
Search for eV-scale sterile neutrinos with
IceCube DeepCore

Dissertation
zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

im Fach: Physik
Spezialisierung: Experimentalphysik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Humboldt-Universität zu Berlin

von
Alexander Trettin M. Sc

Präsidentin der Humboldt-Universität zu Berlin
Prof. Dr. Julia von Blumenthal

Dekanin der Mathematisch-Naturwissenschaftlichen Fakultät
Prof. Dr. Caren Tischendorf

Gutachter:innen: Prof. Dr. Marek Kowalski
Prof. Dr. Walter Winter
Prof. Dr. Kathrin Valerius

Datum der mündlichen Prüfung: 28.07.2023



Copyright Notice
This work is licensed under CC BY-SA 4.0.

To view a copy of this license, visit:
https://creativecommons.org/licenses/by-sa/4.0/

Colophon
This document was typeset with the help of KOMA-Script and LATEX using the open-
source kaobook template class.

The source code of this thesis is available at:
https://github.com/atrettin/PhD-Thesis

https://creativecommons.org/licenses/by-sa/4.0/
https://sourceforge.net/projects/koma-script/
https://www.latex-project.org/
https://github.com/fmarotta/kaobook/
https://github.com/atrettin/PhD-Thesis


Abstract

Neutrino oscillations are the only phenomenon beyond the Standard Model that has
been confirmed experimentally to a very high statistical significance. Thiswork presents
a measurement of atmospheric neutrino oscillations using eight years of data taken
by the IceCube DeepCore detector between 2011 and 2019. The event selection has
been improved over that used in previous DeepCore measurements with a particular
emphasis on its robustness with respect to systematic uncertainties in the detector
properties. The oscillation parameters are estimated via a maximum likelihood fit
to binned data in the observed energy and zenith angle, where the expectation is
derived from weighted simulated events. This work discusses the simulation and
data selection process, as well as the statistical methods employed to give an accurate
expectation value under variable detector properties and other systematic uncertainties.
The measurement is first performed first under the standard three-flavor oscillation
model, where the atmospheric mass splitting and mixing angle are estimated to be
�<2

32 = 2.42+0.77
�0.75 ⇥ 10�3 eV2 and sin2 23 = 0.507+0.050

�0.053, respectively. The three-flavor
model is then extended by an additional mass eigenstate corresponding to a sterile
neutrino with mass splitting �<2

41 = 1 eV2 that can mix with the active ⇡⇠ and ⇡�
flavor states. No significant signal of a sterile neutrino is observed and the mixing
amplitudes between the sterile and active states are constrained to |*⇠4 |2 < 0.0534
and |*�4 |2 < 0.0574 at 90% C.L. These limits are more stringent than the previous
DeepCore result by a factor between two and three and the constraint on |*�4 |2 is the
strongest in the world.



Zusammenfassung

Neutrinooszillationen sind das einzige Phänomen jenseits des Standardmodells, das
experimentell mit hoher statistischer Signifikanz bestätigt wurde. Diese Arbeit präsen-
tiert eine Messung der atmosphärischen Neutrinooszillationen unter Verwendung
von acht Jahren an Daten, die zwischen 2011 und 2019 vom IceCube DeepCore-Detektor
aufgenommenwurden. Die Ereignisauswahlwurde imVergleich zu früherenDeepCore-
Messungen verbessert, wobei ein besonderesAugenmerk auf ihre Robustheit gegenüber
systematischen Unsicherheiten in den Detektoreigenschaften gelegt wurde. Die Os-
zillationsparameter werden über eine Maximum-Likelihood-Fit an gebinnte Daten
in der gemessenen Energie und Zenitwinkel geschätzt, wobei die Erwartungswerte
aus gewichteten simulierten Ereignissen abgeleitet werdem. Diese Arbeit diskutiert
den Simulations- und Datenauswahlprozess sowie die statistischen Methoden, die ver-
wendetwerden, umeinen genauenErwartungswert unter variablenDetektoreigenschaften
und anderen systematischen Unsicherheiten zu liefern. Die Messung wird zunächst
unter Verwendung des Standardmodells der Drei-Flavor-Oszillation durchgeführt,
wobei das atmosphärischeMassensplitting undderMischwinkel auf�<2

32 = 2.42+0.77
�0.75⇥

10�3; eV2 und sin2 23 = 0.507+0.050
�0.053 geschätzt werden. Das Drei-Flavor-Modell wird

dann um einen zusätzlichen Masseneigenzustand erweitert, der einem sterilen Neu-
trino mit Massensplitting �<2

41 = 1; eV2 entspricht und mit den aktiven ⇡⇠- und
⇡�-Flavorzuständen mischen kann. Es wird kein signifikantes Signal eines sterilen
Neutrinos beobachtet, und die Mischungsamplituden zwischen den sterilen und ak-
tiven Zuständen werden auf |*⇠4 |2 < 0.0534 und |*�4 |2 < 0.0574 bei 90% C.L. be-
grenzt. Diese Grenzwerte sind um den Faktor zwei bis drei strenger als das vorherige
DeepCore-Ergebnis, und die Einschränkung von |*�4 |2 ist die stärkste der Welt.
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Introduction 1
The neutrino is a nearlymassless and electrically neutral particle whose
existence was first conjectured by Pauli in the 1930s to explain the fact
that the energy spectrum of radiation from nuclear beta decay was
continuous. If the only particles produced by the decay were the nu-
cleus and the beta particle, then the energy of the beta particle would
have been fixed by conservation of energy and momentum. It was a
bold proposition at the time, because there were no observable traces
of this particle and Pauli himself feared that it might be unobservable.
His fears proved unwarranted when the first direct experimental ob-
servation of neutrinos was made in 1956 by Cowan and Reines[1] by
detecting the distinct signature of so-called ”inverse” beta-decay reac-
tion

⇡̄ + ? ! = + 4+ (1.1)

inside a water tank close to a nuclear reactor. About a decade later,
in 1960, the Homestake experiment was able to measure the flux of
neutrinos from the Sun. However, the observed rate of electron neu-
trinos was lower than what was expected from nuclear fusion reactions
inside the Sun, leading to the solar neutrino problem. The muon neutrino
was discovered in 1962 by an experiment at the Brookhaven National
Laboratory[2] and the tau neutrino in 2000 by the DONUT experiment
at Fermilab[3], completing the current picture of the Standard Model
(SM) with three generations of leptons. In this model, neutrinos are
described as spin-1/2 fermions that only interact via the Weak nuclear
force. The Weak force only interacts with left-handed chiral neutrinos
and right-handed chiral antineutrinos, and no other neutrino states
have so far been observed. This description requires that neutrinos
are massless, because the Higgs mechanism that produces the masses
of all other particles in the SM requires an interaction involving both
right-handed and left-handed chiral fields.

The solution to the solar neutrino problem accepted today is that neu-
trinos have the ability to oscillate from one flavor to another. In this way,
the electron neutrinos that are initially produced by the Sun can turn
into a different flavor to which the Homestake experiment was not sen-
sitive. This phenomenon of neutrino oscillations was first demonstrated
by the Super-Kamiokande experiment for muon neutrinos that are
produced in the Earth’s atmosphere[4]. In 2002, the SNO experiment
provided the first direct evidence that this flavor conversion was also
happening to electron neutrinos from the Sun[5]. The existence of
neutrinos oscillations has profound implications, because it means that
neutrinos cannot be massless.

Neutrino oscillations can be explained by postulating that the flavor
eigenstates with which the Weak force interacts are mixtures of dif-
ferent mass eigenstates. The mass eigenstates can be described as wave
packets with slightly different frequencies that overlap. These wave
packets travel at different speeds due to their mass differences and
therefore interfere with one another, leading to the phenomenon of
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neutrino oscillations. However, the SM provides no explanation of
how neutrinos acquire their masses. The Higgs mechanism requires
couplings of both left-handed and right-handed chiral fields to the
Higgs field, but there are no right-handed neutrinos in the SM. The
extreme lightness of the neutrinos compared to other particles suggests
that the process that produces them might be different altogether from
the process that generates the masses of all other particles. Neutrino
oscillations, therefore, are direct evidence of physics beyond the Stan-
dardModel (BSM) andmotivate the search for new particles and forces
that might be involved in the process of neutrino mass genereration.

This work describes a neutrino oscillation measurement using the
IceCube Neutrino Observatory, a neutrino detector located at the ge-
ographic South Pole. It uses 5160 optical sensors deployed in a volume
of one cubic kilometer of the Antarctic glacier to measure faint flashes
of Cherenkov light that is produced when neutrinos interact with the
ice. It can detect neutrinos in a wide energy range starting from at-
mospheric neutrinos at a few GeV up to the PeV energy range of cosmic
neutrinos. The data analysis presented in this work uses observations
from the DeepCore sub-array of IceCube that is specifically optimized
for the detection of neutrinos that are produced in the atmosphere of
the Earth. These neutrinos consist mostly of muon neutrinos that travel
through the Earth and have a chance to oscillate into other neutrino
flavors before they are detected at the South Pole. After collecting tens
of thousands of neutrinos over the course of several years, the muon
neutrino survival probability can be estimated to a high precision. The
results allow inferences about the mass differences between different
neutrino states and can be probed for signs of BSM physics.

Chapter 2 of this thesis summarizes how neutrinos are described in
the Standard Model. A particular emphasis of this chapter is the fa-
mous Higgs mechanism by which all particles in the SM acquire their
mass and how this mechanism can be expanded to include neutrino
masses. In Chapter 3, we will describe how the mass differences be-
tween neutrinos lead to neutrino oscillations and how these oscillations
manifest in experimental observations. The chapter also describes the
experimental anomalies of neutrino oscillation measurements that mo-
tivate the search for additional heavy neutrino states of the eV scale.
The IceCube Neutrino Observatory is introduced in Chapter 4 with
special focus on the DeepCore sub-array. The chapter will also de-
scribe in detail how the DeepCore data is filtered to produce a data
sample with a high purity of muon neutrinos. The data sample is then
used for two different measurements: The first, described in Chapter 6,
measures the parameters that characterize the muon neutrino survival
probability in the picture of three oscillating neutrino flavors. The
second measurement, shown in Chapter 7, is probing the observed
oscillation pattern for signs of an additional heavier neutrino mass
eigenstate that is associated with an otherwise non-interacting sterile
neutrino. The result of this measurement places limits on the amount
of mixing that is allowed between the hypothetical sterile neutrino state
and the three known active neutrino flavors. With these constraints,
this work provides another puzzle piece in the search for the origin of
neutrino masses.
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The Standard Model (SM) of particle physics is a relativistic quantum
field theory based on the gauge symmetry group SU(3)⇠ ⇥ SU(2)! ⇥
U(1). , where the subscripts ⇠, ! and . correspond to the conserved
quantities color, left-handed chirality and weak hypercharge, respectively.
In this model, all matter particles are described as fermions, that is,
excitations of Dirac-type fermion fields permeating space-time. The
forces acting between fermions are mediated by an exchange of bosons,
and all interactions must preserve the over-all symmetry of the the-
ory. Since its completion in the early 1970s, it has been shown that
it accurately describes the interactions between elementary particles
due to the Strong Force, the Weak Force and the electromagnetic force
to an impressive degree of precision. It can also explain how quarks
and leptons acquire their masses via the Higgs mechanism, whose
byproduct, the Higgs boson, was detected at the LHC in 2012[6]. De-
spite its success, the Standard Model has some known shortcomings
such as its incompatibility with General Relativity and inability to ex-
plain cosmological phenomena most commonly interpreted as Dark
Matter and Dark Energy. Most relevantly for this work, it predicts
that neutrinos should be massless and therefore does not allow for
neutrino oscillations. Since neutrino oscillations can be experimentally
observed at very high statistical significance[4], it is clear that the SM
has to be extended to accomodate neutrino masses. There are several
candidate theories for such an extension, but none of them could so
far be experimentally confirmed. This chapter describes the properties
and interactions of neutrinos in the SM and briefly outlines the Higgs
mechanism. It will then show how it can be extended to produce neu-
trino masses via the introduction of right-handed ”sterile” neutrino
states.

The derivations of the SM, Weak interactions and the extended Higgs
mechanism presented in this chapter follow the explanations in [7] and [7]: Giunti et al. (2007), Fundamentals of

Neutrino Physics and Astrophysics[8].
[8]: Schwartz (2013), Quantum Field The-
ory and the Standard Model

2.1 Standard Model Particles

The elementary particles of the SM are organized into fermions and
bosons, where fermions make up the observable matter while bosons
are the particles that mediate forces. The number of force-mediating
bosons is determined by the generators of the symmetry groups that all
interactions must obey, while the strength of each force is determined
by a coupling constant that has to be estimated experimentally. There are
eight massless gluons that correspond to the generators of the SU(3)⇠
group and mediate the Strong force. All Strong interactions conserve
the so-called color charge of the involved particles. The symmetry
group SU(2)! ⇥ U(1). is the combined symmetry of the electroweak
force and produces the gauge boson fields ,1, ,2, ,3 and ⌫. The
electroweak symmetry group is broken by interactions of fermions
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with the Higgs field that mix the, and ⌫ fields into massive,± and
/

0 bosons,

/ = cos,,3 � sin,⌫ (2.1)

,
± =

1p
2
(,1 ⌥ 8,2) , (2.2)

where , is the Weinberg angle. After symmetry breaking, the La-
grangian is symmetric under the U(1)& groupwhere the electric charge
& is conserved and the massless gauge boson is the photon,

✏ = sin,,3 + cos,⌫ , (2.3)

Table 2.1: Fermions in the Standard
Model. The electric charge, Q, is the con-
served charge of the U(1)& symmetry
group.

generation
1 2 3 Q

qu
ar
ks u c t +2/3

d s b �1/3

le
pt

on
s

⇡4 ⇡⇠ ⇡� 0
4 ⇠ � �1

The fermions of the SM are divided into quarks and leptons. Quarks
participate in all strong, weak and electromagnetic interactions and are
always found in combinations that form baryons (protons, neutrons)
or mesons (kaons, pions). The leptons, on the other hand, do not
participate in strong interactions. Charged leptons are massive and
participate in both the weak and electromagnetic interactions, while
neutral leptons, the neutrinos, aremassless andparticipate only inweak
interactions. The fermions can be grouped into three generations of
quarks and leptons that are only distinguished by their masses, leading
to a convenient arrangement of quarks and leptons in a 3 ⇥ 4 scheme,
as shown in Table 2.1. For each (massive) fermion, there exists a left-
handed and a right-handed component. The left-handed components
of each generation form a doublet of the SU(2)! group with weak
isospin 1

2 , while the right-handed components are singlets. The right-
handed and left-handed fields for one generation and their charges are
summarized in Table 2.2.

Table 2.2: Eigenvalues of the weak
isospin �, of its third component �3 and
the hypercharge . = 2(& � �3) for one
generation of fermions. Reproduced
from [7].

� �3 .

!! ⌘
✓
⇡4!
4!

◆
1/2

1/2 -1�1/2

4' 0 0 -2

&! ⌘
✓
D!

3!

◆
1/2

1/2 1/3�1/2

D' 0 0 4/3

3' 0 0 �2/3

2.1.1 Spin, Helicity and Chirality

The states that describe fundamental particles must, by definition, be-
long to irreducible representations of the Poincaré group. All possible
representations can be classified by so-called Casimir operators, which
are operators that are invariant under the group transformations. The
first Casimir operator for the Poincaré group is the square of the four-
momentum

%
2 = %⇠%⇠ (2.4)

with the eigenvalue ?2 = <
2 being the rest mass of the particle. The

second one is the square of the so-called Pauli-Lubanski four-vector

,
2 =,⇠,

⇠ = �<2
(Æ2

, (2.5)

which has the eigenvalue F2 = �<2
B(B + 1), where B is the spin of

the particle. Thus, all representations of the Poincaré group can be
classified by their rest mass and spin. Given < and B for a particle,
different states of that particle can be distinguished by theirmomentum
?Æ and the zeroth component of,⇠, which is,0 = (Æ?Æ. A convenient
quantum number to define is the helicity of a particle, which is the
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eigenvalue of the operator

⌘̂ =
(Æ?Æ
B |?Æ | (2.6)

that can have values of ±1. The relativistic properties of a particle
with known mass and spin are fully described by a measurement of its
momentum, ?Æ, and helicity, ⌘.

The states of spin-1/2 fermions, such as neutrinos, are representations
of the Poincaré group that are constructed out of two spinors, ! and
 ', that are called left-handed and right-handed, respectively. Their
propagation is governed by the Dirac equation, which reads in Fourier
space

(⇢ � �Æ · ?Æ) ' = < !

(⇢ + �Æ · ?Æ) ! = < '

. (2.7)

Whether a particle is left-handed or right-handed is referred to as its
chirality. If the mass in Equation 2.7 is zero, the two fields describe in-
dependent particles that are eigenstates of the helicity operator, which
is ⌘̂ = �Æ?Æ

|?Æ | in this case. This means that helicity and chirality eigenstates
are identical for massless particles, but for massive particles, helicity
eigenstates are superpositions of ! and '.

2.1.2 Electroweak Symmetry Breaking

The process of breaking the SU(2)! ⇥ U(1). symmetry group deserves
special attention for the purposes of this work, because it is the process
by which the exchange bosons of the Weak force acquire their mass. If
the symmetry was unbroken, as it is the case for the SU(3) group of
the Strong force, then the exchange bosons would all remain massless,
just like the gluons. To simplify the discussion, the process can be
illustrated using only the first generation of SM fermions. The starting
point is to introduce the Higgs doublet of complex scalar fields

� =
✓
�+

�0

◆
, (2.8)

where �+ is charged and �0 is neutral1. The Lagrangian describing 1: In a more general discussion, the
Higgs doublet would be written down
without assigning the charges a priori,
they would be derived later. See [8] for
a more rigorous derivation.

the dynamics of this field,

LHiggs = (⇡⇠�†)(⇡⇠�) � ⌫

✓
�†� � E

2

2

◆2
, (2.9)

with the covariant derivative

⇡⇠� = %⇠� � 8 6,0

⇠ �
0� � 1

2 8 6
0
⌫⇠� (2.10)

is invariant under SU(2)! ⇥ U(1). symmetry and adds a quartic self-
interaction potential with the parameters ⌫ and E, where ⌫ is taken to
be positive, such that the potential is bounded from below. The fields
,

0

⇠ in the covariant derivative correspond to the gauge bosons of the
SU(2)! group whose generators are �0 = �0

2 , where �0 are the Pauli
matrices. The field ⌫⇠ is the boson of the U(1). group. The factors 6
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and 60 are the SU(2)! and U(1). coupling constants, respectively, and
are related to the Weinberg angle by

tan, =
6
0

6

. (2.11)

Because the potential has a minimum that is not at zero, the field �
acquires a non-zero vacuum expectation value (VEV) where �†� = E

2

2 .
Since the vacuum is electrically neutral, this VEV can only come from
the neutral part, �0, of the doublet and can be written as

�VEV =
1p
2

✓
0
E

◆
. (2.12)

This vacuum expectation value is no longer symmetric under the
SU(2)! ⇥ U(1). group, but is still symmetric under the U(1)& group
in which the electric charge is conserved. To see what happens to the
Lagrangian, the field � can be expressed in the unitary gauge as a
variation around the VEV such that

�(G) = 1p
2

✓
0

E + �(G)

◆
. (2.13)

Plugging this into the Lagrangian in Equation 2.9 and re-writing the
,

8

⇠ and ⌫⇠ fields in terms of / and,± using the relationships given
in Equation 2.2 and Equation 2.11 we find

LHiggs =
1
2 (%�)2 � ⌫E2

�
2 � ⌫E�3 � ⌫

4�
4

+ 6
2
E

2

4 ,
†
⇠,

⇠ + 6
2
E

2

8 cos2 ,
/⇠/

⇠

+ Higgs vertices ,

(2.14)

where Higgs vertices are 3-vertices and 4-vertices between the Higgs
field and the, and /. The notable part is that the, and / bosons
have acquired a kinetic term in the second line of Equation 2.14 with a
mass that is proportional to the VEV of the Higgs field, giving massive
exchange bosons to the Weak force2.2: The massless photon field is found

by expanding the full electroweak La-
grangian in the same way, which we
neglect here for the sake of brevity. 2.1.3 Charged Fermion Masses

In QuantumElectrodynamics, a Lorentz-invariantmass term for spin-1
2

fermions can be written as a product of left-handed and right-handed
Weyl spinors, also known as the Dirac mass

LDirac = <( ̄' ! �  ̄! ') . (2.15)

However, such a term is not invariant under SU(2)! ⇥ U(1). and there-
fore cannot be added to the SM Lagrangian directly. Fortunately,
masses for fermions can be recovered if we add a Yukawa coupling
term between the fermions and the Higgs field, such as

LYuk = �H!̄!�4' + h.c. , (2.16)
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where !! denotes the SU(2)! doublet listed in Table 2.2 and H is the
Yukawa coupling constant. When the VEV is inserted into this term, it
produces a mass term �<4(4̄!4' + 4̄'4!)with <4 =

Hp
2
E for the charged

leptons and the down-type quarks 3, B, and 1. A similar term that
is also invariant under SU(2)! and generates masses for the up-type
quarks is �H!̄!�̃D', where we defined �̃ ⌘ 8�2�.

2.1.4 Neutrino Masses

The Higgs mechanism described in Section 2.1.3 requires both left-
handed and right-handed Weyl spinors to interact with the Higgs field.
Since there are no right-handed neutrinos in the SM, it predicts that
they should be massless, in contradiction to experimental evidence.
However, if we add right-handed neutrino fields into the model, then
neutrino masses can be generated in a way that is tantalizingly similar
to that of up-type quarks by adding interactions of the form .

⇡
8 9
!̄
8�̃⇡ 9

'

to the Lagrangian. Such a right-handed field would be uncharged with
respect to all symmetry groups of the SM and therefore would not
interact with any other particle, and hence it is called a sterile neutrino.
Because neutrinos are electrically neutral, another possibility for a
mass term that is allowed by the symmetry of the SM is the so-called
Majorana mass, <⇡2

'
⇡', in which ⇡2

'
= ⇡)

'
�2 is the charge conjugate

Weyl spinor.

Dirac Mass

Dirac masses are produced by adding Yukawa couplings

LYuk = �.4
89
!̄
8�4 9

'
� .⇡

8 9
!̄
8�̃⇡ 9

'
+ h.c. (2.17)

to the Lagrangian, where the indices 8 and 9 run over the generations
4, ⇠, and � and the matrices .4,⇡ contain the complex Yukawa cou-
pling constants that are free parameters of the model. After symmetry
breaking, the mass terms become

Lmass = � Ep
2

h
.
4

89
4̄
8

!
4
9

'
+ .⇡

8 9
⇡̄8
!
⇡ 9
'

i
+ h.c.

= � Ep
2
[4̄!.4 4' + ⇡̄!.⇡⇡'] + h.c. .

(2.18)

To find the physical fields with definite masses, the .4,⇡ matrices are
diagonalized with two unitary matrices

.4 = *4"4 
†
4

.⇡ = *⇡"⇡ 
†
⇡ , (2.19)

such that "4,⇡ are diagonal and contain the physical masses of leptons
and neutrinos. By applying the transformation

4! ! *44!, 4' !  4 4'

⇡! ! *⇡⇡!, ⇡' !  ⇡⇡' ,
(2.20)
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the Lagrangian can be written in the mass basis

Lmass =
Ep
2
[4̄!"4 4' � ⇡̄!"⇡⇡'] . (2.21)

The application of these transformations to the lepton fields will also
affect the interaction part of the electroweak Lagrangian for leptons,
but not all of them are of any physical consequence. Since there is
no coupling to right-handed neutrinos, the transformation of ⇡' has
no effect at all, and we can simply ignore  ⇡. The transformation of
the right-handed charged leptons enters the coupling term to the ⌫
gauge boson, but it exactly cancels since  †

 = 1. The transformations
4! ! *44! and ⇡! ! *⇡⇡! on their own enter the coupling to the
combined ⌫ and,3 bosons (which become the / boson after symmetry
breaking), but they also cancel because neutral-current interactions do
not mix neutrinos and charged leptons3. The only physically relevant3: This cancellation is also known as

the GIM mechanism[9]. effect is on the charged-current interactions for which the Lagrangian
in the mass basis becomes

LCC, mass basis =
6

p
2

h
,

+
⇠ ⇡̄

8

!
✏⇠(*)8 9 4 9

!
+,�

⇠ 4̄
8

!
✏⇠(*†)8 9⇡ 9

!

i
, (2.22)

where * ⌘ *
†
⇡*4 is the PMNS matrix[10], which is a complex uni-[10]: Maki et al. (1962), Remarks on the

Unified Model of Elementary Particles tary matrix analogous to the CKM matrix[11] in the quark sector. The
[11]: Kobayashi et al. (1973), CP-Violation
in the Renormalizable Theory of Weak In-
teraction

properties of the PMNS matrix will be discussed in detail in Chapter
3. As a consequence of the mixing between generations in Equation
2.22, charged-current weak interactions that produce a neutrino al-
ways generate a superposition of mass eigenstates, leading to neutrino
oscillations. If we define neutrino flavor eigenstates as

©≠
´
⇡4
!

⇡⇠
!

⇡�
!

™Æ
¨
= *† ©≠

´
⇡1
!

⇡2
!

⇡3
!

™Æ
¨

, (2.23)

then the Lagrangian in Equation 2.22 can be written in the flavor basis as
in Equation 2.37. The flavor states of the charged leptons are identical to
their mass eigenstates and therefore do not mix among each other. It is
worth noting that, in this picture of pure Dirac neutrino masses, there
is no mixing between the left-handed and the right-handed states,
and therefore there is no observable oscillation effect that could be
measured between active and sterile neutrinos.

Dirac-Majorana Masses

There exists another term that can generate fermion masses that does
not require an interaction between left-handed and right-handed spinors
that was discovered by E. Majorana[12]. If ! is a left-handed chiral[12]: Majorana (2008), Teoria simmetrica

dell’elettrone e del positrone Weyl spinor, then the term

< )

!
C† ! = < 2

!
 ! (2.24)

is a Lorentz-invariant mass term, in which C is the charge conjugation
operator. The reason why this term cannot be used to give masses to
all fermions in the SM is that it is not invariant under any of the SM
symmetries. However, if we propose that right-handed neutrinos exist
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and that they are singlets under all SM symmetries, then a Majorana
mass term can be added for them without breaking the global SM sym-
metry. The most general Lagrangian including all Yukawa couplings
and Majorana mass terms (excluding left-handed neutrino Majorana
masses) of the lepton sector is

Lmass = �.4
89
!̄
8�4 9

'
� .⇡

8 9
!̄
8�̃⇡ 9

'
� 1

2":;(⇡:
'
)2⇡;

'
+ h.c. , (2.25)

where the indices 8 and 9 run over the generations 4, ⇠ and � and the
matrix .4

89
contains the Yukawa coupling constants, while the matrix

":; contains theMajoranamasseswith the indices : and ; running over
the #B sterile states B1 to B#B

. Although it seems natural to associate
exactly one sterile right-handed state with each active flavor, the model
in principle allows for any number#B of sterile neutrinos. By placing all
the left-handed and charge-conjugated right-handed fields in column
vectors

T ! =
✓
.!
.2
'

◆
.2
'
=

©≠≠
´

⇡2
B1'

...
⇡2
B#B

'

™ÆÆ
¨

, (2.26)

the Dirac and Majorana mass terms that are produced after symmetry
breaking can be written in a unified notation as

LD+M
mass =

1
2T

)

!
C†
"

D+MT ! + ⌘.2. (2.27)

with the symmetric mass matrix

"
D+M ⌘

✓
0 ("⇡))
"

⇡
"

'

◆
. (2.28)

The mass eigenstates are linear combinations of states that linearize the
mass matrix in Equation 2.28. In contrast to the pure Dirac mass, this
linear combination allows for mixing between active and sterile states,
and therefore oscillation effects such as those that are tested in this
work are possible. Another consequence of this mixing is that the GIM
mechanism no longer works, because the part of the mixing matrix
that applies to the active flavors is no longer unitary. It is therefore
possible for transitions between active and sterile eigenstates to occur
in neutral-current interactions, which can lead to the production of
Heavy Neutral Leptons (HNL)[13]. [13]: Abdullahi et al. (2022), The Present

and Future Status of Heavy Neutral Lep-
tons

2.1.5 See-Saw Mechanism

One of the puzzles of the SM is the question of why the neutrinomasses
are much smaller than those of the other fermions. If neutrino masses
are purely Dirac, then the masses are proportional to the VEV of the
Higgs field and their Yukawa couplings as can be seen in Equation
2.22. For neutrino masses to be small, the couplings would have to be
fine tuned to be very small. If, on the other hand, neutrino masses are
the result of combined Dirac-Majorana masses, then the mass of the
active neutrino flavors is suppressed if the mass of the right-handed
neutrinos is large. This can be understood very simply by looking
at the mass term for only one generation where the mass matrix in
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Equation 2.28 is a 2⇥2 matrix with a Dirac mass<⇡ in the off-diagonal
entries and aMajorana mass,", in the lower right corner. The physical
masses, that is, the eigenvalues of the mass matrix, are

<1,2 =

r
<

2
⇡
+ 1

4"
2 ± 1

2" . (2.29)

In the limit where " � <⇡ , the two solutions are approximately
<heavy ⇡ " and <light ⇡ <

2

⇡

"
. This is, in essence, the see-saw mechanism:

As " increases, the masses of the active flavors decrease. The picture
becomes more complicated when all three flavors are involved, but
if the Majorana masses are much larger than the Dirac masses, the
mass matrix can be approximately diagonalized by blocks for a similar
effect. It is also possible to build a model with a small but non-zero
left-handedMajorana mass,"!, that replaces the zero in the upper left
corner of the mass matrix in Equation 2.28, which leads to the type-II
see-saw mechanism[14]. Such models may be attractive because they[14]: Mohapatra et al. (1980), Neu-

trino Mass and Spontaneous Parity Non-
conservation

could explain the parity violation of weak interactions by spontaneous
symmetry breaking of the !$ ' symmetric (*(2)' ⇥ (*(2)! ⇥*(1)
gauge group. However, they also require new interactions beyond
the Standard Model involving a new Higgs triplet to be added to the
Lagrangian in Equation 2.25.

2.1.6 Radiative Neutrino Masses

An alternative method to naturally generate small neutrino masses is
to add a contribution to the Lagrangian that generates a mass term
as a loop-level correction. Such models can explain the smallness of
neutrino masses without the need for additional sterile neutrinos, but
they require the imposition of a new symmetry that suppresses the
Yukawa coupling from Equation 2.17 at tree level. A consequence of
some radiative neutrino mass models are Non-Standard Interactions
(NSI) that violate either flavor conservation or lepton universality. The
existence of such interactions would change the effective potential (see
Section 3.2.1) felt by neutrinos passing through matter and could there-
fore be probed with atmospheric neutrino oscillation measurements.
The discussion of radiative neutrino mass models is beyond the scope
of this thesis, a comprehensive summary can be found in [15].[15]: Cai et al. (2017), From the Trees to

the Forest: A Review of Radiative Neutrino
Mass Models

2.2 Neutrino Properties

2.2.1 Quantum Numbers

Neutrinos in the SMare described as having a spin of 1/2 and exclusively
left-handed chirality. Since they are massless, their helicity is also fixed
to ⌘ = �1. Antineutrinos are conversely right-handed with a helicity of
⌘ = 1. As evidenced by neutrino oscillations, they do have a very small
mass, but so far only upper limits could bemeasured experimentally.
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2.2.2 Mass

Due to their high abundance in the universe, neutrinos play an im-
portant role in the evolution of large structures in our cosmos in a way
that is dependent on their masses. Cosmological observations and fits
assuming the ⇤CDM model[16] provide the most stringent limit on [16]: Carroll (2001), The Cosmological con-

stantthe sum of neutrino masses at
X

<8 < 0.12 eV (2.30)

at 95% C.L.[17][18]. While these limits are very constraining, they [17]: Planck Collaboration et al. (2020),
Planck 2018 results - VI. Cosmological pa-
rameters
[18]: Alam et al. (2021), Completed
SDSS-IV extended Baryon Oscillation
Spectroscopic Survey: Cosmological im-
plications from two decades of spectroscopic
surveys at the Apache Point Observatory

strongly depend on the underlying cosmological assumptions.

The most sensitive direct neutrino mass measurement to date comes
from theKArlsruhe TRItiumNeutrino (KATRIN) experiment[19], which

[19]: Aker et al. (2022), Direct neutrino-
mass measurement with sub-electronvolt
sensitivity

measures the energy spectrum of the �-decay of molecular tritium

)2 ! 3HeT+ + 4� + ⇡̄4 . (2.31)

A non-zero mass <⇡ of the neutrino reduces the maximum possible
energy that the outgoing electron can carry, and therefore shifts the end-
point of the energy spectrum. As described in Section 2.1.4, the flavor
eigenstate ⇡4 is not a mass eigenstate, but is instead a superposition of
several mass eigenstates whose observable mass can be approximated
as<2

⇡ =
P
8
|*48 |2<2

8
, where* is the PMNSmatrix (see Section 3.1). The

90% C.L. upper bound on the neutrino mass from the latest KATRIN
result[19] is

<⇡ < 0.8 eV . (2.32)

This limit has the benefit of being independent of assumptions about
whether neutrino masses are Dirac or Majorana and independent of
cosmological models.

2.2.3 Active Neutrino Flavors

The number of active neutrino flavors (that is, flavors that interact
via the Weak force) can be constrained by measurements of the decay
width of the /0 boson. A /

0 can decay into hadrons, charged lep-
tons and neutrinos, with respective decay widths �⌘ , �l and �⇡. The
total decay width scales with the number of active flavors, because
each flavor provides an additional decay channel that increases the
decay probability. Since neutrinos are invisible to the detector, the
invisible part of the total decay width, �inv, can be attributed to decays
to neutrinos and the number of active flavors is

#⇡ =
�inv
�l

✓
�l
✏⇡

◆
SM

, (2.33)

where �l/✏⇡ is calculated from the SM. This measurement has been
done at the LEP using 4+ + 4� collisions at the /0 resonance energy
with the result[20] [20]: ALEPH Collaboration et al. (2006),

Precision electroweak measurements on the
Z resonance

#⇡ = 2.9840 ± 0.0082 , (2.34)

which is compatible with the assumption of three active neutrino fla-
vors. The result only constrains the number of neutrino states that are
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weakly interacting and that are lighter than the /0 mass, and therefore
does not preclude the existence of additional sterile neutrinos.

2.3 Neutrino Interactions

Left-handed neutrinos and right-handed antineutrinos can interact
with quarks and leptons via the exchange of /0 (neutral-current) and
,

± (charged-current) bosons. In practice, neutrinos are observed to
either scatter off of electrons in reactions such as

⇡4 + 4� ! ⇡4 + 4� , (2.35)

(—)
⇡ l

(—)
⇡ l

/
0

(a) neutrinos

l± l±

/
0

(b) charged leptons

Figure 2.1: Neutral-current lepton in-
teraction vertices.

or to interact with nucleons. While the calculation of electron scattering
is straight-forward from the electroweak Lagrangian, the scattering off
nuclei is rather complicated and requires different approximations de-
pending on the energy scale. This chapter first describes the scattering
processes that are most important for the purpose of neutrino detection
at energies of >1 GeV, where the total cross-section is dominated by
interactions with nuclei. It then briefly summarizes the process of co-
herent forward scattering that influences neutrino oscillations during
propagation through bulk material.

2.3.1 Weak interactions after symmetry-breaking

⇡̄l l+

,
�

(a),� vertex

⇡l l�

,
+

(b),+ vertex

Figure 2.2: Charged-current lepton in-
teraction vertices.

Neutrino interactions with matter are described by Weak force interac-
tions after electroweak symmetry-breaking described in Section 2.1.2.
The Lagrangian for these interactions can be written as the sum of the
neutral-current (NC) and charged-current (CC) interactions. The NC
part describes the exchange of neutral /0 bosons, which couples to all
quarks and leptons except for right-handed neutrinos (if they exist).
For leptons, the NC Lagrangian reads

LNC,L = � 6

222
,

X
l=4,⇠,�

(⇡̄l,!✏⇠⇡l,! + (2B2
,

� 1)4̄l,!✏⇠
4l,!

+ 2B2
F
4̄l,'✏⇠

4l,')/0
⇠ , (2.36)

where ⇡ denotes a neutrino field, 4 a lepton field and the subscripts !
and ' denote left-handed and right-handed fields, respectively. The
coefficient B, (2, ) is the sine (cosine) of the Weinberg angle and 6

is the coupling constant that determines the overall strength of the
electroweak force. This Lagrangian leads to the trilinear couplings
shown in Figure 2.1. The couplings to quarks have the same form as
those to the charged leptons up to a difference in coupling strength4.4: Quark mixing has no effect on neu-

tral current interactions due to the GIM
mechanism.

Neutral-current interactions conserve both the electric charge and lep-
ton number, such that a neutral-current interaction of a neutrino will
always produce a neutrino of the same flavor.

The charged-current (CC) part of the Weak Lagrangian in the flavor
basis is

LCC = � 6

p
2

X
l=4,⇠,�

⇡̄l,!✏⇠
4l,!,

+
⇠ + 4̄l,!✏⇠⇡l,!,�

⇠ +h.c. . (2.37)
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In contrast to neutral current interactions, the charged current interac-
tions couple exclusively to left-handed fields5. The associated lepton 5: The left-handed fields in the fla-

vor basis are superpositions of mass
eigenstates that may contain a (charge-
conjugated) right-handed Majorana
component as described in Section 2.1.4

interaction vertices are shown in Figure 2.2.

The weak CC interactions with quarks are affected by quark mixing
as a result of their mass generation via the Higgs mechanism. After
electroweak symmetry breaking, the mass eigenstates and the flavor
eigenstates of quarks are not identical but are instead mixed with a
unitary matrix, + , that is also called the Cabbibo-Kobayashi-Maskawa
(CKM) matrix. In the basis of mass eigenstates, the Lagrangian for
weak CC interactions with quarks is

LCC,Q =
6

p
2

3X
�=1

3X
�=1

D̄�,!✏⇠
+��3�,!,

+
⇠ + 3̄�,!✏⇠

+
⇤
��D�,!,

�
⇠ +h.c. ,

(2.38)
where the indices � and � run over the generations.

2.3.2 Neutrino-Lepton Scattering

The simplest process to consider is that of a neutrino scattering off of a
single lepton, such as

⇡⇠ + 4� ! ⇠� + ⇡4 (2.39)

via the exchange of a,+ boson. The Feynam diagram for this process
is shown in Figure 2.3. To calculate the kinematics of this process, it
is useful to define variables that are invariant under Lorentz trans-
formations

B = (?⇡ + ?4)2
&

2 = (?⇡ � :⇡)2

H =
?4 · @
?4 · ?⇡

,
(2.40)

where B is the center of mass energy, &2 is the 4-momentum transfer,
and H is the inelasticity. The inelasticity in the laboratory frame is the
fraction of the energy carried by the outgoing lepton.

⇡4 4
�

4
� ⇡4

?⇡ :⇠

,
+

?4 :4

Figure 2.3: Feynman diagram for
neutrino-electron scattering.

For a two-body collision between a neutrino with a negligibly small
mass and a stationary target electron, the differential cross-section is

d�
dH =

<4⇢⇡

8�
|M|2

(B � <2
4
)2 , (2.41)

in whichM is thematrix element of the interaction. Thematrix element
can be calculated at tree level from the Feynman diagram in Figure
2.3 and the charged-current Lagrangian from Equation 2.37. In the
case that &2 ⌧ <, and that the energy is well above the electron
production limit, the matrix element is

M⇠⇠ = �⌧�p
2

�
[4̄✏⇠(1 � ✏5)⇡4][⇡̄4✏⇠(1 � ✏5)4]

 
. (2.42)
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Figure 2.4: Spin configuration for
particle-antiparticle interactions in the
center-of-mass frame. Thin arrows (!)
indicate momentum, thick arrows ())
show angular momentum.
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Here, the constant ⌧� is the fermi constant[21]

⌧� =
6

2

2
p

2"2
,

= (1.166 378 8 ± 0.000 000 6) ⇥ 10�5 GeV�2 . (2.43)

The integrated cross-section for this process is

� '
⌧

2
�
B

�
. (2.44)

Particle-antiparticle scattering

In a reaction between a particle and an antiparticle, such as

⇡̄⇠ + 4� ! ⇠� + ⇡̄4 , (2.45)

the different spin states introduce a preferred direction to the scattering
process due to the conservation of angular momentum. This can be
seen easily when the reaction is illustrated in the center-of-mass frame
as in Figure 2.4. The scattering process is kinematically suppressed
by a factor of (1 + cos⇤)2/4, even though the matrix element for the
reaction is the same as for particle-particle scattering. The scattering
angle in the center-of-mass frame, ⇤, is related to the inelasticity by
H = (1 � cos⇤)/2, and thus the cross-section picks up an additional
factor of (1 � H)2. After integrating over H, the total cross-section is
reduced by a factor of 3. In practice, this spin suppression of large
scattering angles means that antineutrinos produce on average more
highly energetic secondary leptons, while the over-all cross-section is
smaller than that of neutrinos.

2.3.3 Neutrino Interactions with Nuclei

At energies of �1 GeV, the total cross-section of neutrinos is dominated
by interactions with nuclei, while scattering off electrons can be effec-
tively neglected. There are three processes that each have different
characteristic energy ranges. The descriptions of these processes and
their cross-sections largely follow those in [22].[22]: Formaggio et al. (2012), From eV to

EeV: Neutrino Cross Sections Across En-
ergy Scales
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Charged-current Quasi-elastic Scattering

At energies below 1 GeV, neutrinos do not resolve the inner structure of
a nucleon and the scattering process can be described as an interaction
with the nucleon as a whole as

⇡✓ + = ! ? + ✓� ,
⇡̄✓ + ? ! = + ✓+ .

(2.46)

The differential cross-section for this process as a function of the neu-
trino energy ⇢⇡ is

d�
d&2 =

⌧
2
�
"

2 |+D3 |2
8�⇢2

⇡


� ± B � D

"
2 ⌫ + (B � D)2

"
4 ⇠

�
, (2.47)

in which + is the CKM matrix, ⌧� is the Fermi constant, &2 is the
squared four-momentum transfer and " is the nucleon mass. The
± sign is positive for neutrinos and negative for antineutrinos. The
variables B and D are Mandelstam variables that are functions of the
momentum transfer and the factors �, ⌫ and ⇠ are functions of the
form factor of the nucleon. In practice, these factors depend largely
only on the vector (�1 and �2) and axial-vector (��) form factor, the
latter of which is

��(&2) = 6�✓
1 + &

2

("⇠⇠&⇢

�
)2

◆2 , (2.48)

where "⇠⇠&⇢

�
is the axial mass. Since the vector form factors and the

coupling constant 6� are well constrained from electron scattering
and nuclear beta decay, respectively, the only free parameter that
must be constrained directly from measurements of the neutrino cross-
sections[23] is the axial mass.

Neutral-current Elastic Scattering

Cross-sections of neutral-current interactions of the form

⇡? ! ⇡?

⇡= ! ⇡=
(2.49)

are described by an equation that has the same form as Equation 2.47,
albeit with different coupling constants, and their most important un-
certainties can be parametrizedwith the same axial mass as in Equation
2.48. For this reason, experiments have usually measured the ratio
between CC and NC interactions.

Resonant Scattering

At energies of a few GeV, neutrino scattering can produce excited states
of the nucleus in reactions such as

⇡✓ + # ! ✓
� + -⇤ ,

⇡̄✓ + # ! ✓
+ + -⇤ ,

(2.50)
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Figure 2.5: Deep inelastic scattering of
a muon neutrino in the quark-parton
model.

⇡⇠ ⇠�

#

?8

3

? 5

D

,
+
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-

where -⇤ is the excited state. The differential cross-section for these
processes can be approximated with an expression like Equation 2.47,
with different form factors and an independent axial mass parameter,
"

⇠⇠'⇢(

�
. The large number of possible resonant states and the nec-

essary nuclear corrections make the correct calculation of the cross-
section in this energy regime particularly challenging.

Deep Inelastic Scattering

At energies >10 GeV, the scattering process begins to resolve the inner
structure of nuclei and neutrinos can scatter off of single quarks via
the exchange of a,± or /0 boson, breaking up the struck nucleon into
a shower of hadrons. For muon neutrinos, the possible DIS processes
are

⇡⇠ + # ! ⇠�
- ⇡̄⇠# ! ⇠+ + -

⇡⇠ + # ! ⇡⇠- ⇡̄⇠# ! ⇡̄⇠ + - .
(2.51)

The Feynman diagram of the charged-current process is shown in
Figure 2.5. The struck quark initiates a hadronization process that can
produce multiple mesons in the output shower -. The kinematics
of this reaction can be calculated using the same Lorentz-invariant
quantities that are defined for neutrino-lepton scattering in Equation
2.40 and one additional variable,

G ⌘ &
2

?# · @ =
&

2

(B � <2
#
)H (2.52)

that is referred to as Bjorken-G. In the lab frame, the inelasticity is
the fraction of the energy of the initial neutrino that is converted into
hadrons

Hlab = 1 �
⇢⇠

⇢⇡
= ⇢hadrons/⇢⇡ . (2.53)

The conditions for deep inelastic scattering to occur are

&
2 � <

2
#

?# · @ � <
2
#

B � <
2
#

.
(2.54)
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Figure 2.6: Inclusive cross sections for neutrinos and antineutrinos. Figure taken from [22].

Under these conditions, the differential cross-sections for DIS for neu-
trinos and antineutrinos scattering off of a nucleon are

d2�⇡#
CC

dGdH = 2G�0
CC

" X
@=3,B

5
#

@
(G) + (1 � H)2

X
@̄=D̄,2̄

5
#

@̄
(G)

#

d2�⇡̄#
CC

dGdH = 2G�0
CC

266664
X
@̄=3̄,B̄

5
#

@̄
(G) + (1 � H)2

X
@=D,2

5
#

@
(G)

377775
,

(2.55)

with

�0
CC =

⌧
2
�

2� B

 
1 + &

2

<
2
,

!�2

. (2.56)

The functions 5 #(—)
@

(G) are the parton distribution functions for each type

of quark inside a nucleus. The factor of (1� H)2 for scattering processes
that mix particles and antiparticles comes from conservation of an-
gular momentum, as outlined earlier for neutrino-lepton scattering.
This kinematic suppression reduces the inclusive cross-section for an-
tineutrinos by a factor of approximately two. The cross-section for
neutral-current interactions has the same form as Equation 2.55, only
that the mass <, is replaced by </ and the sum runs over left-handed
and right-handed quark states that each have different coupling con-
stants.
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As outlined in Section 2.1.4, flavor eigenstates of neutrinos are not
identical to their mass eigenstates. The mass and flavor eigenstates mix
among each other via the PMNSmatrix* that, in the case of pure Dirac
masses, is a 3 ⇥ 3 unitary matrix. Thus, the neutrino flavor eigenstates
can be described as a superposition of mass eigenstates as

|⇡�i =
X
:

*
⇤
�: |⇡:i , (3.1)

where |⇡:i is the :th mass eigenstate and |⇡�i is the neutrino state of
the flavor �. As a matter of experimental fact, the mass eigenstates
that make up the three known flavor eigenstates have different masses.
This has profound consequences for the propagation of neutrinos,
because the wavepackets of the different mass eigenstates do not travel
at exactly the same speed. The lighter states are faster than the heavier
ones, which causes thewaves to interfere constructively or destructively
as long as the wave packets still overlap. This chapter describes how
this interference of eigenstates leads to the phenomenon of neutrino
oscillations and how these oscillations can be described in vacuum
and in matter. The derivations are presented under the simplifying
assumption that the mass eigenstates are ideal plane waves. The fact
that they are actually wave packets with an uncertain energy and a
finite extent leads to decoherence for very large propagation distances
or mass differences. While this is irrelevant for the standard three-
flavor oscillation result of this work, it does put an upper limit on the
mass splitting for which the sterile oscillation result is valid. This will
be described briefly in Section 3.1.2.

3.1 Neutrino Oscillations in Vacuum

The simplest case to describe is that of neutrino oscillations in vacuum.
The propagation of these states is governed by the Schrödinger equation
with the Hamiltonian H

8

d
dC |⇡:(C)i = H |⇡:(C)i . (3.2)

This equation has the plane wave solution

|⇡:(C)i = 4
�8⇢: C |⇡:i , (3.3)

where ⇢: is the energy of the state |⇡:i and C is the propagation time.
Substituting the flavor eigenstate from Equation 3.1 into Equation 3.3
using the relation*†

* = 1, the propagation becomes

|⇡�(C)i =
X

�=4,⇠,�

 X
:

*
⇤
�: 4

�8⇢: C
*

⇤
�:

! ��⇡�↵ . (3.4)
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This leads directly to the expression for the probability of measuring
one flavor after a given time

%⇡�!⇡� =
��⌦⇡���⇡�(C)↵��2 =

X
:,9
*

⇤
�:*�:*� 9*

⇤
� 9 4

�8(⇢:�⇢9 )C . (3.5)

If we assume that all mass eigenstates have the same momentum1

1: The assumption of equal momentum
is not exactly realistic, butmore detailed
derivations can show that deviations
from it do not cause an observable effect.
See also Chapter 8.1.2 in [7].

and that they are highly relativistic, we can approximately express the
energy in terms of the mass of each state

⇢: =
q
?Æ2 + <2

:
' ⇢ +

<
2
:

2⇢ (3.6)

and write the transition probability in terms of the energy and the
differences of squared masses between the mass eigenstates

�<2
: 9
⌘ <

2
:
� <2

9
(3.7)

and the distance traveled, !, as

%⇡�!⇡� (!,⇢) =
X
:,9
*

⇤
�:*�:*� 9*

⇤
� 9 exp

 
�8
�<2

: 9
!

2⇢

!
. (3.8)

This state evolution can also be expressed with the effective Hamil-
tonian

He� =
1

2⇢*diag(0,�<2
21,�<2

31)*† (3.9)

and one can define the characteristic distance for oscillations between
mass eigenstates : and 9 at which the oscillation amplitude is maximal
as

!
osc
: 9

=
4�⇢
�<2

: 9

. (3.10)

Antineutrino flavor eigenstates are superpositions of the correspond-
ing antineutrino mass eigenstates, and are related by the complex-
conjugated PMNS matrix such that

|⇡̄�i =
X
:

*�: |⇡̄:i . (3.11)

This leads to the same expression for their oscillation probability as in
Equation 3.8, except that all elements of* are complex-conjugated.

3.1.1 Two-neutrino mixing

Neutrino oscillation experiments are typically limited to a certain os-
cillation length and energy range that they can probe. Because the
two mass splittings between the three known neutrino flavors are two
orders of magnitude apart (O

�
10�5 eV2� for �<2

21 vs. O
�
10�3 eV2� for

�<2
32)[24], each experiment is in practice muchmore sensitive to one of

them than to the other as will be discussed in Section 3.3. This can also
be seen in the oscillation plot in Figure 3.1, which shows the transition
probabilities of an initial electron neutrino into the other flavors in
vacuum as a function of oscillation distance. It is therefore a good first
approximation to calculate neutrino oscillation probabilities is to only
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Figure 3.1:Transition probabilities of an
initial electron neutrino in vacuum, cal-
culated at global best-fit[24] oscillation
parameters. The distance is normalized
such that the slow oscillations due to
the smaller mass splitting �<2
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have a

period of one.

consider two flavor and two mass eigenstates with a mass splitting of
�<2 ⌘ <

2
2 � <2

1 that mix via the rotation matrix

* =
✓

cos' sin'
� sin' cos'

◆
, (3.12)

where the angle ' is themixing angle between the twomass eigenstates.
The transition probability from flavor � to flavor � with � < � can be
quickly derived from the general Equation 3.8 to be

%⇡�!⇡� = sin2 2' sin2
✓
�<2

!

4⇢

◆
, � < � . (3.13)

Conversely, the probability that an initial flavor � is still beingmeasured
as � after a given propagation distance, also referred to as the survival
probability, is

%⇡�!⇡� = 1 � sin2 2' sin2
✓
�<2

!

4⇢

◆
. (3.14)

3.1.2 Decoherence

The previous sections treated the neutrino mass eigenstates as if they
were plane waves with a fixed energy. This description is an ap-
proximation that holds very well for atmospheric neutrino oscillations
in the three-flavor picture, but can break down if the mass splitting
between states is large. The size of neutrino wave packets, �⇡

G
, is de-

termined by the coherence size of the production process. The effective
wave packet size for neutrinos that are produced in pion decays within
a gas is calculated in detail in [25]. The competing processes of rel- [25]: Jones (2015), Dynamical pion col-

lapse and the coherence of conventional neu-
trino beams

ativistic wave packet dispersion and scattering in gas leads to an overall
energy dependence

�⇡
G
/ ⇢�1 . (3.15)

Due to the finite size of neutrino wave packets, the vacuum flavor
transition probability from Equation 3.8 acquires a dampening term
and becomes

%⇡�!⇡� (!,⇢) =
X
:,9
*

⇤
�:*�:*� 9*

⇤
� 9 exp©≠

´
�82� !

!
osc
9,:

�
 
!

!
coh
9,:

!2™Æ
¨

. (3.16)
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Figure 3.2: Coherence lengths for neu-
trinos produced in pion decays at dif-
ferent mass splittings. The black solid
lines indicate the baseline and energy
ranges of some existing and proposed
accelerator experiments. Figure taken
from [25].
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The oscillation length !
osc
9,: is the same as in Equation 3.10 and the

decoherence length is

!
coh
9,: =

4
p

2⇢2����<2
: 9

��� �
⇡
G

. (3.17)

Taking the expression in Equation 3.17 togetherwith the⇢�1 dependence
of the packet size leads to a scaling of the coherence length with ⇢ as
shown in Figure 3.2. For baselines of the size of one Earth diameter
and energies of tens of GeV that are relevant for atmospheric neutrino
oscillations, decoherence becomes relevant at mass splitting values
approaching 100 eV2.

3.2 Oscillations in matter

The oscillation probabilities derived in the previous sections for the
vacuum are altered significantly when neutrinos pass through large
amounts of matter. This is particularly relevant for neutrinos orig-
inating in the atmosphere of the Earth that pass through its dense core
to be detected at the South Pole. The effect can be described as a con-
tinuous potential that is added to the Hamiltonian in the flavor basis,
and which corresponds to the isoscalar (nulcei) targets and electrons
inside the Earth. The detailed derivation of this matter potential can be
found in [26]. Only a brief outline is presented here to illustrate how[26]: Linder (2005), Neutrino matter po-

tentials induced by Earth the matter potential leads to an enhancement of the effective mixing
between flavors in the simplified picture of two flavors and a constant
matter density.

3.2.1 Effective potentials

At energies relevant to this work2, neutrinos are mostly affected by2: Incoherent scattering becomes
only important at energies above
O
�
105 GeV

�
.

coherent forward scattering processes, that is, scattering with a very
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Figure 3.3: Feynman diagrams of the
coherent forward scattering processes
for neutrinos travelling through Earth.

small momentum transfer. Feynman diagrams of the relevant pro-
cesses are shown in Figure 3.3. All neutrino flavors can interact with
electrons and nuclei via the neutral-current (NC) interaction, while
only electron-neutrinos can also undergo charged-current (CC) scat-
tering off of electrons. When the exchanged momentum is small, then
the propagator in each Feynman diagram can be contracted into a 4-
point Fermi interaction with the coupling constant ⌧� . The effective
CC Hamiltonian for the diagram in Figure 3.3a (after a Fierz trans-
formation) becomes

H⇠⇠

e� (G) = ⌧�p
2
[⇡̄4(G)✏⌧(1 � ✏5)⇡4(G)][4̄(G)✏⌧(1 � ✏5)4(G)] . (3.18)

This Hamiltonian is then averaged over the momenta and helicities of
a constant density of electrons with the result

H⇠⇠

e� (G) = +⇠⇠ ⇡̄4,!(G)✏0⇡4,!(G) , (3.19)

where +⇠⇠ is the charged-current potential

+⇠⇠ =
p

2⌧�#4 (3.20)

with the electron number density #4 . The derivation of the NC po-
tential follows in similar steps with the addition of a different coupling
constant for electrons, protons, and electrons. For electrically neutral
media, the potentials for protons and electrons exactly cancel and the
only remaining NC potential comes from the neutron density, #= , and
is given by

+#⇠ = �1
2
p

2⌧�#= . (3.21)

With the addition of these potentials, the effective Hamiltonian gov-
erning the evolution of flavor states for neutrinos propagating inmatter
is

He�(⇢, G) = H0(⇢) + H1(⇢, G) , (3.22)

with

H0(⇢) =
1

2⇢*
©≠
´
0
�<2

21
�<2

31

™Æ
¨
*

† , (3.23a)

H1(⇢, G) =
p

2
2 ⌧�

©≠
´
2#4(G) � #=(G)

�#=(G)
�#=(G)

™Æ
¨

. (3.23b)
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The NC potential in Equation 3.23b can be neglected in the case of
three-flavor oscillations, because a diagonal contribution to the Hamil-
tonian merely adds an unobservable phase shift that affects all fla-
vors equally. However, if sterile Majorana mass eigenstates are added,
their corresponding matter potentials are zero and they only add their
respective mass splitting to Equation 3.23a. In that case, the state
evolution has to be described using both CC and NC potentials.

3.2.2 The MSW Effect

An interesting consequence of matter potentials is that they can greatly
enhance the mixing amplitude between flavors over that of vacuum os-
cillations, a phenomenon known as theMikheyev-Smirnov-Wolfenstein
(MSW) effect[27][28]. The effect is straight forward to illustrate for the[27]: Wolfenstein (1978), Neutrino os-

cillations in matter
[28]: Smirnov (2003), TheMSW effect and
solar neutrinos

case of two-flavor oscillations, where one flavor feels a potential, + ,
and the other does not. With the mass-splitting �<2 ⌘ <

2
2 � <2

1 and
2 ⇥ 2 mixing matrix from Equation 3.12, the effective Hamiltonian for
this scenario is

H=
1

4⇢

✓
*

✓
0
�<2

◆
*

† +
✓
�CC

0

◆◆

=
1

4⇢

✓
��<2 cos 2' + �CC �<2 sin 2'

�<2 sin 2' �<2 cos 2' � �CC

◆
,

(3.24)

where we have subtracted 1
4⇢ (�<2 + �CC) from the diagonal in the

second line with �CC = 2⇢+ . This Hamiltonian can be diagonalized
by another 2D rotation matrix*" , with mixing angle '" , such that

*
)

"
H*" = H" =

1
4⇢

✓
��<2

"

�<2
"

◆
(3.25)

is diagonal. The diagonalization is achieved under the condition that

tan 2'" =
tan 2'

1 � �CC

�<2 cos 2'

, (3.26)

leading to a new effective mass splitting in matter,

�<2
"

=
p
(�<2 cos 2' � �CC)2 + (�<2 sin 2')2 . (3.27)

As a consequence of the condition in Equation 3.26, the effectivemixing
angle in matter can become maximal under the condition that

+ =
�<2 cos 2'

2⇢res
(3.28)

with the resonance energy ⇢res. This enhancement of mixing between
flavors due to the presence of a matter potential is known as the MSW
effect, named after Mikheev, Smirnov and Wolfenstein. It is primarily
responsible for the fact that there is a sizable disappearance of electron
neutrinos from the Sundespite the fact that the relevant vacuummixing
angle is rather small. The potential for isoscalar targets is

+ =
p

2⌧�#4 ⇡ .4 ⇥


⌧

g cm�3

�
⇥ 7.63 ⇥ 10�14 eV , (3.29)
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where .4 = #4/(#? +#=) is the electron fraction in the medium and is
usually close to 1

2 . We can find the resonant energywhere theMSW res-
onance occurs for a given matter density by combining Equations 3.28
and 3.29 into

⇢res =
�<2 cos 2'

2+ ⇡ (�<2eV�2) cos 2'

.4

h
⌧

g cm�3

i ⇥ 6.6 ⇥ 1012 eV . (3.30)

For three-flavor oscillations observed experimentally, the MSW res-
onance can enhance mixing due to the relatively small mixing an-
gle 13 = (8.60 ± 0.13)�[21]. This occurs at ⇡ 7 GeV for muon neu-
trinos traveling through the mantle of the Earth, where the density is
⌧mantle ⇡ 4.5 g cm�3 and where the observed oscillations are due to the
larger mass splitting �<2

32 ⇡ 2.5 ⇥ 10�3 eV2. For hypothetical sterile
neutrinos with a mass splitting of O(1 eV) passing through the core of
the Earth with ⌧ ⇡ 13 g cm�3 and .4 ⇡ 1

2 , this gives a resonant energy
of close to 1 TeV assuming a small mixing angle between active and
sterile flavors. This effect has been used in previous IceCube studies[29]
to search for traces of sterile neutrinos using TeV scale atmospheric
neutrinos, but it is not relevant to the analysis presented in this work.

3.2.3 Parametric resonance

Another way in which the presence of matter potentials can enhance
neutrino oscillation amplitudes is via parametric resonance. This res-
onance occurs when the matter potential changes abruptly at just the
right frequency to create a situation that is analogous to constructive
interference, even if the density is far from the MSW resonance con-
dition. The reason why this can happen is that the quantum state of
the neutrino receives a phase shift at every interface between regions
of different densities. If such an interface is located at the oscillation
maximum and the difference in densities has the right magnitude, the
phase is reset to zero and and the flavor transition probability will
increase again in the next region, instead of returning to zero. This
situation can arise in particular at the transition points between the
mantle and the core when neutrinos pass through the Earth as shown
in Figure 3.4. The black solid line shows the simplified three-layer mat-
ter potential that is used to approximate the density of the Earth in the
oscillation calculation. At each interface (dashed lines), the phase shift
causes the oscillation pattern to begin again at the rising flank. After
the neutrino propagates through the Earth, the oscillation probability
has increased to close to one. The condition for maximum parametric
resonance is delicately dependent on the energy, mass splitting, mixing
angle, and the parameters of the matter potential and are derived in
more detail in [30]. In atmospheric neutrino oscillations, the parametric
enhancement of the ⇡⇠ ! ⇡4 oscillation channel is responsible for the
distortions of the oscillation pattern at a few GeV.

3.2.4 Neutrino Mass Ordering

In vacuum, neutrino oscillations are only sensitive to the absolute
differences between (squared) neutrino masses, not their sign. As a
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Figure 3.4: Parametric resonance for
a simplified mantle-core-mantle prop-
agation with two flavors. The assumed
mass-splitting is �<2 = 2.5⇥10�3 eV2,
the mixing angle is  = arcsin(0.1),
and the energy is 3.4 GeV. The matter
potential used for the calculation. It is
an approximation of the density profile
of Earth in the 12-layer PREM model,
shown in gray.

result, there are two degenerate possibilities for arranging the mass
eigenstates that produce the same vacuum oscillation effect. The case
where <2

1 < <
2
2 < <

2
3 is referred to as normal ordering. In this case,

the value of the mass splitting �<2
8 9
is always positive for 8 > 9. For

inverted ordering, we have <2
3 < <

2
1 < <

2
2 . In that case, the sign of �<2

32
is negative. While the ordering has no observable effect in vacuum,
it does affect the propagation in the presence of matter effects. This
can be seen readily in the MSW resonance condition in Equation 3.26,
where the sign of �<2 enters the denominator. The resonance condi-
tion for neutrinos can only be fulfilled if the sign of �<2 is the same
as cos 2 for neutrinos, or if the signs of �<2 and cos 2 are different
for antineutrinos. Therefore, the neutrino mass ordering can be de-
termined experimentally by measuring the differences in matter effects
between neutrinos and antineutrinos.

3.3 Standard three-flavor oscillations

The simplest extension to the Standard Model that explains the phe-
nomenon of neutrino oscillations is that of three oscillating flavor eigen-
states and three mass eigenstates that result from pure Dirac masses
as described in Section 2.1.4. In this picture, the mixing between mass
eigenstates is governed by the 3 ⇥ 3 PMNS matrix that is commonly
parametrized by three mixing angles and one complex phase,

* = ©≠
´
*41 *42 *43
*⇠1 *⇠2 *⇠3
*�1 *�2 *�3

™Æ
¨

= ©≠
´

212213 B12213 B134
�8⇣

�B12223 � 212B23B134
8⇣

212223 � B12B23B134
8⇣

B23213
B12B23 � 212223B134

8⇣ �212B23 � B12223B134
8⇣

223213

™Æ
¨

,

(3.31)
where B89 and 289 are the sine and cosine of the mixing angle 8 9 , respec-
tively. The complex phase ⇣ leads to CP-violation of the oscillations.
Furthermore, there are two mass splitting values between the three
mass eigenstates, �<2

21 and �<2
31, which govern the frequency of the

oscillations. The mixing angles that parameterize the PMNS matrix
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and the mass splittings are typically associated with the types of ex-
periments that are most sensitive to them based on the oscillation
channel they observe, their energy range, and the distance between
the source and the detector, also referred to as the baseline of the ex-
periment. In order for an experiment to resolve oscillations, the oscil-
lation phase should be

�<2
!

4⇢ ⇡ 1.27
(�<2

31/eV2)(!/km)
(⇢/GeV) ⇠ O(1) . (3.32)

This condition leads to two different categories of experiments, the first
being sensitive to the very slow oscillations due to �<2

21 ⇠ O
�
10�5 eV2�

and the second one probing the faster oscillations due to �<2
31 ⇠

O
�
10�3 eV2� . Because the slow oscillation channel was first observed

in neutrinos originating from the Sun, �<2
21 is also referred to as the

”solar” mass splitting. The larger mass splitting �<2
31 was measured

for the first time in neutrinos that are produced in the atmosphere
of the Earth and is also called the ”atmospheric” mass splitting. Fig-
ure 3.5 gives an overview over different oscillation experiments, both
operational and planned, with their respective energy ranges and base-
lines. Experiments on the line marked !� probe the solar mass splitting
�<2

21, while those on the line marked !atm measure oscillations from
the atmospheric mass splitting of �<2

21.

Similarly, the mixing angles are also associated with those experiments
that are most sensitive to their value. Since the angle 13 is small,
the PMNS matrix in Equation 3.31 can be decomposed to a first ap-
proximation into the upper left and lower right 2 ⇥ 2 blocks. The
oscillation probability in each block can be approximated by oscil-
lations between only two flavors with one mass splitting. The upper
left block governs the transitions between the ⇡4 and ⇡⇠ flavors with the
mixing angle 12 and the solar mass splitting �<2

21. For this reason,
the mixing angle 12 is also referred to as the “solar angle“. The lower
right block of the PMNS matrix controls transitions between ⇡⇠ and
⇡� flavors with the mixing angle 23 and atmospheric mass splitting
�<2

32. Therefore, 23 is often called the ”atmospheric” mixing angle,
although it can also be measured using neutrinos that are produced
in accelerators. The effect of the smaller mixing angle 13 is that of
a disappearance of electron neutrinos at short distances. Such tran-
sitions can be observed using electron antineutrinos that are produced
by fission reactors. Thus, the angle 13 is also called the “reactor“
angle.

The most recent global best-fit point[31] of the mixing angles and mass
splittings under the assumption of normal neutrino mass ordering is
shown in Table 3.1. The table also lists the experimental channels that
are primarily used to measure each parameter.

3.3.1 Solar neutrinos

The Sun produces energy in two different nuclear reactions known as
the ?? chain and the CNO cycle. The net result of these reactions is the
conversion of four protons and two electrons into a 4He nucleus and
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Table 3.1: Best-fit values of the three-
flavor oscillation parameters and the
oscillation channel that is primarily in-
volved in their measurement. Values
taken from [31].

parameter global fit experimental channel
12/� 33.44+0.77

�0.74 ⇡4 ! ⇡4 (solar)
�<2

21

10�5 eV2 7.42+0.21
�0.20 ⇡̄4 ! ⇡̄4 (reactor)

23/� 49.2+1.0
�1.3 ⇡⇠ ! ⇡⇠ (atmospheric, accelerator)

�<2

31

10�3 eV2 2.515+0.028
�0.028

13/� 8.57+0.13
�0.12 ⇡̄4 ! ⇡̄4 (reactor)

⇣CP/� 194+52
�25 ⇡⇠ ! ⇡4 (accelerator)

Figure 3.5: Energy ranges and baselines
for a selection of neutrino oscillation ex-
periments, operational or planned. The
range of each experiment is shown ei-
ther as a line for experiments with a
fixed oscillation distance such as T2K or
DUNE, or as a box for experiments with
both a variable baseline and energy
range such as IceCube. Figure taken
from[32].
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Measurements of the solar neutrino flux are the oldest hints at neutrino
oscillations and began at the end of the 1960s with the Homestake[33]
experiment. It used the inverse beta decay process 37Cl+⇡4 ! 4

�+37Ar
to capture neutrinos with an energy threshold of 0.814 MeV. The ob-
served neutrino flux was only about 30% of the expectation from the
Standard Solar Model[34], giving rise to the solar neutrino problem. This[34]: Bahcall et al. (2005),New solar opac-

ities, abundances, helioseismology, and neu-
trino fluxes

problem was resolved in 2002, when observations at the Sudbury Neu-
trino Observatory (SNO) confirmed[5] that this deficit is due to the
conversion of electron neutrinos into muon neutrinos, while the total
neutrino flux, as measured by the rate of neutral-current interactions,
remains constant. Terrestrially, these oscillations can only be observed
using very low energy neutrinos from nuclear fission reactors at base-
lines of hundreds of kilometers. The only experiment of this kind that
is currently operational is the KamLAND detector[35].

3.3.2 Reactor neutrinos

Nuclear fission reactors produce primarily electron antineutrinos that
can be used to measure the electron-neutrino survival probability at
short distances where oscillation effects are dominated by the larger
mass splitting �<2

31. The amplitude of fast ⇡4 ! ⇡4 oscillations is
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controlled by the |*43 | element of the PMNS matrix in Equation 3.31
that is proportional to sin(13). The most sensitive experiments mea-
suring 13 are nuclear reactor experiments such as Double Chooz[36],
RENO[37], and the Daya Bay Reactor Neutrino Experiment[38]. These
experiments feature two or more detectors set up at different distances
from a nuclear reactor that measure the neutrino flux from a nuclear
reactor. Comparative measurements between these detectors allow the
mixing angle 13 to be precisely determined while canceling most of
the systematic uncertainties of the experiment.

3.3.3 Atmospheric Neutrino Oscillations

The first experiment that was able to measure the effect of atmospheric
neutrino oscillations is the Super-Kamiokande (SuperK) experiment[4],
a Cherenkov neutrino detector located in the Kamioka mountains in
Japan, which is still operational to this day. Since the measurement
presented in this work is also a measurement of atmospheric neutrino
oscillations, this kind of measurement is explained in more detail
compared to other types of experiment in this section.

Neutrino production in the atmosphere

Neutrinos are produced in the atmosphere of the Earth when highly
energetic cosmic radiation interacts with its upper layers. This cosmic
radiation is composed mostly of fast protons and helium nuclei and to
a smaller fraction of other elements. The composition and spectrum
of this radiation have been extensively measured by experiments con-
ducted at high altitudes, such as in weather balloons, satellites, and
on the International Space Station. From a few GeV to approximately
100 TeV, it can be well approximated by a power spectrum with a spec-
tral index of ✏ ⇡ 2.7. When a cosmic ray interacts with a nucleus, it
creates a shower of hadrons that is mostly composed of Pions and
Kaons that subsequently decay into muons, electrons, and neutrinos
in the reaction chain

C.R. + # ! - + �±, ±

�± ! ⇠± + (—)
⇡⇠

⇠± ! 4
± + (—)

⇡ 4 +
(—)
⇡⇠ .

(3.34)

At energies of O(1 GeV), these reactions lead to a production of muon
neutrinos and electron neutrinos at a ratio of 2 : 1. However, as the
energy increases, muons can increasingly reach the surface of the Earth
and interact before they can decay, increasing the relative fraction
of muon neutrinos as shown in Figure 3.6b. Between GeV and TeV
energies, the ⇡⇠ flux has a spectral index that is similar to that of the
primary cosmic rays at ✏ ⇡ 2.7 as can be seen in Figure 3.6a, while
the spectrum for electron neutrinos falls off more quickly at higher
energies. Tau neutrinos can also be produced if a cosmic ray interaction
produces charmed mesons, but such interactions are rare and the
atmospheric tau neutrino flux is below 0.1% for the energies considered
in this work[39] and is therefore neglected.
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Figure 3.6: Neurino flux at the South
Pole, averaged over all directions. Fig-
ures taken from [40].
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Figure 3.7: Illustration of the ge-
ometry of atmospheric oscillation mea-
surements. The detector is shown as the
gray box near the bottom and I indi-
cates the observed zenith angle of a neu-
trino.
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Three-flavor oscillations of atmospheric neutrinos

After neutrinos are produced in the atmosphere, they travel through
the Earth before being detected at the South Pole. Depending on the
zenith angle at which a neutrino is observed, it has traveled a total
distance, !, that depends on the radius of the Earth, '�, the depth of
the detector, 3det, and the production height of the neutrino, ⌘atm, as
illustrated in Figure 3.7. From the geometry, ! is calculated as

! = (3 � '�) cos(I) +
p
('� + ⌘atm)2 � ('� � 3)2 sin2(I) . (3.35)

If the height of the atmosphere and detector depth is neglected, Equa-
tion 3.35 reduces to

! =

(
0 I  �

2
2'� cosI I > �

2
. (3.36)

From the perspective of the IceCube detector, an up-going event is one
where the zenith angle is I > 90�, that is, cos(I) < 0. On the other
hand, a down-going event is one where cos(I) > 0. In such cases, the
neutrino travels only through the atmosphere and the overburden of
the detector and therefore matter effects are negligible. The Earth
is modeled as a set of concentric shells with different matter den-
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Figure 3.8: Muon-neutrino survival
probability calculated at NuFit 4.0[24]
global best fit parameters.

sities. The most prominent feature in the density profile is the core
region at a depth of close to half an Earth radius, where the density
sharply increases from 5 g cm�3 to >10 g cm�3[41]. Neutrinos for which
cos(I) . 0.8 travel partially through the core and generally experience
greatly enhanced matter effects. Given the baseline of O

�
'� ⇠ 104 km

�
and the core energy range of the atmospheric neutrino spectrum be-
tween GeV and TeV scales, the mass splitting between mass eigenstates
whose oscillation could be observed is 10�4 eV2 < �<2 < 10�1 eV2.

Since the primary constituent of the atmospheric neutrino flux are
muon (anti-)neutrinos, the most important oscillation channel to be
observed is the muon neutrino survival probability ((—)

⇡⇠ ! (—)
⇡⇠) that can

be approximated by the vacuum two-flavor oscillation expression

%(⇡⇠ ! ⇡⇠) ' 1 � 4|*⇠3 |2(1 � |*⇠3 |2) sin2
✓
�<2

31!

4⇢

◆

' 1 � sin2(223) sin2

 
1.27

(�<2
31/eV2)(!/km)
(⇢/GeV)

!
,

(3.37)

where the second line uses the fact that 13 is small while 23 is close to
�/4. Because most atmospheric neutrinos have energies above the tau
production threshold at ⇠ 3.5 GeV, it is also possible to directly probe
the tau appearance channel ⇡⇠ ! ⇡� with the approximate transition
probability

%(⇡⇠ ! ⇡�) ' 4|*�3 |2 |*⇠3 |2 sin2
✓
�<2

31!

4⇢

◆

' sin2(223) cos4(13) sin2

 
1.27

(�<2
31/eV2)(!/km)
(⇢/GeV)

!
.

(3.38)
Atmospheric neutrino oscillations can therefore directly probe the
magnitudes of the*⇠3 and*�3 elements of the PMNS matrix.

Matter effects

The distinctive feature of atmospheric neutrino measurements over
other terrestrial experimental setups is that the Earth provides a large
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amount of matter between the point of neutrino production and the
detector. As described in Section 3.2, the presence of matter adds an
effective potential to the Hamiltonian that is diagonal in the flavor
basis. In the case of three-flavor oscillations, this potential affects only
electron neutrinos. Ignoring the small mass splitting �<2

21, all matter
effects occur in the transitions between mass eigenstates 1 and 3. The
effective mixing angle "13 and mass splitting �<2

31," in matter can
then be calculated in the two-flavor picture as described in Section
3.2.2. If the sign of �<2

31 cos(213) is positive, then the resonance con-
dition in Equation 3.26 can be fulfilled for neutrinos given appropriate
matter density. If the sign is negative, then it can only be fulfilled for
antineutrinos. This means that matter effects can provide sensitivity to
the neutrino mass ordering through an enhancement of the mixing an-
gle 13 for neutrinos or antineutrinos. This also applies to parametric
enhancement effect described in Section 3.2.3. The CP-violating phase
⇣⇠% has only a negligible effect on atmospheric oscillations because it
requires sensitivity to �<2

21. The muon neutrino survival probability
for atmospheric neutrinos including matter effects is shown in Figure
3.8 as a function of energy and cosine of the zenith angle. The MSW
resonance condition is approximately fulfilled for neutrinos passing
through the mantle of the Earth at energies between 6 GeV and 10 GeV.
The distortions for neutrinos passing through the core of the Earth at
energies below 10 GeV are due to parametric resonance.

Current and future atmospheric neutrino experiments

The currently operating dedicated atmospheric neutrino experiments
are SuperK, IceCubeDeepCore (focus of this work) andORCA[42]. The
ORCA detector is currently under construction in the Mediterranean
sea. Once completed, it will consist of 115 detection units with 18 digital
optical modules each, instrumenting a volume of approximately 7 MT.
The first 6 detection units have been deployed since January 2020 and
were able to successfullymeasure atmospheric neutrino oscillations[43].
Some detectors that are primarily built to measure the neutrino flux
from accelerators (see Section 3.3.4), such as MINOS, are also capable
of detecting atmospheric neutrinos[44].

3.3.4 Accelerator neutrinos

The ⇡⇠ ! ⇡⇠ oscillation channel probed by atmospheric neutrino
oscillations is also accessible via long-baseline accelerator neutrino ex-
periments. These experiments use neutrinos that are produced when
protons are shot at a stationary target by a particle accelerator. The
interactions of the protons with the target produce a hadronic shower
consisting mostly of pions that are then focused into a tube where they
are allowed to decay into neutrinos and charged leptons. This process
is very similar to the production of neutrinos in the atmosphere and
leads to a beam that is composed of mostly muon neutrinos and some
electron neutrinos. The beam is directed at a detector that is typically
located several hundreds of kilometers away from the neutrino pro-
duction site. An example of such an experimental setup is the MINOS
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Figure 3.9: Neutrino Main Injector (NuMI) facility producing neutrinos for the MINOS experiment. Figure taken from[48].

experiment[45]. Figure 3.9 shows the setup of the Neutrino Main In-
jector (NuMI) that produces neutrinos for MINOS at a peak energy
of 3 GeV. The neutrino flux is measured at a near and a far detector
at baselines of 1 km and 735 km, respectively, that are both identically
constructed magnetized steel scintillator tracking calorimeters. The
atmospheric mass splitting and mixing angle can be estimated by com-
paring the neutrino flux at the near and far detectors, so that most of
the inherent systematic uncertainties of the measurement cancel out.
Other experiments with a similar setup are T2K[46] and NO⇡A[47].

3.4 Anomalies in neutrino oscillation
measurements

While the three-flavor oscillation picture explainsmost of the experimental
data from reactor, accelerator, atmospheric and solar neutrino ex-
periments fairly well, there are some notable exceptions of anomalous
experimental observations. These anomalies are

I ReactorAntineutrinoAnomaly: Adeficit of ⇡̄4 in the neutrino flux
of nuclear reactors with respect to the theoretical flux expectation
at baselines between ! ⇠ 10 m and ! ⇠ 100 m.

I Gallium anomaly: A deficit of ⇡4 in the flux of a radioactive 51Cr
source. The detector is in direct contact with the source and is of
O(1 m) in size in each dimension.

I LSND anomaly: An excess of ⇡̄4 in the neutrino flux of a proton-
on-target (accelerator) source at ! ⇠ 30 m and ⇢ ⇠ 30 MeV.

I MiniBooNE anomaly: Excess of electron-like events in the the
flux of neutrinos generated by an accelerator source at ! ⇠ 500 m
and ⇢ ⇠ 500 MeV.

This section summarizes each of these measurements and describes
how they could be resolved by the introduction of sterile neutrino
states.

3.4.1 Reactor neutrino anomaly

TheReactorAntineutrinoAnomaly (RAA)was first described in 2011[49] [49]: Mention et al. (2011), The Reactor
Antineutrino Anomalyafter new corrections were introduced into the theoretical calculations
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Figure 3.10: Exclusion contours for the
sterile mass splitting and mixing angle
from the STEREO experiment. The ef-
fective mixing angle 44 is equivalent
to 13 in Equation 3.39. The red solid
line shows the (FC corrected) exclusion
contour, the dashed line shows the ex-
pected sensitivity. Blue lines show the
sensitivity and exclusion limits using a
different statistical method. Gray solid
lines show the preferred values of the
RAA. Figure taken from [50].
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Figure 3.11: Deficit in ⇡̄4 flux from com-
mercial nuclear reactors referred to as
Reactor Antineutrino Anomaly. Figure
taken from [49].
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to the predicted neutrino flux from commercial nuclear reactors. The
corrections adjusted the predicted flux upwards, leaving a deficit of
⇠ 6% in the measured flux with respect to the new prediction. It is
suggested in [49] that this deficit could be explained by the introduc-
tion of an additional mass eigenstate with a mass splitting, �<2

41, and
mixing angle, 14. The electron neutrino survival probability can be
approximated for distances of ! . 1 km as

%44 = 1�cos4(14) sin2(213) sin2
✓
�<2

31!

4⇢

◆
�sin2(214) sin2

✓
�<2

14!

4⇢

◆
.

(3.39)
The magnitude of the additional mass splitting and mixing angle
proposed in [49] is

���<2
41

�� � 1 eV2 and sin2(2new) = 0.12, respectively.
The oscillations due to this mass eigenstate would be too fast to be
resolvable and would only lead to an average deficit that is shown as
the blue line in Figure 3.11. The red line shows the flux expectation in
the presence of only three active flavors.

Whether or not the RAA truly is an anomaly depends onwhether or not
one trusts the theoretical flux predictions. The calculations involved
require complex nuclear corrections that are not fully understood. The
RAA is in fact not the only anomaly in the reactor antineutrino flux.
The second anomaly, an excess of ⇡̄4 at ⇠ 5 MeV, is thought to originate
from poorly understood nuclear physics[51]. For this reason, the RAA
was put under scrutiny by follow-up experiments that only measure
flux differences between different baselines to cancel uncertainties in
the absolute flux. Three such experiments are STEREO, PROSPECT,
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and DANSS. The detectors of STEREO and PROSPECT are segmented
between baselines of respectively 9.4 m to 11.2 m and 6.7 m to 9.3 m,
while the DANSS detector is positioned on a movable platform that
allows for measurements to be taken at baselines of 10.9 m, 11.9 m and
12.9 m[52]. The results of the measurements of these three experiments [52]: Licciardi (2021), Results of STEREO

and PROSPECT, and status of sterile neu-
trino searches

show no sign of baseline-dependent flux variations and therefore ex-
clude the oscillation amplitude preferred by the RAA at mass splitting
values between 0.1 eV2 and 10 eV2. The contours for STEREO[50] are [50]: Almazán et al. (2023), STEREO

neutrino spectrum of 235U fission rejects
sterile neutrino hypothesis

shown in Figure 3.10, those for DANSS and PROSPECT look very sim-
ilar and can be found in [52]. However, these measurements still allow
oscillations due to a mass eigenstate with �<2

41 > 10 eV2 that cannot
be resolved by their detector segmentation. In addition, more recent
re-evaluations of the reactor flux model in light of new data from the
research reactor at the Kurchatov Institute of the National Research
Center (KI) have again increased the predicted flux and thus resolved
the anomaly almost entirely[53]. [53]: Giunti et al. (2022), Reactor an-

tineutrino anomaly in light of recent flux
model refinements

3.4.2 Gallium anomaly

Figure 3.12: Experimental setup of the
BEST experiment. The diameters of the
inner and outer volumes are 133.5 cm
and 218 cm, respectively. Figure taken
from [54].

TheGallium anomaly is a relatively large (⇠ 20%) deficit of electron neu-
trinos observed in measurements of the flux from a 51Cr source at very
short distances that was first observed in the GALLEX experiment[55]
and that has been confirmed more recently by the SAGE and BEST
experiments[54, 56].The BEST experiment consists of an inner and
outer detector volume surrounding the radioactive source, as shown
in the diagram in Figure 3.12, such that the flux can be compared at
two different baselines. The measured ratios in the outer and inner
volumes are, respectively, 'out = 0.77 ± 0.05 and 'in = 0.79 ± 0.05.
These results do not show any baseline-dependent effects, but they are
consistent with the overall deficit observed by SAGE and GALLEX. The
weighted average ratio between the expected and predicted flux of all
three experiments is ' = 0.80 ± 0.05, which brings the significance of
the Gallium anomaly to 4�. In order to explain this ratio with a two-
flavor ⇡4 ! ⇡B oscillation model, the mass splitting would have to be
�<2 > 1 eV2 such that the oscillations would average out between the
inner and outer volumes of the BEST experiment, and the mixing angle
would have to be rather large at sin2(2) ⇡ 0.4. This large amount of
mixing puts the Gallium anomaly in tension with the reactor anomaly,
in particular in light of the more recent flux calculations. The 2� con-
tours for the effective mixing parameters of both anomalies are shown
in Figure 3.13. The reactor anomaly results are shown for different
flux models described in [53]. Notably, the contour using the KI and
EF flux models is not closed and is therefore compatible with the null
hypothesis of no sterile mixing. The gallium anomaly is shown for
different cross-section models. The contours are all closed, suggesting
that uncertainties in the cross-section calculation cannot resolve the
gallium anomaly.

3.4.3 LSND and MiniBooNE Anomalies

Both the LSND andMiniBooNE anomalies are unexplained excesses in
the ⇡̄4 flux of accelerator-generated neutrinos. The LSNDmeasurement
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Figure 3.13: Contours delimiting the
2� allowed regions of the Gallium
anomaly and the reactor anomaly in
mass splitting and the effective mixing
angle sin2(244 ) = 4(1 � |*44 |2)|*44 |2.
The reactor contours are shown for dif-
ferent flux predictions and the Gallium
anomaly contours are shown under dif-
ferent neutrino cross-section models.
Figure taken from [53]. sin22ϑee
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found a 3.8� excess at a baseline of ! ⇠ 30 m and neutrino energy
⇢ ⇠ 30 MeV[57]. The MiniBooNE experiment was set up specifically
to probe the parameter space of the LSND result at a very different
baseline and energy, where the systematic uncertainties would be
different. It found a 4.5� excess at [58] at a baseline of ! ⇠ 500 m and
neutrino energy of ⇢ ⇠ 500 MeV. The preferred regions for the mass
splitting and mixing angle of both experiments are mostly compatible,
as shown in Figure 3.15. However, the two-flavor oscillation hypothesis
does not seem to fit the energy distribution of the observed excess in
the lowest energy bins very well, as can be seen in the histogram in
Figure 3.14. The mismatch suggests that the simple 3+1 model may not
be enough to resolve the anomaly and that more complicated models
such as sterile neutrinos with decay[59] or additional “dark sector“
interactions[60] might be necessary.

TheMiniBooNE excess has beenmeasured on top of a large background
dominated by photon-producing neutrino-nucleus interactions that
are subject to substantial theoretical uncertainties. A more recent re-
analysis of the MiniBooNE data found that a more conservative treat-
ment of all these uncertainties somewhat reduces the magnitude of
the observed excess, but leaves the significance of the sterile oscillation
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hypothesis still at 3.6�[61]. A followup experiment, MicroBooNE[62],
uses a Liquid Argon Time Projection Chamber (LiArTPC) to detect
neutrino interactions. In contrast to MiniBooNE, MicroBooNE can sep-
arate interactions with electrons in the final state (that is, quasi-elastic
charged-current interactions of ⇡4) from neutral-current interactions
that produce a single photon. Although recent results from Micro-
BooNE could exclude some of the photon-producing states suspected
as the culprit of the anomalous excess[63], they were also unable to
confirm the anomaly in the electron neutrino channel[64].
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Figure 3.15: MiniBooNE allowed re-
gions for a combined neutrino and
antineutrino dataset within a two-
neutrino oscillation model. The shaded
areas show the 90% and 99%C.L. LSND
⇡̄⇠ ! ⇡̄4 allowed regions. Figure taken
from [58].

3.4.4 Global picture of oscillation anomalies

While some of the observed anomalies, in particular the LSND and
Gallium anomalies, could be confirmed to a high significance by later
experiments, it is challenging to reconcile them all in a cohesive global
neutrino oscillation model. The simplest model that can be invoked
in order to explain the anomalous appearances and disappearances of
electron neutrinos is the addition of a fourth neutrinos mass eigenstate,
⇡4, and an unobservable sterile flavor eigenstate, ⇡B , and to allow the
active neutrino flavors to oscillate into and out of the sterile state. The-
oretically, such an addition is possible by adding aMajorana mass term
as described in Section 2.1.4. The flavor and mass eigenstate would
then mix via an extended ”3+1” mixing matrix
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(3.40)

and the fourth mass eigenstate would be much heavier than the first
three states with a mass splitting of �<2

41 � �<2
31. Because the oscil-

lations due to this additional mass eigenstate would be much faster
than those of the active flavors, the transition probability between
flavors � and � can be described in the two-flavor approximation

%�� ' ⇣�� � 4
��
*��

��2(⇣�� � ��
*��

��2) sin2
✓
�<2

41!

4⇢

◆
. (3.41)

It is convenient to define the effective mixing angles for each oscillation
channel that is probed by different experiments, as listed in Table 3.2.
Since there are threemeasurablemixing angles that depend on only two
matrix elements, the model can be over-constrained by measurements
of ⇠3, 44 and ⇠⇠. Attempts to perform a global fit using all three
relevant oscillation channels lead to a strong (4.7�) tension between the

channel mixing angle definition experiments

⇡⇠ ! ⇡4 sin2(2⇠4) ⌘ 4
��
*⇠4

��2 |*44 |2 LSND, MiniBooNE,
OPERA, ...

⇡4 ! ⇡4 sin2(244) ⌘ 4|*44 |2(1 � |*44 |2) Reactor, solar,
Gallium, ...

⇡⇠ ! ⇡⇠ sin2(2⇠⇠) ⌘ 4
��
*⇠4

��2(1 �
��
*⇠4

��2) MiniBooNE,
MINOS, IceCube, ...

Table 3.2: Definitions of effective mix-
ing angles in the ”3+1” oscillation
model for oscillation channels relevant
to neutrino oscillation anomalies.
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Figure 3.16: Contours delimiting the
99.73% C.L. (3�) regions in mass split-
ting and the effective mixing angle
sin2(2⇡4 ) ⌘ 4

��
*⇠4

��2 |*44 |2 from the
appearance (⇡⇠ ! ⇡4 ) channel and the
disappearance (⇡4 ! ⇡4 ) channel. Fig-
ure taken from [65].
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appearance channel (⇡⇠ ! ⇡4 ) and the combined disappearance channels
(⇡4 ! ⇡4 and ⇡⇠ ! ⇡⇠)[65]. This can be seen when the 3� contours
in mass splitting and the mixing angle ⇠4 of the appearance and dis-
appearance datasets are plotted together, as shown in Figure 3.16. The
appearance results are combined fits of the LSND and MiniBooNE ⇡4
excess. The disappearance results combine ⇡4 results from reactor, so-
lar, and gallium measurements and ⇡⇠ measurements from accelerator
and atmospheric sources. Even though the Gallium anomaly requires
a sizable magnitude for |*44 |2, the fact that there are no anomalies in
the ⇡⇠ ! ⇡⇠ channel constrains the product |*⇠4 |2 |*44 |2 to a small
value. In order to attribute the observed phenomena to sterile neutrino
oscillations, the model would require additional degrees of freedom.
One possibility is to give the heavy neutrino state the ability to decay,
which can reduce the tension between appearance and disappearance
results to the level of 3.2�[66]. A detailed discussion on global fits of
the neutrino anomalies can be found in [66].[66]: Diaz et al. (2020),Where are we with

light sterile neutrinos?

3.4.5 Other constraints on sterile neutrinos

While the neutrino oscillation anomalies described in Section 3.4.4 hint
at the possibility of an additional neutrino mass eigenstate with a mass
splitting o �<2

41 & O
�
1 eV2� , there are other constraints on the masses

and number of neutrino flavor states that need to be considered.

Unitarity constraints on the PMNS matrix

If the neutrino mixing matrix is extended by adding mass eigenstates,
the 3 ⇥ 3 block matrix for the three active neutrino flavors is no longer
unitary. Therefore, such extensions can be constrained in a generic way
by testing the unitarity of the PMNS matrix. Unitarity of the mixing
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Figure 3.17: Test statistic for the mag-
nitudes of unitary condition violations
calculated in [67]. The shown quantities
correspond to those in Equations 3.42
to 3.45.

matrix imposes four conditions on the elements of the matrix:
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�1 |2 + |*3⇡

�2 |2 + |*3⇡
�3 |2 � 1 = ⇣� = 0, � = 4,⇠, �, (3.42)
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The first two conditions in Equations 3.42 and 3.43 are the normaliza-
tion of the rows and columns. The third and fourth conditions in
Equations 3.44 and 3.45 are the triangle closure conditions. A global
analysis constraining the degree to which each of these conditions
can be violated given the experimental data can be found in [67]. The [67]: Hu et al. (2021), Global oscillation

data analysis on the 3⇡ mixing without uni-
tarity

analysis in [67] combines non-anomalous measurements from reac-
tor, solar, and long-baseline accelerator experiments as well as several
published sterile neutrino searches. The reactor data used is exclu-
sively comprised of those experiments that have a near and far detector
setup and constraints are derived using only ratios between fluxes at
different baselines. The accelerator data consists of non-anomalous
measurements from NO⇡A and T2K. The "2 test statistic for the quan-
tities in Equations 3.42 to 3.45 calculated in [67] are shown in Figure
3.17. No evidence for non-unitarity is found. The normalization of
the |*48 | row is constrained to O

�
10�3� , which puts the result in strong

tension with the sterile neutrino interpretation of the Gallium anomaly.

Cosmological constraints

Standard model cosmology places constraints on the number of rel-
ativistic neutrino species, #e� , and the sum of neutrino masses, P<⇡.
Both of these parameters can be estimated from observations of the
cosmic microwave background (CMB), the large-scale structures (LSS),
and the abundance of light elements from Big Bang Nucleosynthesis
(BBN). These estimates primarily rely on the contribution of neutrinos
to the total energy and matter density of the universe, which affect
its expansion history. The expansion history of the universe, in turn,
affects the size of anisotropies in the CMB. A summary of the effects
of neutrinos on cosmological observations can be found in [68]. Re- [68]: Lesgourgues et al. (2014), Neutrino

cosmology and Planck
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cent results from the Planck Collaboration for these parameters are
#e� = 2.99 ± 0.17 and P

<⇡ < 0.1 eV[17]. These results are com-[17]: Planck Collaboration et al. (2020),
Planck 2018 results - VI. Cosmological pa-
rameters

patible with the absence of additional heavy neutrino states and are
in severe tension with hypotheses involving a mass eigenstate with
�<2

41 ⇠ O(1 eV). This tension can only be alleviated by the introduction
of further extensions to the standard model.

3.5 Open Questions in Neutrino Oscillation
Physics

Neutrino oscillations are the only phenomenon beyond the Standard
Model that has been confirmed experimentally to a very high statistical
significance. As such, they are of great interest to the study of the foun-
dations of physics and cosmology. Precisionmeasurements of neutrino
oscillations can potentially lead to important exclusions for theories
that make predictions about their masses and mixing parameters.
Current observations of the mixing angles 12, 13, and the absolute
mass differences |�<2

✓1 | are largely consistent with one another, and
global studies can constrain these parameters with relative errors of
⇠ 10%.[31].

However, important open questions remain about the values of 23,
⇣⇠% and the mass ordering. It is unknown whether 23 is in the upper
octant (23 > �

2 ) or in the lower octant (23 < �
2 ). This ambiguity

affects the sensitivity of atmospheric neutrino experiments to the neu-
trino mass ordering (NMO), which is also important for the search
for double beta decay (0⇡��)[69]. The NMO is also important for the[69]: Avignone et al. (2008), Double Beta

Decay, Majorana Neutrinos, and Neutrino
Mass

sensitivity of accelerator experiments to the value of the CP-violating
phase ⇣⇠%[70]. The existence of such decays would be strong evidence

[70]: Blennow et al. (2014), Quantifying
the sensitivity of oscillation experiments to
the neutrino mass ordering

for the existence of Majorana mass terms. Finally, neutrino masses, the
process of mass generation and the amount of CP violation in their
mixing have consequences for the expansion history and matter dis-
tribution of the universe[68]. Given the interdependence between the
neutrino oscillation parameters, it is clear that no single experiment is
equipped to answer these questions on its own. A joint effort of several
experiments measuring oscillations in different flavor transition chan-
nels at various energies, baselines and matter densities is needed to
uncover the origin and nature of neutrino masses. The measurement
of atmospheric neutrino oscillations presented in this work is an im-
portant piece in this global effort.
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The IceCube Neutrino Observatory is a gigaton-scale Cherenkov de-
tector located at the geographic South Pole in close proximity to the
Amundsen-Scott South Pole Station. Constructed over the course of
several deployment seasons between 2006 and 2011, it instruments
approximately one cubic-kilometer of Antarctic glacier with optical
sensors that can detect faint flashes of light that are produced when
charged particles travel through the ice, such as those produced by neu-
trino interactions. The detector serves as both a telescope to study the
astrophysical origin of cosmic neutrinos and an instrument to measure
their fundamental properties.

This chapter describes the instrumentation and layout of the IceCube
detector, the interactions that particles undergo when they interact
with the ice, and finally the signals that these interactions produce in
the detector.

4.1 The IceCube in-ice Array and DeepCore

The IceCube Neutrino Observatory consists of the so-called in-ice array,
optimized for astrophysical neutrino observations, the DeepCore array,
used primarily for the observation of atmospheric neutrinos, and the
IceTop surface array that can be used to study air showers from cosmic
rays.

4.1.1 The Antarctic Ice

The detection medium of the IceCube detector is the Antarctic glacier
that has formed from layers of snow being deposited top of each other
over the course the past ⇠ 100 000 years[71]. The weight of the upper [71]: Price et al. (2000), Age vs depth of

glacial ice at South Polelayers compresses the lower layers into a dense, crystalline structure.
As a result, the optical properties of the ice change mostly in the di-
rection perpendicular to the layers, forming a geological record of
the atmospheric conditions of the Earth. The transmission of light
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Figure 4.1: An overview of the IceCube
detector

through the ice is primarily characterized by the scattering and ab-
sorption length. Within the volume of IceCube, scattering lengths vary
between 20 m and 100 m, while absorption lengths range from 100 m to
400 m. Both quantities are highly correlated, such that the absorption
length is approximately four times as large as the scattering length[72].[72]: Abbasi et al. (2022), In-situ es-

timation of ice crystal properties at the
South Pole using LED calibration data from
the IceCube Neutrino Observatory

This stratigraphy was traced at millimeter resolution using a laser dust
logger deployed down seven IceCube drill holes as described by [73].
The most notable feature of the stratigraphy is the dust layer at depths
between 2000 m and 2100 m as shown in Figure 4.2. The optical prop-
erties of the ice within the dust layer are particularly poor. The ice
below the dust layer where the DeepCore fiducial volume is located
has the best optical properties of the entire IceCube volume.

4.1.2 In-Ice Array

The 5160 Digital Optical Modules (DOMs) that make up the IceCube
in-ice array are distributed over 86 strings. Of these, 78 are arranged
on a hexagonal grid spanning an area of approximately one square-
kilometer with a horizontal spacing of ⇠150 m with respect to their
closest neighboring strings[74]. Each of these strings holds 60 DOMs[74]: Aartsen et al. (2017), The IceCube

Neutrino Observatory: instrumentation
and online systems

at depths between 1450 m and 2450 m with a 17 m vertical spacing.
The volume and instrumentation density of this array is optimized for
astrophysical neutrinos that are found at energies above 1 TeV[74]. The
electric signals measured in each DOM are digitized and sent to the
IceCube lab (ICL), where the signal is processed, compressed, and sent
North via satellite for offline processing. Figure 4.1 gives an overview of
the detector including the IceCube Lab, the ice surface and the bedrock,
and a schematic of the layout of the strings is shown in Figure 4.2.
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Figure 4.2: Schematic view of the Ice-
Cube detector as seen from the top (up-
per panel) and the side(lower panel).
The DeepCore fiducial volume is indi-
cated by the hexagon in the upper panel
and the green shaded area in the bottom
panel. The side-band on the lower panel
shows the scattering and absorption co-
efficients as a function of depth.

DeepCore

The remaining 8 strings that are not part of the hexagonal grid are
located near the center of the IceCube detector and form the DeepCore
sub-array[75]. The DOMs on the DeepCore strings have a higher quan- [75]: Abbasi et al. (2012), The design and

performance of IceCube DeepCoretum efficiency than those in the rest of the detector and are placedmore
closely together to lower the minimum energy threshold for neutrino
observations to a few GeV. Of the 60 DOMs on each DeepCore string,
50 are placed at depths between 2100 m and 2500 m, where the ice
is the most transparent compared to the rest of the IceCube’s volume
(see also the side band in the bottom panel of Figure 4.2). Together
with 7 strings from the in-ice array, the DeepCore strings instrument
the DeepCore 20 MT fiducial volume as shown in the upper panel of
Figure 4.2. The remaining 10 DOMs are located at depths between
1750 m and 1850 m and are used as a veto cap to reject atmospheric
muons entering the detector directly from above. In addition, the larger
hexagonal IceCube array also serves as a veto for observations inside
the DeepCore fiducial volume.



44 4 Neutrinos in IceCube and DeepCore

4.1.3 IceTop

In addition to the in-ice array, IceCube also contains a surface array
called IceTop, consisting of 81 stations spread across an area of 1 km2

that is used to detect muons from air showers. It is typically used as
a veto against atmospheric muons, but also functions as a detector
in its own right measuring the spectrum and composition of cosmic
particles. However, it is not relevant to the measurement presented in
this thesis.

4.1.4 Digital Optical Modules

The Cherenkov radiation produced by charged particles in the ice
is detected and digitized by Digital Optical Modules (DOMs). Each
module consists of a photo-multiplier tube (PMT)[76] and electronics[76]: Abbasi et al. (2010), Calibration

and characterization of the IceCube pho-
tomultiplier tube

housed in a transparent, spherical glass vessel that can withstand the
enormous pressure below a water column of 2.5 km[74]. They are each
held in place by a harness attached to chains that allows the string
cable to pass beside the DOM as shown in Figure 4.4.

PMT	Base	
Board

High	Voltage
Control	Board

PMT	
Collar

Flasher	
Board

Main	
Board

Delay	
Board

Mu-Metal
GridPMT

Figure 4.3: Schematic of a DOM, taken
from [74].
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Figure 4.4: Schematic of the cable as-
sembly of a DOM. Figure taken from
[74].

The PMTs have a diameter of 10 inches and are sensitive to photons
with wavelengths between 300 nm and 650 nm, with a maximum
quantum efficiency of about 25% at 390 nm. Inside the DeepCore
array, the peak efficiency reaches 34%. They are shielded from external
magnetic fields with a mu-metal grid as shown in the schematic in
Figure 4.3. The voltage at the PMT is measured and digitized by the
on-board electronics[77] of the DOM in two separate readouts that

[77]: Abbasi et al. (2009), The IceCube
Data Acquisition System: Signal Capture,
Digitization, and Timestamping

are activated when the measured voltage rises above the equivalent
of 0.25 photo-electrons (PE). The first readout is the fast Analog-Digital
Converter (fADC) and measures the waveform continuously at a rate of
40 MHz. The second readout, the Analog Transient Waveform Digitizer
(ATWD), records the PMTvoltage at a rate of 300MHz in three channels
with different gain levels to ensure that a large range of voltages can be
recorded without saturation of the output. The readout frequency of
the ATWD is too high to be directly digitized and sent to the surface.
Instead, the ATWDvoltage readout is buffered in 128 analog capacitors,
corresponding to a readout time of ⇠420 ns. The buffered voltages are
only digitized when at least one of the nearest or next-to-nearest DOMs
on the same string also measures a signal within a 1 ⇠s time window,
which is referred to as the hard local coincidence (HLC) condition. The
recorded waveforms are sent to the ICL on the surface, where they are
compressed by applying the wavedeform algorithm[78]. The output of

[78]: Aartsen et al. (2020), In-situ calibra-
tion of the single-photoelectron charge re-
sponse of the IceCube photomultiplier tubes

this algorithm are reconstructed times and charges of single photo-
electrons, which are taken as input by all further data processing steps
described in section 5.2.

The DOMs also contain a flasher board with 12 LEDs that can be used
to emit pulsed light for the purpose of in-situ detector calibration dur-
ing special flasher runs of the detector. During such runs, the charge
and time distributions of the observed pulses in the DOMs in response
to the LED flashes are measured. Since the light is emitted at known
locations and at known times, the measured distributions allow in-
ference on the absorption and scattering properties of the ice. Be-
cause the total amplitude of the emitted light is less well known, this
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calibration method is less well suited for calibrating the total optical
efficiency of the DOMs. Instead, this property of the detector is cal-
ibrated more accurately from measurements of minimally-ionizing
atmospheric muons, for which the energy loss is well known[79]. [79]: Kulacz (2019), In Situ Measurement

of the IceCube DOM Efficiency Factor
Using Atmospheric Minimum Ionizing
Muons

4.2 Propagation of particles in ice

Neutrinos interacting with the ice mostly interact via Deep Inelastic
Scattering (DIS), creatingmuons, electromagnetic showers, andhadronic
showers, depending on the flavor of the neutrino and interaction type.
The secondary particles produced by those interactions travel through
the ice at highly relativistic velocities and lose energy primarily through
ionization, bremsstrahlung, pair production and photo-nuclear in-
teractions. The fraction that each of these mechanisms contributes to
the total energy loss of the particle depends on the type of particle
and its energy. When they are electrically charged, they also give off
Cherenkov radiation that is then measured by IceCube.

4.2.1 Cherenkov Effect

The IceCube Neutrino Observatory relies entirely on the Cherenkov
effect[80] to detect particle interactions. It is created by any electri- [80]: Čerenkov (1937), Visible Radi-

ation Produced by Electrons Moving in a
Medium with Velocities Exceeding that of
Light

cally charged particle travelling through a transparent medium with
velocities faster than the speed of light in that medium, 2/=, where =
is the refractive index of the medium. This produces a cone of light
moving with the particle similar to a super-sonic shock that is gen-
erated by an object travelling through a gas at a velocity above the
speed of sound. The effect can be most easily understood according
to Huygen’s principle as a superposition of spherical light emissions
that are produced every time that the particle displaces the charges
in the dielectric medium in its closest vicinity, as shown in Figure 4.5.
When the particle is over-taking its own light emissions, they overlap
coherently and form a conical light front as illustrated in the bottom
panel of Figure 4.5.

Figure 4.5: An electrically charged par-
ticle emitting light while travelling be-
low (upper panel) and above (lower
panel) the speed of light in a medium.
Image taken from [81].

When the velocity of the particle is very close to the speed of light, as is
the case for all (known) particles observable by IceCube, the opening
angle of the cone only depends on the refractive index of the medium
with

cos('2) =
1
�=

, (4.1)

where = is the index of refraction and '2 is the Cherenkov opening
angle.

The frequency spectrum of the Cherenkov emissions of highly rel-
ativistic particles depends only on the charge of the particle, @, and the
(wavelength-dependent) index of refraction, =($), and permeability,
⇠($), of the medium. The emitted energy per unit of distance and fre-
quency is given by the Frank-Tamm-Equation[82][83], which simplifies [82]: Frank et al. (1937), Coherent visible

radiation of fast electrons passing through
matter
[83]: Tamm (1991), Radiation Emitted by
Uniformly Moving Electrons

in the case of E ⇡ 2 to

d⇢
dGd$ =

@
2

4�⇠($)$
✓
1 � 1

=
2($)

◆
. (4.2)
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The equation shows that the intensity of the Cherenkov emission gen-
erally increases with frequency, and indeed the strongest emissions are
in the ultraviolet part of the spectrum.

4.2.2 Muons

At energies below 100 GeV, the dominant energy loss for muons is via
ionization, and has only aweak dependence on energy. Because the ion-
ization loss is continuous and nearly constant, muons at these energies
produce long, track-like signatures in the detector. Above 100 GeV,
the losses due to bremsstrahlung, pair production and photo-nuclear
interactinos rise quickly in their amplitude and become dominant over
ionization at ⇠1 TeV. The total average energy loss per unit distance,
hd⇢/dGi, can be approximated combining all radiative energy losses
(i.e. all losses except for ionization) into one component and adding it
to the ionization loss such that⌧

�d⇢
dG

�
= 0�(⇢) + 1'(⇢)⇢ , (4.3)

where 0�(⇢) and 1'(⇢) are slowly changing functions describing the
ionization loss and the radiative losses, respectively[84]. For the energy
ranges relevant for this work, the energy dependence of 0�(⇢) and
1'(⇢) is weak enough such that they can be approximated as constant
numbers with 0�(⇢) ⇡ 2 MeV/cm and 1'(⇢) ⇡ 3.4 ⇥ 10�6 cm�1[84].
In this approximation, we can calculate the average length of a muon
track, h!i, as a function of energy with

h!i = 1
1'

log
✓
1'

0�

⇢ + 1
◆

, (4.4)

which gives an average travel distance of 50 m at 10 GeV and 460 m at
100 GeV.

4.2.3 Electromagnetic Showers

In contrast to muons, electrons and positrons lose their energy very
quickly by emitting highly energetic photons due to bremsstrahlung.
The energy of the emitted photons is high enough that they spon-
taneously produce pairs of electrons and positrons. This process is
repeated until the electrons and positrons reach their critical energy,
which is approximately 78 MeV in ice[21]. Below the critical energy,[21]: Workman et al. (2022), Review of

Particle Physics ionization takes over as the predominant mechanism of energy loss,
which produces no new shower particles. Another important quantity
is the radiation length, -0, defined as the distance at which the energy
of an electron is reduced to 1/4 of its initial energy via bremsstrahlung,
which is 36 cm in ice[21]. The radiation length also determines the scale
of the longitudinal development of the shower. Expressing distances
in units of radiation length as C = G/-0, the shower intensity follows
roughly a gamma distribution parametrized as

d⇢
dC = ⇢01

(1C)0�1
4
�1C

�(0) , (4.5)
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where the parameters 0 and 1 need to be fit empirically[21]. Their
values for electrons, positrons and photons interacting in ice have been
determined from GEANT4[85] shower simulations in[86] to be [85]: Agostinelli et al. (2003), Geant4—a

simulation toolkit
[86]: Rädel et al. (2013), Calculation of the
Cherenkov light yield from electromagnetic
cascades in ice with Geant4

0 ⇡ 2.01 + 1.46 log10(⇢0/GeV), 1 ⇡ 0.63 (4+, 4�), (4.6a)
0 ⇡ 2.84 + 1.34 log10(⇢0/GeV), 1 ⇡ 0.65 (✏). (4.6b)

The shower reaches its maximum intensity at a distance of

Cmax =
0 � 1
1

, (4.7)

which corresponds to a logarithmic growth of the size of the cascade
according to Equations 4.6a and 4.6b. The electrically charged com-
ponents of the electromagnetic shower produceCherenkov light, where
the emissions peak at the Cherenkov angle since the secondary par-
ticles are emitted very close to the forward direction as shown in Figure
4.6.

�1 �0.5 0 0.5 1

10�2

10�1

100

cos(')

1 #
d= d⌦

(s
r�

1 )

4�

�+

Figure 4.6: Angular profile of the
Cherenkov emission of an electro-
magnetic cascade (4�) and a hadronic
cascade (�+) using the parametrization
from [86].

4.2.4 Hadronic Showers

As discussed in section 2.3.3, neutrino interactions above 10 GeV hap-
pen almost exclusively via Deep-Inelastic Scattering (DIS). These in-
teractions always produce a hadronic cascade in addition to any leptons
in the final state. Hadronic cascades are also the only visible part of
the final state of neutral-current interactions. Hadrons (mostly Pions)
that are produced in neutrino-nucleon interactions interact strongly
with the surrounding ice to create secondary particles and then decay
to form additional photons and leptons. Charged secondary particles
produce Cherenkov radiation, while neutral secondary particles are
invisible to the detector. Because part of the energy deposited in a
hadronic shower is not measurable, the inherent uncertainty on the
true energy of the primary particle that initiated the interaction is larger.
The average visible electromagnetic fraction of a hadronic shower can
be parametrized[86] as a function of the initial energy with

�(⇢0) = 1 � (1 � 50)
✓
⇢0
⇢B

◆�<
(4.8)

with a variance of
��(⇢0) = �0 log(⇢0)�✏ . (4.9)

The parameters 50, ⇢B , <, �0, and ✏ are fit to GEANT4 simulation
results for hadronic showers induced by different primary particles
in[86]. The Cherenkov emissions from the charged components of the
shower still peak around the Cherenkov angle as they do for electro-
magnetic showers, but the emission profile is more smeared out due to
the larger variations in particle kinematics as can be seen in figure 4.6
for the example of a shower induced by a pion.
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Figure 4.7: An idealized cascade event
(left) and starting track event (right)
seen from the side. Each DOM that
has received light is highlighted with a
colored bubble, where the size is pro-
portional the total charge seen by the
DOM and the color indicates the time
of the hits relative to the time at which
the neutrino interaction happened.

4.3 Particle Signatures in IceCube

All particle signatures in IceCube can be approximated as being com-
binations of compact cascades that are produced by hadronic and elec-
tromagnetic showers (see section 4.2.4 and 4.2.3), and elongated tracks
that are only produced by muons travelling through the detector.

4.3.1 Neutrinos

At energies above 10 GeV, nearly all neutrino interactions are due to
Deep Inelastic Scattering (DIS) and therefore always produce at least
a hadronic cascade originating at the interaction vertex. In Neutral-
Current (NC) interactions, this hadronic cascade is the only visible
part of the interaction. Charged-current (CC) interactions also produce
a lepton of the same flavor as the primary neutrino. For electron-
neutrinos, this creates an electromagnetic (EM) shower that originates
at the interaction vertex. While the direction of the EM shower and the
hadronic shower might not be exactly the same, they are in practice
not distinguishable by the detector and can therefore be approximated
as a single cascade-like signature. Since the directions of the particles
that make up a shower are randomly distributed with a strong bias
towards the direction of the primary neutrino, the angular profile of
the light emission of a cascade follows a smeared Cherenkov emission
profile. At distances of several scattering lengths (!B ⇡ 25 m), this
emission profile averages out and the cascade can be approximated
as a single point emitting light uniformly in all directions. The left
panel of figure 4.7 shows the detector response of such an idealized,
perfectly symmetric cascade event. As described in Section 2.3.2, the
only distinction between the interactions of neutrinos and antineutrinos
is a difference in their cross-section as a function of the inelasticity
that is due to their spin configuration. It is therefore impossible to
distinguish between the two signatures on an event-by-event basis,
even though statistical inferences about the relative distributions of
neutrinos and antineutrinos can be made given a sufficiently large
population[87].[87]: Halve (2018),Measurement of the At-

mospheric Neutrino to Antineutrino Ratio
above 100GeV with IceCube For muon-neutrinos, a muon is produced in the CC interaction which

can then travel a significant distance through the ice beyond the extent
of the initial hadronic shower, creating a track-like signature that sticks
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in-
terac-
tion

secondary particles signature

⇡4 CC
⇡ hadrons

4
± cascade

⇡⇠ CC
⇡

hadrons
⇠±

cascade + track

⇡� CC
(83%BR)

⇡
hadrons

hadrons or 4±
cascade

⇡� CC
(17%BR)

⇡
hadrons

⇠±
cascade + track

⇡ NC ⇡ cascade

Table 4.1: Secondary particles and sig-
natures produced by each type of neu-
trino interaction.

out of the cascade. An idealized version of such an event is shown in
the right panel of figure 4.7.

Charged-current interactions of tau-neutrinos produce a tauon that
decays after a short distance, creating a second EM or hadronic shower
at the point of its decay. At TeV-scale energies, the distance covered by
the tauon before its decay can be large enough to make the separation
between the two showers resolvable, creating a double-bang signature
consisting of two cascades. At energies below 100 GeV that are more
relevant to this work, however, the two cascades are too close together
to be cleanly separable and they are effectively approximated as a single
cascade as well. About 17% of tauons produce a muon upon decay,
creating a track-like signature as well[21].

A summary of the secondary particles and corresponding signatures
for each type of neutrino interaction is given in Table 4.1.

4.3.2 Atmospheric muons

Atmospheric muons are a significant background for oscillation mea-
surements in DeepCore. Not only do they make up the majority of
events that pass the initial DeepCore filter, but they also produce a
track-like signature in the detector that is challenging to separate from
that of a charged-current muon neutrino interaction. For this reason,
most of the data filtering steps described in Section 5.2.3 are devoted to
rejecting atmospheric muons while keeping as many muon neutrinos
in the sample as possible. At energies below 100 GeV, the dominant
energy loss for muons is ionization, which creates a continuous energy
loss that can pass through the entirety of the instrumented volume of
IceCube. As energies increase above 100 GeV, radiative energy losses
become more relevant that create a series of stochastically distributed
cascades along the muon’s trajectory. The fraction of total energy loss
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that is concentrated in these cascades is referred to as stochasticity. At-
mospheric muons also often arrive in bundles originating from a single
interaction of cosmic rays with the upper atmosphere. Within such a
bundle, stochastic energy losses of individual muons may average out
over its trajectory, such that the bundle as a whole can be approximated
as a single long track with a relatively low stochasticity.
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5.1 Event Simulation

The method by which all of the measurements presented in this thesis
are performed is that of Monte-Carlo (MC) forward folding. In a nutshell,
this method involves producing a large set of simulated signal and
background events that are then re-weighted in such a way that their
distribution matches that of the observed data events as closely as
possible. To give reliable results, an accurate simulation of all particle
interactions described in Section 4.2 as well as the detector electronics
described in section 4.1.4 is required. The simulated and observed
events are then passed through the same data processing chain de-
scribed in section 5.2. The resulting MC simulated dataset and the
observed dataset are then histogrammed in the same binning, and the
weights of the MC events are adjusted to give the best match between
the histograms according to a loss function as defined in section 6.1.1.

The simulation chain for neutrinos and atmospheric muons can gen-
erally be divided into three steps that are described in this chapter:

1. Simulation of particle interactions
2. Photon propagation in ice
3. Response of detector DAQ systems

A special case is the simulation of detector noise, for which no particle
production or photon propagation is necessary.

5.1.1 Neutrino Interactions

Because of the inherently low interaction rate of neutrinos, it would be
impractical to simulate a constant flux of neutrinos from any particular
direction, the vast majority of which would simply pass through the
detector without producing any signal at all. Instead, every simulated
neutrino is forced to interact within a given volume, and the event is
given a weight corresponding to the inverse of the simulated fluence,

F =
1

�sim

1
#sim

. (5.1)

Here, #sim is the number of simulated events and �sim is the number
of neutrino events per area, solid angle, energy, and time in the sim-
ulation. This weight, when multiplied with the flux of a given physics
model and a live time, gives the expected number of events that this
simulated event corresponds to. The baseline neutrino fluxmodel used
in this work is that proposed by Honda et. al[40] that is specifically [40]: Honda et al. (2015), Atmospheric

neutrino flux calculation using the
NRLMSISE-00 atmospheric model

computed for the South Pole1.

1: Variations on this flux model and
how they are propagated into the anal-
ysis are described in Section 5.3.2.

Under the assumption that neutrino absorption is negligible and that
the material consists of isoscalar targets, the simulated fluence is given
by the chosen probability density in the direction and energy, )⌦ ⇥ )⇢,
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Table 5.1: Table of generation volumes
used forGenie neutrino simulation. The
cylinder is centered in DeepCore in all
cases.

Flavor Energy (GeV) Radius (m) Length (m)

⇡4 + ⇡4̄

1-4 250 500
4-12 250 500

12-100 350 600
100-10000 550 1000

⇡⇠ + ⇡⇠̄

1-5 250 500
5-80 400 900

80-1000 450 1500
1000-10000 550 1500

⇡� + ⇡�̄

1-4 250 500
4-10 250 500
10-50 350 600

50-1000 450 800
1000-10000 550 1500

Figure 5.1: Simulated MC livetime as
a function of energy, calculated using
the HKKM[40] model flux with Nu-
Fit 2.2[88] oscillation parameters.
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the size of the interaction volume,+ , the cross-section of the interaction,
�, and the density of the material, ⌧, by

�
�1
sim = + ⇥ ⌧ ⇥ #� ⇥ 1mol

g ⇥ � ⇥ 1
)⌦

⇥ 1
)⇢

, (5.2)

where #� is Avogadro’s number. The volume in which neutrino in-
teractions are simulated is a cylinder centered in DeepCore, with a
height and radius chosen such that all events that have a chance of
producing a signal in DeepCore should be contained in it, depending
on the neutrino flavor and energy (see also table 5.1). Neutrino di-
rections are isotropically distributed in zenith and azimuth, implying
)⌦ = 1

4� . The neutrino energies are sampled from a power law with
)4 / ⇢�2. The simulated live time corresponding to a single simulated
event is )sim = �sim/�, where � is the expected neutrino flux includ-
ing neutrino oscillations at global best-fit parameters. The amount of
simulation generated for each neutrino flavor is chosen such that the
total simulated live time is > 70 years over the entire energy range.
Neutrinos and anti-neutrinos are produced in ratios of 70% and 30%,
respectively. The simulated live time as a function of energy is shown
in Figure 5.1. The livetime for electron neutrinos increases with energy
because the simulated spectrum is harder than the real spectrum. The
livetime for tau neutrinos is much higher than that of other flavors
because the contribution of tau neutrinos to the expected neutrino flux
is very small.
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Figure 5.2: GENIE interaction weights
as a function of the pull of the axial
mass term "

CCRES

�
, for five ⇡4 CC

events produced via resonance interac-
tions. Each dot represents a discrete
point for which the event’s cross sec-
tion is computed in GENIE. The line
represents the quadratic fit made used
to interpolate the weight value over the
continuous range allowed for the sys-
tematic parameter.

After sampling the parameters of the primary neutrino, the Genie[89] [89]: Andreopoulos et al. (2015), The
GENIE Neutrino Monte Carlo Generator:
Physics and User Manual

software is used to simulate its interaction with the ice and the pro-
duction of secondary particles and to calculate the cross-section of
the interaction. The propagation and Cherenkov light production of
any muon that is produced in these interactions is simulated with
Proposal[90]. The light output of secondary electrons, positrons, and [90]: Koehne et al. (2013), PROPOSAL:

A tool for propagation of charged leptonsgamma rays above 100MeV, and that of hadronic showers above 30 GeV,
are generated using analytic approximations from [86] as described in
sections 4.2.3 and 4.2.4. At lower energies, the full Geant4 simulation
of the shower development is run to produce Cherenkov photons.

Cross-section uncertainties

Two systematic parameters are included to account for uncertainties in
the form factors of charged-current quasi-elastic ("⇠⇠&⇢

�
) events and

charged-current resonant ("⇠⇠'⇢(

�
) events. Both these form factors

have a dependency on the momentum transfer, &2, of the form:

�(&2) / 1
(1 � (&2/"2

�
)2 (5.3)

Where"� is called the axial mass, and can bemeasured experimentally.
The differential cross-section of each event is computed with GENIE
at five discrete points, that is, the nominal mass and -2�,-1�,1� and
2� away from the nominal mass, where � is a fractional uncertainty
of 20%. This uncertainty approximates the recommendation of the
GENIE collaboration, which suggests an asymmetric error of -15% and
+25% for "⇠⇠&⇢

�
and a symmetric error of ±20% for "⇠⇠'⇢(

�
[89]. In

order to apply a continuous variation of that systematic parameter over
the course of a minimization, a quadratic function is fit to interpolate
between these discrete points. Figure 5.2 shows the GENIEweights of a
handful of ⇡4 CC events from resonance production, across the allowed
range of axial masses, along with their fitted quadratic dependence.
The upper panel of Figure 5.3 illustrates an example of the varying
"

'⇢(

�
on the final level sample.
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Figure 5.3: Fractional difference in
event rates between (top )"RES

�
(bot-

tom) dis_csms at 1� and at nominal
value for both PID bins.

(a) GENIE "RES

�

(b) DIS CSMS

The uncertainty on the DIS cross-section is primarily given by the
disagreement in DIS calculation between CSMS[91] and GENIE[89]
cross-sections at energies above 100 GeV. This analysis includes a pa-
rameter that interpolates between these two calculations with a linear
extrapolation to energies below 100 GeV. The bottom panel of Figure
5.3 illustrates an example of the varying this parameter, DIS, on the
final level sample. As expected, the impact of the parameter is largest
in the highest energy bins. There is an additional uncertainty of 20%
on the normalization of NC events to account for uncertainties of the
hadronization process and the Weinberg angle in line with previous
oscillation studies[92].

5.1.2 Atmospheric muons

The offline filter steps described in section 5.2.3 decrease the rate of
atmospheric muons by several orders of magnitude as events pass
through each of its stages. This makes it challenging to produce a suf-
ficiently large amount of simulated muon events to accurately estimate
the expected background at the final level. To overcome this challenge,
two separate muon simulation sets are produced, one of which is used
to tune the lower level (up to L4) offline filters and the other is used to
estimate muon background at levels L5 and above.

For both sets, atmospheric muons are generated on the surface of a
cylinder encompassing the entire IceCube detector with a radius of
800 m and a height of 1600 m. Positions and directions of muons
interacting in the detector are sampled using parametrized tables
based on the approach described in [93]. These tables are tuned to ap-[93]: Becherini et al. (2006), A pa-

rameterisation of single and multiple
muons in the deep water or ice

proximate the output of a detailed CORSIKA[94] simulation of cosmic

[94]: Heck et al. (1998), CORSIKA: A
Monte Carlo code to simulate extensive air
showers
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Figure 5.4: Impact on the final his-
tograms when the muon normalization
is increased by 50%. The largest impact
is seen above the horizon in the mixed
PID channel with a change in bin count
of 5%.

Figure 5.5: Impact on the final his-
tograms when the muon spectral index
is increased by 1�.

ray interactions and subsequent shower production using the cosmic
ray flux model described in [95] and the SIBYLL 2.1[96] hadronic in- [95]: Gaisser (2012), Spectrum of cosmic-

ray nucleons, kaon production, and the at-
mospheric muon charge ratio
[96]: Engel et al. (2017), The hadronic in-
teraction model Sibyll – past, present and
future

teractionmodel. This flux is also used toweight simulatedmuon events
and is distinct from the flux model used to weight neutrino events.
For the simulations used to tune the lower selection levels, the muon
energy is sampled from a power law with a spectral index of -3 and all
events are accepted to cover the entire IceCube array. To produce the
simulation that is used starting at the L5 trigger level, muons are only
accepted if they intersect an inner cylinder centered in the DeepCore
fiducial volume with a radius of 180 m and a height of 400 m. Fur-
thermore, muons are rejected based on a KDE estimate of the muon
density in energy and zenith angle at the L5 filter level. In this way, the
sampling preferably produces such muon events that have a higher
chance of passing the offline filtering up to L5, which greatly improves
the efficiency of the simulation production.

After the position, direction and energy for a muon has been sampled,
its propagation and photon production is simulated using PROPOSAL
in just the same way as any muon that is produced in neutrino interac-
tion would be.

Muon Uncertainty

Because the muon background contamination is cut to only ⇠2% at
the final level of the event selection (see Section 5.2.6), the impact of
muon systematic uncertainties is generally small. Only the over-all
scale is left as a free parameter in the analysis, its impact is shown in
Figure 5.4. This scale also largely absorbs the effects of DOM efficiency
uncertainties, since, to first order, an increase in DOM efficiency leads
to a better muon rejection. The spectral index of the muon flux has a
very small effect far below the percent-level as shown in Figure 5.5 and
is therefore not accounted for in the analysis.
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Figure 5.6: Scattering and absorption
lengths as a function of depth in the
South Pole Ice (SPICE) model that is
used to produce the simulation for this
work.
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5.1.3 Photon Propagation

Photons are individually traced through the ice using the clsim[97]
package, which is a GPU-accelerated OpenCL re-implementation of the
Photon-Propagation Code[98]. The ice is modeled as 10 m thick layers[98]: Chirkin et al. (2019), Photon Prop-

agation using GPUs by the IceCube Neu-
trino Observatory

with individual scattering and absorption lengths that are shown in
Figure 5.6. The ice model used for the simulation in this work, also
referred to as South Pole ICE (SPICE)[99], incorporates the fact that the[99]: Aartsen et al. (2013), Measurement

of South Pole ice transparency with the Ice-
Cube LED calibration system

ice layers are slightly tilted with respect to the vertical axis, and that
scattering and absorption strengths are not uniform as a function of
azimuth. For every photon, clsim first samples the absorption length
from an exponential distribution whose expectation value is the ab-
sorption length of the current layer. It then propagates all photons in
parallel steps, where every step corresponds to one scattering event
and the step length is sampled from an exponential distribution where
the expectation value is the scattering length of the current layer. The
scattering angle is then sampled from amixture of aHenyey-Greenstein
distribution and a simplified Mie scattering distribution, where the
shape parameters of these distributions have previously been calibrated
using the in-situ LED calibration system[99]. Each photon stops when
it has either reached its total absorption length or if it has intersected a
DOM. After all photons have either been absorbed or reached a sensor,
the simulations stops and passes the photons that reached a sensor on
to the next step simulating the detector response.

5.1.4 Simulation of Detector Response

After the photons have reached the surface of the optical sensors, the
simulation determines for each one if it is converted into a Monte-
Carlo photo-electron (MCPE). The probability that this occurs depends
on the wavelength-dependent sensitivity of the DOM, as well as the
angular acceptance. The angular acceptance not only depends on the
geometry of the DOM itself, but also incorporates the effect of the
re-frozen column of ice at the center of each bore hole. If a photon
is accepted and converted into an MCPE, the next step is to simulate
how much charge would be measured by the PMT inside the DOM
as a response. The charge is drawn from a combination of a normal
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Figure 5.7: The green (yellow) regions
show the 68% (90%) spread in the SPE
charge templates for a given charge.
Superimposed are the average SPE
charge templates for the variety of hard-
ware configurations shown in the black
dotted, dashed, and solid lines. The
TA0003 distribution, shown in red, orig-
inates from laboratory measurements.
Figure taken from [78].

distribution and two exponential distributions whose parameters have
been calibrated in-situ tomatch the observed charge distribution in each
individual DOM[78]. This distribution, also referred to as the Single [78]: Aartsen et al. (2020), In-situ calibra-

tion of the single-photoelectron charge re-
sponse of the IceCube photomultiplier tubes

Photo-Electron (SPE) template, is shown in Figure 5.7. The MCPEs
with the samples charge are then converted into simulated waveforms
for the ATWD and fADC readouts which are then passed into the data
processing chain starting from the wavedeform algorithm described in
Section 4.1.4. From there, the simulated events pass through all the
same trigger and filter steps that are described in Section 5.2.

Detector Noise

Table 5.2: Parameters used in the noise
simulation. Typical values taken from
[100], actual values are fit for each DOM
individually.

Parameter Typical value
Therm. rate ⌫th ⇡ 20 Hz
Decay rate ⌫dec ⇡ 250 Hz
Decay hits ◆ ⇡ 8
Decay ⇠ log10( ⇠

ns ) ⇡ �6
Decay � log10( �

ns ) ⇡ 2.7

In addition to Cherenkov photons induced by relativistic charged par-
ticles in the ice, IceCube detects photons from radioactive decays inside
the glass housing of the DOMs and PMTs that are simulated using the
Vuvuzela module[100][101]. These ”noise” MCPEs are simulated para-

[100]: Larson (2013), Simulation and Iden-
tification of Non-Poissonian Noise Triggers
in the IceCube Neutrino Detector
[101]: Larson (2018),ASearch for TauNeu-
trino Appearance with IceCube-DeepCore

metrically by sampling their times from distributions that take both
thermal and non-thermal noise components into account. The thermal
component comes from uncorrelated photons and PMT dark noise and
is modeled as a Poisson process with a constant rate. The non-thermal
component comes from correlated bursts of photons that are produced
by radioactive decays. To simulate it, decay times are first drawn from
a Poisson process with a constant rate, and the number of photons
produced in each decay is sampled from a Poisson distribution. The
time differences between the non-thermal MCPEs produced by each
decay are then sampled from a Log-Gaussian distribution. This sim-
ulation method has five free parameters listed in Table 5.2 that are
calibrated in-situ for every DOM. All thermal and non-thermal MCPEs
are injected into each simulated event together with the MCPEs from
photons and passed into the rest of the simulation chain.
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Figure 5.8: Efficiency of the IceCube
and DeepCore triggers as a function
of the primary neutrino energy. Figure
taken from [75].

5.2 Data Processing

5.2.1 Trigger

As described in section 4.1.4, the high-frequency ATWD waveform
digitization in each DOM is triggered when it and its adjacent or next-
to-adjacent neighbors on the same string record a voltage correspond-
ing to at least 0.25 PE-equivalent within a ±1 ⇠s time window, which
is referred to as the Hard Local Coincidence (HLC) condition. Data
acquisition for DeepCore is triggered when this condition is fulfilled
for at least three DOMs inside the DeepCore fiducial volume within a
±2.5 ⇠s window. If this condition is met, the waveforms for all DOMs
that have observed voltages of at least 0.25 PE within a ±10 ⇠s time
window centered around the trigger time are recorded. This trigger
is referred to as the ”SMT3” trigger and is distinct from the so-called
”SMT8” trigger that is used to activate the data acquisition of the larger
IceCube array, which requires eight DOMs to fulfill the HLC condition
in a ±5 ⇠s window. A DOM that has recorded PEs within the readout
window but for which the HLC condition has not been met is said to
fulfill the Soft Local Coincidence (SLC) condition. The DeepCore SMT3
trigger rate is less than 10 Hz while accepting ⇠70% of ⇡⇠ events at
10 GeV and >90% of ⇡⇠ events at 100 GeV[75]. The trigger efficiency
for atmospheric muon neutrinos as a function of the primary neutrino
energy is shown in Figure 5.8 for several different triggers that are used
in IceCube.

5.2.2 Online Filter

Once the trigger condition is met, the recorded waveforms within the
trigger window are converted into reconstructed pulses as described
in Section 4.1.4 and are then passed into a set of online filters (i.e. filters
running on hardware at the Pole). These filters are each designed to
select events that are relevant to different physics measurements that
are performed within the IceCube collaboration. For the purposes
of the analysis presented in this thesis, events are selected using the
DeepCore filter[75]. This filter is designed to select events that start inside[75]: Abbasi et al. (2012), The design and

performance of IceCube DeepCore the DeepCore fiducial volume and to reject those that are consistent
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with muons entering the detector from the outside. The filter splits the
observed series of hits between those hits that fall within the DeepCore
fiducial volume and those outside of it. It then estimates the ”center of
gravity” (COG) in space and time of the hits inside the fiducial volume
and then calculates the velocity that a signal would have to travel from
each hit occurring outside the fiducial volume to coincide with the
COG. If this velocity is close to the speed of light (between 0.25 ns/s
and 0.4 ns/s) for at least one hit, the event is rejected because it is
consistent with a muon traveling through the veto region and entering
DeepCore. Figure 5.9 shows an example of an event that would be
rejected by the online filter. Only events that pass the trigger and filter
conditions are sent north via satellite for further offline filtering.

Figure 5.9: Example of an event that
would be rejected by the online filter
algorithm. DOMs that have observed
light are highlighted in color depending
on time from red (early hits) to blue (late
hits). DOMs that have not observed any
light are shown as black dots. Figure
taken from [75].

5.2.3 Offline Filter

The offline filter is separated into subsequently applied levels, referred
to as L3, L4 and L5, where each level reduces the amount of back-
ground (atmospheric muons and noise) by approximately an order of
magnitude while keeping most of the DeepCore starting events that
are the target of the selection.

Level 3

At the lowest offline filter level, L3, cuts are applied to simple vari-
ables that remove the most easily identifiable background events while
using only few computational resources. The types of relevant types
background events at this level of the event selection are pure noise,
atmospheric muons and events with several coincident muons.

If a muon enters the detector after the data acquisition has already
been triggered, it will create a series of pulses that extends much longer
in time than what would be expected from a single particle interaction.
Because the MC simulation only simulates single particles, however,
these events cause a significant disagreement between data and MC.
The time length of the observed hit series after noise cleaning is shown
in the left panel of Figure 5.10, where this disagreement at large times
is apparent. A cut at 5000 ns, also shown in the figure, removes such
events.

To identify noise events, the observed series of hits is first passed into
a cleaning algorithm that uses time window coincident conditions
between DOMs to remove hits that are likely to originate from pure
noise. Only when at least six hits remain in the series after this cleaning
procedure, the event is kept. Another algorithm checks whether the
observed hits show any sign of directionality and only accepts the event
if that is the case. Finally, an event should have more than two hits
within a 300 ns sliding window.

The cuts aimed at removingmuons consist of conditions on the number
of hits in the veto region and conditions on the vertical position of the
first HLC hit. One of these variables is the z-position of the first hit
DOM for which the HLC condition was fulfilled and its distribution
is shown in the right panel of Figure 5.10 A cut at �120 m from the
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Figure 5.10: Distribution of one of the variables used in the L3 offline filter, the time between the last hit and the first hit after noise
cleaning (left) and the z-position of the first HLC hit (right). Histograms show the distributions in simulated data separated by event
type, data points with error bars show the distribution of real data. The bottom panel shows the ratio between data and simulation.
Events falling on the ”signal” side of the histogram are passed to the next filter level.

origin of the IceCube coordinate system (corresponding to a depth of
2068 m from the surface2) removes events that are likely to originate2: The origin of the IceCube coordi-

nate system is at a depth of 1948.07 m
from the surface with the z-axis ori-
ented upwards. The depth of a given z-
coordinate is therefore 3 = 1948.07 m�
I[74].

from atmospheric muons since they begin above the fiducial volume
of DeepCore. The overall event rate after all L3 cuts have been applied
is below 1 Hz.

Level 4

In the next level, L4, more advanced selections based on the output of
Boosted Decision Trees (BDTs) are applied, with a separately trained
BDT for noise and muon rejection, respectively. The output of each
BDT is a probability score between zero (background-like) and one
(signal-like) and is shown in Figure 5.11. The first BDT to be evaluated
is the one used to reject pure noise events. Its inputs consist of five
variables:

I Cleaned #ch: Number of hits in the noise cleaned hit series that
was also used at L3.

I STW m3500p4000 DTW200: Slide a 200 ns time window over all
pulses occurring from �3.5µs to 4µs around the trigger time and
take the largest number of pulses to fall within the window.

I The speed that is returned by the LineFit algorithm[102] on the
observed hits

I The ”fill ratio”, that is, the fraction of DOMs that have recorded
any hits inside a sphere centered around the first HLC hit. This
variable effectively measures how compactly the hits are dis-
tributed around the starting point of the event and has been used
in the past to identify cascades in IceCube[103].

I The ratio between the total duration of the cleaned hit series and
the uncleaned hit series.
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Figure 5.11: Distribution scores for the noise (left) and muon (right) BDT. The distributions of the muon classifier are shown for
events where the score of the noise BDT is greater than 0.7. Histograms show the distributions in simulated data separated by event
type, data points with error bars show the distribution of real data. The bottom panel shows the ratio between data and simulation.
Events falling on the ”signal” side of the histogram are passed to the next filter level.

The BDT is trained using simulated pure noise and neutrino events.
An event passes the noise filter if the BDT score is above 0.7, which
reduces the number of pure noise events by two orders of magnitude
from 36.6 mHz to approximately 0.3 mHz. Passing events are passed
into the second BDT that is used to reject atmospheric muons. This
BDT takes in a larger number of variables that can be summarized as
belonging to three different categories:

I Several#ch-like variables counting the number of hits in different
veto regions of the detector.

I The time to reach 75% of an event’s charge in the cleaned pulse
series.

I Several variables that characterize the spacial distribution of hits
in z-coordinate and the radius with respect to string 36 (roughly
the center of DeepCore).

In contrast to the noise BDT, however, the muon BDT is trained using
real data and simulated neutrino events, with the goal of rejecting data
events. This is possible because the data sample consists to 99% of
atmospheric muons at this stage of the event selection. Events pass the
L4 muon cut if the output score of the muon BDT is greater than 0.65,
removing 94% of all muon events while keeping 87% of all neutrinos.
These thresholds are shown alongside the distribution of the BDT
outputs in Figure 5.11.

Level 5

The final filter that is applied before the event reconstruction step is L5.
This filter searches specifically for hits occurring in un-instrumented
corridorswithin the IceCube array throughwhich an atmosphericmuon
can sneak into the DeepCore volume while evading previous veto
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Figure 5.12: Distributions for two of the L5 corridor cut variables. Histograms show the distributions in simulated data separated
by event type, data points with error bars show the distribution of real data. The bottom panel shows the ratio between data and
simulation. Events falling on the ”signal” side of the histogram (or, equivalently, opposite to the ”cut” side of the histogram) are
passed to the next filter level.

Table 5.3: Summary of the rates ob-
tained after each level of selection. Neu-
trinos are weighted to an atmospheric
spectrum with oscillations included.

rate (⇠Hz)
Event type DeepCore filter L3 L4 L5 Eff. (%)
Atm. ⇠ 7273 505 28.1 0.93 0.012
Pure noise 6621 36.6 0.28 0.07 0.001
Atm. ⇡4 CC 1.61 0.95 0.84 0.48 29.8
Atm. ⇡⇠ CC 6.16 3.77 3.11 1.39 22.5
Atm. ⇡� CC 0.19 0.13 0.12 0.07 36.8
Atm. ⇡ NC 0.86 0.53 0.46 0.23 26.7

cuts. In addition, events with more than seven hits in the outermost
strings of the IceCube array or that have a down-going pattern of hits
in the uppermost region of the detector are vetoed to remove events
containing atmospheric muons entering the detector coincidentally
with neutrinos. The distribution for one of the corridor variables and
one of the muon rejection variables are shown in Figure 5.12. Table 5.3
shows the rates of each event type expected at each level of the selection
up to L5 together with the efficiency of the filter at the final level.

5.2.4 Event Reconstruction

After the L5 selection, the rate of muons is reduced enough so that
the majority of the total sample is expected to consist of atmospheric
neutrinos, and it is at this point that the event reconstruction and sig-
nature classification are run. For the measurement presented in this
thesis, three reconstructed quantities are required: the zenith angle,
the energy, and a proxy score determining the flavor of a neutrino. As
described in Section 4.3, all neutrino events in DeepCore can be effec-
tively approximated as a cascade (⇡4 CC events, all NC events and 83%
of ⇡� CC events) or a combination of a cascade at the neutrino interac-
tion point with an outgoing muon track (⇡⇠ CC events and 17% of ⇡�
CC events). The zenith angle can be most accurately reconstructed for
track-like events due to their elongated, highly directional signature.
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For cascades, the reconstruction of the direction is more difficult be-
cause of their more compact and diffuse light distribution. The energy
of a neutrino event is reconstructed by comparing the expected light
output of a combined track and cascade hypothesis with the observed
hits. Finally, the flavor proxy is calculated using variables that charac-
terize the elongation of the observed hit signature and the goodness
of fit of a combined track and cascade hypothesis compared to that of
a cascade-only hypothesis. The resulting score allows the separation
of muon neutrino interactions from other interactions, which is ide-
ally suitable to observe the muon neutrino disappearance oscillation
channel.

Zenith angle reconstruction

The zenith angle is reconstructed using the Single-string Antares-
inspired Analysis (santa)[104]. It is an older algorithm aimed at recon- [104]: Garza (2014), Measurement of neu-

trino oscillations in atmospheric neutrinos
with the IceCube DeepCore detector

structing the direction of muon tracks that was originally developed
for use in the ANTARES neutrino telescope [105]. It has since been

[105]: Aguilar et al. (2011), A fast al-
gorithm for muon track reconstruction and
its application to the ANTARES neutrino
telescope

refurbished and improved in IceCube, as described in detail in [106].

[106]: Abbasi et al. (2022), Low Energy
Event Reconstruction in IceCube DeepCore

The reconstructed pulse series in every DOM is summarized by the
time of the first pulse and the sum of charges of all pulses. This time
and charge are the only information used by the reconstruction and are
referred to as a hit in the following. The first step of the reconstruction
algorithm is a cleaning routine that removes hits produced by photons
that have been scattered many times as they traveled through the ice,
leaving only hits from photons that have traveled in approximately
straight lines based on the time difference between hits on the same
string. It calculates the signal speed between hits on the same string,
and removes a hit if this velocity is below the speed of light in ice.
This is a simplification of the algorithm described in [104], where the
effective signal velocity was updated during the selection process. The
selection is run separately for each string, and if fewer than three hits
remain on a string, all hits on the string are discarded. In total, it is
necessary for at least five hits to remain in an event in order to run the
directional reconstruction. If only hits on one string remain after the
selection, the event is referred to as a single-string event, otherwise it
is a multi-string event. The reconstruction is generally more accurate
for multi-string events, because the spacing between strings provides
a long lever arm to constrain the direction of a track. In addition, the
azimuth angle of the track can only be reconstructed for multi-string
events due to the rotational symmetry of a single string.

The directional reconstruction itself is a regression that minimizes a
modified "2 loss that is defined as

!(Æ) =
#X
8=1

)(A2
8
(Æ)) + 1

@̄

#X
8=1

@̃
8

3✏,8

30
. (5.4)

The first term in Equation 5.4 is a "2 loss that is modified to be robust
against outliers. The second term is a regularization term that penalizes
solutions where large charges are observed at large distances. Here, A2

8

is the chi-square residual for each observed hit, 8, between the observed
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Figure 5.13: Example of a ⇡⇠, C⇠event reconstructed with santa with hits on several strings. Strings 84, 83 and 37 are spaced ⇠ 80 m
apart from each other and form a highly obtuse triangle.

time, Cobs,8 and the geometric arrival time, Cgeom,8(Æ),

A
2
8
(Æ) =

 
Cgeom,8(Æ) � Cobs,8

�C

!2

. (5.5)

The residual is wrapped in a robust loss function,

)(A2
8
) = log
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1 + A2

8
/⇠2�

⇠
2 , (5.6)

which grows much more slowly than A2
8
for values of A8 greater than

the ”soft cutoff”, ⇠, while behaves very similarly to A2
8
for values of A8

smaller than ⇠. Effectively, this robust loss reduces the influence of
hits that pass the hit selection procedure despite having undergone
a significant amount of scattering. The uncertainty in the pulse-time
measurement is approximately �C = 3 ns, corresponding to the readout
rate of the modules [77].

In the second term of Equation 5.4, @̃
8
is the total observed charge

in DOM 8 divided by the effective area of the DOM at the angle of
incidence of the photon, and @̄ is the average over all @̃

8
. For everyDOM,

the charge per effective area is multiplied by the distance traveled by
the photon, 3✏,8 , and divided by a typical scaling distance, 30. The
distance 30 determines the strength of the regularization term and has
been optimized empirically to achieve the optimal resolution of the
reconstruction to a value of 7 m.

The expected arrival time for unscattered Cherenkov photons is calcu-
lated geometrically under the assumption of an infinitely long track
characterized by a normalized direction vector DÆ = (DG , DH , DI), an an-
chor point @Æ = (@G , @H , @I) and a time C0 at which the particle passes
through @Æ. The velocity is fixed to the vacuum speed of light, 2. Since
the reconstruction ignores DOMs that have not recorded any pulses,
the fact that the true track length is finite only makes a negligible dif-
ference. The arrangement of these vectors is shown in Figure 5.14.
Without scattering, all Cherenkov photons lie on a cone with an open-
ing angle 2 whose tip is in the position of the particle at the time ?Æ(C).
The opening angle satisfies cos(2) = 1/=ph, where =ph is the phase
index of refraction of the ice. Assuming that a photon has traveled in
a straight line at the group velocity in ice, the geometric arrival time,
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Figure 5.14: Detailed geometry of a
light cone created by a track. @Æ is the
position of the anchor point and AÆ is the
position of the optical module. ?Æ(Cem)
and ?Æ(Cgeom) are the positions of the
muon at the time the photon is emitted
and when it is geometrically expected
to arrive, respectively.

Figure 5.15: Median error on the recon-
structed zenith angle at the final level
of the sample selection as a function of
the true simulated neutrino energy.

Cgeom, for a DOM at position AÆ is

Cgeom = C0 + 1
2

✓ �
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where the distance traveled by the photon 3✏ is

3✏ = =ph
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The group and phase indices of refraction depend on the wavelength,
but for this reconstruction the value for a wavelength of ⌫ = 400 nm i is
used, where =gr = 1.356 and =ph = 1.319 from [107]. An example of a [107]: Price et al. (2001), Role of group

and phase velocity in high-energy neutrino
observatories

simulated event reconstructed with santa is shown in Figure 5.13. The
solid and dashed lines show the geometric arrival time calculated ac-
cording to equation 5.7 using reconstructed and true track parameters,
respectively. The circles indicate hits in DOMs, and those hits that
have been removed by the hit cleaning procedure are crossed out. The
median error on the zenith angle reconstructed using SANTA is shown
in Figure 5.15, split by neutrino interaction type. As expected, the
error is the smallest for ⇡⇠-CC interactions, since those produce track
signatures that most closely resemble the infinite track hypothesis un-
derlying the SANTA reconstruction algorithm. The worst resolution
is achieved for interactions that only produce electronic or hadronic
showers, since they produce cascade signatures hardly resembling
the infinite track assumption. It is also apparent that the median res-
olution for ⇡�-CC events lies between that of ⇡⇠-CC events and pure

i 400 nm is near the wavelength of the highest acceptance of the optical modules.[74]
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cascade events. This is readily explained by the fact that 17% of these
interactions also produce a muon in their final state.

In addition to the zenith angle reconstruction, SANTA can also be used
to fit a simplified cascade hypothesis to the observed hits. For this
purpose, it is assumed that light is emitted uniformly in all directions
originating from the interaction vertex as shown in the left panel in
Figure 4.7. With this assumption of perfect rotational symmetry, it is not
possible to reconstruct a direction, and the cascade is fully characterized
by the position of the vertex and the interaction time. The ratio of the "2

of the infinite-track regression and the "2 of this cascade-only regression
is used as a proxy for the neutrino flavor in this analysis. If it is smaller
than one, the infinite-track hypothesis achieves a better fit to the data
than the cascade-only hypothesis.

Energy reconstruction

The energy reconstruction runs as a separate step after the zenith an-
gle reconstruction. In contrast to SANTA, the Low-Energy Energy
Reconstruction Algorithm (LEERA)[108] fits a combined hypothesis
consisting of a cascade and a finite-length track originating at the same
point of the cascade. Both the cascade and the track are constrained
to move only along the infinite track that has been fit in the zenith
reconstruction. This means that the model fit in the energy reconstruc-
tion is fully characterized by the shift of the vertex along the infinite
track, the length of the finite track (which is linearly related to the
track energy), and the energy of the cascade. Given these parameters,
the expected light yield for all DOMs is calculated using the so-called
photonics tables. The tables consist of B-spline coefficients that have been
fit to simulated photon propagation for cascades and 3 m long tracks
segments at different depths and directions inside the IceCube array
to give a (time-dependent) expectation value for the photon count at
arbitrary positions inside the detector. The expectation of an arbitrarily
long track is calculated by chaining the 3 m segments together that
fully cover the desired track length, and scaling the amplitude of the
last segment by the remainder of the division of the desired length
by the length of the segments. Given these expectation values as a
function of event parameters, ⌫8(), for every DOM, 8, a simple Poisson
”hit vs. no-hit” log-likelihood is calculated as

log(L) =
X

82DOMs without hits
4
�⌫8 () +

X
82DOMs with hits

(1 � 4�⌫8 ()) . (5.9)

This likelihood is maximized under the hypothesis that the shift, track
length, and cascade energy are all free parameters, and under the
alternative hypothesis where the track length is fixed to zero, the latter
of which corresponds to a cascade-only hypothesis. The difference
between these two log-likelihoods provides a measure of the degree to
which the combined track and cascade hypothesis fits the observed data
better than a track-only hypothesis. It is one of the inputs that is used in
a BDT to calculate an overall score of how track-like an observed event
signature is. Themedian relative error in the reconstructed total energy
(that is, the sum of the track energy and the cascade energy) is shown
in Figure 5.16. As with the zenith angle reconstruction, the relative
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Figure 5.16: Median fractional error on
the reconstructed energy at the final
level of the sample selection as a func-
tion of neutrino energy.

error is smallest for ⇡⇠, C⇠-events. This is expected, since these events
fit the hypothesis of an initial cascade combined with a finite track the
best. The second-best resolution is achieved for ⇡4,CC-events, while it is
poorest for ⇡�,CC and neutral-current events. This is explained by the
fact that the expected light yield that is put in Equation 5.9 is based on
the assumption that all particles that are produced in the interaction are
visible to the detector. While this assumption is a good approximation
for ⇡4,CC-events, it does not hold for hadronic cascades that contain
some neutral components as discussed in chapter 4.2.4. The true energy
of the primary particles that produce hadronic cascades is therefore
systematically under-estimated and has a larger uncertainty. This
additional uncertainty is fundamentally irreducible, because it is not
possible to distinguish the signatures of hadronic and electromagnetic
showers.

5.2.5 Signature Classification

In addition to the energy and zenith angle, the measurement presented
in this thesis requires a score that separates track-like ⇡⇠, C⇠-events
from other types of interaction. While previous analyses used only
single variables such as the reconstructed track length to differentiate
between tracks and cascades [109–111], the analysis presented in this
thesis uses several variables as input into a Boosted Decision-Tree
(BDT) to compute a score for how track-like the observed signature
is. The BDT classifier is taken from the scikit-learn[112] package and
trained to classify between tracks and cascades using the following
input variables:

I SANTA "2-ratio, defined as ("2/d.o.f.)track

("2/d.o.f.)cascade

, i.e. the ratio of goodness-
of-fit metrics from each fit hypothesis in the directional recon-
struction (see section 5.2.4)

I �LLH fromenergy reconstruction, defined as LLHtrack�LLHcascade,
i.e. the best-fit LLH value from each hypothesis

I Reconstructed muon track length, !⇠
I Radial distance of the reconstructed interaction vertex from string

36ii, ⌧36
E4AC4G

I Radial distance of the end-point from string 36, ⌧36
BC>?

ii String 36 is approximately at the center of the array, and near to the densest region of
DeepCore (see Figure 4.2).
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Figure 5.17: Distribution and data/MC comparison for the two most important input variables into the classification BDT.

I Depth of the interaction vertex, IE4AC4G
I Depth of the end point, IBC>?

Of these variables, the SANTA "2-ratio and �LLH contribute the most
to the final score. Their distributions and comparison between data
and simulation can be seen in Figure 5.17 at the L5 selection level,
where neutrinos are weighted with NuFit 4.0[24] global fit parameters.
The training data consists of simulated ⇡4 -CC interactions and neutral-
current interactions representing cascades, and ⇡⇠-CC interactions
representing tracks. Tau neutrino interactions are not included in the
training data in order to avoid confusion due to the 17% of ⇡�-CC in-
teractions that produce track-like signatures. The training samples are
weighted to approximate the neutrino flux expected from the HKKM
model [40] without oscillations. This is done to avoid imprinting the[40]: Honda et al. (2015), Atmospheric

neutrino flux calculation using the
NRLMSISE-00 atmospheric model

event distributions at certain values of the oscillation parameters into
the trained classifier. The distributions for these variables for tracks
and cascades as they were used in training can be found in the Ap-
pendix B.1.2. Only half of the available simulation is used for training,
while the other half is held out to validate that the classifier generalized
to events that it has not seen during training. The output score of the
classifier is referred to as particle-ID (PID) and ranges from zero (very
cascade-like) to one (very track-like). The distribution of the PID score
for simulated neutrino interactions is shown in Figure 5.18, broken
down by flavor and interaction type. The distributions are individually
normalized to help visualize the shape differences between the dif-
ferent neutrino interactions. The distributions for all interaction types
show a large peak around a probability score of 0.5, suggesting that the
event signature cannot be clearly classified for the majority of events.
A second peak exists only in the distribution of ⇡⇠-CC events close to
a score of one, meaning that there exists a population of these events
that can be very clearly classified as being track-like. There also exists
some excess of high PID values in the distribution of ⇡�-CC events
corresponding to those events where the decay of the tauon produces
a muon. Notably, there is no population of events that can be cleanly
classified as a cascade event, i.e., there are no PID scores close to zero.
The reason for this is that the two classes are nested hypotheses, one
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Figure 5.18: PID score distribution for
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from the most cascade-like at 0 to the
most track-like event signature at 1.

containing only a cascade and the other containing a combination of a
cascade and a track, and it is never possible to prove that a cascade-like
signature does not contain at least a short track segment.

5.2.6 Final Sample Selection and Binning

After the reconstruction and classification step, several final cut vari-
ables are applied to reduce the background of atmospheric muons to
only a few percent, and to remove a small number of events from data
containing coincident muons. These cuts are:

I The reconstruction of energy and zenith angle has to be success-
ful. This requires, in particular, that at least five hits remain after
the hit cleaning procedure described in Section 5.2.4.

I The reconstructed energy should be in the range between 6 GeV
and 156 GeV.

I Require a minimum PID score (see Section 5.2.5) of 0.55 to only
include at least somewhat track-like events.

I Reconstructed cos(I) < 0.1 to remove events that enter the de-
tector from above the horizon.

I Require a minimum goodness-of-fit of the zenith reconstruction
with "2

mod/d.o.f. < 50.
I A tighter cut on the L4 muon BDT score (see Section 2) of %⇡ >

0.97.
I Fewer than eight hits in the outermost strings of the IceCube array,

and a positive ”z-travel” value for hits in the uppermost 15 layers
of DOMs in the (non-DeepCore) IceCube array. The ”z-travel”
value for a given sequence of hits is calculated by subtracting the
mean value of the z-coordinate of the first quartile of hits from
the mean z-coordinate of all hits.

The cuts on energy, zenith angle, and PID define the range of the bin-
ning that will be used in the analysis. The cut on the zenith angle in
particular is applied not only to reduce the background of atmospheric
muons, but also to remove the phase space of neutrino events where
muons that are produced in the same air shower that also produced
the neutrino cause it to be vetoed by the muon filter cuts. This effect is
referred to as the ”self-veto” effect and would lead to a disagreement
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Figure 5.19: Distribution of the ”z-
travel” variable calculated for the up-
permost 15 layers of IceCube DOMs.
Only events with at least 4 hits in the
uppermost 15 layers of DOMs are in-
cluded in the histogram.
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Figure 5.20: Distribution of the SANTA goodness-of-fit variable and the reconstructed zenith angle at L5 of the event selection
process.

between data and simulation since coincident muons are never sim-
ulated. The distribution of the cosine of the reconstructed zenith angle
is shown in the right panel of Figure 5.20, and it is apparent from
the distributions that atmospheric muons dominate in the region of
down-going events.

The requirement on the SANTA goodness-of-fit not only ensures that
the included events are well-reconstructed, but also reduces the frac-
tion of muons in the sample, as can be seen from the distributions
shown in the left panel of Figure 5.20. The number of hits on the
outermost strings and the ”z-travel” variable calculated for hits in the
uppermost 15 layers of IceCube DOMs are indicators of muons that hit
the detector within the trigger window of a neutrino event. Such co-
incidences are entirely absent in simulation, which becomes especially
apparent in the distribution of the ”z-travel” variable shown in Figure
5.19, where a negative value indicates a down-going signal. After the
application of all these cuts, the data sample consists of 21,914 well-
reconstructed, track-like events with an expected background from
atmospheric muons of only ⇠ 2% as shown in Table 5.4. For the pur-
pose of the oscillation measurements presented in this work, both data
and simulation sets are binned in reconstructed energy (⇢r42>), cosine
of the reconstructed zenith angle (cos(I)), and PID as follows:

I ⇢r42> : 11 bins spanning the range from 6.31 GeV to 158.49 GeV,
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Figure 5.21: Expected event counts in
7.5 years of live time assuming no sterile
mixing and NuFit 4.0 [24] global best fit
parameters at Normal Ordering.

rate (⇠Hz)
condition ⇡ (sim) ⇠ (sim) data ⇠ fraction
has SANTA reconstruction 957 314 1183 24.7 %
6 GeV < ⇢reco < 156 GeV 862 311 1095 26.5 %
BDT score > 0.55 232 117 336 33.5 %
cos(reco) < 0.1 175 17 177 8.8 %
SANTA "2/d.o.f. < 50 164 12 161 6.6 %
L4 muon ⇡ prob > 0.97 101 2 93 2.1 %

coinc. ⇠ cuts (final rate) 101 2 93 2.1 %

Table 5.4: Successively applied cuts on
the data sample. The bottom row cor-
responds to the final rates in the sam-
ple after all cuts have been applied. The
total rate of the data and simulation
does not match, which is expected since
there is a large amount of uncertainty
in the total normalization. Muon con-
tamination is the muon rate divided by
the total event rate. Numbers calculated
at the NuFit 4.0 global best-fit point.

the two bins with the highest energy are merged.
I cos(I): 10 bins spanning the range from -1 to 0.1
I PID: One bin between 0.55 and 0.75, and one bin between 0.75

and 1.0.

The lower PID bin between 0.55 and 0.75 consists to 69% (pre-fit MC
estimate) of charged-current ⇡⇠+⇡̄⇠ events and is referred to as themixed
channel, while the higher PID channel between 0.75 and 1.0 consists to
94% of charged-current ⇡⇠ + ⇡̄⇠ events and is referred to as the tracks
channel. The expectation values of the histogram in both PID channels
is shown in Figure 5.21 at current global best-fit parameters for standard
three-flavor oscillations. The expectation values are calculated from
Monte-Carlo (MC) simulation that is described in detail in Section 5.1.
The detailed breakdown of event counts in the final data sample by
particle type and PID channel is given in Table 5.5.

Muon Smearing

After all the filtering steps described in section 5.2, the muon con-
tamination of the data sample is reduced to ⇠ 2% of the sample. This
reduces the statistics of muon simulation so much, that the resulting
histograms become very sparse as shown in figure 5.22a. Such sparse
histograms, in which single MC events have to serve as a stand-in for
several real data events, are a poor template for what can be expected
in data. To produce a more realistic expectation of the bin counts, the
muon histograms are smeared using KDEs as shown in figure 5.22b.
Since the KDE operates on events on the entire zenith and energy
range, including events that fall outside the analysis binning, some
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Table 5.5: Expected event rate with 8
years livetime broken down in event
types and PID bins, calculated at Nu-
Fit 4.0 global best fit parameters.

Type PID Event Count Rate (⇠Hz)
All MC mixed 11428 48.3
All MC tracks 12238 51.7
⇡a;; + ⇡̄a;; N⇠ mixed 943 4.0
⇡4 + ⇡̄4 C⇠ mixed 1704 7.2
⇡⇠ + ⇡̄⇠ C⇠ mixed 7901 33.4
⇡� + ⇡̄� C⇠ mixed 470 2.0
muons mixed 410 1.7
⇡a;; + ⇡̄a;; N⇠ tracks 171 0.7
⇡4 + ⇡̄4 C⇠ tracks 294 1.2
⇡⇠ + ⇡̄⇠ C⇠ tracks 11517 48.7
⇡� + ⇡̄� C⇠ tracks 162 0.7
muons tracks 93 0.4

events bleed into the highest cos(I) bin from further above the hori-
zon. The KDE kernel is mirrored at cos(I) = �1 to avoid spurious
disappearance of events at the edge. The smeared muon histogram
is added to the expectation values from the neutrino MC simulation
to estimate the total expectation value in every bin shown in Figure
5.21.

Figure 5.22:Muon template before (top)
and after (bottom) the application of
KDE smoothing. The shown values are
the average of 20 KDE evaluations on
different bootstrap samples.

(a) Without KDE smoothing

(b) With KDE smoothing

5.2.7 Seasonal Stability

As the operating conditions of the DOMs are very stable after their
deployment, the calibration of the DOM response described in Section
5.1.4 is performed only once per year. Such a re-calibration usually
also coincides with the release of a new IceCube software package and
a new season of data taking. To ensure that the data sample is stable
under these re-calibrations and software updates, the distributions of
the reconstructed energy, zenith angle and PID as well as some control
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variables are compared between seasons using a Kolmogorov-Smirnov
(KS) test[113]. The test calculates the p-value of the largest difference [113]: Kolmogorov (1933), Sulla de-

terminazione empirica di una legge di dis-
tribuzione

between the cumulative distributions of two samples under the null
hypothesis that the samples are drawn from the same distribution. The
results for every pair of seasons included in the data sample is shown
in heat maps in Figure B.1 in Appendix Section B.1.1. The results show
good agreement between the distributions of the different seasons in
the sample.

5.3 Implementation of systematic
uncertainties

5.3.1 Variation of Detector Properties

Systematic uncertainties on the detector properties that need to be
taken into account are the overall optical efficiency of the DOMs as
well as the properties of the surrounding ice. The parametrization and
priors of each of these properties are informed by IceCube calibration
studies.

I DOM efficiency: A factor that scales the probability that a photon
hitting the PMT of a DOM will produce a photo-electron that is
measured by the electronics. Nominal value is 1, prior standard
deviation is 10%.

I Hole ice: Two parameters describe the effect of the optical prop-
erties of the columnof re-frozen icewithin the bore holes inwhich
the strings have been deployed. The details of this parametriza-
tion is described below.

I Bulk ice: The over-all absorption and scattering coefficients of all
ice layers are multiplied by a scaling factor. The nominal value
for ice absorption is 1.0 with a prior standard deviation of 5%.
The nominal value for ice scattering is 1.05 with a prior standard
deviation of 10%.

In total, the uncertainties on the detector properties are modeled by
five parameters, one for the DOM efficiency, two for the hole ice model
and two for the bulk ice uncertainty. To model the effect of these
parameters on the analysis histogram, several MC sets at different
variations of DOM efficiency, hole ice, and bulk ice parameters are
produced. These MC sets are used to find a parametrization that will
model how the distribution of events in energy, zenith and PID will
change as a function of these parameters.

DOM efficiency calibration

As described in Section 4.1.4, the DOMs contain LEDs that are used to
calibrate the detector in-situ. However, these LEDs are not calibrated
with respect to their absolute brightness and therefore are not suited for
the calibration of the optical efficiency of the DOMs. Instead, minimally
ionizing muons that are produced in air showers are used as a light
source with a known brightness. The calibration is performed using a
sample of events that pass the Minimum Bias Trigger[74] and in which
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the reconstructed muon track stops within the instrumented volume of
IceCube. The DOM efficiency is estimated by comparing the observed
charges in the DOMs and the light expectation from the reconstructed
muons. Multiple such calibration studies have been run [79][114] and[79]: Kulacz (2019), In Situ Measurement

of the IceCube DOM Efficiency Factor
Using Atmospheric Minimum Ionizing
Muons
[114]: Feintzeig (2014), Searches for point-
like sources of astrophysical neutrinos with
the IceCube Neutrino Observatory

found variations in the optical efficiency of approximately 10%, which
is used as a prior for the measurements presented in this work.

Hole Ice Parametrization

The bore holes in which IceCube’s strings have been deployed were
drilled using hot water to melt a column of ice into which the strings
with their attached optical sensors could be lowered. This water col-
umn re-froze after deployment to formwhat is referred to as hole ice[115].[115]: Fiedlschuster (2019), The Effect of

Hole Ice on the Propagation and Detection
of Light in IceCube

Camera observations of this re-freezing process suggest that the hole
ice is transparent near the edges of be hole and contains a bubble
column in its center[116]. The bubble column has a much shorter scat-[116]: Rongen (2016), Measuring the op-

tical properties of IceCube drill holes tering length than the surrounding bulk ice and therefore decreases the
probability of a photon entering a DOM directly from below. The effect
of the re-frozen ice column surrounding the strings can be modeled
as a modification to the optical efficiency of the DOMs as a function
of the incident angle of incoming photons. In the past, many different
angular acceptance curves have been produced from in-situ calibration
measurements[99], the best fit results of previous DeepCore oscillation
analyses, in addition to the laboratory measurements that have been
made in water tanks before the deployment of IceCube. For the anal-
ysis presented in this work, a two-dimensional parametrization was
developed that can approximate any of these hole ice models such
that it can be used as a unified hole ice model. To do this, all previous
angular acceptance curves are evaluated as a function of the cosine of
the photon incidence angle, cos(◆), at 100 points over the entire valid
domain between -1 and 1, where 1 represents a photon entering a DOM
directly from below. The curves are furthermore normalized to an
area of 1 to avoid affecting the total observed charge. Using Principal
Component Analysis[117], the variations between the different models[117]: F.R.S. (1901), LIII. On lines and

planes of closest fit to systems of points in
space

are decomposed into a mean and the most important components that
explain the variance between models. It was found that the two most
important components, ?0 and ?1, describe all known hole ice models
adequately. Their effect is shown in Figure 5.23 as variations with the
acceptance curve that is used as the baseline in this analysis. The right
panel of Figure 5.23 also shows where the older hole ice models are lo-
cated in the space spanned by ?0 and ?1. The laboratory measurement,
which did not include any hole ice effects, notably lies far outside of
the region of all other hole ice models that are all produced in-situ.

Depth-dependent ice properties

In the parametrization of the uncertainties of the detector properties
described in Section 5.3.1, variations of the scattering and absorption
coefficients are only described by global, depth-independent scaling
factors. In principle, the error on the properties of the ice can also
change as a function of depth. Such variations are expected because
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Figure 5.24: Perturbation of the scat-
tering and absorption coefficients with
respect to the nominal ice model ap-
plied in additional MC sets.

regions of higher absorption and scattering coefficients will also ab-
sorb and scatter the light from the LED flashers that is used to do the
calibration. Higher uncertainties are also expected near the edges of
the detector since there are no more calibration light sources outside
of the instrumented volume. Of particular interest for the analysis pre-
sented in this work are variations of the ice properties at length scales
of the DeepCore fiducial volume located within DeepCore. Variations
at much longer scales would be indistinguishable from uniform vari-
ations given the size of the event signatures observed below 100 GeV,
while variations at much shorter scales are expected to average out.
To test how significantly such a variation would impact the final level
histograms, two MC sets are produced in which the scattering and
absorption coefficients vary following a sigmoid function centered in
DeepCore with an amplitude of ±2% in opposing directions as shown
in Figure 5.24. The size of this variation corresponds approximately a
1�-allowed variation according to flasher calibration data. For every
bin in the final analysis histogram, a linear regression is fit to the bin
counts of the nominal MC set and the two variations. By comparing
the "2 test statistic resulting from the regression with the free fit and
a regression where the slope is fixed to zero, a p-value can be calcu-
lated for every bin, where the null hypothesis is that the step-function
variation has no effect. The p-values for all analysis bins are shown in
Figure 5.25 and are consistent with random fluctuations. Therefore, it
was concluded that the effect of a depth-dependent ice model variation
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Figure 5.25: Bin-wise p-value of the
fitted slopes as a function of the step-
function ice model variation.

is well within the statistical uncertainty of the simulation and need not
be included in the measurement.

5.3.2 Variation of the Atmospheric Neutrino Flux

The atmospheric neutrino flux can vary depending on the choice of
primary cosmic ray (CR) model, assumed meson yield, hadronic in-
teraction (HI) model and atmospheric density model that are used in
the calculation. The nominal flux, �nom, is modified to a systematic
flux, �sys, so that

�sys(⇢) = �nom ·
✓

⇢

⇢pivot

◆�✏
+
#BarrX
8=1

⌫8 ·
d�nom

d⌫8
(5.10)

The �✏ in Equation 5.10 is due to the CR flux uncertainty and cor-
responds to shifting the spectral index of the neutrino flux, with a pivot
point at ⇢pivot = 24 GeV. The second term describes the uncertainty
of the Pion and Kaon production yield, where each ⌫8 corresponds to
the variation in one Barr block (further described below). The gradi-
ents with respect to these variations, d�nom

d⌫8 , are calculated using the
MCEq[39, 118, 119] flux calculator.

Uncertainty on Meson Production

The Barr scheme[120] entails dividing the phase space of incident par-[120]: Barr et al. (2006), Uncertainties in
Atmospheric Neutrino Fluxes ent particle ⇢i and the outgoing secondary particle ⇢s (or, equivalently,

GLAB = ⇢s/⇢i) into regions that are each denoted by a Barr variable.
There are eight regions/variables that define the uncertainty on �+

production, and four regions that define the  + production, as shown
in Figure 5.26. For every region, a different relative uncertainty is as-
signed based on the experimental constraints in that region, as shown
in Figure 5.27. For primary particle energies > 500 GeV, an additional
energy-dependent term is added to the uncertainty to account for the
fact that no accelerator measurements are available at these energies
to constrain the meson yield. As the pion ratio is well-measured, the
uncertainty on �� is defined by the uncertainty on �+ combined with
the uncertainty on the pion ratio. The uncertainty on  � production
is parametrized separately from the  + production. The only mod-
ification to the original Barr scheme used in this analysis is that the
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low-energy �+ Barr variables A-F are summarized to a single variable
with a relative uncertainty of 63%, because their impact was found to
be highly correlated. Thus the uncertainty from meson production is
described by #Barr = 17 Barr variables that enter Equation 5.10.

Atmospheric density

The development of particle showers in the atmosphere is governed by
competing processes of decay and interactions with the surrounding
air. The density of the atmosphere can therefore influence the rate
of neutrino production and could potentially contribute a systematic
uncertainty to oscillation measurements. The size of the effect of at-
mospheric density uncertainty on the analysis presented in this work is
estimated using the same procedure as described in [29]. This is done
by obtaining a variation of atmospheric density profile by perturbing
the Earth’s atmospheric temperature within a prior range given by
the NASA Atmospheric InfraRed Sounder (AIRS) satellite [121] tem-
perature data. The resulting atmospheric density profile are injected
into MCEq to calculate new fluxes. This is performed for a variety of
CR models and hadronic interaction models available in MCEq. The
resulting fluctuations of the neutrino flux observed at the detector
were found to be consistently below 1% for the energy ranges most
relevant to DeepCore measurements and is therefore not included as a
systematic uncertainty in this work.





Three-flavor oscillation
measurement 6

The first measurement made using the data sample described in this
work is the measurement of the atmospheric mixing angle 23 and the
mass splitting �<2

32. The experimental setup of DeepCore is ideally
suited for this measurement, because the first valley of maximum dis-
appearance for muon neutrinos passing through the entire diameter
of the Earth is expected to lie between 20 GeV and 30 GeV as shown in
Figure 3.8 in Section 3.3.3. The parameter �<2

32 changes the position
of the oscillation valley in energy, while 23 changes its amplitude.
In the analysis histogram, this muon neutrino disappearance effect
is evident even by just a look in the PID channel for highly track-like
events, as shown in Figure 5.21. For this measurement, oscillation prob-
abilities are calculated in the three-flavor oscillation scheme including
matter effects. The matter profile of Earth is modeled as concentric
shells of a constant density following the Preliminary Reference Earth
Model (PREM)[41]. The Monte-Carlo simulated events are weighted [41]: Dziewonski et al. (1981), Pre-

liminary reference Earth modelin a staged procedure where each stage updates the event weights
according to flux, cross-sections and oscillation probabilities[122]. The [122]: Aartsen et al. (2020), Com-

putational techniques for the analysis of
small signals in high-statistics neutrino os-
cillation experiments

oscillation probabilities are calculated using a Python implementation
of the Barger et al.[123] calculation.

[123]: Barger et al. (1980), Matter effects
on three-neutrino oscillations

6.1 Statistical Analysis

6.1.1 Definition of test statistic

Tomake ameasurement, the discrepancy between the histograms of the
weighted MC events and the observed data events has to be measured
by an appropriate test statistic. This measurement uses a modified "2

test statistic defined as

"2
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where #⇡
8
and #

⇠
8

are the expectation values for neutrinos and at-
mospheric muons, respectively, and #obs

8
is the number of observed

events. The expectation value for neutrinos within a bin is calculated as
the sum of the neutrinoMC event weights#⇡

8
=

P⇡ evts
8

F8 , with the sta-
tistical uncertainty due to finite simulation statistics (�⇡

8
)2 =

Pevts
8

F
2
8
.

The expectation value for muons, #⇠
8
, is taken from the KDE-smoothed

template shown in Figure 5.22. The variance of the KDE estimate,
(�⇠
8
)2, is calculated from a heuristic described below. The error term

due to Poisson fluctuations of the data is calculated with the total MC
expectation for muons and neutrinos. The second term in equation 6.1
is included as a penalty term to account for prior knowledge of some
systematic parameters.
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Muon KDE error estimates

For the three-flavor oscillation analysis, the variance of the muon KDE
estimate is calculated using a heuristic based on the theoretical upper
bound of the variance of a KDE estimate with a fixed kernel. If the
KDE estimate of the density at the point G0 given = i.i.d. samples from
the true PDF ? is ?̂

=
(G0), the upper bound on the variance is

Var(?̂
=
(G0)) 

1
=⌘

?(G0)�2
 

, (6.2)

where ⌘ is the bandwidth and �2
 

=
Ø
 

2(H)dH with  being the
kernel function[124]. The true PDF can be approximated with the[124]: Li et al. (2007), Nonparametric

Econometrics: Theory and Practice estimated PDF to obtain an approximate error estimate. However, the
KDE implementation used in this analysis uses a dynamic bandwidth
and does not readily give access to �2

 
either. For this reason, an ad hoc

heuristic is used following

(�⇠
8
)2 = Var(?̂

=
(G0)) ⇡ ⇠

?̂
=
(G0)
=

, (6.3)

where ⇠ is an overall scaling factor that has to be tuned ”by hand”. To
do this, a least-squares fit is run on the systematic MC sets and the
value of ⇠ is chosen such that the average "2/dof from the least-squares
fits over all bins is ⇡ 1 when = is the number unweighted events in the
muon MC sample. This heuristic encodes the fact that the variance of
the KDE estimate should be proportional to the density and inversely
proportional to the number of MC events, where the proportionality
factor is tuned to the statistical fluctuations between independent MC
sets.

6.1.2 Modeling of Detector Response

Figure 6.1: Example of a linear re-
gression in one bin of the analysis pro-
jected onto the dimension of the DOM
efficiency. Data points with translucent
error bars originate fromMCsetswhere
one or more parameters besides DOM
efficiency are at off-nominal points and
are projected along the fitted surface to
the nominal point.

For the standard three-flavor fit, the method adopted to model sys-
tematic detector uncertainties is an extension to the same method that
has been used in previous IceCube oscillation studies[111]. The expec-
tation value of the analysis histogram is calculated using each of the
discrete MC sets with perturbed detector properties, and the expec-
tation values in each bin are divided by the expectation given by the
nominal MC set. Then, a linear least-squares regression is performed
for every bin in the histogram to model the expectation value as a func-
tion of all five parameters, resulting in five gradients and one intercept
value for every bin. The result of such a fit for an arbitrarily chosen bin
is shown in Figure 6.1. A side effect of this process is that the intercept
of the linear regression has a much smaller statistical uncertainty than
the statistical uncertainty of the nominal MC set alone, which reduces
the statistical MC uncertainty of the analysis overall.

A fundamental weakness of the linear fit treatment is that the fitted pa-
rameters are only valid for the choice of oscillation and flux parameters
that they have been fitted with. In particular, there is a strong interac-
tion between the DOM efficiency parameter and the �<2

31 oscillation
parameter. As can be seen in Figure 6.2, the gradients of the relative
bin counts with respect to DOM efficiency show a distinct imprint
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Figure 6.2: Gradient of the relative bin
count with respect to DOM efficiency.

of the oscillation minimum. However, the location of this minimum
depends on the current value of �<2

31, which causes a considerable
bias if the value of �<2

31 at which the gradients are to be evaluated is
different from the value at which they have been fitted. This is mit-
igated by running the fits at several values of �<2

31 covering the entire
plausible range of this parameter, and interpolating all fit parameters
with a piece-wise linear function between those points. As a result, all
slopes and intercept values change as a function of the mass splitting.
Although the interactions between detector systematic uncertainties
and analysis parameters are not limited to the mass splitting, the bias
produced as a result of the choice of other parameters was found to be
much smaller and is therefore neglected in the three-flavor analysis.

6.1.3 Selection of Free Parameters

The systematic uncertainties of the oscillation measurement consists
of uncertainties on the properties of the detector, the neutrino flux,
neutrino cross-sections, and atmospheric muon background. The ef-
fects of each of these uncertainties on the expectation values of the
analysis histogram are parametrized by several parameters that are
included as nuisance parameters during the fit with Gaussian priors
when external constraints are available. The systematic uncertainties of
the detector are described by five parameters, namely DOM efficiency,
two hole ice parameters and bulk ice scattering and absorption as de-
scribed in Section 5.3.1. Variations of the atmospheric neutrino flux are
parametrized by varying the flux contributions of Pions and Kaons in
each ”Barr block” (see Section 5.3.2) separately. Neutrino cross-section
variations are modeled by varying the axial masses for resonant and
quasi-elastic interactions, and by interpolating between the GENIE and
CSMS cross-sections for DIS interactions as described in Section 1, with
an additional 10% error on the neutral-current contribution to reflect
the uncertainty in the hadronization process. For the atmospheric
muon background, both the total normalization and the spectral index
of the flux can be varied.

When including all plausible sources of systematic uncertainties de-
scribed above, the test statistic from Equation 6.1 would have to be
optimized with respect to 28 nuisance parameters. Together with the
two physics parameters, this would require an optimization in 30 di-
mensions to run the analysis. To reduce this computational burden,
the potential bias and its significance that could plausibly be produced
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Figure 6.3:Grid of �"2

mod
values show-

ing the impact of the axial mass"⇠⇠&⇢

�

being pulled by 1�.

by each parameter is assessed, and the value of parameters that are
found to have a negligible impact is fixed to its global best-fit value.
The impact of each parameter is tested as follows: First, pseudo-data
without statistical fluctuations is produced from simulation where the
value of the parameter to be tested is increased by 1� if it has a Gaus-
sian prior, or half-way to its upper boundary if it does not have a prior.
The histograms are then fit back while keeping the parameter to be
tested fixed at its nominal value. This fit is done once with the physics
parameters (23 and �<2

31) fixed at the value that was used to cre-
ate the pseudo-data, and once with the physics parameters left free.
The difference in the test statistic "2

mod between the free fit and the
fit with physics parameters fixed to the truth, �"2

mod, is referred to as
mis-modeling. The p-value of the mis-modeling, calculated under the
assumption that it should follow a "2-distribution with two degrees of
freedom, can be interpreted as the significance with which the analysis
would have rejected the true physics value solely due to the exclusion
of the parameter in question. This test neglects any global offset to the
test statistic, since it would not affect the estimate of the confidence
limits for the physics parameters. The test described above is repeated
for a grid of true values of 23 and �<2

31 that span the entire range of
values that is not strongly excluded by other measurements, producing
a value for �"2

mod at each point in the grid, as shown in Figure 6.3. The
largest value of �"2

mod of the entire grid produced for one parameter
represents the maximum mis-modeling for that parameter. Taking the
maximum mismodeling for all parameters, one can produce a ranking
of the impacts of all parameters of the analysis as shown in Figure
6.4. Parameters for which the maximum mis-modeling lies below a
conservatively chosen value of �"2

mod < 5 ⇥ 10�3 are fixed to their
global best-fit value in the analysis, reducing the total number of free
parameters to 17. The complete list of all parameters of the analysis,
their priors and their allowed ranges can be found in Table C.1 in the
appendix.
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Figure 6.4: Ranking of �"2

mod
values

for all nuisance parameters considered
for the three-flavor oscillation analysis.

6.2 Analysis Checks

Before running the analysis on real data, its robustness is assessed
on pseudo-data produced with simulated MC data sets. Once the
robustness on pseudo-data has been established, the analysis is first
run blindly, that is, without showing the analyzer the results of the
physics parameters and only revealing a set of goodness-of-fit variables
that has been chosen in advance. The actual fit values of the measured
parameters are only revealed when the values of these variables lie
within the plausible range that can be expected from purely statistical
fluctuations.

6.2.1 Robustness of the minimization

The free fit of the physics parameters 23 and �<2
31 is run separately

once for the lower octant (23 < 45�) and once for the upper octant
(23 > 45�) to break the degeneracy between the octants. Each fit uses
the scipy[125] implementation of the L-BFGS-B algorithm[126] to find
the parameter values that minimize the "2

mod test statistic. To ensure
that the minimization will always converge to the global optimum
for any true value of the physics parameters, pseudo-data without
statistical fluctuations (also referred to as anAsimov test set) is produced
on a grid spanning all values that are not strongly excluded by other
experiments and a fit is run for each grid point. Since there are no
statistical fluctuations, the fit is expected to always converge exactly to
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Figure 6.5: Asimov inject/recover test
result for the three-flavor oscillation
analysis.

the injected true value. As can be seen in the result shown in Figure
6.5, the convergence of the minimizer is robust everywhere.

6.2.2 Ensemble tests

To get expected distributions of the test statistic and parameter fluctu-
ations, the analysis is run on an ensemble of fluctuated pseudodata.
For every trial of the ensemble, the expectation value in every analysis
bin is first drawn from a normal distribution centered on theMC expec-
tation with a standard deviation corresponding to the MC uncertainty.
Using these sampled expectation values, the bin count is drawn from a
Poisson distribution independently in every bin. This sampling scheme
ensures that the fluctuations reflect both the MC uncertainty and the
Poisson fluctuations expected in data. A free fit is run on every trial,
producing a set of best-fit parameters, a value for the total �"2

mod test
statistic, as well as the chi-square value in each individual bin of the
analysis histogram.

Goodness of Fit

Before looking at the best fit parameters of the real data fit, the goodness
of fit is assessed using the total and bin-wise test statistic distributions.
The distribution of the test statistic acquired from the ensemble de-
scribed in Section 6.2.2 is shown in Figure 6.6 together with the ob-
served test statistic from real data. The observed test statistic is found
to lie very well within the expectation with a p-value of 32%. The
bin-wise contribution and the test statistic and its expected distribution
are shown in Figure 6.7. The histogram shows no apparent regions of
particularly bad agreement between the data and the MC expectation,
and the distribution of the bin-wise test statistic is in agreement with
the distribution expected from pseudo-data trials.

Test for un-physical mixing

If the real data contains an under-fluctuation in the oscillation valley,
it is possible that the fit prefers more than maximal ⇡⇠ disappearance,
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Figure 6.6: Observed test statistic value
of the three-flavor oscillation analysis
compared to expected distribution from
ensemble.

Figure 6.7: Contribution of every bin to the over-all test statistic in the three-flavor analysis (left) and their observed distribution
compared to the expected distribution from pseudo-data trials (right).

which is physically not possible. This tendency to fit unphysical mag-
nitudes of ⇡⇠ disappearance is tested by running a fit in which the
oscillation probabilities are calculated with a simplified two-flavor
model as described in Subsection 3.1.1. Rather than parametrizing
amplitudes of the flavor transition probabilities by the mixing angle,
however, the scale of the oscillation, sin2(223), is replaced with a scal-
ing factor that is allowed to float freely even to unphysical values where
sin2(223) > 1. If the true mixing angle is 23 = 45�, it is expected that
such unphysical best-fit values can occur solely due to random Poisson
fluctuations of the data. To quantify this expectation, another ensemble
of trials is produced where the injected true mixing is maximal. The
two flavor analysis is run on each trial to produce a distribution of
expected values that is shown in Figure 6.8. The results show that,
while the real data fit does indeed prefer a slightly unphysical ⇡⇠ dis-
appearance, this preference still lies well within the expectation from
random fluctuations if the true mixing was assumed to be maximal.

Seasonal Stability

As described in Section 5.2.7, each season of IceCube data taking lasts
approximately one year and begins with a re-calibration of the DOM
response and, usually, a new IceCube software release. In addition
to the stability of the distributions of individual variables shown in
that section, the fluctuations of the fit results of the analysis are also
examined for signs of inter-season variations.

To this end, pseudo-data trials are generated where the simulated live
time in each trial is one year and the three-flavor fit is run on every
trial. The trials are produced at the best fit point of the all-season
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Figure 6.8: Observed best fit values of
the two-flavor fit compared to the dis-
tribution from pseudo-data trials.
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fit in a way that does not reveal the values of these parameters to
the analyzers and the fit results of each parameter are placed into
a histogram. From these histograms, the p-value for the observed
variations of the best fit results for the individual seasons around the
all-season fit is calculated under the null hypothesis that they are solely
attributable to statistical fluctuations of the data. The test does not
show any concerning deviations of any parameter from the all-time
best fit result. Heat maps of the associated p-values can be found in
Figure B.6 in the appendix.

6.3 Results

To prevent biasing the result due to psychological effects such as the
well-known confirmation bias[127], the results of the analysis are re-[127]: Nickerson (1998), Confirmation

Bias: A Ubiquitous Phenomenon in Many
Guises

vealed by scripts of code that only print out goodness-of-fit variables
such as the test statistic and the parameter pulls to the console while
hiding the physics result from the analyzers. Only after establishing a
good fit of all parameters without any extraordinary pulls, the code re-
veals the final physics result and likelihood contours that are discussed
in this section.

6.3.1 Measured Nuisance Parameter Values

The results for all nuisance parameters are shown in Table 6.1. The pull
values show that all parameters fit comfortably within 1� of their de-
finedpriors. This is expected, since the analysis is not itself a statistically
powerful measurement of most of the parameters being considered,
and therefore the best fit values are pulled towards the center of the
prior. The fit prefers a slightly harder cosmic ray spectrum and a larger
muon background than initially expected. The optical efficiency of the
DOMs fits to a slightly larger value than nominal with 106%, while the
ice properties stay very close to their initial values.

The best-fit point of the hole ice parameters ?0 and ?1 is close to the
results of the LED flasher fits shown in Figure 5.23. The resulting
light acceptance curve is shown in Figure 6.9 compared to the curves
produced by in-situ LED calibration studies. The result of the three-
flavor oscillation fit agrees with the LED calibration result in preferring
a lower forward acceptance than the baseline hole ice model.



6.3 Results 87

category Parameter Best Fit Value Pull (�)

⇡ flux

�✏⇡ 0.065 0.65
Barr �AF 0.233 0.369
Barr �G �0.055 �0.183
Barr �H �0.0179 �0.119
Barr  W 0.0824 0.206
Barr  Y 0.106 0.355
Barr  ̄W �0.009 �0.0224

cross-
section

"
⇠⇠&⇢

�
0.0283 0.0283

"
⇠⇠'⇢(

�
0.572 0.572

DIS CSMS 0.0379 0.0379
NC norm 1.13 0.633

detector
systematics

&DOM 1.06 0.625
hole ice ?0 �0.269
hole ice ?1 �0.041
ice absorption 0.974
ice scattering 0.989

norm #⇠ 1.39
#⇡ 0.824

Table 6.1: Fitted values of all nuisance
parameters from the all-season three-
flavor fit. The pull of the best fit value
is shown for parameters with a defined
prior.
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Figure 6.9: Angular acceptance curves
corresponding to the best fit point of the
three flavor and sterile oscillation fits
compared to the results of LED flasher
calibration studies.

6.3.2 Oscillation parameters

The fitted values for the three-flavor oscillation parameters are

sin2 23 = 0.507+0.050
�0.053

�<2
32 = 2.42+0.77

�0.75 ⇥ 10�3 eV2.

The 90% C.L. allowed region for these parameters is shown in Figure
6.10 along with measurements from other experiments. The observed
confidence limits for 23 are slightly smaller than what would be ex-
pected from a likelihood scan over Asimov pseudo-data that was pro-
duced at the best fit point. To make sure that this is compatible with
random fluctuations, the likelihood is profiled over sin2(23) for 100
pseudo-data trials including both Gaussian fluctuations that emulate
the MC uncertainty and Poisson fluctuation for the data uncertainty.
Figure 6.11 shows the 68% (90%) intervals of the test statistic at each
point of the scan over all trials. The observed contour is fully contained
in the 68% band, demonstrating that the narrowed 90% range for 23 is
fully compatible with expected data fluctuations. The contribution of
each category of systematic uncertainties shown in Table 6.1 to the total
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uncertainty is shown in Table 6.2. The values show that the largest
contribution to the total systematic uncertainty of the analysis is by far
the uncertainty on the detector properties. Overall, the result provides
constraints on the atmospheric mass splitting and mixing angle that
are the most stringent in its class of experiments and are competitive
with those from accelerator experiments[128–130].

Table 6.2: Contribution of each cat-
egory of systematic uncertainties to the
total error budget in each physics pa-
rameter.

error contrib. (%)
category �<2

32 sin2 23

⇠ norm 1.8 1.1
⇡ norm 1.0 0.4
detector 33.6 10.6
⇡ flux 5.4 1.4
cross-
section

6.8 0.3

6.3.3 Post-fit Data/MC agreement

Using the weights of the MC events at the best fit point, the post-fit
agreement between data and simulation can be shown for any variable.
Of particular interest is the distribution of the argument to neutrino
oscillations, !/⇢, where ! is the total distance traveled by a neutrino
and ⇢ is its energy. Although the true value of the oscillation argument
is unknown for data events, it can nevertheless be calculated from the
reconstructed energy and zenith angle. The resulting distribution is
shown in Figure 6.12 and displays a good agreement between data
and simulation, with a reduced "2 of close to unity. The comparison
between data and simulation for the reconstructed zenith angle and
energy gives reduced "2 values of 0.782 and 1.19, respectively, when
calculated in the same binning.

6.3.4 Likelihood Coverage Test

When drawing the 90% exclusion contour for the oscillation parameters
shown in Figure 6.10, it is assumed that Wilks’ theorem[132] holds, that[132]:Wilks (1938), The Large-Sample Dis-

tribution of the Likelihood Ratio for Testing
Composite Hypotheses

is, the distribution of the test statistic follows a "2 distribution with two
degrees of freedom. If more than 90% of repeated measurements fall
below the 90% threshold, the likelihood is said to be over-covering. In
the reverse case where fewer than 90% of repeated measurements fall
below the 90% threshold, the likelihood is said to be under-covering. The
coverage of the likelihood may change depending on the assumed true
parameter values. For this measurement in particular, it is expected
that the likelihood should over-cover near maximal mixing, because

Figure 6.10: Contours showing the 90%
C.L. allowed region for the physics pa-
rameters of the three-flavor analysis
and of other experiments[128–131]. The
sensitivity for this work is calculated at
the best fit point and the cross shows
the best fit value. Other experiments
shown in dotted lines are accelerator re-
sults, while solid lines are atmospheric
oscillation results. All contours shown
assume Normal Ordering.
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Figure 6.12: Oscillation argument !/⇢
calculated from reconstructed quan-
tities at the best fit point of the three-
flavor oscillation analysis.

the mixing angle can no longer provide a full degree of freedom. To
test the coverage for particular values of 23 and �<2

31, pseudo-data
is generated where these values are injected as true values. The bin
counts of the pseudo-data are Poisson-fluctuated to create an ensemble
of trials. Then, one free fit is run and another fit where the physics
parameters are fixed to their true values. The coverage is then evaluated
by counting the fraction of trials for which �"2

mod between these two
fits is smaller than the 90% threshold given by Wilks’ theorem. The
results are shown in Figure 6.13 for a range of points in mixing angle
and mass splitting. As expected, the likelihood is over-covering near
maximal mixing, while there is very little dependence of the coverage
on the mass splitting. The likelihood is over-covering for all points in
mass splitting in the right panel of Figure 6.13, because the injected
mixing angle was at the best fit point of the analysis, which is very
close to maximal. In conclusion, the 90% contours shown in Figure 6.10
are slightly over-conservative in the region close to maximal mixing.
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Figure 6.13: Fraction of trials below the 90% threshold expected from Wilks’ theorem for a range of points in mass splitting (left) and
mixing angle (right).
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This analysis assumes the extended 3+1 neutrino PMNS framework,
with the parameters to be constrained being the oscillation parameters
24 and 34. The three-flavor atmospheric oscillation parameters and
the CP-violating phase ⇣24 are treated as nuisance parameters. The
mass-splitting of the additional mass eigenstate is fixed at �<2

41 =
1 eV2. Because the oscillations at Earth-scale baselines occur on much
smaller energy scales than can be resolved by DeepCore, the analysis
effectively becomes indifferent to themagnitude of�<2

41 and constrains
the values of 24 and 34 based on the averaged oscillation effect. As
a consequence, the constraints calculated based on the assumption
that �<2

41 = 1 eV2 are still valid even if the true mass splitting is
much larger. This holds true up to mass splitting values of about
<

2
41 ' 100 eV2, where the heavy mass eigenstate becomes so much

slower than the light eigenstates that it would no longer interfere with
them and decohere[25].

7.1 Atmospheric oscillations in the presence of
an eV-scale sterile neutrino

7.1.1 The 3+1 model

This analysis probes the ”3+1” oscillation model, in which a fourth
”sterile” (i.e., non-interacting) neutrino flavor eigenstate ⇡B and mass
eigenstate ⇡4 with mass splitting �<2

41 is added to the standard three-
flavor model. The PMNS mixing matrix is extended by a fourth row
and column, which is parametrized with additional mixing angles 14,
24, 34 and CP violating phases ⇣14 and ⇣24 as

*3+1 =
©≠≠≠
´

*41 *42 *43 *44
*⇠1 *⇠2 *⇠3 *⇠4
*�1 *�2 *�3 *�4
*B1 *B2 *B3 *B4

™ÆÆÆ
¨

='34(34)'̃24(24, ⇣24)'̃14(14, ⇣14)'23(23)'̃13(13, ⇣13)'12(12) ,
(7.1)

where ':; are rotation matrices. The goal of this analysis is to constrain
the matrix elements *⇠4 and *�4 with magnitude |*⇠4 |2 = sin2(24)
and |*�4 |2 = sin2(34) cos2 24, respectively, via the measurement of
⇡⇠ disappearance.

In the presence of an eV-scale sterile neutrino, the standard three-flavor
oscillation pattern as a function of neutrino energy and zenith angle
is distorted and overlaid with a much faster secondary oscillation
pattern. Figure 7.1 shows the muon-neutrino survival probability in
the presence of a fourth mass eigenstate with �<2

41 = 1 eV2 and 24 =
15� as a function of the energy and cosine of the zenith angle, where
cos(I) = �1 indicates that the neutrino is coming directly from below
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Figure 7.1: Muon neutrino survival
probability in the presence of a fourth
mass eigenstate with �<2

41
= 1 eV2

and 24 = 15� with a fixed production
height of 20 km (left) and with produc-
tion heights averaged between 10 km
and 30 km (right).
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and cos(I) = 1 directly from above. For up-going neutrinos, the
oscillation pattern induced by �<2

41 is only resolved at energies of
> O(1 TeV). Below ⇠200 GeV, the oscillation length reaches values of
as low as O(km), which makes them unresolvable below the horizon
where baselines are of O(10000 km).

7.1.2 Neutrino production height effects

Above the horizon, the distance from the upper layers of the atmosphere
where the neutrinos are produced to the detector is small enough to
create a distinct oscillation pattern for a fixed production height, as
can be seen in the left panel of Figure 7.1. Because neutrino production
heights vary over a range of tens of kilometers, it is necessary to average
the oscillation probability over production heights to obtain a more
realistic expectation. This is done analytically in nuSQuIDS[133, 134] by
calculating the averaged vacuum oscillation probability over a uniform
distribution. The right panel of Figure 7.1 shows the oscillation prob-
ability with production heights averaged between 10 km and 30 km as
describe in Section 7.2.2. The oscillation pattern above the horizon is
no longer clearly resolvable, but an average disappearance effect for
neutrino energies below 20 GeV remains. The uniform distribution
that is assumed to calculate the averaged oscillation probabilities is
of course not entirely realistic. For this reason, only events that arrive
at most slightly above the horizon (cos(I) < 0.1) are included in this
analysis.

7.1.3 Oscillation signal for large mass splittings

In the mass-splitting range where �<41 ⇡ O(1 eV2) and in the energy
range of the event sample (< 150 GeV), the presence of a sterile neu-
trino produces rapid oscillations overlaid on the standard three-flavor
oscillation pattern as well as distortions to that pattern itself as shown
in Figure 7.2 for a mixing angle of 24 = 15�. The oscillation frequency
in energy is too large to be resolved by DeepCore, but the average effect
still allows us to constrain the magnitudes of*⇠4 and*�4. The precise
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Figure 7.2: ⇡⇠ survival probability at �<2

41
= 1 eV2 (left) and at �<2

41
= 0.1 eV2 (right). The mixing angle is 24 = 15� in both cases

value of �<2
41 has very little influence on the average amplitude of the

oscillations and therefore cannot be recovered in this mass splitting
regime. The oscillation averages stay approximately constant up to
mass splitting values of well above 100 eV2 where decoherence effects
begin to play a role[25].

7.1.4 Oscillation signal for small mass splittings

For mass-splitting values of �<2
41 well below 1 eV2, the oscillation

pattern is no longer completely averaged out. The right panel of Figure
7.2 shows the muon-neutrino survival probability in the presence of a
sterile neutrino state with mass splitting �<2

41 = 0.1 eV2 and mixing
angle 24 = 15�. The highest oscillationminimum in energy and cosine
of the zenith angle (upper right corner of the figure) is large enough
to be resolvable with DeepCore. This makes it possible in principle to
produce constraints of the mixing matrix elements as a function of the
mass-splitting �<2

41, although this is beyond the scope of the analysis
presented in this thesis.

7.2 Oscillation Probability Calculation with
nuSQuIDS

This analysis uses as customized version of the neutrino Simple Quan-
tum Integro-Differential Solver (nuSQuIDS)[133, 134] package to calcu-
late oscillation probabilities. The basic principle behind nuSQuIDS is to
calculate the state transition probabilities in the Interaction (Dirac) Pic-
ture of quantum mechanics, where the Hamiltonian is divided into the
time-independent vacuum oscillation part �0 and the time-dependent
interaction part �1(C):

�(C) = �0 + �1(C) (7.2)

In this picture, the operators evolve with �0 as

$̄�(C) = 4
8�0C

$(4
�8�0C , (7.3)
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Figure 7.3: Optimized placement of
nuSQuIDS nodes (black dots) with ex-
tra dense node spacing in the three
critical regions. The injected value for
�<2

41
is 0.1 eV2.

while state densities evolve with the interaction Hamiltonian �1(C)

%C ⌧̄�(C) = �8[�̄1,�(C), ⌧̄�(C)] . (7.4)

This state evolution is solved by numerical integration in nuSQuIDS,
which is computationally expensive. However, because fast oscillations
within �0 only play a sub-leading role, this difficult calculation does
not have to be performed at every point in the analysis space. It is
sufficient to calculate state densities at a selected set of points, referred
to as nodes, and to then interpolate the densities between them. The
fast oscillations between the nuSQuIDS nodes are recovered when the
probabilities for each flavor, 8, are projected outwith the trace operation
on the state density with the (time-evolved) projection operator for
that state:

?8(C) = Tr(⇧̄(8)(C)| {z }
proj. op.

⌧̄
�
(C)) (7.5)

7.2.1 Node placement

The nodes where the difficult state integration is calculated do not need
to be spaced densely enough in the analysis space to resolve the fast
oscillations due to sterile neutrinos, but they do need to resolve matter
effects. The state densities change most rapidly (as function of energy)
for neutrinos that traverse a lot of matter at low energies. Additionally,
there is a sharp break at cos(zenith) = �0.84 where neutrinos begin
to pass through the core. For this reason, the nuSQuIDS nodes are
concentrated in three places:

I the energy region between 2 GeV and 10 GeV
I within a small interval around cos(zenith) = �0.84
I the region below cos(zenith) = �0.84

Figure 7.3 shows the optimized placement of nuSQuIDS nodes as black
dots.

7.2.2 Production height averaging

At eV-scale mass splittings, oscillations are fast enough that significant
oscillations occur even at 10-km-scale distances. If the production
height is assumed to be fixed at an exact position, a strong oscillation
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Figure 7.4:Pull introduced into each bin
of the analysis histogram when chang-
ing the distance over which the pro-
duction height is averaged from 20 km
down to 1 km at sterile mixing angles
of 24 = 34 = 15�.

pattern appears above the horizon that could falsely produce a very
high sensitivity in the analysis, driven entirely by events above the hori-
zon. In reality, production heights can vary within the atmosphere,
which smears out the oscillations. For this analysis, an analytical av-
eraging method was implemented in nuSQuIDS that assumes a uni-
form distribution of propagation distances between two points. The
start and end point depends on the zenith angle and corresponds to
the intersection of the neutrino path with a height of 10 km and 30
km, respectively. Because the bulk of events entering the detector
from above the horizon are excluded from the analysis, the precise
choice of the lower and upper bound of the height averaging is not
very consequential. Figure 7.4 shows the pull in units of the standard
deviation of the Poisson fluctuations of the data in each bin that would
be expected as a consequence of changing the distance over which the
production height is averaged from 20 km down to 1 km. As expected,
bins near the horizon are most affected, but even there bin-wise pulls
do not rise above 0.05�.

7.2.3 Low-pass filtering

The fast oscillations in the presence of sterile neutrinos are filtered
with a low-pass filter during both state evolution and the calculation
of probabilities. This step dramatically increases the speed with which
oscillation probabilities can be evaluated.

Vacuum oscillations enter the differential equation governing the state
evolution via the time evolution of the interaction Hamiltonian �̄1,�(C).
At low energies, they cause tiny but extremely fast oscillations of the
time derivative that the numerical integrator has to keep track of by
drastically reducing the step size, slowing down the calculation. To
mitigate this problem and increase performance, a low-pass filter is
applied when calculating the RHS of the differential equation.

In the presence of sterile oscillations, transition probabilities usually
have to be calculated for every single simulated event to average them
out in the analysis binning. Because the MC set has millions of events,
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Figure 7.5: Muon neutrino survival
probability in the presence of a ster-
ile neutrino after application of both
height averaging and low-pass filtering.

doing this would be very expensive even when using nuSQuIDs’ state
interpolation feature. In this analysis, a low-pass filter as a function
of energy is applied when the transition probabilities are projected
out from the state densities to average out very fast oscillations. With
this filtering, it is possible to calculate oscillation probabilities on a
fine binning with 20k bins. One caveat is that this filtering is not
appropriate to apply above the horizon because propagation distances
there are short enough that oscillation probabilities don’t average out
completely. Therefore, it is applied only below the horizon as shown
in Figure 7.5.

Test of Filter Performance

To ensure that the chosen cut-off points of the low-pass filters do not
introduce significant distortions to the oscillation signal, an inject/re-
cover test is performed on a grid in |*⇠4 | and |*�4 | where pseudo-data
is producedwithout any low-pass filtering and fit back with the filtering
enabled. For every grid point, a second fit is run where 24 and 34
are fixed to their true injected values. The p-value of the difference
in the test statistic between these two fits, �"2

mod, can be interpreted
as the significance with which the true value of the mixing angles
would be rejected solely due to the mismodeling of the true oscillation
probabilities. The results of the mixing parameters fit and the cor-
responding values of �"2

mod are shown in Figure 7.6. Assuming that
�"2

mod should follow a "2 distribution with two degrees of freedom,
the significance of the mis-modeling is very small. The fit errors for
small values of |*⇠4 | and |*�4 | are insignificant because the likelihood
is very flat in this region of the parameter space. There are a few points
for which the fit did not converge to the true global optimum, as indi-
cated by a negative value of �"2

mod, but the likelihood difference from
the injected true parameters is also very small in these cases.
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Figure 7.6: Results of the inject/recover test (left) and the corresponding mis-modeling values, �"2

mod
, attributable to low-pass

filtering in nuSQuIDS (right). A negative value of �"2

mod
indicates that the fit did not converge to the true global optimum.

7.3 Nuisance oscillation parameters

Besides the physics parameters 24 and 34 to be constrained by the
analysis (at a fixed sterile mass splitting �<2

14), there are 4 additional
mixing angles and 3 CP-violating phases in the 3+1 PMNS matrix as
well as the mass splittings�<2

12 and�<2
13 that influence the oscillation

probability. The solar and reactor angles 12 and 13 as well as the
solar mass splitting �<2

12 are constrained by other experiments beyond
the sensitivity of this analysis and are fixed at their current global best
fit point[24]. The effect of the standard three-flavor CP violating phase [24]: Esteban et al. (2019), Global analysis

of three-flavour neutrino oscillations: syn-
ergies and tensions in the determination of
23, ⇣CP, and the mass ordering

⇣CP = ⇣13 is negligible and is fixed to zero. The mixing angle 14 and
the phase ⇣14 are also fixed to zero, since recent reactor data constrains
|*44 |2 = sin2(14) to O(10�3), which is well below the sensitivity of this
analysis[67]. The only nuisance parameters that remain free are the [67]: Hu et al. (2021), Global oscillation

data analysis on the 3⇡ mixing without uni-
tarity

standard 3-flavor atmospheric oscillation parameters 23 and �<2
13 as

well as the sterile CP-violating phase ⇣24. The effect of ⇣24 is to shift the
oscillation pattern of muon neutrinos as shown in Figure 7.7. The effect
runs in the opposite direction for antineutrinos. Because neutrinos and
antineutrinos are nearly indistinguishable in DeepCore, the combined
effect of ⇣24 is a smearing of the oscillation minimum. Additionally, the
sign of cos(⇣24) is approximately degenerate with the neutrino mass
hierarchy effect. It is therefore expected that the analysis will produce
very similar results for NO and IO when ⇣24 is free. Table 7.1 gives an
overview over all oscillation parameters in the 3+1 model and their
treatment in this analysis.
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Figure 7.7: Muon neutrino survival
probability for a directly up-going neu-
trino as a function of energy in the pres-
ence of sterile neutrinos at different val-
ues of the sterile CP violating phase.

Table 7.1: Oscillation parameters of the
3+1 model and their treatment in this
analysis.

parameter nominal value fixed? comment
14 0� fixed Constr. by reactor data
24 – free Physics parameter
34 – free Physics parameter
12 33.82� fixed Constrained by reactor

and solar data
13 8.61� fixed Constrained by reactor

and accelerator data
23 49.6� free Atm. mixing angle
⇣13 0� fixed Negligible effect
⇣14 0� fixed No effect when 14 = 0�
⇣24 – free Smears osc. minimum
�<2

21 7.39 ⇥ 10�5 eV2 fixed Constrained by reactor
and solar data

�<2
31 2.525 ⇥ 10�3 eV2 free Atm. mass splitting

�<2
41 1 eV2 fixed Averaged out above

1 eV2

7.4 Statistical Analysis

7.4.1 Signal in Analysis Binning

The change in bin counts with respect to the nominal expectation for
different combinations of sterile mixing angles at �<2

41 = 1 eV2 is
shown in Figure 7.8. Although a pull in only 34 by 20� has only a
very small effect (see the middle panels of Figure 7.8), the combination
of both angles can greatly amplify the signal. The CP-violating phase
⇣24 only plays a role when both angles 24 and 34 are non-zero. The
sensitivity of this analysis to 34 is entirely due to matter effects ex-
perienced by neutrinos passing through the dense core of the Earth.
This can be understood from the approximation of the 3+1 oscillation
probability under the assumption of very large sterile mass splitting
�<2

41 derived in [135] and [136]. To leading order, the vacuum part of[135]: Aiello et al. (2021), Sensitivity to
light sterile neutrino mixing parameters
with KM3NeT/ORCA
[136]: Maltoni et al. (2007), Sterile neu-
trino oscillations after first MiniBooNE re-
sults

the ⇠ ! � oscillation channel does not have any dependence on 34.
When matter effects are considered, however, 34 modifies the effective
atmospheric mixing angle in matter, <23, to be further off-maximal.
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Figure 7.8: Signal in the analysis
binning produced by different com-
binations of 24, 34, and ⇣24 as a frac-
tion of the Poisson error in each bin.
The mass splitting of the sterile state
is �<2

41
= 1 eV2.

7.4.2 Definition of test statistic

The histograms of the data and the expected values estimated by MC
are compared using the same modified "2 likelihood described in
Section 6.1.1 that is also used for the three-flavor oscillation analysis.

KDE error estimates

Similarly to the three-flavor oscillation analysis, the MC histograms for
atmospheric muons are smoothed using a KDE. However, the method
of estimating the error on these KDE templates has been changed from
the heuristic described in Section 6.1.1 to a more generic bootstrapping
method. To estimate the error on the KDE output, 20 bootstrap samples
are drawn separately in each PID channel and the KDE is re-evaluated
for each trial. The expectation value and the standard deviation of the
expectation in each bin of the histogram are the mean and standard
deviation of these samples, respectively. The samples are always pro-
duced with the same initial random seed to ensure that expectations
and errors are reproducible.

7.4.3 Modeling of detector response via likelihood-free
inference

As described in Section 6.1.2, the gradients acquired by bin-wise linear
regressions in the analysis histogram are only correct for the particular
choice of the flux and oscillation parameters at which they have been
fitted. For the three-flavor analysis, this can be mitigated by a piece-
wise interpolation of the gradients as a function of the mass splitting
�<2

31, and the impact of other parameters is small enough that this
one-dimensional interpolation is sufficient. However, for the sterile
analysis, several additional oscillation parameters have the potential to
substantially change the shape of the oscillation pattern and therefore
change the detector response in each bin. The grid required to apply
the interpolation to all potentially relevant parameters would have
to have at least five dimensions and the RAM requirement to hold
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Figure 7.9: Idealized sketch of the effect
of DOM efficiency on the distribution
of the energy reconstruction error. The
blue line shows the distribution of the
error in the nominal MC set, the orange
line that of events in an MC set with
an increased DOM efficiency. The black
line shows the ratio between the two
PDFs.
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all those parameters would have been prohibitive. It was therefore
deemed necessary to develop an entirely newmethod for the treatment
of detector systematic uncertainties that completely decouples the
detector response from flux and oscillation weights, as described in
this section.

Qualitative description

The goal of this treatment of detector systematic effects is to find
reweighting factors for every event in the nominal MC set that cor-
respond to how much more or less likely that particular event would
be if the detector properties were different. These reweighting factors
should be independent from any other event weights, especially flux
and oscillation weights. To get an intuition, one may look at the ef-
fect of the DOM efficiency on the energy reconstruction error that is
illustrated qualitatively in Figure 7.9. The figure shows the probability
density function (PDF) of the energy reconstruction error under the as-
sumption of the nominal DOM efficiency ( ) and an increased DOM
efficiency ( ). In the case where the DOM efficiency is higher than
nominal, the detector observes more light than is expected from the
baseline simulation, and it becomes more likely that the reconstructed
energy is larger than the true energy. Given a sample of MC events that
drawn from the nominal distribution, the off-nominal distribution can
be emulated by re-weighting each event by the ratio ( ) of the PDFs.
An event where the reconstructed energy is larger than the true energy
will get a larger weight, while an event where the reconstructed energy
is lower than the true energy will get a smaller weight. Importantly,
this relationship will not change depending on the initial flux of the
primary neutrino or oscillation effects because the detector reacts only
to the final state. For a practical application, more variables than just
the energy reconstruction error will influence the PDF of theMC events
between different variations of detector properties, and more than one
of these properties may change at a time. The qualitative description
above can be made more generic by replacing the 1D PDF shown in Fig-
ure 7.9 with a multi dimensional one depending on event parameters
x that may contain several true and reconstructed variables, and by re-
placing DOM efficiency with a vector of detector properties, ": , where
the index : corresponds to one discrete MC set.
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Figure 7.10: Illustration of the re-
weighting process used to model
changes in the detector response.
The axis labeled �x stands in for
the parameters that characterize
each individual event such as true
reconstructed energy and zenith
angle. The axis labeled �" stands
in for the detector parameters that
vary between systematic sets, such as
the DOM efficiency. The distribution
of event parameters, x, are shown
for the nominal MC set in blue, the
off-nominal sets in yellow. The black
line shows the function along which an
event at a particular x is re-weighted as
a function of ".

Quantitative derivation

Using the discrete MC sets with different variations of detector pa-
rameters, one needs to find the re-weighting factors, '8: , for each event
in the nominal MC set, 8, such that re-weighting every event by its
weighting factor produces the same distribution in energy, zenith an-
gle and PID as the off-nominal MC set, :. If the true distributions of
event parameters in each MC set was known, this weighting factor
could be calculated as the ratio

'8: =
%(x 8 |":)

%(x 8 |"nominal)
%(":)

%("nominal)
, (7.6)

where ": are the detector parameters of the off-nominal MC set, :.
The vector x 8 contains the true and reconstructed values for energy
and zenith angle, as well as the PID of the event. The probability dis-
tribution %(x 8 |":) is the distribution of the event parameters in MC set
:, and "nominal contains the values of the detector parameters of the
nominal MC set. The second fraction is the ratio of the total normaliza-
tion of events under different values of the detector parameters. For
example, if an increase in DOM efficiency increases the total number
of events by 10%, then %(")/%("nominal) = 1.1. In practice, of course,
the probability distributions %(x 8 |":) are unknown, but the factors '8:
can still be extracted from the available MC sets. The first step is to
apply Bayes’ theorem to Equation 7.6 to express '8 as the ratio of the
posterior probability distribution of the detector parameters given the
event parameters,

'8: =
%(": |x 8)

%("nominal |x 8)
. (7.7)

The posterior distributions, %(": |x 8), can be acquired from a classifier
trained to give the posterior probability that an event with parameters
x 8 belongs to the MC set :. This means that the task of finding the
reweighting factors can be translated into a classification task. Such an
inferencemethod, where probability distributions are learned as a ratio
of posteriors from a classifier, is also known as a likelihood-free inference
method.
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K-Neighbors method to calculate posteriors

In principle, any classifier that provides well-calibrated posterior out-
puts can be plugged into eq. 7.7. For this analysis, the simple and robust
k-neighbors method is used. The K-Neighbors classifier calculates pos-
terior probabilities by finding the set N of the # nearest neighbors
for every event, 8. This set is defined as the set of # events with the
smallest Euclidean distance in the event parameters -. Then, the es-
timate for the posterior for set : is the fraction of the total weight of
the neighbors belonging to set :,

%(": |x 8) =
P
92N[: F9P
92NF9

. (7.8)

The weights F9 are the weighted effective area that every simulated
MC event corresponds to and correct for the different amount of MC
that was produced for every systematic MC set. They do not include
neutrino flux or oscillation effects.

While this method is very robust, it is also prone to over-fitting if the
number of neighbors is chosen to be too small. On the other hand,
if the number of neighbors is too large, it might blur out important
features and under-fit. An increased number of neighbors also causes
a systematic bias in the probability estimate due to the fact that the
distribution across the selected neighbors is not perfectly uniform. This
bias is corrected in linear order by reweighting the events in each neigh-
borhood as described in the Appendix A.1.1. With this bias correction
applied, a neighborhood size of 200 per included MC set was found to
be a good compromise between bias and overfitting.

Classification variables

The input variables passed into the classifier for each event, x 8 , need to
cover all variables that are used in the binning (⇢reco, cos(reco), PID)
as well as all variables that are used when re-weighting events by flux
and oscillation probabilities (⇢true, cos(true)). This gives a total of five
input variables that are used for classification. Because the K-neighbors
classifier calculates euclidean distances between events in these five
dimensions to determine which events are neighbors, all dimensions
are transformed to be approximately normally distributed as follows
and then scaled to have a unit variance:

I Energies are replaced by their logarithm
I The zenith angle is used directly, rather than its cosine
I The PID, which is the probability output of a BDT, is transformed

into the log-odds ratio, LOR = log(PID) � log(1 � PID). This
transformed variable turns the pileup of events near a PID value
of one into a long tail.

The classifier is fit to the transformed variables separately for each flavor
for CC interactions and to the combined set of all NC interactions.
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Calculating event-wise gradients

The K-Neighbors calculation produces event weights that can reweight
the events of the nominal MC set to imitate the distribution of any other
MC set. To be useful in an analysis, however, it is a requirement that this
re-weighting can be interpolated to any value of detector parameters
between the discreteMC sets. This is accomplished by fitting a vector of
gradients, 68 , for every event, minimizing the negative log-likelihood

� logL= �
X
:

%obs(": |x 8) log %:,pred(68 , x 8) , (7.9)

where the observed probability is %obs(": |x 8) from the K-neighbors
calculation and the predicted probability %:,pred(68 , x 8) is

%:,pred(68 , x 8) =
exp

�P
9
":,9 68,9

�
P
;
exp

�P
9
";,9 69

� . (7.10)

The motivation for the negative log-likelihood loss in Equation 7.9 is
that minimizing this quantity is equivalent to minimizing the same
cross-entropy between labels %obs and class predictions %:,pred that is
typically used to train neural network classifiers. It has been shown that
classifiers that minimize the cross-entropy end up learning posterior
distributions[137].

To model nonlinear effects, gradients are fit not only to the five detector
parameters, but also to their squared values, for a total of ten gradients
per event.

Evaluation

Once the event-wise gradients for all detector uncertainty parameters
have been obtained, all events can be easily re-weighted during a fit
for any given set of detector parameters, ", by multiplying the weight
for each event by the ratio

'8(") =
%(" |x 8)

%("nominal |x 8)
= exp

 X
9

(" 9 � " 9,nominal)689
!

. (7.11)

Performance

To verify that the reweighting according to Equation 7.11 gives the
expected result, they are used to reproduce each systematic MC set
and calculate the bin-wise pulls between the reproduction and the
systematic set. When the gradients are correct, the pull between the
set and its reproduction,

?= =
#reprod,8 � #syst,8q
�2

nominal + �2
syst

,

should follow a standard normal distribution. Figure 7.11 shows the
result of this test for the four MC sets in which only the DOM efficiency
is varied between 90% and 110% percent. The spread of the bin-wise
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Figure 7.11: Binwise pulls between the
nominal set after re-weighting accord-
ing to eq. 7.11 and the systematic MC
sets 0001, 0002, 0003, and 0004 rep-
resenting DOM efficiency values of
90%, 95%, 105%, and 110%, resepctively.
The 1Dhistogram in each row shows the
distribution of the pulls over all bins.

pulls closely follows a normal distribution standard deviation of one, as
expected, but the total normalization is slightly under-estimated for the
MC set 0004 with DOM efficency of 110%. This is not too concerning for
this analysis, since the total normalization is a free parameter without
a prior. A similar performance is found for all included MC sets.

Figure 7.12 shows the prediction of the bin count as a function of the
DOM efficiency scale, &DOM at the nominal point (left panel) and for
different injected values of the mass splitting�<2

31 (right panel) for one
arbitrarily chosen bin of the analysis. The predictionmatches the shape
of the bin count change very well, although it is offset slightly towards
lower bin counts. This is expected, since the prediction is based on
re-weighting the nominal MC set events without any corrections on
the bin count at the nominal point. The error band shown in the figure
corresponds to the uncertainty of the nominal set. The right panel
of Figure 7.12, demonstrates that the prediction automatically adjusts
itself to any injected value of oscillation parameters. This happens
despite the fact that the flux and oscillation weights have not been
used at all when fitting the event-wise gradients, which demonstrates
that the detector response has truly been decoupled from flux and
oscillation effects.

7.4.4 Selection of Free Parameters

To reduce the computational cost of optimizing the likelihood in a
high-dimensional space, the impact of each nuisance parameter in con-
sideration is assessed and its value fixed if it is found to be negligible.
Since the standard three-flavor oscillation model is a nested hypothesis
within the 3+1 model, the parameter selection described in Section 6.1.3
is taken as a starting point for the parameter selection of this analysis.
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(a) Prediction at best fit point of three-flavor analysis (b) Prediction at different mass splitting values.

Figure 7.12: Prediction of bin counts in one bin of the analysis as a function of the DOM efficiency scale, &DOM. The error band in
the left panel corresponds to the error on the nominal MC prediction without errors on the event-wise gradients.

Starting from that selection, a test is run to determine if a paraemter is
entirely dominated by its prior. For this test, 200 trials are run where
all nuisance parameters are sampled randomly according to their prior.
Then, Asimov pseudo-data is produced at that point, and this pseudo-
data is fit back with the default fit settings. The resulting pairs of true
injected parameter values and fitted values for every free parameter
are shown in a scatter plot in Figure 7.13. If a parameter is entirely
dominated by its prior, it will fit back to its nominal value regardless
of the injected value. For parameters where this is the case, their value
is fixed to their nominal value during a fit. Parameters to which this
applies are framed in red in Figure 7.13. The framed parameters are
(from top to bottom and from left to right in the bottom row): Barr
 W, Barr  ̄W, Barr ⇧G, ⇧/⇧̄, Barr ⇧H. The test shown in the figure
was run before the priors on barr_i_Pi, barr_z_K, and barr_z_antiK
have been inflated as described in Section 5.3.2. After that change,
barr_i_Pi was also added to the set of free parameters of the analysis.
The full list of free parameters with their respective ranges and priors
is shown in Table 7.2.

7.4.5 Likelihood Optimization

The optimization of the likelihood of the sterile oscillation model is
considerably more difficult than that of the standard three-flavor os-
cillation analysis due to the increased complexity of the parameter
interactions. Two additional approximate degeneracies arise in the
likelihood space from the sterile mixing angles alone: Firstly, for ev-
ery best-fit point in |*⇠4 |2 and |*�4 |2, there will also be another local
optimum where |*⇠4 |2 and |*�4 |2 are flipped. In what follows, this is
termed the triangle degeneracy. Secondly, flipping the sign of cos(⇣24),
that is, flipping the quadrant of ⇣24 around the angle of 90�, usually also
results in another local minimum. Together with the octant degeneracy
of 23, this means that at least eight local minima have to be checked
for every fit. During the development of this analysis, it was found that
the likelihood is not entirely convex even within each of these eight
distinct segments, leading to a poor performance of local second-order
optimizers such as migrad[138]. For this reason, the search for the
global optimum in this analysis is done in three steps that are run
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Figure 7.13:Result of the ensemble test with randomly injected nuisance parameters. This test was run before the priors on barr_i_Pi,
barr_z_K, and barr_z_antiK have been inflated as described in Section 5.3.2. Parameters framed in red have been deemed to
be negligible for the analysis. The color scale shows the likelihood difference between the free fit and a fit in which the physics
parameters (24, 34 have been fixed to their true value. If this number is negative, the trial is circled in red. In such cases, the
minimizer failed to find the correct global optimum in the free fit.

Table 7.2: List of all free parameters in
the sterile oscillation analysis with their
respective ranges and priors (if applica-
ble).

parameter nominal value range prior
24 0� 0� to 45� uniform
34 0� 0� to 45� uniform
23 49.6� 20� to 70� uniform
⇣24 0� 0� to 180� uniform
�<2

31 2.525 ⇥ 10�3 eV2 (2 to 3) ⇥ 10�3 eV2 uniform
�✏⇡ 0.0 �3� to +3� � = 0.1

Barr, 0 � 5�+ 0.0 �3� to +3� � = 0.63
Barr, 8�+ 0.0 �3� to +3� � = 0.61
Barr, H + 0.0 �3� to +3� � = 0.3
"�,&⇢ 0.0 �2� to +2� � = 1.0
"�,A4B 0.0 �2� to +2� � = 1.0
DIS 0.0 �3� to +3� � = 1.0
#⇡,#⇠ 1.0 0.5 to 1.5 � = 0.2
#⇡ 1.0 0.5 to 2.0 uniform
#⇠ 1.0 0 to 3 uniform

&DOM 1.0 0.85 to 1.15 � = 0.1
ice absorption 1.0 0.85 to 1.15 � = 0.05
ice scattering 1.05 0.85 to 1.15 � = 0.1
hole ice, ?0 0.101569 -1.1 to 0.5 uniform
hole ice, ?1 -0.049344 -0.15 to 0.1 uniform
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separately for every combination of triangle, quadrant and octant. The
first step is a global optimization within each segment of the parameter
space using the CRS2[139] algorithmwith a population of 300 samples.
The optimum found by CRS2 is then taken as the starting point for a
local, derivative-free optimization using the SbPlx[140] algorithm from
the nlopt[141] package. Finally, the best fit point from SbPlx is used as
a starting point to ”polish” the result using migrad[138].

7.4.6 Analysis Checks

The sterile oscillation analysis follows a procedure similar to that of the
three-flavor oscillation analysis, in which the true results for nuisance
and physics parameters are only revealed after a good fit quality has
been established. Because the data sample used to run the analysis is
exactly the same, the checks for post-fit agreement between data and
simulation and the seasonal stability need not be repeated. However,
the increased complexity of the likelihood space due to the increased
number of oscillation parameters requires additional tests to ensure
that the true optimum has been reached.

Fit Convergence

The inject/recover test with randomly sampled physics and nuisance
parameters described in Section 7.4.4 is used to quantify the reliability
with which the correct global optimum is found. To do this, a second
fit is run for each trial where the values of 24 and 34 are fixed to their
true values. If the test statistic for this fit is smaller than that of the
free fit, then the global optimization is proven to have failed to find
the correct optimum. Trials for which this is the case are marked in
Figure 7.13 with red circles as having negative mis-modeling values. It
is apparent from Figure 7.13 that this is the case for a small percentage
of trials. The failure rate decreases after the parameters framed in red
are fixed. Because it is not possible to generally prove the success of a
fit, the failure rate of this test can only provide a lower bound to the
true failure rate. The failure rate of the optimization could be reduced
by either splitting the likelihood space into even more chunks, or by
increasing the number of samples used by the CRS2 search, but only
at a significant increase to the already considerable computational cost
of the analysis. For the real data fit, the convergence of the likelihood
is ensured by running a second fit where the physics parameters are
fixed to the best fit point of the free fit. The best fit parameter values
and the test statistic of both fits are compared with a script that only
prints the differences between them without revealing their absolute
values to the analyzer, and the results will only be revealed if they are
close to within minimizer precision.

Goodness of Fit

In a similar fashion as for the three-flavor oscillation analysis, the
goodness of fit is established using an ensemble of pseudo-data trials
with fluctuations taking both the MC uncertainty and the Poisson
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Figure 7.14: Observed test statistic com-
pared to the distribution expected from
pseudo-data trials for the sterile oscil-
lation analysis.

fluctuation of the data into account. The pseudo-data expectation is
generated by injecting the best fit values of the real data fit as true
values. The distribution of test statistic values resulting from this
ensemble compared to that of the real data fit is shown in Figure 7.14.
The p-value of the observed test statistic is 22.5%, demonstrating that
the goodness of fit is well within the expectation.

7.5 Results

7.5.1 Best Fit Parameters

The best fit result for the mixing amplitudes is

|*⇠4 |2 = 0.00449
|*�4 |2 = 0.00307 .

Such small mixing amplitudes lie very well below the sensitivity of the
analysis and are practically indistinguishable from the null hypothesis,
in which there is no sterile neutrino mixing. The value of the sterile
CP-violating phase ⇣24 is inconsequential at such low sterile mixing
amplitudes. The best fit values of the nuisance parameters are shown
in Table 7.3. Both analyses prefer close to maximal mixing in the
atmospheric mixing angle 23 and the atmospheric mass splitting
fits to a value in the sterile oscillation fit that is only slightly higher
than that of the three-flavor fit. Almost all of the remaining nuisance
parameters fit into their respective 1� intervals, except for the scattering
coefficient of the bulk ice, which pulls down by 1.5� of its prior to a
value of close to 90%. A comparison to the corresponding best fit
parameters of the three-flavor oscillation analysis in Table 6.1 shows
that most variables are in agreement in their general trend, but that
the magnitude of their deviations from the baseline point is on average
larger in the sterile oscillation analysis. For instance, both fits prefer a
harder cosmic ray spectrum, a higher DOM efficiency and less forward
angular acceptance than nominal (see Figure 6.9), but the effect is more
pronounced in the sterile oscillation fit in each case. The best fit point
of the sterile analysis also prefers an even higher atmospheric muon
background than the three-flavor fit.
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category Parameter Best Fit Value Pull (�)

⇡ flux

�✏⇡ 0.091 0.91
Barr �AF 0.106 0.169
Barr �I 0.446 0.731
Barr  Y �0.0401 �0.134

cross-
section

"
⇠⇠&⇢

�
�0.05 �0.050

"
⇠⇠'⇢(

�
0.0947 0.095

DIS CSMS 0.301 0.301
NC norm 1.005 0.024

detector
systematics

&DOM 1.08 0.812
hole ice ?0 �0.589
hole ice ?1 0.0408
ice absorption 0.988 �0.243
ice scattering 0.895 �1.546

oscillation
�<2

32 2.476 ⇥ 10�3 eV2

sin2 23 0.502
⇣24 180�

norm #⇠ 1.93
#⇡ 0.744

Table 7.3: Fitted values of all nuisance
parameters from the all-season sterile
oscillation fit. The pull of the best fit
value is shown for parameters with a
defined prior.

The oscillation parameters themselves are unlikely to explain these
differences, since the sterile oscillation analysis fits very close to the
null hypothesis of no sterile mixing. However, there are two major
distinctions in the implementation of both analyses in addition to
the oscillation model that might be responsible for the observed dis-
crepancies. First, the weighting scheme that implements the effect of
systematic uncertainties of detector properties is fundamentally dif-
ferent between both analyses. In the three-flavor analyses, bin-wise
linear regressions provided a prediction of the expected bin count
for a given set of detector parameters as described in Section 6.1.2.
These predictions reduce the statistical uncertainty by incorporating
the information from all the MC sets, but depend on the particular
choice of parameters at which the linear regressions were performed.
In the sterile analysis, each individual MC event is re-weighted using
gradients that are fully decoupled from the choice of flux and oscil-
lation parameters that are derived in Section 7.4.3. The downside of
this method is that the statistical uncertainty of the MC prediction
is increased. It is possible that the coupling of the detector response
to the flux and oscillation parameters in the three-flavor fit and the
increased statistical uncertainty in the sterile oscillation fit contribute
to the different fit outcomes. The second major difference between
the fits is the choice of free parameters, in particular with respect to
the parameterization of the meson production in the atmosphere with
”Barr blocks” described in Section 5.3.2. The sterile analysis allows
only a small number of meson production parameters to be varied, but
includes the high-energy pion fluctuation in the � block (see Figure
5.26) to vary with an increased prior width. In summary, several fac-
tors can contribute to the small discrepancies in the best fit parameter
outcomes between the analyses, but none of the observed differences
are large enough to be particularly concerning.
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Figure 7.15: Scan of the "2

mod
difference with respect to the best fit point with 90% and 99% C.L. contours assuming Wilks’ theorem

with two degrees of freedom (left) and ensemble test of the coverage on three points along the 90% C.L. line (right). The test points
indicated in the left panel correspond to the points at which the ensemble test were produced in the right panel.

7.5.2 Likelihood Scan and Contour

The likelihood is scanned over |*⇠4 |2 and |*�4 |2 while marginalizing
over all other parameters, including the standard three-flavor oscil-
lation parameters and ⇣24. The degeneracies in 23 and ⇣24 are broken
by running four separate fits, one for each possible combination of
octant and quadrant. An additional local migrad optimization is run
for every grid point of the scan, in which all nuisance parameters start
from the global best-fit point. The test statistic value used in the scan is
the optimum out of these five fits. The test statistic values on the entire
grid and the 90% and 99%C.L. contours assumingWilks’ theoremwith
two degrees of freedom are shown in Figure 7.15. The marginalized
constraints for the matrix elements, calculated assuming that Wilks’
theorem holds with one degree of freedom, are

|*⇠4 |2 < 0.0534 (90% C.L.), 0.0752 (99% C.L.)
|*�4 |2 < 0.0574 (90% C.L.), 0.0818 (99% C.L.) ,

(7.12)

setting the strongest limit on |*�4 |2 to date.

The assumption that Wilks’ theorem holds is certainly violated in some
parts of the parameter space, especially in regions of very small sterile
mixing due to boundary effects and the fact that the CP-violating
phase ⇣24 can no longer provide a degree of freedom if either mixing
amplitude is zero. The coverage of the assumed "2 distribution is tested
on three points along the contour to determine if it is over-covering or
under-covering using an ensemble of 200 pseudo-data trials, where the
point to be tested is injected as the truth. The right panel of Figure 7.15
shows the distribution of the test statistic for each of the points that
were tested together with the 90% quantile from the ensemble and the
expectation from Wilks’ Theorem. In each case, the 90% quantile of
the trials lies below the expected value, suggesting that the likelihood
is over-covering and that the contour is therefore conservative. As
expected, this effect is stronger when one of the mixing amplitudes is
close to zero.



7.5 Results 111

10�3 10�2 10�1

10�2

10�1

100

All contours 90% C.L.,
dashed lines imply ⇣24 = 0

IceCube preliminary

|*⇠4 |2 = sin2 24

|*
�4
|2

=
sin

2


34
co

s2


24

ANT (2019) ANT (2019)
SK (2015) IC (2020)
NO⇡A (2017) this work

10�3 10�2 10�1

10�2

10�1

100

All contours 90% C.L.

IceCube preliminary

|*⇠4 |2 = sin2 24

|*
�4
|2

=
sin

2


34
co

s2


24

IC (2017), IO
IC (2017), NO
this work

Figure 7.16: Contour of the 90% C.L. of this analysis compared to measurements from the ANTARES[142], Super-Kamiokande[143]
andNO⇡A[144] experiments and a previous high-energy IceCube oscillation study[29] (left), and compared to the previous DeepCore
study[109] (right).
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8.1 Summary

This work presented two oscillation measurements of atmospheric
neutrinos using the DeepCore sub-array of the IceCube Neutrino Ob-
servatory. Both measurements were based on a newly developed data
sample of 21 914 highly pure track-like events in the energy range be-
tween 5 GeV and 150 GeV. The selection process for these events was
described in Chapter 5 and consisted of several filtering steps in which
background due to detector noise and atmospheric muons was re-
moved. At the final filter level, the contribution of muon background
was reduced to ⇠ 2%, the noise background was entirely negligible
and the sample consisted almost entirely of neutrino interactions. The
zenith angle of each event was reconstructed using a modified chi-
square fit to the hit times of the observed light under the simplified
assumption that they are well described by the Cherenkov light cone
of a minimally ionizing muon. This method required a cleaning step
prior to the reconstruction that removes hits from photons that are
likely to have undergone a significant amount of scattering. Because
the zenith reconstruction requires that at least five hits remain after the
cleaning procedure, only a subset of all events could be reconstructed
this way. However, the stringent hit selection also resulted in a sample
of high-quality events.

The energy was estimated with a likelihood that takes into account
whether or not a sensor in the array has observed light.

Several quantities produced by the reconstruction algorithms, such as
the length of the reconstructed track and the goodness-of-fit, were used
as input variables for a Boosted Decision Tree (BDT) that calculates
a particle ID (PID) score that estimates the probability of an event to
have originated from a charged-current muon neutrino interaction.
Data and simulated pseudo-data were binned in zenith angle, energy,
and PID. The best-fit neutrino oscillation parameters were then fit by
weighting the simulated events tomatch the histograms of the observed
data as closely as possible.

8.1.1 Three-Flavor Oscillation Measurement

The first data analysis shown in this work was a measurement of the at-
mospheric mixing angle and mass splitting in the three-flavor neutrino
oscillation model assuming normal mass ordering. This measurement
is complementary to oscillation analyses of accelerator neutrinos and
constitutes the most precise measurement using atmospheric neutrinos
to date. The result,

sin2 23 = 0.507+0.050
�0.053

�<2
32 = 2.42+0.77

�0.75 ⇥ 10�3 eV2,
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is consistentwith previousDeepCoremeasurements and current global
fits.

8.1.2 Sterile Neutrino Search

The second measurement presented in this work was the search for
eV-scale sterile neutrinos. The search was performed under the ”3+1”
model, where the PMNS matrix is extended by an additional row and
column to accomodate the mixing of a fourth neutrino mass eigenstate.
The measurement used the same data sample as the three-flavor fit
and the same likelihood function calculated in an identical binning.
The major technical difference between the analyses was that the neu-
trino oscillation calculation for the sterile neutrino model was done
using a customized version of the nuSQuIDS package. This allowed to
efficiently calculate flavor transition probabilities in the presence of a
heavy fourth mass eigenstate that produces a very fast oscillation pat-
tern. The customizations that were developed specifically for this work
were the addition of low-pass filters that can analytically produce oscil-
lation probabilities where the contributions due to that heaviest mass
eigenstate are averaged out. Another major technical development
that separates the sterile neutrino analysis from the three-flavor fit is
the introduction of a novel method of incorporating uncertainties in
the detector response in a way that is fully decoupled from neutrino
oscillation probabilities.

The analysis constrained the |*⇠4 | and |*�4 | elements of the extended
PMNS matrix to

|*⇠4 |2 < 0.0534 (90% C.L.), 0.0752 (99% C.L.)
|*�4 |2 < 0.0574 (90% C.L.), 0.0818 (99% C.L.) ,

(8.1)

whilemarginalizing over the CP violating phase ⇣24. This result is valid
for both normal ordering and inverted ordering due to the approximate
degeneracy between the mass ordering and the sign of cos(⇣24). Spot-
checks of the likelihood distributions showed that these limits err on
the conservative side. More stringent limits could be obtained by
correcting the critical values of the likelihood according to Feldman
and Cousins[145]. However, the computational expense was estimated
to be too high and the conservative limits sufficient for the purposes of
this work. This result is a substantial improvement over the previous
DeepCore result and provides themost stringent limit on |*�4 |2 to date.
The constraint on

��
*⇠4

��2 is competitive with other experiments and has
the potential to further increase the tension between appearance and
disappearance datasets in global fits of the 3+1 sterile neutrino model
described in Section 3.4.4.

8.2 Outlook

The measurement presented in this thesis only used the fraction of the
available DeepCore data that could be reconstructed with established
reconstructionmethods that are optimized for robustness. The purpose
of this analysis was not to achieve the highest possible sensitivity, but



8.2 Outlook 115

Figure 8.1: Projected sensitivity of the
sterile neutrino search when using the
table-based reconstruction method.

to verify the integrity of the newly developedmethods of data selection
and of treating uncertainties in the detector properties. Once the tools
that were developed for this analysis are combined with more capable
reconstruction methods, this new data sample will provide constraints
on oscillation parameters that aremore stringent than those of any other
atmospheric neutrino oscillation measurement and rival the precision
of the most recent accelerator experiments.

8.2.1 Reconstruction Improvements

A substantial increase in the sensitivity of both analyses could be
achieved by using the table-based reconstruction method described in
[106]. This algorithm can provide an estimate for the energy and zenith
angle for nearly all events passing the Level 5 event filter described in
Section 5.2 and has a much higher resolution than the reconstruction
method used in this analysis, substantially increasing the statistical
power of the analysis. The projected sensitivity that could be achieved
with this method is shown in Figure 8.1. With the increased statistical
power and resolution also comes a larger burden to accurately model
the properties of the neutrino flux, particle interactions and detector
characteristics. The work to bring data and simulation into agreement
for the higher statistics sample is still ongoing at the time of writing
this thesis.

8.2.2 Ice model

The major distinction of the IceCube Neutrino Observatory compared
to most other neutrino detectors is that the detection medium is the
naturally occurring ice at the South Pole, rather than an artificially
produced material. The ice consists of many layers with different
optical qualities that are the result of varying snow depositions over
the last 100 000 years. Understanding the precise properties of the ice at
every position in the detector requires complex calibration procedures
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that are beyond the scope of this work. Recently, calibration efforts
within IceCube have led to a new ice model that takes into account
the birefringent scattering of light at the boundary of ice crystals[72].[72]: Abbasi et al. (2022), In-situ es-

timation of ice crystal properties at the
South Pole using LED calibration data from
the IceCube Neutrino Observatory

The birefringence bends light rays into the direction of the flow of
the glacier, which affects the zenith angle reconstruction for events
in DeepCore in particular. Future iterations of DeepCore oscillation
studies are expected to include this new ice model in order to achieve
a better agreement between data and simulation.

8.2.3 Treatment of systematic uncertainties

Detector uncertainties

In order to perform the sterile oscillation search, a novel method of
interpolating between off-nominal MC sets has been developed that
allows to weight individual events based on changes in the detector
response. The need for this development arose as the preceding un-
certainty treatment showed artificial dependencies on the values of
physics parameters. In the three-flavor analysis, this problem was
addressed by interpolating the gradients of the bin counts with re-
spect to detector parameters on a grid in the mass splitting parameter
�<2

31 as described in Section 6.1.2. For the sterile analysis, however,
the dimensionality of such a grid made this approach unfeasible. The
newly developed method, described in Section 7.4.3, completely de-
couples the detector response from oscillation parameters and thereby
eliminates the need for any interpolation. This property makes this
approach universally applicable to any oscillation study probing ar-
bitrarily complex oscillation phenomena. In addition, the method is
compatible with unbinned likelihood functions in future analyses,
unlike previous methods[146] that are inherently binned. This new[146]: Aartsen et al. (2019), Efficient prop-

agation of systematic uncertainties from cal-
ibration to analysis with the SnowStorm
method in IceCube

method of calculating event-wise weights based on posterior estimates
will be expanded upon and has the potential to become the new stan-
dard treatment for detector uncertainties for neutrino telescopes.

Atmospheric flux

The treatment of atmospheric neutrino flux uncertainties used in this
work is based on the Barr blocksmethod thatwas published in 2006[120].
Since then, new methods of modeling variations of the atmospheric
flux have been developed that decrease the overall relative uncertainty
by up to 40% and also provide a data-driven parametrization of the flux
variations[147]. Incorporating these developments into the oscillation[147]: Fedynitch et al. (2022), Data-

driven hadronic interaction model for at-
mospheric lepton flux calculations

data analysis has the potential to improve the agreement between data
and simulation and to increase the sensitivity.

8.2.4 IceCube Upgrade

The IceCube Collaboration will deploy seven strings of densely spaced
optical sensors within the DeepCore fiducial volume in the near future
that will form the IceCube Upgrade [148]. The Upgrade will not only[148]: Ishihara (2019), The IceCube Up-

grade – Design and Science Goals be instrumented more densely than the existing DeepCore array, but
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Figure 8.2: Expected sensitivity to the
atmospheric neutrino oscillation pa-
rameters with three years of Upgrade
data compared to recent results from
DeepCore and other experiments. Fig-
ure taken from [148].

will also contain new types of optical sensors that contain multiple
PMTs. This will increase the total photocathode density and add the
ability to differentiate the arrival direction of light on each sensor. The
new array is expected to lower the energy threshold for the detection
of atmospheric neutrinos to ⇠ 1 GeV. The Upgrade strings will also
incorporate several calibration devices that will further improve the
understanding of the ice and detector properties. The sensitivity of
the Upgrade array to neutrino oscillation parameters is expected to
greatly improve over that of DeepCore as shown in Figure 8.2 for the
atmospheric mass splitting and mixing angle.
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This thesis presented the first results obtained using a newly developed
eight-year data sample of neutrinos produced in the atmosphere of the
Earth, as detected by the IceCube DeepCore detector. The sample is
the result of a collaborative effort to improve the detector calibration
and selection process to achieve better agreement between data and
simulation. The events used for the measurement were reconstructed
using a simple and fast geometric algorithm that reconstructs the direc-
tion for very clean, track-like events as well as an energy reconstruction
based on a simple hit/no-hit likelihood. With this sample of events, the
analysis was able to achieve a good fit to the data and produce a mea-
surement of the standard atmospheric neutrino oscillation parameters
23 and �<2

32, as well as constraints on sterile neutrino mixing that are
the best in this class of experiments.

The analysis also led to important developments of analysis tools and
techniques that are directly applicable to studies with higher statis-
tics and improved reconstruction methods. These include a method
of interpolating between different Monte Carlo sets in a way that is
decoupled from neutrino oscillation effects, as well as several filtering
techniques to efficiently calculate neutrino oscillation probabilities in
the presence of heavy neutrino states.

The search for sterile neutrinos, which are a potential byproduct of
the process that generates neutrino masses and might explain the dif-
ferent mass scale of neutrinos with respect to other SM particles, was
performed by probing the ⇡⇠ disappearance probability under the
assumption of the minimal ”3+1” model with one additional mass
splitting of O

�
1 eV2� . The choice of mass splitting was based on ex-

perimental anomalies found in accelerator experiments as well as mea-
surements of the neutrino flux produced in radioactive decay. The
null-result of the search further increases the tension between the
anomalies observed in the ⇡4 appearance channel probed in LSND
and MiniBooNE and the constraints from ⇡4 and ⇡⇠ disappearance
datasets. Given that this tension already approached the 5� thresh-
old in global fits, it is unlikely that the simple ”3+1” model of sterile
neutrino oscillation can explain the anomalies that initially motivated
the measurement. The data selection and analysis methods developed
during this work will enable future DeepCore measurements with
greatly increased statistical power to probe neutrino oscillations for
signals of a rich landscape of other possible phenomena beyond the
Standard Model.
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A
Mathematical derivations

Detailed mathematical derivations that are too involved for the main
text go here.

A.1 Detector systematics via Likelihood-free
Inference

A.1.1 Linear correction for KNN bias

The probability estimate from a K-Neighbors classifier with a large
number of neighbors shows a systematic bias due to the fact that the
distribution of the samples in each neighborhood are not uniform. This
bias is corrected by reweighting the samples inside the neighborhood
in such a way that their ”center of gravity” is located at the point
where the KNN is queried. This is done under the assumption that the
weight should be a linear function of the coordinate of each sample
after subtracting the query coordinate. In one dimension, this leads to
the condition X

82N
F8G8 =

X
82N

(1 + 6G8)G8 = 0 , (A.1)

where the index 8 runs over all samples in the neighborhood around
the query point, F8 is the weight to be assigned to each sample and G8
is the position of the sample relative to the query point. The weight is
replaced in the second equality with the linear function F8 = (1 + 6G8)
with the gradient 6. The condition in Equation A.1 is solved for the
gradient as X

82N
(1 + 6G8)G8 = 0

,
X
82N

G8 = �6
X
82N

G
2
8

, �
P
82N G8P
82N G2

8

= 6 .

(A.2)

The gradient 6 thus found is the ratio of the first and second moments
of the distribution of samples in the neighborhood. The non-uniformity
of the distribution of events around the query point is corrected to
first order by applying the weights F8 = (1 + 6G8) to every event. In
higher dimensions, the same calculation is done independently in each
dimension and the sample weights for all dimensions are multiplied.
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Additional Figures

B.1 Event Selection

B.1.1 Seasonal Stability of Variables (KS Tests)

Figure B.1 shows heat maps of the p-value calculated between each
pair of seasons used in the data sample underlying this work. The null
hypothesis of the test is that the samples of each season are drawn from
the same distribution. The top row shows the results for the analysis
variables energy, zenith angle and PID, while the bottom row shows
the results for three selected control variables.

B.1.2 PID Variables

Histograms showing the distributions of variables used for event sig-
nature classification (see section 5.2.5).
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Figure B.1: Kolmogorov-Smirnov p-values calculated between each season of data for reconstructed quantities used in the fit (top)
and control variables (bottom)
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Figure B.2: Histograms of the likelihood score from the energy reconstruction (left) and the goodness-of-fit ratio of the zenith
reconstruction (right) in simulation.
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Figure B.3: Histograms of the radius with respect to string 36 of the vertex (left) and the endpoint of the reconstructed track (right)
in simulation.
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Figure B.4: Histograms of the z-coordinate of the vertex (left) and the endpoint of the reconstructed track (right) in simulation.
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Figure B.5: Histogram of the reconstructed track length in simulation.
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B.2 Three-flavor analysis

B.2.1 Seasonal Stability of Nuisance Parameter Fits
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Figure B.6: P-value of the blind en-
semble test to ensure the compatibility
of fit results of the three-flavor anal-
ysis between seasons. P-values are cal-
culated using histograms of the fit re-
sults from an ensemble of pseudo-data
where one year of live time is assumed
for each trial. Season 2011 is excluded
because its live time is smaller.
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Additional tables

C.1 Three-flavor oscillation measurement
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Table C.1: List of systematic parameters
considered in the three-flavor oscil-
lation analysis along with their priors
and allowed ranges.

Parameter Nominal Value Prior Fixed?
Flux and Cross Section:
�✏⇡ 0 ±0.1 False
energy pivot 24.09 - True
pion ratio 0.0 ±0.05 True
barr af Pi 0.0 ±0.63 False
barr g Pi 0.0 ±0.3 False
barr h Pi 0.0 ±0.15 False
barr i Pi 0.0 ±0.122 True
barr w K 0.0 ±0.4 False
barr x K 0.0 ±0.1 True
barr y K 0.0 ±0.3 False
barr z K 0.0 ±0.122 True
barr w antiK 0.0 ±0.4 False
barr x antiK 0.0 ±0.1 True
barr y antiK 0.0 ±0.3 True
barr z antiK 0.0 ±0.122 True
�4 5 5 scale 1.0 Uniform False
NC normlisation 1.0 ±0.2 False
⇡� CC norm 1.0 - True
⇡� norm 1.0 - True
"

⇠⇠&⇢

�
(in �) 0.0 ±1.0 False

"
⇠⇠'⇢(

�
(in �) 0.0 ±1.0 False

dis csms 0.0 ±1.0 False

Detector:
DOM efficiency 1.0 ±1.0 False
hole ice p0 0.101569 Uniform False
hole ice p1 -0.049344 Uniform False
ice absorption 1.0 Uniform False
ice scattering 1.05 Uniform False

Oscillation:
12 33.82� - True
13 8.61� ±0.13� True
⇣⇠% 0.0 - True
�<2

21 7.39 ⇥ 10�5 eV2 - True

Atm. muons:
�✏⇠ (⇠ spectral index in �) 0.0 ±1.0 True
Weight scale 1.0 Uniform False
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