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Abstract
The human thalamus relays sensory signals to the cortex and facilitates brain-wide communication. The thalamus is also 
more directly involved in sensorimotor and various cognitive functions but a full characterization of its functional repertoire, 
particularly in regard to its internal anatomical structure, is still outstanding. As a putative hub in the human connectome, 
the thalamus might reveal its functional profile only in conjunction with interconnected brain areas. We therefore developed 
a novel systems-level Bayesian reverse inference decoding that complements the traditional neuroinformatics approach 
towards a network account of thalamic function. The systems-level decoding considers the functional repertoire (i.e., the 
terms associated with a brain region) of all regions showing co-activations with a predefined seed region in a brain-wide 
fashion. Here, we used task-constrained meta-analytic connectivity-based parcellation (MACM-CBP) to identify thalamic 
subregions as seed regions and applied the systems-level decoding to these subregions in conjunction with functionally con-
nected cortical regions. Our results confirm thalamic structure–function relationships known from animal and clinical studies 
and revealed further associations with language, memory, and locomotion that have not been detailed in the cognitive neuro-
science literature before. The systems-level decoding further uncovered large systems engaged in autobiographical memory 
and nociception. We propose this novel decoding approach as a useful tool to detect previously unknown structure–function 
relationships at the brain network level, and to build viable starting points for future studies.

Keywords Thalamus · Systems-level decoding · Structure–Function relationships · BrainMap database · ALE meta-
analysis · Neurosynth

Introduction

The human thalamus is known to participate in sensorimotor 
(Herrero et al. 2002; Saalmann and Kastner 2011) and as 
well in a variety of higher cognitive functions such as reward 
(Haber and Knutson 2010), language (Llano 2013), atten-
tion (Schmitt et al. 2017), executive (Marzinzik et al. 2008; 

Varela 2014; Halassa and Kastner 2017), and memory pro-
cesses (Pergola et al. 2013; Carlesimo et al. 2015). The thal-
amus is, however, not a unitary structure, and its segregated 
nature determines its behavioral and cognitive characteristics 
(Sherman et al. 2006; Sherman 2016). Traditionally, the tha-
lamic nuclei were delineated based on histological features 
(Vogt and Vogt 1941; Morel et al. 1997; Krauth et al. 2010). 
Modern (network) neuroimaging has refined these segmen-
tations by investigating the wide-spread connections of the 
thalamus and implicated the thalamus in a variety of cogni-
tive functions through its reciprocal interconnections with 
cerebellar, subcortical, and cortical neural circuits (Behrens 
et al. 2003; Johansen-Berg et al. 2005; Moustafa et al. 2017). 
However, from a (cognitive) neuroscience perspective, the 
exact internal functional organization of the thalamus and its 
subdivisions has not been fully elucidated. There are several 
reasons for this as follows: Thalamic nuclei participate in a 
highly diverse set of cortical systems, while the connectivity 
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patterns of some nuclei seem to overlap, which comes with a 
heterogeneous picture regarding the functional properties of 
the individual nuclei (Yuan et al. 2016), further complicating 
the functional characterization of thalamic nuclei. In this 
sense, thalamic nuclei that relay sensorimotor information 
show rather specific functions (Sherman 2016). In contrast, 
nuclei that are supposed to actively process information from 
different cortical systems, are more flexible in their partici-
pation in a broad range of cognitive functions (Fama and 
Sullivan 2015; Mitchell 2015; Yuan et al. 2017; Wolff and 
Vann 2019; Antonucci et al. 2021). The required systematic 
application of a variety of experimental paradigms to fur-
ther disentangle the functions of brain regions is, however, 
constrained by practical factors such as the high costs and 
the tremendous effort involved in organizing (large-scale) 
functional neuroimaging studies (Eickhoff et al. 2011).

The functional characterization of brain regions is facil-
itated by meta-analytic decoding using databases such as 
BrainMap (Laird et al. 2011) or Neurosynth (Yarkoni et al. 
2011) that comprise the data of thousands of neuroimaging 
studies, tapping into a variety of psychological constructs. 
An assessment of the functional repertoire of a particular 
pre-defined brain area requires a well-elaborated choice 
of an atlased parcellation. In the literature, many different 
brain parcellation schemes have been proposed to deline-
ate regional boundaries based on different structural and 
functional properties. Oftentimes, distinct nomenclatures 
are used in these efforts to designate the regions observed, 
challenging the integration of neuroimaging results (Boh-
land et al. 2009; Amunts et al. 2014; Eickhoff et al. 2018; 
Salehi et al. 2020). This is especially true for the thalamus, 
for which several parcellations exist, each with a differ-
ent level of detail (Mai and Majtanik 2019; Iglehart et al. 
2020). Previous thalamic parcellations delineated, for 
instance, either seven (Behrens et al. 2003; Najdenovska 
et al. 2018), 9 (Hwang et al. 2017), 11 (Saranathan et al. 
2021), 15 (Kumar et al. 2017), 21 (Kumar et al. 2015), 25 
(Iglesias et al. 2018), or 38 distinct nuclei in the Morel 
atlas (Krauth et al. 2010; Morel et al. 1997). For the par-
ticular purpose of meta-analytic decoding, however, the 
existing thalamic parcellations may be not well-suited. 
Parcels need to match the spatial resolution of the cog-
nitive neuroscience experiments in the data bases. Quite 
likely, histology-based parcellations (Krauth et al. 2010; 
Morel et al. 1997) are too fine-grained, since they feature 
a large number of small nuclei which do not match the 
still relatively low spatial resolution of functional neuro-
imaging (Traynor et al. 2010; Steullet 2020). Furthermore, 
parcels need to match the functional resolution of task-
constrained co-activations. Even though task activity is 
ultimately supported by structural and functional connec-
tivity (Tavor et al. 2016; Cole et al. 2016), parcels derived 
from either anatomical (Behrens et al. 2003; Najdenovska 

et al. 2018; Saranathan et al. 2021) or (resting-state) func-
tional connectivity (Kumar et al. 2017; Hwang et al. 2017) 
are not guaranteed to carry task-related information (Eick-
hoff et al. 2011).

We therefore aimed to build a novel data-driven par-
cellation of the human thalamus, based on brain-wide 
meta-analytic connectivity modeling (MACM; Eickhoff 
et al. 2011; Langner and Camilleri 2021)) using the co-
activation patterns of thousands of functional neuroimag-
ing experiments stored in the BrainMap database (Laird 
et al. 2011). The associated connectivity-based parcella-
tion (MACM-CBP) technique has been previously applied 
to parcellate the dorsolateral prefrontal cortex (Cieslik 
et al. 2013), the pulvinar (Barron et al. 2015), the frontal 
pole (Ray et al. 2015), the left and right premotor cortices 
(Genon et al. 2016, 2018b), or the ventromedial frontal 
lobe (Chase et al. 2020). The usage of such data-driven 
parcellations facilitates the testing of hypotheses on the 
behavior (i.e., the cognitive-functional profile) of the 
newly derived subunits with Bayesian reverse inference 
decoding. By adapting this decoding strategy, we were 
able to aggregate data of several thousand neuroimaging 
studies and probe the functional implications of different 
thalamic regions in different behavioral contexts.

In the present research we aimed to characterize the 
function of thalamic nuclei, derived via MACM-CBP, 
with reverse inference decoding based on data stored in 
the Neurosynth database (Yarkoni et al. 2011). Instead of 
using the BrainMap database as source for the functional 
characterization, as done in previous decoding studies, we 
here used Neurosynth because it includes a larger corpus 
of neuroimaging datasets. Furthermore, Neurosynth con-
tains a set of functional terms that are a product of auto-
mated data-driven text-mining, which provides a larger 
variety of possible terms for functional associations. Con-
sidering the dense interconnectedness of the thalamus with 
cortical regions, we extended the established decoding 
strategy with a new approach, which we propose is more 
sensitive to uncover thalamic functional organization, as 
compared to already existing decoding strategies. The 
novel approach—which we call systems-level decoding—
decodes structure–function associations simultaneously 
for pairs of brain regions (here: individual MACM-CBP-
derived thalamic seed regions and functionally coupled 
cortical regions) and retains those functions that are not 
already associated with either of the two regions alone. A 
precursor systems-level decoding approach has previously 
been used successfully to characterize clusters of brain 
regions involved in cognitive action or emotion regula-
tion (Langner et al. 2018) and here we aimed to expand 
the knowledge about the functional spectrum of thalamic 
nuclei, acknowledging the fact that brain regions work in 
concert to process stimuli and mediate behaviors.
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Methods

Definition of thalamic seed regions

We used the Oxford thalamic connectivity atlas template 
(Behrens et  al. 2003) to define the seed volume. The 
Oxford atlas is based on structural data, which circum-
vents the problem of circularity when examining struc-
ture–function associations (Kriegeskorte et al. 2009). The 
thalamic mask was split along the midline for the left and 
the right hemisphere, thresholded and binarized (≥ 25% 
probability) using FSL (Jenkinson et al. 2012). The left 
mask comprised 1321 voxels with 2 × 2 × 2  mm3 resolu-
tion, the right mask comprised 1283 voxels.

Meta‑analytic connectivity modeling (MACM) 
and connectivity‑based parcellation (CBP)

The two thalamic seed regions were parcellated based on 
the task-derived whole-brain co-activation patterns of all 
voxels in the respective thalamic mask. To determine the 
co-activation pattern for each voxel within the left and 
right thalamic masks, we queried the BrainMap database 
(Laird et al. 2011) and performed coordinate-based meta-
analysis on the output. Inclusion criteria of the database 
query required eligible experiments to be normal map-
ping studies using fMRI or PET with healthy adults and 
reporting task-related activations. Thus, neither interven-
tion studies nor clinical or developmental studies were 
included in the analysis. From all 7937 eligible experi-
ments in the database, we then associated experiments 
with each voxel independently to construct co-activation 
maps for each voxel. When it comes to the association 
between seed voxels and experiments within the Brain-
Map database, the number of studies reporting activation 
precisely at a seed voxel might be low or variable (Bzdok 
et al. 2013; Ray et al. 2015). We therefore selected the 
experiments associated with each voxel, from studies that 
showed activation at or in the immediate neighborhood 
to that voxel. That is, in steps of two, we applied a (spa-
tial) filter to get the 20–200 (i.e., yielding 91 filter sizes 
in total) experiments that reported the closest activation 
to the current seed voxel. As done in previous studies, 
the closeness was defined by calculating the Euclidean 
distances between the current seed voxel and the foci of 
all experiments that met the specified (search) criteria. 
This method has proven to provide a reliable basis for 
MACM-CBP, as demonstrated in former studies (Cieslik 
et al. 2013; Clos et al. 2013).

Then, for each seed voxel, the brain-wide co-activa-
tion pattern for each of the 91 filter sizes was computed 

by activation likelihood estimation (ALE) meta-analysis 
(Eickhoff et al. 2012) across all experiments associated 
with the given voxel (i.e., reporting activation at or near 
this voxel, as described above). The core principle of the 
ALE approach is to treat reported activation foci not as 
absolute points in space but as 3D Gaussian probability 
distributions, to account for spatial uncertainties of func-
tional imaging data (Turkeltaub et al. 2002; Eickhoff et al. 
2009). Probability distributions of all reported foci were 
combined in a modeled activation map for each experiment 
associated with a particular seed voxel. Then, the voxel-
wise union across the activation maps of all experiments 
associated with the given seed voxel yielded an ALE score 
for each voxel of the brain. The ALE score describes the 
probability of a co-activation with the given seed voxel. At 
this point of the analysis, no thresholding was applied, to 
preserve the full quantitative repertoire of whole-brain co-
activation patterns for the later parcellation of the thalamic 
masks in an unconstrained manner. This procedure yielded 
a  Ns ×  NB connectivity matrix, where  NS represents the 
number of seed voxels (i.e., left thalamic mask = 1321, 
right thalamic mask = 1283) and  NB the number of target 
voxels in the reference brain (26,549 voxels located within 
the gray matter). As a connectivity matrix was computed 
for every individual filter size, this procedure resulted in 
91 connectivity matrices.

k‑means clustering

To group co-activation patterns into homogenous clusters 
(“parcels”), we applied k-means clustering to the connec-
tivity matrices individually, as done in previous parcella-
tion studies (Genon et al. 2016; Plachti et al. 2019; Chase 
et al. 2020). The thalamic masks (i.e., the seed regions) were 
iteratively divided into a pre-specified number of k = 2:8 
non-overlapping clusters. The goal of the clustering is to 
group voxels together that show the greatest possible simi-
larity regarding their co-activation patterns. Here, similarity 
is defined by minimizing the variance within clusters and 
maximizing the variance between clusters. Depending on the 
pre-specified number of k clusters, k centroids are randomly 
placed, and voxels are assigned to a given centroid.

We explored 7 different clustering solutions with k rang-
ing from 2 to 8 possible clusters. This range was motivated 
by two points: from a functional perspective, the thala-
mus might comprise two subdivisions spanning ventral 
relay areas (e.g., lateral geniculate nuclei (LGN), medial 
geniculate nucleus (MGN), ventral lateral nucleus (VA)) 
and midline/dorsal association areas (e.g., mediodorsal 
nucleus (MD), anterior nucleus (A) (Vertes et al. 2015). 
Furthermore, we expected that with more than 8 clusters, 
the derived subunits would be too small to find meaningful 
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functional associations, given the spatial resolution of typi-
cal neuroimaging studies.

Selection of optimal filter range

As done in previous studies (Clos et al. 2013; Genon et al. 
2016), the selection of the optimal filter range was based 
on consistency of each voxel´s cluster assignment across 
the different filter sizes. That is, the filter range comprising 
the lowest number of deviants was identified and all fol-
lowing analyses were restricted to these filter sizes. For the 
left thalamus, optimal filter size ranged from 104 to 156 
experiments, and for the right thalamus from 106 to 154 
experiments (see supplementary Figure S1).

Data‑driven selection of the optimal clustering 
solution

Selection of the optimal range for the k-means clustering 
was based on topological, information-theoretic and cluster 
separation characteristics. Topological criteria included the 
detection of the percentage of misclassified voxels (i.e., devi-
ants), voxels not related to the dominant parent cluster (i.e., 
related to the hierarchy index), and the number of consistent 
voxels per cluster. The information-theoretic criterion was 
the variation of information between the filter sizes. Cluster 
separation criteria included the information on cluster sepa-
ration (i.e., the intercluster-to-intracluster distance ratio), the 
silhouette value (i.e., a measure of how similar a given voxel 
is to voxels in its own cluster compared to voxels in other 
clusters). A full description and a figure for illustration is 
given in the supplementary information (S2, S3).

We used the canonical Morel atlas as a well-established 
thalamic atlas scheme for anatomic labeling. That is, we 
calculated the degree of overlap of the MACM-CBP-derived 
parcels with the thalamic nuclei as defined in the Morel atlas 
by means of the Jaccard Index (Steen et al. 2011), to gain 
meaningful labels for our parcellation in accordance with a 
classical view on thalamic demarcation.

resting‑state fMRI data acquisition

As we aimed to characterize thalamic functional proper-
ties in a system-wide fashion, we identified cortical regions 
functionally connected to the MACM-CBP derived thalamic 
clusters by investigating the clusters’ individual RSFC pat-
tern. We based the RSFC analysis of thalamic subregions 
on data from n = 84 healthy participants (mean age = 26.23, 
SD = 5.41 years, 40 females, 44 males). We adopted MRI 
sequences from the HCP-Lifespan project (Harms et al. 
2018) and acquired a T1-weighted structural image (Mul-
tiecho MPRAGE, voxel size 0.8 mm isotropic, TR = 2.4 s, 
TE = 22  ms, flip angle 8°), a T2-weighted structural 

image (SPACE, voxel size 0.8 mm isotropic, TR = 3.2 s, 
TE = 563 ms, flip angle 120°), BOLD fMRI (multiband 
echo-planar imaging, 72 slices, 805 volumes, TR = 800 ms, 
voxel size 2 mm isotropic, TE = 37 ms, flip angle 52°, A-P 
encoding direction), as well as two spin-echo fieldmaps (A-P 
and P-A encoding).

Resting‑state fMRI data preprocessing

We utilized the HCP minimal preprocessing pipelines 
(github.com/Washington-University/HCPpipelines) for 
structural and functional preprocessing (Glasser et al. 2013). 
A detailed description of resting-state data preprocessing is 
given in Markett et al. (2022). In brief, resting-state fMRI 
data were corrected for gradient distortions, motion, EPI 
image distortions, co-registered with the T1 structural 
image, and normalized to MNI volumetric space based on 
cortical folding (MSMsulc, (Robinson et al. 2018). Intensity-
normalized functional images were further processed with 
the fMRISurface pipeline to create individual CIFTI dense 
time-series gray-ordinate files. We applied light volume- and 
surface-based smoothing with a Gaussian filter with 2 mm 
full width at half maximum. For artifact removal, resting-
state time-series data were first run through FSL’s Multi-
variate Exploratory Linear Optimized Decomposition into 
Independent Components (MELODIC) tool (ve3.15) and 
then processed using FSL Fix (v1.06.15). We used a classi-
fier that had been trained on the HCP young adult sample as 
distributed with FIX. Artifactual components were regressed 
out together with the six head motion parameters and their 
first derivatives. The cleaned fMRI time series data were 
then converted to gray-ordinate files as described above.

RSFC analysis

Multivariate functional connectivity analyses were per-
formed for each thalamic subregion by extracting the mean 
time course from each subregion, residualizing each time 
course from the other subregion’s time courses, and com-
puting seed-region RSFC maps by running the first stage 
of FSL’s dual regression. We used the Sandwich Estima-
tor (SwE) Toolbox for SPM12 (Guillaume et al. 2014) to 
create group-level RSFC maps, applying the modified SwE 
procedure with a small sample size correction (type c) and 
a wild bootstrapping procedure with 999 bootstraps. The 
family-wise error was corrected at the voxel level (p < 0.05).

We overlaid each thresholded seed-connectivity map with 
Glasser et al.’s (2016) multimodal parcellation (HCP-MMP) 
to identify cortical regions of interest with at least 80% of 
coverage by the seed-connectivity map (for a complete list 
of all HCP-MMP-regions, see supplementary Table S4 and 
supplementary Figure S5). This resulted in thalamic-corti-
cal pairs that later we used for the systems-level decoding. 
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HCP-MMP is a group parcellation that is based on struc-
tural and functional (task and rest) imaging data and has 
been shown to generalize well across samples (Glasser et al. 
2016).

Functional decoding of thalamic clusters

For the functional characterization of the MACM-CBP-
derived thalamic parcels, we used the NeurosynthDecoder 
implemented in the Neuroimaging Meta-Analysis Research 
Environment (NiMARE; (Salo, Taylor et al. 2021)), which 
is a Python package for conducting neuroimaging meta-
analyses. The Neurosynth database provides a dataset of 
roughly 3000 terms, covering psychological constructs (e.g., 
‘working memory’, ‘episodic memory’), anatomical (e.g., 
‘thalamus’, ‘thalamic’) or technical terms (e.g., ‘BOLD’, 
‘fMRI’) as obtained from automated parsing through pub-
lished neuroimaging studies (Yarkoni et al. 2011). An impor-
tant feature of the NeurosynthDecoder is that it allows for 
reverse inference decoding of activation-term associations. 
We can infer the probability by which a given term was over-
represented in studies reporting activation at a given loca-
tion, which gives us an idea which behavior may have been 
executed while a given brain region was active.

Reverse inference decoding can be applied to arbitrary 
brain regions and results in estimates of the posterior prob-
ability of a term given activation of the region and given the 
prior probability of a term (i.e., the prevalence of the term in 
the database). Formally, the posterior probability is computed 
a s  P(term|activation, p) = p(P(activation|term)∕P(activation|term, p) . 
Here the prior probability p is set beforehand to 0.5 (i.e., 
50% chance of a brain region experiencing the brain state 
described by the term). This rather conservative approach is 
used to equate possible baserate differences of terms within 
the database, which in turn should facilitate the interpreta-
tion of the large number of (otherwise very different) pos-
terior probabilities (Yarkoni et al. 2011). For clarification, 
P(activation|term, p) represents the forward inference and 
gets computed as P(activation|term, p) = pP(activation|term)

+(1 − p)P(activation|nothavingtheterm). In addition to 
reporting the posterior probabilities that can be interpreted 
as effect sizes of the reverse inference decoding, a two-way 
chi-square test was performed to determine if the presence 
of the label and the selection of a term are statistically inde-
pendent (alpha < 0.05). Multiple comparison correction is 
done by applying a Benjamini–Hochberg FDR correction. 
Multiple comparison correction was applied for each cluster 
separately. The number of multiple comparisons depends 
on the number of terms stored in the database (For details, 
see the NIMARE documentation, accessible at: https:// www. 
nimare. readt hedocs. io/ en/ latest/ decod ing. html).

In this study, we submitted each MACM-CBP-derived 
cluster individually to the NeurosynthDecoder. This 
resulted in a list of associated terms and their posterior 
probabilities. Of these terms, we selected the ten terms 
with the highest posterior probability for each cluster for 
the sake of comparability. The automatic NeurosynthDe-
coder lists all terms, irrespective of whether or not they 
passed the multiple-comparison significance testing. We 
therefore excluded all terms that did not pass the multiple-
comparison correction post hoc using an in-house MAT-
LAB (MATLAB 2021) script.

Systems‑level decoding of thalamic clusters

Brain regions work together to process stimuli and realize 
behavior. Especially regions that serve as important hub 
regions in brain networks are related to a diverse set of func-
tions through their large number of connections (van den 
Heuvel and Sporns 2013; Margulies et al. 2016; Bertolero 
et al. 2017).

Evidence shows that the thalamus, as a densely inter-
connected brain region, serves as such an important hub 
region that integrates multimodal signals from functional 
brain systems (Crossley et al. 2013; Hwang et al. 2017). 
Consequently, we applied a novel systems-level decoding 
approach to the MACM-CBP-derived thalamic clusters and 
their respective functionally connected regions.

The basic rules for the generation of reverse inference 
maps for the systems-level decoding were the same as for 
the decoding of individual thalamic clusters. At this step 
of the analysis, however, we decoded all thalamic clusters 
together with their respective functionally connected regions 
in thalamo-cortical pairs (see Fig. 1 for details). More specif-
ically, the mask of a given thalamic cluster was merged with 
the foci from an HCP-MMP-region that was functionally 
connected with that thalamic cluster (i.e., p < 0.05, FWE-
corrected, with at least 80% coverage) to create individual 
volumetric images (i.e., masks) for all thalamo-cortical 
pairs. After decoding, we combined the top-10 terms of 
all thalamo-cortical pairs into a large dataset, filtered out 
regions that did not pass the multiple-comparison correc-
tion (pReverse < 0.05), and tagged each remaining term with 
the respective HCP-MMP regional ID (see Fig. 1A). The 
numeric tags reflect the regional ID from the HCP-MMP 
parcellation to make sure that we were later able to iden-
tify all regions that are associated with the occurrence of 
a given term. Please note, pReverse refers to the p-value 
of the Bayesian reverse inference decoding determining the 
probability of the presence of a label term, given selection 
of that label and the prior probability of having that label.

At this point of the analysis, the reason for the occurrence 
of a term might be threefold as follows:

https://www.nimare.readthedocs.io/en/latest/decoding.html
https://www.nimare.readthedocs.io/en/latest/decoding.html
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1. The term occurs mainly in studies that report thalamic 
activation.

2. The term occurs mainly in studies that reported activa-
tion of the functionally connected region.

3. The term occurs in studies that reported activation in 
both the thalamus and the functionally connected region.

Please note that both the first and the third scenario would 
support thalamic involvement in the term, while scenario 
2 would not support thalamic involvement. To exclude an 
above-chance influence of the second scenario, we repeated 
the decoding for all the functionally connected HCP-MMP 
regions, without the mask from the respective thalamic clus-
ter (see Fig. 1B). We then used the resulting region–term 
associations as a quasi-null-model to normalize the results. 
Having created another dataset (based on the same steps 
as for the terms of the thalamic-cortical decoding), we 
calculated the intersection between the set of terms from 
the thalamo-cortical decoding and the set of terms from 
the decoding of the functionally connected regions with a 

logical-&-conjunction (see Fig. 1C). This step of the analy-
sis returned all common terms between the set of terms from 
the thalamo-cortical and the cortical-only decoding with no 
repetitions.

In the next step of the analysis, we inspected all regional 
IDs with regard to the terms they were tagged with. More 
specifically, we calculated the set difference between 
regional IDs of thalamic-cortical terms and the terms from 
the cortical decoding (see Fig. 1D). This returned all terms 
tagged with an ID that were not present in the set of terms of 
the cortical decoding, without repetitions. With the comple-
tion of these steps, we were able to generate reverse infer-
ence maps for all thalamic-cortical pairs and unraveled all 
regions within that “system” that were commonly associated 
with a given term (see Fig. 1E). Of note, while decoding 
was performed with the NeurosynthDecoder, the subsequent 
analysis of the terms was performed with an in-house MAT-
LAB (MATLAB 2021) script.

For every thalamic-cortical system, we then calculated 
the percentage of regions that were associated with a specific 

Fig. 1  Steps of the systems-level decoding illustrated with an exam-
ple for the MACM-CBP-derived left cluster 1. a In the first step of 
the systems-level decoding, we generated individual thalamic-cortical 
masks for the insertion into the NeurosynthDecoder. This process 
was repeated for all cortical regions that were functionally connected 
at rest with the respective thalamic cluster. In the example, the left 
cluster 1 is functionally connected to 128 regions. For reasons of leg-
ibility, however, only the mask of the left cluster 1 and the region 11 
of the HCP-MMP (i.e., the left Premotor Eye Field) are displayed 
here. b We repeated the decoding for all masks of the functionally 
connected regions only. In the example above the mask of region 73 
(i.e., left Area C in the Dorsolateral Prefrontal cortex) is displayed. c 

In the next step, we calculated the intersect between the terms from 
the two decoding runs with a logical AND conjunction. Note, for 
the reason of legibility, we here only display a limited selection of 
terms. d At the final stage of the analysis, regional IDs were used as 
the basis for the calculation of the set difference between the two sets. 
In the example above, the only term that surpasses the two filtering 
steps is the term ‘verbal working’ associated with the left Premotor 
Eye Field. e Based on all leftover regional-term associations, we cre-
ated cifti files, to display the ‘systems” that were associated with the 
generation of a given term across the brain. Cortical renderings were 
created with MRIcroGL (Rorden and Brett 2000) and surface maps 
with connectome workbench commands (Marcus et al. 2011)
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term, compared to the total number of region–term associa-
tions within that functionally connected system. To report 
a measurement of effect size, we also calculated the aver-
age Bayes Factor of all terms that build a putative func-
tional brain system. Bayes Factor was calculated as the 
ratio between the posterior odds and the prior odds (ref., 
Goodman 1999; Poldrack 2006). Multiple comparison was 
applied separately for thalamo-cortical pair (and in case of 
the quasi-null-model for each cortical region).

This resulted in estimates of the overall association 
strength of a given term with the respective thalamo-cortical 
system. To aid and validate our interpretation, we aggregated 
the terms of the systems-level decoding into larger topics, 
as provided by Neurosynth (Yarkoni et al. 2011). The top-
ics were originally derived from text-mining abstracts of 
published neuroimaging papers through latent Dirichlet allo-
cation (LDA) (for details see (Poldrack et al. 2012; Rubin 
et al. 2017; de la Vega et al. 2018). We used the most recent 
version with 50 topics, derived from the abstracts of 14.371 
articles in the Neurosynth database. A detailed description 
of how we aggregated the terms into larger topics can be 
found in the supplementary material (supplementary Figure 
S6).

As a final step, we created surface-based maps for every 
significant, unique term of each thalamic-cortical system to 
display the systems that are associated with the processing of 
a given psychological construct. The visualization was done 
with the connectome workbench commands (Marcus et al. 
2011) and in-house MATLAB (MATLAB 2021) scripts. A 
possible caveat of this approach is the use of task-constrained 
meta-analytic co-activation maps for delineating thalamic 
clusters while using RSFC analysis to identify functionally 
coupled cortical areas. We therefore repeated the whole 
decoding with BrainMap-based meta-analytic coactivation 
maps for each thalamic cluster. A detailed description of 
this complementary validation, including a comparison of 
the results between both analyses, can be found in the sup-
plementary material (S7–S12). There is compelling evidence 
that meta-analytic task-constrained co-activation mapping 
(i.e., MACM) and RSFC analysis can recover highly similar 
brain-wide systems (ref. Smith et al. 2009; Heckner et al. 
2021). In the present research, we nevertheless decided to 
constrain the selection of cortical regions for the main analy-
sis of the systems-level decoding by RSFC obtained from an 
independent data set to exploit its higher statistical power in 
detecting functionally connected cortical regions.

Supplementary analysis

The rather strict systems-level decoding reduces the range 
of terms that are related to thalamic-cortical activation. That 
is, when we calculated the set intersection between the terms 
from the thalamo-cortical and the cortical-only decoding 

(i.e., the quasi-null-model), we also filtered out terms that 
are exclusively related to thalamic-cortical pairs, because 
this approach retains only the common elements of both sets. 
To increase the range of terms associated with thalamic-
cortical activation, we subsequently calculated the set differ-
ence between the terms from both datasets. This represents a 
supplementary analysis with a more lenient thresholding and 
returned a set of all terms from the thalamic-cortical decod-
ing that were not present in the set of terms from the cortical 
decoding with no repetitions. Since we could not unequivo-
cally rule out whether this set of terms equally arose from 
activity within cortical regions, we did not include these 
results in the main description of thalamic-cortical brain 
systems.

Results

Co‑activation‑based parcellation

We used MACM-CBP to create a novel data-driven par-
cellation of the human thalamus based on functional con-
nectivity across task data. K-means clustering revealed the 
4-cluster solution as the most stable clustering for the left 
thalamus. For the right thalamus, the 3-cluster solution was 
identified as the most stable one. Figure 2 depicts render-
ings of the optimal cluster solutions and provides additional 
information on the size and center of mass of each cluster 
of the optimal solutions. The MNI volumes of the thalamic 
subdivisions will be made publicly available in the ANMIA 
database (https:// anima. fz- jueli ch. de/) upon publication.

To compare our parcellations based on task-constrained 
co-activations with existing parcellations based on histologi-
cal information, we computed overlaps (i.e., Jaccard index) 
of each thalamic cluster with single nuclei of the canonical 
Morel atlas (Morel et al. 1997) (see Fig. 2 and supplemen-
tary Table S13 and supplementary Fig. 14 for details). The 
resulting overlaps were in accordance with the classical view 
of thalamic demarcation.

Of the selected 4 clusters for the left thalamus, cluster 
1 covered the midline of the thalamus including medial 
(central lateral nucleus (CL), mediodorsal nucleus (MD)) 
and lateral (ventral lateral nucleus (VL)) nuclei; cluster 2 
covered medial nuclei (central medial nucleus (CM), poste-
rior nuclei (lateral posterior nucleus (LP), medial pulvinar 
(PuM)), and lateral regions (ventral lateral nucleus (VL); 
cluster 3 consisted mainly of the medial pulvinar (PuM), 
and cluster 4 covered medial (MD) and lateral nuclei (ventral 
anterior nucleus (VA)).

Of the 3-cluster solution found for the right thalamus, 
cluster 1 encompassed nuclei from the medial group (central 
lateral nucleus (CL), MD) and VA in the lateral division; 
cluster 2 covered as well medial nuclei (CL), a posterior 

https://anima.fz-juelich.de/
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nucleus (LP), and lateral regions (VL, VPL); and cluster 3 
comprised the PuM.

Resting‑state functional connectivity

Seed-connectivity maps of each thalamic cluster were over-
laid with the Glasser et al. (2016) HCP-MMP regions to 
generate cortical regions for the systems-level decoding 
approach. The 360 HCP-MMP regions (i.e., 180 per hemi-
sphere) can be grouped into 22 larger cortices per hemi-
sphere (see supplement of Glasser et al. 2016) that can be 
further subdivided into five cortical regions (i.e., anterior 
cortices, posterior cortices, early and intermediate visual 
cortex, sensorimotor areas, and auditory regions). We 
describe each seed-connectivity map based on spatial over-
lap with the 22 cortices.

For left thalamic cluster 1, we found a total of 128 func-
tionally connected HCP-MMP regions, located in large 
portions of the anterior regions of the cortex, in posterior 
regions of the cortex, in auditory and temporal regions and to 
a smaller extent in sensorimotor areas (for details see Fig. 3). 
Left cluster 2 was functionally connected with 47 regions 
encompassing large portions of sensorimotor areas, auditory 
regions (i.e., early auditory), and visual areas (i.e., primary 
visual), as well as smaller portions of the posterior regions 

of the cortex. For left cluster 3, we found seven functionally 
connected cortical regions in posterior cortex (i.e., posterior 
cingulate, inferior parietal), in left temporal regions and—to 
a smaller extent—in visual and anterior (i.e., anterior cin-
gulate) regions of the cortex. Left cluster 4 was function-
ally connected with 16 regions located in bilateral anterior 
regions of the cortex, in the posterior (cingulate) cortex and 
to a small extent in the primary visual cortex.

Right cluster 1 was connected with a total of 97 HCP-
MMP regions located in anterior and posterior regions of 
the cortex, in temporal and auditory regions and in smaller 
portions of sensorimotor areas. A total of 116 regions were 
functionally connected with right cluster 2. These were 
located in early and intermediate visual areas, auditory 
regions, sensorimotor areas and in anterior and posterior 
regions of the cortex. Finally, right cluster 3 was functionally 
connected with 15 regions, encompassing early and inter-
mediate visual and posterior regions of the cortex and to a 
smaller extent regions in auditory, temporal, and anterior 
divisions of the cortex. The RSFC analysis provides further 
evidence for a separation of the thalamic clusters: Of the 226 
cortical regions that were functionally connected to any of 
the seven seed regions, only 11 regions were linked to four 
(out of seven) seed regions, 34 to three, 99 to two, and 82 
to one seed region.

Fig. 2  Voxel size, Volume and 
Center of Mass of the MACM-
CBP-derived thalamic clusters. 
Colored frames around the table 
entries on the left correspond to 
the respective colors of the tha-
lamic clusters displayed in the 
cortical renderings on the right. 
Because we report the overlaps 
of the task-based parcellation 
with the anatomical Morel 
atlas, we displayed also the 
major thalamic groups from the 
Morel atlas for sake of visual 
comparison. A table inform-
ing about the specific thalamic 
nuclei and a figure showing the 
axial slices of the nuclei, that 
form a given thalamic group is 
presented in the supplementary 
material (S13, S14). The corti-
cal renderings were created with 
MRIcroGL (Rorden and Brett 
2000)
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Functional characterization of thalamic clusters

We computed Bayesian reverse posterior probabilities (i.e., 
here denoted as probReverse) of functional terms obtained 
from the Neurosynth database for all thalamic clusters. 
This resulted in estimates for the probability of the occur-
rence of a term in the database, given the activation foci 
within a thalamic cluster. Left cluster 1 was related with 
‘incentive delay’ (pReverse = 0.0025; probReverse = 0.726; 
Bayes Factor = 2.65) and ‘reward anticipation’ (pRe-
verse = 0.007; probReverse = 0.706; Bayes Factor = 2.4), 
‘nociceptive’ (pReverse = 1.123E−06 probReverse = 0.772; 
Bayes Factor = 3.39) and ‘autobiographical memory’ 

(pReverse = 0.00615; probReverse = 0.713; Bayes Fac-
tor = 2.48). Left cluster 2 was associated with sensorimo-
tor processes (i.e., ‘finger tapping’ (pReverse = 3.90E−10; 
probReverse = 0.792; Bayes Factor = 3.53) and ‘motor task’ 
(pReverse = 4.77E−09; probReverse = 0.759; Bayes Fac-
tor = 3.15). Left cluster 3 was related to the processing of 
word-pairs (pReverse = 0.008; probReverse = 0.799; Bayes 
Factor = 3.98). Left cluster 4 was involved with ‘incentive 
delay’ (pReverse = 0.0055; probReverse = 0.751; Bayes 
Factor = 3.02), the processing of ‘sexual’ stimuli (pRe-
verse = 0.00015; probReverse = 0.775; Bayes Factor = 3.44) 
and ‘chronic pain’ (pReverse = 0.008 probReverse = 0.738; 
Bayes Factor = 2.82). The results for the decoding of the 

Fig. 3  Surface maps created with connectome workbench commands 
(Marcus et  al. 2011) displaying resting-state functional connectivity 
of the thalamic clusters with cortical regions. Heatmaps on the right 
display the overlaps of the cortical regions with the 22 cortices of 
Glasser et  al. (2016). At the left bottom, we display the 360 HCP-

MMP cortical regions the seed-connectivity maps were overlaid with. 
At the right, we present the renderings of the 4 (i.e., left hemisphere) 
and 3 (i.e., right hemisphere) thalamic clusters. Spatial overlap was 
quantified via the Jaccard index, and visualization was done with in-
house MATLAB (MATLAB 2021) scripts
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right hemisphere showed commonalities but were at the 
same time less concise. That is, right cluster 1 was related to 
‘incentive delay’ (pReverse = 0.00021; probReverse = 0.732; 
Bayes Factor = 2.73)), right cluster 2 to the perception of 
noxious stimuli (i.e., ‘noxious’ (pReverse = 8.28E−10; 
probReverse = 0.775; Bayes Factor = 3.44), ‘nociceptive’ 
(pReverse = 9.02E−05; probReverse = 0.743; Bayes Fac-
tor = 2.89), and for right cluster 3 no term related to cog-
nitive or perceptual processes surpassed the significance 
threshold. Please note that we excluded anatomical and 
technical terms from the description of the results since 
we were mainly interested in psychological constructs. All 
terms denoting psychological constructs are displayed in 
Fig. 5, whereas a list of all top10 terms is given in the sup-
plementary material (supplementary Table S15).

Systems‑level decoding of thalamic clusters

The present research aimed to broaden the perspective on 
the functional repertoire of distinct thalamic clusters. Since 
cognitive processes emerge from the interaction of intercon-
nected brain regions, we decided to apply a systems perspec-
tive on thalamocortical functional decoding.

Left cluster 1. For left cluster 1, the system decoding 
resulted in a total number of 39 distinct terms, covering 
psychological constructs, anatomical and as well technical 
terms. The terms denoting psychological constructs are 
illustrated in Fig. 5. The term ‘autobiographical memory’ 

had the largest percentage of regional associations (i.e., 
72/123*100 =  ~ 59%), followed by “noxious” (~ 40%) and 
‘uncertain’ (~ 17%). Other terms denoting psychological 
constructs such as ‘verbal working’, ‘remembering’, ‘lin-
guistic’, and ‘calculation’ were only associated with a few 
thalamo-cortical couples with percentages below 5%. A 
complete list of all terms, their percentages, the number 
of regions, and the mean Bayes Factor per system for each 
thalamic cluster, can be found in the supplementary mate-
rial (supplementary Table S16). The ‘autobiographical 
memory’- system covered regions in the bilateral poste-
rior and anterior division of the cortex as well as the right 
primary visual cortex as displayed in Fig. 4.

Left cluster 2. Thalamic-cortical couples for left cluster 2 
produced mainly terms from the spectrum of sensorimo-
tor processes. Roughly 95% (i.e., 45/47*100) of all tha-
lamic-cortical couples produced the term ‘finger tapping’, 
closely followed by ‘index finger’ (~ 70%) and ‘motor 
task’ (~ 66%). The ‘finger tapping’-system covered large 
parts of sensorimotor areas, auditory regions and—to a 
smaller extent—anterior, posterior, and visual regions of 
the cortex.

Left cluster 3. For thalamic-cortical regions of left cluster 
3, the system decoding procedure yielded only the single 
term ‘memory test’. The thalamic-cortical couple involved 
with the term ‘memory test’ was located in the left inferior 
parietal cortex.

Fig. 4  Surface maps of the larg-
est systems per thalamic cluster 
with an outline grid represent-
ing the 360 HCP-MMP regions. 
The largest system is defined as 
the thalamic-centered system 
with the highest percentage of 
co-activated cortical regions 
associated with a given term. 
Color gradings of the surface 
maps correspond to each tha-
lamic cluster represented in the 
box on the bottom-left corner of 
the figure
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Left cluster 4. Five terms were associated with activation in 
thalamic-cortical couples for left cluster 4. The largest per-
centage was found in an ‘autobiographical memory’ system 
(i.e., 9/15*100 = 60%), followed by the term ‘autobiographi-
cal’ (33.3%) and ‘noxious’ (6.6%). Associations for the 
‘autobiographical/autobiographical memory’-system were 
located in bilateral anterior (i.e., ACC and medial prefrontal) 
and posterior (i.e., PCC) divisions of the cortex.

Right cluster 1. 16 terms were associated with thalamic-
cortical couples of the right cluster 1. The largest percentage 
was found for the term ‘noxious’ (i.e., 25/97*100 =  ~ 26%). 
Other terms denoting psychological constructs showed low 
association strengths (e.g., ‘autobiographical memory’, 
‘remembering’ =  ~ 1%). The “noxious” system encompassed 
mainly anterior and posterior divisions of the cortex and 
small portions of the right premotor cortex and left insular 
and frontal opercular cortex.

Right cluster 2. The reverse inference decoding of the tha-
lamic-cortical couples for cluster 2 produced 62 distinct 
terms in total. The largest percentage was found for the 

term ‘noxious’ (i.e.,108/116*100 =  ~ 93%) and ‘nociceptive’ 
(~ 73%), followed by ‘finger movements’ (~ 21%). Other 
terms denoting psychological constructs such as ‘action 
observation’ (~ 1.7%), ‘calculation’ (~ 0.8%), ‘chronic pain’ 
(~ 2.6%), ‘motor imagery’ (~ 3.4%), ‘navigation’ (~ 2,6%) 
and ‘pain’ (~ 8.6%) were less pronounced in their region–
term associations. The ‘noxious’ system for cluster 2 showed 
strong overlaps with the ‘noxious’ system of cluster 1. As a 
major difference, we here found a large portion of region–
term associations in visual and auditory areas that were not 
a part of the functional system of right cluster 1.

Right Cluster 3. Three terms were associated with activa-
tion in the thalamic-cortical couples of right cluster 3. The 
largest percentage was found for the term ‘autobiographical’ 
(i.e., 2/3*100 = 66.6%), followed by ‘autobiographical mem-
ory’ (33,3%) and ‘scenes’ (33.3%). The ‘autobiographical/
autobiographical memory’ system covered small portions of 
the left inferior parietal cortex and the right PCC.

Neurosynth topics. For three topics, we found a rich reper-
toire of terms from the spectrum of somatosensory functions 

Fig. 5  Terms of the different decoding steps for the left and right 
thalamic clusters summarized as heatmaps. While the visualization 
of the terms for all decoding steps is hierarchically organized by the 
number of term appearances, the color-graded heatmaps for the sup-
plementary Analysis and the systems-level decoding reflect the num-

ber of cortical regions co-activated with a given thalamic cluster. 
Down below we inserted the respective renderings of the thalamic 
clusters, for ease of readability. Visualization of the heatmaps was 
done with an in-house MATLAB (MATLAB 2021) script
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(i.e., Topic 17), pain and nociception (Topic 32), and mem-
ory (i.e., Topic 33), which are associated with the activation 
of most of the thalamic clusters (see Supplementary Figure 
S7). Moreover, we also found a large number of topics with 
only few associated terms and reported activations within 
single thalamic clusters. These results represent a good vali-
dation of the systems-level decoding, as the distribution of 
terms in the topics are also reflected in the percentages of 
cortical regions coactivated with the thalamus and the spatial 
extent of the associated thalamocortical brain systems (i.e., 
the larger the system, the more consistent terms fall into a 
particular topic and vice versa).

Supplementary analysis

In a supplementary analysis, we applied a more lenient 
thresholding to the systems decoding because its standard 
implementation described above, solely focused on the terms 
exclusively associated with the thalamic-cortical regions, 
excluding all terms associated only with cortical regions. 
As expected, the supplementary analysis yielded a more 
diverse spectrum of terms denoting psychological con-
structs for most of the thalamic clusters (see Fig. 5). Terms 
of thalamic-cortical pairs of left cluster 1 included ‘chronic 
pain’, ‘drugs’ and reward processes (i.e., ‘incentive’, ‘incen-
tive delay’, ‘monetary incentive’, ‘reward anticipation’). The 
calculation of the set difference between the terms of tha-
lamic-cortical pairs and the quasi-null-model for left cluster 
2 added no relevant information (i.e., denoting no additional 
psychological constructs). For left cluster 3, the procedure 
added two additional terms: ‘episodic memory’ and ‘word 
pairs.’ Thalamic-cortical pairs of left cluster 4 were related 
to ‘chronic pain’, ‘incentive delay’, ‘reward anticipation’, 
‘semantic memory’, ‘sexual’,’ reappraisal’, ‘personality 
traits’ and ‘social interaction’.

Terms of right cluster 1 that did not show an intersec-
tion with terms linked to cortical regions included ‘incentive 
delay’, ‘monetary incentive’, ‘monetary reward’, ‘sexual’ 
and ‘social interaction’. For right cluster 2, the procedure 
yielded the terms ‘coordination’, ‘rhythm’, and ‘time task’. 
Finally, the calculation of the set difference between the 
terms of thalamic-cortical couples of right cluster 3 and 
of only cortical regions produced the terms ‘coordination’, 
‘cognitive task’ and ‘mild cognitive’. A list of all terms 
obtained in the supplementary analysis is provided in sup-
plementary Table S17.

Discussion

We aimed at the functional characterization of thalamic 
parcels through meta-analytic decoding across the cogni-
tive neuroscience literature. We created a novel parcellation 

of the thalamus, optimized for this purpose. We utilized two 
complementary decoding strategies: the standard Bayesian 
reverse inference decoding, as described in the literature 
(Poldrack 2006; Eickhoff et al. 2011), and a novel systems-
level decoding approach, which we propose for the joint 
decoding of target regions with functionally connected cor-
tical regions. The systems-level decoding revealed co-acti-
vations of thalamocortical pairs, constrained by the context 
of different cognitive and behavioral tasks. With the novel 
systems decoding approach, we were able to detect thala-
mus-centered cognitive cortical systems that are engaged in 
sensorimotor processes, nociception, and autobiographical 
memory.

A novel task‑dependent parcellation of the left 
and right thalami

We propose a novel parcellation of the thalamus with four 
left and three right thalamic subunits based on whole-brain 
co-activation patterns as revealed by MACM-CBP, opti-
mized for subsequent functional decoding. The clustering 
solutions with four and three subunits, respectively, showed 
the highest stability across topological, information-theo-
retic, and cluster separation metrics.

With four and three clusters per hemisphere, our clus-
tering solution features fewer and larger clusters than pre-
viously proposed solutions from structural or functional 
connectivity data, which distinguish either 7 (Behrens et al. 
2003; Battistella et al. 2017; Najdenovska et al. 2018), 8 
(Fan et al. 2016), 9 (Hwang et al. 2017), 11 (Saranathan 
et al. 2021), 15 (Kumar et al. 2017) or 21 (Kumar et al. 
2015) distinct subunits per hemisphere. Given this discrep-
ancy, it is important to emphasize that our clustering corre-
sponds well with established cytoarchitectural properties of 
the thalamus, as described by the Morel atlas (Krauth et al. 
2010; Morel et al. 1997). Cluster 1 corresponds with medial 
and lateral nuclei, cluster 2 corresponds with medial, pos-
terior, and ventral-lateral nuclei, cluster 3 corresponds with 
the pulvinar, and left cluster 4 comprises medial and ven-
tral anterior nuclei. Cytoarchitectonically defined nuclei are 
commonly grouped according to their afferent projections 
(Sherman and Guillery 2013; Sherman 2016): First order 
nuclei such as the ventral posterior (VP), medial (MGN), 
and lateral geniculate nuclei (LGN) receive input from sen-
sory organs and other subcortical structures and relay this 
information to the cortex (Sherman and Guillery 2013; Sher-
man 2016). Higher order nuclei such as the AV, MD, pulvi-
nar, and CM, forward information from one cortical region 
to another via cortico-thalamo-cortical pathways (Sherman 
et al. 2006). A different proposal classifies thalamic nuclei 
into three groups: (a) MGN, LGN, VPL, VL, and VA as 
principal sensorimotor nuclei, (b) lateral MD, lateral dorsal 
nucleus (LD), and LP as sensorimotor/limbic nuclei, and (3) 
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AT, medial MD, CM, and the smaller midline intralaminar 
nuclei (IL) as limbic nuclei (Vertes et al. 2015). We were 
able to find a similar classification of nuclei in this study, 
however, with the exception that limbic and limbic/sensori-
motor were merged into the same clusters. While cluster 2 
(ventral-lateral nuclei) fit the description of principal sen-
sorimotor nuclei, cluster 1 (medial and lateral nuclei) com-
prised not only limbic but also limbic/sensorimotor nuclei.

MACM-CBP was thus able to detect anatomically mean-
ingful thalamic subregions which is in line with previous 
MACM-CBP studies on other brain regions that were also 
able to capture subunits that correspond with anatomical 
boundaries (Bzdok et al. 2013; Caspers et al. 2014; Ray 
et al. 2015). Since MACM-CBP uses task co-activation pat-
terns as input data, the subregions derived from it reflect the 
functional resolution of task fMRI studies, which is the key 
prerequisite for subsequent functional decoding. We would 
also like to emphasize that fMRI preprocessing parameters 
such as smoothing kernels and the comparatively low spatial 
resolution of the larger corpus of past fMRI studies would 
make it unlikely to delineate smaller clusters. Functional 
imaging studies have only recently achieved appropriate 
resolution to detect dissociable signals in larger thalamic 
subnuclei (Kumar et al. 2017; Hwang et al. 2017; Iglesias 
et al. 2018), while smaller nuclei are still out of reach with 
current scanning technology (Antonucci et al. 2021).

Functional characterization of thalamic clusters

As a relay, the thalamus is responsible for transmitting mul-
timodal sensory information to the cortex (Sherman et al. 
2006), particularly through the ventral nuclei. The decoding 
resulted in terms related to sensorimotor processes (i.e., ‘fin-
ger tapping’, ‘finger movements’, ‘motor task’) for left and 
right thalamic cluster 2, which most prominently includes 
the ventral nuclei. A crucial part of the sensorimotor infor-
mation that is transmitted, integrated, and modulated by 
thalamic nuclei concerns nociceptive information (Sotgiu 
2001; Yen and Lu 2013). The decoding revealed associa-
tions between nociception/pain processing and left/right 
cluster 1, left cluster 4, and right cluster 2, which include 
medial, central, and (ventral) lateral nuclei of the thalamus. 
Pain-related associations with clusters that encompassed 
ventral lateral nuclei—which are typical relays—but also 
with medial nuclei that represent higher order thalamic 
nuclei might be a consequence of the different components 
of nociceptive signals which are transmitted by different fib-
ers within the spinothalamic tract: The spinothalamic tract, 
through which pain-related information is conveyed to the 
cortex, projects to lateral ventral posterior and to medial 
(e.g., intralaminar) nuclei of the thalamus (Lenz et al. 2004). 
Different aspects of experiencing noxious sensations include 
a sensory-discriminative component mediated by lateral 

spinothalamic tract projecting to somatosensory cortices 
and an affective-motivational component represented by 
medial spinothalamic tract projecting to cortical areas (e.g., 
ACC and prefrontal cortex) (Apkarian et al. 2005, 2011). 
Next to sensorimotor associations, we were also able to link 
memory functions to the thalamus: Left cluster 1 (includ-
ing MD) was associated with ‘autobiographical memory,’ 
and left cluster 3 (consisting of PuM) with ‘word pairs.’ 
Autobiographical memory is based on episodic retrieval 
but also depends on emotional, attentional, and executive 
functions (Conway and Pleydell-Pearce 2000; Svoboda et al. 
2006; Burianova and Grady 2007). The observed associa-
tion with autobiographical memory fits with converging evi-
dence from clinical neuropsychology, animal research, and 
modern neuroimaging that has linked the MD to mnemonic 
processes, including episodic memory (Aggleton and Brown 
1999; Harding 2000; Pergola et al. 2012, 2013; Mitchell 
2015; Wolff et al. 2015; Wolff and Vann 2019). Word pairs, 
on the other hand, are related to verbal associative memory 
(Arndt 2012). The observed association between word pairs 
and the thalamic cluster that includes the pulvinar is less 
straightforward, as the previous literature has mostly dis-
cussed the pulvinar with respect to its relationship to visu-
ospatial attention, visual processing, and the integration of 
visual information (Shipp 2003; Arend et al. 2008; Saal-
mann and Kastner 2011)). Some work, however, suggests 
a role of the pulvinar in the visual processing of mnemonic 
information (Rotshtein et al. 2011; Kafkas et al. 2020) which 
could explain the reported association with word-pairs that 
are usually presented visually.

Finally, left/right cluster 1 and left cluster 4 were asso-
ciated with reward-related terms (i.e., ‘incentive delay’, 
‘reward anticipation). All three clusters encompassed por-
tions of MD, which is known to forward information from 
striatal to cortical regions, especially in the anticipation of a 
reward as part of the cortico-striato-thalamo-cortical reward 
circuit (Knutson and Greer 2008; Haber and Knutson 2010; 
Cho et al. 2013; Huang et al. 2018; Oldham et al. 2018).

While the standard decoding approach revealed meaning-
ful associations with respect to the literature, the general 
yield of this method was surprisingly low, given the par-
ticular importance of the thalamus for brain function. As it 
is easily conceivable that most of the behavioral repertoire 
of the thalamus only arises from its interactions with the 
cerebral cortex, a joint decoding of thalamic clusters with 
cortical regions would likely be more appropriate. While 
characterizing the segregation and specialization of brain 
areas in regard to behavioral functions is a hallmark of cog-
nitive neuroscience (cf., (Genon et al. 2018a)) it has become 
increasingly apparent that motor, sensory, and higher cogni-
tive functions draw most heavily upon interactions between 
brain areas and their integration into functional systems 
(Rubinov and Sporns 2010; van den Heuvel and Sporns 
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2013; Sporns and Betzel 2016). The thalamus is a central 
hub region within the brain network and participates in sev-
eral brain-wide systems through its reciprocal interactions 
with cortical regions via thalamocortical loops (Jones 2001; 
Sherman and Guillery 2013; Halassa and Sherman 2019). 
The characterization of the thalamus’ functional repertoire 
should therefore benefit from a joint perspective on thalamic 
subregions and the neocortex. Thus, building on previous 
efforts to decode entire subsystems involved in cognitive 
control (Langner et al. 2018), we applied a novel decoding 
strategy and investigated behavioral associations of thalamic 
clusters in conjunction with functionally connected cortical 
areas.

Functional characterization of thalamocortical 
systems

The systems decoding revealed additional terms related 
to language (i.e., ‘linguistic, ‘orthographic’, ‘semantics’), 
memory processes (‘verbal working’, ‘remembering’), and 
locomotion (‘navigation’). Language-related terms were 
all associated with thalamo-cortical pairs of left cluster 1 
(medial–lateral nuclei). While thalamic participation in 
language is widely described in the neuropsychological 
literature (Brown 1974; Crosson 1984, 2021; De Witte 
et al. 2011), the evidence from functional neuroimaging is 
limited (Klosterman et al. 2013; Llano 2013, 2016). When 
imaging studies have reported involvement of the thala-
mus in language processes, they either feature very broad 
anatomical labels (e.g., “thalamus”) for reporting activa-
tion peaks or utilize anatomical regions of interest that do 
not discriminate between thalamic nuclei, which limits the 
available evidence to the issue of hemispheric specializa-
tion (Indefrey and Levelt 2004; Garn et al. 2009; Seghier 
and Price 2010). Functional connectivity studies, however, 
have prioritized connections between cortical regions in 
inferior frontal and superior temporal cortex and the thala-
mus in language (Llano 2013, 2016), which supports the 
here observed co-activations between these cortical regions 
and left thalamic cluster 1 during language tasks. Based on 
our systems decoding, we conclude that the thalamic part 
in these connections is likely to include the medial nuclei 
that are prominently featured in left cluster 1 and suggest 
this subregion as a viable starting point for future studies on 
language functions of the thalamus.

The thalamus’ involvement in memory functions is best 
documented for working memory, where the thalamus is 
thought to participate in the executive part of working mem-
ory through striato-thalamo-prefrontal loops (D’Esposito 
and Postle 2015). Cells in the MD show sustained firing dur-
ing the delay period of working memory, similar to neurons 
in PFC (Fuster and Alexander 1971), and most work so far 
has focused on the interaction between MD and dorsolateral 

PFC for working memory (Funahashi 2013; Wolff and Vann 
2019). While our systems decoding implicated the left tha-
lamic cluster 1, which includes MD, in working memory, 
we observed this association only in conjunction with more 
posterior frontal parts in left premotor cortex. Premotor cor-
tex itself seems to play a role in working memory, depending 
on stimulus content and its level of abstraction (Christophel 
et al. 2017; Badre and Nee 2018). The here reported asso-
ciation can thus be regarded as a promising first lead for 
more focused investigations of thalamo-frontal connectivity 
in working memory.

To the best of our best knowledge, in the human neuro-
imaging literature only few studies have found the thalamus 
to be involved in navigation and locomotion embedded in 
subcortical-cortical systems (Jahn et al. 2004; Ionta et al. 
2009; Hao et al. 2016); and if so, without discriminating 
between thalamic nuclei. In contrast, findings from animal 
research paint a more nuanced picture, pointing towards an 
involvement of medial and anterior nuclei in spatial naviga-
tion (Cain et al. 2006; Jankowski et al. 2013; Ito et al. 2015) 
and of the LGN, the reticular and the ventrolateral nuclei 
in locomotion (Marlinski et al. 2012b; Aydın et al. 2018; 
Beloozerova and Marlinski 2020). We found an association 
between central-ventral-lateral right cluster 2 in conjunction 
with somatosensory regions, visual regions, and superior 
parietal cortex and the term ‘navigation’. According to a 
model derived from research on the cat brain, motor and 
sensory information converge in the ventral lateral nuclei, 
while these signals are transmitted via the VL to the motor 
cortex during locomotion (Marlinski et al. 2012a). Our sys-
tems decoding results, however, highlight the need for fur-
ther research in humans to characterize the contribution of 
the human thalamic nuclei in locomotion.

The more liberal supplementary analysis resulted in fur-
ther terms: ‘personality traits’ and ‘social interactions’ (right 
cluster 1), ‘mild cognitive’ (right cluster 3), and ‘semantic 
memory’ (left cluster 4). More work is needed to elucidate 
which personality traits and what kind of social interactions 
are supported by thalamic-cortical interactions. Animal stud-
ies have linked MD–prefrontal cortex circuits to social domi-
nance (Zhou et al. 2017), which could point towards social 
personality characteristics such as extraversion as promising 
candidates. The associations with ‘semantic memory’ and 
‘mild cognitive’ (as in mild cognitive impairment) again 
highlight the role of the thalamus in memory processes, 
which we will address next.

Thalamocortical systems

For some behavioral terms, the systems-level decoding 
revealed widespread associations, pointing at several cortical 
regions that were co-activated with the thalamus in studies 
on the given term. The probabilistic relationship between 
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the occurrence of the behavioral term and thalamocortical 
co-activations suggests the involvement of thalamocorti-
cal systems in a given behavior. The joint involvement of 
the ventral posterior nuclei (i.e., first order nuclei) of the 
thalamus with cortical regions in somatosensory, motor, pre-
motor, auditory, and visual cortex in various sensorimotor 
processes, such as ‘finger tapping’, ‘motor task’), is well 
described in the literature (Sherman et al. 2006; Sherman 
2016; Zhang and Li 2017). The fact that such a system was 
recovered by the novel systems-level decoding emphasizes 
the solid foundation of this approach and gives us confidence 
to discuss the less well-described and potentially clinically 
relevant thalamo-cortical systems involved in autobiographi-
cal memory and nociception in more detail.

The autobiographical memory system

In terms of spatial extent, the autobiographical memory sys-
tem is mostly centered on left cluster 1, whereas left cluster 
4, right cluster 1, and right cluster 3 contribute in conjunc-
tion with fewer cortical regions (see Fig. 6). Notably, the 
majority of the involved thalamic clusters contain mediodor-
sal and anterior thalamic subdivisions, which have been con-
sistently linked to episodic memory. In addition, the pulvinar 
in right cluster 3 has been linked to attentional and visual 
aspects of memory processes. Overall, the thalamo-centered 
part of the autobiographical memory system covers bilateral 
prefrontal cortices, anterior and poster cingulate cortices, 
areas in inferior and superior parietal cortices, and primary 
visual areas all of which play distinct and collaborative roles 

Fig. 6  Surface and flatmaps of unique and common cortical regions 
of the Autobiographical Memory System and the Nociceptive/Nox-
ious System. Unique regions represent cortical regions showing co-
activations with a single MACM-CBP-derived thalamic cluster only, 

while co-activations between several thalamic clusters and cortical 
regions that overlap are displayed as common regions. Visualiza-
tion was done with connectome workbench commands (Marcus et al. 
2011)
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in autobiographical memory (Spreng et al. 2009; Spreng 
and Grady 2010; Demblon et al. 2016; Monge et al. 2018).

Tremendous support for the involvement of the human 
MD and ventral anterior nuclei in memory circuits stems 
from the following clinical evidence: structural alterations in 
both thalamic nuclei have been associated with the memory 
impairments accompanying the alcohol-induced Korsakoff’s 
syndrome (Kopelman 1995; Harding 2000; Aggleton and 
O’Mara 2022) or after thalamic infarction (Schmahmann 
2003; Pergola et al. 2012; Nishio et al. 2014; Danet et al. 
2015). Furthermore, their functional role in mnemonic pro-
cesses has been differentiated based on interconnections 
with subcortical and cortical brain areas in recollection and 
familiarity. In brief, recollection can be described as the 
retrieval of qualitative underpinnings of an episode (e.g., 
the contextual information), whereas familiarity reflects 
the strength of a memory (Yonelinas 2001, 2002; Yoneli-
nas et al. 2010). Rodent and non-human primate research 
suggests that the anterior nucleus forms a node of a hip-
pocampal-thalamo-prefrontal system involved in recollec-
tion memory, whereas the MD—through reciprocal connec-
tions with frontal areas such as PFC and ACC—is associated 
with familiarity (Aggleton and Brown 1999; Jankowski et al. 
2013; Ketz et al. 2015; Wolff et al. 2015; Pergola et al. 2018; 
Aggleton and O’Mara 2022). Recent evidence from human 
imaging indicates an analogous dissociation between both 
thalamic nuclei and their connected (frontal) regions in 
recollection and familiarity-based memory processes (Per-
gola et al. 2013; Kafkas et al. 2020; Geier et al. 2020). The 
Autobiographical system in this study covered, however, 
parietal and visual areas in addition to the frontal ones, the 
dissociation between the retrieval of a memory (i.e., recol-
lection) and the subjective feeling of familiarity is reflected 
in activation differences along the ventral (i.e., angular gyrus 
and temporoparietal junction) and dorsal (i.e., intraparietal 
sulcus) posterior parietal cortices (Yonelinas 2005; Berryhill 
et al. 2007; Johnson et al. 2013; Frithsen and Miller 2014). 
Evidence reporting equivalent dissociable (functional) 
connections between anterior nuclei and inferior parietal 
cortex and between the MD and the intraparietal sulcus in 
long-term memory (Spets and Slotnick 2020) indicates that 
thalamo-parietal connections might be equally important for 
differentiating recollection and familiarity aspects in epi-
sodic memory.

Altogether, there is only sparse evidence in the literature 
on a connection of parietal regions with the medial or ventral 
anterior thalamus in relation to episodic memory processes. 
To the best of our knowledge, findings on the conjunction 
of parietal and thalamic nuclei in memory are restricted to a 
circuit involving the posterior parietal cortex, PFC, and the 
medial pulvinar (Jutras et al. 2013; Park et al. 2014; Ketz 
et al. 2015; Homman‐Ludiye and Bourne 2019). Here, we 
report the PCC and the inferior parietal cortex as cortical 

components of the thalamo-centered part of the autobio-
graphical memory system, centered on pulvinaric right clus-
ter 3. The inferior parietal cortex and the medial pulvinar 
have been implicated in attentional and visual aspects of 
memory (Cabeza et al. 2008; Rotshtein et al. 2011; Hom-
man‐Ludiye and Bourne 2019). We, therefore, suggest that 
frontal and parietal regions are jointly involved with the 
thalamus in attentional, executive, or even self-referential 
aspects of autobiographical memory processes. Remember-
ing past events involves voluntary and involuntary memory 
retrieval (Cabeza and St Jacques 2007; Burianova and Grady 
2007), search for and monitoring of memories (Corbetta 
et al. 2008; Vossel et al. 2014; Monge et al. 2018), and the 
self-referential reflection upon personal episodes (Spreng 
and Grady 2010; Demblon et al. 2016). Thus, autobiographi-
cal memory is phenomenologically complex and is likely to 
involve different brain networks. Along the same line, map-
ping of the thalamic nuclei with different intrinsic cortical 
networks including default-mode, task-positive dorsal and 
ventral frontoparietal, and the frontal executive networks 
showed coherence between studies examining the participa-
tion of the thalamus in cortical functioning (Fox et al. 2005; 
Yuan et al. 2016; Hwang et al. 2017).

In summary, scanning the literature revealed compelling 
evidence for thalamic involvement in episodic memory, con-
firming the results of our systems-level decoding. At the 
same time, the systems-level decoding represents a com-
prehensive account of the neuroimaging literature in which 
only in a few cases, thalamo-frontal and thalamo-parietal 
components of autobiographical memory processes have 
been simultaneously considered. Future work may want to 
build on the hypotheses generated here, to achieve a more 
complete representation of thalamic activity embedded in 
neural systems.

The nociceptive system

The nociceptive system centered on thalamic clusters that 
include nuclei which are traditionally assigned to sensory 
processes (i.e., central-ventral-lateral left and right cluster 
2). Additionally, the nociceptive system centered also on 
thalamic clusters consisting of higher order nuclei (i.e., 
medial and medial-anterior left clusters 1 and 4 and right 
cluster 1). Of note, the clusters comprising sensory nuclei 
and the clusters containing higher order nuclei exhibited 
dissociable co-activations with different sets of cortical 
regions (see Fig. 6), which might be an indicator for their 
different roles within the thalamo-centered part of the 
nociceptive system: Consensus views hold that nocicep-
tive signals from the body are transmitted via two differ-
ent spinothalamic pathways to cortical and subcortical 
regions (Lenz et al. 2004; Yen and Lu 2013; Groh et al. 
2017). The lateral pathway ascends through the ventral 
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posterior nuclei, relaying nociceptive information to 
somatosensory cortices, whereas the medial pathway 
propagates nociceptive information through midline and 
medial nuclei (e.g., intralaminar and MD) to limbic corti-
cal areas. Fittingly, left and right clusters 2, which mainly 
consist of sensory relay nuclei, showed large task-con-
strained co-activations with somatosensory regions. Also, 
left, and right clusters that include medial higher order 
nuclei showed widespread co-activations with prefrontal 
regions and the cingulate. Joint involvement of prefrontal 
areas and the medial thalamus in nociception can have 
different implications: The ability to maintain painful 
stimuli in working memory is thought to be accomplished 
by connections between prefrontal cortex and the medial 
thalamus (Tseng et al. 2017). Spinothalamic projections 
to the ACC and the insula have been associated with the 
affective-motivational component of pain perception, 
which mediates avoidance behaviors and storage in long-
term memory (Apkarian et al. 2005, 2011; Groh et al. 
2017; Meda et al. 2019). The medial pain pathway is also 
concerned with orienting and other attentional processes 
(Bastuji et  al. 2012). In line with this reasoning, two 
neuroimaging studies examining how attention is guided 
towards noxious stimuli found associations between the 
attentional modulation of pain intensity and activation in 
frontoparietal areas and the medial thalamus (Lobanov 
et al. 2013; Yang et al. 2018).

In summary, our findings fit well with the literature, 
highlighting the systems decoding’s capacity to capture 
and summarize brain systems involved in nociception. 
Some of our findings, however, stand in contrast to the 
traditional pain pathways described in the literature. For 
instance, the system components centered on right cluster 
2 include visual, parietal (i.e., superior, and inferior pari-
etal cortex), and dorsolateral prefrontal areas. Thus, in 
this case, the co-activations with cortical areas cannot be 
unambiguously associated with one of the two pathways. 
Notably, there is increasing evidence that partial func-
tional overlaps exist between both the sensory-discrimi-
native and the affective-motivational systems (Bushnell 
and Duncan 1989; Apkarian et al. 2011; Groh et al. 2017), 
which might serve as an explanation for our results. Fur-
thermore, nociceptive processes are influenced by cogni-
tive processes relying on widespread cortical interactions. 
In line with this reasoning, especially the assessment of 
pain intensity has been associated with both pathways, 
while being influenced by expectations (Atlas and Wager 
2012; Lobanov et  al. 2014) and attentional processes 
(Bantick et al. 2002; Kulkarni et al. 2005; Lobanov et al. 
2013; Hauck et al. 2015). In addition, traditional research 
on spino-thalamico-cortical nociceptive pathways is pri-
marily based on anatomical and/or animal studies, with 
known limitational factors regarding a translation to 

complex human cognitive functioning (Premack 2007). 
In conclusion, the novel aspects of our findings highlight 
the importance of further research with an emphasis on 
thalamo-cortical interactions for understanding the com-
plexity of nociceptive processes.

Lateralization of thalamic clusters

The most apparent hemispheric difference was the asym-
metric parcellation of the thalamus into four (left) versus 
three clusters (right). This might be a consequence of func-
tional lateralization within the thalamus, which has, for 
instance, been documented for language: The left ventral 
lateral nucleus seems to be more involved in a wider set 
of language-related functions than its right hemispheric 
counterpart (Wang et al. 2021, 2022). The lateral nucleus 
is majorly involved in the here observed asymmetries: On 
the right side, the ventral lateral nucleus was grouped into 
a cluster with sensorimotor nuclei (cluster 2), whereas on 
the left side, the ventral nucleus was grouped together with 
higher-order nuclei (cluster 1) but not with other sensori-
motor nuclei (cluster 2). Accordingly, the main functional 
associations for left cluster 1 were language-related (i.e., 
‘linguistic’, ‘orthographic’), while the associations for 
right cluster 2 were mostly sensorimotor-related. While 
the observed thalamic asymmetry might thus be a result of 
functional lateralization, it remains open why other thalamic 
parcellations do not feature such asymmetry. One possibil-
ity would be that asymmetries are rather functional than 
anatomical and become only apparent when aggregating 
several thalamic nuclei into larger clusters. Unlike others 
(Yuan et al. 2017), our statistical clustering did not optimize 
for a symmetrical solution and might have been more sensi-
tive to pick up functional asymmetries. Although it is easily 
conceivable that the asymmetric clustering of the thalamus 
reflects a principle of thalamo-cortical interactions in the 
human brain, there is also a chance that our using a corpus of 
neuroimaging studies has artificially inflated asymmetries: 
most older cognitive neuroscience experiments were con-
ducted with right-handed participants. While there are no 
signs of an inherent bias in BrainMap results, there might 
still be a higher functional resolution in the left hemisphere, 
particularly when co-activations are based on tasks involving 
movements with the dominant hand.

Methodological considerations

The fundamental role of the thalamus in brain functioning 
and behavior is unequivocal. However, to the best of our 
knowledge, no existing study has addressed the functional 
significance and the full behavioral repertoire of the thala-
mus and its internal structure in a human neuroimaging con-
text. This surprising gap in the literature might stem from 
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general methodological factors: Existing limits in spatial 
and functional resolution impose constrains on the ability 
to disambiguate signals from compact subcortical nuclei, 
a problem which is further amplified by the spatial blur-
ring of signals during smoothing procedures in statistical 
image analysis. Quite often, the thalamus has only been 
studied or considered as a whole, and small nuclei such as 
the intralaminar ones, implicated in various cognitive func-
tions, have remained unattainable (Saalmann 2014; Steullet 
2020; Antonucci et al. 2021). Imaging protocols are also 
often optimized for cortical structures and might not be 
suitable to detect signals in subcortical areas (Keuken et al. 
2018; Miletić et al. 2020). The strong focus on the cortex in 
cognitive neuroscience has been criticized (Johansen-Berg 
2013), and recent advancements in neuroimaging were able 
to address some of the aforementioned shortcomings (For-
stmann et al. 2017). However, there is a natural gap between 
recent technical developments in the field of neuroimag-
ing and the available corpus of neuroimaging datasets in 
BrainMap and Neurosynth, which are a prerequisite for the 
systematic characterizations of a brain region’s functional 
profile.

We attempted to ameliorate existing constrains by deriv-
ing a novel thalamic parcellation with appropriate resolution 
for meta-analytic decoding that—despite its relative coarse-
ness—aligned with known anatomical properties of the thal-
amus. But even with this parcellation, the established and 
in other contexts successful meta-analytic decoding (e.g., 
Clos et al. 2013; Genon et al. 2016) was not very productive 
in detecting cognitive or behavioral associations with the 
thalamus. A viable explanation would be that thalamic con-
tributions to behavioral functions are so fundamental that the 
lack of specificity precludes successful decoding. But given 
the wide-spread connectivity between the thalamus and the 
neocortex and given the considerable amount of functional 
segregation within neocortex, it should be possible to catch 
a better glimpse into the thalamus’ functional repertoire by 
examining the thalamus and the cortex in conjunction. We 
have applied a novel system-level decoding approach that is 
based on this very idea that behavioral and cognitive pro-
cesses are based on the integrative interaction of spatially 
segregated functional units. While this decoding approach 
was more successful than the traditional approach in detect-
ing behavioral associations with the thalamus, revealed 
functional brain systems associated with single behavioral 
categories, and generated new hypotheses for future imaging 
research, there are still natural limitations and constrains to 
this approach, which we will address in the following.

Our decoding approach draws upon the Neurosynth 
database. It, therefore, depends fully on the database’s 
capability to capture the relevant cognitive neurosci-
ence literature. Neurosynth contains studies with differ-
ent experimental designs, scanner hardware, and imaging 

protocols, and includes older studies with small sample 
size, which has been discussed as a major limiting fac-
tor for reliability in functional neuroimaging (Bennett 
and Miller 2013; Elliott et al. 2020). While the princi-
pal strength of the meta-analytic approach is to aggre-
gate across such detailed differences in study design, 
it is still not guaranteed that existing relationships are 
robust enough to stand against the background noise in 
the database. The terms in the Neurosynth database are 
accumulated by automatic parsing of the literature and 
are therefore subject to a certain ambiguity. Terms with a 
putative similar semantic meaning (e.g., ‘autobiographic’, 
‘autobiographical memory’, ‘episodic memory’, ‘remem-
bering’) are treated as separate, and the corpus includes 
many terms that defy a clear functional categorization 
(e.g., ‘allocation’, ‘loop’, ‘force’, ‘matrix’). Furthermore, 
terms such as ‘autobiographical memory’ are phenomeno-
logically complex and researched in a variety of contexts. 
Thus, when defining a thalamus-centered ‘autobiographi-
cal memory’ system, without further knowledge about the 
research context of the term, we cannot conclude whether 
the corpus of studies that contain the term did focus on 
storage or retrieval, or the executive versus affective 
aspects of autobiographical memory processes, or maybe 
even focused on other memory processes and only con-
trasted them with autobiographical ones.

Furthermore, our decoding approach rests on the validity 
of the thalamic parcellation. While our parcellation’s corre-
spondence with known cytoarchitecture and its optimization 
for task-evoked co-activations provide ample arguments for 
its validity in the context of our present work, it still needs 
to be pointed out that it relies on the statistical clustering 
of information from one imaging modality. Given that the 
accuracy of brain parcellations benefits from the inclusion of 
multi-modal imaging (Glasser et al. 2016), there is certainly 
room for adjustments when parcellating the human thalamus 
in future studies.

Given these limitations, we urge to see the present work 
as a major but far-from-final step towards objectively char-
acterizing the behavioral repertoire of the thalamus from 
a systems perspective, based on a large corpus of neuro-
imaging studies. As such, besides providing new answers, 
it generated several hypotheses. For instance, the observed 
functional overlap between thalamic clusters regarding the 
thalamo-centered part of the autobiographical memory and 
the nociceptive systems, raises the question of whether this 
indicates separate systems that might participate in differ-
ent aspects of autobiographical memory, or whether this is 
a consequence of not fully separable signals from the dif-
ferent clusters. We, therefore, encourage to take advantage 
of recent improvements in resolution (e.g., ultra-high-field 
7 T MRI) and imaging protocols (e.g., multi-echo EPI pro-
tocols), when examining thalamic subdivisions in future 
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studies. Finally, the here reported structure–function asso-
ciations do not tell us anything about the underlying com-
putational mechanisms of thalamic involvement in cognitive 
functioning. Further experimental and computational work 
is needed to explain the role of thalamo-cortical co-activa-
tion in a given behavioral domain.

Summary

Through a novel data-driven parcellation of the thalamus 
and a novel systems-decoding strategy, we were able to 
derive new insights into the behavioral relevance of thalamic 
subunits in interactions with cortical areas. Our results are 
in line with known models of thalamic function, emphasize 
the role of the thalamus in cortical functioning, and point to 
as-yet unnoticed aspects of thalamo-cortical functioning, for 
instance, the thalamo-parietal connections in autobiographi-
cal memory. We propose the systems-level decoding as a 
hypothesis-generating approach for functional connectivity 
studies and a complementary approach that is easy enough 
to implement when interpreting existing functional connec-
tivity studies.
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