontal membrane potential V~x! relative to its
resting potential E0 (a voltage-gated channel with its reversal
potential above resting potential that opens at more negative
potentials would, e.g., have the same qualitative effects). The
results are that the length constants, as well as the full-field
potential E (and the membrane time constant, which is not shown
for simplicity), are no longer constant in space. All of them also
depend on location relative to the contrast border via the mem-
brane potential. For example, the membrane length constant de-
pends on illumination intensity I and on location x via the membrane
potential V: l~I,V~x!!�!rm~I,V~x!!0RS . Only far away from the
illumination border, where the membrane potential reaches its
full-field values, did the three parameters also reach their full-field
values.

The interplay of l~I,V ! and E~I,V ! with the membrane po-
tential V shapes the spatial distribution of the membrane potential
delayed by the membrane time constant t. From that two length
constants L0 and L� can be measured which do neither equal the
membrane length constant l nor allow simple conclusions about
the membrane resistance. In the example of Fig. 8, the length
constants L0 and L� are, for example, smaller than any of the
corresponding theoretical length constants, since the spatial depen-
dence of the full-field potential additionally shortens voltage de-
cay. Experimentally measured length constants L� and Lo are,
however, still a measure of the effective voltage spread, that is, the
size of the horizontal cell’s receptive field. They are the appropri-
ate parameters for discussing the functional implications of the
dynamics of receptive fields in horizontal cells. The decrease of
the length constant in the illuminated region after onset of nonlin-
earities sharpens, for example, the response of the horizontal cells
and induces a larger hyperpolarization at the contrast border.

One might argue that as long as the evoked potentials are very
small the effects of the nonlinearities are negligible. However, as
Fig. 5a shows even for plateau responses of about 5 mV below rest,
L� is clearly below Lo, rejecting such an assumption. In addition,

it is very speculative to make any statement about a decrease or
increase of rm from changes observed in the measured length
constants because of the complex interaction of the existing non-
linearities with spatial voltage diffusion. Therefore, length-constant
data derived from the potential measurements in the center of spots
of light with different diameters have to interpreted very carefully,
since they are in no way a direct measure of the membrane

Fig. 8. Demonstration of spatially nonconstant membrane length constants
and full-field potentials in the steady state resulting from some nonlinear-
ities in the plate equation. In this simulation, a simple feedback reducing
the mebrane resistance rm by an amount proportional to the horizontal
membrane potential V relative to its resting potential E0 was assumed. The
retina was illuminated in the right half ~x � 0) and remained dark in the
left half ~x � 0). (a) The resulting membrane potential distribution for the
linear (dashed line) and nonlinear plate equation (solid line). (b) Due to the
nonlinearity, the full-field potential E is reduced (solid line) compared to
the linear model (dashed line), which yields constant values for E0 and E�

in the dark and illuminated part, respectively. (c) The membrane length
constants of the nonlinear model are reduced compared to the linear case.
The resulting measured length constants Lo and L� have completely
different values, since the distribution of the full-field potential also
influences potential spread.
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resistance. The same holds for length constants measured from the
decay of the membrane potential evoked by thin slits of light.
These correspond basically to Lo from our experiments.

To relate the measured spatio-temporal dynamics of voltage
spread with biophysical parameters like rm, some critical experi-
ments are needed. By pharmacological treatment the relative con-
tributions of feedback, voltage-dependent conductances, or even a
completely new mechanism may be separated. In the case of
complete blockage of nonlinearities, the linear model should de-
scribe all phenomena. Indeed, the complete description of voltage
spread by the linear model can be used as a criterion that all
nonlinearities are blocked, and the resulting length constant will
describe the linear component of rm. To fully describe the nonlin-
ear behavior, however, quantitative descriptions of the equations
relating rm with intensity and membrane potential V~x! are needed.
This includes quantitative values for reversal potentials, transfer
functions, and voltage dependencies. Presently, the available data
about feedback and0or voltage-dependent conductances contain
too many free, unknown parameters. Since nearly any result can be
obtained in a nonlinear model by using appropriate parameters,
conclusions about precise mechanisms seem too speculative for us
at present. One has to be aware that the situation is different with
a nonlinear model. With the linear assumption, measured voltage
spread can be easily related to rm since this is the only free
parameter left (assuming constant sheet resistance). This is not the
case in the nonlinear model. Here rm is not just a single number but
a whole function depending on V~x!, which has to be parameter-
ized by several numbers to put forward a realistic analytical
equation. On the other hand, the description of voltage spread by
such a nonlinear model will greatly enhance understanding of
spatio-temporal signal processing in the outer plexiform layer even
in the case of complex visual stimuli.
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Appendix

Derivation of the plate equation

A first step in modeling a horizontal cell network is to represent each cell
as the vertex of a lattice. Here the plate equation is derived from regular
(quadratic or triangular) lattices. Consider a cell at position k and one of its
nearest neighbors k � 1 in direction j (see Fig. A-1), coupled by the
constant sheet resistances Rsk

j due to the gap junctions. The current Ik
j

which flows from cell k towards the neighboring cell is due to the potential
difference Vk�1

j � Vk between them:

Ik
j � �

Vk�1
j � Vk

Rsk
j

. (A1)

Fig. A-1. A small part of a quadratic lattice with its potentials and currents.
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At each node, the sum of currents flowing from all 2Q adjacent cells in Q
directions j (two for the quadratic and three for the triangular lattice) must
match the membrane current Imk

of cell k:

Imk
� (

j�1

Q

~Ik�1
j � Ik

j !. (A2)

Inserting eqn. (A1) and assuming the sheet resistances to be homogeneous
and isotropic, Rs � Rsk

j for all positions k and directions j, this equation can
be written as

1
RS
(
j�1

Q

~Vk�1
j � 2Vk � Vk�1

j ! � Imk
. (A3)

Next substitute the membrane current Imk
by the corresponding current

density imk
� Imk

0A, where A � a2 is the sheet area of one cell and a is the
averaged distance of the cells. We get

1

RS
(
j�1

Q Vk�1
j � 2Vk � Vk�1

j

a2 � imk
, (A4)

which is a sum of second-order differences for all directions j. In the
continuum limit a r ]a, these differences become second-order spatial
derivatives, resulting in a simple diffusion-like differential equation:

g

RS

DV~ ?x! � im~ ?x!, (A5)

where D � ]20]x 2 � ]20]y 2 is the two-dimensional Laplace operator, ?x is
the location in the horizontal cell layer, and g is a number depending on the
geometry of the grid ~g � 1 for quadratic, g � 302 for triangular, and g �
304 for hexagonal lattices). Although this equation is derived for the special
case of regular lattices, it is possible to show that the continuum theory can
be mapped into any Bravais or even into random lattices (Christ et al.,
1982; Allés et al., 1995; Bimonte et al., 1996).

To get an equation for the membrane potential, it is also necessary to
specify the membrane current density im. It is composed of different ion
currents ik � ~V � Ek!0rk through channels of type k with resistance rk and
corresponding reversal potential Ek. The resistances rk ~V m2) are identical
with the resistance per membrane surface multiplied by the relative mem-
brane surface am, which is the ratio Am0A of the total surface of the cell Am

and the sheet area A � a2. The resistances rk may depend on the activity
of the presynaptic photoreceptor or on the potential of the horizontal cell
itself. In addition, there is the current due to the membrane capacitance ic �
cmV̂, where cm (F0m2) is the time-independent membrane capacity per
sheet area. Again, it is identical to the membrane capacity per membrane
surface ~cm

' ; 1 µF0cm2) multiplied by the relative membrane surface am.
Summing all these membrane currents and inserting them into eqn. (A5),

one obtains the plate equation:

tV̂ � l2DV � V � E, (A6)

where rm~ ?x, t ! ~Vm2) ~10rm �(k 10rk ! is the membrane resistance, t~ ?x, t !
(s) � cm rm is the time constant, l~ ?x, t ! (m) � !grm 0RS is the length
constant, and E~ ?x, t ! (V) � rm(k Ek 0rk is the full-field potential. Note that
t, l, and E depend on retinal position ?x and time t due to the membrane
resistance rm driven by the photoreceptors or the potential of the horizontal
cells.

Condition for the continuum limit

The condition for the continuum limit eqn. (A6) to be a good approxima-
tion of the discrete cell network was already investigated by Lamb and
Simon (1976). On a quadratic grid where g � 1, the decay constant for the
potential in the steady state is given by

lgrid �
a

arcosh� Rs

2Rm

� 1� , (A7)

where Rm ~V! is the total membrane resistance of a single cell, which is
related to rm via the sheet area A � a2 by rm � Rm A. On the other hand,
the length constant from the plate equation [eqn. (A6)], which also de-
scribes the exponential decay in the steady state, is given by

lplate � � rm

Rs

� a� Rm

Rs

. (A8)

In Fig. A-2, both the grid and the plate-decay constants expressed in the
distance a of two adjacent cells are plotted against!Rm 0Rs. If the length
constant of the exponential decay in the steady state is just greater than the
spacing of the cells a, the continuum limit gives a very good approximation
of the potential in the discrete network.

Capacity of gap junctions

The gap junctions do not only contribute to the sheet resistance Rs but they
could also act as little capacitors Cs, coupled in parallel to Rs. To include
the effect of such a capacitance, the additional term sDV̂ has to be added
to the diffusion term in the plate equation [eqn. (A6)], where s~ ?x, t !
(m2s) � Cs rm g. An estimation of the magnitude of this term as s~V0tl2!
in relation to the V term leads to

sDV̂

V
� g

Ag

Am
� a

l
�2

, (A9)

where the gap junction capacity Cs is estimated by the specific membrane
capacitance cm

' times the the total gap junction area of one cell Ag. g—the
number depending on the geometry of the grid—is on the order of one. For
the continuum limit to be valid, the length constant has to be larger than the
distance of adjacent cells: a0l � 1. The surface of all gap junctions of a
cell is on the order of 1 mm2, while the surface of a whole cell Am is on the
order of several hundreds mm2. Taking all this into consideration shows
that the gap-junction-capacity term makes less than 1% of the other terms
and can hence be neglected. The time derivative it contains is important
only for the time-dependent solutions of the plate equation [eqn. (A6)],
anyway.

Fig. A-2. The length constants for the exponential decay of the potential on
a discrete cell network lgrid and for its continuum approximation lplate,
related to the cell spacing a. Their dependence on the ratio of the mem-
brane resistance Rm and the sheet resistance Rs is shown. If this ratio
exceeds one, or if the length constants are greater than the cell distances,
the network is approximated very well by the continuum model.
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