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Zusammenfassung

Viele Zellen übertragen Informationen in Form von kurzen Pulsen, so genannten Spikes. Dazu
gehören elektrisch erregbare Neuronen, die Spikes in ihrer Membranspannung erzeugen, sowie
eine große Anzahl elektrisch nicht-erregbarer Zellen, die Spikes in der intrazellulären Kalzium-
konzentration erzeugen. Obwohl die physikalischen Größen und die Zeitskalen der Signale un-
terschiedlich sind, gibt es einige grundlegende Eigenschaften der Spike-Erzeugung, die beide Sys-
teme gemeinsam haben: Erstens stellt ein positiver Rückkopplungsmechanismus sicher, dass ein
Spike zuverlässig ausgelöst wird, sobald die spikende Variable einen bestimmten Schwellenwert
überschreitet. Zweitens sind die Zeitpunkte, zu denen der Schwellenwert überschritten wird, das
Ergebnis eines Zufallsprozesses und stellen somit selbst einen Zufallsprozess dar. Drittens führt
die wiederholte Auslösung eines Spikes zu einer zunehmenden Hemmung der Auslösung weite-
rer Spikes, ein Phänomen, das als Spike-Frequenz-Adaptation bekannt ist.

Trotz dieser Gemeinsamkeiten unterscheiden sich die Modellierungsansätze zum Teil erheb-
lich. Insbesondere reduzierte phänomenologische Modelle, so genannte integrate-and-fire (IF) Mo-
delle, sind in Computational Neuroscience weit verbreitet, wurden aber bisher zur Beschreibung
der Erzeugung von Ca2+-Spikes nicht verwendet. IF-Modelle beschreiben die Dynamik der Spike-
variablen nur bis zu einem bestimmten Schwellenwert, ab dem ein Spike als ausgelöst gilt und die
Spikevariable zurückgesetzt wird. Der stereotype Spike wird also nicht modelliert, sondern durch
eine Fire-and-Reset-Regel ersetzt. Dies hat den Vorteil, dass die komplexe nichtlineare Dynamik,
die dem Spike seine Form gibt, nicht berücksichtigt werden muss. Stattdessen konzentrieren sich
IF-Modelle auf die oft viel einfachere Dynamik unterhalb der Schwelle und erzeugen eine Ab-
folge von stochastischen Spike-Zeiten, die mit dem Überschreiten der Schwelle verbunden sind.
Sie stellen somit ein Verbindung zwischen stochastischen dynamischen Modellen einerseits und
stochastischen Punktprozessen andererseits her.

Eine typische Vereinfachung in der theoretischen Behandlung von Punktprozessen ist die An-
nahme, dass die Interspike-Intervalle (ISI) statistisch unabhängig voneinander sind. Ein Punkt-
prozess mit dieser Eigenschaft wird als Erneuerungsprozess bezeichnet und ist vollständig durch
die ISI-Verteilung bestimmt. Experimentelle Untersuchungen (insbesondere an Neuronen) haben
jedoch gezeigt, dass die Intervalle in der Regel nicht unabhängig voneinander, sondern miteinan-
der korreliert sind. Solche Korrelationen sind auf Prozesse zurückzuführen, die sich im Vergleich
zu einem typischen ISI langsam ändern. Dies schließt Prozesse ein, die die Anpassung der Feu-
errate vermitteln. Es ist daher anzunehmen, dass auch die Intervalle zwischen Kalziumspikes
korreliert sind. Die statistische Analyse von Modellen, die einen nicht-erneuerbaren Punktprozess
erzeugen, ist Gegenstand dieser Doktorarbeit.

Im zweiten Kapitel befassen wir uns zunächst mit der nicht-erneuerbaren Spike-Erzeugung in
neuronalen Systemen und konzentrieren uns auf die Berechnung des seriellen Korrelationskoeffi-
zienten (SCC). Dieser Koeffizient wurde in der Vergangenheit für Neuronen mit Spike-Frequenz-
Adaptation und für Neuronen unter dem Einfluss von zeitlich korreliertem Rauschen berechnet.
Letzteres kann als Approximation eines korrelierten Eingangsstroms betrachtet werden, wie er
durch synaptische Filterung oder Netzwerkprozesse entsteht. Der allgemeinste Fall, in dem diese
beiden langsamen Prozesse interagieren, wurde bisher nicht theoretisch behandelt. Wir schließen
diese Lücke und betrachten ein mehrdimensionales IF Modell mit Spike-Frequenz-Adaptation,
das durch ein korreliertes Rauschen getrieben wird. Basierend auf der Phasenreduktion dieses
allgemeinen Modells leiten wir eine analytische Formel für den SCC her. Es zeigt sich, dass die
Wahl der unterschwelligen Dynamik des IF-Modells die Phasenantwortfunktion und den SCC
bestimmt. Wir verifizieren die Theorie anhand des leaky- und generalized IF-Modells. Zusätzlich
betrachten wir zwei Spezialfälle: Einen Fall, in dem der Adaptationsstrom und das korrelierte
Rauschen von einer endlichen Population von Ionenkanälen stammen, und einen Fall, in dem
das Rauschen in seinen statistischen Eigenschaften dem eines rekurrenten Netzwerks im asyn-
chronen irregulären Zustand ähnelt. Wir zeigen, dass die Theorie, obwohl sie für schwach gestör-
te IF-Modelle entwickelt wurde, den SCC auch für stärkere Störungen qualitativ beschreibt und
sogar auf detailliertere leitfähigkeitsbasierte Modelle anwendbar ist. Die entwickelte Theorie ist
somit in der Lage, die Intervallkorrelationen eines breiten Spektrums biophysikalisch relevanter
Situationen zu beschreiben.
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Im dritten Kapitel befassen wir uns dann mit der nicht-erneuerbaren Erzeugung von Kalzi-
umspikes in elektrisch nicht-erregbaren Zellen. Wir formulieren zunächst ein phänomenologi-
sches IF-Modell, das die stochastische Kalziumfreisetzung aus dem endoplasmatischen Retiku-
lum (ER) durch Kalziumkanalcluster und die langsame Entleerung des ER beschreibt. Letzteres
ist für die Adaptation der Feuerrate verantwortlich. Der Kalziumstrom durch die Cluster wird
durch eine Markov-Kette beschrieben und stellt einen komplizierten stochastischen Prozess dar,
der die theoretische Behandlung des Modells erschwert. Experimentell ist jedoch bekannt, dass
sich die Zeitskala der ISI nicht in der Kinetik der Cluster widerspiegelt. Dies motiviert eine Dif-
fusionsnäherung, bei der der Kalziumstrom durch ein Gaußsches weißes Rauschen mit Kalzium-
abhängigem Mittelwert und Rauschintensität ersetzt wird. Für beide Statistiken leiten wir exakte
analytische Ausdrücke her. Wir untersuchen das Modell zunächst in einer reduzierten Variante,
in der wir annehmen, dass sich die Kalziumkonzentration im ER nicht ändert. In diesem Fall ist
das Modell eindimensional und erzeugt einen quasi-erneuerbaren Pulszug. Für diese Modellva-
riante erlaubt die Ersetzung des Kalziumstroms durch ein weißes Rauschen die Berechnung der
Momente der ISI-Verteilung auf der Basis der Fokker-Planck-Gleichung (FPG). Die experimen-
tell beobachtete Transiente, während der sich die Feuerrate langsam anpasst, kann jedoch nur
durch das vollständige Modell beschrieben werden, das die Entleerung des ER berücksichtigt.
Die theoretische Behandlung dieses zweidimensionalen Modells mit Hilfe der FPG ist wesentlich
komplizierter. Für die ISI-Statistiken erster Ordnung, wie den Mittelwert und den Koeffizienten
der Variation, leiten wir approximative Ausdrücke her. Zur Beschreibung der Transienten führen
wir die Anzahl der transienten Intervalle (Länge der Transienten) und die kumulative Refrak-
tärzeit (Stärke der Adapation) ein und leiten Näherungen für diese beiden Statistiken ab. Wir
untersuchen, wie diese transienten ISI-Statistiken mit den ISI-Korrelationen im stationären Zu-
stand zusammenhängen und verifizieren die Ergebnisse mittels experimentellen Daten. Dabei
zeigt sich, dass stärkere Anpassungen der Intervalle tendenziell mit stärkeren Korrelationen und
längere Transienten tendenziell mit schwächeren Korrelationen einhergehen. Diese Trends wer-
den bis zu einem gewissen Grad von den experimentellen Daten verifiziert, obwohl gleichzeitig
häufig positive Korrelationen beobachtet werden, die durch unser Modell nicht erklärt werden
können.

In dieser Arbeit erweitern wir existierende Theorien zur Beschreibung von nicht-erneuerbaren
Punktprozessen in Computational Neuroscience, um die biophysikalisch plausibelste Situation
zu berücksichtigen, in der zwei korrelationsinduzierende Prozesse interagieren, um Intervall-
korrelationen zu bilden. Darüber hinaus verwenden wir die Klasse der IF-Modelle, um die Er-
zeugung von Ca2+ Spikes zu beschreiben. Dies erweist sich als sehr aufschlussreich. Das vorge-
schlagene Modell ist in der Lage, experimentelle Sequenzen von Spike-Zeiten hinsichtlich ihrer
statistischen Eigenschaften sowohl im transienten als auch im stationären Zustand quantitativ
zu reproduzieren. Darüber hinaus kann das Modell analytisch behandelt werden und erlaubt
uns, etablierte Methoden der Computational Neuroscience auf das Gebiet der mathematischen
Zellbiologie zu übertragen. Dies ermöglicht die Berechnung einer Vielzahl von Spike-Statistiken,
entweder exakt mittels der FPG im Fall des reduzierten Modells oder näherungsweise mit ei-
nem selbstkonsistenten Ansatz für das vollständige Modell. Dies trägt dazu bei, die relevanten
Prozesse, die an der Erzeugung von Ca2+-Spikes beteiligt sind, besser zu verstehen.
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Abstract

Many cells transmit information by short pulses, so-called spikes. These include electrically
excitable neurons, which generate spikes in their membrane voltage, and various electrically non-
excitable cells, which generate spikes in the intracellular calcium (Ca2+) concentration. Although
the physical quantities and the time scales of the signals are different, some principles of spike
generation are shared by both systems: First, a positive feedback mechanism ensures that a spike
is reliably initiated once the spiking variable exceeds a certain threshold. Second, the times the
threshold is crossed result from a random process and thus form a random process as well. Third,
the emission of each spike increasingly inhibits the generation of further spikes, a phenomenon
known as spike-frequency adaptation.

Despite these similarities, some of the modeling approaches differ significantly. Specifically,
reduced phenomenological models, so-called integrate-and-fire (IF) models, are widely used in
computational neuroscience but have not yet been adopted to describe the generation of Ca2+

spikes. IF models describe the dynamics of the spiking variable only up to a certain threshold,
at which point a spike is said to be fired and the spiking variable is reset. Thus, the stereotypical
spike is not modeled but replaced by a fire-and-reset rule. This has the advantage that the complex
nonlinear dynamics that give the spike its shape do not need to be considered. Instead, IF models
focus on the often much simpler subthreshold dynamics and generate a sequence of stochastic
spike times associated with the crossings of the threshold. Therefore, they provide a link between
dynamic models on the one hand and stochastic point processes on the other.

A typical simplification in the theoretical treatment of point processes is the assumption that
the interspike intervals (ISI) are statistically independent. A point process with this property
is called a renewal process and is completely determined by the ISI distribution. However, ex-
perimental studies (especially on neurons) have shown that the intervals are usually correlated
rather than independent. Such correlations are due to processes that change slowly compared
to a typical ISI. This includes processes that mediate spike-frequency adaptation. It is, therefore,
reasonable to assume that the intervals between Ca2+ spikes are also correlated. The statistical
analysis of models that produce a nonrenewable point process is the subject of this dissertation.

In the second chapter, we study nonrenewal spike generation in neural systems and focus on
calculating the serial correlation coefficient (SCC). This coefficient has been calculated in the past
for neurons with spike-frequency adaptation and for neurons driven by a temporally correlated
noise. The latter can be regarded as an approximation of a correlated input current, as it may re-
sult from synaptic filtering or network processes. The most general case, in which these two slow
processes interact, has not been treated theoretically so far. We fill this gap and consider a multi-
dimensional IF model with spike-frequency adaptation driven by a correlated noise. Based on the
phase reduction of this general model, we derive an analytical formula for the SCC. It is shown
that the choice of the subthreshold dynamics of the IF model determines the phase response curve
and the SCC. We verify the theory using the leaky and generalized IF models. In addition, we con-
sider two special cases: A case in which the adaptation current and the correlated noise originate
from a finite population of ion channels and a case in which the noise resembles in its statistical
properties that of a recurrent network in the asynchronous irregular state. Although developed
for weakly perturbed IF models, we show that the theory qualitatively describes the SCC for
stronger perturbations and is even applicable to more detailed conductance-based models. Thus,
the developed theory can describe interval correlations in various biophysically relevant situa-
tions.

In the third chapter, we study the nonrenewal generation of Ca2+ spikes in electrically non-
excitable cells. We first formulate a phenomenological IF model that accounts for the stochastic
release of Ca2+ from the endoplasmic reticulum (ER) by Ca2+ channel clusters and the slow deple-
tion of the ER. The latter mediates spike-frequency adaptation in this system. The Ca2+ current
through the clusters is described by a Markov chain and forms a complicated stochastic process
that does not readily permit the theoretical treatment of the model. However, experimentally, it
is known that the time scale of the ISIs is not reflected in the kinetics of the clusters. This moti-
vates a diffusion approximation in which the Ca2+ current is replaced by a Gaussian white noise
with a Ca2+-dependent mean and noise intensity. We derive exact analytical expressions for these
two statistics. We first examine the model in a reduced version, assuming that the ER’s Ca2+

concentration does not change. In this case, the model is one-dimensional and generates a quasi-
renewable spike train. For this model variant, the replacement of the Ca2+ current by a white
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noise allows us to calculate the moments of the ISI distribution based on the Fokker-Planck equa-
tion (FPE). However, the experimentally observed transient, during which the spike frequency
slowly adapts, can only be described by the full model that accounts for the ER depletion. The
theoretical treatment of this two-dimensional model using the FPE is much more complicated.
We derive approximate expressions for the first-order ISI statistics, such as the mean and the co-
efficient of variation. To describe the transients, we introduce the number of transient intervals
(length of transients) and the cumulative refractory period (strength of adaptation) and derive
approximations for these two statistics. We study how these transient ISI statistics are related to
the stationary ISI correlations and test the results using experimental data. We find that stronger
adaptation of the intervals tends to be associated with stronger correlations and that longer tran-
sients tend to be associated with weaker correlations. These trends are verified to some extent
by the experimental data, although positive correlations that our model cannot explain are also
observed.

In this thesis, we extend the existing theory on nonrenewable spike generation in computa-
tional neuroscience to account for the biophysically most plausible situation where two correlation-
inducing processes interact to shape interval correlations. We also propose to apply the class of IF
models to describe the generation of Ca2+ spikes. This turns out to be very fruitful. The proposed
model is able to quantitatively reproduce experimental sequences of spike times in terms of their
statistical properties in both the transient and stationary states. Moreover, the model is analyti-
cally tractable and allows us to transfer established methods from computational neuroscience to
the field of mathematical cell biology. This enables us to calculate various spiking statistics, either
exactly using FPE in the case of the reduced model, or approximately using a self-consistent ap-
proach for the full model. This may help to shed light on the relevant processes involved in the
generation of Ca2+ spikes.



ix

Contents

1 Introduction 1
1.1 Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Langevin equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Stochastic point process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Nonrenewal spiking in neural signaling 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Modeling neural dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Conductance-based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Neural noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Stochastic leaky integrate-and-fire model . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Integrator and resonator models . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.5 Nonrenewal spike generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Phase reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Phase and Isochrones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Phase response curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.3 Adjoint Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.4 Direct Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.5 Phase response curves for integrate-and-fire neuron models . . . . . . . . . 37

2.4 Interspike-interval correlations for tonically firing neurons . . . . . . . . . . . . . . 41
2.4.1 Correlation coefficient for integrate-and-fire models with correlated noise . 43
2.4.2 Correlation coefficient for adaptive integrate-and-fire models with corre-

lated noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.3 Integrator models with adaptation and correlated noise . . . . . . . . . . . . 53
2.4.4 Resonator models with adaptation and correlated noise . . . . . . . . . . . . 55
2.4.5 Adaptation-channel noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.6 Network noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4.7 Range of validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4.8 Traub-Miles model with an M-type current . . . . . . . . . . . . . . . . . . . 62

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Nonrenewal spiking in Ca2+ signaling 67
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.1 Physiology of Ca2+ signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Modeling IP3R kinetics and Ca2+ dynamics . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.1 Kinetic models: IP3-receptor channel gating . . . . . . . . . . . . . . . . . . 71
3.2.2 Dynamic model: Ca2+ oscillations . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 An integrate-and-fire approach to Ca2+ signaling . . . . . . . . . . . . . . . . . . . . 78
3.3.1 IP3R channel cluster: Cyclic Markov model . . . . . . . . . . . . . . . . . . . 78
3.3.2 Ca2+ dynamics: Integrate-and-fire model . . . . . . . . . . . . . . . . . . . . 90

3.4 Spiking statistics of the renewal model . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.1 Diffusion approximation of the puff current . . . . . . . . . . . . . . . . . . 97
3.4.2 Langevin and Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . . 101
3.4.3 Spiking statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.4.4 Stimulated HEK cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.4.5 Extension: Fast Ca2+ buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.5 Spiking statistics: nonrenewal model . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.5.1 Stationary first-order interspike interval statistics . . . . . . . . . . . . . . . 116



x

3.5.2 Stationary second-order interspike interval statistics . . . . . . . . . . . . . 122
3.5.3 Timescale of the transient - Ca2+ store depletion . . . . . . . . . . . . . . . . 125
3.5.4 Transient interspike interval statistics . . . . . . . . . . . . . . . . . . . . . . 128
3.5.5 Stimulated HEK cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4 Discussion and outlook 139

Publications 143

Bibliography 143



1

Chapter 1

Introduction

The ability to perceive and respond to information from the environment is an essential part of
life. This applies not only to humans, who can perceive their environment with their senses, but
also to the smallest unit of life, the cell, which can perceive a variety of chemical messengers with
the help of special receptors. Fascinatingly, different signaling systems encode information in a
similar way, namely in the form of sequences of short pulses as shown in Fig. 1.1. The present
work deals with the generation of these pulses in neuronal and calcium (Ca2+) signaling.

The elementary processing units of the nervous system are the nerve cells or neurons. Neurons
differ from other cells in that they are electrically excitable, i.e., they can generate short electrical
pulses, so-called action potentials or spikes (cf. Fig. 1.1 left panel). These spikes vary little in shape
each time they are fired and have a typical duration of about 1 ms to 2 ms [9]. In contrast, the time
between two spikes can vary greatly depending on the type of neuron, ranging from millisec-
onds in P-units to tens of milliseconds in fast-spiking interneurons to hundreds of milliseconds
in pyramidal cells [10–12]. Spikes are considered the biophysical basis of information processing
and transmission in the nervous system. For example, neurons in the sensory periphery translate
all information or stimuli that we perceive from the environment with our senses into sequences
of spikes - so-called spike trains. These information-bearing spike sequences are then transmitted
to the brain, where they are further processed by neurons in the central nervous system. In the
brain, neurons are highly interconnected; a typical neuron in the cortex is connected to more than
10,000 other neurons via so-called synapses [13]. Thus, the output spike train of one neuron is
part of the input spike train of another neuron and can itself be interpreted as a stimulus. The
properties of a stimulus that lead to a response by a subsequent neuron become more complex
and abstract as the level of processing increases. Nevertheless, the notion that all information
is ultimately encoded in the spike trains of the brain is a central paradigm of neuroscience [14].
To understand how spike sequences are processed in the brain, one must first understand the
elementary processing units of the brain, the neurons.

A single neuron is itself a complex system that can be divided into three functionally distinct
parts: the dendrite, the soma, and the axon. The dendrite is a highly ramified structure that re-
ceives synaptic input and transmits it to the soma. The soma, in turn, integrates the synaptic
input and triggers a spike when a certain threshold is exceeded. The spike is then transmitted
via the axon to the dendrite of other neurons. The basis for the generation of the spike is a non-
equilibrium that is maintained by the neuron. Like any other cell, a neuron is surrounded by a
cell membrane. Within this membrane, various small ion channels and pumps create a continuous
flow of ions and maintain a difference in the concentration of various ions between the interior
and exterior of the neuron. This results in an electrical potential difference along the cell mem-
brane called the membrane potential or voltage. Even in the resting state (without stimulation),
neurons have a membrane potential of about -70 mV [9, 15]. This non-equilibrium state allows
the neuron to generate spikes upon stimulation via a nonlinear dependence of the ion currents
through the channels on the membrane potential. In particular, depolarization of the membrane
above a certain threshold leads to the activation of voltage-gated sodium channels, resulting in
a sodium influx, which further depolarizes the membrane, and so on. This strong positive feed-
back mechanism is responsible for the upstroke of the famous action potential [16]. However,
spike generation is not a deterministic but a stochastic process. One reason for this is that the
channel proteins are in thermal contact with their environment and are subject to constant ran-
dom collisions with the surrounding molecules. This leads to stochastic opening and closing of
the ion channels, which in turn leads to stochastic ion currents and to fluctuations in the mem-
brane potential [17]. As a result, when a neuron is repeatedly driven by the same stimulus, the
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FIGURE 1.1: Comparison between neural and Ca2+ spiking. Left panel shows neural spiking ob-
served in layer 6a neurons of the primary visual cortex of mice (Rorb-IRES2-Cre) exposed to the
onset of a constant current stimulation at 430 pA (red line). Allen Brain Atlas, celltypes.brain-
map.org/experiment/electrophysiology/490612150. Right panel shows Ca2+ spikes observed
in HEK cells stimulated with 10 µmol dm−3 carbamylcholine (CCh) (red line). Changes in free
cytosolic Ca2+ concentration are measured indirectly by changes in the Ca2+ indicator Fura-2

fluorescence ratio ∆F. Data were measured as described in [7, 8] and provided by M. Falcke.

spike times vary. Another ubiquitous feature of neuronal spike generation is the decrease in firing
rate after an initial increase in response to the onset of a constant stimulus [18]. This phenomenon
is known as spike frequency adaptation and is mediated by slow negative feedback mechanisms.
In summary, the dynamics of a single neuron are highly complex, influenced by stochasticity, fast
positive feedback mechanisms, and slow negative feedback mechanisms.

A completely different process is the signal transduction via Ca2+-dependent pathways, which
are mainly used by electrically nonexcitable cells. In many cells, the binding of an extracellular
messenger triggers a biochemical cascade that ultimately leads to a short, repeated increase in the
intracellular Ca2+ concentration (cf. Fig. 1.1 right panel). This triggers the cellular response, for
example, by binding Ca2+ to the regulatory protein calmodulin (CaM). Although CaM itself is
not enzymatically active, it is responsible for activating hundreds of other proteins that possess
CaM recruitment sites [19]. Cellular responses regulated by the intracellular Ca2+ concentration
include processes as diverse as muscle contraction and relaxation, synaptic neurotransmitter se-
cretion, gene transcription, fertilization, and apoptosis [20–27]. Interestingly, Ca2+ signals also
often take the form of short, pulse-like increases in the intracellular Ca2+ concentration so-called
Ca2+ oscillations or spikes, which regulate various cellular functions through stimulus-dependent
patterns [24, 28]. Even though the generated spike patterns are enormously versatile [23], the
spikes typically last a few seconds, and the interspike intervals are on the order of minutes [8, 27].
Like neurons, cells that use Ca2+ as a second messenger invest much of their energy to maintain a
non-equilibrium situation through various ion pumps. In this case, primarily ATPase pumps that
relentlessly push Ca2+ against a gradient from the cytosol either into the endoplasmic reticulum
(ER) or out of the cell. This results in an extraordinarily low Ca2+ concentration in the cytosol of
about 100 nM and up to 20,000 times lower than the Ca2+ concentration in the ER and extracellular
medium [19, 29]. This extreme Ca2+ gradient allows the cell to respond rapidly to an extracellular
stimulus with an increase in the intracellular Ca2+ concentration either by an influx of Ca2+ from
the extracellular medium via voltage-gated Ca2+ channels or by a release of Ca2+ from the ER
via so-called inositol 1,4,5-trisphosphate (IP3) channels. In this thesis, we focus on Ca2+ release
from the ER. However, the rapid increase in intracellular Ca2+ during a spike from approximately
100 nM to 1 mM is not only due to the strong gradient but also due to a nonlinear positive feed-
back mechanism. Contrary to what the name suggests, IP3 channels are not only regulated by
IP3 but also by intracellular Ca2+ itself. Therefore, an increase in the intracellular Ca2+ concen-
tration leads to an increased Ca2+ release from the ER. This mechanism is called Ca2+-induced
Ca2+ release (CICR) and ensures the reliable initiation of a Ca2+ spike once the intracellular Ca2+

concentration exceeds a certain threshold. As for neural spike generation, the generation of Ca2+

spikes is a stochastic process because the opening and closing of IP3 channels occurs in thermal
contact with the environment. This leads to a stochastic release of Ca2+ from the ER and to fluctu-
ations in intracellular Ca2+ concentration. Moreover, slow negative feedback mechanisms, such
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as the slow depletion of the ER over several spikes, give rise to an adaptation of the firing rate or
equivalently a prolongation of the interspike intervals when spikes are repeatedly fired [30–32].
Thus, the generation of Ca2+ spikes is also a complex process affected by stochasticity as well as
positive and negative feedback mechanisms on different time scales.

Despite the different physical quantities in which neural and Ca2+ spikes are observed and the
different time scales on which they occur, the generation of neural and Ca2+ spikes follows similar
principles [2]. First, the spike generation is a stochastic process, and so is the sequence of spike
times [7, 33]. This is partly due to the probabilistic opening and closing of the ion channels. In the
context of neural spiking, we will see that other, potentially stronger sources of noise also con-
tribute to the stochasticity [34]. Second, a strong positive feedback mechanism reliably initiates
the spikes once a certain threshold is exceeded. In both cases, this positive feedback is mediated
by ion channels whose opening contributes to the generation of the spike and whose opening
probability depends positively on the spiking quantity [35, 36]. Third, each spike progressively
inhibits the formation of further spikes until a stationary state is reached. Stochastic spiking and
adaptation are thus two essential features of both neural and Ca2+ signaling and result in a se-
quence of spike times with a rich statistical structure. Therefore, describing spike generation using
models that account for the fluctuations and incorporate slow feedback mechanisms is essential
for a comprehensive understanding of neural activity and Ca2+ spiking.

In the context of neural signaling, the reliable initiation of a stereotypical spike has led to the
realization that the spike time rather than the spike shape carries the information. This perspec-
tive is reflected in the mathematical models used to describe neural activity and in the statistical
analysis of the spike train as a stochastic point process [37]. In particular, it is reflected in the
formulation of phenomenological integrate-and-fire (IF) models [38, 39], that describe the spiking
variable only up to a certain threshold and replace the stereotypical spike with a fire-and-reset
rule. These models have the advantage that the complex nonlinear dynamics that shape the spike
do not have to be taken into account. Instead, other dynamic aspects can be considered, e.g., those
that mediate the adaptation of the firing rate [40, 41]. Despite their simplistic approach, IF models
can reproduce the spike times of real neurons to an astonishing degree [42–44]. In the context of
Ca2+ signaling, such a modeling approach has not yet been adopted. This is surprising given the
strong similarities in the spike generation and the great success of the IF model in computational
neuroscience. Developing a phenomenological model to describe the formation of Ca2+ spikes is
one part of this thesis.

A common simplification in the study of spike formation is the assumption that there is no
significant memory beyond the last spike time. This implies that the intervals between spikes
are statistically independent. A point process with statistically independent intervals is called a
renewal process [45]. Although this assumption is convenient from a mathematical point of view,
it is often not satisfied. We have already noted that in both neural and Ca2+ signaling, the spike
sequence in response to the onset of a constant stimulus often exhibits an initial transient during
which the firing rate gradually decreases and, conversely, the intervals between spikes gradually
increase. Such transients are usually associated with slow processes that affect the generation of
spikes over multiple spike times. As a result, even long after the initial transient, when the spiking
statistics no longer depend on the absolute time elapsed since the stimulation, such processes can
cause the interspike intervals to be correlated rather than independent. A point process with
correlated intervals is called a nonrenewal process [46].

This thesis is concerned with the mathematical modeling and statistical analyses of nonre-
newal spiking in neural and Ca2+ signaling. In the following sections we will first introduce a
number of stochastic processes that are useful in this regard.

1.1 Markov chain

We have argued that the gating (opening and closing) of ion channels, which is ultimately re-
sponsible for the formation of neural and Ca2+ spikes, is a stochastic process because it occurs in
thermal contact with the surrounding molecules in the intracellular medium [47]. In its simplest
form, a mathematical model describing an ion channel should distinguish between at least two
states (open or closed) and describe the stochastic transition between them. Often the structure
of an ion channel is more complicated, for example because the channel has a tetrameric struc-
ture and consists of four subunits, all of which must bind a particular molecule or ligand for the
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channel to open [48]. Thus, a more detailed model that distinguishes for each of these subunits
whether the ligand is bound or not would have to distinguish up to 24 different states for the
entire ion channel. What the simple and more detailed descriptions of a channel have in common
is that a number of discrete states are distinguished, and the transition between them occurs at
random times.

A model class that combines both these aspects and is often used to describe the activity of
ion channels are so-called continuous time Markov chains (CTMCs). A CTMC y(t) is a special
Markov process with a discrete state space S and continuous time t. CTMCs possess the Markov
property, i.e., the future state of the process depends only on the current state. In more mathemat-
ical terms, the conditional probability of finding the state si ∈ S at time ti given the full history of
the process

p(y(ti) = si|y(ti−1) = si−1; . . . ; y(t1) = s1) = p(y(ti) = si|y(ti−1) = si−1) (1.1.1)

is uniquely determined by the transition probability p(y(ti) = si|y(ti−1) = si−1) for all times
t1 < · · · < ti−1 < ti and all states s1, . . . , si [49, 50]. The defining quantities of a such a Markov
chain are the transition rates qij, which, when multiplied by a short time interval ∆t, provide the
transition probability from one state si to another state sj. The transition rates form the elements
of the transition rate matrix

Q =

⎛⎜⎜⎜⎝
q11 q12 . . . q1n
q21 q22

...
. . .

qn1 qnn

⎞⎟⎟⎟⎠ (1.1.2)

sometimes abbreviated by Q = (qij). The diagonal elements are chosen so that qjj = −∑i ̸=j qij
and the columns of Q sum to zero. This reflects that there are no sources or sinks of probability
for such models and implies that the transition rate matrix does not have full rank. Thus, every
statistical measure formally determined by inverting Q requires an additional condition. For
example, the probability of finding the state si at time t is denoted by p(i, t) and governed by the
master equation

ṗ = Q · p (1.1.3)

with the probability vector

p(t) =
(︁

p(1, t) p(2, t) . . .
)︁T . (1.1.4)

For p(t) to be uniquely determined, the additional normalization condition ∑i p(i, t) = 1 is re-
quired.

As a simple example of a Markov chain let us consider a two-state system that obeys the
following reaction scheme:

open
β−⇀↽−
α

close. (1.1.5)

The transition from the open to the closed state occurs at the closing rate β, and the reverse tran-
sition occurs at the opening rate α. This system can be regarded as a minimal model of an ion
channel. In most biophysical cases, the rates are not constant but depend on other variables, such
as the voltage or ligand concentration, which is an important feature of many ion channels [15].
However, as an introductory example, we will simply consider a model with constant rates. A
realization y(t) of the two-state system - also known as a dichotomous noise [51] - is shown in
Fig. 1.2. The transition rate matrix corresponding to the schematic representation (Eq. 1.1.5) is
given by

Q =

(︃
−β α
β −α

)︃
(1.1.6)
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FIGURE 1.2: Example of a time series of a two-state Markov chain y(t).

and allows the calculation of statistics of interest using the master equation. The arguably most
commonly computed statistics are the stationary probabilities

p0(open) =
α

α + β
, (1.1.7)

p0(close) =
β

α + β
, (1.1.8)

which signify the fraction of time the model spends in the open and closed states, respectively.
These statistics can be calculate using the stationary master equation

0 = Q · p0 (1.1.9)

together with the normalization p0(open) + p0(close) = 1 where p0 = (p0(open), p0(close))T is
the stationary probability vector.

In terms of spike generation, it is usually not the activity or ionic current through a single
channel that is of interest but rather the current through a larger but finite population of channels.
In the following section, we show that for a population of ion channels, the fraction of open chan-
nels can often be described mathematically conveniently by random processes with a continuous
state space.

1.2 Langevin equation

Probably the first systematic observation of random motion was made by Robert Brown in 1827.
He observed that small pollen particles, when suspended in water, moved in a jerky and irregular
manner - a process we now call Brownian motion [52, 53]. For almost a century, the mystery of
Brownian motion remained unsolved until Einstein published an explanation in 1905 [54] . He
showed that the random motion of the pollen could be explained by very frequent collisions with
the even smaller molecules of the liquid in which the pollen were suspended.

Some time after Einstein, Paul Langevin presented a new approach in 1908, which he famously
claimed was "infinitely more simple" [55]. He formulated an equation similar to Newton’s equa-
tion of motion, but with an additional random force or noise. If the inertia term is neglected, the
result is a differential equation known as a Langevin equation

ẋ = f (x) +
√︂

2D(x)ξ(t), (1.2.1)

where ξ(t) is a (continuous) Gaussian random process with ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = δ(t − t′),
f (x) is the drift function, and D(x) is the noise intensity. The process ξ(t) is also known as a
Gaussian white noise, where the term "white" refers to the fact that the power spectrum (see below)
of the process is flat and all frequencies are equally represented - similar to how white light can
be thought of as the superposition of light of different colors or wavelengths. The description of
the random processes by a Gaussian white noise is based on the assumption that the fluctuations
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are fast compared to any other time scale in the system. In this case, the fluctuations are approxi-
mately uncorrelated in time. Langevin’s equation was the first example of a stochastic differential
equation, i.e. a differential equation with a random term ξ(t).

Let us return to the two-state channel model that we have considered in the previous section
to understand how a Langevin equation can be motivated. We have already noted that in terms
of the spike generation, it is usually the current through a large but finite population of channels
that is of interest. Although the relative fluctuations of the ionic current through a population
of channels are smaller than the fluctuations of the current through a single channel, they remain
finite for a finite population. These fluctuations are referred to as channel noise [17] and can be ap-
proximated by a Langevin equation if a sufficiently large number of channels is considered. Since
Langevin equations describe diffusion processes, this procedure is often referred to as a diffusion
approximation. Here, we follow the derivation by Lindner [56]. Let us consider the number of
open channels nopen(t) at time t in a population of N two-state channels. Since we are considering
a two-state system, the number of closed channels need not be considered separately, but is given
by nclose(t) = N − nopen(t). Therefore, we simply denote the number of open channels by n(t).
The goal is to derive a simplified description of the dynamics of n(t). To this end, we consider the
change of the number of open channels

δn(t) = n(t + ∆t)− n(t) (1.2.2)

over a time window ∆t. If this time window is sufficiently small, the probability of a single
channel closing during ∆t is given by β∆t ≪ 1, and the probability of a single channel opening is
given by α∆t ≪ 1. For a population of independent channels, the number of channels closing in
a small time window ∆t follows a Poisson distribution with mean n(t)β∆t and variance n(t)β∆t.
The same applies to the number of opening channels with mean (N − n(t))α∆t and variance
(N − n(t))α∆t. Together, these two mean values give the expected change in the number of open
channels in a small time window

⟨δn(t)⟩ = (N − n(t))α∆t − n(t)β∆t, (1.2.3)

as well as the variance ⟨︂
∆(δn(t))2

⟩︂
= (N − n(t))α∆t + n(t)β∆t. (1.2.4)

If the population is sufficiently large, i.e. for large N, the distribution of the number of transitions
in the time window ∆t will be Gaussian distributed according to the central limit theorem [57].
The Gaussian distribution is fully determined by the mean and variance and the change over a
small time window can be approximated by

δn(t) = ⟨δn(t)⟩+
√︂
⟨∆δn(t)2⟩νt, (1.2.5)

where νt are independent Gaussian distributed random numbers with zero mean and unit vari-
ance. Note that since νt is a continuous random variable, so is δn(t). Inserting Eq. 1.2.2, 1.2.3, and
1.2.4 into Eq. 1.2.5 and dividing by ∆t yields the difference equation

n(t + ∆t)− n(t)
∆t

= α(N − n(t))− βn(t) +

√︃
α(N − n(t)) + βn(t)

∆t
νt, (1.2.6)

that can be thought of as a discretization of the stochastic differential equation

ṅ = α(N − n)− βn +
√︂

α(N − n) + βnξ(t), (1.2.7)

where ξ(t) = lim∆t→0 νt/
√

∆t is the Gaussian white noise we have introduced above. Sometimes
it is more convenient to consider the fraction of open channels denoted x(t) = n(t)/N in which
case Eq. 1.2.7 becomes

ẋ = α(1 − x)− βx +

√︃
α(1 − x) + βx

N
ξ(t), (1.2.8)
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FIGURE 1.3: Fraction of open channels x(t) in a population of n two-state channel models with
x(0) = 0. Panels A and B show the fraction of open channels obtained from stochastic simula-
tions of a population of two-state Markov models or from stochastic simulations of the Langevin
approximation according to Eq. 1.2.8. The approximation becomes more accurate as the number

of channels n increases.

with the drift function f (x) = α(1 − x)− βx and noise intensity D(x) = (α(1 − x) + βx)/(2N)1.
From this equation it is easy to see that, as we mentioned earlier, the relative fluctuations de-
crease with the number of channels N. In Fig. 1.3, we compare the fraction of open channels
x(t) obtained from simulations of a population of two-state channel models (panel A) with the
approximation given by Eq. 1.2.8 (panel B). As the number of channels N increases, the approxi-
mation by a diffusion process becomes more accurate. This means that the superposition of many
discrete random processes can be well described by a continuous random process.

Eq. 1.2.7 and 1.2.8 are Langevin equations. Such equations are mathematically convenient
because the fact that the white noise is delta-correlated implies that the driven process, here n(t)
or x(t), is a Markov process. At the same time, the delta correlation of the process ξ(t) also implies
that its variance is infinite. In other words, ξ(t) fluctuates infinitely fast between plus and minus
infinity. Therefore, a Langevin equation must always be interpreted as an idealized or coarse
description because no biophysical process changes infinitely fast. Nevertheless, a description by
a Langevin equation is useful because it allows one to use the powerful arsenal of the theory of
Markov processes [59, 60]. For example the rather general Langevin equation 1.2.1 possess the
corresponding Fokker-Planck equation (FPE) [61]

∂

∂t
P(x, t) =

∂

∂x

[︃
− f (x) +

∂

∂x
D(x)

]︃
P(x, t), (1.2.9)

describing the evolution of the probability density P(x, t). Note that the variable x has a different
meaning in the Langevin and Fokker-Planck equations. In the Langevin equation, x(t) is a real-
ization of a stochastic process. In the FPE, x is a state variable and P(x, t)dx is the probability that
a realization at time t takes a value in the interval [x, x + dx].

Stochastic differential equations, or Langevin equations, are of course not limited to describing
the motion of a Brownian particle or the fraction of open channels, but can be applied to a wide
range of diffusion processes. The general assumption underlying the formulation of a Langevin
equation is that there exists a time window ∆t small enough that the mean change can be lin-
earized and large enough that the fluctuations are the result of a large number of independent
random events. The fluctuations can then be described by a Gaussian random number according
to the central limit theorem. This includes the change of the membrane potential in neurons or the
change of intracellular Ca2+ concentration [33, 62–64]. In these two cases, stochastic differential
equations are often considered, which in turn generate a sequence of stochastic spike times. This
leads us to the third and last stochastic process introduced here.

1A Langevin equation with a noise intensity that depends on the variable driven by the white noise requires an in-
terpretation [58]. For simplicity, we interpret the Langevin equation here in terms of Itô and note that the so-called
Itô-Stratonovich dilemma will be discussed in more detail in Chap. 3.
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1.3 Stochastic point process

Many cells generate an ordered sequence of random spike times:

. . . ti−1, ti, ti+1, . . . (1.3.1)

These spike times form a point process, which is a collection of points randomly distributed over
some space. In our case, this is a collection of random spike times distributed over the time axis.
The simplest point process - associating points with spike times - is the homogeneous Poisson
process that is characterized by two features:

1. The probability to find a spike time ti in a small time bin [t, t + ∆t] is independent of the
time t; there is no trend in the data.

2. The probability to find a spike time ti in a small time bin [t, t+∆t] is independent of previous
spike times ti−1; there is no dependence between spike times.

The first assumption defines a stationary point process; the second assumption defines a point
process with statistically independent spike times [46, 65]. The collection of spike times is closely
related to the spike train

z(t) = ∑
i

δ(t − ti), (1.3.2)

a sequence of delta functions δ(·) at the spike times as well as the spike count

N(T) =
∫︂ T

0
z(t), (1.3.3)

the number of spikes in a time window T (where we have used T to indicate that this window is
generally not small).

Here, we introduce a number of selected statistics that characterize the stochastic spike times
and specifically focus on a stationary point process, i.e., a process that does not depend on absolute
time. The first important statistic is the stationary firing rate r0 that is the probability of finding a
spike time in an infinitesimally small interval ∆t

r0 = lim
∆t→0

Prob(t < ti < t + ∆t)
∆t

= pspike(t). (1.3.4)

This rate can be obtained as a temporal average of the spike train

⟨z(t)⟩ = lim
T→∞

1
T

∫︂ T

0
∑

i
δ(t − ti) = lim

T→∞

N(T)
T

= r0. (1.3.5)

For T → ∞, the fluctuations of the spike count N(T) vanish, and division by the time bin T gives
the stationary rate r0. For a Poisson process, where the probability of finding a spike in a small
time window is independent of previous spike times, the firing rate is the only relevant statistic.
This is because the joint probability of finding a spike at t and another spike at t + τ simply
factorizes into the marginal distributions of finding a spike at t and finding a spike at t + τ, i.
e. p(t, t + τ) = pspike(t)pspike(t + τ) = r2

0. Consequently, the Poisson process is completely
determined by the firing rate.

We can ease the assumption that spike times are independent and describe the dependence
between spike times by the spike-train auto correlation function2

Czz(τ) = ⟨z(t + τ)z(t)⟩ − ⟨z(t + τ)⟩⟨z(t)⟩, (1.3.6)

where the first term on the r.h.s. is the joint probability of finding a spike at time t and a spike at
t + τ. For a point process, this probability can also be written as ⟨z(t + τ)z(t)⟩ = r0δ(τ) + m(τ)
[46], where the delta function at τ = 0 reflects that there was a spike at t + 0. The function m(τ)

2The Poisson process also has a correlation function Czz(τ) = r0δ(τ), but the probability of finding another spike at
some time τ > 0 is always given by the stationary firing rate.
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is the probability of finding another spike at t + τ. The second term on the r.h.s. of Eq. 1.3.6 gives
the probability of finding a spike at t times the probability of finding a spike at t + τ. Due to
the stationarity of the considered process, this is the squared probability of finding a spike at any
time, ⟨z(t + τ)⟩⟨z(t)⟩ = r2

0.
If the spike train has oscillatory components, for example, if spikes occur regularly, it may

be convenient to analyze the spike train in the frequency domain. To this end, one defines the
(one-sided) Fourier transform of the spike train

z̃T(ω) =
∫︂ T

0
dt z(t)eiωt. (1.3.7)

Note that because z(t) is a sum of delta functions, the integral turns into a sum of complex num-
bers z̃T(ω) = ∑i exp(iωti). Using Eq. 1.3.7, we can define the spike-train power spectrum

S(ω) = lim
T→∞

⟨|z̃T(ω)|2⟩
T

, (1.3.8)

a second-order statistics3 that, by the Wiener-Khinchin theorem [57], is related to the correlation
function

S(ω) =
∫︂ ∞

−∞
dτ C(τ)eiωt. (1.3.9)

The two aforementioned statistics are based on the spike train. There are also statistics based on
the spike count, most prominently the Fano factor

F(T) =
⟨(N(T)− ⟨N(T)⟩)2⟩

⟨N(T)⟩ =
⟨∆N(T)2⟩
⟨N(T)⟩ , (1.3.10)

that compares the variance of the spike count to its mean as a function of the time window T.
For small time windows T → 0, finding a spike is essentially a Poisson process. In this case we
find ⟨N(T)⟩ = r0T and ⟨N(T)2⟩ = r0T. Accordingly, the Fano factor starts at F(T = 0) = 1 and
decreases linearly for small T [66]´

lim
T→0

F(T) ≈ r0T − (r0T)2

r0T
= 1 − r0T. (1.3.11)

In the opposite limit of large time windows, the Fano factor can be interpreted as the diffusion
coefficient of the spike count. This is so because the mean grows linearly in time ⟨N(T)⟩ = r0T
so that in the limit T → ∞, we obtain the mean square displacement of the spike count per unit
time:

lim
T→∞

F(T) = lim
T→∞

⟨∆N(T)2⟩
r0T

=
2DN

r0
. (1.3.12)

The additional factor 2 comes from the fact that the diffusion coefficient is defined as Dx =
limt→∞⟨∆x2⟩/2t [67]. Using the Kubo relation [68], we can relate the noise intensity of the spike
count to the auto-correlation function of the spike train DN =

∫︁ ∞
0 dτ Czz(τ), and thus the asymp-

totic Fano factor to the low-frequency limit of the power spectrum

r0 lim
T→∞

F(T) = 2DN = 2
∫︂ ∞

0
dτ Czz(τ) = lim

ω→0
S(ω). (1.3.13)

For the last equality, we have used that the correlation function is symmetric Czz(τ) = Czz(−τ).
Besides the spike times ti, the interspike interval (ISI)

Ti = ti+1 − ti, (1.3.14)

the times between two adjacent spikes, are often of interest. The indices are chosen so that the time
between the first and the second spike corresponds to the first interval. Since we have assumed

3The numerator ⟨|z̃T(ω)|2⟩ =
∫︁ T

0

∫︁ T
0 dt1dt2 z(t1)z(t2)eiω(t1−t2) contains the spike train at different times.
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that spike times do not depend on absolute time, their differences do not depend on absolute time
either. The sequence of ISIs

. . . , Ti−1, Ti, Ti+1, . . . (1.3.15)

is a stationary sequence, and all intervals obey the same probability density function:

lim
∆t→0

Prob(T < Ti < T + ∆t)
∆t

= pISI(T). (1.3.16)

We have defined a Poisson process by the statistical independence of the spike times. Similarly,
a renewal point process can be defined by the statistical independence of the interspike inter-
vals [45]. However, the assumption of statistical independence of interspike intervals is a much
weaker constraint. For a renewal process, the joint probability for any number of intervals satis-
fies

p(Ti, Tj, Tk, . . . ) = pISI(Ti)pISI(Tj)pISI(Tk) . . . . (1.3.17)

In other words, the ISIs are independent and identically distributed and thus fully characterized
by the marginal distribution or ISI density pISI(T) (where we have omitted the i because all inter-
vals are statistically identical). The moments of the ISIs are given by

⟨Tn⟩ =
∫︂ ∞

0
dT Tn pISI(T). (1.3.18)

The mean ⟨T⟩ and the variance ⟨∆T2⟩ = ⟨(T − ⟨T⟩)2⟩ can be used to determine the coefficient of
variation (CV)

CV(T) =

√︁
⟨∆T2⟩
⟨T⟩ , (1.3.19)

a dimensionless measure that compares the standard deviation to the mean of the ISI. The CV is
informative about the irregularity of the underlying point process. If we associate regularity with
how reliably the next spike time can be predicted based on the current spike time, then the most
regular point process one can think of is given by the spike times generated by a deterministic
oscillator. In this case, a spike time ti allows all other spike times to be derived. The ISIs are delta
distributed pISI(T) = δ(T − ⟨T⟩), their variance vanishes, and we obtain a CV that is zero. In
that sense, the most irregular point process is given by the Poisson process. In this case, all spike
times are statistically independent. The ISIs are exponentially distributed pISI(T) = r0 exp(−r0T),
mean and standard deviation are both given by ⟨T⟩ =

√︁
⟨∆T2⟩ = 1/r0 and the CV is equal to 1

[46].
In the renewal case, the ISI density and the spike-train power spectrum have a strikingly

simple relation. To see this, we define the n-th order interval T(n) = ti+n − ti = ∑n−1
k=0 Ti+k and

denote the probability density of the n-th order interval by pn(T). This allows us to express
the function m(τ) that appears in the spike-train auto correlation function in terms of interval
statistics as follows

m(τ) =
∞

∑
n=1

pn(τ), τ > 0. (1.3.20)

This is because m(τ) is the probability of finding any spike at time t + τ and pn(T) is the prob-
ability of finding the n-th spike after the reference spike at time τ. Put differently, summing the
probabilities of finding the first, second, third, . . . spike at time τ gives exactly the probability of
finding any spike at time τ. Substituting Eq. 1.3.20 into Eq. 1.3.9, taking the Fourier transform,
and evaluating the resulting sum [45, 69], yields

Srenew(ω) = r0
1 − | p̃ISI(ω)|2

|1 − p̃ISI(ω)|2 . (1.3.21)
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where p̃ISI(ω) is the Fourier transform of the ISI density. The power spectrum also has two in-
teresting limits that allow us to read off simple statistics of the spike train and interspike interval
directly. First, in the high-frequency limit, the power spectrum saturates at the firing rate

lim
ω→∞

S(ω) = r0, (1.3.22)

a result that can be explained, for example, using the Wiener-Khinkchin theorem (Eq. 1.3.9), be-
cause at high frequencies the integral over positive and negative values of τ exactly cancels, except
for the delta function r0δ(τ), which gives the firing rate. The low-frequency limit of the power
spectrum is given by

lim
ω→0

Srenew(ω) = r0C2
V(T), (1.3.23)

which can be derived from Eq. 1.3.21 by expanding the Fourier transform of the ISI density up to
the second order and using ∂n

ω p̃(ω = 0) = in⟨Tn⟩.
So far, we have discussed first-order statistics derived from the ISI density pISI(T) because

we have considered a renewal point process where the ISIs are statistically independent. For a
nonrenewal process, the ISIs are no longer statistically independent, and we have to take into
account higher-order statistics, generally the n-interval joint probability density

p(Ti, Tj, Tk, . . .⏞ ⏟⏟ ⏞
n

). (1.3.24)

In this thesis, we pursue a more modest goal and are mainly interested in second-order statistics
associated with the density

p(Ti, Ti+k), (1.3.25)

that characterizes the dependence of two intervals on each other. Note that we are still dealing
with a stationary process, which means that the density does not explicitly depend on i but only
on the lag between the two intervals k (similar to the fact that the spike-train auto-correlation
function Eq. 1.3.6 does only depend on the time difference τ). From Eq. 1.3.25, one can derive the
second-order moment

⟨TiTi+k⟩ =
∫︂ ∞

0

∫︂ ∞

0
dTi+kdTi Ti+k, Ti p(Ti, Ti+k), (1.3.26)

and the so-called covariance

⟨∆Ti∆Ti+k⟩ = ⟨(Ti − ⟨T⟩)(Ti+k − ⟨T⟩)⟩, (1.3.27)

a measure that indicates whether two intervals, on average, deviate similarly from the mean.
Usually, one considers a linear, dimensionless version of the covariance, the so-called serial cor-
relation coefficient (SCC) [46]

ρk =
⟨∆Ti∆Ti+k⟩

⟨∆T2⟩ , (1.3.28)

that compares the covariance to the variance and ranges between −1 < ρk < 1. The SCC is a
linear measure in the sense that the conditional mean ⟨∆Ti+k|∆Ti⟩ ≈ ρk∆Ti

4 is assumed to depend
linearly on ∆Ti. What exactly can we learn from the SCC? To answer this question, we consider -
without loss of generality - two adjacent intervals Ti, Ti+1 and their respective deviations from the
mean ∆Ti, ∆Ti+1. If, on average, these two intervals deviate similarly from the mean, i.e., if both
intervals are on average longer (or shorter) than the mean, then the signs of the two deviations
agree, and the SCC is positive (ρ1 > 0). In this case, the intervals are said to be correlated. In the
opposite case, if a long interval is usually followed by a short interval (or vice versa), then the
signs of the deviations differ, and the SCC is negative (ρ1 < 0). In this case, the intervals are said
to be anticorrelated. Finally, if the SCC vanishes (ρ1 = 0), the intervals are said to be uncorrelated.

4The notation ⟨x|y⟩ =
∫︁

dx xp(x|y) refers to the conditional mean of x given y, where p(x|y) = p(x, y)/p(y) is the
conditional probability.
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The SCC is certainly an interesting statistic on its own. It describes the linear dependence
between two intervals, only present if the spike-generating process is sufficiently complex. Apart
from this, the SCC is also reflected in other statistics, such as the low-frequency limit of the power
spectrum [56]

lim
ω→0

S(ω) = r0C2
V(T)(1 + 2

∞

∑
k=1

ρk). (1.3.29)

This is important because the power spectrum of the spontaneous (no stimulus) spike train serves
as a background spectrum if additional stimuli are applied. A reduction due to negative ISI
correlations can thus improve the signal-to-noise ratio for slow signals [70, 71]. According to
Eq. 1.3.13, the asymptotic Fano factor is also affected by the sum of the SCCs

lim
T→∞

F(T) = C2
V(T)(1 + 2 ∑

k
ρk). (1.3.30)

This measure indicates how broadly the spike count is distributed and can improve the detection
of a weak signal by influencing how confidently a shift in the mean of this distribution can be
attributed to an actual stimulus [72, 73].

1.4 Organization of the thesis

So far, we have introduced a number of stochastic processes that are important in describing spike
generation. We have seen that ion channel activity, which regulates the ion currents responsible
for spike formation, is typically described by Markov chains with a discrete state space. Con-
versely, the dynamics of the spiking variable, be it the membrane potential or the intracellular
Ca2+, often results from the activity of a large number of (different) ion channels and forms a
continuous random process that can be described by a Langevin equation. Finally, the sequence
of spike times itself can be understood as a stochastic point process.

In Chap. 2, we are concerned with nonrenewal spike generation in neural signaling. In par-
ticular, we are interested in a situation where two slow processes interact and influence spike
generation. To study this situation, we consider a multidimensional integrate-and-fire model en-
dowed with a self-inhibitory adaptation current and subject to a temporally correlated noise. The
dependence between intervals can be measured by the serial correlation coefficient introduced
in the following section. To compute the SCC in this case, we generalize the weak-noise theory
of Schwalger and Lindner [74] to account for both correlation-inducing processes. We will show
that the interval correlations observed in this situation are given by a weighted sum of the corre-
lation coefficients that would be obtained by considering only one correlation-inducing process at
a time. Although the theory is limited to mean-driven neuron models, it allows us to predict the
correlation coefficient in various interesting situations, such as when the subthreshold dynamics
of the membrane potential is a simple integration process or a more complex oscillatory process.
Furthermore, different exponentially correlated noise processes can be considered. This includes
cases where the noise and the adaptation originate from a common source or where the noise is
generated by a recurrent network in the asynchronous irregular state. Finally, we show that al-
though the theory is developed for the integrate-and-fire framework, we can predict the SCC for
the conductance-based Traub-Miles model with a slow M-type current.

In Chap. 3, we are concerned with nonrenewal spike generation in Ca2+ signaling. In this
case, the spiking variable is not the membrane potential but the (free) intracellular or cytosolic
Ca2+ concentration. Another difference from spike generation in neurons is that Ca2+ does not
enter the cell from the extracellular medium, but is released from an intracellular store, the en-
doplasmic reticulum. Neuronal and Ca2+ spiking are similar in that the generation of spikes is
a random process that involves a strong positive feedback, and the length of intervals between
spikes increases systematically during an initial transient. To capture Ca2+ spike generation, we
formulate a two-component model that describes the stochastic gating of the Ca2+-releasing chan-
nels in the ER membrane by a Markov model and the dynamics of the Ca2+ concentration in the
cytosol and ER by an integrate-and-fire model. For this model, interspike interval statistics are
difficult to calculate because the Ca2+ current through the corresponding channels is a compli-
cated stochastic process. However, based on the observed timescale separation, this Ca2+ current
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can be substituted by a Gaussian white noise, for which we show that the Ca2+-dependent mean
and the Ca2+-dependent noise intensity can be calculated analytically. This allows the formula-
tion of a Langevin equation and the calculation of the interspike intervals statistics through the
Fokker-Planck equation. We then turn to the influence of the Ca2+ concentration in the ER on
spike formation. Since some of the Ca2+ released from the ER during the spike is lost to the extra-
cellular medium and the ER is slowly replenished, we follow the idea that cumulative depletion
of the ER is responsible for the observed transient. We investigate the effect of such a slow variable
on the spike generation and, among others, derive expressions for the length of the transient and
for the strength of the adaptation of the interspike intervals. We relate these transient statistics to
the observed interval correlations discussed in detail in Chap. 2 and test whether the correlations
predicted by the model are confirmed in the experiment.
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Chapter 2

Nonrenewal spiking in neural
signaling

2.1 Introduction

Neurons are electrically excitable cells and the elementary processing units of the brain. They
are interconnected to one another and communicated through short electric pulses, so-called ac-
tion potentials or spikes. A neuron can roughly be divided into three functionally different parts.
The dendrite that accumulates the arriving input from other neurons, the cell body or soma that
performs a nonlinear operation on the input and initiates the action potentials, and the axon that
transmits the action potential to the dendrites of other neurons. The junction between two neu-
rons is called the synapse. The most common type of synapse is the chemical synapse, which is
not directly connected, but transmits the action potential from the pre- to the postsynaptic neuron
by releasing neurotransmitters into the synaptic cleft. At the postsynaptic site, these transmit-
ters bind to specific receptors, causing an influx of positively or negatively charged ions from
the extracellular medium into the postsynaptic cell and an excitatory or inhibitory postsynaptic
potential, respectively. A typical neuron in the cortex connects to more than 10.000 other neurons
[13]. A Purkinje cell in the cerebellum may even receive up to 150.000 synaptic contacts [14].

To understand how the brain processes information, one must first understand the elemen-
tary processing unit. The neuron itself is a complex system that sums or integrates incoming
spikes until a certain threshold is reached, and in turn, another spike is fired. The stereotyped
spike is formed by the interaction of multiple nonlinear voltage-dependent ion currents: Neu-
rons, like other cells, are surrounded by a plasma membrane (PM) that separates the inside of the
cell from the extracellular medium. Ion pumps maintain concentration gradients of different ions
and establish an electrical potential across the PM of about −70 mV [9, 15]. When the neuron is
stimulated, and the membrane potential is depolarized above a certain threshold, a positive feed-
back mechanism mediated by sodium (Na+) channels initiates the spike and raises the membrane
well above the firing threshold. After the spike, the neuron is first repolarized by the efflux of
potassium (K+), and then the concentration gradient is restored by Na+-K+ pumps.

Hodgkin and Huxley [16] were the first to measure these currents and describe the dynamics
of the membrane potential in terms of differential equations. Models that follow the approach
of Hodgkin and Huxley and capture the spike generation in terms of ion channels with voltage-
dependent conductance are called conductance-based models [9, 13, 37]. These models provide a
detailed biophysical description but are high-dimensional, nonlinear, and thus difficult to treat
analytically. Moreover, and contrary to Hodgkin and Huxley’s description, generating an action
potential is a stochastic process [33, 34]. There are several reasons for this. One is the probabilis-
tic gating of ion channels. This leads to a stochastic ion current in a finite population of channels
(channel noise). A second reason is that transmitting action potentials across the synapse is unreli-
able. Even if the transmission was reliable, the sheer number of arriving excitatory and inhibitory
inputs in a recurrent network constitutes a quasi-random input current (network noise). All these
processes lead to fluctuation in the membrane potential, and a comprehensive understanding of
neural activity must account for these fluctuations by formulating stochastic models.

Integrate-and-fire models [38, 39] are particularly useful in this regard, as they are often an-
alytically tractable even in the stochastic case and allow insights into the interaction of noise,
signal, and nonlinear neural dynamics. These models take advantage of the fact that the stereo-
typical action potential cannot contribute to the transmission of information. Therefore, it is not
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necessary to model the complex processes that shape the action potential. Instead, the membrane
potential is reset whenever it exceeds a certain threshold, and a spike is said to be fired. Despite
their simplistic approach, such models can reproduce the spike times of real neurons surprisingly
well [42–44].

A common simplification in the study of neural activity lies in the assumption that ISIs are
statistically independent [33, 62]. This implies that the fluctuations are assumed to be fast (uncor-
related) and that no other slow processes affect the spike generation. Renewal models are well
understood [45] and allow for a far-reaching theory of recurrent networks [75, 76]. In a stochastic
IF model, such a renewal spike train is generated when the noise is uncorrelated, and all variables
are reset after each spike (the state of the model is "renewed"). This simplification is not specific
to IF models; the Hodgkin-Huxley model driven by Gaussian white noise also generates a quasi-
renewal process [3]. However, interval correlations are often observed experimentally [72, 73,
77–84]. The SCC introduced in Eq. 1.3.28 provides a measure to quantify such correlations. The
causes of interval correlations are manifold. Positive correlations can be caused by slow channel
gating [85, 86], synaptic filtering [87, 88], or slow network processes [89–91]. In these cases, the
fluctuations in the membrane potential are no longer fast but temporally correlated. A prominent
mechanism exhibited by many neurons and associated with negative interval correlations is the
fatigue of a neuron after repeated firing. This phenomenon is known as spike-frequency adapta-
tion and is manifested by a gradual decrease in the firing rate after an initial increase in response
to the onset of a constant stimulus. Adaptation currents include Ca2+-gated K+ currents, M-type
currents, and the slow recovery of Na+ channels [18]. Such correlations play an important role
in transmitting slow signals or detecting weak signals as they are reflected in the low-frequency
limit of the power spectrum (Eq. 1.3.29) and the asymptotic Fano factor (Eq. 1.3.30).

While the effects of a correlated noise [66, 92–95] and a slow adaptation current [40, 74, 96, 97]
on the ISI correlations have been studied separately, a more general theory that predicts the SCC
in the presence of both these processes is lacking. In this chapter, we extend the theory developed
by Schwalger and Lindner [74], which allows us to describe interval correlations in weakly per-
turbed mean-driven neuron models with a spike-triggered adaptation current, to account for an
additional correlated noise process [1]. To the best of our knowledge, we provide the first theoret-
ical study of interval correlations in the presence of multiple correlation-inducing processes. We
address the question of what patterns of interval correlations can be expected in this case and how
they relate not only to the adaptation and correlated noise but also to the internal dynamics of the
neural system. Since the theory assumes that the neuron is mean-driven and weakly perturbed,
it mainly applies to neurons in the sensory periphery.

This chapter is organized as follows: In Sec. 2.2, we introduce a number of neuron models.
We start with conductance-based models, which are a prime example of an excitable system. We
then turn to more phenomenological IF models, which are the working models of this chapter.
We have already pointed out that despite their phenomenological approach, such models have
been shown to mimic the response of cortical neurons with remarkable accuracy [42–44]. At the
same time, IF models remain analytically tractable, even when spike generation is a nonrenewal
process [40, 66, 74, 92–97]. However, even within the IF framework, this case is analytically
challenging. Therefore, in Sec. 2.3, we introduce the phase reduction method, which projects a
higher-dimensional limit cycle oscillator onto a one-dimensional phase variable. This reduced
phase description allows to calculate the SCC for various integrate-and-fire models as long as the
phase response curve (PRC) is analytically accessible. We show that this is generally the case for
linear models and that some general statements can still be made about nonlinear models as long
as they are one-dimensional. In Sec. 2.4, we calculate the SCC for a stochastic multidimensional IF
model with a spike-triggered adaptation current and a correlated noise using the phase response
curve. As an instructive example of the method, in Sec. 2.4.1, we first calculate the SCC for a
multidimensional IF model driven by correlated and uncorrelated noise sources, but without a
spike-triggered adaptation. In this case, the SCC can be related to the correlation functions or
power spectra of the two noise sources. The derivation of the SCC for the full model is presented
in Sec. 2.4.2. We then discuss the patterns of interval correlations in a number of special cases. We
start with the leaky and generalized IF models with spike-triggered adaptation and correlated
noise in Sec. 2.4.3 and Sec. 2.4.4. These two models have qualitatively different PRCs, resulting
in different response characteristics. In Sec. 2.4.5, we then consider a scenario in which we as-
sume that both the correlated noise and the adaptation arise from a finite population of slow ion
channels and ask how the correlation coefficient depends on the common timescale of the two
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processes. In Sec. 2.4.6, we consider a noise process with reduced power at low frequencies, as
it can result from a recurrent neural network. In this case, the noise itself can lead to negative
interval correlations. We then test the range of validity of the theory in Sec. 2.4.7. It turns out
that even if the SCC cannot be described quantitatively, the qualitative behavior is still captured
by the theory. Finally, in Sec. 2.4.8, we show that the theory captures the SCC well even for the
conductance-based Traub-Miles model with a slow M-type current.

2.2 Modeling neural dynamics

In this section, we give a brief overview of the modeling approaches to describe neural dynamics.
First, we present a selection of point-neuron models. These models neglect the spatial extent of the
neuron. We start with conductance-based models, which include the classical Hodgkin-Huxley
model. We then consider the class of integrate-and-fire models, which are phenomenological in
their description but not completely disconnected from conductance-based models. IF models
have the advantage of being analytically tractable, even in the stochastic case. The description
becomes more complicated when processes are considered that contribute to the generation of
neuronal spikes being a nonrenewal process. The mathematical formulation of such processes
eventually leads to the model for which we calculate the serial correlation coefficient in Sec. 2.4.

2.2.1 Conductance-based models

Biophysically, the generation of an action potential is the result of different ion currents that per-
meate the cell membrane through ion channels. In 1952 Hodgkin and Huxley [16] were the first
to successfully measure these currents in the giant axon of the squid and to formulate a system of
ordinary differential equations that capture the generation of an action potential.

The Hodgkin-Huxley (HH) model describes the dynamics of the membrane potential/voltage
during an action potential by three ion currents [9, 13, 37]

CmV̇ = − gL(V − EL)⏞ ⏟⏟ ⏞
IL

− gNam3h(V − ENa)⏞ ⏟⏟ ⏞
INa

− gKn4(V − EK)⏞ ⏟⏟ ⏞
IK

+I(t), (2.2.1)

namely a leak, sodium, and potassium current IL, INa, and IK, respectively. We also consider
an arbitrary input current I(t), which can represent different stimuli or the input received by a
neuron in a recurrent neural network. The leak, sodium, and potassium currents are determined
by a reversal potential Ex and a maximum conductance gx. In addition, the sodium and potassium
currents depend on the so-called gating variables n, m, and h that are themselves dynamical
variables, governed by

τx(V)ẋ = −x + x∞(V), x = n, m, h. (2.2.2)

In other words, for a clamped voltage, the gating variables approach their steady-state value
x∞(V) exponentially with a time constant τx(V). The voltage dependence of the steady state
values and time constants is illustrated in Fig. 2.1. The stationary values are bound between zero
and one. This is because the gating variables are associated with the fraction of open channels. To
see this we reformulate Eq. 2.2.2 as follows

ẋ = αx(V)(1 − x)− βx(V)x, x = n, m, h, (2.2.3)

where we have used τx(V) = 1/(αx(V)+ βx(V)) and x∞(V) = αx(V)/(αx(V)+ βx(V)). Eq. 2.2.3
can be interpreted as the thermodynamic limit of a large number of two-state systems as described
in Sec. 1.2 with (voltage-dependent) transition rates αx(V) and βx(V)

open
βx(V)−−−⇀↽−−−
αx(V)

close, (2.2.4)

where the variable x represents the fraction of the two-state systems in one specific state (the
fraction in the other state is given by 1 − x). Consequently, n, m, and h cannot fall below zero
nor exceed one. In Eq. 2.2.1, the ion currents do not depend linearly on the gating variables and
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FIGURE 2.1: Panel A and B show the time constants τx(V) and steady-state values x∞(V) for
the three gating variables n, m, and h as functions of the voltage V, respectively. The dashed line
shows an approximation of m∞(V) near the resting potential V0 ≈ −65 mV by an exponential

function ∆T exp[(v − v̂T)∆T]. Parameters are according to Table 2.1.
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FIGURE 2.2: Panel A shows the voltage trajectory v(t) (blue line) in response to a constant
current stimulation I(t) = 5 pA applied at 25 ms (red line). Before applying the current, the
voltage at rest is about V0 ≈ −65 mV. After applying the current, the model repeatedly fires an
action potential, i.e., the voltage rapidly rises and falls. Panel B, C, and D show the trajectory
of the three gating variables n(t), m(t), and h(t), respectively. Parameters are according to

Table 2.1.

thus cannot be readily interpreted as the fraction of channels in the open state. For example, the
potassium current IK = gKn4(V − EK) depends on n4. Instead, the interpretation is usually that
the potassium channel has four identical but independent subunits that must all be in one (of two)
conformational state for the entire channel to open. The gating variable n is then interpreted as
the probability of a single subunit being in the desired state so that for four independent subunits,
the probability is n4. For the sodium current INa = gNam3h(V − ENa) the interpretation is similar,
again the channel state is determined by four independent but non-identical subunits, three of
which are described by the gating variable m and one by the gating variable h. In addition, the
two gating variables behave differently; while m increases, h decreases with voltage V. The result
is a low sodium current at both small and large voltages and only significantly different from zero
at intermediate voltage values - an important feature in the generation of action potentials.

The dynamics of the full system governed by Eq. 2.2.1 with parameters according to Table 2.1
as suggested by Traub and Miles [98] (also known as the Traub-Miles model) in response to a
constant current I(t) = 5 pA stimulation applied at 25 ms are shown in Fig. 2.2. Before the stim-
ulation, the membrane potential and gating variables rest at a stable fixed point. When the stim-
ulation is applied, the fixed point loses its stability, and a stable limit cycle emerges. While the
full four-dimensional phase space cannot be displayed, it is evident that the system possesses a
period solution characterized by a repeated sharp rise and fall of the voltage that constitutes the
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FIGURE 2.3: The firing rate r0 in response to a constant current stimulation I ( f -I curve) for two
different sets of parameters according to Table 2.1 (A) and Table 2.2 (B). In panel A, the f -I curve
is a continuous function of the input current so that the Traub-Miles model is of class I. In panel
B, the f -I curve is a discontinuous function, i.e., the classical Hodgkin-Huxley model is of class

II.

spike. An important related measure is the spike time ti, which can be defined as the time at
which a certain voltage threshold is exceeded, for example −50 mV (dotted line in Fig. 2.2A). This
allows us to define the firing rate r0, either by the average number of spikes per unit time or, in
this case, simply by the inverse of the time between two adjacent spikes r0 = 1/(ti+1 − ti). Since
we are dealing with a deterministic model, the time between two spikes (after any transition) is
always given by the period T∗ of the limit cycle.

The firing rate r0 as a function of a constant input current I is referred to as the f -I curve (where
f stands for the firing frequency). Generally, below some critical input current - the rheobase - no
spikes are observed, and the firing rate is zero. This corresponds to the existence of a stable fixed
point for the dynamical system. At the rheobase a bifurcation occurs. For currents above the
rheobase, a limit cycle emerges, spikes are periodically emitted, and the firing rate attains a finite
value. Interestingly, depending on the choice of parameters for the conductance-based model,
the f -I curve at the rheobase can be continuous as in Fig. 2.3A or discontinuous as in Fig. 2.3B.
Neuron models with a continuous f -I curve are called class I [99]. A continuous spike onset
can occur through a saddle-node on the limit cycle bifurcation, in which case the model is also
referred to as Type I. This is because a trajectory on the limit cycle can be arbitrarily slow in the
vicinity of the ghost of the fixed point (depending on how far we are from the bifurcation). The
result is an arbitrarily long period of the limit cycle and an arbitrarily low firing rate. Neurons
with a discontinuous f -I curve are called class II and require a spike onset via a Hopf bifurcation
or similar, where the oscillatory behavior is already present before the bifurcation takes place, but
the amplitude of the oscillation needs to build up. If the spike onset occurs via a Hopf bifurcation
or similar, the model is also called Type II. We will see in Sec. 2.3 that the distinction between
Type I and Type II neurons, based on the bifurcation, is relevant for the response characteristics
of a neuron model.

So far, we have applied a constant current to the Traub-Miles model, resulting in a periodic
solution with an always identical spike shape. This is not surprising since the r.h.s. of Eq. 2.2.1
did not change. Of course, it is well known that the stereotypical shape of the action potential is
not due to the constant input current but is a property of neuronal spiking. To illustrate this, we
prepare the Traub-Miles model at its resting state and apply three current pulses with varying am-
plitude (in three different simulations), as shown in Fig. 2.4A. The first stimulation is subcritical
and does not trigger a spike; the next two are supercritical and trigger two identical spikes. Such
a behavior is a well-known feature of an excitable system, where a sufficiently strong stimulation
pushes the system out of the resting state over a quasi-separatrix, leading to a large detour in the
phase space (the spike) before the system returns to the resting state [100]. Additionally, before
the model has fully returned to its resting state, it is often insensitive to a second stimulation. This
is illustrated in Fig. 2.4B. Again, we prepare the Traub-Miles model in the resting state and apply
a supercritical current stimulation that triggers a spike. We then apply the same stimulation again
and observe that the second response depends on the time elapsed since the first stimulation. For
the black line in Fig. 2.4B, only 10 ms elapsed between the end of the first and the beginning of
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FIGURE 2.4: Panel A shows the response of the Traub-Miles model to three different short cur-
rent pulses with increasing amplitude. The first pulse (cyan) is subcritical and does not trigger
a spike. The other two pulses (blue and black) are supercritical and do trigger a stereotypical
spike. Panel B shows the response of the Traub-Miles model to two supercritical current pulses,
the second occurring 10 ms and 20 ms, respectively, after the end of the first. In the first case,
no second spike is triggered because the model is in a refractory state. If the second pulse is

applied later, a spike can be triggered again.

TABLE 2.1: Simulation parameters for the Traub-Miles model [98, 101]

Parameter Value Parameter Value

gNa [nS] 100 ah(V) 0.128exp
(︂
−V+50

18

)︂
gL [nS] 0.1 am(V) 0.32 V+54

1−exp(− V+54
4 )

gK [nS] 80 an(V) 0.032 V+52
1−exp(− V+52

5 )

ENa [mV] 50 bh(V) 4
1+exp(− V+27

5 )

EL [mV] -67 bm(V) 0.28 V+27
exp( V+27

5 )−1

EK [mV] -100 bn(V) 0.5 exp
(︂
−V+57

40

)︂

the second stimulation. No second spike is observed. This changes if the period between the two
stimulations is increased to 20 ms as for the cyan line in Fig. 2.4B, in which case we do observe a
second spike. Hence, we see two core features of an excitable system. First, it produces a stereo-
typical response to a supercritical stimulation - the action potential has a stereotypical shape - and
second, it possesses a certain refractory period during which no second response can be triggered
- two action potentials do not overlap. We will return to these two properties to motivate reduced
phenomenological neuron models.

2.2.2 Neural noise

A feature of neural spiking we have neglected completely so far is its strong random component.
This becomes apparent when a neuron is repeatedly driven by the same time-dependent stimulus
[102, 103], but also when a neuron is subject to a constant stimulation that does not vary in time
[104]. In both cases, the neural response is subject to a large trial-to-trial variability that cannot
be attributed to the stimulus. Another indication of neural noise is the so-called spontaneous
activity, i.e., the firing of a spike in the absence of any stimulus [105]. Both neural variability and
spontaneous activity indicate the presence of noise in the neural system.

The most prominent sources of neural variability are thermal, channel, and synaptic noise
[34], which contribute to different extents depending on the context. Arguably the smallest noise
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TABLE 2.2: Simulation parameters for the Hodgkin-Huxley model [16]

Parameter Value Parameter Value

gNa [nS] 120 ah(V) 0.07 exp (−0.05V)

gL [nS] 0.3 am(V) 0.1(V−25)
1−exp(−0.1(V−25))

gK [nS] 36 an(V) 0.01(V−10)
1−exp(−0.1(V−10))

ENa [mV] 115 bh(V) 1
1+exp(−0.1(V−30))

EL [mV] 10.6 bm(V) 4 exp(−0.1V)

EK [mV] -12 bn(V) 0.125 exp(−0.0125V)

source is thermal noise, which is due to the random motion of molecules and leads to small
fluctuations in the membrane potential. While these fluctuations do not directly play a significant
role in the dynamics of the membrane potential, thermal noise also leads to the random opening
and closing of individual ion channels and thus indirectly influences the voltage dynamics. The
resulting fluctuations in the membrane potential are referred to as channel noise, and their relative
amplitude decreases as the population of ion channels increases but remains finite as long as the
population is finite. This is the main source of cell-intrinsic noise and is particularly important
in peripheral neurons [17]. The situation is different when we consider neurons in a recurrent
neural network, which are subject to a large number of excitatory and inhibitory synaptic inputs.
For example, a pyramidal cell in the neocortex can receive between 5000 and 60.000 synapses from
the same or different cortical regions [106]. In this case, the main source of noise is not cell-intrinsic
but stems from the synaptic bombardment [107], which appears random due to the sheer number
of inputs. Moreover, the transmission of spikes across synapses is itself an unreliable process,
subject to fluctuations due to the stochastic release of neurotransmitters [108].

Regardless of the dominant noise source, generating an action potential is a stochastic process,
and neither the spontaneous activity nor the response to a signal can be understood without
taking these fluctuations into account. Therefore, studying neural dynamics in terms of stochastic
models is essential.

2.2.3 Stochastic leaky integrate-and-fire model

We have seen that conductance-based models can describe the generation and capture the shape
of the action potential. While these models paint a biophysically detailed picture, they have the
disadvantage of being high-dimensional, nonlinear, and thus difficult to treat analytically. These
problems become even more severe when stochastic versions of these models are considered. A
common simplification in the description of neural spike generation is based on the realization
that a spike often i) has a stereotypical shape and ii) is reliably emitted when the voltage exceeds
a certain threshold. It is therefore concluded that i) the timing of the spike is more important
than its shape, and ii) it is sufficient to consider the dynamics up to the threshold that led to the
specific spike time. This motivates the integrate-and-fire model, where the voltage dynamics is
considered only up to a certain threshold, and the spike is replaced by a fire-and-reset rule [38,
39].

The motivation presented here somewhat distorts the historical facts because already 45 years
before Hodgkin and Huxley presented their famous model, it was Lapicque who formulated
the first integrate-and-fire model in 1907 [109, 110]; he modeled a neuron by a parallel circuit
consisting of a capacitor and a resistor and postulated that whenever the capacitor was sufficiently
charged, a spike would be emitted and the capacitor would be discharged. This corresponds to
what is now known as the leaky integrate-and-fire (LIF) model, where the voltage across the
capacitor represents the membrane potential, and the additional resistance gives rise to a leak
current. However, this is not the only way to "derive" the LIF model. We can also return to
Eq. 2.2.1 and assume that below the firing threshold, the membrane is passive, i.e., the dynamics
of the gating variables are independent of the voltage V. Under this assumption, the dynamics
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FIGURE 2.5: Illustration of a stochastic leaky integrate-and-fire model Eq. 2.2.6. The voltage is
initiated at its reset value vR (lower dotted line) and increases towards the threshold vT (upper
dotted line). Upon hitting the threshold (upper dotted line), i.e., if v(t) > vT , a spike is emitted
at time ti = t. This is followed by a refractory period (gray area), after which the voltage-like
variable is reset to vR. In panel A, the model is mean-driven. In panel B, the model is excitable
with fixed point v∗ between reset and threshold (dashed line). Parameters: vR = 0, vT = 1,

τref = 2, A: µ = 0.2, γ = 0.1, D = 0.05, B: µ = 0.7, γ = 1.0, D = 0.3

can be simplified as follows

CmV̇ = −g0(V − E0) + I(t), (2.2.5)

where g0 is an effective conductance and E0 is the resting potential. Let us further assume that
the current I(t) = I0 +

√
2D̂ξv(t) consists of a deterministic mean I0 and a stochastic part that can

be approximated by a Gaussian white noise ξv(t) with intensity D̂ and autocorrelation function
⟨ξv(t)ξv(t′)⟩ = δ(t − t′). We will return to the exact meaning of this approximation in the third
chapter of this thesis. For now, let us take it for granted and think of I(t) as the current resulting
from synaptic bombardment or the stochastic opening and closing of a population of ion channels.
In both cases, given a sufficiently large number of arriving postsynaptic potentials or transitions
of channel states, the current I(t) over a small time bin will be the sum of small stochastic currents
and, according to the central limit theorem, will be Gaussian distributed. If the stochastic part of
I(t) additionally changes fast compared to the dynamics of the membrane potential, it can be
approximated by a white (delta correlated) noise, ⟨ξv(t)ξv(t′)⟩ = δ(t − t′). Endowing Eq. 2.2.5
with an additional fire-and-reset rule and rescaling the variables and parameters leads to the
(stochastic) LIF model in the form we will use throughout this thesis:

v̇ = −γv + µ +
√

2Dξv(t),
if v(t) = vT → ti = t, v(t + τref) = vR.

(2.2.6)

Here v = V − E0 is the shifted voltage with resting potential at v = 0, γ = g0/Cm is the inverse
membrane time constant τm = 1/γ, µ = I0/Cm is a constant input current relative to the mem-
brane capacitance, D = D̂/C2

m is the rescaled noise intensity and τref is the refractory period that
can be associated with the duration of the spike. We stress again that this model consists of two
independent parts, first the subthreshold dynamics, here determined by the parameters µ, γ, and
D, and secondly, the fire-and-reset rule, i.e., whenever the voltage v exceeds the threshold vT a
delta spike δ(t − ti) is said to be fired at the spike time ti and the voltage is reset to vR after some
refractory period τref. The sum of all the delta spikes defines the spike train z(t) = ∑i δ(t − ti),
which is the most important output of an IF model. For example, an ensemble average of the
spike trains provides the instantaneous firing rate r(t) = ⟨z(t)⟩. Stochastic integrate-and-fire
models have been studied extensively in the computational neuroscience literature [33, 62, 111–
113] and the noise is in general not limited to be Gaussian distributed or delta correlated [95, 114,
115].

In Fig. 2.5A and B, we show an exemplary realization of Eq. 2.2.6. In both cases, the voltage
starts at the reset value v(0) = vR and increases over time. At the spike time t = t1, the voltage
crosses the threshold for the first time, and a delta spike is fired (indicated by an arrow). After a
certain refractory period (gray area), the voltage is reset to vR, and the cycle starts anew until a
second spike is emitted at spike time t2, and the voltage is reset again, and so on. The difference
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between Fig. 2.5A and B concerns the existence of a fixed point v∗ between reset and threshold
for the corresponding deterministic system (obtained by setting D = 0 in Eq. 2.2.6). Recall that
at the fixed point, the voltage of the deterministic system does not change v̇(v∗) = −γv∗ + µ =
0, which implies v∗ = µ/γ. In Fig. 2.5A, these two parameters are chosen so that the fixed
point lies beyond the firing threshold v∗ > vT , and the model reaches the threshold and fires
periodically even in the absence of noise. This is referred to as the mean-driven regime, which is
usually associated with a rather regular spike emission. In contrast, in Fig. 2.5B, the fixed point is
below the firing threshold v∗ < vT (but above the reset value), so no spiking would be observed
for the deterministic system. However, for the stochastic system, the voltage will occasionally
exceed the threshold due to the fluctuation of the voltage. This is referred to as the fluctuation-
driven or excitable regime and is associated with a more irregular spike emission. It should be
noted that even in the excitable regime, spikes can occur periodically if the difference between
the threshold and fixed point ∆v = vT − v∗ and the noise intensity D are chosen just right, an
effect known as coherence resonance [100, 116].

2.2.4 Integrator and resonator models

So far, we have introduced the LIF model - a linear, one-dimensional model that generates a
renewal point process. However, IF models are neither limited to being linear [113, 117–119] nor
one-dimensional [120–122] and can be formulated more generally as follows:

v̇ = f0(v, w) + µ +
√

2Dξv(t),
ẇj = f j(v, w),

if v(t) = vT → ti = t, v(t) = vR, w(t) = wR.

(2.2.7)

Here, w are auxiliary variables that are also reset upon spiking, and f0(v, w) and f j(v, w) are
the generalized drift functions for the voltage and auxiliary variables, respectively. (Note that
we have set the refractory period to zero, τref = 0, and will continue to do so from here on.)
Because all variables are reset at spikes, and the noise is uncorrelated, such a model will always
generate a renewal point process. Here, we introduce two well-known IF models, one that is one-
dimensional but nonlinear and another that is two-dimensional but again linear. Specifically, we
are interested in the firing rate response of these models and the distinction between class I and
class II neuron models based on the f -I curve. We will see that one-dimensional IF models are
always class I and that only the introduction of a second variable leads to an IF model that can
mimic the firing rate response of a class II neuron. Since this distinction is only meaningful in the
deterministic limit, we will, for now, return to the case where D = 0.

First, let us briefly recall the LIF model with the linear drift function

f0(v) = −γv, (2.2.8)

shown in Fig. 2.6A1. The model is in the excitable regime if the function f0(v) + µ has a zero (cyan
line) and, thus, a fixed point (black dot) below the firing threshold. In the mean-driven regime,
the drift decreases with increasing voltage but has no zero below the threshold (blue line). The
transition between these two regimes occurs when the fixed point v∗ = µ/γ is pushed above the
threshold by increasing the input µ. This results in a continuous f -I curve (see Fig. 2.6A2) because
depending on µ, the dynamics can become arbitrarily slow, and the firing rate arbitrarily small.

Going beyond the LIF model, we introduce the exponential integrate-and-fire (EIF) model
with the drift

f0(v) = −γv + ∆T exp[(v − v̂T)/∆T ]. (2.2.9)

The first term on the r.h.s. again describes the leak and can give rise to a stable fixed point, as
for the cyan in Fig. 2.6. The second term is an (increasing) exponential nonlinearity with a quasi-
threshold v̂T , and parameter ∆T that determines how sharp and steep the exponential function
is. Due to the exponential nonlinearity, the voltage will rise at some point, resulting in a second
(unstable) fixed point if the drift has crossed zero before. This allows the model to operate again
in the mean-driven and excitable regime. The transition between the two regimes occurs via a
saddle-node-on-limit-cycle bifurcation, making the EIF model a true Type I model. The result is
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FIGURE 2.6: Panel A1 and B1 show the deterministic drift f0(v) + µ for the LIF and EIF models,
respectively. If the drift has no zero between reset vR and threshold vT (blue line), the model is in
the mean-driven regime; if the drift function has a zero (cyan line), the model is in the excitable
regime. A black dot or circle indicates the zero depending on whether the corresponding fixed
point of the model is stable or unstable. Panel A2 and B2 show the f -I curves for the two models

in the deterministic limit (D = 0), which are continuous in both cases.

again a continuous f -I curve, for the same reason as discussed for the LIF model. Thus, both are
class I models. In fact, any one-dimensional IF model is of class I because the fixed point or its
ghost cannot be bypassed, so the drift near the bifurcation must always be close to zero. We noted
that in the limit ∆T → 0, the EIF model is equivalent to the LIF model with firing threshold at v̂T
as demonstrated in Fig. 2.6B1 where the arrow indicates decreasing values of ∆T .

The EIF model is particularly interesting because it connects the phenomenological LIF model
and the biophysically detailed Hodgkin-Huxley model in two ways. A detailed description of
both is beyond the scope of this section. We will only briefly sketch the motivations here. First,
the drift function can be estimated experimentally using dynamical I-V curves [42, 123]. This is
done by returning to Eq. 2.2.5, replacing the linear leak term with an unknown nonlinearity f (V),
and rearranging the terms to obtain f (V(t)) = I(t) − CmV̇(t). Then a time-dependent current
I(t) is injected, and the change in the voltage V̇ is measured. Suppose the capacitance is known
(a problem addressed in [42]). In that case, this allows one to plot f (V), a function that is very
well approximated by the combination of a linear and an exponential term for cortical pyramidal
cells. Second, as shown by Gerstner et al. [9] in Sec. 5.2. the EIF model can be motivated based
on an approximation of the Hodgkin-Huxley model where the exponential term is related to the
sodium current. To this end, one considers Eq. 2.2.1 and replaces the gating variables h and n by
their values at the resting potential hrest and nrest, and additionally assume that m is in equilibrium
with the voltage, so that can be substituted by its steady-state value m0(V) (shown in Fig. 2.1A).
This allows one to approximate Eq. 2.2.1 near the resting potential by

CmV̇ ≈ −geff(V − Eeff)− gNAm0(V)3h(Vrest − ENa) + I (2.2.10)

with geff = gKn4
rest + gL and Eeff = (gKn4

restEK + gLEl)/(gKn4
rest + gL) that form the effective leak

term. The nonlinearity comes from m0(V), which near the resting potential is well approximated
by ∆T exp[(v − v̂T)/∆T ], as demonstrated in Fig. 2.1A by the dashed line. This shows that al-
though IF models are phenomenological, they can be biophysically motivated to some extent. It
also shows that even the simple LIF model provides a biophysically plausible description of the
subthreshold voltage dynamics if the positive feedback is strong enough (a limit corresponding
to ∆T → 0 for the EIF model).

To realize the firing-rate response of a class II neuron model in the IF framework, we need
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cycle, which leads to a discontinuous f -I curve.

to consider so-called resonate-and-fire models, which have a second variable [120–122]. This is
so because a discontinuous f -I curve implies a spike-onset via a Hopf-bifurcation (or similar),
requiring at least two-dimensional phase space. The particular model we consider here will be
referred to as the generalized integrate-and-fire (GIF) model with one auxiliary variable w and
the linear drift functions:

f0(v, w) = −γv − βw,
f1(v, w) = (v − w)/τw.

(2.2.11)

In Fig. 2.7A and B, we show the phase space of the GIF model together with the unstable (black
circle in A) or stable (black dot in B) fixed point. The blue and cyan lines show exemplary tra-
jectories initialized at the reset point marked by a square. As for the one-dimensional model, we
can distinguish two firing regimes based on the existence or stability of the fixed point. First,
the mean-driven regime, which can be realized by choosing the parameters such that the fixed
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point becomes unstable. Since for the two-dimensional GIF model, the firing threshold is not a
point but a line, the outward spiraling trajectory will certainly hit this threshold line and trigger a
spike as shown in Fig. 2.7A. Unlike the one-dimensional models for the GIF model, the existence
of a stable fixed point does not imply that the system is excitable. Instead, whether the system
approaches a fixed point or fires periodically depends on the choice of the reset values. This is
illustrated in Fig. 2.7B, where a trajectory initiated at v = 0, w = 0 (cyan line) approaches the
fixed point, while a trajectory initiated at v = 0, w = −1/4 (blue line) reaches the threshold.
In this case, the GIF model is bistable. If the model is prepared in the bistable regime with re-
set values so that the fixed point is approached, increasing the input current can indeed lead to
a discontinuous f -I curve, as demonstrated in Fig. 2.8. To this end, we have chosen the same
parameters as for the cyan line Fig. 2.7B but increased µ. This moves the fixed point, located at
v∗ = w∗ = µ/(γ + β), closer to the threshold line but does not change its stability (assuming
complex eigenvalues the real part is given by (γ + τ−1

w )/2). In Fig. 2.8B1, we see a trajectory that
barely misses the threshold line and does not trigger a spike. In Fig. 2.8B2, we have increased µ
somewhat so that the trajectory crosses the threshold and causes a periodic spike emission. The
two values of µ are indicated in Fig. 2.8A by the respective color of the trajectory. Crucially, the
moment the input current µ is increased sufficiently to trigger a spike, this leads to a firing rate
that is not at all close to zero. This is so because here, the fixed point is not on the limit cycle, so
the drift is not necessarily close to zero in the vicinity of the bifurcation. The GIF model can thus
mimic a class II neuron model.

2.2.5 Nonrenewal spike generation

The models we have presented so far generate a renewal spike train. However, as we pointed
out in the introduction, there is growing experimental evidence that ISIs are not independent but
correlated over a few intervals [72, 73, 77–84]. Computational studies have identified two main
processes that can cause interval correlations

1. slow self-inhibitory currents [40, 74, 81, 82],

2. temporally correlated input noise [66, 82, 92, 95].

In the following, we briefly discuss the biophysical basis of these two processes and their integra-
tion into the integrate-and-fire framework. The effect of these processes on the stationary statistics
of the spike train, in particular the serial correlation coefficient, is also described.

Spike-frequency adaptation

One prominent mechanism by which ISIs can be correlated is the presence of a negative feedback
current. Such a current often leads to the widespread phenomenon of spike-frequency adapta-
tion, which refers to the observation that when stimulated by a constant current, almost all types
of neurons exhibit an initial high firing rate that gradually decreases as more and more spikes
are emitted, similar to what is illustrated in Fig. 2.9C. This phenomenon results from the self-
inhibitory feedback current, which effectively slows down the neuron’s dynamics and reduces
its ability to fire additional spikes. According to Benda and Herz [18], the three main types of
adaptation currents are

1. M-Type current - slow potassium current caused by voltage-gated high-threshold potassium
channels [124],

2. mAHP-type current - slow potassium current mediated by calcium-dependent potassium
channels [125],

3. Slow recovery from inactivation of the fast sodium channel [126],

and can be described by a single adaptation variable governed by

τa(V)ȧ = −a + a∞(V) (2.2.12)

(except for the mAHP-type current, where the dependence is not on the voltage but on calcium),
very similar to what we have seen for the gating variables of a conductance-based model. How
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exactly this adaptation variable affects the voltage dynamics depends on the specific current.
However, in general, a takes on the role of an additional gating variable that affects one of the
three ion currents mentioned in Sec. 2.2.1.

In the IF framework, Treves [127] was the first to consider an LIF model endowed with a spike-
triggered adaptation variable that is instantaneously increased whenever a spike is emitted. A
somewhat similar adaptive LIF model is given by [74]:

v̇ = −γv + µ − a +
√

2Dξv(t),

τa ȧ = −a + τa∆ ∑ δ(t − ti),

if v(t) = vT → ti = t, v(t) = vR.

(2.2.13)

Except for the fact that Treves has considered i) a recurrent neural network and ii) an adapta-
tion variable a that takes on the role of a gating variable and is thus multiplied by the difference
between the voltage and the respective reversal potential, which is more similar to a conductance-
based formalism. In Eq. 2.2.13, the adaptation variable resembles a current. To relate to Eq. 2.2.12,
this spike-triggered adaptation corresponds to a situation where the time constant τa(V) is inde-
pendent of the voltage, and the steady-state value a∞(V) changes significantly only during the
action potential. In the IF framework, the action potential is reduced to a point in time, and the
effect of the voltage-dependent steady-state value a∞(V) during the spike is described by the
delta function. Thus, in the absence of a spike, the adaptation variable decays exponentially to
zero with the time constant τa. At a spike time, the delta function takes effect, and the adaptation
variable is immediately increased by ∆. The behavior of the adaptive LIF model (Eq. 2.2.13) in re-
sponse to the onset of constant current µ = 5 at t = 5 is illustrated in Fig. 2.9. Once stimulated, the
model begins to fire spikes (black vertical lines in Fig. 2.9A). At the same time, the adaptation a(t)
builds up and inhibits the model’s ability to emit further spikes (Fig. 2.9B). Specifically, the adap-
tation builds up until the exponential decay between two spikes and the increase during a spiking
balance on average. As a result, we observe a firing rate that gradually decreases and saturates at
some finite value (Fig. 2.9C). Note that unlike the trajectories v(t) and a(t), the calculation of the
instantaneous firing rate r(t) involves an ensemble average: to compute r(t), we consider a large
ensemble of adaptive LIF models subjected to the constant current stimulus described above and
estimate the firing rate by the fraction of realizations that cross the firing threshold in a short time
bin [t, t + ∆t] divided by ∆t. This procedure is closely related to the definition of the (stationary)
firing rate as the probability of finding a spike in the short time bin ∆t according to Eq. 1.3.4.

As we have seen, spike-frequency adaptation is primarily a transient phenomenon. However,
a slow adaptation variable also affects the spiking statistics in the stationary state by correlating
ISIs. This has to do with the fact that a(t) is not reset with each spike and thus can keep memory
of previous ISIs. Many theoretical studies have addressed the question of how exactly a spike-
triggered adaptation correlates the intervals and have concluded that in most cases, such a self-
inhibitory feedback leads to negative ISI correlations [18, 40, 73, 74]. This is demonstrated in
Fig. 2.10. Recall that adjacent intervals are negatively correlated if a long/short interval Ti is
usually followed by a short/long interval Ti+1. In Fig. 2.10A we show the joint probability density
p(Ti, Ti+1) centered around the mean ISI ∆Ti = Ti − ⟨T⟩. Even with the naked eye, it can be seen
that an interval Ti shorter than the mean (∆Ti+1 < 0) usually leads to a subsequent interval Ti+1
longer than the mean (∆Ti > 0) and vice versa. The red line in Fig. 2.10B shows a linear function
with slope ρ1 that can be interpreted as a linear approximation of the expected value of ∆Ti+1 as
a function of ∆Ti. The deviation between this line and what one would visually identify as the
best linear fit result from the nonlinear dependence between the two interval deviations. That
the relationship must be nonlinear is best illustrated by the fact that for large positive values
∆Ti > ⟨T⟩ we cannot expect to find corresponding large negative values ∆Ti+1 < ⟨T⟩, as it would
be predicted by the linear measure, simply because intervals must always be larger than zero. In
Fig. 2.10B, we show the deviation of the joint probability density from the marginal distribution
p(Ti, Ti+1) - pISI(T)2 again centered around the mean ISI. Recall that in the renewal case, the joint
probability factorizes p(Ti, Ti+1) = pISI(T)2, so that Fig. 2.10B illustrates the increase or decrease
in the probability to find a certain interval Ti+1 given Ti, due to the spike train being nonrenewal.

How does a spike-triggered adaptation lead to negative interval correlations? First, for an LIF
model, an inhibitory current always delays the next spike time. Consider an LIF model that is
initiated at vR and some value a(t+i ) = â, such that the expected value of the ISI Ti is the mean
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FIGURE 2.9: Spike-frequency adaptation in an adaptive LIF model in response to a constant
current stimulation µ = 5 applied at t = 5. Panel A, B, and C show the voltage v(t), adaptation
variable a(t), and instantaneous firing rate r(t) in response to the current stimulation, respec-
tively. Spike times are indicated in A by black lines. Before the current is applied, practically no
spikes are observed. The voltage fluctuates around its resting value, and the adaptation vari-
able is at rest a = 0. Upon stimulation, the model begins to spike with a high firing rate that
gradually decreases due to an increase in the adaptation variable. Parameters: µ = 5, γ = 1,

τa = 5, ∆ = 0.5, D = 0.1

ISI ⟨T⟩. The plus t+i indicates that the time should be taken immediately after the spike. This is
important because at the spike time ti, the value a(ti) is ambiguous depending on whether the
delta kick was applied (a(t+i )) or not (a(t−i )). The actual ISI Ti will generally not coincide with the
mean ISI. However, if it did, the adaptation variable at the beginning of the next interval would
again be a(t+i+1) = â and the expected value of Ti+1 would again be the mean ISI. Now consider
a case where the ISI Ti is shorter than the mean ∆Ti < 0. The initial conditions for the second
interval Ti+1 are vR and some value of the adaptation variable a(t+i+1) > â. This is so because
the decay between two spikes is proportional to the length of the ISI and is thus reduced. Since
the adaptation has an inhibitory effect on the voltage dynamics, the expected value for the next
interval Ti+1 will be longer than the mean ⟨∆Ti+1|∆Ti < 0⟩ > 0. A similar argument can be made
for an interval Ti longer than the mean. In both cases, we find that the expected value of ∆Ti+1
is negatively correlated with ∆Ti, and the SCC is negative, ρ1 < 0. Note that this explanation is
based on the fact that an inhibitory current always delays the next spike time. We will see that
this is not always the case for more complicated neuron models such as the GIF model.

A negative-feedback current is an important mechanism leading to interval correlation; how-
ever, it is certainly not the only one. In the following, we discuss a second mechanism by which
ISIs can be correlated, namely if the noise itself is temporally correlated.

Correlated noise - The Ornstein-Uhlenbeck process

We have discussed three different sources of noise in the neuronal system that lead to fluctuations
in the membrane potential and have described them by a white (uncorrelated) Gaussian noise.
Such a description is reasonable if the fluctuations are fast compared to any other timescale in
the system. Additionally, a white noise is convenient mathematically. For example, we have seen
that an IF model (without adaptation) driven by such noise generates a renewal point process.
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FIGURE 2.10: Interval correlations in an adaptive LIF model. Panel A shows the joint probability
of adjacent intervals centered around the mean ISI. The red line indicates a linear approximation
⟨Ti+1|Ti⟩ ≈ ρ1Ti with slope according to the SCC. Panel B shows the derivation of the joint
probability from the marginal distribution. Parameters: µ = 20, γ = 1, τa = 2, ∆ = 10, D = 1

However, for a process to be truly delta-correlated, i.e., completely uncorrelated to itself when
viewed at two different points in time that can be arbitrarily close to each other, the process must
change infinitely fast. No biophysical process can have this property.

For example, channel noise arises from stochastic changes in the conformational state of ion
channels. If one observes the state of a channel at a time t, the probability of finding the same state
at a later time t′ depends on the difference between the two times because the state of the ion chan-
nel does not change infinitely fast. This leads to a finite correlation time of the channel state. While
in most cases, the change of the channel state is fast compared to the change of the voltage, this
is not always the case. Ion channels that mediate spike-frequency adaptation may, for instance,
change slowly. Similarly, synaptic noise may have a relevant timescale that cannot be neglected
due to synaptic filtering. A presynaptic potential triggers the release of neurotransmitters into the
synaptic cleft and leads to the activation of transmitter- or ligand-gated ion channels. Again, the
kinetics of the ion channel determines the timescale of the postsynaptic potential, which is typi-
cally of the order of milliseconds, the same order of magnitude as the membrane time constant. A
second mechanism, called short-term synaptic plasticity, which refers to an increase or decrease
in synaptic response upon repeated transmission of a presynaptic potential, can affect synaptic
dynamics on an even longer timescale, typically a few hundred milliseconds [128–130]. In all of
the above cases, the noise affecting the voltage is correlated.

A simple stochastic process with a finite correlation time and exponential autocorrelation func-
tion is the Ornstein-Uhlenbeck (OU) process defined by [57, 60]

τη η̇ = −η +
√︂

2σ2τηξη(t). (2.2.14)

The random variable η(t) is a low-pass filtered or colored noise that can be regarded as a Marko-
vian embedding of a white noise ξη(t). Just like the white noise ξη(t), the colored noise η(t) is
(in the stationary case) Gaussian distributed according to p(η) = exp(−η2/(2σ2))/

√
2πσ2 with

some variance σ2. More importantly, the OU process is temporally correlated with the correlation
function

⟨η(t)η(t′)⟩ = Cηη(t − t′) = σ2e−(|t−t′ |)/τη (2.2.15)

and correlation time τη
1. We consider the LIF model again:

v̇ = −γv + µ + η +
√

2Dξv(t),

τη η̇ = −η +
√︂

2σ2τηξη(t),

if v(t) = vT → ti = t, v(t) = vR,

(2.2.16)

1The correlation time is commonly defined by τx =
∫︁ ∞

0 dτ Cxx(τ)/σ2
x .
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FIGURE 2.11: Interval correlations in an LIF model with correlated noise. Panel A shows the
joint probability of adjacent intervals centered around the mean ISI. The red line indicates a
linear approximation ⟨Ti+1|Ti⟩ ≈ ρ1Ti with slope according to the SCC. Panel B shows the
derivation of the joint probability from the marginal distribution. Parameters: µ = 2, γ = 0.5,

τη = 10, σ = 0.5, D = 0.05

where the voltage dynamics is driven by both a colored noise η(t) and a white noise ξv(t), which
can be considered to originate from a population of slow and fast ion channels, respectively. Due
to the finite correlation time of the OU process, the ISIs are no longer independent as the noise
changes slowly and thus affects several consecutive ISIs in a similar way. This is illustrated in
Fig. 2.11 where strong positive interval correlations are observed.

Besides the OU process with an exponential correlation function, we note that a higher-
dimensional Markovian embedding allows the realization of any correlation functions that can
be approximated by a sum of exponential functions and damped harmonic oscillations [95]. This
includes negatively correlated green noise with reduced power at low frequencies [131] or har-
monic noise where most spectral power falls in a preferred frequency band [115]. In this thesis,
however, we focus on exponentially correlated noise.

Spike-frequency adaptation and correlated noise

The model we consider in this chapter is a multidimensional IF model with a spike-triggered
adaptation variable and a correlated noise:

v̇ = f0(v, w) + µ − a + η +
√

2Dξv(t),
ẇj = f j(v, w),

τa ȧ = −a + ∆ ∑ δ(t − ti),

τη η̇ = −η +
√︂

2σ2τηξη(t),

if v(t) = vT → ti = t, v(t) = vR, w(t) = wR.

(2.2.17)

This is an extension of the model studied by Schwalger and Lindner [74] and can have much
more complicated interval correlations. This is demonstrated in Fig. 2.12. At first glance, spiking
seems to be renewal because ρ1 = 0. However, this is not the case as ρ2 ̸= 0 does not vanish. The
joint probability of the intervals Ti and Ti+2 is shown in Fig. 2.12B and displays a weak negative
correlation. While the SCC has been calculated in the past for an IF model with adaptation [74]
or an IF model driven by colored noise [95], no theory has yet been developed to determine how
the interaction of these two processes affects the correlations between intervals. In this chapter,
we fill this gap and determine in the SCC for an IF model according to Eq. 2.2.17.

2.3 Phase reduction

As we have seen in the previous section, biophysically detailed conductance-based models are
often high-dimensional and, as a consequence, difficult to treat analytically. The introduction of
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FIGURE 2.12: Interval correlations in an adaptive LIF model with correlated noise. Panels A and
B show the joint probability of the two intervals Ti and Ti+k for k = 1 and k = 2, respectively.
The red lines indicate a linear approximation ⟨Ti+k|Ti⟩ ≈ ρkTi with slope according to the SCC.
Due to the interplay between adaptation and correlated noise, adjacent intervals are virtually
uncorrelated (ρ1 ≈ 0), while more distant intervals are weakly correlated (ρ2 ̸= 0). Parameters:
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0.15, D = 0.01

phenomenological integrate-and-fire models reduces this difficulty but does not completely elim-
inate it. The development of methods to reduce high-dimensional models by exploiting certain
system properties is therefore desirable.

One such method explained in this section, which allows for the reduction of multidimen-
sional systems that possess a limit cycle, is known as phase reduction [132]. In this framework,
the dynamics on the limit cycle is described by a one-dimensional periodic phase variable that
grows uniformly with time - and is thus very similar to time itself. Phase reduction techniques
have proven extremely useful in computational neuroscience (see, for example [133–135]). This
is so because it is reasonable to consider a sufficiently strongly stimulated neuron as an oscillator,
but also because of the close relation between phase and spike time. The key to the success of
this method lies not in the one-to-one mapping of the limit cycle to a phase variable but in the
extension of the notion of a phase to the entire basin of attraction of the limit cycle. We will show
that this extension gives rise to so-called isochrones, sets of constant phases, which can be used to
quantify how a perturbation in the phase space of the original system affects the reduced phase
variable. Typically, one considers the perturbation to be small and calculates the linear response
of the phase variable using the corresponding linear response function, in this context called the
phase-response curve. A somewhat different approach defines the PRC directly by the shift of the
next spike time in response to a small perturbation of the voltage variable of a neuron [136]. This
is a bit imprecise because it assumes a perturbation in a certain direction but has to do with the
fact that the stimulation of a neuron often takes the form of a current or voltage stimulation. In
either case, we will see that the PRC, whether defined by the linear response of the phase variable
or by the shift of the next spike time, can be computed by a system of linear differential equations
that is solvable for many IF models. In addition, we will distinguish two quantitatively different
types of PRCs, which are closely related to the bifurcation by which the spike onset occurs and
thus to the classification into Type I and Type II neurons. In Sec. 2.4, we will then see how the PRC
can be used to calculate response characteristics, specifically the serial correlation coefficient.

2.3.1 Phase and Isochrones

Here, we recall the notions of phase and isochrone for a multidimensional oscillatory system
[132]. Consider an n-dimensional differential equation

dx
dt

= F(x), (2.3.1)

where F(x) is some function so that Eq. 2.3.1 possesses a T∗-periodic stable limit cylce denoted
Γ. To make a relation to the models we have discussed above, we can, for instance, think of
a (deterministic) IF model that fires periodically at ti = iT∗ so that the period T∗ is associated
with the (deterministic) ISI. Recall that a limit cycle is said to be stable if we can define a basin



32 Chapter 2. Nonrenewal spiking in neural signaling

of attraction M so that every trajectory x(t; x0) of the system with an initial condition in that
basin of attraction x0 ∈ M eventually approaches the limit cycle [137]. Since Γ is a line in the
n-dimensional phase space, it can be parameterized by a one-dimensional variable. To emphasize
the periodic nature of this variable, it is often referred to as a phase φ, which can take values
between 0 and 2π. Equivalently, one can choose a phase-like variable τ that is T∗-periodic as the
limit cycle itself. We opt for the second variant and choose τ to parametrize the limit cycle. This
choice, however, is only a matter of normalization and of no particular importance.

Strictly speaking, the phase is defined by a function θ(x) : Rn → R that assigns a number τ to
each point on the limit cycle x ∈ Γ

θ(x) = τ, (2.3.2)

with the additional condition that τ(t) grows uniformly in time as x(t) moves along the limit
cycle, i.e. τ̇(t) = 1. At this point, one might ask what advantage there is in mapping a one-
dimensional set of points (the limit cycle) to another one-dimensional set of points (the phase) that
differ only in that the latter grows linearly with time. The answer lies in extending the definition
of the phase from the limit cycle to the entire basin of attraction.

To this end, consider a point y0 ∈ M off the limit cycle and let x(t; y0) be the trajectory or
solution to Eq. 2.3.1 with the initial condition y0. This trajectory eventually converges to the
stable limit cycle as t → ∞. Additionally consider a second point on the limit cycle x0 ∈ Γ with
trajectory x(t; x0). This second trajectory starts and stays on the limit cycle, so its phase is always
well-defined. We can now assign a phase to the point y0 based on the asymptotic behavior of
the corresponding trajectory. In particular, the two points y0 /∈ Γ (off the limit cycle) and x0 ∈ Γ
(on the limit cycle) are said to have the same asymptotic phase θ(y0) = θ(x0) if they become
indistinguishable for t → ∞:

||x0 − y0||τ := lim
t→∞

||x(t; x0)− x(t; y0)|| = 0. (2.3.3)

A consequence of the extension of the notion of a phase from the limit cycle to the basin of at-
traction is that there are now several points x which have the same phase τ. In fact, for an n-
dimensional system, there is a whole hyperplane (n − 1-dimensional subspace) with an identical
phase. Such a hyperplane of constant phase is called an isochrone [138] denoted ℓ(τ) and is de-
fined as the set of all points y off the limit cycle that have the same asymptotic phase as x on the
limit cycle:

ℓ(τ) = {y ∈ M| ||x − y||τ = 0, θ(x) = τ}. (2.3.4)

It should be noted that the phase can also be extended to the basin of attraction by means
of the so-called return-time phase. Briefly, one defines a hyperplane ℓRT(τ) so that for every
point y ∈ ℓRT(τ) the return-time from y to ℓRT(τ) agrees with the period T∗. Finding such a
hyperplane with constant return time is numerically challenging, even for the adaptive LIF model
[3]. However, for deterministic systems, both phase definitions are identical [132].

In Fig. 2.13, we show the phase τ, calculated according to the asymptotic definition, for the
deterministic adaptive LIF model (Eq. 2.2.13 with D = 0):

v̇ = −γv + µ − a,
τa ȧ = −a + ∆ ∑i δ(t − ti),

if v(t) = vT → ti = t, v(t) = vR.
(2.3.5)

We distinguish two cases, one where the parameters are chosen so that after the reset, the velocity
−γv + µ − a > 0 is positive (Fig. 2.13A) and one where the velocity is negative −γv + µ − a < 0
(Fig. 2.13B). Following Schwalger and Lindner [74], the first case is referred to as weak adaptation,
while the second case is referred to as strong adaptation. In both cases, the parameters can be
chosen so that the system has a limit cycle shown by the red lines. To compute the phase by
means of Eq. 2.3.3, we first parameterize the limit cycle by τ ∈ [0, T∗] so that τ̇ = 1. This defines
the phase of a point on the limit cycle only up to a constant, i.e., we are free to choose which
point is said to have phase zero. For IF models, the choice is rather natural since it is suggestive
to define the reset point (marked by a red square) as the beginning of the limit cycle to have the
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FIGURE 2.13: Asymptotic phase of an adaptive LIF model. Panels A and B show the asymptotic
phase τ ∈ [0, T∗] for the deterministic adaptive LIF model with a weak and a strong adaptation,
respectively. The limit cycle is shown by a red line, with the reset point marked by a red square.
Specific isochrones with τ = nT∗/4 with n = 1, 2, . . . are shown by white lines. Parameters A1:

γ = 1, µ = 5, τa = 2, ∆ = 2; A2: γ = 1, µ = 20, τa = 2, ∆ = 20.

FIGURE 2.14: Spike-time phase for an adaptive LIF model. Panels A and B show the spike-time
phase τ ∈ [0, T∗] for the deterministic adaptive LIF model with a weak and a strong adaptation,
respectively. The limit cycle is shown by a red line, with the reset point indicated by a red

square. White lines show specific isochrones. Parameters as in Fig. 2.13.

phase τ = 0. For every other point off the limit cycle, the associated phase is calculated as follows:
We chose a point y0 and let it evolve forward in time until t = T∗. The new point y1 = x(T∗; y0)
is still on the same isochrone (think of the return-time phase) but closer to the limit cycle. This
procedure is repeated multiples times, i.e., we observe the trajectory stroboscopically whenever
t is a multiple of the period T∗, i.e., whenever t = nT∗ for n ∈ N. The sequence of points
yn = x(nT∗; y0) will eventually converge to some point on the limit cycle xΓ for which the phase
is known. Finally, we assign the same phase to the points yn, and in particular y0. Note that this
implies that isochrones are not necessarily connected but can have multiple branches because a
point far from the limit cycle can have the same phase as a point on the limit cycle, as shown in
Fig. 2.13A and Fig. 2.13B. This, however, is not unique to IF models but simply because we can
take any point in the phase space, calculate the trajectory backward in time for one period and
find a new point that is farther from the limit cycle but has the same phase. Nothing guarantees
that the contour lines of the phase landscape are connected.

We have seen how the phase function θ(x) can be calculated numerically. Finding an ana-
lytical expression for this function is, in general, much more complicated. However, to study
phenomena in weakly perturbed oscillators, it is often sufficient to know the phase function in the
proximity of the limit cycle [139]. In other words, a linear approximation of θ(x) evaluated on
the limit cycle is sufficient. It turns out that this approximation is precisely what is known as the
infinitesimal phase response curve (iPRC) that is introduced below and can be determined by a
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system of linear differential equations [135].

2.3.2 Phase response curve

To define the iPRC, we consider again Eq. 2.3.1. However, this time, the system moves along the
limit cycle and is subject to an infinitesimally small perturbation, specifically a delta kick with
amplitude |ε| applied at some phase τ:

dx
dt

= F(x) + εδ(t − τ). (2.3.6)

Because the system is periodic and moves along the limit cycle, we are only interested in times
t ∈ [0, T∗]. For clarity, we can think again of an IF model in which case t can be thought of the
time since the last spike, which in the deterministic case is naturally bound between 0 and T∗.

This perturbation will kick the system to a new phase τ′(ε, τ) that depends on the amplitude
and direction of the perturbation but also on the phase τ at which the system was perturbed.
Neurons, for example, are usually relatively insensitive to a perturbation when they have just
spiked [140]. The difference between these two phases is given by

∆(ε, τ) = τ′(ε, τ)− τ (2.3.7)

and can be related to the phase function θ(x). To this end consider a point xΓ on the limit cycle
with phase θ(xΓ) = τ and a general perturbation ε. The phase after the perturbation can be
approximated by

τ′(ε, τ) = θ(xΓ(τ) + ε) ≈ τ +∇xθ(x)|xΓ(τ)
· ε, (2.3.8)

where we have expanded the new phase up to the first order in ε because the perturbation is
considered to be infinitesimal. We find that the phase shift is related to the gradient of the phase
function

∆(ε, τ) = ∇xθ(x)|xΓ(τ)
· ε (2.3.9)

evaluated on the limit cycle. The vector-valued function

Z(τ) = ∇xθ(x)|xΓ(τ)
(2.3.10)

is referred to as the iPRC because it characterizes the response of the phase with respect to an
infinitesimally small perturbation from the limit cycle in an arbitrary direction.

2.3.3 Adjoint Method

We have seen that the iPRC can be defined as the gradient of the phase function evaluated on the
limit cycle, Eq. 2.3.10. This allows for an intuitive understanding of the iPRC as a linearization
of the phase function corresponding to a linearization of the isochrone around the limit cycle, as
pointed out by Wilson and Ermentrout [141]. Furthermore, this definition is very useful because
although θ(x) is difficult to determine, its gradient is the solution to a linear differential equation,
the so-called adjoint equation [142]

dZ(τ)
dτ

+ AT(τ)Z(τ) = 0, (2.3.11)

where A(τ) = ∇xF(x)|xΓ(τ)
is the Jacobian matrix of Eq. 2.3.1 evaluated on the limit cycle Γ,

and AT denotes its transposed [A]ij = [AT ]ji. Eq. 2.3.11 does not uniquely define the iPRC but
additionally requires a normalization condition [135]

Z(τ) · dxΓ(τ)

dτ
= 1, (2.3.12)

that is obtained by differentiating θ(xΓ(τ)) = τ with respect to τ and thus reflects the fact that the
phase increases uniformly on the limit cycle. For smooth systems with a limit cycle, the remaining
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boundary conditions are periodic [143]:

Z(τ) = Z(τ + T∗). (2.3.13)

It should be noted that for nonsmooth oscillators, specifically those who suffer a jump (or reset),
the PRC can be discontinuous [144].

2.3.4 Direct Method

Usually, if one measures the iPRC in neural systems, either experimentally or numerically, one
does so by considering a T∗-periodic system that has fired a spike at ti = 0 and measures the
time of the next spike ti+1 = ti + T(ε, τ) in response to a perturbation to the voltage variable
as a function of the phase at which the perturbation was applied [136]. The resulting interspike
interval T(ε, τ) will, in general, not agree with the period of the system T∗ and the deviation
between the two

δT(ε, τ) = T(ε, τ)− T∗, (2.3.14)

is used to define the iPRC by

Zv(τ) = − lim
ϵ→0

δT(ε, τ)

ϵ
. (2.3.15)

Here the sign has been chosen so that the iPRC is positive (Zv > 0) if a positive kick (ϵ > 0) leads
to an early spike time (δT < 0). Note that the perturbation we have considered here is a scalar
function, as it is only applied to the voltage variable. We thus obtain a likewise scalar iPRC Zv(τ)
that corresponds to a certain component of the previously discussed vector-valued iPRC Z(τ).
Moreover, the iPRC defined in this way is based on a slightly different phase definition since
it measures the shift of the next spike time, whereas previously, we considered the shift of the
asymptotic spike time. In Fig. 2.14, we show this phase for the adaptive LIF model as we did for
the asymptotic phase in Fig. 2.13. Note that the two definitions are not identical for an adaptive
IF model, where a variable is not reset on a spike. Two trajectories starting at two different points
in phase space that have the next spike in synchrony will therefore have the subsequent spikes in
asynchrony. This includes the asymptotic spike time. Consequently, two points in phase space
with the same spike time phase will have different asymptotic phases. This is true for every point
in the phase space except for those on the limit cycle, where the two phase definitions are identical.
This is because points on the limit cycle that have their next threshold crossing in synchrony also
have every subsequent threshold crossing in synchrony (we are essentially considering the same
point). We will see that this difference is reflected in the boundary condition of the iPRC.

First, however, we should make a connection between the two definitions of the iPRC, on the
one hand, by means of the gradient of the phase function, and on the other hand, by means of the
shift of the next spike time. To this end, it is vital to realize that T∗ − τ′(ε, τ) is exactly the time
until the next spike. This is true as long as the phase is defined with respect to the shift of the
next spike time. In this case the difference ∆(ε, τ) is therefore related to the (negative) spike-time
deviation:

∆(ε, τ) = τ′(ε, τ)− τ = T∗ − T(ε, τ) = −δT(ε, τ). (2.3.16)

Thus, the phase difference due to a small perturbation ∆(ε, τ) and the spike-time deviation δT(ε, τ)
are identical except for the sign. If we compare Eq. 2.3.15 with Eq. 2.3.9 and 2.3.10, assuming that
the vector-valued perturbation therein is applied to a certain variable, which can be interpreted
as the voltage, we see that Zv(τ) is indeed the corresponding component of the vector-valued
gradient

Zv(τ) = lim
ε→0

∇xθ(x)|xΓ · εv

ε
= ∇xθ(x)|xΓ · ev, (2.3.17)

where εv = ε · ev is the perturbation applied to the voltage and ev is the unit vector in the direction
of the voltage.
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The definition of the iPRC in terms of the deviation of the next spike time is instructive and
numerically straightforward to implement. Furthermore, in some special cases, it even allows the
PRC to be calculated analytically (for finite and infinite perturbations), as we will show now.

Example: Calculation of the iPRC for the LIF model by the direct method

As an instructive example, the definition of the iPRC according to Eq. 2.3.15 is illustrated in
Fig. 2.15A using a simple LIF model that is subjected to a perturbation to the voltage with ampli-
tude ϵ at phase τ:

v̇ = µ − γv + εδ(t − τ),
if v(t) = vT → ti = t, v(t) = vR.

(2.3.18)

As usual, we assume the model has fired a spike at ti = 0, and the voltage is initiated at v(ti) =
vR = 0. In Fig. 2.15A, we distinguish two cases for the following interval. First, a case where the

ti τ ti+1 ti + T ∗

t

vR

vT

v
(t

)

A
T ∗

Ti δTi

ε

0 T ∗

τ

0.0

0.5

1.0
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2.0

2.5

−
δT

(τ
,ε

)/
ε

B
ε = 0.20
ε = 0.10
ε = 0.01
PRC
iPRC

FIGURE 2.15: Panel A illustrates how a perturbation to the voltage affects the next spike time.
Two integrate-and-fire models are initialized at v(ti) = vR. The voltage of the first model
evolves unperturbed (blue line) and reaches the threshold after the deterministic period T∗.
The voltage of the second model is shifted by ε = 0.2 at the time ti + τ (cyan line) and reaches
the threshold at an earlier time ti+1 < ti + T∗. The difference between the two spike times is de-
noted δTi and indicated by a dotted red line. Panel B shows the PRC Zv(τ, ϵ) = −δTi(τ, ε)/ε as
a function of the phase τ at which the perturbation is applied for different values of ε. The cyan
line corresponds to the value used in A and is compared to the theoretical prediction according
to Eq. 2.3.23 (dashed line). For ϵ → 0, the PRC approaches the iPRC given by Eq. 2.3.24 (dotted

line). Parameters γ = 1, µ = 1/(1 − exp(−1)) ≈ 1.58.

model is unperturbed (ε = 0), thus crossing the threshold and firing a second spike at ti + T∗ (blue
line). Second, a case where the model is perturbed, i.e., the voltage increases by the value ε at time
τ and crosses the threshold at ti+1 (cyan line). The difference between the two intervals (T∗ and
Ti), or equivalently the spike times (ti + T∗ and ti+1), defines the deviation δTi (red dotted line).
In Fig. 2.15B, the relative deviation δTi/ε, which in turn defines the PRC, is shown as a function
of the phase τ at which the perturbation was applied for three different amplitudes ε. The relative
deviation for the specific value ε = 0.2 that was used in Fig. 2.15A is shown by the cyan line in
Fig. 2.15B. For finite perturbations, two parts of the PRC can be distinguished. Initially, the PRC
increases monotonically because the time by which the spike is advanced δT is exactly the time it
would have taken the system to get from v(τ) to v(τ) + ε. For the LIF model, v(τ) slows down
as the model progresses on the limit cycle, so the effect of a perturbation with a given amplitude
increases the later the perturbation is applied. However, this is only true up to a phase τ∗ where
the PRC has a kink. This phase corresponds to the point where the perturbation is large enough
to push the voltage directly above the threshold, i.e., ε > vT − v(τ∗). This is because, after τ∗, the
time the next spike can be advanced becomes smaller the closer one gets to the deterministic spike
time. As a trivial example, consider a perturbation applied at ti + T∗, which obviously cannot
advance the spike time, so that δTi(ε, τ = T∗) = 0. The time τ∗ for which the ε > vT − v(τ∗) is
satisfied increases as ε decreases (see yellow and blue lines). The iPRC is shown by a dotted line
in Fig. 2.15A and is obtained for an infinitesimally small perturbation amplitude ε → 0.
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For the LIF model, the PRC (for finite perturbations) can be calculated analytically using
Eq. 2.3.15. To this end we first calculate the deterministic period T∗ (ϵ = 0):

T∗ =
∫︂ vT

0
dv

1
µ − γv

= γ−1 ln
(︃

µ

µ − γvT

)︃
. (2.3.19)

To calculate the perturbed interval, we split the integral in Eq. 2.3.19 into two parts, before and
after the perturbation was applied at v∗ = v(τ). Put differently, the time T(ε, τ) is composed of
two times, namely the time it takes the model to get from vR = 0 to v∗ and from v∗ + ε to vT :

T(ε, τ) =
∫︂ v∗

0
dv

1
µ − γv

+
∫︂ vT

v∗+ε
dv

1
µ − γv

Θ(vT − v). (2.3.20)

The Heaviside function Θ(v) takes into account that a perturbation of v beyond the firing thresh-
old yields the same spike time as a perturbation exactly to the threshold (as we have argued
previously). We can rearrange the equations to identify the deviation of the spike time:

T(ε, τ) =
∫︂ vT

0
dv

1
µ − γv

−
∫︂ v∗+ε

v∗

1
µ − γv

Θ(vT − v) = T∗ + δT(ε, τ). (2.3.21)

The calculation of δT(ε, τ) requires the knowledge of v∗ which is given by∫︂ τ

0
dt =

∫︂ v∗

0
dv

1
µ − γv

=⇒ v∗ =
µ

γ
(1 − e−γτ). (2.3.22)

Finally, we have all the pieces together to solve for the deviation of the interval using Eq. 2.3.21
and Eq. 2.3.22:

δT(ε, τ) = −
∫︂ v∗+ε

v∗
dv

1
µ − γv

Θ(vT − v) =

{︄
−γ−1 ln

(︂
1 − ε γ

µ eγτ
)︂

, if v∗ + ε < vT ,

T∗ − τ, if v∗ + ε > vT .
(2.3.23)

The second case corresponds to the situation where v∗ + ε lies beyond the threshold and can be
understood as follows: If the model crosses the threshold due to the perturbation at time τ, then
ti+1 = τ is the spike time and the deviation from the unperturbed interval is simply given by
T∗ − τ. In Fig. 2.15B, the PRC according to Eq. 2.3.23 for ε = 0.2 is shown by a dashed line and
shows excellent agreement with the cyan line obtained from numerical simulations. To obtain the
iPRC Zv(τ) according to Eq. 2.3.15, we expand δT(ε, τ) up to the first order (higher order terms
vanish as ε → 0):

Zv(τ) = − lim
ε→0

δT(0, τ) + εδT′(0, τ)

ε
=

1
µ

eγτ , (2.3.24)

which is shown by a dashed line in Fig. 2.15B.
The direct method presented here allows for an intuitive understanding of the PRC and iPRC

and their relation to the response of the spike timing to a certain perturbation. The disadvantage
of this method is that it is difficult to utilize when dealing with systems that are more complicated
than the LIF model, for example, for multidimensional IF models. In the following, we calculate
the iPRC for a number of prominent IF models using the adjoint method. Because we will not
return to the case of a finite perturbation, we will also refer to the iPRC simply as the PRC for ease
of notation.

2.3.5 Phase response curves for integrate-and-fire neuron models

In the following, we show how to calculate the PRC using the adjoint method first for one-
dimensional IF models and then for the LIF and GIF models in both cases with a spike-triggered
adaptation current. These two models will be used frequently for illustrative purposes in Sec. 2.4.
We note that these PRCs have already been calculated by Schwalger and Lindner [74] and are
shown here for completeness.
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We have already emphasized that the PRC obtained by the direct method Eq. 2.3.15 is not fully
equivalent to the PRC defined by the adjoint method Eq. 2.3.11, 2.3.12, and 2.3.13. To emphasize
this again, according to Eq. 2.3.15, two points have the same phase if they fire their next spike in
synchrony. This is somewhat different from the definition of phase according to Eq. 2.3.3, where
two points have the same phase if they become asymptotically indistinguishable, which only
guarantees that they fire asymptotically synchronously. The former definition corresponds to the
so-called "first-order PRC", which is often measured experimentally [136]. In this case, the adjoint
method remains valid, except that the periodic boundary condition is replaced by

Zw1(T
∗) = · · · = ZwN (T

∗) = Za(T∗) = 0. (2.3.25)

This means that the PRC vanishes at the firing threshold for every variable except for the voltage.
Schwalger and Lindner [74] have given a nice intuitive reasoning for these boundary conditions:
If the isochrones are defined as sets that lead to the same spike time, then the threshold hyperplane
is a special isochrone with phase τ = T∗ (cf. Fig. 2.14). Close to the threshold (and limit cycle),
the isochrones will thus be parallel to the threshold and perturbations in any direction but the
voltage will not change the phase. Note that if we use Eq. 2.3.25 to evaluate the normalization
Eq. 2.3.12 at τ = T∗ we find

v̇Γ(T∗)Zv(T∗) = 1. (2.3.26)

In other words, the PRC with respect to the voltage evaluated at the threshold is given by the
inverse velocity of the voltage Zv(T∗) = v̇Γ(T∗)−1. Specifically, this implies Zv(T∗) > 0 because,
in the mean-driven regime, the threshold is crossed even in the absence of fluctuations, so the
velocity of the voltage must be positive at the threshold v̇Γ(T∗) > 0.

To calculate the PRC by means of the adjoint equation Ż(τ) = −AT(τ)Z(τ) we first have to
determine the (transposed) Jacobian matrix

AT(τ) =

⎛⎜⎜⎜⎜⎜⎝
∂v f0 ∂v f1 . . . ∂v fN 0

∂w1 f0 ∂w1 f1 . . . ∂w1 fN 0
...

...
. . .

...
...

∂wN f0 ∂wN f1 . . . ∂wN fN 0
−1 . . . . . . 0 −τ−1

a

⎞⎟⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓
x(τ)=xΓ(τ)

(2.3.27)

evaluated on the limit cycle xΓ(t). Because we consider a spike-triggered adaptation, the dynam-
ics of a(t) depend only on the spike times ti but neither on v nor any of the auxiliary variables wj.
Consequently, the last column of AT(t) simplifies significantly (here, we would usually find the
derivation of the dynamics of a with respect to v and wj).

One-dimensional integrate-and-fire models

Solving the adjoint equation requires to specify the functions f0(v, w) and f j(v, w). However,
some general statements can be derived for one-dimensional integrate-and-fire models with a
spike-triggered adaptation. For these models, the (transposed) Jacobian matrix reduces to

AT
1D(τ) =

(︃
∂v f0 0
−1 −τ−1

a

)︃⃓⃓⃓⃓
x(t)=xΓ(τ)

(2.3.28)

and the PRC with respect to a perturbation to the voltage is the solution to the linear differential
equation Żv = f ′0(vΓ(τ))Zv that can formally be solved [74]:

Zv(τ) = Zv(T∗) exp
[︃∫︂ T∗

τ
dt′ f ′0(vΓ(t′))

]︃
. (2.3.29)

Since the model is mean-driven, we can conclude that Zv(T∗) = v̇0(T∗)−1 > 0 because the veloc-
ity v̇Γ(t) = f0(vΓ(t))+ µ− a0(t) is always positive, especially at the phase T∗, i.e., at the threshold
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where the inverse velocity and thus the PRC is given by

Zv(T∗) =
1

f0(vT) + µ − a∗ + ∆/τa
, (2.3.30)

where a∗ refers to the value of a0(t) right after the reset2. For one-dimensional IF models (with a
spike-triggered adaptation variable), the PRC is thus strictly positive, a property generally associ-
ated with Type I neuron models [145]. This can also be understood intuitively because the voltage
is a monotonically increasing function of time for any mean-driven, one-dimensional model. A
positive kick to the voltage brings the model closer to the threshold and reduces the time until the
next spike; there is simply no way how a positive kick of the voltage could cause a delay in the
next spike. Such a delay would require some kind of detour in phase space that is only possible
in higher dimensions.

We can also make a general statement about the PRC with respect to the adaptation variable
Za(τ) governed by

Ża(τ) = Zv(τ) + Za(τ)/τa. (2.3.31)

The formal solution to this equation reads

Za(τ) = eτ/τa

(︃
Za(τ0) +

∫︂ t

τ0

Zv(t′)e−t′/τa

)︃
, (2.3.32)

where τ0 is a reference phase, similar to an initial condition, at which Za(τ0) is specified. Because
the PRC in any direction but the membrane potential vanishes at the threshold hyperplane, it is
convenient to choose τ0 = T∗ so that Za(T∗) = 0 which yields

Za(τ) = −eτ/τa

∫︂ T∗

t
dt′Zv(t′)e−t′/τa . (2.3.33)

In contrast to Zv(t), this function is strictly negative, i.e., a positive kick to the adaptation variable
delays the next spike. This is also reasonable since the adaptation current has an inhibitory effect
on the voltage dynamics.

Linear integrate-and-fire models

Let us now turn to linear IF models for which we can often find exact expressions for the PRCs
by means of the adjoint method. This is so because, in this case, the Jacobian matrix only contains
constants, and its evaluation on the limit cycle becomes redundant. Moreover, for linear models,
the PRCs Zv(τ) and Zwj(τ) are independent of the adaptation variable (except for the normaliza-
tion) because their governing equations do not depend on Za(τ) (Eq. 2.3.27). For this reason, we
refer to the adaptive LIF model as a one-dimensional model since the spike-triggered adaptation
does not add any qualitatively new behavior with respect to the PRC. In Fig. 2.16, we compare
the PRCs for the adaptive LIF and GIF models either calculated numerically by the direct method
(colored area) or analytically by the adjoint method (black lines).

First, we consider the LIF model with the leak term f0(v) = −γv. The PRCs are determined
by

d
dτ

(︃
Zv
Za

)︃
= AT

aLIF

(︃
Zv
Za

)︃
, with AT

aLIF =

(︃
−γ 0
−1 −τ−1

a

)︃
, (2.3.34)

2The last term in the denominator a(T∗) = a∗ − ∆/τa requires some explanation. On the limit cycle, the decay of a(t)
over one period balances exactly its increase by ∆/τa upon reaching the threshold. This means that if a0(τ = 0) = a∗
is defined as the value of the adaptation variable at the beginning of an interval, then it follows that the value of the
adaptation variable upon hitting the threshold but right before it is increased is given by a0(τ = T∗) = a∗ − ∆/τa.
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FIGURE 2.16: Panel A shows the two PRCs for the adaptive LIF model. The PRC of the voltage
Zv is strictly positive, while the PRC for the adaptation variable Za is strictly negative, as ex-
pected for a one-dimensional model. Panel B shows the three PRCs for the adaptive GIF model.
Since the GIF model is two-dimensional, the PRC Zv can become partially negative, as shown
in B1. Similarly, the PRC of the auxiliary variable Zw and the PRC of the adaptation variable
Za can be partially positive, although both variables enter the dynamics of the voltage with a
negative sign. Theoretical predictions (black line) are compared to numerical calculations of the
spike time deviation (filled curves). Parameters A: γ = 1, µ = 5, τa = 2, ∆ = 2; B: γ = −1,

µ = −1, τw = 2, β = 5, τa = 1, ∆ = 0.1.

and the usual normalization and boundary conditions. This system of linear differential equations
is solved by:

Zv(τ) =
eγ(τ−T∗)

v̇(T∗)
=

eγ(τ−T∗)

µ − γvT − a∗ + ∆/τ
, (2.3.35)

Za(τ) =
e(τ−T∗)/τa − eγ(τ−T∗)

(γ − τ−1
a )(µ − γvT − a∗ + ∆/τ)

, (2.3.36)

and shown by a black line in Fig. 2.16A1 and A2. We can compare this result in the limit of a
vanishing adaptation (∆ = 0) to the PRC Zv(τ) = µ−1eγτ that has been calculated by the direct
method in Sec. 2.3.4. For a vanishing adaptation, the velocity at the threshold and the period are
given by v̇(T∗) = µ − γ and T∗ = γ−1 log(µ/(µ − γvT)), respectively. The second equation can
rearranged to obtain exp(−γT∗) = (µ − γvT)/µ. Substituting both in Eq. 2.3.35 yields

lim
a∗→0

Zv(τ) =
eγte−γT∗

µ − γvT
=

eγτ

µ
, (2.3.37)

which agrees with the PRC calculated previously.
Secondly, we consider the two-dimensional GIF model with f0(v, w) = −γv− βw and f1(v, w) =

(v − w)/τw. The Jacobian matrix is given by

d
dτ

⎛⎝Zv
Zw
Za

⎞⎠ = AT
aGIF

⎛⎝Zv
Zw
Za

⎞⎠ , with AT
aGIF =

⎛⎝−γ τ−1
w 0

−β −τ−1
w 0

−1 0 −τ−1
a

⎞⎠ . (2.3.38)
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The solution to Eq. 2.3.38 was given by Schwalger and Lindner [74] and reads

Zv(τ) =
e

ν
2 (τ−T∗)

[︂
cos(Ω(τ − T∗))− 1−γτw

2τwΩ sin(Ω(τ − T∗))
]︂

µ − γvt − βw0(T∗)− a∗ + ∆/τa
(2.3.39)

with ν = γ + τ−1
w and Ω =

√︂
γ+β
τw

− ν2

4 and is again shown by a black line in Fig. 2.16B1. The
PRC Zv(τ) of the two-dimensional GIF model can thus be qualitatively different from the PRC of
any one-dimensional model because it can be partially negative. This means that a positive kick
to the voltage, even though it brings the model closer to the firing threshold, can delay the next
spike time. The mechanism is illustrated in Fig. 2.17 using (for illustration purposes) a GIF model

-2 -1 vR vT
v

0.0

−0.5

−1.0

w

FIGURE 2.17: Illustration of the spike time delay due to a positive voltage perturbation at the
beginning of the firing cycle in a (non-adaptive) GIF model. The red line indicates the limit cycle
and corresponds to a trajectory of the GIF model with initial condition v(0) = vR, w(0) = wR
(red square). For the blue trajectory, the GIF model suffers an immediate (positive) perturbation
so that the model is effectively initiated at v(0) = vR + ε, w(0) = wR (blue square). The resulting
trajectory takes a long detour through the phase space and reaches the threshold later than the
blue trajectory, corresponding to a delay in the spike time. Parameters: γ = −1, µ = −1, τw = 5,

β = 2.

without adaptation. We first calculate the limit cycle (red line) corresponding to the trajectory
v(t), w(t) with the initial condition v(0) = 0, w(0) = 0 (red square) and compare it with a second
trajectory (blue line) with the initial condition v(0) = ε, w(0) = 0 (blue square) corresponding to a
perturbation of the system at phase τ = 0. As a result of the initial perturbation, the blue trajectory
makes a large detour in the phase space, which leads to a delay of the next spike (compared to
the red trajectory). In general, the detour alone is insufficient to conclude that the next spike is
delayed, but we also need to consider the velocity. For example, if we choose the initial condition
so that the trajectory moves very close to the unstable fixed point (shown as a black circle in
Fig. 2.17), the dynamics of v and w will become very slow, and it is conceivable that this will lead
to a strong delay of the next spike, even though the trajectory is "shorter".

2.4 Interspike-interval correlations for tonically firing neurons

In this section, we return to the most general case and study a stochastic multidimensional IF
neuron model endowed with a spike-triggered adaptation a(t) and subject to both a correlated
noise η(t) and uncorrelated noise ξv(t) as introduced in Eq. 2.2.17:

v̇ = f0(v, w) + µ − a + η +
√

2Dξv(t),
ẇj = f j(v, w),

τa ȧ = −a + ∆ ∑ δ(t − ti),

τη η̇ = −η +
√︂

2σ2τηξη(t),

if v(t) = vT → ti = t, v(t) = vR, w(t) = wR.

(2.4.1)
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We emphasize again that this model is an extension of the model studied by Schwalger and Lind-
ner [74]. To calculate the SCC ρk using the PRC, we assume the system has a limit cycle solution in
the deterministic limit (D = 0, σ = 0). As we have pointed out in Sec. 2.2, such a model generates
a nonrenewal spike train, i.e., the intervals between successive spike times are not statistically in-
dependent but correlated. Specifically, in Eq. 2.4.1, the correlation between adjacent intervals Ti,
Ti+1 and generally between any two intervals Ti, Ti+k with k > 0 are due to the adaption current
a(t) on the one hand and the correlated noise η(t) on the other hand. This is so because these two
variables are not reset when a spike is fired and thus can carry information from one interspike
interval to another.

In Sec. 1.3, we have explained that for a renewal point process, the ISI is fully characterized by
its probability distribution pISI(T). In contrast, for a nonrenewal point process, each ISI depends
on the entire history of the intervals, and the joint probability distribution p(Ti, Ti+k) does not
factorize into the marginal distributions. In Eq. 1.3.28, we introduced a measure that quantifies
linear correlations between intervals, namely the SCC, which is repeated here for convenience:

ρk =
⟨∆Ti∆Ti+k⟩

⟨∆T2⟩ . (2.4.2)

We recall that the SCC is a dimensionless measure that compares the covariance (numerator)
to the variance (denominator) of the ISI and thus ranges between −1 < ρk < 1. This measure is
positive if two intervals Ti, Ti+k deviate on average similarly from the mean, i.e., if both are longer
(or shorter) than the mean. In this case, the intervals are said to be correlated. Conversely, if a
long interval is usually followed by a short interval (or vice versa), the SCC is negative (ρ1 < 0).
In this case, the intervals are said to be anti-correlated. The goal of this chapter is to determine
the SCC ρk for a multidimensional IF model with spike-triggered adaptation and correlated noise
(Eq. 2.4.1).

Following Schwalger and Lindner [74], we perform a systematic first-order approximation of
the ISI with respect to a perturbation from the limit cycle. In other words, we expand the intervals
around their deterministic period

Ti ≈ T∗ + δTi, (2.4.3)

where δTi ∝ ε1 and ε is an abstract parameter corresponding to the amplitude of the perturbation.
Furthermore, we assume that the mean ISI is affected by the perturbation only in the second order
of its amplitude so that (up to the first order) the mean and the deterministic interval agree

⟨T⟩ ≈ T∗. (2.4.4)

This allows to approximate deviations from the mean interval ∆Ti by the first-order deviation
from the deterministic interval δTi, and in turn to approximate the SCC as follows

ρk ≈
⟨δTiδTi+k⟩
⟨δT2⟩ . (2.4.5)

Deviations from the deterministic limit cycle are exactly what the PRC quantifies. In fact, in
Sec. 2.3.4, we have extensively discussed the definition of the PRC in terms of the spike-time
deviation in response to a small voltage perturbation (repeated here for convenience):

Zv(τ) = − lim
ε→0

δT(ε, τ)

ε
. (2.4.6)

Strictly speaking, this definition relied on a perturbation of the form ϵδ(t − τ) applied to the
voltage variable at a specific phase τ of the firing cycle. More generally, the linear response of the
spike-time deviation to an arbitrary perturbation is given by the integral over the (vector-valued)
response function

δTi = −
∫︂ T∗

0
dτ Z(τ)ui(τ), (2.4.7)

where ui(τ) = u(ti + τ) is the perturbation, i.e. the deviation from the limit cycle, during the
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i-th interval. In Fig. 2.18, we present a sketch illustrating how a voltage perturbation ui(τ) (left
panel) can be translated into a perturbation of the phase variable Zv(τ)ui(τ) using of a phase-
dependent weighting factor given by the PRC (middle panel), which is integrated over the entire
interval T∗ to obtain the deviation of the spike time δTi (right panel). In order to determine the

FIGURE 2.18: The left panel shows a continuous voltage perturbation ui(τ) (red line) that affects
a neuron model moving along the limit cycle. The perturbation of the voltage corresponds per-
turbation of the phase, as illustrated in the middle panel. The voltage perturbation is weighted
by the PRC (blue curve) to obtain the phase perturbation (purple line) given by the product
Zv(τ)ui(τ). The integral of the phase perturbation gives the phase shift after time T∗. Due to
the scaling of the phase τ ∈ [0, T∗], this phase shift equals the spike time deviation δTi (purple

arrow) shown in the right panel.

SCC according to Eq. 2.4.5 and 2.4.7, we have to identify the perturbation from the limit cycle over
two different intervals ui(τ) and ui+k(τ), weight them by the PRC Z(τ), calculate the integral of
the weighted perturbation, build products and finally form the average. This is demonstrated
below by an instructive example where the perturbation from the limit cycle can be read directly
from the dynamical equations.

2.4.1 Correlation coefficient for integrate-and-fire models with correlated noise

Here, we calculate the SCC for a non-adaptive stochastic IF model that is subject to a correlated
as well as uncorrelated noise:

v̇ = f0(v, w) + µ + η +
√

2Dξv(t),
ẇj = f j(v, w),

τη η̇ = −η +
√︂

2τησ2ξη(t),

if v(t) = vT → ti = t, v(t) = vR, w(t) = wR.

(2.4.8)

A similar case was studied by Schwalger, Droste, and Lindner [95], except that they considered a
more general correlated noise η(t) with an arbitrary correlation function but no additional white
noise. We will see that neither of these differences is particularly important for the derivation.

In Eq. 2.4.8, correlations between any two intervals are caused by the correlated noise η(t).
This is so because the voltage v(t) and auxiliary variables wj(t) are reset whenever a spike is
fired, and the Gaussian white noise ξv(t) is uncorrelated per definition. None of these variables
can transfer information from one ISI to another. Under the assumptions given in Sec. 2.3, in
particular, that the model is mean-driven and the mean ISI ⟨Ti⟩ is well approximated by the
deterministic ISI T∗, we can determine the deviations δTi using the PRC Zv(τ):

δTi = −
∫︂ T∗

0
dτ Zv(τ)ui(τ). (2.4.9)

Here, ui(τ) is the voltage perturbation over the i-th interval given by

ui(τ) = η(ti + τ) +
√

2Dξv(ti + τ). (2.4.10)
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This perturbation is obtained by comparing the governing equation of v in the stochastic (Eq. 2.4.8)
and the deterministic case (Eq. 2.4.8 with D = 0 and σ = 0). Thus, the deterministic system is per-
turbed by two independent processes: the OU process η(t) and the Gaussian white noise ξv(t).
Substituting this expression into Eq. 2.4.9 allows to calculate the deviation of the i-th interval Ti
from the deterministic period T∗:

δTi = −
∫︂ T∗

0
dτ Zv(τ)

[︂
η(ti + τ)−

√
2Dξv(ti + τ)

]︂
. (2.4.11)

The two occurring integrals are Gaussian random numbers:

Hi =
∫︂ T∗

0
dτ Z(τ)η(ti + τ), (2.4.12)

Ξi =
∫︂ T∗

0
dτ Z(τ)

√
2Dξv(ti + τ), (2.4.13)

which are independent because they arise from two different noise sources, ξη and ξv. The indices
have been chosen so that Hi and Ξi are associated with the i-th interval. The covariance between
two ISIs is given by

⟨δTiδTi+k⟩ =⟨Hi Hi+k + ΞiΞi+k⟩

=
∫︂ T∗

0

∫︂ T∗

0
dτ1dτ2 Z(τ1)Z(τ2)×

×
[︁
Cηη(ti+k − ti + τ2 − τ1) + 2DCξξ(ti+k − ti + τ2 − τ1)

]︁
,

(2.4.14)

where mixed terms ⟨HiΞj⟩ vanish because the random numbers are independent. The difference
between the spike times in the argument of the correlation function can be simplified as follows

C(ti+k − ti + τ2 − τ1) ≈ C(kT∗ + τ2 − τ1), (2.4.15)

because terms in the argument of the correlation function that are of the first order of the pertur-
bation amplitude affect the covariance only in higher order. To make this argument more precise,
we neglect the white noise for a moment so that the IF model is perturbed only by the OU process.
In this case, the OU process’s standard deviation σ equals the amplitude of the perturbation. The
correlation function Cηη(τ) = σ2 exp(−|τ|/τη) itself is already of order σ2 (here the leading or-
der), considering additional first-order perturbations in the argument of the correlation function
affects the covariance of the ISI at least in third order σ3. Thus, the covariance can be expressed
in leading order by

⟨δTiδTi+k⟩ =
∫︂ T∗

0

∫︂ T∗

0
dτ1dτ2 Z(τ1)Z(τ2)

[︁
Cηη(kT∗ + τ2 − τ1) + 2DCξξ(kT∗ + τ2 − τ1)

]︁
, (2.4.16)

with Cηη(t) = σ2 exp(−|t|/τη) and Cξξ(t) = δ(t). In the following, we will keep the general
expression Cηη(t) because the results do not only apply to the specific correlation function of
the OU process. Since the Gaussian white noise is delta correlated, it contributes to the variance
(k = 0) but not to the covariance (k ̸= 0) - an uncorrelated noise does not directly introduce
correlations between intervals. It is, therefore, convenient to distinguish two cases. One in which
the time windows over which the integrals are formed overlap (k = 0), and one in which they do
not (k > 0):

⟨δTiδTi+k⟩ ≈
{︄∫︁ T∗

0

∫︁ T∗

0 dτ1dτ2 Z(τ1)Z(τ2)
[︁
Cηη(τ2 − τ1) + 2Dδ(τ2 − τ1)

]︁
, k = 0,∫︁ T∗

0

∫︁ T∗

0 dτ1dτ2 Z(τ1)Z(τ2)
[︁
Cηη(kT∗ + τ2 − τ1)

]︁
, k > 0.

(2.4.17)

The ratio of these two cases determines the SCC:

ρk =

∫︁ T∗

0

∫︁ T∗

0 dτ1dτ2 Z(τ1)Z(τ2)
[︁
Cηη(kT∗ + τ2 − τ1)

]︁∫︁ T∗

0

∫︁ T∗

0 dτ1dτ2 Z(τ1)Z(τ2)
[︁
Cηη(τ2 − τ1) + 2Dδ(τ2 − τ1)

]︁ . (2.4.18)
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FIGURE 2.19: Serial correlations in a stochastic EIF model with correlated noise. Panel A shows
a voltage trajectory v(t) together with the spike times ti and corresponding ISIs Ti. Panel B
shows a trajectory of the slow varying noise η(t) that is correlated over multiple spike times and
affects adjacent ISIs similarly. Panel C shows the PRC of the EIF model. Panel D shows the SCC
obtained from stochastic simulations (circle) and according to Eq. 2.4.18 (line). The exponential
decay of ρk with k stems from the exponential correlation function of η. Parameters: vT = 2,

γ = 1, µ = 3, ∆T = 0.1, σ2 = 0.1, τη = 1, D = 0.01, T∗ ≈ 0.56.

In Fig. 2.19, we use an EIF model ( f0(v) = µ − γv + ∆T exp[(v − v̂T)/∆T ]) subject to an
OU noise and calculate the SCC according to Eq. 2.4.18. As we have pointed in Sec. 2.2.4 out,
the EIF model is of special interest because its nonlinearity can be attributed to the positive
feedback mediated by the Na+ current. In Fig. 2.19A we show v(t) over multiple spike times
. . . , ti−1, ti, ti+1, . . . together with the corresponding ISIs . . . , Ti−1, Ti, Ti+1, . . . . The trajectory of
the perturbation, here the OU process η(t) is shown in Fig. 2.19B. For the EIF model, the PRC has
to be determined numerically and is shown in Fig. 2.19C. Because it is strictly positive, as for any
one-dimensional model, a positive perturbation to the voltage always advances the phase and
results in a shortened interval (and vice versa). The resulting SCC

ρk = ρ1e−(k−1)T∗/τη , (2.4.19)

is an exponential function of the lag k (Fig. 2.19D) just like the correlation function of the OU
process. This is so because in the case of the OU process the dependence of the correlation function
Cηη(kT∗ + τ2 − τ1) = σ2 exp(−|kT∗ + τ2 − τ1|/τη) on k can be removed from the absolute value
|kT∗ + τ2 − τ1| = (k − 1)T∗ + |T∗ + τ2 − τ1| and from the integral because τ1, τ2 ∈ [0, T∗].

As we have mentioned above, a similar result (specifically for the case D = 0) has already been
derived by Schwalger, Droste, and Lindner [95], who chose to express the result in the Fourier
domain

ρk =

∫︁ ∞
−∞ d f |Z̃( f )|2Sηη( f )ei2π f kT∗∫︁ ∞
−∞ d f |Z̃( f )|2

[︁
Sηη( f ) + 2D

]︁ , (2.4.20)

using the finite Fourier transform Z̃( f ) =
∫︁ T∗

0 dτ Z(τ) exp(i2π f τ)/T∗ and the Wiener–Khinchin
theorem C(τ) =

∫︁ ∞
−∞ d f S( f ) exp(i2π f τ). Eq. 2.4.18 and Eq. 2.4.20 are equivalent, but depending

on the context, it may be more convenient to use one or the other.
The derived expression relates the SCC to i) the PRC of a deterministic integrate-and-fire

model and ii) the correlation function of the noise. Based on the derivation presented, one might
wonder to what extent the particular model affects the expression of the SCC beyond the PRC.
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In other words, could any model be used as long as the PRC is accessible? This is not the case
because the fact that all variables are reset upon firing of an action potential is essential to derive
the perturbation (Eq. 2.4.10) in the first place. For example, suppose another variable is directly
or indirectly affected by the noise and is not reset when the threshold is reached. In that case,
its initial value at the beginning of each interval generally does not agree with the deterministic
value and also contributes to the perturbation. This can lead to significant interval correlations
even if the model is driven by a white noise [74, 146]. We will consider this scenario below.

2.4.2 Correlation coefficient for adaptive integrate-and-fire models with cor-
related noise

Let us now return to the full model (Eq. 2.4.1) repeated here for convenience:

v̇ = f0(v, w) + µ − a + η +
√

2Dξv(t),
ẇj = f j(v, w),

τa ȧ = −a + ∆ ∑ δ(t − ti),

τη η̇ = −η +
√︂

2τησ2ξη(t),

if v(t) = vT → ti = t, v(t) = vR, w(t) = wR.

(2.4.21)

In contrast to Eq. 2.4.8, this model is additionally subject to a slow adaptation current a(t), which
is not reset when a spike is fired, but is increased by ∆/τa.

In order to familiarize ourselves with the interplay of adaptation and correlated noise, we
consider the EIF model again. The time course of the voltage v(t), the adaptation a(t), and the
correlated noise η(t) are shown in Fig. 2.20A. As before, the colored noise perturbs the voltage
directly and would by itself generate positive ISI correlations. However, the (correlated and un-
correlated) noise also causes an indirect perturbation via the adaptation variable. That the adap-
tation variable at the beginning of the ISIs does not always take the value corresponding to the
deterministic limit is illustrated in Fig. 2.20B where we show the deterministic limit cycle (red
line) together with a noisy trajectory (blue line). The initial conditions (over an ISI) ai := a(t+i )
taken right after the reset do, in general, not agree with the deterministic value a∗. We briefly
recall why this is the case: In the deterministic limit, the IF model moves along the limit cycle,
and the adaptation decays exponentially a(t) = a∗ exp(−t/τa) between spikes (t is measured rel-
ative to the last spike time ti). When a spike is fired, the adaptation is immediately increased by
∆/τa. In this limit, decrease and increase are always balanced. In the stochastic case, the ISIs will
generally not coincide with the deterministic period T∗. Consequently, the adaptation variable
decreases more when Ti > T∗ or less when Ti < T∗. Since the increment ∆/τa is fixed, the peak
adaptation values ai deviate from the limit cycle depending on the deviation of the ISI from the
deterministic period. How such a spike-triggered adaption shapes the SCC ρk for stochastic IF
models driven solely by a white noise was studied extensively by Schwalger and Lindner [74]
and we will return to this special case in the limit τη → 0 for our model. Here the case is more
complicated since the correlated noise that caused the deviation say a shortening, of the ISI Ti
compared to T∗ will generally also contribute to a shortening of the next interval Ti+1. At the
same time, the adaptation has the opposite effect; a shortened interval Ti results in a lengthened
interval Ti+1 on average. Which of these two effects determines the correlation between the inter-
vals Ti and Ti+1 depends on various parameters, including white noise intensity. For the specific
set of parameters considered in Fig. 2.20, we observe that adjacent intervals (k = 1) are effectively
uncorrelated, while intervals further apart (k > 1) are negatively correlated (circles in Fig. 2.20D).
Still, the theory derived in the following is capable to explain these patterns.

Perturbation from the limit cycle

To calculate the SCC, we must first formulate the perturbation ui(τ) from the limit cycle. As we
have just argued, the noise indirectly affects the adaptation variable, so the perturbation is not
readily obtained. Instead, the perturbation can be perceived in two ways that ultimately paint the
same picture.
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FIGURE 2.20: Serial correlations in a stochastic adaptive EIF model with correlated noise. Pan-
els A show trajectories of the voltage v(t), adaptation variable a(t), and correlated noise η(t)
together with the spike times ti and ISIs Ti. Panel B shows trajectories in the v-a plane together
with the deterministic limit cycle (red line). Right after a spike, the value of the voltage is always
given by vR due to the reset, while the value of the adaptation variable can vary. Panel C shows
the PRC of the adaptive EIF model. Panel D depicts the SCC obtained from stochastic simula-
tions (circle) and according to Eq. 2.4.47 (line). The SCC is close to zero at lag k = 1, negative at
k = 2, and returns to zero at higher lags. Parameters: vT = 2, γ = 1, µ = 5, ∆T = 0.1, τa = 2,

∆ = 2 σ2 = 0.5, τη = 0.5, D = 0.035, T∗ ≈ 0.75.

As a first approach, we can calculate both the PRC for the voltage Zv(τ) and for the adaptation
variable Za(τ) and find the corresponding perturbations of the voltage uv

i (τ) and adaptation
ua

i (τ). Treated this way, the perturbation of the voltage can be read again from the dynamic
equations:

uv
i (τ) = η(ti + τ) +

√
2Dξv(ti + τ). (2.4.22)

The perturbation to the adaptation, in turn, is given by the deviation of the initial condition
a(ti) = ai from the deterministic value a∗. This can be described by a delta kick with amplitude
δai = ai − a∗ applied to the adaptation at phase τ = 0 so that ua

i (τ) is given by

ua
i (τ) = δaiδ(τ). (2.4.23)

Deviations from the deterministic interval can then be calculated by

δTi = −
∫︂ T∗

0
dτ
(︂

Zv(τ)[η(ti + τ) +
√

2Dξv(ti + τ)] + Za(τ)δaiδ(τ)
)︂

. (2.4.24)

As a second approach, we can treat the deviation of the adaptation variable from the limit cycle
δa(t) as a continuous perturbation to the voltage. This continuous perturbation can be calculated
because between two spikes a(t) is governed by a simple linear differential equation (Eq. 2.4.21):

δai(τ) = ai(τ)− aΓ(τ) = aie−τ/τa − a∗e−τ/τa = δaie−τ/τa . (2.4.25)

Here, ai(τ) is the actual trajectory of the adaptation over an ISI, aΓ(t) is the trajectory of the adap-
tation on the limit cycle, and δai(τ) is the time-dependent deviation of the adaptation from the
limit cycle that affects the voltage. The perturbation to the voltage variable can thus be expressed
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as follows

uv
i (τ) = −δaie−τ/τa + η(ti + τ) +

√
2Dξv(ti + τ), (2.4.26)

and deviations of the intervals are given by

δTi = −
∫︂ T∗

0
dτ Zv(τ)[−δaie−τ/τa + η(ti + τ) +

√
2Dξv(ti + τ)]. (2.4.27)

Both approaches are fully equivalent, and it remains to be shown that Eq. 2.4.24 and Eq. 2.4.27
are identical. By comparison of these two equations, it becomes clear that we have to show that∫︂ T∗

0
Za(τ)δaiδ(τ) = −

∫︂ T∗

0
dτ Zv(τ)δaie−τ/τa . (2.4.28)

In Eq. 2.3.33, we have seen that for a purely spike-triggered adaptation, where the dynamics of
a(t) do not depend on v(t) explicitly, the PRC with respect to a can be expressed by the PRC with
respect to v as follows:

Za(τ) = −
∫︂ T∗

τ
dτ′Zv(τ

′)e(τ−τ′)/τa . (2.4.29)

If we insert this expression into Eq. 2.4.28 we obtain∫︂ T∗

0
Za(τ)δaiδ(τ) = Za(0)δai = −

∫︂ T∗

0
dτ Zv(τ)e−τ/τa (2.4.30)

and find that Eq. 2.4.28 holds. In the following, we will use the voltage perturbation because it
only requires the knowledge of the PRC Zv(τ).

Derivation of the general correlation coefficient

We now proceed to calculate the SCC. As in Sec. 2.4.1, we can build the product of interval devi-
ations and form the average to express the covariance

⟨δTiδTi+k⟩ =
∫︂ T∗

0

∫︂ T∗

0
dτ1dτ2 Z(τ1)Z(τ2)⟨(−δaie−τ1/τa + η(ti + τ1) +

√
2Dξv(ti + τ1))×

(−δai+ke−τ2/τa + η(ti+k + τ2) +
√

2Dξv(ti+k + τ2))⟩,
(2.4.31)

however, here we can not directly determine ρk because both the covariance ⟨δaiδai+k⟩ and the
cross-correlations ⟨δai Hi+k⟩, ⟨δaiΞi+k⟩ are unknown (the Gaussian random numbers Hi+k and
Ξi+k have been defined in Eq. 2.4.12 and Eq. 2.4.13, respectively). To circumvent this problem,
we pursue a similar strategy as done by Schwalger and Lindner [74] and derive a second relation
for the interval deviations δTi in terms of adjacent peak adaptation values ai, ai+1. This allows
to express the covariance of the ISI ⟨δTiδTi+k⟩ by the covariance of the peak adaptation value
⟨δaiδai+k⟩, and to establish a stochastic map by which the covariance ⟨δaiδai+k⟩ can be traced
back to the correlation functions of the noise sources ⟨Hi Hi+k⟩, ⟨ΞiΞi+k⟩ (two terms appearing in
Eq. 2.4.14).

We have already seen that the time course of the adaptation variable is deterministic over an
ISI so that two adjacent peak adaptation values ai and ai+1 are related by the length of the interval
in between:

ai+1 = aie−Ti/τa + ∆/τa. (2.4.32)

Following Schwalger and Lindner [74], this allows to relate deviation of the peak adaptation
values δai = ai − a∗ to deviation of the ISIs δTi = Ti − T∗ by linearizing Eq. 2.4.32:

a∗ + δai+1 = (a∗ + δai)e−(T∗+δTi)/τa + ∆/τa

≈ (a∗ + δai)e−T∗/τa − δTi(a∗/τa)e−T∗/τa + ∆/τa,
(2.4.33)
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where we have expanded the exponential function with respect to a small deviation of the interval
exp(−δTi/τa) ≈ 1 − δTi/τa and subsequently neglected second order terms, in particular δaiδTi.
Rearranging terms and using a∗ = (∆/τa)/(1 − exp(−T∗/τa))3 yields the second expression for
the spike time deviation:

δTi =
τa

a∗
(︂

δai − eT∗/τa δai+1

)︂
. (2.4.34)

This allows us to express the SCC in terms of the covariance ⟨δaiδai+k⟩ as follows

ρk =
⟨δTiδTi+k⟩
⟨δTi⟩2 =

(1 + α2)⟨δaiδai+k⟩ − α⟨δaiδai+k+1⟩ − α⟨δaiδai+k−1⟩
(1 + α2)⟨δa2

i ⟩ − 2α⟨δaiδai+1⟩
. (2.4.35)

Here, we have introduced α = exp(−T∗/τa) and used that the indices of the covariance (rep-
resenting times) can be shifted simultaneously since the covariance is a stationary statistic and
depends only on the difference of times. Finally, by combining Eq. 2.4.27 and 2.4.34, we establish
a stochastic map that relates adjacent peak adaptation values:

δai+1 = ανδai +
αa∗

τa
(Hi + Ξi), with ν = 1 − a∗

τa

∫︂ T∗

0
dτ Z(τ)e−τ/τa . (2.4.36)

Again, Hi and Ξi are the Gaussian random numbers describing the linear response to the colored
and white noise, respectively. In contrast, ν is a constant, reflecting that the dynamics of the
adaptation variable over an ISI are deterministic. Eq. 2.4.36 can be applied iteratively to itself to
find a relation between any two peak adaptation values

δai+k =(αν)δai+k−1 +
αa∗

τa
(Hi+k−1 + Ξi+k−1)

=(αν)2δai+k−2 + αν
αa∗

τa
(Hi+k−2 + Ξi+k−2) + +

αa∗

τa
(Hi+k−1 + Ξi+k−1)

...

=(αν)kδai +
αa∗

τa

k

∑
n=1

(αν)k−n(Hi+n−1 + Ξi+n−1),

(2.4.37)

which allows us to obtain the covariance by multiplying with δai and averaging:

⟨δaiδai+k⟩ = (αν)k⟨δa2
i ⟩+

αa∗

τa

k

∑
n=1

(αν)k−n(⟨δai Hi+n−1⟩+ ⟨δaiΞi+n−1⟩). (2.4.38)

Since we have already established a relation between the covariance of the ISI and the covariance
of the peak adaptation value, evaluating the sum in Eq. 2.4.38 allows us to determine the SCC.

To evaluate the sum, it is useful to realize that cross-correlations ⟨δaiΞi+n−1⟩ vanish because
for n ≥ 1 the random numbers Ξi+n−1 contain the Gaussian white noise only after the spike time
ti and are therefore uncorrelated to the peak adaptation value δai at the spike time ti. Cross-
correlations between the peak adaptation value at time ti and the colored noise at t > ti can be
expressed in terms of the covariance at time ti and the conditional mean of the OU process:

⟨δai Hi+k⟩ = ⟨δai Hi⟩e−kT∗/τη = ⟨δai Hi⟩βk, if k ≥ 1. (2.4.39)

Here we used that ⟨Hi+k⟩ ≈ ⟨Hi⟩ exp(−kT∗/τη) and approximated ti+k − ti ≈ kT∗ because we
are only interested in the leading order of the cross-correlation (considering deviations δTi would
lead to higher order terms δai HiδTi). The covariance ⟨δaiδai+k⟩ can therefore be simplified as

3In the deterministic limit Eq. 2.4.32 becomes a∗ = a∗ exp(−T∗/τa) + ∆/τa and be rearranged to calculate the deter-
ministic peak adaptation value a∗ = (∆/τa)/(1 − exp(−T∗/τa)).
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follows

⟨δaiδai+k⟩ = (αν)k⟨δa2
i ⟩+

αa∗

τa

k

∑
n=1

(αν)k−nβn−1⟨δai Hi⟩

= (αν)k⟨δa2
i ⟩+

αa∗

τa

(︄
(αν)k − βk

αν − β

)︄
⟨δai Hi⟩.

(2.4.40)

The evaluation of the sum relies on the fact that the conditional mean of the correlated noise that
appears in Eq. 2.4.39 decays exponentially with time since only in this case the argument becomes
a geometric sequence. This is a crucial step in the derivation of the SCC and restricts the theory
to an exponentially correlated noise. To proceed, we use the stochastic map Eq. 2.4.36 to trace
the variance and covariance back to the autocorrelation of the noise terms. An equation for the
variance ⟨δa2

i ⟩ can be obtained by squaring the map Eq. 2.4.36 and averaging:

⟨δa2
i ⟩ = (αν)2⟨δa2

i ⟩+
2α2νa∗

τa
⟨δai Hi⟩+

(︃
αa∗

τa

)︃2
(⟨H2

i ⟩+ ⟨Ξ2
i ⟩)

=
α2a∗

τ2
a (1 − (αν)2)

(︂
2ντa⟨δai Hi⟩+ a∗(⟨H2

i ⟩+ ⟨Ξ2
i ⟩)
)︂

.

(2.4.41)

For the covariance ⟨δai Hi⟩ the map is multiplied by Hi+1 and averaged

⟨δai Hi⟩ = αν⟨δai Hi+1⟩+
αa∗

τa
⟨Hi Hi+1⟩

=
αa∗

τa(1 − ανβ)
⟨Hi Hi+1⟩,

(2.4.42)

where we have used ⟨δai Hi+1⟩ = β⟨δai Hi⟩ and the fact that the term containing Ξi drops out be-
cause the noise terms are independent of each other. We are finally equipped to calculate the SCC
because all terms have been traced back to either the variances ⟨H2

i ⟩ and ⟨Ξ2
i ⟩ or the covariance

⟨Hi Hi+1⟩.
Let us briefly conclude what we have derived so far. First, we have expressed the SCC ρk in

terms of the covariance of the peak adaptation value ⟨δaiδai+k⟩ (Eq. 2.4.35). Secondly, we have
related this covariance to the variance ⟨δa2

i ⟩ and another covariance ⟨δaiδHi⟩ (Eq. 2.4.40). Finally,
we have shown that these two terms are determined by the known variances ⟨H2

i ⟩ and ⟨Ξ2
i ⟩ as

well as the known covariance ⟨Hi Hi+1⟩ (Eq. 2.4.41 and Eq. 2.4.42).
Still the combination of Eq. 2.4.35, 2.4.40, 2.4.41 and 2.4.42 is cumbersome in practice. Since

the complete derivation of the variance and covariance step-by-step is too tedious, we highlight
only a few steps that should be sufficient to make the calculation comprehensible. We start with
the variance that is still relatively easy to determine:

⟨δT2
i ⟩ = (1 + α2)⟨δa2

i ⟩ − 2α⟨δaiδai+1⟩

= (1 + α2)⟨δa2
i ⟩ − 2αν⟨δa2

i ⟩ −
a∗

τa
α⟨δai Hi⟩

= (1 − 2αν + α2)⟨δa2
i ⟩ −

a∗

τa
α⟨δai Hi⟩.

(2.4.43)

To get from the first to the second line, we used Eq. 2.4.40 for k = 1. Finding an expression in
terms of ⟨δa2

i ⟩ and ⟨δai Hi⟩ is sufficient because the ratio between these two terms can be replaced
by the correlation functions of the noise terms. The covariance is a bit more complicated

⟨δTiδTi+k⟩ = (1 + α2)⟨δaiδai+k⟩ − α⟨δaiδai+k+1⟩ − α⟨δaiδai+k−1⟩ (2.4.44)
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replacing the three covariances ⟨δaiδai+k⟩ using Eq. 2.4.40 for k − 1, k, and k + 1 yields:

⟨δTiδTi+k⟩ = ((1 + α2)(αν)− α(αν)2 − α)(αν)k−1⟨δa2
i ⟩

+
a∗α

τa

(︄
(1 + α2)

(αν)k − βk

αν − β
− α

(αν)k+1 − βk+1

αν − β
− α

(αν)k−1 − βk−1

αν − β

)︄
⟨δai Hi⟩

= −α(1 − α2ν)(1 − ν)(αν)k−1⟨δa2
i ⟩

− a∗

τa

α

αν − β
α(1 − α2ν)(1 − ν)(αν)k−1⟨δai Hi⟩

+
a∗

τa

α

αν − β
(1 − αβ)(β − α)βk−1⟨δai Hi⟩.

(2.4.45)

The problem can be simplified somewhat by taking advantage of the SCC being a ratio of the
covariance and variance. Therefore it is sufficient to determine the following term

τa

αa∗
⟨δa2

i ⟩
⟨δai Hi⟩

=
2αν

1 − (αν)2 +
1 − ανβ

1 − (αν)2
⟨H2

i ⟩+ ⟨Ξ2
i ⟩

⟨Hi Hi+1⟩
, (2.4.46)

that is obtained by combing Eq. 2.4.41 and Eq. 2.4.42. Finally, forming the ratio between Eq. 2.4.45
and Eq. 2.4.43 and substituting Eq. 2.4.46 in the resulting expression yields the SCC [1]:

ρk =

(︃
A
C

)︃
ρk,a +

(︃
B
C

)︃
ρk,η , (2.4.47)

with the two specific correlation coefficients:

ρk,a = − α(1 − α2ν)

1 + α2 − 2α2ν
(1 − ν)⏞ ⏟⏟ ⏞

ρ1,a

(αν)k−1, (2.4.48)

and

ρk,η =

∫︁ T∗

0

∫︁ T∗

0 dτ1dτ2 Z(τ1)Z(τ2)σ
2 exp(−|T∗ + τ2 − τ1|/τη)∫︁ T∗

0

∫︁ T∗

0 dτ1dτ2 Z(τ1)Z(τ2)
[︁
σ2 exp(−|τ2 − τ1|/τη) + 2Dδ(τ2 − τ1)

]︁⏞ ⏟⏟ ⏞
ρ1,η

βk−1, (2.4.49)

and the coefficients

A = 1 +
(1 + (αν)2 − 2ανβ)

αν − β
ρ1,η − ανβ, (2.4.50a)

B =
(1 − (αν)2)(1 − αβ)(α − β)

(1 + α2 − 2α2ν)(αν − β)
, (2.4.50b)

C = 1 + 2ρ1,aρ1,η − ανβ, (2.4.50c)

α = e−
T∗
τa , β = e

− T∗
τη , ν = 1 − a∗

τa

∫︂ T∗

0
dτ Z(τ)e−τ/τa . (2.4.50d)

The main result of this chapter, Eq. 2.4.47, implies that the SCC for a multidimensional stochas-
tic adaptive IF model driven by an OU process is a sum of two geometric sequences. Moreover,
these two sequences correspond to the SCCs ρk,a and ρk,η except for a prefactor that does not de-
pend on k. Previous analytical studies have often considered one correlation-inducing process at
a time, i.e., either an adaptive neuron model driven by white noise [85, 97] or a (non-adaptive)
neuron model driven by correlated noise [66, 92, 95]. These studies find that the respective SCC
is a single geometric sequence of the form sk = s1rk−1, k ≥ 1. As a reminder, the absolute value
|sk| of such a sequence decays exponentially with lag k, the sign at k = 1 (corresponding to the
correlation coefficient for adjacent intervals) is determined by s1, and the full sequence may alter-
nate, depending on the sign of the base r. In summary, a single geometric sequence can realize
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four different patterns of interval correlations. In contrast, our result, i.e., the sum of two geo-
metric sequences, can account for a much larger number of patterns of interval correlations. Such
deviations from a single geometric series have indeed been observed experimentally [147]. Indi-
rect evidence for negative short-term correlations combined with positive long-term correlations
has been provided by [148, 149]. To this end, Lowen and Teich [148] determined the Fano F(T)
factor using the spike train of an auditory neuron and compared it to the Fano factor of the same
spike train but with shuffled interspike intervals. They find that for large time windows T, the
Fano factor of the shuffled spike train is reduced compared to the unshuffled case. According to
Eq. 1.3.30, this implies that the sum over all SCCs is positive. Conversely, for intermediate times,
the Fano factor of the shuffled spike train is increased compared to the unshuffled case. They
conclude that for the first few lags k, the SCC is negative (short-term negative correlations), while
the sum of all SCCs is positive (long-term positive correlations).
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FIGURE 2.21: Serial correlations in a stochastic adaptive LIF model with correlated noise. Both
panels show the general SCC ρk (blue circles and line) obtained by considering the full model
as well as the two specific SCC ρk,η (red circle and line; ∆ = 0), ρk,a (yellow circle and line;
σ = 0) obtained by considering one correlation inducing process at a time. Panel A and B differ
in the base pattern exhibited by the specific SCC ρk,a (exponential in A and oscillatory in B) and
the number of intervals over which the specific SCC ρk,η decays (small in A and large in B). In
both cases, the general SCC cannot be described by a single exponential function but is small
at k = 1, changes sign at k = 2 and slowly approaches zero for higher lags. Parameters γ = 1,
σ = 2 · 10−2, D = 1 · 10−3; A: µ = 5, τa = 2, ∆ = 2, τη = 0.5, T∗ ≈ 0.66; B: µ = 20, τa = 1,

∆ = 10, τη = 5, T∗ ≈ 0.55.

To illustrate how the interplay of the two correlation-inducing processes shapes the SCC, we
consider three versions of the LIF model, from which we obtain the two specific SCC ρk,a, ρk,η ,
as well as the general SCC ρk shown in Fig. 2.21. For the SCC ρk,η (red line and circles), we use
a LIF model without adaptation driven by a correlated noise (Eq. 2.2.16). In this case, the SCC
can only decay exponentially because the base of the geometric sequence is given by β and obeys
0 < β < 1. This is true regardless of the neuron model considered. Specifically for the LIF model
with strictly positive PRC, the prefactor ρ1,η is also positive so that the exponential decay of ρk,η
shown in Fig. 2.21A and B is indeed the only pattern of interval correlations that can be realized.
This may no longer be the case when we consider two-dimensional neuron models, for which we
have already seen that the PRC can be partially negative. For the SCC ρk,a (yellow line and circles)
we consider an adaptive LIF model driven by uncorrelated noise (Eq. 2.2.13). In this case, a richer
repertoire of interval correlations is possible since the base of the geometric sequence αν is not
necessarily positive but obeys −1 < αν < 1. Note that since 0 < α < 1, the sign is determined
by ν. In addition, as we will show below, for models with strictly positive PRC, the prefactor
ρ1,a is negative. Thus, two patterns of interval correlations can be realized for the LIF model:
Either the SCC decays exponentially as shown in Fig. 2.21A or oscillatory as shown in Fig. 2.21B.
In Sec. 2.4.3, we will discuss these two cases in more detail and explain how they relate to the
strength of the adaptation.

In contrast to the two cases discussed so far, more complicated patterns can be observed for
the general SCC ρk. For example, the pattern shown in Fig. 2.21A (blue line and circles) is charac-
terized by a very small positive first correlation coefficient, whereas higher lags have pronounced
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negative correlations. This can be understood as follows: Consider a reference interval Ti shorter
than the mean because the correlated noise η(t) over this interval happened to be larger than zero,
thus advancing the next spike time. As mentioned earlier, this leads to an increase in the adap-
tation, which, if considered individually, would delay the next spike time and thus prolong the
following interval Ti+1. However, there is an opposite effect because the OU process is positively
correlated with itself and tends to take positive values on average over the next interval Ti+1 as
well. If the parameters are chosen carefully, these two effects can be balanced so that correlations
between adjacent intervals vanish. However, if we additionally assume that the timescale of the
OU process is shorter than the timescale of the adaptation τη < τa, we can realize a situation
where the adaptation still affects the third interval Ti+2, but the OU process does not because it
becomes practically uncorrelated with its previous values (during the interval Ti). The adaptation
will then prolong the interval Ti+2 compared to the mean, and we find ⟨∆Ti∆Ti+2⟩ < 0. This is
exactly the case in Fig. 2.21A. In Fig. 2.21B, we show the inverse, where again the SCC ρ1 is close
to zero for the same reason we have just discussed, and the SCC at higher lags is dominated by
the OU process because now τη > τa.

We have seen that completely new patterns of interval correlations become possible if we con-
sider a neuron model with a spike-triggered adaptation that is additionally subject to a correlated
noise. Still the possible patterns depend crucially on the PRC, in particular on whether the PRC
is partially negative or not. Therefore, we discuss two distinct cases in Sec. 2.4.3 and Sec. 2.4.4:
First, the LIF model with a strictly positive PRC, a case we have already begun to discuss here,
and second, the GIF model with partially negative PRC.

2.4.3 Integrator models with adaptation and correlated noise

Here we study the SCC for a one-dimensional IF model, in the sense that no auxiliary variables
are considered, and the drift in Eq. 2.4.21 reduces to f0(v, w) = f (v). In Sec. 2.3.5, we have shown
that for one-dimensional IF models, the PRC can be solved formally according to Eq. 2.3.29:

Zv(τ) = Zv(T∗) exp
[︃∫︂ T∗

τ
dt f ′(vΓ(t))

]︃
. (2.4.51)

Recall that the PRC evaluated at the phase τ = T∗ is equivalent to the inverse velocity of the volt-
age of the deterministic system at the threshold Z(T∗) = v̇(T∗)−1 = ( f (vT) + µ − a∗ + ∆/τa)−1.
This is an important insight because, for an oscillating system that fires spikes even in the ab-
sence of noise, this velocity must always be positive, which leads to the conclusion that the entire
PRC Z(τ) is positive (the exponential term cannot be negative). One-dimensional systems thus
resemble type I neuron models with positive PRC [145].

According to Eq. 2.4.48 the SCC ρk,a = ρ1,a(αν)k−1 is a geometric sequence with the prefactor:

ρ1,a = − α(1 − α2ν)

1 + α2 − 2α2ν
(1 − ν). (2.4.52)

To show this, we first show that the fraction is positive regardless of the PRC. Using 0 < α =
exp(−T∗/τa) < 1 and |αν| < 1, it is immediately clear that the numerator α(1− α(αν)) is positive.
The same can be shown for the denominator, because 1 + α2 − 2α2ν > α2ν + α2 − 2α2ν = α(1 −
αν) > 0. Thus, the sign of the prefactor is determined by the second term (1 − ν). Eq. 2.4.50d
reveals that this term can only be negative if the PRC is also negative. The second SCC ρk,η decays
exponentially with k and has a non-negative prefactor due to the positive PRC. In summary, in
a Type I neuron model with a non-negative PRC, a spike-triggered adaptation elicits negative
correlations between adjacent intervals (ρ1 < 0) followed by an either monotonic or oscillatory
decay with the lag. Conversely, a correlated noise leads to positive interval correlations with a
characteristic number of correlated intervals determined by T∗/τη .

In Fig. 2.22, we study the general SCC ρk and distinguish two cases based on the sign of the
parameter ν that determines the base pattern of the SCC ρk,a. These two cases are closely related
to the shape of the limit cycle shown by a red line in Fig. 2.22A1 and B1. This is so because for
one-dimensional models ν is related to the velocity v̇(τ = 0) at the reset point [74]. To see this
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FIGURE 2.22: Patterns of interval correlations for the LIF model. Panels A1 and B1 show the
deterministic limit cycle with the reset point marked by a red square. In A1, the adaptation at
the reset point is so strong that the drift at the reset point becomes negative, and the voltage
initially takes negative values, implying ν < 0. In B1, the adaptation is weaker, and the drift
at the reset point is positive. This implies ν > 0. Panel A2 and B2 show the PRC Zv(τ). Panel
A3 and B3 show the SCC ρk for different correlation times τη . For small values of τη , the noise
becomes essentially white, and the adaptation dominates the SCC. In this case, the pattern of
the SCC ρk (purple circles and line) is oscillatory for ν < 0 and exponential for ν > 0. For large
values of τη , the SCC is dominated by the correlated noise and becomes positive (yellow circles
and line). Parameters A: γ = 1, µ = 20, τa = 2, ∆ = 20, σ = 10−1, D = 0, T∗ ≈ 1.0; B: γ = 1,

µ = 5, τa = 2, ∆ = 2, σ = 10−1, D = 0, T∗ ≈ 0.67

consider Eq. 2.3.32 with the initial condition t0 = 0 evaluated at τ = T∗:

Za(T∗) = eT∗/τa

(︃
Za(0) +

∫︂ T∗

0
dt Zv(t)e−t/τa

)︃
. (2.4.53)

Using Za(T∗) = 0 and substituting ν in Eq. 2.4.53 yields

ν = 1 +
a∗

τa
Za(0). (2.4.54)

The PRC Za can be related to the PRC Zv and, more importantly, to the velocity v̇(0) at the reset
point using their normalization (Eq. 2.3.12) at τ = 0:

v̇(0)Z(0) + ȧ(0)Za(0) = 1. (2.4.55)

The velocity of the adaptation is given by ȧ(0) = −a∗/τa so that we obtain

ν = v̇(0)Z(0). (2.4.56)

As we have argued several times for the adaptive LIF model, the PRC is positive Zv(t) > 0, so
that ν < 1 implies v̇(0) = µ − γvR − a∗ < 0, and the limit cycle makes an initial detour toward
negative values of the voltage variable (red line in Fig. 2.22A1). The drift becomes positive only
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after a(ti + t) = a∗ exp(−t/τa) has relaxed sufficiently. Following [74], we refer to this case as
strong adaptation. In the second case (ν < 1), the limit cycle makes no such detour because the
drift remains positive v̇ > 0 even after resetting v and increasing a. We refer to this case as weak
adaptation. In both cases, we have already seen in Sec. 2.3.2 that the PRC for the adaptive LIF
model can be calculated analytically because the drift f (v) = −γv depends linearly on v, and
consequently f ′(vΓ) = −γ does not require knowledge of the time-dependent solution vΓ(t) on
the limit cycle. The solution is given by Eq. 2.3.35

Zv(τ) =
eγ(τ−T∗)

µ − γvT − a∗ + ∆/τ
(2.4.57)

and is shown in Fig. 2.22A2 and B2. In Fig. 2.22A3 and B3, we inspect how the general SCC
depends on the correlation time τη given in terms of the deterministic period T∗. Note that we
do not consider any additional white noise (D = 0), so the OU process is the only noise source
and thus directly affects the ISIs, but thereby also causes the deviation of the peak adaptation
value. It is, therefore, interesting to ask how the SCC depends on the timescale and whether, for
example, the positive correlations caused by the noise are eventually outweighed by the negative
correlations caused by the adaptation (or vice versa).

First of all, for τη ≪ T∗, the OU process becomes essentially white, and the correlations are
caused solely by the adaptation. Consequently, the general SCC reduces to ρk,a. In the opposite
limit, where the OU process is correlated over multiple periods τη ≫ T∗, the general SCC reduces
to ρk,η (if the absence of a white noise), implying that the OU process dominates the interval
correlations. This is so because in this limit, η(t) can be regarded as a constant modulation of
the input current, causing multiple ISIs to deviate from the mean similarly. The adaptation can
diminish this effect but cannot alter the common sign of these deviations. The pattern can become
more complicated for intermediate correlation times τη = T∗. In Fig. 2.22B3, the SCC for k = 1 is
determined by the correlated noise so that adjacent intervals are positively correlated, while for
k > 1, the SCC is determined by the adaptation, and intervals become negatively correlated.

2.4.4 Resonator models with adaptation and correlated noise

Here we study the SCC for a two-dimensional IF model, the GIF model introduced in Sec. 2.2.4.
For this model, the drifts of the voltage and auxiliary variable are given by f0(v, w) = −γv− βww
and f1(v, w) = (v − w)/τw. We note that the auxiliary variable w is also reset upon firing and
thus does not introduce any interval correlations. Recall that for this linear model, the PRC can
be calculated analytically as we have shown in Sec. 2.3.2 (Eq. 2.3.39):

Zv(τ) =
e

ν
2 (τ−T∗)

[︂
cos(Ω(τ − T∗))− 1−γτw

2τwΩ sin(Ω(τ − T∗))
]︂

µ − γvT − βw0(T∗)− a∗ + ∆/τa
. (2.4.58)

The decisive new feature of this PRC is that it can become partially negative, as in Type II neuron
models. In other words, a positive kick to the voltage can delay the next spike time.

In Fig. 2.23, we show the PRC in three cases together with the SCC. Because the GIF model
includes the LIF model as a limit case, we expect that the pattern discussed in Sec. 2.4.3 can also
be realized by the GIF 4. Indeed, the observed patterns shown in Fig. 2.23A and B for ν < 0 and
ν > 0 can also be observed for the LIF model and have already been discussed. Quantitative
details depend on the parameters thought. For example, in Fig. 2.23A2, the SCC is still domi-
nated by the adaptation even for τη ≫ T∗, which is probably related to the fact that τa is larger
here. Qualitatively new interval correlations can be realized if the PRC is partially negative and
ν becomes larger than one. In this case, intervals can be positively correlated even if the corre-
lation time of the OU process is short (τη/T∗ = 10−2). This is so because the inhibitory current
caused by the adaptation can now have opposing effects on two adjacent intervals. Note that
the dependence of the first correlation coefficient ρ1 on τη is non-monotonic. It starts positive for
very short correlation times τη/T∗ = 10−2, decreases as the ratio reaches an intermediate value
τη/T∗ = 1, and subsequently increases until adjacent intervals are positively correlated again for

4The GIF model reduces to the LIF model for τw → 0, in which case v = w and the parameter γLIF = γGIF + β.
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FIGURE 2.23: Pattern of interval correlations for the GIF model. Panel A1, B1, and C1 show the
PRC Zv(τ). Panel A2, B2, and C2 show the SCC ρk for different correlation times τη . The two
cases ν < 0 shown in panel A and 0 < ν < 1 shown in panel B are similar to those in Fig. 2.22.
The case ν > 1 shown in C is novel and implies a partially negative PRC that can give rise to a
counterintuitive behavior of the SCC ρk. For small correlation times τη , the SCC is positive for
all lags (purple circles and line). As the correlation time increases, the SCCs become negative
(cyan circles and line) before they become positive again at large correlation times (yellow circles
and line). Parameters A: γ = 1 µ = 10, τw = 1.5, β = 3, τa = 10, ∆ = 10, σ = 10−3, D = 0,
T∗ ≈ 1.24; B: γ = 1 µ = 20, τw = 1.5, β = 1.5, τa = 10, ∆ = 10, σ = 10−3, D = 0, T∗ ≈ 0.57; C:

γ = −1 µ = 1, τw = 1.1, β = 5, τa = 1, ∆ = 2.3, σ = 10−3, D = 0, T∗ ≈ 1.91

τη/T∗ = 101. This more complex dependence of ρ1 on τη is shown in more detail in Fig. 2.24A
and compared to a similar case for a non-adaptive GIF in Fig. 2.24B.

To understand the behavior of the SCC shown in Fig. 2.23C, we consider the effects of the
adaptation and the correlated noise separately. (We have seen that the general SCC is a super-
position of the two specific SCCs.) For the adaptation, we again consider a shortened reference
interval Ti < T∗, which induces a positive deviation of the peak adaptation value δai > 0 and,
in turn, an inhibitory current −δai exp(−τ/τa) acting over the interval Ti+1. If the adaptation
timescale τa is chosen such that the inhibitory current acts mainly on the part of the ISI where
the PRC is negative (τa ≈ T∗/2 in Fig. 2.23C), the interval Ti+1 will also be shortened. A similar
argument applies to an extended reference interval Ti > T∗, in which case δai < 0. In both cases,
adjacent intervals deviate similarly from the mean and are positively correlated. Turning to the
correlated noise, for short correlation times (τη/T∗ = 10−2), the noise is essentially white and
does not introduce any significant interval correlations. For longer correlation times, still smaller
than the portion of the ISI for which the PRC is negative, values of η(t) preserved beyond a spike
time have an opposing effect on the interval before and after the spike, and the intervals become
anti-correlated. Hence, as τη increases, the SCC initially decreases until the correlation time τη

coincides with the portion of the ISI for which the PRC is negative. This time is highlighted by a
vertical line in Fig. 2.24. Finally, if the correlation time is increased further, interval correlations
become positive again. This is because for τη ≫ T∗ the particular shape of the PRC becomes
irrelevant; the noise may advance or delay the next spike time depending on the particular phase
τ of the firing cycle, but it does so in the same way for the following interval and so both intervals
deviate similarly from the mean. In Fig. 2.24B, we demonstrate this minimization of the correla-
tion coefficient in a GIF model without adaptation. The parameters have been chosen so that the
PRCs in Fig. 2.23C and Fig. 2.24A approximately agree.

This shows that a low-pass filtered noise can cause negative interval correlation in a resonator
model, which is another independent mechanism by which negative ISI correlations can be in-
duced. Other known mechanisms include the combination of a spike-triggered adaptation and
white noise [40, 73, 150], short-term depression and white noise [95], and high-pass filtered net-
work noise from regularly firing neurons [95].



2.4. Interspike-interval correlations for tonically firing neurons 57

10−2 10−1 100 101 102

τη/T
∗

−0.5

0.0

0.5

1.0

ρ
1

A

10−2 10−1 100 101 102

τη/T
∗

−0.5

0.0

0.5

1.0

ρ
1

B

ρk

Zv(τ)

ρk

Zv(τ)

FIGURE 2.24: Serial correlation coefficient ρ1 for the GIF model. Panel A shows the first SCC
ρ1 as a function of the correlation time τη for an adaptive GIF model with parameters as in
Fig. 2.23C. Panel B shows the same statistics for a GIF model without adaptation and parameters
chosen so that the PRCs (inset in A and B) qualitatively agree. Due to the partially negative
PRC, the SCC ρ1 initially decreases with increasing correlation time until the correlation time
coincides with the fraction of the ISI for which the PRC is negative. This time is indicated by
a dashed vertical line. Subsequently, the SCC increases and becomes positive. Parameters A:
γ = −1 µ = 1, τw = 1.1, β = 5, τa = 1, ∆ = 2.3, σ = 10−4, D = 0, T∗ ≈ 1.91; B: wR = 1, γ = −1

µ = 1, τw = 1.1, β = 5, τa = 0, ∆ = 0, σ = 10−3, D = 0, T∗ ≈ 1.76

2.4.5 Adaptation-channel noise

So far, we have considered scenarios where the adaptation and correlated noise are independent
processes with independent time constants. However, we can regard these two processes also
as an idealized description of an adaptation current through a finite population of stochastically
opening and closing ion channels with voltage-dependent gating kinetics [85, 86]. The slowly
varying Ca2+-dependent K+ current is just one example of such a spike-triggered adaptation cur-
rent [40, 101, 127] and other candidates are known [18]. We recall that for a finite population,
the summed current through all these channels is stochastic, which is commonly referred to as
channel noise. These fluctuations become smaller the larger the population is but do not vanish
for a finite number of channels. As shown by [85], the summed current can be split into a deter-
ministic part, corresponding to the dynamics of the adaptation a(t) in our model, and a stochastic
part, corresponding to the OU process η(t). We refer to the combination of these two currents
a(t) + η(t) as adaptation-channel noise. The additional white noise can be seen as the result of the
stochastic opening and closing of ion channels with fast gating kinetics.

Due to the common origin of the deterministic adaptation and the correlated noise, the previ-
ously independent timescales are now equal and are denoted by τc := τa = τη . This also implies
that the parameters α = exp(−T∗/τa) and β = exp(−T∗/τη) are identical, which has a profound
effect on the general SCC (Eq. 2.4.47). The SCC ρk reduces to a single geometric sequence because
the parameter B defined in Eq. 2.4.50 vanishes (note the term α − β in the numerator). Possible in-
terval correlations thus include only the exponentially decaying or alternating patterns. However,
it is not clear whether correlations between adjacent intervals are determined by the deterministic
adaptation or by the correlated noise, i.e., whether ρ1 will be positive or negative.

To answer this equation, we consider an LIF model with adaptation-channel noise and plot
in Fig. 2.25 the correlation coefficient ρ1 as a function of the common timescale τc for different
white noise intensities D. Theoretical predictions according to Eq. 2.4.47 are shown as lines, while
correlations measured from stochastic simulations are shown as circles. We first discuss the two
limit cases ∆ = 0 and σ = 0, shown in red and yellow, respectively. For ∆ = 0 the deterministic
part of the adaptation-channel noise vanishes (a(t) = 0) and the SCC reduces to

lim
∆→0

ρk = ρk,η . (2.4.59)

This is so because a∗ = 0 implies ν = 1 and ρ1,a = 0 (Eq. 2.4.48) and the prefactors become
B = 1 − αβ and C = 1 − αβ so that B/C = 1. As pointed out in Sec. 2.4.1, in this case, the SCC is
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FIGURE 2.25: Serial correlation coefficient ρ1 for the LIF model with adaptation-channel noise.
Panels A and B show the SCC for two different parameter sets associated with weak and strong
adaptation. In both cases, ρ1 exhibits a non-monotonic behavior with respect to the common
timescale τη = τa = τc given that the white noise intensity is not too small. The limit case of a
vanishing adaptation (∆ = 0) is shown by red circles and line, while the limit case of a vanishing
correlated noise (σ = 0) is shown by yellow circles and line. The black circles and lines show
the SCC for the full model with different white noise intensities. In the limit τc → ∞ the SCC
reduces to ρ1,η indicated by dashed lines. Parameters A: γ = 1, µ = 5, ∆ = 2, σ = 0.2; B: γ = 1,

µ = 20, ∆ = 20, σ = 0.2.

determined by the autocorrelation of the noise. Specifically for the OU process, adjacent intervals
are positively correlated. For the red line in Fig. 2.25, we have additionally switched off the white
noise (D = 0) so that ρ1 approaches one for τc/T∗ ≫ 1. For σ = 0, the stochastic part of the
adaptation-channel noise vanishes (η(t) = 0), the white noise is the only remaining source of
fluctuations in the system, and the SCC reduces to

lim
σ→0

ρk = ρk,a. (2.4.60)

This is so because σ = 0 implies ρ1,η = 0 (Eq. 2.4.49) if the intensity of the white noise does not
vanish at the same time5). Furthermore, the prefactors become A = 1 − ανβ and C = 1 − ανβ so
that their ratio equals A/C = 1. As we have explained in detail in Sec. 2.4.3 and as it is known
from the literature, adjacent intervals are negatively correlated in this case. The respective SCC
ρ1 has a minimum for some intermediate time close to τc ≈ T∗ and vanishes in both the limit
τc → 0 and τc → ∞ (yellow lines). The first case is easily understood: For τc → 0, the adaptation
quickly decays towards a = 0, in particular, fast compared to the deterministic ISI T∗. The values
ai at the beginning of each interval are, therefore, almost independent of the specific length of
the preceding interval. Instead, ai is essentially given by the amplitude of the kick ∆/τc. The
adaptation decays infinitely slowly in the opposite limit τc → ∞. At the same time, however,
the kick amplitude ∆/τc also vanishes so that a(t) remains finite. As a result, the specific values
ai attained at the beginning of intervals hardly differ. In both cases, interval correlations vanish
because the dependence of ai on the length of the preceding interval is exactly what correlates the
intervals.

For intermediate cases, where we consider the full adaptation-channel-noise model, the be-
havior of the SCC depends on the specific choice of parameters, especially on the variance of the
OU process σ2 and the strength of the adaptation ∆, but also on the noise intensity of the white
noise D. Without an additional white noise, the SCC can be a monotonic function of τc if ∆ is
sufficiently small (Fig. 2.25A). For larger values of ∆, the SCC becomes non-monotonic again but
remains positive for all values of τc (Fig. 2.25B). This changes when an additional white noise is

5The fact that limσ→0 ρ1,η = 0 only holds if there is an additional noise source can be somewhat counterintuitive.
Shouldn’t it be enough to require that the fluctuations of η(t) vanish?This is not the case because the correlation coefficient
is the ratio between the covariance ⟨δTiδTi+1⟩ and the variance ⟨δT2

i ⟩, and both approach zero for σ → 0 when the OU
process is the only noise source. This is no longer the case in the presence of additional white noise because then the
variance remains finite regardless of σ.
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introduced, which can change the sign of the SCC ρ1. This illustrates how fluctuations from chan-
nels with different timescales can interact to shape the SCC of the ISI. For larger values of D, the
SCC approaches the purely white noise-driven case. This is so because, according to Eq. 2.4.49 the
SCC ρ1,η vanishes for D ≫ σ2τη (which also implies A/C = 1). In any case in the limit τc → ∞
the SCC approaches

lim
τc→∞

ρ1 = ρ1,η , (2.4.61)

which for the LIF model is explicitly solved by

lim
τc→∞

ρ1,η =
1

1 + γ D
σ2 cot(γT∗/2)

, (2.4.62)

where cot(x) = cos(x)/ sin(x) is the cotangent. The limit is depicted in Fig. 2.25A and B by
dashed lines.

2.4.6 Network noise

So far, we have considered neuron models driven by a positively correlated noise because it is
thought to arise from synaptic filtering of the uncorrelated presynaptic spike train or from slow
ion channels (channel noise). The power spectrum of such noise is low-pass filtered, i.e., it has
increased power at low frequencies and decreased power at high frequencies. This applies to
neurons in the sensory periphery, where the variability in spike times is mainly caused by channel
noise due to a lack of synaptic input. However, our theory can also be applied to neurons in a
recurrent neural network under certain conditions. Recall that our theory relies on the assumption
that the neuron model fires even in the absence of noise, i.e., that the model operates in the mean-
driven regime. This severely limits the applicability of the theory in the context of recurrent neural
networks because many neurons in the cortex operate in the excitable regime. However, most
neural networks exhibit a large heterogeneity in cellular parameters and the type and strength of
synaptic connections. This results in a large distribution of firing rates and CVs, varying between
0.2 and 1.5 [151, 152]. Cells that fire regularly with CVs as low as 0.2 can be assumed to be
mean-driven. It should be noted that such low CVs could, in principle, also be realized in the
excitable regime by a mechanism known as coherence resonance but would require fine-tuning
of the parameters so that the model is very close to the bifurcation point (separating the excitable
from the mean-driven regime) and the noise intensity is just right [92, 100, 116].

Here we consider a mean-driven neuron subject to correlated noise, as it would arise from
a recurrent network in the asynchronous irregular state. We can think of our model neuron as
either being part of this network or receiving feedforward input from it. Such network noise
can be approximated by a Gaussian process that fluctuates around a certain mean and has a
temporal correlation function that depends on the connectivity [153, 154]. In a typical situation
where the population firing rate is not too high, it has been shown both experimentally [155] and
theoretically [131, 153, 156] that the power spectrum of the fluctuations has reduced power at low
frequencies (cf. Fig. 2.26A) and is otherwise flat. Such fluctuations are called green noise and are
negatively correlated (in contrast to the positively correlated red noise).

As it was shown by Vellmer and Lindner [131], such a power spectrum can be generated if
the previously independent noise sources in Eq. 2.4.1 are perfectly anti-correlated ξv(t) = −ξη .
In this case, we can interpret the sum of the white noise and filtered version of itself as a single
random process ζ =

√
2Dξv(t) + η(t). The power spectrum of this new process is given by

Sζζ(ω) = 2D −
4
√︂

Dσ2τη − 2σ2τη

1 + τ2
η ω2 , (2.4.63)

with a constant high-frequency limit given by the intensity of the white noise limω→∞ S(ω) = 2D

and a comparatively reduced power at low frequencies limω→0 = (
√

2D −
√︂

2σ2τη)2 < 2D.
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FIGURE 2.26: Serial correlation coefficient for LIF model with network-noise-like fluctuations.
Panel A shows the power spectrum Sζζ of the input noise with reduced power at low frequen-
cies. Panel B shows the SCC ρ1 for a LIF model without (circles) and with (triangles) adaptation.
The SCC has a minimum for intermediate values of τη since the noise becomes white both in
the limit τη → 0 and τη → ∞. Panels C and D show the pattern of interval correlation for the
LIF model without and with adaptation, respectively. Even in the absence of the adaptation (C),
a correlated noise with reduced power at low frequencies can result in negative interval corre-
lations. For the adaptive LIF (D), negative correlations are amplified by the network-noise-like
fluctuations. Parameters C: γ = 1, µ = 5, γ = 1, τa = 0, ∆ = 0, 2σ2τη = 0.16, 2D = 0.64,

T∗ ≈ 0.22; D: γ = 1, µ = 5, γ = 1, τa = 2, ∆ = 2, 2σ2τη = 0.16, 2D = 0.64, T∗ ≈ 0.67.

Furthermore, the turning point between these limits is given by ω = 1/τη . The respective auto-
correlation function can be calculated using the Wiener–Khinchin theorem

Cζζ(τ) = 2Dδ(τ)−
(︄

2

√︄
Dσ2

τη
− σ2

)︄
e−|τ|/τη , (2.4.64)

so that τη is similar to a correlation time. Strictly speaking, the process ζ(t) has a no correlation
time, defined as the ratio of the integrated correlation function to the variance, simply because the
variance of the white noise ξ(t) diverges. Finally, a numerical inspection of the network spectrum
Eq. 2.4.63 by [131] revealed that τη is related to the (inverse) mean firing rate r0 or likewise the
mean ISI ⟨Tnet⟩ of the recurrent network so that we roughly chose τη ≈ ⟨Tnet⟩/ω. The remaining
parameters D and σ2 that determine the power spectrum depend specifically on properties of the
synaptic connections, see [131].

In Fig. 2.4.63A, we show the power spectrum of the process ζ(t) for three different values of
the parameter τη . In all cases, the parameters D and σ2 are chosen so that the low-frequency limit
of the power spectrum is a quarter of the high-frequency limit Sζζ(ω → 0)/Sζζ(ω → ∞) = 1/4,
similar to what was found by [131]. Note that this means that the product σ2τη is fixed. In
Fig. 2.4.63B, we calculate the first correlation coefficient ρ1 for a LIF model with and without
adaptation driven by the correlated noise ζ(t). As was demonstrated previously, the SCC for an
IF model without adaptation, purely driven by a correlated noise, can be calculated according to

ρk =

∫︁
dω |Z̃(ω)|2Sζζ(ω)eikωT∗∫︁

dω |Z̃(ω)|2Sζζ(ω)
, (2.4.65)

where, compared to Eq. 2.4.20, the noise intensity does not appear explicitly in the denominator
but is included in the power spectrum. For an IF model with adaptation driven by the high-pass
filtered noise ζ(t), our result for the general SCC (Eq. 2.4.47) still applies because the correlation
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function Eq. 2.4.64 decays exponentially with a single timescale6. In this case, the SCC (Eq. 2.4.65)
agrees with the specific SCC ρk,η .

In both cases shown in Fig. 2.26B, the SCCs measured from stochastic simulations (symbols)
are in good agreement with the theoretical predictions (lines). Here we have chosen the param-
eters D and σ2τη such that the resulting CV is between 0.2 − 0.5, i.e., in the lower physiological
range of cortical neurons. The agreement between theory and simulations could be improved by
considering a weaker noise. The negatively correlated green noise induces negative ISI correla-
tions (Fig. 2.26C), which become even stronger with an additional adaptation current (Fig. 2.26D).
Moreover, the SCC depends non-monotonically on τη because the noise becomes uncorrelated in
the limit τη → 0 but also in the limit τη → ∞. For τη → 0, this is clear and can be seen from
the correlation function, but also from the power spectrum. The latter is reduced across all fre-
quencies because the turning point of the spectrum is given by ω = 1/τη . Hence, for τη → 0, we
obtain a flat power spectrum with reduced power compared to the white noise power spectrum:

lim
τη→0

Sζζ(ω) = (
√

2D −
√︂

2σ2τη)
2. (2.4.66)

A similar argument applies for large values of τη → ∞, except that the turning point lies at ω → 0
in this limit. As a result, the power spectrum is gain constant over all frequencies and coincides
with the white noise spectrum:

lim
τη→∞

Sζζ(ω) = 2D. (2.4.67)

Most relevant are intermediate values of τη . We have already noted that τη is roughly associated
with the mean ISI of the neurons in the network. For a mean-driven cell with ISI ⟨T⟩ ≈ T∗ that
fires somewhat faster than the network average, it is most relevant to consider values of τη that
are somewhat larger than T∗. This is because from τη = ⟨Tnet⟩/π and ⟨Tnet⟩ > T∗ it follows that
τη/T∗ > 1. Interestingly, this is where the negative ISI correlations are most pronounced.

2.4.7 Range of validity

We emphasized in Sec. 2.3.2 that the PRC is essentially the linear response function of the phase
variable, so our main result Eq. 2.4.47 is a first-order approximation of the perturbation ampli-
tude. Therefore, one may wonder how well the result approximates the SCC as the perturbation
becomes stronger.

To answer this question, we return to the most general case discussed in Sec. 2.4.4, the adaptive
GIF driven by white and colored noise. We choose a specific set of parameters for the correspond-
ing deterministic system and separately vary the two parameters associated with the amplitude
of the perturbation, namely the intensity of the white noise D and the variance of the colored
noise σ2. We then measure the CV CV and the SCC ρ1 and compare the latter to the theoretical
prediction according to Eq. 2.4.47. This allows to quantify the range of validity with respect to the
output variability of the interspike intervals.

In Fig. 2.27A we fix the variance σ2 and vary the white noise intensity. For small intensities
of the white noise D, the SCC ρ1 is mainly determined by the correlated noise and thus posi-
tive. As the intensity increases, the SCC becomes negative, an effect we have already discussed in
Sec. 2.4.5. Additionally, we observe an increase in the output variability as shown in Fig. 2.27A1.
In Fig. 2.27A we fix the white noise intensity D and increase the variance σ2. For small variances,
the SCC ρ1 is mainly determined by the combination of the adaption and white noise and, there-
fore, negative. This changes when the variance is increased. Again, this also leads to a likewise
increase of the output variability as shown in Fig. 2.27B1.

In the first case, we find quantitative agreement between the SCC obtained from stochastic
simulations and the theory up to D = 0.1 and CV ≈ 0.3, indicated by a vertical dotted line
in Fig. 2.27A. In the second case, the qualitative agreement is found up to σ2τη = 0.1, but the
resulting CV ≈ 0.15 is smaller in this case. In both cases, we also examine how the pattern
of interval correlations ρk deviates from the theoretical prediction (inset in Fig. 2.27A2 and B2).
We find that although the SCC is not quantitatively predicted, the general pattern is still well
described. In particular, in the inset of Fig. 2.27A2, the theory reproduces the fact that the SCC

6Recall, that the evaluation of the sum in Eq. 2.4.40 relies on this condition.
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FIGURE 2.27: Range of validity for an adaptive GIF with varying noise strength. Panels A and
B show the CV CV and SCC ρ1 as functions of the two small parameters D and σ2τη of the
weak-noise theory. In panel A, the variance σ2 = 0.1 is fixed, and the white noise intensity D is
increased. We find quantitative agreement between simulation results (circles) and the theory
(line) up to D = 0.1. Beyond this point, both the predicted SCC ρ1 begin to deviate from the
simulation results. However, the qualitative agreement remains. In panel B the white noise
intensity D = 0.1 is fixed, and the variance is increased. Again we find quantitative agreement
up to σ2τη = 0.1 and qualitative agreement even beyond this point. Parameters A and B: γ = 1,

µ = 20, β = 1.5, τw = 1.5, τa = 10, ∆ = 10, T∗ ≈ 0.57.

is a monotonically decreasing function of k, and even for the more complicated pattern shown in
the inset of Fig. 2.27B2 the theory reproduces the sign change between ρ1 and ρ2 as well as the
subsequent minimum at k = 3. Thus, the qualitative agreement is maintained even for higher
output variability.

2.4.8 Traub-Miles model with an M-type current

So far, all models we have used and discussed are of the integrate-and-fire type. In fact, already in
Sec. 2.4.1 we have pointed out that the reset upon spiking of all variables, except for the adaptation
and noise, is important for the derivation of the general SCC. This is because variables that suffer
a hard reset are guaranteed to be on the limit cycle at the beginning of an ISI and therefore do not
contribute to the perturbation from the limit cycle. Conversely, this means that any variable that
is not reset is unlikely to take the exact value it would have on the limit cycle at the beginning of
an interval and therefore contributes to the perturbation from the limit cycle, the deviation of the
spike time and eventually to the SCC. Such variables would have to be treated similarly to the
adaptation variable, which significantly complicates the calculations presented in Sec. 2.4.2.

Nevertheless, here we consider a conductance-based neuron model and explain why we can
expect our theory to provide a reasonable approximation to the SCC despite the lack of a reset. In
particular, we use a variation of the Traub-Miles model introduced in Sec. 2.2.1 endowed with a
slow potassium current [101] and apply an additional correlated and uncorrelated noise:

C
dV
dt

= −Iion − Iadap + I + η +
√

2Dξv(t),

τη
dη

dt
= −η +

√︂
2σ2τηξη(t).

(2.4.68)

Here I is a constant current, and the fast ionic currents are summarized in Iion. The latter includes
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the fast sodium, leak, and potassium currents, each given in terms of the respective reversal po-
tentials Ey, the maximum conductances gy, and the gating variables h, n, and m:

Iion = gNahm3(V − ENa) + gL(V − EL) + gKn4(V − EK),
dx
dt

= ax(V)(1 − x)− bx(V)x, with x = h, m, n.
(2.4.69)

Finally, spike-frequency adaptation is mediated by a slow ion current, namely the potassium
current

Iadap = ḡz(V − EK),

τz
dz
dt

= h(V)− z, with h(V) =
1

1 + exp
(︂
−V+20

5

)︂ . (2.4.70)

The functions ax(V), bx(V), and h(V), as well as the values of the parameters occurring therein,
are given in Table 2.1.
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FIGURE 2.28: The Traub-Miles model with a slow M-type current. Panels A, B, C, and D show
the membrane potential V(t) and standard gating variable n(t), m(t), and h(t), respectively.
The model is additionally endowed with an M-type current that is governed by the additional
gating variable z(t) shown in panel E. At t = 25ms, a constant current I = 5pA (red line in panel
A) is applied, causing the model to enter the mean-driven regime. Due to the slow buildup of
the adaptation variable z(t), the initial high firing rate decreases until the adaptation variable
reaches its stationary value, indicated by a dotted line in panel E. Panel F shows the stationary
deterministic limit cycle (red line) together with a noisy trajectory of the model. Parameters:
Table 2.1 and I = 5pA, τz = 100ms, ḡ = 5nS, τη = 10ms, σ2 = 0.1pA2, D = 0.1pA2ms,

T∗ ≈ 18.9ms.

An exemplary trajectory of the voltage (blue lines) in response to a constant current simulation
(red line) is shown in Fig. 2.28A. The trajectories of the gating variables n(t), m(t) and h(t), which
affect the fast ion currents, are shown in Fig. 2.28B, C, and D. Evidently, the three gating variables
n(t), m(t), and h(t) are fast compared to a typical ISI. This is most obvious for the two variables
n and m, which return to 0 almost immediately after the spike, and less obvious for the variable
h, which decays to 1 a somewhat slower, but still fast compared to a typical ISI. This means that
values of the gating variables after a spike bear little relation to the length of the preceding ISI and
could as well be reset to a set of fixed values. Therefore, we can expect our theory to work for this
model as well. In contrast, the variable z(t) (Fig. 2.28E)shows a completely different behavior,
increasing rapidly when the voltage is sufficiently depolarized and decreasing slowly otherwise.
This behavior is very similar to the spike-triggered adaptation in our model (Eq. 2.4.21) and can
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mediate correlations between intervals. In Fig. 2.28F, we show the limit cycle in the V-z-plane
because.

We must first determine the PRC to apply our theory to this model. Since the model is highly
nonlinear, we use the direct method and apply small current pulses ϵδ(t − τ) (where t is mea-
sured with respect to the last spike time) to the deterministic model at a certain phase τ on the
limit cycle. This results in a deviation of the spike time from which we can infer the PRC at a
given phase according to Eq. 2.3.15. Doing this for different phases τ allows us to determine the
entire PRC as shown in Fig. 2.29A1. Note that the PRC is strictly positive, so we expect similar
SCCs as discussed in Sec. 2.4.3. In Fig. 2.29A2, we show the corresponding values of the voltage
on the limit cycle for each phase τ and define the peak of the spike as the point where τ = 0.
Additionally, our theory requires knowledge of the deterministic period T∗, the peak adaptation
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FIGURE 2.29: Serial correlation coefficient for the Traub-Miles model with a slow M-type cur-
rent. Panel A1 and A2 show the PRC Zv(τ) and the corresponding (deterministic) trajectory of
the voltage over the period T∗. The phase τ = 0 is defined by the voltage reaching its maxi-
mum. Panel B shows the general SCC ρk and the two specific SCCs ρk,a, ρk,η similar to what we
have shown in Fig. 2.21. Because the PRC is positive, we expect and indeed observe patterns of

interval correlations similar to those for the LIF model.

value a∗, and the timescale of the adaptation current τa. The latter is simply given by τa = τz
as seen from Eq. 2.4.70. The values T∗ and a∗ must be determined numerically. For the specific
parameters we find T∗ = 18.9 ms and a∗ = I∗adap/C = 4.2 mV ms−1 corresponding to a weak
perturbation defined by the parameter ν.

We show the SCC in three scenarios similar to the discussions around Fig. 2.21. First, for
the Traub-Miles model without a spike-triggered adaptation (ḡ = 0) but driven by a correlated
noise (red), second for the Traub-Miles model with a spike-triggered adaptation but without a
correlated noise (σ2 = 0) (yellow), and finally for the full model, i.e. the Traub-Miles model with a
spike-triggered adaptation driven by a correlated noise (blue). We find good agreement between
the SCC obtained from stochastic simulations (circles) and the theory (lines) in all three cases.
This demonstrates that our theory can also be applied to conductance-based models.

2.5 Summary

In this chapter, we have seen that randomness and adaptation are two essential features of neural
spike generation. Randomness results from various internal noise sources (thermal noise, chan-
nel noise) and external noise sources (network noise) [9, 33]. Adaptation is often the result of a
slow inhibitory current. These two features are not only reflected in the spontaneous activity of
neurons but also affect the signal transmission properties when the neuron is stimulated with an
information-carrying time-dependent signal [101, 157–167], and their synchronization properties
in a large recurrent network [143, 168–170]. Therefore, it is an important goal in computational
neuroscience to understand spiking neuron models that incorporate these features.

In Sec. 2.2, we have argued that while detailed conductance-based models describe the gen-
eration of the action potential in terms of different ion currents and have certainly been very
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insightful when it comes to the dynamics that shape the action potential, they are at the same
time high-dimensional, nonlinear, and as a consequence difficult to treat analytically. However,
because neurons often integrate postsynaptic potentials and fire a stereotypical action potential
when a certain voltage threshold is exceeded, it is reasonable to focus on the often much simpler
subthreshold dynamics and to replace the action potential with a fire-and-reset mechanism. This
led us to the class of integrate-and-fire models, which provide a phenomenological description of
neuronal spiking while remaining analytically tractable. Indeed, much effort has been devoted to
the theoretical treatment of this class of models, see e.g. [9, 33, 38, 39, 62]. Moreover, it has been
shown that stochastic integrate-and-fire models endowed with an adaptation current can mimic
the response of pyramidal cells to different stimuli to an astonishing degree [42, 123, 171, 172].

Returning to the theoretical treatment of integrate-and-fire models, it is often assumed that in-
terspike intervals are statistically independent, in which case the ISIs Ti are fully characterized by
the probability density pISI(t). Put differently, neural spiking is assumed to be a renewal process
[45, 76]. While this assumption allows for a far-reaching theory of recurrent neural networks [75,
173], we have seen that it is not always justified because slow processes can affect neural spike
generation over multiple ISIs. The two most important mechanisms by which intervals become
correlated are a temporally correlated input noise and slow inhibitory adaptation currents. The
latter are often responsible for the ubiquitous phenomenon known as spike-frequency adapta-
tion. As a consequence, the ISIs are no longer statistically independent but correlated, i.e., neural
spiking is nonrenewal. In this case, the ISIs Ti are no longer fully characterized by the probability
density but depend on the entire history of ISIs Ti−1, Ti−2, . . . (or spike times ti, ti−1, ti−2, . . . ). A
relatively simple linear measure to quantify interval correlations is given by the serial correlation
coefficient ρk, which indicates whether the deviations of two intervals from the mean are on av-
erage proportional (ρk > 0), anti-proportional (ρk < 0) or uncorrelated (ρk = 0). This coefficient
has been calculated analytically in several special cases, assuming that the noise is slow [66, 174],
or weak [74, 92, 95, 115, 175], or that the adaptation is weak [97, 176], but the literature on nonre-
newal neural spiking is disproportionally smaller. In particular, the SCC has not been calculated
for the most realistic setup of an adaptive neuron model driven by an uncorrelated and correlated
noise. Here, we have filled this gap.

However, since even the linear measure of interval correlations, namely the serial correlation
coefficient, is difficult to calculate, we resorted to approximative methods. Specifically, we used
an approach based on the phase reduction of a dynamical system that possesses a limit cycle in
the deterministic limit [132, 135] detailed in Sec. 2.3. In this framework, weak perturbations of
the dynamical system can be translated into spike time deviations by the phase response curve,
i.e., the linear response function of the phase variable. Therefore, our theory is subject to two
limitations: first, we must restrict ourselves to neuron models that operate in the mean-driven
regime, i.e., that fire tonically in the deterministic limit, and second, the perturbations to which
this system is subjected must be weak. We note that the theory presented here relies heavily
on a previous approach developed by [74], who calculated the SCC from the phase response
curve for a stochastic multidimensional IF model with adaptation but driven only by white noise.
In Sec. 2.4, we generalize their approach to include an additional colored noise and derive a
qualitatively new expression for the SCC given by Eq. 2.4.47: ρk as a function of the delay k is
not limited to a single geometric sequence, but can be expressed as the sum of two geometric
sequences. These two sequences can be interpreted well since they correspond exactly to the
SCCs that would be obtained if adaptation and colored noise were considered separately. This is
a very useful but highly non-trivial result due to the interplay of correlated noise and adaptation.
The resulting patterns of interval correlations that such a sum can account for have not been
theoretically explained.

The derived expression has been tested in a number of special cases. We have shown that how
adaptation and correlated noise affect the interval correlations depends crucially on the shape of
the PRC. For neurons with strictly positive PRC, an adaptation current results in negative interval
correlations, and positively correlated input noise results in positive interval correlations. For
neurons with a partially negative PRC, the situation is more complicated, and even the qualitative
behavior of the SCC depends on the timescale of the correlation-inducing processes. In this case,
adaptation currents can induce positive correlations, and positively correlated noise can induce
negative correlations. The PRC is closely related to i) the neuron type, determined by the spike-
onset bifurcation, and ii) the neuron class, determined by the shape of the F-I curve. In Type
I neurons with a SNIC bifurcation, the PRC is purely positive, and the F-I curve is continuous
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[145]. In Type II neurons with a subcritical Hopf bifurcation, the PRC may be partially negative,
and the F-I curve has a discontinuity at the rheobase [99]. We have seen that the behavior of Type
I and Type II neurons can be mimicked by the leaky and the generalized IF models, respectively.

Furthermore, two biophysically relevant cases have been studied. First, we have considered a
case where a finite population of adaptation channels causes both the adaptation and the corre-
lated noise and showed that in this case, the SCC ρ1 has a minimum with respect to the timescale
of the adaptation channels. Second, we investigated a case where the noise resembles that of a
recurrent network in the asynchronous irregular state. In this case, the power spectrum has re-
duced power at low frequencies, corresponding to a negatively correlated noise process. We have
shown that this is another independent process that can give rise to negative interval correlations.
Finally, we have shown that the theory also applies to the conductivity-based Traub-Miles model
with an M-type current and correlated noise, demonstrating the broad applicability of the theory.
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Chapter 3

Nonrenewal spiking in Ca2+

signaling

3.1 Introduction

Cells communicate with each other primally through extracellular chemical messengers, of which
there are four types: paracrine, neurotransmitter, hormone, and neurohormone [177]. These first
messengers often bring about the desired cellular response by binding to one of the more than 700
different G protein-coupled receptors (GPCRs)[178] located in the cell or plasma membrane (PM)
and increasing the intracellular concentration of a second messenger. Remarkably, despite the
multitude of possible responses, there are only two major second messengers: cyclic adenosine
monophosphate (cAMP) and Ca2+. In this chapter, we focus on Ca2+ as a second messenger. Many
of the Ca2+-dependent cellular events are triggered by the activation of calmodulin (CaM). This
intracellular Ca2+-binding protein is not itself enzymatically active but phosphorylates target pro-
teins, resulting in the cellular response. Among the processes regulated by Ca2+ through CaM are
muscle contraction and relaxation, synaptic neurotransmitter secretion, fertilization, and apop-
tosis [23–26, 28]. Interestingly, similar to neuronal signals, Ca2+ signals often occur in the form
of short, pulse-like increases in the intracellular Ca2+ concentration, so-called Ca2+ oscillations or
spikes [24, 28].

To utilize Ca2+ as a second messenger, most cells maintain an extraordinary low resting intra-
cellular Ca2+ concentration of about 100 nM that is four to five orders of magnitude lower than the
extracellular Ca2+ concentration [19, 29]. The increase in the intracellular Ca2+ concentration can
then be brought about either by Ca2+ entry from the extracellular medium through PM channels
or by Ca2+ release from intracellular storage compartments, primarily the ER. We focus on the
latter case, where the release of Ca2+ from the ER is initiated by binding a first messenger to a
GPCR. This activates the inositol 1,4,5-trisphosphate (IP3) pathway (see Fig. 3.1): the G protein
activates the enzyme phospholipase C (PLC). PLC cleaves phosphatidylinositol 4,5-bisphosphate
(PIP2) into IP3 and diacylglycerol (DAG). IP3 diffuses through the cytosol and binds to the desig-
nated IP3 receptor (IP3R). The IP3R channels are usually found in clusters of about 2 to 10 channels
that collectively release Ca2+ in the form of short bursts called puffs or sparks. This increases the
cytosolic Ca2+ concentration and eventually lead to the initiation of a cell-wide Ca2+ spike via a
positive feedback mechanism. The cytosolic Ca2+ concentration in turn regulate various cellular
functions in the form of stimulus-dependent spike-patterns [24, 28]. Among the processes that
intracellular Ca2+ regulates in a specifically frequency-dependent manner are the transcription
factors NFAT1 to NFAT4 (again via CaM), airway smooth muscle contraction, and the Ca2+/CaM-
dependent protein kinase II [20–22, 27].

The response of two different cell types to an agonist stimulation is shown in Fig. 3.2. In
Fig. 3.2A, a human embryonic kidney (HEK) cell was stimulated with carbamylcholine, a struc-
tural analog of the neurotransmitter acetylcholine. In Fig. 3.2B, a HeLa cell was stimulated with
histamine, a neurotransmitter or hormone. In both cases, the agonist binds to a corresponding
receptor, which activates a G protein and induces Ca2+ spikes via the IP3 pathway. Two essential
features of the Ca2+ signal are immediately apparent. First, the timing of the spikes is somewhat
random. Second, the intervals between spikes increase as more spikes are fired - similar to the
spike-frequency adaptation phenomenon discussed in the previous chapter. Thus stochasticity
and adaptation are two essential features of Ca2+ signaling.
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FIGURE 3.1: IP3 pathway. Upon binding of an extracellular agonist to a GPCR, the G-protein’s
alpha subunit activates PLC, which hydrolyzes PIP2 into IP3 and DAG. IP3 diffuses through the
cytosol and binds to the IP3R in the ER membrane leading to the release of stored Ca2+ into the
cytosol. The resulting Ca2+ spikes trigger various intracellular responses. From K. Thurley et al.
Science signaling 7.331 (2014): ra59-ra59. Reprinted with permission from AAAS. Modified with

permission from M. Falcke.
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FIGURE 3.2: IP3-mediated Ca2+ spiking in stimulated HEK and HeLa cells. Changes in the free
cytosolic Ca2+ concentration are measured indirectly by changes in the Ca2+ indicator Fura-2
fluorescence ratio ∆F. Panel A and B show example measurements from HEK cells stimulated
with 10 µM carbamylcholine (CCh) and HeLa cells stimulated with 100 µM histamine, respec-
tively. Fluorescence signals were measured as described in [7, 8]. The data was provided, and

permission was granted by M. Falcke.

In recent decades, Ca2+ spikes have often been perceived as a deterministic oscillation [179–
183]. As a result, the focus has been on the dynamical properties that contribute to the genera-
tion of periodic Ca2+ spikes, and the Ca2+ current generated by the stochastic activity of the IP3
receptors has often been considered in the thermodynamic limit. This neglects fluctuations in the
cytosolic Ca2+ concentration caused by the puffs and the stochasticity of the spike times. To gain
a comprehensive theoretical understanding of Ca2+ signaling, it is essential to employ stochastic
models that accurately account for these fluctuations. Although stochastic models exist [24, 63, 64,
184–187], they do not focus on the spiking statistics as a point process. Specifically, higher-order
spiking statistics associated with nonrenewal spike generation have not yet been considered, to
the best of our knowledge.

In this chapter, we propose a phenomenological two-component model for the generation of
Ca2+ spikes that accounts for the stochastic nature of the puffs, explains the observed transient by
the depletion of the ER, and focuses on the spiking statistics as a point process. The first compo-
nent describes the stochastic activity of clusters of IP3Rs. The second component describes the dy-
namics of the intracellular Ca2+ concentration ([Ca2+]i) and the ER Ca2+ concentration ([Ca2+]er).
We follow the idea that because the release of Ca2+ from the ER controls the generation of the cell-
wide Ca2+ spikes, the cumulative depletion of the ER with each spike can explain the observed
transients [30–32]. Based on this idea, we derive expressions for spiking statistics during the tran-
sient and in the stationary state. The effects of ER depletion on stationary second-order statistics
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are analyzed and compared with experimental data.
We use a kinetic model to describe the activity of IP3R clusters. This model class is frequently

used in mathematical cell biology and computational neuroscience to describe the activity of ion
channels [48]. To describe the formation of Ca2+ spikes, we adopt the successful integrate-and-
fire framework from computational neuroscience. These models describe spike generation phe-
nomenologically and can be extended to include additional variables, such as slow processes
affecting spike generation over multiple spikes. Moreover, integrate-and-fire models emphasize
the excitable nature of the system, as we have explained in the previous chapter. We have already
pointed out that Ca2+ spiking has long been perceived as a classical oscillatory system, while
already the earliest models of neuronal spiking take into account characteristics of an excitable
system [109, 110]. However, biophysically in both systems, it is recognized that spike genera-
tion involves a strong positive feedback mechanism, and also Ca2+ spiking is more commonly
viewed as an excitable stochastic system [63, 64, 184]. Thus, applying the successful integrate-
and-fire framework from computational neuroscience to the fundamental biophysical process of
Ca2+ signaling seems a logical step that has not yet been taken.

This chapter is organized as follows. In the remainder of this first section, we provide a more
comprehensive overview of the biophysical processes involved in the generation of the Ca2+

spike. In Sec. 3.2, we discuss a small number of kinetic models that describe the gating of the
Ca2+ release channels and dynamic models that capture the change in the Ca2+ concentrations
of different compartments in the cell. We will see that the modeling approaches used so far in
the context of Ca2+ signaling are not fundamentally different from those used in computational
neuroscience. In Sec. 3.3, we present our two-component model for the generation of Ca2+ spikes.
The first component describes the stochastic opening and closing of the IP3-receptor clusters. The
second component describes the dynamics of the Ca2+ concentrations in the cytosol and the ER.
Based on the observation that IP3R channel activity is fast compared to the spike generation, we
approximate the stochastic activity of the channel clusters by a Gaussian white noise. This pro-
cess is completely determined by its mean and noise intensity. We show that regardless of the
specific model, the noise intensity can be determined from the transition rate matrix by a system
of algebraic equations. In Sec. 3.4, we first consider a simplified version of the model in which
the Ca2+ concentration in the ER is assumed to be constant. In this case, the model generates
a quasi-renewable spike train. This allows us to analytically calculate a large part of the spike
train statistics using the Fokker-Planck equation associated with the Langevin approximation of
the two-component model. We also ask to what extent the reduced model is able to reproduce
the stationary statistics of ISI sequences observed in stimulated HEK cells. In Sec. 3.5, we return
to the full two-dimensional model. This model generates a nonrenewal spike train and exhibits
a distinct transient. Although the white noise approximation remains valid, the associated two-
dimensional FPE is no longer analytically solvable. Instead, we use a slow adaptation approxi-
mation to calculate first-order stationary statistics. We also provide an intuitive explanation for
the observed second-order stationary interval correlations based on the considerations of Chap. 2.
Most importantly, we calculate statistics of the transient, specifically the number of transient in-
tervals and the cumulative refractory period. The former quantifies the length of the transient,
while the latter quantifies how much the intervals adapt during the transient. Finally, we fit our
model to reproduce transient and first-order stationary statistics from spike sequences of single
stimulated HEK cells. This provides a set of model parameters for each stimulated HEK cell. We
find that the model predicts a rather weak depletion and slow replenishment of the ER. We then
ask whether the (second-order stationary) interval correlations predicted by the model for the
specific parameter sets are consistent with the experimentally observed interval correlations. It
turns out that interval correlations of sequences of single cells can only be determined imprecisely
due to the limited number of intervals. Therefore, statements about whether these correlations
are well reproduced by our model are also difficult to make. However, when the observed inter-
val correlations of all sequences are plotted as functions of the transient statistics, the observed
trends are reproduced by our model.

3.1.1 Physiology of Ca2+ signaling

To generate Ca2+ spikes effectively, cells maintain an extraordinarily low resting Ca2+ concen-
tration of about 100 nM inside the cell, which is 4 to 5 and 3 to 4 orders of magnitude lower
than the Ca2+ concentration in the extracellular medium and the ER, respectively [19, 29]. This
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enormous gradient is maintained by different Ca2+-ATPases and exchangers that compensate for
the passive leakage of Ca2+ from the ER and the extracellular medium into the cytosol. Plasma
membrane Ca2+-ATPases (PMCAs) pump one Ca2+ per hydrolyzed ATP out of the cell and are
complemented by Na+/Ca2+ exchangers (NCXs), which exchange one Ca2+ ion for three Na+

ions, and Na+/Ca2+-K+ exchangers (NCKXs), which cotransport one Ca2+ and one K+ ion in ex-
change for four Na+ ions. Removal of Ca2+ from the cytosol into the ER is mainly accomplished
by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs), which pump two Ca2+ into the ER per
hydrolyzed ATP.

When the cell is stimulated, an extracellular signaling molecule binds to the GPCR on the PM,
activates the IP3 pathway, and triggers the flood-like release of Ca2+ from the ER into the cytosol.
This happens as follows: Upon activation of the GPCR, the Gα subunit dissociates from the G
protein, allowing it to bind to and activate PLC, an enzyme located on the inner side of the PM.
PLC then hydrolyzes PIP2 into two second messengers: IP3 and DAG. While DAG remains in
the membrane, IP3 diffuses through the cell and can bind to the designated IP3R, a Ca2+ release
channel, located in the ER membrane [188]. These receptors form spatially dense and function-
ally coupled clusters, scattered across the ER membrane with reported distances of 1 µm to 7 µm
[189] (compared to the 20 nm IP3R diameter [190, 191]). Opening a cluster of IP3Rs results in
a discharge-like release of Ca2+ from the ER into the cytosol. The local releases are called Ca2+

puffs and are thought to be the elementary events of cell-wide Ca2+ spike [189, 192]. Because
channel/cluster gating happens in thermal contact with the surrounding molecules in the cell,
it is a stochastic process, and the timing of the puffs is random [47, 193]. This noise is also re-
flected in the generation of cell-wide spikes because only a small number of IP3 channels (<8%)
in functional clusters contribute to Ca2+ release [194, 195].

However, the binding of IP3 is only a prerequisite for opening the receptor channel. In ad-
dition, the IP3R must bind Ca2+. This has two effects. First, the channels in a cluster are locally
strongly coupled because the Ca2+ concentration in the vicinity of an open channel can reach very
high values within microseconds [196]. Thus, the opening of a single channel essentially triggers
the opening of the entire cluster [197]. Second, the clusters in the cell are globally coupled by
the cytosolic Ca2+ concentration, which is increased by the opening of the IP3Rs clusters. In
both cases, Ca2+ facilitates its own release. This positive feedback mechanism is known as Ca2+-
induced Ca2+ release (CIRC) and is thought to be responsible for the rapid increase in cytosolic
Ca2+ concentration during the rising phase of the Ca2+ spike. Interestingly, the open probability
of the IP3 channels depends biphasic on Ca2+, i.e., it decreases again at high cytosolic Ca2+ con-
centrations [198–200]. This negative feedback acts on a slower timescale, is responsible for the
termination of the puff, and at least contributes to the termination of the spike [201]. However,
the molecular mechanism of this negative feedback remains unclear.

After reaching the peak Ca2+ concentration during the spike, Ca2+ is rapidly pumped back
into the ER by SERCA pumps or is expelled from the cell by PMCA pumps and Ca2+ exchang-
ers. While a large fraction of the Ca2+ released during the spike is pumped back into the ER,
a smaller fraction is lost to the extracellular medium. Due to the limited Ca2+ capacity of the
ER, this leads to cumulative depletion and would only allow the generation of transient signals
until the ER runs out of Ca2+. The relatively constant level of Ca2+ in the ER, which allows the
continuous generation of Ca2+ spikes, is maintained by a mechanism known as store-operated
Ca2+ entry (SOCE) [202]: ER depletion leads to Ca2+ influx across the cell membrane via Ca2+

release-activated Ca2+ (CRAC) channels. These channels have a small but selective conductance.
The molecular basis of how PM Ca2+ channels lead to ER replenishment has remained a mystery
for nearly two decades [203]. Today it is known that ER depletion activates stromal interaction
molecule 1 (STIM1) located in the ER membrane. Upon activation, STIM1s migrate and accumu-
late at ER-PM junctions where the ER is close enough to the PM for STIM1 to bind and open the
CRAC channels (Orai1). This leads to an influx of Ca2+ at the ER-PM junction, which is immedi-
ately moved into the ER by SERCA pumps. A study by Suzuki et al. [204] indicates that although
SOCE involves a Ca2+ flux through the cytosol, the cytosolic Ca2+ concentration remains largely
unaffected due to the rapid reuptake into the ER.
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3.2 Modeling IP3R kinetics and Ca2+ dynamics

In the previous chapter, we worked with established models describing the generation of neu-
ronal spikes. In particular, we have first discussed biophysically detailed conductance-based
models and then turned to more phenomenological integrate-and-fire models, which still capture
the response of real neurons to an astonishing degree [44]. Formulating such a simplified model
to describe the generation of Ca2+ spikes is an essential part of this chapter. We will propose a
two-component model describing the kinetics of Ca2+ channels, specifically clusters of IP3Rs, on
the one hand, and the dynamics of the relevant Ca2+ concentrations on the other hand. To place
the model in the existing literature, in the following, we discuss two kinetic models describing
the activity of IP3R channels [179, 205] and one dynamic model describing the change of various
Ca2+ concentrations and other agents in the cell that contribute to the Ca2+ spike generation [182].
The considered dynamic model is far from being the only model that could be discussed here
but was chosen because it distinguishes a large number of different compartments in the cell and
Ca2+ fluxes between them. The model provides an extensive overview, although it does not claim
to provide a complete description.

3.2.1 Kinetic models: IP3-receptor channel gating

We have explained in Sec. 3.1 that Ca2+ puffs are thought to be the building blocks of the cell-
wide Ca2+ spikes. A comprehensive understanding of the generation of Ca2+ spikes thus requires
understanding the activity of the Ca2+ release channels. Since the gating of ion channels occurs in
thermal contact with the surrounding molecules in the cell, it is a stochastic process [47, 63]. We
have explained previously in Sec. 1.1 that channel gating is commonly described by continuous-
time Markov chains. A simple example is the two-state channel model with voltage-dependent
rates that we have briefly introduced in the context of neural spike generation in Sec. 2.2.1.

In the context of Ca2+ spiking the channel activity is not voltage- but ligand-gated. In partic-
ular, cytosolic Ca2+ and IP3 are regulators for all types of IP3 receptor channels. This observation
has led to the hypothesis that regulating gating processes may be related to binding and un-
binding specific agents. For example, De Young and Keizer have proposed a kinetic model that
assumes the presence of three binding sites (two for activating and inhibiting Ca2+ and one for
IP3) to describe IP3R gating [179]. More recent models, like the Siekmann model, diverge from
this mechanistic point of view and adopt a more data-driven strategy [205]. Both models will be
presented in the following.

De Young-Keizer model

The De Young and Keizer (DYK) model assumes that an IP3R channel consists of three identical
and independent subunits. Each subunit consists of an activating Ca2+ binding site, an inhibiting
Ca2+ binding site, and an IP3 binding site. Each binding site can be occupied or unoccupied,
resulting in eight (23) states for each subunit. The states are denoted sijk where i,j, and k indicate
the state of the IP3, the activating Ca2+, and the inhibiting Ca2+ binding sites. An index is 1 if the
respective molecule is bound and 0 if not. According to De Young and Keizer, an IP3R channel is
said to be open when for all three subunits the IP3 and activating Ca2+ sites are occupied and the
inhibiting Ca2+ site is unoccupied, i.e., when all three subunits are in the state s110.

The schematic diagram of the kinetic model for a single subunit with all eight different states
sijk is shown in Fig. 3.3A. The transition rates between the states on the front and back faces
of the cube and the transition rates between these two faces are illustrated in Fig. 3.3B and C,
respectively. State transitions are governed by second-order rate constants (ai[Ca2+]i or ai[IP3])
for binding processes and by first-order rate constants (bi) for unbinding processes. De Young
and Keizer have distinguished five pairs of binding and unbinding constants ai and bi. The ra-
tio between these two constants defines the dissociation constant, di = bi/ai, corresponding to
the concentration at which the binding probability reaches half its maximum. Note that the fact
that five different pairs are distinguished implies that the binding sites are not independent. For
example, unbinding of Ca2+ at the inhibiting site depends on whether IP3 is bound or not. The
model parameters used by De Young and Keizer are given in Table 3.1.

The arguably most commonly calculated statistic of a channel model is the open probability
popen. This is because it is closely related to the mean current through the channel. We have
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already pointed out that for the DYK model, an IP3R channel is said to be open when all three
subunits are in the state s110. Since the subunits are independent, the open probability is simply
given by popen = p0(110)3. Here, p0(ijk) denotes the stationary probability of the state sijk, which
can be computed using the stationary master equation

0 = Q · p0 (3.2.1)

with the transition rate matrix

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−q11 b4 b5 0 b1 0 0 0
a4[Ca2+] −q22 0 b5 0 b3 0 0
a5[Ca2+] 0 −q33 b4 0 0 b1 0

0 a5[Ca2+] a4[Ca2+] −q44 0 0 0 b3
a1[IP3] 0 0 0 −q55 b2 b5 0

0 a3[IP3] 0 0 a2[Ca2+] −q66 0 b5
0 0 a1[IP3] 0 a5[Ca2+] 0 −q77 b2
0 0 0 a3[IP3] 0 a5[Ca2+] a2[Ca2+] −q88

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.2.2)

where qjj = −∑i ̸=j qij, and the stationary probability vector

p0 =
(︁

p0(000) p0(001) p0(010) p0(011) p0(100) p0(101) p0(110) p0(111)
)︁T . (3.2.3)

The solution of Eq. 3.2.1 together with the normalization condition ∑ijk p(ijk) = 1 is straightfor-
ward and the open probability for an IP3 receptor channel is given by [179]

popen = p0(110)3 =

[︃
[Ca2+]i[IP3]d2

([Ca2+]i[IP3] + [IP3]d2 + d1d2 + [Ca2+]id3)([Ca2+]i + d5)

]︃3

. (3.2.4)

If the dissociation constants di are chosen accordingly, Eq. 3.2.4 can quantitatively reproduce the
experimentally observed biphasic dependence of the open probability on [Ca2+]i. In Fig. 3.4, we
compare the open probability according to Eq. 3.2.4 with simulation results of the DYK model as
a function of the [Ca2+]i and the IP3 concentrations.

We note that in addition to the channel model, the full DYK model includes a differential
equation describing the change of the cytosolic Ca2+ concentration

d[Ca2+]i
dt

= c1(ν1 p0(110)3 + ν2)([Ca2+]er − [Ca2+]i)− ν3[Ca2+]i
2/([Ca2+]i

2 + k2
3). (3.2.5)

The first term describes the release of Ca2+ from the ER into the cytosol and consists of two com-
ponents, the mean Ca2+ current through the IP3Rs and a constant Ca2+ leak current. The second

FIGURE 3.3: A schematic diagram of the kinetics of a single IP3-receptor channel subunit ac-
cording to De Young and Keizer [179]. The states are denoted by sijk, where i, j, and k indicate
whether IP3, activating Ca2+, and inhibitory Ca2+ are bound (bound = 1, unbound = 0). A shows
the whole model, including all eight possible states. B and C show parts of the whole model
according to the color code. B shows the kinetics of the front and back faces of the cube. C

shows the kinetics of the transitions between the two faces shown in B.
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FIGURE 3.4: Open probability of the DYK model. (A) Open probability as a function of [Ca2+

]i. The solid line indicates the open probability of the full model calculated from the stationary
master equation. The circles show the open probability obtained from stochastic simulations of
the DYK model. (B) Open probability as function of [IP3 ] with [Ca2+ ]i = 1µM. Solid line and

circles as in (A).

TABLE 3.1: Simulation parameters for the De Young-Keizer IP3R model where [179]

Parameter Value Description Parameter Value Description

IP3R binding constants IP3R dissociation constants (di = bi/ai)

a1 [µM−1s−1] 400 IP3 d1 [µM] 0.13 IP3

a2 [µM−1s−1] 0.2 Ca2+ inhibition d2 [µM] 1.049 Ca2+ inhibition

a3 [µM−1s−1] 400 IP3 d3 [nM] 943.4 IP3

a4 [µM−1s−1] 0.2 Ca2+ inhibition d4 [nM] 144.5 Ca2+ inhibition

a5 [µM−1s−1] 20 Ca2+ activation d5 [nM] 82.34 Ca2+ activation

term describes the removal of Ca2+ from the cytosol back into the ER by SERCA pumps. Eq. 3.2.5
is similar to the model we propose in that a kinetic channel model is coupled to a differential
equation describing the dynamics of [Ca2+]i. However, De Young and Keizer considered the Ca2+

dynamics only in the thermodynamic limit, where the Ca2+ current through the IP3 receptors does
not depend on the current states of the channels but only on the open probability p3

110. Fluctua-
tions of the Ca2+ concentration due to the stochastic nature of the ion channels are neglected.

We have already pointed out that the DYK channel model can reproduce the biphasic depen-
dence of the open probability on [Ca2+]i. At the same time, together with Eq. 3.2.5, oscillations of
the cytosolic Ca2+ concentration with a period of about 20s can be explained. A disadvantage of
the DYK model is that the rates given in Table 3.1 were chosen in accordance with the properties
of the oscillating Ca2+ concentration rather than with the gating properties of the channels. In
other words, it was assumed that the timescale of the Ca2+ oscillation is reflected in the binding
rates of the channel (specifically in the delayed negative feedback of the inhibiting Ca2+ binding
site). However, Thurley et al. [206] have shown that the timescale of the ISI is not reflected in the
kinetics of the channels

Siekmann model

The second model we discuss is the Siekmann model [205]. This model departs from the mech-
anistic view of De Young and Keizer and follows a more data-driven strategy. Unlike many pre-
vious studies, Siekmann et al. do not attempt to formulate a model based on the binding and
unbinding processes of different ligands but instead extract transition rates from experimental
data in an arbitrary functional form.

Similar to Gin et al. [207], they derive their model by statistical analysis of an extensive single-
channel data set. To this end, they used patch-clamp data from type 1 and type 2 IP3R channels
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FIGURE 3.5: (A) schematic diagram of the kinetics of a single IP3-receptor channel according to
Siekmann et al. [205]. (B) shows a simplification of the Siekmann-model.

expressed in the nuclear membrane of DT40 cells, where two states (open and closed) are dis-
tinguished. Siekmann et al. observed that the channels alternate between periods with a high
open probability of about 70% and periods with a low open probability close to zero. Thus, con-
trary to the DYK model’s predictions, channels can occasionally have episodes with high open
probabilities even when the stationary open probability is relatively low. In agreement with this
observation, the authors follow the suggestion of Ionescu et al. [208] that IP3Rs are mainly regu-
lated by mode switching and propose a kinetic model with a drive and a park mode as depicted
in Fig. 3.5A. Four states are distinguished in the drive mode: three closed states C1, C2, C3, and
one open state O6. In park mode, there are only two states; one closed state C4 and one open state
O5. This takes into account that the open probability in the park mode does not vanish entirely.

The transition rate matrix Q corresponding to the schematic diagram in Eq. 3.5A is as follows

Q =

⎛⎜⎜⎜⎜⎜⎜⎝
−q12 q21 0 0 0 0
q12 −q21 − q23 − α − q26 q32 β 0 q62
0 q23 −q32 0 0 0
0 α 0 −β − q45 q54 0
0 0 0 q45 −q54 0
0 q26 0 0 0 −q62

⎞⎟⎟⎟⎟⎟⎟⎠ (3.2.6)

and the probability vector is given by

p(t) =
(︁

p(1, t) p(2, t) p(3, t) p(4, t) p(5, t) p(6, t)
)︁T . (3.2.7)

Again, the stationary master equation allows us to compute the stationary probability and thus
the open probability, for which Siekmann et al. have given an exact expression (Eq. 1-10 in [205])
that is not repeated here.

Interestingly, they find that the transition rates within the two modes qij are rather indepen-
dent of Ca2+ and IP3. Conversely, the transition rates α and β between the modes depend on Ca2+

and IP3 but have not been specified by the authors. This gap was later closed by Cao et al. [209,
210] who constructed the rates to reproduce both the stationary [211] and the time-dependent
[212] behavior of an IP3R. The resulting functions are complicated and entail a large number of
parameters. For the sake of simplicity, we restrict ourselves here to the stationary case where the
two rates are given by

α = qα + Vα(1 − m∗
αh∗α), (3.2.8)

β = qβ + Vβm∗
βh∗β (3.2.9)
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FIGURE 3.6: Open probability of the Siekmann model. (A) Open probability as a function of
[Ca2+]i. The solid line indicates the open probability of the full model calculated from the sta-
tionary master equation. The dotted line shows the open probability of the simplified Siekmann
model, also calculated from the stationary master equation. The circles show the open probabil-
ity obtained from stochastic simulations of the simplified Siekmann model. (B) Open probability

as function of [IP3 ] with [Ca2+]i = 1 µM. Solid line, dotted line, circles as in (A).

with

m∗
α =

[Ca2+]
nmα
i

[Ca2+]
nmα
i + Knmα

mα

, h∗α =
[Ca2+]

nhα
i

[Ca2+]
nhα
i + Knhα

hα

, (3.2.10)

m∗
β =

[Ca2+]
nmβ

i

[Ca2+]
nmβ

i + K
nβ
mβ

, h∗β =
[Ca2+]

nhβ

i

[Ca2+]
nhβ

i + K
nhβ

hβ

. (3.2.11)

Compared to the Markov model proposed by De Young and Keizer, which is completely deter-
mined by ten parameters, the Markov scheme proposed by Siekmann et al. [205] with the [Ca2+]
and [IP3] dependent rates α and β according to [209] has an impressive number of 20 or 51 param-
eters (depending on whether, for example, qα is considered as a single parameter or as consisting
of four parameters, see Table 3.2). However, it was quickly realized that the probability of finding
the states C1, C3, and O5 in the full Siekmann model is small [64]. This led to the formulation of
the simplified Siekmann model where only three different states are distinguished, as illustrated
in Fig. 3.5.

In Fig. 3.6A, we compare the theoretical prediction of the open probability as given by Siek-
mann et al. [205] of the full Siekmann model (solid line) to the reduced Siekmann model (dotted
line). There is little difference between the two models. Interestingly, the open probability, both as
a function of [Ca2+]i and as a function of [IP3], is very different from the open probability obtained
from the DYK model. This is true for the shape of the open probability as a function of [Ca2+]i,
but also for the value of [Ca2+]i at which the maximum is reached (note the different Ca2+ ranges
in Fig. 3.3 and Fig. 3.6).

Despite the differences between the two models, we have seen that IP3R channel gating is
usually described by Markov chains and that the open probability is the first statistic of interest
for these models.

3.2.2 Dynamic model: Ca2+ oscillations

For the DYK model, we have already seen that the kinetics of the IP3 receptors is only one compo-
nent needed to describe the generation of Ca2+ spikes. The second component is the dynamics of
the cytosolic Ca2+ concentration [Ca2+]i or, more generally, the dynamics of the various agents in
the cell. The goal here is to provide an overview of the various dynamical quantities commonly
considered relevant to the generation of Ca2+ spikes. To this end, we consider the deterministic
model proposed by Schuster, Marhl, and Höfer [182].

This model is far from being the only deterministic point model that could be considered (see,
for instance [179, 180, 183, 213–215]), but to the best of our knowledge, distinguishes the largest
number of different processes and can therefore be considered a most comprehensive model. The
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TABLE 3.2: Simulation parameters for the Siekmann model [209]

Parameter Value Parameter Value

q12 [s−1] 1.24 · 103 Vα [s−1] 60 + 437
[IP3]

3+1.73

q21 [s−1] 8.8 · 101 Vβ [s−1] 100

q23 [s−1] 3 nmα 6.3 + 1.72[IP3]
2

[IP3]
2+1.44

q32 [s−1] 6.9 · 101 nmβ
5.9 + 7.6

[IP3]
2+1.44

q26 [s−1] 1.05 · 104 nhα

8.2[IP3]
2

[IP3]
2+2.25

q62 [s−1] 4.01 · 103 nhβ
3.2 + 4.88[IP3]

2

[IP3]
2+1.69

q45 [s−1] 1.10 · 101 Kmα 0.48 + 0.1
[IP3]

2+1.44

q54 [s−1] 3.33 · 103 Kmβ
0.4 + 0.26[IP3]

4

[IP3]
4+168

qα [s−1] 1 + 7.5
[IP3]

2+0.25 Khα
79.75 + 25

[IP3]
2+1.44

qβ [s−1] 1.8[IP3]
2

[IP3]
2+0.34 Khβ

0.17 + 70[IP3]
3

[IP3]
3+274.6

model reads as follows

d[IP3]

dt
= νplc − νd,

d[Ca2+]i
dt

= νin − νout + νrel − νserca + νmo − νmi − ∑j νb,j,

d[Ca2+]er

dt
= ρer(νserca − νrel),

d[Ca2+]m
dt

= ρm(νmi − νmo),

dBj

dt
= νb,j,

(3.2.12)

where [IP3] is the IP3 concentration, [Ca2+]i, [Ca2+]er, [Ca2+]m are the Ca2+ concentrations in the
cytosol, the ER, and the mitochondrion, and Bj is the bound concentration of the j-th Ca2+ buffer.
The model implicitly distinguishes between three compartments within the cell, the cytosol, the
ER, and the mitochondrion, even though they are not spatially separated in a point model.

The dynamics of IP3 concentration is determined by the rate of IP3 formation by phospholi-
pase C (PLC) νplc and the rate of IP3 degradation by hydrolysis νd. In its simplest form, νplc is
a constant, while νd = ν̂d[IP3] depends linearly on the IP3 concentration. In some cells, [Ca2+]i
may also positively influence IP3 formation, depending on the specific PLC isotype [216]. The
second line, which governs the dynamics of the cytosolic Ca2+ concentration, distinguishes the
largest number of different Ca2+ currents. The seven terms fall into four categories. First, the
influx and efflux of Ca2+ across the cell membrane are described by the terms νin and νout. Here,
νout describes the active removal of Ca2+ from the cytosol into the extracellular medium, e.g. by
PMCAs, and typically depends (nonlinearly) on [Ca2+]i. Second, the Ca2+ fluxes across the ER
membrane are described by νrel and νserca. The first term νrel captures the release of Ca2+ from
the ER into the cytosol, usually including a leak term and the release through IP3Rs. Both are dif-
fusive currents that depend on the difference between [Ca2+]er and [Ca2+]i. In addition, the Ca2+

current through IP3Rs usually includes a nonlinear term reflecting the dependence of the IP3Rs
open probability on [Ca2+]i (see below). The active reuptake of Ca2+ from the cytosol into the
ER by SERCA pumps is described by the second term νserca and (like the PMCAs) also depends
nonlinearly on [Ca2+]i (see below). Third, the Ca2+ currents across the mitochondrial membrane
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νmi and νmo, which are rarely considered, and fourth, the binding and unbinding of Ca2+ to the
j-th Ca2+ buffer Bj, described by νb,j. The currents across the ER and the mitochondrial membrane
affect the respective Ca2+ concentrations [Ca2+]er and [Ca2+]m with opposite signs and a prefactor
ρer = Ver/Vi and ρm = Vm/Vi, which account for the volume ratios between the cytosol and the
ER and mitochondrion, respectively. We emphasize again that, to the best of our knowledge, no
model has yet been published that accounts for all of the above processes.

For Eq. 3.2.12 to have a periodic solution, at least two of the above variables must be consid-
ered. [Ca2+]i should, of course, be one of them. Furthermore, at least one of the two variables
must exert positive feedback on itself1. CICR provides such feedback. Apart from the early mod-
els in which the delayed negative feedback that high Ca2+ concentrations exert on IP3R channels
was assumed to be responsible for the oscillations of the cytosolic Ca2+ concentration (for in-
stance, in the DYK model), later models assumed that the transport of Ca2+ between the cytosol
and the ER was responsible for the observed oscillations [217–219]. Moreover, when the IP3 for-
mation depends on [Ca2+]i, the interaction between [Ca2+]i and [IP3 ] may be sufficient to observe
oscillations [181].

Despite the wide variety of models and mechanisms that have been proposed to describe
the formation of Ca2+ oscillations or spikes, there are some common features that most models
share. First, almost all models assume that CICR is the relevant positive feedback mechanism
for the occurrence of Ca2+ oscillations or spikes. Second, almost all models describe Ca2+ release
from the ER by a combination of a leak current and a Ca2+-dependent Ca2+ current. The latter is
associated with the Ca2+ release via the IP3R channels and is usually described by Hill equations
as follows

νrel = (k1 + k2
[Ca]αi

Kα
act + [Ca]αi

Kβ
inh

Kβ
inh + [Ca]βi

)([Ca2+]er − [Ca2+]i) (3.2.13)

or

νrel = (k1 + k2
[Ca]αi

Kα
act + [Ca]αi

[Ca]βer

Kβ
inh + [Ca]βer

)([Ca2+]er − [Ca2+]i). (3.2.14)

Here, k1, k2 are rate constants, Kact, Kinh are dissociation constants and α, β are Hill coefficients.
The first term captures the Ca2+ leak from the ER into the cytosol, whereas the second term de-
scribes the release of Ca2+ from the ER through the IP3Rs. Whether the release of Ca2+ from
the ER into the cytosol is described by equation Eq. 3.2.13 or Eq. 3.2.14 depends on which pro-
cess is thought to be responsible for the termination of the Ca2+ release. In Eq. 3.2.13, the term
Kβ

inh/(Kβ
inh + [Ca]βi ), and thus a high cytosolic Ca2+ concentration, is responsible for the ter-

mination of the Ca2+ release. This reflects the negative feedback a high cytosolic Ca2+ con-
centration exerts on the opening probability of the IP3Rs. In contrast, in Eq. 3.2.14, the term
[Ca]βer/(Kβ

inh + [Ca]βer), and thus the depletion of the ER, is responsible for the termination of the
Ca2+ release.

Third, the active reuptake of Ca2+ from the cytosol into the ER by the SERCA pumps is also
typically described by a Hill equation:

νserca = k3
[Ca]γi

Kγ
serca + [Ca]γi

. (3.2.15)

Finally, if an additional buffer is considered, the dynamics are governed by a second-order rate
constant for the binding of Ca2+ to the buffer and by a first-order rate constant for the unbinding
processes:

νb = k+(BT − B)[Ca2+]i − k−B. (3.2.16)

Here BT is the total buffer concentration and k+ and k− are the binding and unbinding constants.

1This is because in the simplest two-dimensional case ẋ = f1(x, y), ẏ = f2(x, y) oscillations require complex eigenval-
ues λ1,2 with a positive real part given by the trace of the corresponding Jacobi matrix Re(λ1,2) = d f1/dx + d f2/dy > 0.
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The term BT − B corresponds to the free buffer concentration, assuming that the total buffer con-
centration is constant.

3.3 An integrate-and-fire approach to Ca2+ signaling

In this section, we propose a phenomenological two-component model for the generation of Ca2+

spikes that takes into account the stochastic nature of the Ca2+ puffs and treats the Ca2+ spike as
a stochastic point process. The first component describes the stochastic opening and closing of
clusters of IP3Rs by a Markov chain. We have shown in Sec. 3.2.1 that modeling IP3Rs by Markov
models follows a certain tradition [179, 205]. However, our approach differs somewhat because
we do not describe single IP3 receptor channels but a cluster of such channels. The second com-
ponent is a phenomenological IF model describing the dynamics of the intracellular and ER Ca2+

concentrations. Similar to the generation of neural spikes, we follow the idea that Ca2+ spikes
can be viewed as the result of a summation or integration process combined with a fire mechanism
that triggers a spike whenever the intracellular Ca2+ concentration exceeds a critical value. Here,
the release of Ca2+ into the cytosol by the puffs represents the process that is integrated, and the
positive feedback induced by CICR constitutes the fire mechanism by which a cell-wide spike is
triggered. Additionally, we endow the model with a slow adaptation-like variable that captures
the depletion and replenishment of the ER Ca2+ concentration and allows to capture the observed
transient.

3.3.1 IP3R channel cluster: Cyclic Markov model

We begin by describing the Markov model that characterizes the activity of a cluster of IP3-
receptor channels. We have already pointed out that our considerations do not start from a single
channel. Of course, several single-channel models, such as the introduced DYK or Siekmann
models, could be used to derive a cluster model. However, because the channels in a cluster are
strongly coupled and thus highly cooperative, cluster models derived from single-channel dy-
namics are very complex [220, 221]. However, despite the complexity of the dynamics, they yield
relatively simple waiting time distributions for both the closed and open cluster states [206, 221–
223]. Therefore, we take a different approach and derive a simplified model based on experimen-
tally available statistics of the puff strength and the interpuff interval (IPI).

In our model, the states of a single cluster over time t form a CTMC, denoted y(t). The
Markov chain is then mapped to an observable stochastic process x(t) that describes the num-
ber of open channels within a cluster at time t. The process x(t) eventually enters into the
dynamics of the intracellular Ca2+ concentration (see Sec. 3.3.2). A schematic diagram of the
cluster model is shown in Fig. 3.7. The complete state space of the Markov chain is given by
S = [ON , . . . , O1, CM, . . . , C1] and consists of two subspaces SO = [ON , . . . , O1] containing the
open states and SC = [CM, . . . , C1] containing the closed states. The probability that a certain
state s ∈ S is occupied at time t is given by p(s, t) and governed by the master equation

ṗ = Q · p (3.3.1)

with the transition rate matrix (each blank entry corresponds to a zero):

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λclose λopen/N

λclose
. . .

...
. . . . . . λopen/N

λclose −λref

λref
. . .
. . . −λopen

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.3.2)
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FIGURE 3.7: Schematic diagram of the ki-
netics of a cluster of IP3-receptor chan-
nels. The model consists of N open and
M closed states. States are labeled ac-
cording to the corresponding number of

open channels the state represents.

Parameter Value
N 5
M 3

λclose 50 s−1

λref 20 s−1

ν∗open 0.1 s−1

α 3.0
β 3.0
q 1.0

TABLE 3.3: Default parameters of the
cluster model. The rate ν∗open corre-
sponds to the single-channel opening rate
νopen(ci, q) at the resting concentration

ci = c∗0 and q = 1.

and the probability vector:

p(t) =
(︁

p(ON , t) . . . p(O1, t) p(CM, t) . . . p(C1, t)
)︁T . (3.3.3)

Additionally, we assign every state s a natural number by the nonlinear transformation:

f (s) =

{︄
n, for s = On with n = 1, . . . , N
0, for s = Cm with m = 1, . . . , M

(3.3.4)

to map the Markov process y(t) to the stochastic process x(t) representing the number of open
channels in a cluster. The transformation maps every closed state Cm to 0 (no channels are open)
and every open state On to n (the corresponding number of open channels). Fig. 3.8 presents
exemplary time series of the process y(t) and x(t) = f (y(t)) illustrating the transformation. Con-
sistent with the pulse-like release of Ca2+ by the puffs, the model generates short episodes where
the cluster is open, followed by relatively long intervals where the cluster remains closed.

Before turning to the statistical analysis of the puffs generated by our model, we motivate
the Markov model in more detail and describe the biophysical properties that have been taken
into account. The transition rate matrix Q consists of four submatrices (see Eq. 3.3.2), which re-
sults from the division of the state space into an open and a closed subspace. The shapes and
biophysical justifications of each submatrix are described below, beginning with the upper-right
submatrix and proceeding in a counterclockwise direction. The first three submatrices determine
the statistics of the puff itself, particularly the puff strength A, defined as the integral of the num-
ber of channels open during a single puff. This quantity is closely related to the amount of Ca2+

released per puff, hence the name. The fourth submatrix determines the statistics of the time
between two puffs, the IPI I. Both puff strength and IPI are highlighted in Fig. 3.8.

The upper-right N × M submatrix captures the transition from the closed state C1 to an ar-
bitrary open state On, describing the opening of the cluster. Biophysically, the firing of a puff
is a cooperative event triggered by the opening of a single channel. This significantly elevates
the local Ca2+ concentration, increases the open probability of the remaining channels within the
same cluster, and causes a certain uniformly distributed number of them to respond and open
as well [224, 225]. We assume that this response is instantaneous. The transition from the closed
state C1 to any open state On can then be described by a single transition with rate λopen. The fact
that in our model, the transition to each open state is equally likely reflects the observed uniform
distribution of the number of responding channels n0. The notion that any channel can trigger the
cluster opening is reflected by the linear dependence of λopen on the cluster size N (see Eq. 3.3.7).
That λopen is a linear function of N has been shown experimentally [197].

Upon initiation of a puff, the channels close successively as described by the upper-left N × N
(and lower-left M × N) submatrix. Intuitively, it could be assumed that the channels within a
cluster close independently, leading to a closing rate of the cluster that is directly proportional to
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FIGURE 3.8: Transforming the Markov process y(t) into the stochastic process x(t). Panel A
shows a time series of the process y(t). Panel B shows the transformed process x(t). While the
individual open states On remain distinguishable after the transformation, the closed states Cm
all collapse to zero and lose their distinctiveness. The opening of a cluster is the basis for the
Ca2+ puff. The integrated number of open channels during a single opening event is related
to the amount of Ca2+ release per puff and defines the puff strength A. The time between two

opening events defines the interpuff interval I.

the number of currently open channels n. However, Wiltgen et al. [201] have demonstrated that
the mean dwell time (the inverse closing rate) exhibits minimal dependence on n. This finding
suggests that channel closing is also a cooperative process, although the underlying mechanisms
are poorly understood. Our model describes the transition from the state On to On−1 by a constant
closing rate λclose independent of n. The constant closing rate results in a staircase-like shape of
the puff shown in Fig. 3.8B, where the mean dwell time in each state (i.e., the average width of
the steps) is identical.

Finally, the lower-right M × M submatrix determines the statistics of the IPI. Experimentally,
IPIs are known to be highly stochastic but have a (small) refractory period [197, 206]. The lat-
ter is due to a negative feedback that occurs during the opening of a channel/cluster: The local
Ca2+ concentration in the vicinity of an open channel/cluster reaches very high values within mi-
croseconds [196] and reduces the probability of an immediate reopening for a relative refractory
period [188, 199]. This is most likely due to an inhibitory Ca2+ binding site on IP3R, which has
a much higher affinity for Ca2+ binding and acts on a slower timescale compared to the activa-
tion site [226, 227]. While this feedback is a subject of ongoing debate, even studies that consider
such feedback unlikely come to the conclusion that the IP3R has more than one closed state [228].
Thus, IPIs cannot be modeled by a single transition. We introduce a series of refractory states that
must be traversed after a puff before a new puff can be initiated. Specifically, the closed states
CM, . . . , C2 must be traversed with transition rates λref before the cluster reaches the state C1 and
can open again with the rate λopen. At this point, the cycle starts anew with the opening of the
cluster.

To complete the cluster model, we specify the dependence of the rates on Ca2+ and IP3. We
have already explained that the local positive feedback in a cluster is captured by the dependence
of the opening rate on the cluster size N. The global feedback that the opening of one cluster exerts
on the other cluster through an increase in [Ca2+]i has not yet been accounted for. Unfortunately,
to the best of our knowledge, there is no quantitative study that relates cluster activity to [Ca2+]i.
In the absence of direct measurements, we choose the Ca2+ dependence of the opening rate by
analogy with the biphasic Ca2+ dependence of the open probability of a single channel, usually
described by a combination of Hill equations [199, 200, 229]. Since we describe the dynamics of the
cytosolic Ca2+ concentration by an IF model, we restrict ourselves to cytosolic Ca2+ concentrations
close to the resting concentration. This eliminates the need to include a term that captures the
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decrease in open probability at high Ca2+ concentrations. We chose

λopen([Ca2+]i) = Nνopen([Ca2+]i)

= Nν̂open
[Ca2+]i

α

Kα
act + [Ca2+]iα

[IP3]
β

Kβ
stim + [IP3]β

,
(3.3.5)

where N is the number of channels in a cluster and νopen (ν̂open) can be interpreted as the Ca2+-
dependent (maximal) opening rate of a single channel. The two remaining rates λref and λclose are
chosen independent of both [Ca2+]i and [IP3]. Mak, McBride, and Foskett [200] have shown that
the mean open time of a single channel is independent of the Ca2+ concentration. Therefore, it
is plausible that the closing rate, which determines the open time, is also independent of [Ca2+]i.
Similarly, the refractory period observed in the ISI is likely due to negative feedback from the local
Ca2+ concentration in the vicinity of the open cluster. This concentration has little to do with the
cell-wide cytosolic Ca2+ concentration. Therefore, we assume that λref is independent of [Ca2+]i
and chose both rates to be constants (Table 3.3):

λref = const.
λclose = const.

(3.3.6)

In the following, neither [Ca2+]i nor [IP3] will be given in absolute units but relative to the re-
spective dissociation constant. For this purpose we introduce the two variables ci = [Ca2+]i/Kact
and q = [IP3]/Kstim. Estimates of Kact have been obtained by fitting combinations of the Hill equa-
tion to the open probabilities of individual channels and are typically between 100 nM to 500 nM
[188, 230]. However, it was also noted that the fit parameters are not uniquely determined, so the
results should be taken with caution. We have chosen an intermediate value of Kact = 250 nM.
This parameter is not explicitly included in our model but allows us to relate the dimensionless
quantity ci to physiological Ca2+ concentrations. The dependence of the cluster opening rate on
ci and q is then given by

λopen(ci) = Nν̂open
cα

i
1 + cα

i

qβ

1 + qβ
(3.3.7)

and the single channel opening rate by

νopen(ci) = ν̂open
cα

i
1 + cα

i

qβ

1 + qβ
. (3.3.8)

Often it is more convenient to express the opening rate relative to a given rate at a reference
concentration c∗i . This is because the maximum rate may be difficult to obtain experimentally,
whereas the opening rate at a given Ca2+ concentration (for instance, the resting Ca2+ concentra-
tion) is readily available. Expressing the Ca2+ dependent rate by means of a reference rate can be
accomplished by a simple transformation of Eq. 3.3.8

νopen = ν∗open(c
∗
i , q∗) ·

(︃
ci

c∗i

)︃α 1 + (c∗i )
α

1 + cα
i

, (3.3.9)

where we have assumed that the relative IP3 concentration q∗ has not changed. In Table 3.3 we
have given ν∗open relative to the cytosolic resting concentration c∗i = c∗0 and at an intermediate
stimulation q∗ = 1. The value c∗0 = 0.2 was chosen in accordance with physiological resting
concentrations, which are usually of the order of [Ca2+]∗0 ≈ 50 nM [29].

For the kinetic model presented, the open probability can be calculated as the fraction of time
the cluster is open:

popen(ci) =
τopen

τopen + τclose(ci)
. (3.3.10)

Here τopen and τclose(ci) are the mean open and closed times, corresponding to the mean duration
of a puff and the mean interval between puffs (the IPI), respectively. These mean open/closed
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FIGURE 3.9: Open probability and mean dwell times of an IP3R cluster. Panel A shows the open
probability popen(ci) for three different IP3 concentrations q. Theoretical predictions of popen(ci)
according to Eq. 3.3.13 (solid red lines) are confirmed by simulation results (blue circles). Panel
B shows the mean dwell times in the open states τopen that is independent of ci. Panel C shows
the mean dwell time in the closed states τclose that depends on ci. Dotted lines in panel A
and C indicate the open probability and dwell times with a biphasic opening rate according to

Eq. 3.3.14. Parameters are chosen according to Table 3.3.

intervals and the mean values considered below are calculated as time averages, not ensemble
averages. That is, we consider one long realization of the stochastic process x(t) and calculate the
mean open (closed) time as the average of the sequence of occurring open and closed intervals.
In contrast, to calculate the ensemble average, many realizations xn(t) must be considered, and
the mean intervals are obtained by averaging over all open or closed intervals found at time t.
However, since the time t is more likely to fall into a longer interval, such an average introduces
a bias in the sampling of the intervals; in general, the length of the intervals will be overestimated
[46]. Returning to the calculation of the mean open time, we first calculate the conditional mean
open time τopen(n0) = n0/λclose for a given number of responding channels n0 and then average
again over the number of responding channels:

τopen =
1
N

N

∑
n0=1

n0

λclose
=

N + 1
2λclose

. (3.3.11)

We recall that n0 is uniformly distributed according to p(n0) = 1/N. The mean closed time is
given by the sum over the mean dwell times in the M closed states:

τclose(ci) =
1

λopen(ci)
+

M − 1
λref

. (3.3.12)

Combining Eq. 3.3.10, 3.3.11, and Eq. 3.3.12 yields

popen(ci) =

N+1
2λclose

N+1
2λclose

+ 1
λopen(ci)

+ M−1
λref

. (3.3.13)

The open probability and the mean dwell times as functions of ci are shown in Fig. 3.9. In our
model and in agreement with experimental results [200], the increase of popen with ci is due to
a decrease of τclose with ci. The gray area indicates concentrations that are inaccessible in our IF
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model because they are above the firing threshold cT (see Sec. 3.3.2). The specific value of cT = 0.5
has been chosen so that an increase in ci still results in significant positive feedback, i.e., so that
popen(ci) is not yet saturated. This value corresponds to a cytosolic Ca2+ concentration of about
125 nM.

Finally, to make a relation to the existing literature, we show in Fig. 3.9 also the open proba-
bility and dwell times for an opening rate with a true biphasic ci-dependence

Λopen = Nν̂open
cα

i
1 + cα

i

Kα

Kα + cα
i

sβ

1 + sβ
, (3.3.14)

where K = Kinh/Kact is the ratio between the dissociation constants of the activation and inhibi-
tion Ca2+ binding site of the IP3R and was set to K = 10. It turns out that for the specific choice of
K, this additional term affects the dynamics of the cluster only at high Ca2+ concentrations, which
are not described in our IF model.

Puff strength and interpuff interval of the IP3R cluster model

So far, we have motivated the cluster model and computed the open probability. Here, we go
beyond the open probability and compute statistics of the puff strength A, the IPI I(ci) and, most
importantly, the mean µx(ci) and the noise intensity Dx(ci) of a single cluster. In almost all cases,
the statistics depend on the cytosolic Ca2+ concentration through the Ca2+-depend opening rate
λopen(ci). However, since cluster activity is often fast compared to the rate of change of [Ca2+]i,
we assume that this dependence is merely parametric and calculate all statistics for fixed values
of ci.

We start by calculating statistics of the puff strength A, a quantity closely related to the amount
of Ca2+ released during a puff. Two exemplary puffs with strength Ai an Ai+1 are shown in
Fig. 3.10A1. To calculate the mean ⟨A⟩ and the variance Var(A) of the puff strength, it is conve-
nient first to calculate the conditional mean ⟨A|n0⟩ and the conditional variance Var(A|n0) for a
given number of responding channels n0. The conditional and unconditional statistics are related
by the law of total mean and total variance [231]:

⟨A⟩ = ⟨⟨A|n0⟩A⟩n0 , (3.3.15)
Var(A) = ⟨Var(A|n0)A⟩n0 + Var(⟨A|n0⟩A)n0 . (3.3.16)

The relation for the total mean is clear. We calculate the mean puff strength for a given number of
responding channels ⟨A|n0⟩A and obtain the total mean ⟨A⟩ by averaging again over the number
of responding channels ⟨⟨A|n0⟩A⟩n0 . For the variance, it turns out that the same procedure, i.e.,
calculating ⟨Var(A|n0)A⟩n0 , does only account for a portion of the total variance Var(A). Addi-
tionally, the variance of the conditional mean ⟨A|n0⟩A must be taken into account. This can be
understood by realizing that even if A was a deterministic function of n0 (if Var(A|n0)A would
vanish), the mere fact that n0 is a stochastic quantity would still lead to a variance of A.

To determine the conditional puff strength (A|n0), we consider it to be the sum of n0 indepen-
dent random numbers corresponding to the area under each "step" of the puff, denoted (a|n):

(A|n0) =
n0

∑
n=1

(a|n). (3.3.17)

For example, the number of responding channels for the second puff in Fig. 3.10A1 is n0 = 5, so
that the total puff strength can be considered to be the sum of five independent random variables.
During each step, the area (a|n) = ntOn is the product of the deterministic number of open chan-
nels n and the stochastic dwell time tOn in the state On. Since the transition from any open state
is a Poisson process described by the transition rate λclose, all dwell times are exponentially dis-
tributed according to p(t) = λclose exp(−λcloset) and independent of n. Consequently, (a|n) does
also follow an exponential distributed with the rate λn = λclose/n2 and the mean ⟨a|n⟩ = n/λclose

2The distribution of a random variable that is the product of two other random variables z = x · y can be calculated
by pz(z′) =

∫︁ ∞
−∞ dx px(x′)py(z′/x′)/|x′|dx′ [232]. In our case n is deterministic, i.e. pn(n′) = δ(n′ − n) and pt(t′) =

λclose exp(−λcloset′) so that p(a′|n) = pt(z′/n)/n = (λclose/n) exp(−(λclose/n)z′).



84 Chapter 3. Nonrenewal spiking in Ca2+ signaling

25.25 25.50 25.75 26.00 26.25 26.50 26.75
t / s

0

2

4

6

x
(t

)
A1

Ai Ai+1

1 2 3 4 5
n0

0.0

0.1

0.2

0.3

p
(n

0)

A2

0.0 0.5 1.0
A

0

5
p
(A

)

A3

1 2 3 4 5 6 7
N

0.0

0.1

0.2

〈A
〉

A4

1 2 3 4 5 6 7
N

0.0

0.5

1.0

C
2 V

(A
)

A5

0 10 20 30 40 50
t / s

0.0

2.5

5.0

x
(t

)

B1

... Ii−1

Ii

...

0 5 10
t / s

0.0

0.2

0.4

0.6

p
IP

I(
t;
c i

=
c 0

) B2

0.0 0.5 1.0
t / s

0

2

4

6

p
IP

I(
t;
c i

=
c T

) B3

1 2 3 4 5 6 7
N

0

2

4

〈I
〉−

1
/

s−
1

B4

c0
cT

1 2 3 4 5 6 7
N

0.0

0.5

1.0

C
2 V

(I
)

B5

Sim. Theory

FIGURE 3.10: Statistics of the puff strength and interpuff interval. Panels A1 - A5 depict statistics
of the puff strength A. Panels B1 - B5 depict statistics of the interpuff interval I. Panel A1 shows
a short time series of x(t), which includes two successive puffs with strength Ai and Ai+1.
Panel A2 displays the distribution of responding channels n0, which is uniform by construction.
Panel A3 shows the distribution of puff strengths A together with an exponential fit (gray line).
Panel A4 shows the mean puff strength ⟨A⟩, which is a quadratic function of the cluster size N.
Panel A5 shows the (squared) CV of the puff strength. Orange lines indicate the contribution of
⟨Var(A|n0)⟩/⟨A⟩2 (dotted) and Var(⟨A|n0⟩)/⟨A⟩2 (dashed) to the total C2

V(A). Panel B1 shows
a long time series of x(t), where two IPIs are highlighted. The green highlighted area in B1
corresponds to the highlighted area in A1. Panels B2 and B3 show the IPI distribution at the
resting and threshold Ca2+ concentrations, respectively. Panels B4 and B5 show the inverse
mean of the IPI, i.e., the puff rate, and the (squared) CV of the IPI as a function of the cluster
size N again for the resting and threshold Ca2+ concentration. Parameters are chosen according

to Table 3.3 and ci = c∗0 if not states otherwise.

as well as the variance Var(a|n) = (n/λclose)
2 are readily obtained. For the entire puff with a spe-

cific number of open channels (A|n0), the mean and variance are then given by

⟨A|n0⟩ =
n0

∑
n=1

⟨a|n⟩ =
n0

∑
n=1

n
λclose

=
1

2λclose
n0(n0 + 1), (3.3.18)

Var(A|n0) =
n0

∑
n=1

Var(a|n)=
n0

∑
n=1

n2

λ2
close

=
1

6λ2
close

n0(n0 + 1)(2n0 + 1). (3.3.19)

To obtain the total mean, we take a second average of Eq. 3.3.18 over the uniformly distributed
number of responding channels:

⟨A⟩ = ⟨⟨A|n0⟩⟩ =
1
N

N

∑
n0=1

1
2λcls

n0(n0 + 1) =
1

6λcls
(N + 1)(N + 2). (3.3.20)

This demonstrates that the fact that the channels do not close independently results in a mean
puff strength that is a quadratic function of the cluster size N as shown in Fig. 3.10A3. This would
not be the case with N independent channels.
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To calculate the total variance, we use the conditional variance (Eq. 3.3.19) and the conditional
mean (Eq. 3.3.18):

⟨Var(A|n0)A⟩n0 =
1

12λ2
close

(N + 1)2(N + 2), (3.3.21)

Var(⟨A|n0⟩A)n0 =
1

60λ2
close

(N + 1)(N + 2)(3N2 + 6N + 1)− 1
36λ2

close
(N + 1)2(N + 2)2.

(3.3.22)

Adding these two equations yields a rather cumbersome expression for the variance of the puff
strength. However, it turns out that the expression for the squared CV is much simpler:

C2
V(A) =

⟨Var(A|n0)⟩+ Var(⟨A|n0⟩)
⟨A⟩2 =

4N2 + 18N + 8
5N2 + 15N + 10

. (3.3.23)

This expression implies that the CV is bound between 1 and 0.8 (cf. Fig. 3.10A4). The maximum
value is assumed for N = 1, in which case we are dealing with a Poisson process with C2

V(A) = 1.
The minimal value is assumed for infinite cluster sizes limN→∞ C2

V(A) = 0.8. Moreover, Eq. 3.3.23
allows us to derive insights into the origin of this strong variability. It demonstrates that for N →
∞, the randomness of the number of responding channels n0 guarantees the strong variability
of the puff strength. This is shown in Fig. 3.10A4 where the contribution of ⟨Var(A|n0)⟩/⟨A⟩2

(dotted line) and Var(⟨A|n0⟩)/⟨A⟩2 (dashed line) to the total (squared) CV are highlighted. It
turns out that due to this strong variability, the puff strength is very well described by a single
exponential distribution (grey line in Fig. 3.10A3).

We now turn to the IPI I, which is the time between two puffs (excluding the puff duration).
Unlike the puff strength A, the IPI I depends on ci through the opening rate λopen(ci). A sam-
ple sequence of puffs with the IPIs highlighted is shown in Fig. 3.10B1. The gray shaded area
corresponds to the gray shaded area in Fig. 3.10A1. Calculating the statistics of the IPI is straight-
forward because the IPI is given by the sum of M independent random variables

I =
M

∑
m=1

tCm , (3.3.24)

where tCm denotes the dwell time in the state Cm. Since the dwell times are independent and ex-
ponentially distributed according to p(tCm) = λref exp(−λreftCm) for m = 2, . . . , M and p(tC1) =
λopen exp(−λopentC1) for m = 1, the mean, variance, and CV of the IPI are readily obtained:

⟨I⟩ =
M

∑
m=1

⟨tCm⟩ =
1

λopen
+

M − 1
λref

, (3.3.25)

Var(I) =
M

∑
m=1

Var(tCm) = +
1

λ2
open

+
M − 1

λ2
ref

, (3.3.26)

C2
V(I) = Var(I)/⟨I⟩2 =

1 + (M − 1)(λopen/λref)
2

(1 + (M − 1)λopen/λref)2

= 1 − (M − 1)
2λref/λopen + M − 2
(λref/λopen + M − 1)2 .

(3.3.27)

First, we discuss the rather simple dependence on the number of closed states M. According to
Eq. 3.3.25, the mean IPI increases with M because more states have to be traversed before a puff
is fired. For the same reason, and according to Eq. 3.3.27, the IPI becomes more regular as M
increases, starting at CV(I) = 1 for M = 1 and then decreasing monotonically as CV(I) ∝ 1/

√
M.

It is also interesting to ask how the cluster size N affects the IPI. We recall that the opening rate
depends linearly on the cluster size λopen = Nνopen (see Eq. 3.3.9). According to Eq. 3.3.25,
we expect the mean IPI to decrease with increasing N before it saturates at (M − 1)/λref. How
quickly this limit is reached depends on the opening rate λopen(ci) and thus on the cytosolic Ca2+

concentration ci. Specifically, the higher the Ca2+ concentration, the larger the opening rate and
the faster the limit is reached. In Fig. 3.10B4, the inverse mean IPI ⟨I⟩−1 (the puff rate) is plotted
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as a function of the cluster size N for two different values of the Ca2+ concentration. For ci = c∗0 ,
the opening rate is much smaller than the refractory rate, the mean IPI is mainly determined by
the dwell time in the state C1, and the puff rate depends approximately linearly on the cluster
size ⟨I⟩−1 ≈ N/λopen (solid line in Fig. 3.10B4). For the larger value of ci = cT , the dwell times in
the refractory states account for a larger fraction of the mean IPI, and the puff rate depends more
nonlinearly on N (dashed line in Fig. 3.10B4). Similar to the mean, the CV of the IPI depends on
the cluster size through the opening rate, as demonstrated in Fig. 3.10B5. When N is small, the IPI
is again mainly determined by the dwell time in the state C1 and forms approximately a Poisson
process with a CV close to one. For larger values of N, the cluster opens more frequently, and
the IPI is mainly determined by the concatenation of the M − 1 refractory states. This results in
a more regular IPI. The opening rate also depends on the cytosolic Ca2+ concentration. At the
resting concentration ci = c∗0 there is little variation in the CV because the mean dwell time in the
state C1 dominates the IPI over a moderate range of cluster sizes (solid line in Fig. 3.10B5). This is
no longer the case when the Ca2+ concentration is increased to ci = cT (dashed line in Fig. 3.10B5).
In any case, for N → ∞ (implying λopen → ∞) the CV saturates at limN→∞ CV(I) = 1/

√
M − 1

for M > 1.
To compute the complete probability density function of the IPI pIPI(t), we convolve M expo-

nential distributions describing the dwell times in the closed states. The first M − 1 dwell times
are described by the rate λref, while the last dwell time is described by the rate λopen. This re-
sults in a convolution integral that can be expressed by the lower incomplete gamma function
γ(a, t) =

∫︁ t
0 dt′ t′a−1e−t′ :

pIPI(t) = λopen p(C1, t)

= λopen

(︃
λref

λref − λopen

)︃M−1 γ(M − 1, (λref − λopen)t)
(M − 2)!

e−λopent.
(3.3.28)

This provides a simple expression for pIPI(t) that is confirmed in Fig. 3.10B2 and B3 for the resting
and threshold Ca2+ concentration ci = c∗0 and ci = cT respectively. At higher Ca2+ concentrations,
a decrease in mean IPI and an increase in refractory period (relative to mean IPI) are observed.

Stationary mean and noise intensity of the IP3R cluster model

Most importantly, we demonstrate that the mean µx(ci) and noise intensity Dx(ci) of the cluster
activity x(t) can be calculated by algebraic equations. These two statistics provide a full descrip-
tion of a stochastic process when considered in the limit of a vanishing correlation time. That an
algebraic equation determines the stationary mean is obvious since it is related to the stationary
probability vector governed by the (algebraic) stationary master equation. This is less obvious for
the noise intensity.

Following standard procedures we calculate the mean µx as the product of the state vector x
and the stationary probability vector p0 [49, 57]

µx = ∑
s∈S

x(s)p0(s)

= x · p0,
(3.3.29)

where the stationary probability vector satisfies

0 = Q · p0 (3.3.30)

and the normalization condition

∑
s∈S

p0(s) = 1. (3.3.31)
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For our specific model the solution to Eq. 3.3.30 and Eq. 3.3.31 reads:

p0(s) =

⎧⎪⎪⎨⎪⎪⎩
N+1−i

N
1

τtotalλclose
, if s ∈ [ON , . . . , O1]

1
τtotalλref

, if s ∈ [CM, . . . , C2]
1

τtotalλopen
, if s = C1

, (3.3.32)

where τtotal(ci) = τopen + τclose(ci) can be interpreted as the mean period of the cyclic Markov
chain. This expression allows us to evaluate the sum in Eq. 3.3.29

µx =
1

6λclose

(N + 1)(N + 2)
1

λopen
+ M−1

λref
+ N+1

2λclose

=
⟨A⟩
τtotal

(3.3.33)

and reveals that the mean cluster activity is equal to the mean puff strength ⟨A⟩ over the mean
period of the Markov chain τtotal(ci).

Calculating the noise intensity Dx is more advanced. First of all, we note that the noise inten-
sity of a stochastic process is defined by the integral over its autocorrelation function

Dx =
∫︂ ∞

0
dτ Cxx(τ), (3.3.34)

where Cxx(τ) = ⟨x(t)x(t+ τ)⟩− ⟨x⟩2. Calculating the correlation function Cxx(τ), more precisely
the first term of the correlation function ⟨x(t)x(t + τ)⟩ requires knowledge of the time-dependent
transition probability p(t). This probability is, in turn, determined by the time-dependent master
equation (Eq. 3.3.1), a set of first-order linear differential equations. Thus, it is not immediately
clear that Dx can be determined by a much simpler algebraic equation. However, taking advan-
tage of the fact that we only need to know the integral of the correlation functions allows us to
avoid solving the time-dependent master equation. A similar trick was used to calculate the cor-
relation time and diffusion coefficient for systems described by an FPE [61, 233, 234]. We express
the correlation function in terms of transition and stationary probabilities

Dx =
∫︂ ∞

0
dτ ⟨x(t + τ)x(t)⟩ − ⟨x⟩2

=
∫︂ ∞

0
dτ ∑

s1,s2

[x(s2)x(s1)p(s2, t + τ|s1, t)p0(s1)− x(s2)x(s1)p0(s2)p0(s1)]

= ∑
s1,s2

x(s2)x(s1)
∫︂ ∞

0
dτ [p(s2, t + τ|s1, t)− p0(s2)]p0(s1)

= ∑
s1,s2

x(s2) f (s2|s1)x(s1)p0(s1).

= ∑
s1,s2

x(s2) f (s2|s1)y(s1)

= xT · F · y,

(3.3.35)

where we have introduces y(s) = x(s)p0(s) and the auxiliary function f (s2|s1) =
∫︁ ∞

0 dτ [p(s2, t +
τ|s1, t) − p0(s2)]. The term inside the parentheses p(s2, t + τ|s1, t) − p0(s2) can be well under-
stood. It describes the probability of finding a state s2 at time t + τ given that the state s1 was
observed at time t minus the stationary probability of finding the state s2. It should be clear that
this difference tends to zero for τ → ∞ because the initial condition (i.e., the fact that the state s1
was taken at time t) plays no role in this limit. The function f (s2|s1) is the integral of this prob-
ability and answers the question of whether the state s2 occurs more frequently ( f (s2|s1) > 0) or
less frequently ( f (s2|s1) < 0) over a long period after the state s1 was attained at the beginning of
that period. Since the more frequent observation of one state must come at the expense of a less
frequent observation of another state, we expect the sum ∑s2

f (s2|s1) = 0 to vanish. To determine
f (s2|s1), we consider the master equation in a somewhat unusual representation that highlights
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the "initial" condition p(s1, t) = 1 (at time t)

ṗ(s3, t + τ|s1, t) = ∑
s2

qs3,s2 p(s2, t + τ|s1, t)

ṗ(s3, t + τ|s1, t) = ∑
s2

qs3,s2 [p(s2, t + τ|s1, t)− p0(s2)]∫︂ ∞

0
dτ ṗ(s3, t + τ|s1, t) =

∫︂ ∞

0
dτ ∑

s2

qs3,s2 [p(s2, t + τ|s1, t)− p0(s2)]

p0(s3)− δs3,s1 = ∑
s2

qs3,s2 f (s2|s1).

(3.3.36)

To get from the first to the second line, we have subtracted the derivative of the stationary prob-
ability 0 = ṗ0(s3) = ∑s2

qs3,s2 p0(s2) on both sides. Eq. 3.3.36 can be written in a corresponding
matrix representation

p0 − e(s1) = Q · f (s1) (3.3.37)

with the unit vector e(s1) in the s1-direction and the vector f (s1) = ∑s2
f (s2|s1)e(s2). Finally,

as for the stationary probability, Eq. 3.3.37 does not determine f (s1) uniquely but only up to a
constant. We have already hinted at the additional condition required to uniquely determine
f (s1), namely that the sum over this vector must vanish. This can be seen as follows

∑
s2

f (s2|s1) =
∫︂ ∞

0
dτ ∑

s2

[p(s2, t + τ|s1, t)− p0(s2)] =
∫︂ ∞

0
dτ [1 − 1] = 0. (3.3.38)

Eq. 3.3.37 can be written more compactly so that all initial conditions s1 are considered simulta-
neously

P0 − 1 = Q · F, (3.3.39)

where P0 is matrix with entries pij = p0(i), 1 is the unit matrix, and F is a matrix with entries
fij = f (i|j). In summary, the mean can be calculated according to

µx = x · p0 with 0 = Q · p0 (3.3.40)

and the normalization condition Eq. 3.3.31, while the noise intensity can be calculated according
to

Dx = xT · F · y with P0 − 1 = Q · F, (3.3.41)

and the additional conditions Eq. 3.3.38. These two statistics fully determine the stochastic process
in the white noise limit.

In Fig. 3.11, we study how the different cluster parameters affect the mean µx(ci) and noise
intensity Dx(ci) as a function of ci. Black lines indicate default parameters. We note again that
both statistics have been calculated under the assumption that the correlation time of the process
x(t) is small compared to any other timescale in the system. That is, we assumed that the process
x(t) adiabatically adjusts to ci(t). The dependence of the mean on ci and the different cluster
parameters can be well understood using the analytical expression we have derived in Eq. 3.3.33
and is repeated here for convenience:

µx(ci) =
⟨A⟩

τtotal(ci)
. (3.3.42)

First of all, µx(ci) increases monotonically with ci because τtotal(ci) decreases monotonically with
ci. Second, the mean increases with ν∗open (Fig. 3.11A1), decreases with λclose (Fig. 3.11B1), and
increases again with λref (Fig. 3.11C1). This is because increasing ν∗open and λref shortens the
period τtotal(ci), while decreasing λclose strengthens the mean puff ⟨A⟩. Third, the mean increases
with the cluster size N because larger clusters open more frequently and generate stronger puffs
(Fig. 3.11D1). Conversely, the number of refractory states M decreases the mean by increasing
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FIGURE 3.11: Mean µx(ci) (A1 to E1) and noise intensity Dx(ci) (A2 to E2) of the cluster activity
x(t). Panels A, B, and C show the mean and noise intensity as a function of the rates ν∗open,
λclose, and λref, respectively. Panels D and E show the mean and noise intensity for varying
cluster sizes N and number refractory states M. Panel F1 and F2 show the mean and noise
intensity for the superposition of K independent cluster X(t) = ∑K

k xk(t). In all panels, the black
lines indicate the mean and noise intensity obtained using the default parameters specified in

Table 3.3.
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FIGURE 3.12: Comparison of the mean µx and noise intensity Dx of different channel/cluster
models. Panels A, B, and C show the two statistics for the DYK model, the Siekmann model,
and our cluster model, respectively. Circles show simulation results, while solid lines are the-
oretical predictions. The gray area in panels C1 and C2 indicates Ca2+ concentrations that are

inaccessible in our IF model.

the period τtotal(ci) (Fig. 3.11E1). The dependence on ci and the cluster parameters is less clear
for the noise intensity because we do not have an explicit solution to Eq. 3.3.41. In most cases we
observe an increase with ci, except for small closing rates λclose (Fig. 3.11A2 - E2). In addition, we
observe that the overall dependence of the noise intensity on the cluster size N and closing rate
λclose is strong compared to the dependence on the other parameters. This is presumable because
these two parameters affect the puff itself. In Fig. 3.11F1 and Fig. 3.11F2 we show that for the
superposition of K clusters, X(t) = ∑K

k xk(t), the mean and the noise intensity depend linearly on
K, as expected for independent processes.

Finally, we demonstrate that our theory does not only apply to our specific model but holds
more general. To this end, we simulate the De Young-Keizer and Siekmann model along with
our cluster model and compare in Fig. 3.12 the mean and noise intensity calculated from stochas-
tic simulations with the theoretical prediction according to Eq. 3.3.40 and Eq. 3.3.41. To provide
some comparability between the models, we return to physical Ca2+ concentrations given in µM.
For all three models, we find good agreement between simulation results (circles) and theoretical
predictions (lines), demonstrating the broad applicability of the theory. Discrepancies between
simulation results and theoretical predictions are likely due to inaccuracies in calculating the
noise intensity using the simulation data since the numerical calculation and integration of the
correlation function Cxx(τ) can be error-prone. It should be noted that the noise intensity of the
DYK model is almost 20 times larger than that of the Siekmann model, which has to do with the
much larger correlation time of the DYK model (not shown). This is so because the noise inten-
sity can also be formulated as the product of the variance and the correlation time3 and the DYK
model is constructed such that the timescale of the inhibitory Ca2+ binding site (0.2 µM−1 s−1) of
the channel model essentially determines the timescale of the interspike intervals. This means
that the DYK model contains significantly slower time scales than the Siekmann model, resulting
in a longer correlation time.

3.3.2 Ca2+ dynamics: Integrate-and-fire model

Here we present the IF part of the two-component model describing the dynamics of the cytosolic
Ca2+ concentration [Ca2+]i and the Ca2+ concentration in the ER [Ca2+]er. To this end, we will

3The fact that Dx = σ2
x τx is somewhat trivial given the definitions of the correlation time τx =

∫︁ ∞
0 dτ Cxx(τ)/σ2

x and
the noise intensity Dx =

∫︁ ∞
0 dτ Cxx(τ).
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TABLE 3.4: Default parameters of the Ca2+ dynamics

Parameter Value
K 10
c∗0 0.2
cT 0.5

explain the various terms that affect the two concentrations and discuss the general behavior of
the model. Only then will we discuss the biophysical motivation in more detail.

The IF model is as follows

ċi = −(ci − c0(cer))/τ + jpuff(ci, cer),

ċer = −(cer − 1)/τer − εcer ∑i δ(t − ti),
if ci(t) = cT → ti = t and ci(t) = cR,

(3.3.43)

where ci is the dimensionless cytosolic Ca2+ concentration and cer is the dimensionless ER Ca2+

concentration. Recall that ci = [Ca2+]i/Kact is given relative to the dissociation constant of the
activation Ca2+ binding site of the IP3R. In contrast to that, cer = [Ca2+]er/[Ca2+]max

er is given
relative to the maximum Ca2+ concentration in the ER (see below). Consequently, cer is bound
between 0 (empty) and 1 (full) and can be interpreted as the filling level of the ER. Returning to
the dynamical equations, the first term on the r.h.s. of the first line is a deterministic linear Ca2+

current with timescale τ that determines how quickly the resting concentration c0(cer) = c∗0cer is
reached when no puffs are fired. The second term on the r.h.s. is the stochastic puff Ca2+ current
that results from the stochastic opening and closing of K independent IP3R clusters:

jpuff(ci, cer) = pcer

K

∑
k

xk(t). (3.3.44)

Here, p is a permeability-like parameter, and xk(t) is the number of open channels in the k-th
cluster at time t. The random processes xk(t) have been described in Sec. 3.3.1. The dynamics of
the cytosolic Ca2+ concentration are completed by a fire-and-reset rule: whenever ci(t) = cT , a
spike is said to be fired at t = ti and ci(t) is immediately reset to cR. For the sake of simplicity,
we reset the model to the resting concentration, i.e., cR = c0(cer). The second line in Eq. 3.3.43
describes the dynamics of the ER Ca2+ concentration cer(t). The first term is again a deterministic
linear current with timescale τer that determines how quickly the ER is replenished and cer(t)
returns to its steady-state value cmax

er = 1. The second term describes the depletion of the ER.
Whenever a spike is fired, cer(t) is immediately decreased by εcer(t−i ), where the minus indicates
that the decrease is meant to be proportional to the concentration right before the spike at time ti.
This distinction between times immediately before a spike t−i and immediately after a spike t+i is
relevant because the δ-function applied at the spike time leads to an ambiguity in the value cer(ti),
depending on whether the kick has already been applied or not. Mathematically speaking, the left
and right limits limϵ→0 cer(ti − ϵ) ̸= limϵ→0 cer(ti + ϵ) do not agree. The stochasticity in the cer(t)
dynamics results from the randomness of the spike times ti at which the δ function is applied. The
ER Ca2+ concentration dynamics are very similar to a spike-triggered adaptation [18] described
in the previous chapter. However, there are two differences: first, spike generation is inhibited
more strongly by lower values of cer(t), and second, the spike-triggered term is multiplicative in
the sense that it depends on cer(t) itself. The model parameters that are not changed are given in
Table 3.4.

Dynamics of the IF model

In the following, we will consider two different versions of the model. The first model is a renewal
version, where we assume that the ER Ca2+ concentration remains constant at its maximum value
cer(t) = 1. As we will see below, this loosely corresponds to the situation where the Ca2+ is con-
served throughout the cell. The renewal model [5] is discussed in detail in Sec. 3.4, can be treated
analytically to a large extent but does not reproduce all features of Ca2+ spiking observed exper-
imentally. The second model is the adaptive version that takes into account the depletion and
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FIGURE 3.13: Comparison of ISI sequences and Ca2+ dynamics in two different models (A, B)
and experimental data (C). Panels A1, B1, and C1 show ISI sequences obtained from simulations
of the renewal model, simulations of the adaptive model, and measurements of stimulated HEK
cells, respectively. In all three panels, the assumed mean ⟨Ti⟩ as a function of the index i is
highlighted by a black line. In panel A1, the mean is independent of i. In panels B1 and C1
the mean is assumed to follow the exponential function T∞ − (T∞ − T0) exp(−i/ntr). The gray
area indicates the indices for which i ≤ ntr holds. The horizontal dotted lines show the initial
interval T0 (lower) and stationary interval T∞ (upper). The difference defines the cumulative
refractory period ∆T = T∞ − T0. Panels A2, B2, and C2 show the time courses of cytosolic Ca2+

concentrations. Dotted lines in A2 and B2 show the firing threshold. ISIs for the experimental
data have been determined peak-to-peak. Panels A3 and B3 show the time courses of the ER
Ca2+ concentrations. Parameters A: τ = 11.8s, p = 5.74 · 10−3; B: τ = 5.48s, p = 1.47 · 10−2,

τer = 981s, ε = 1.90 · 10−2. The remaining parameters are as in Table 3.3 and 3.4.

replenishment of the ER. This version was just introduced. The adaptive model [6] is discussed
in more detail in Sec. 3.5, is more difficult to treat analytically but reproduces a large number of
experimentally observed features of Ca2+ spiking.

Fig. 3.13 provides an overview of the dynamics of the two model variants and compares the
resulting ISI sequences with experimentally measured ISI sequences of stimulated HEK cells. In
Fig. 3.13A and B, both model versions are subjected to a constant IP3 stimulation q = 1 applied
at t0 = 0. Prior to the stimulation t < t0, the concentrations rest at ci = c∗0 and cer = 1, all
IP3R channels are closed, the puff current is zero and there are no spikes generated in this state
(not shown). Upon stimulation, the IP3R channels are activated and give rise to a stochastic Ca2+

current such that ci(t) begins to rise toward the threshold while cer(t) remains at 1. The first
time the threshold is reached, a spike is fired at time t1. The difference between the first spike
time and the stimulation time defines the initial ISI, T0 = t1 − t0. Every subsequent spike is
defined as usual Ti = ti+1 − ti. It is only now, after the first spike, that the models begin to differ.
In the case of the renewal model, ci is reset to cR = c∗0 and the second (and any subsequent)
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ISI is statistically equivalent to the first interval4. This is evident from the fact that the mean
interval (back line in Fig. 3.13A1) is independent of the index i. In case of the adaptive model
cer(t) is decreased by εcer(t−1 ) and ci(t) is reset to cR = c∗0cer(t+i ). Note that cer(t−1 ) = 1 and
cer(t+1 ) = 1 − ε because no spike was fired prior to the first spike. After the reset, ci(t) rises
towards the threshold again, and cer(t) is slowly replenished. During the first few intervals, the
replenishment of cer(t) between two spikes cannot compensate for the depletion during a spike.
This leads to a cumulative decrease of cer(t) and, due to the resulting inhibition of the puff current
and decrease of the reset value (both proportional to cer(t)), also to a cumulative refractoriness in
the sequence of ISIs as shown in Fig. 3.13B1 where the black line represents a fit of the ISI sequence
by the exponential function T∞ − (T∞ − T0) exp(−i/ntr). The part of the ISI sequence where the
interval statistics explicitly depend on i is called the transient.

While the renewal model can capture some stationary statistics of the experimental ISI se-
quence shown in Fig. 3.13C1, only the adaptive model can reproduce the transient.

Motivation of the IF dynamics

So far, we have presented the IF part of our model in an ad hoc manner and discussed the emerg-
ing dynamics. In the following, we take a step back and motivate the model in more detail. While
we will eventually move to a dimensionless description, we begin our consideration with physi-
cal concentrations. As we have emphasized many times, in an IF model, the spiking variable, here
the intracellular Ca2+ concentration, is described only over a small part of the physiological range
up to a certain threshold. This threshold is usually well below the peak concentration reached
during the spike. The spike itself is not modeled but replaced by a fire-and-reset rule. This has
the advantage that the often nonlinear processes that cause the intracellular Ca2+ concentration
to rise and fall during the spike can be neglected.

Our model distinguishes between IP3-independent and IP3-dependent currents that affect the
cytosolic Ca2+ concentration [Ca2+]i. The IP3-independent currents include all active and passive
Ca2+ currents across the plasma membrane and the membrane of the ER. Since we consider only
small changes in the cytosolic Ca2+ concentration, these currents are linearized and combined into
a single current

Jlin =
[Ca2+]i − [Ca2+]∗0

τ
. (3.3.45)

This term gives rise to a stable cytosolic resting Ca2+ concentration [Ca2+]∗0 in the absence of a
stimulus and perturbations to [Ca2+]i decay towards this value with the time constant τ. The
IP3-dependent Ca2+ current is the puff current, which describes the discharge of Ca2+ from the
ER into the cytosol through clusters of IP3 receptor channels

Jpuff = p̂[Ca2+]er

K

∑
k

xk(t). (3.3.46)

This current mediates the positive feedback mechanism CICR and the nonlinearity of the spike
generation. In Eq. 3.3.46, we have already made a simplifying assumption because the puff cur-
rent is a diffusive current between the cytosol and ER, which, according to Fick’s first law [47],
should depend on the difference [Ca2+]er- [Ca2+]i. However, since the ER Ca2+ concentration (100-
500µM) is usually three to four orders of magnitude larger than the cytosolic Ca2+ concentration
(50-100nM) [19, 29, 235] we neglect the dependence on [Ca2+]i in this difference.

Consistent with our assumption that only two subthreshold currents need to be distinguished,
of which the IP3-independent one is linear in ci, the Parker lab [236, 237] has recently shown that
the main share of Ca2+ release into the cytosol during the rising phase of the spike is due to
the discharge of Ca2+ from the ER through clusters of IP3Rs and that the return to the resting
concentration after a spike, when puffs are absent, is well described by an exponential decay with
a single timescale.

4We note that the first interval T0 is not fully equivalent to the subsequent intervals Ti with i ≥ 1, because the clusters
are initiated in the state C1 and not according to the stationary probabilities of the states. However, this has little effect on
the ISI statistics because the correlation time of x(t) is small compared to ⟨T0⟩.
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What we have not considered so far is that the resting concentration [Ca2+]∗0 results from the
balance of different Ca2+ currents across the cell membrane and across the ER membrane. Since
the latter depends on the Ca2+ concentration in the ER, which is itself a dynamic variable in our
model, the resting concentration is not fixed but varies. To study this dependence, we distinguish
two types of IP3-independent currents: those through the cell membrane and those through the
ER membrane:

Jlin =− [Ca2+]i
τs

+
Ver

Vi

[Ca2+]er

τl
−

[Ca2+]i − [Ca2+]∗0
τpm

. (3.3.47)

The first two terms describe currents across the ER membrane, specifically the active Ca2+ reup-
take from the cytosol into the ER by SERCA pumps with timescale τs and the passive leak current
from the ER into the cytosol with timescale τl . The factor Ver/Vi accounts for the volume ratio
between ER and cytosol. The third term describes Ca2+ currents across the plasma membrane,
again in a linearized way with the timescale τpm . Note that, strictly speaking, the second term
should again depend on [Ca2+]er − [Ca2+]i, a difference that we approximate by [Ca2+]er for the
same reason as before. We combine the three currents in Eq. 3.3.47 into a single linear term

Jlin = − [Ca2+]i − [Ca2+]0
τ

(3.3.48)

with timescale

τ =
τsτpm

τpm + τs
(3.3.49)

and resting concentration

[Ca2+]0 =

(︄
[Ca2+]∗0

τpm

+
[Ca2+]er

τ̂l

)︄
τ, τ̂l =

Vi

Ver
τl . (3.3.50)

To make a relation to the maximum resting concentration [Ca2+]∗0 , which is assumed when no
spikes are fired, and the ER is not depleted, we consider a variation of the ER Ca2+ concentration
from the maximal concentration [Ca2+]er = [Ca2+]max

er − ∆[Ca2+]er and substitute this expression
into Eq. 3.3.50. This yields

[Ca2+]0 =

(︄
[Ca2+]∗0

τpm

+
[Ca2+]max

er
τ̂l

)︄
τ − ∆[Ca2+]er

τ

τ̂l
, (3.3.51)

a relation that can be simplified by realizing that when no spikes are fired, and all concentrations
are at rest, the two currents across the ER membrane must balance (because [Ca2+]er = const.).
Put differently, for [Ca2+]i = [Ca2+]∗0 and [Ca2+]er = [Ca2+]max

er the Ca2+ leakage from the ER into
the cytosol and the Ca2+ removal from the cytosol into the ER by SERCA pumps are equal:

[Ca2+]∗0
τs

=
[Ca2+]max

er
τ̂l

. (3.3.52)

Combining Eq. 3.3.51 and 3.3.52 yields

[Ca2+]0 = [Ca2+]∗0

(︃
1 −

[︃
1 − [Ca2+]er

[Ca2+]max
er

]︃
τpm

τs + τpm

)︃
. (3.3.53)

Finally, we reinsert Eq. 3.3.53 into 3.3.48 and return to dimensionless variables by dividing both
the left and right-hand side by Kact to obtain

jlin = −(ci − c0(cer))/τ, (3.3.54)

with

c0(cer) = c∗0(1 − α[1 − cer]), (3.3.55)
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where we have introduced the dimensionless ER Ca2+ concentration cer = [Ca2+]er/[Ca2+]max
er . In

the following, we will additionally assume α = 1. This means that the Ca2+ current across the
plasma membrane is significantly slower than the Ca2+ current across the ER membrane due to
the SERCA pumps. This implies τpm ≫ τs, which is consistent with other theoretical studies [64,
181, 214]. The puff current is much easier to motivate. We take Eq. 3.3.46 and scale the current to
match the scaling of the linear current

jpuff = pcer

K

∑
k

xk(t) (3.3.56)

with p = p̂[Ca2+]max
er /Kact.

We now turn to the equations governing the ER Ca2+ concentration dynamics. The Ca2+ cur-
rents across the ER membrane that contribute to the subthreshold dynamics of the cytosolic Ca2+

concentration should also occur there. This concerns the first two currents in Eq. 3.3.47 and the
puff current given by Eq. 3.3.46, that affect the ER Ca2+ concentration with a reversed sign and a
prefactor that accounts for the volume ratio

Jer =
Vi

Ver

(︄
[Ca2+]i

τs
− Ver

Vi

[Ca2+]er

τl
− p̂[Ca2+]er

K

∑
k

xk(t)

)︄
. (3.3.57)

The three terms inside the parentheses are of the order of [Ca2+]i ≈ 100 nM (strictly speaking, per
second) and will have little effect on [Ca2+]er ≈ 100 µM. This is true even if the inverse volume
ratio Vi/Ve ≈ 10 is considered so that the Ca2+ currents affecting the subthreshold dynamics of
the Ca2+ concentration in the cytosol can be neglected for the ER. Instead, we consider only the
larger depletion of the ER during a Ca2+ spike and the replenishment by store-operated Ca2+ entry
(SOCE). Thus, we distinguish two cases for the ER Ca2+ concentration dynamics. First, when a
spike is fired (t = ti) the concentration is depleted immediately according to

d
dt
[Ca2+]er = −ε[Ca2+]erδ(t − ti). (3.3.58)

This term takes into account that the concentration in the ER before the spike is not equal to the
concentration after the spike. Although a large fraction of the Ca2+ released into the cytosol dur-
ing the spike is transported back into the ER by SERCA pumps, a smaller fraction is transported
out of the cell into the extracellular medium by Ca2+ pumps and exchangers in the cell mem-
brane, leading to a net loss of Ca2+ with each spike. The fraction of the ER Ca2+ concentration
lost to the extracellular medium is described by the parameter ε, which describes the relative net
loss of Ca2+ during a spike. For ε = 0, all Ca2+ released during the spike is pumped back into the
ER, whereas for ε = 1, the entire Ca2+ in the ER is lost during each spike. Consistent with our
previous assumption about the strength of SERCA and PM currents, we expect the parameter ε to
be small. The situation where ε is not only small but zero is considered in Sec. 3.4. Second, in the
absence of a spike (t ̸= ti), we assume that the ER Ca2+ concentration is replenished exponentially
via store-operated Ca2+ entry and the dynamics are governed by

d
dt
[Ca2+]er = −([Ca2+]er − [Ca2+]max

er )/τer. (3.3.59)

Combining Eq. 3.3.58 and 3.3.59 and dividing both the left and right hand side by [Ca2+]max
er yields

the equation used in our model:

ċer = (cer − 1)/τer − εcer ∑i δ(t − ti). (3.3.60)

3.4 Spiking statistics of the renewal model

We begin with a study of the renewal version of our model, which is obtained by assuming a
constant and maximal Ca2+ concentration in the endoplasmic reticulum (cer = 1). We will first
focus on how the noise resulting from the stochastic activity of the IP3R clusters can be treated
mathematically. We will see that the timescale separation between puffs and spikes suggests a
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FIGURE 3.14: Firing regimes of the renewal model. Panels A (B) show the model in the reg-
ular (irregular) firing regime where the variability of the ISI is small (large) with CV(T) ≈ 0.2
(CV(T) ≈ 0.8). Panels A1 (B1) and A2 (B2) show the dynamics of ci(t) and jpuff(t), respectively.
In Panel A, the puff current and the leak current are weak, and ci(t) gradually increases towards
the threshold. In Panel B, the puff current and leak current are strong and may even balance on
average between resting and threshold concentrations. In this case, ci(t) is subject to significant

fluctuations. Parameters A: τ = 5s, p = 0.015; B: τ = 1s, p = 0.06.

diffusion approximation of the puff current. This, in turn, allows the two-component model to
be treated in the Fokker-Planck framework and many spike and ISI statistics to be calculated
analytically.

The renewal version of the model is as follows:

ċi = −(ci − c∗0)/τ + jpuff(ci),

if ci(t) = cT → ti = t and ci(t) = cR,
(3.4.1)

where the first term −(ci − c∗0)/τ is a deterministic linear current, while the second term jpuff =

p ∑K
k xk(t) is the stochastic puff current. Unless stated otherwise, the parameters are chosen ac-

cording to Table 3.3 and 3.4. As a result, two parameters remain to be varied, τ and p.
In Fig. 3.14, we illustrate the dynamics of the renewal model (Eq. 3.4.1) using two parameter

sets, resulting in either regular firing (Fig. 3.14A) or irregular firing (Fig. 3.14B). The observed
behavior can be intuitively understood. In the first case, where the model fires regularly, the
timescale parameter τ is large, while the permeability-like parameter p is small. Consequently,
a substantial number of puffs is necessary to initiate a spike, and ci gradually increases towards
the firing threshold. In this firing regime, the model resembles the perfect IF model [238], where
the leak term is absent. In fact, as τ approaches infinity, it takes, on average, n = (cR − cT)/p⟨A⟩
puffs to reach the threshold. For the specific parameter set used, this amounts to n ≈ 150 puffs.
Although there is substantial variability in the timing of individual puffs (cf. Fig. 3.10B5), the time
necessary for the puff count to reach 150 and to initiate a Ca2+ spike demonstrates relatively low
variability. In contrast, in the second case, where the model fires irregularly, the timescale τ is
comparable to the mean IPI. The superposition of K = 10 clusters results in a puff current that is
still fast compared to the leak current, but a significant portion of the Ca2+ released into the cy-
tosol by the puffs is removed between two puffs. In this case, the leak and puff currents may even
balance for a certain period, causing ci(t) to fluctuate between the resting and threshold concen-
trations. This behavior contrasts with the gradual increase toward the firing threshold observed
in Fig. 3.14A. Consequently, in this case, the model is more of a coincidence detector, where the
initiation of the Ca2+ spike requires a small number of puffs to occur in quick succession.

While the qualitative behavior of the model can be well understood, quantitative statements
about firing statistics are challenging due to the hierarchical organization of Ca2+ spiking into
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FIGURE 3.15: Illustration of the timescale separation between the slow dynamics of ci(t) (Panel
A) and the fast dynamics of the cluster activity ∑ xk(t) (Panel B). The inset highlights the many
transitions of X(t) that occur before a significant change in ci(t) is observed, further emphasiz-

ing the timescale difference. Parameters τ = 5s, p = 0.015.

puffs and spikes. As we have seen, the puffs give rise to a stochastic Ca2+ current that influ-
ences the dynamics of the cytosolic Ca2+ concentration and impacts various statistics. Like any
real noise, the puff current has a finite correlation time. Consequently, the process ci(t) is not
Markovian. Although the pair (ci(t), y(t)) is Markovian and could be described by a correspond-
ing Kolmogorov forward equation, the resulting system of differential equations governing the
probability densities would be high-dimensional. However, the timescale separation between
the puff and leak currents enables a diffusion approximation, where the stochastic puff current
jpuff(ci) is replaced by a deterministic mean and a Gaussian white noise. In this approximation,
ci(t) becomes a Markov process, and the corresponding probability density P(ci, t) can be treated
in the Fokker-Planck framework.

3.4.1 Diffusion approximation of the puff current

In the following, we present the derivation of the diffusion approximation of the stochastic puff
current

jpuff(ci) ≈ µ(ci) +
√︂

2D(ci)ξ(t), (3.4.2)

where µ(ci) is the ci-dependent mean puff current and ξ(t) is a Gaussian white noise with ci-
dependent noise intensity D(ci). This approximation allows to formulate an Langevin equation
corresponding to Eq. 3.4.1. As emphasized above, the motivation for this approximation stems
from the observed timescale separation between the slower leak current and the faster cluster ac-
tivity. This timescale separation is illustrated in Fig. 3.15, by means of typical time series of ci(t)
and X(t) = ∑ xk(t) in the regular firing regime. The inset of the figure further highlights this
separation by displaying the dynamics over two seconds, demonstrating that the summed clus-
ter states X(t) undergo numerous transitions before ci(t) changes significantly. We note that in
the past, discrete-time Markov chains have been approximated by Langevin equations [239, 240].
Typically, these approximations assume that the fraction of channels (or clusters, in our case) in
each state of the Markov chain can be treated as a continuous random variable that is Gaussian
distributed. This assumption requires a large number of channels/clusters compared to the num-
ber of states and results in a stochastic process that is not necessarily uncorrelated. In contrast,
our approach relies solely on the observed timescale separation and allows for a diffusion ap-
proximation even for a small number of channels/clusters.

To derive the Langevin approximation we consider Eq. 3.4.1 integrate over a short time win-
dow ∆t:

ci(t + ∆t) = ci(t)−
∫︂ t+∆t

t
dt′ (ci(t′)− c∗0)/τ +

∫︂ t+∆t

t
dt′ pX(t′) (3.4.3)



98 Chapter 3. Nonrenewal spiking in Ca2+ signaling

and define the stochastic process

X̄(t; ∆t) =
1

∆t

∫︂ t+∆t

t
dt′X(t′), (3.4.4)

that can be viewed as a moving average or box-filtered version of the summed cluster activity
X(t). As a result of the filtering, X̄(t; ∆t) is a continuous random process with a piecewise con-
tinuous derivative. As we have already pointed out in Sec. 1.2, in order to formulate a Langevin
equation, the time window ∆t must approximately satisfy two opposing conditions. First, the
time window should be chosen small enough so that the integral over the leak current can be
approximated by the typical Euler integration scheme:∫︂ t+∆t

t
dt′ (ci(t′)− c∗0)/τ ≈ (ci(t)− c∗0)∆t/τ. (3.4.5)

Second, the time window should be large enough so that the summed cluster activity X(t) un-
dergoes multiple transitions. If this is the case, the moving average X̄(t, ∆t) can be considered
the sum of multiple puffs with independent strength. If a sufficiently large number of puffs falls
into the time window, and hence a sufficiently large number of random variables is summed, the
process X̄(t; ∆t) will - according to the central limit theorem - be Gaussian distributed and fully
characterized by its mean µX and variance σX(∆t) (neglecting the bar):∫︂ t+∆t

t
dt′ pX(t′) = pX̄(t; ∆t)∆t ≈ p(µX + σX(∆t)ν(t))∆t. (3.4.6)

Here ν(t) is a Gaussian distributed random process with zero mean and unit variance. If both
conditions can be satisfied at the same time, Eq. 3.4.3 can be approximated as follows

ci(t + ∆t) ≈ ci(t)− (ci(t)− c∗0)∆t/τ + pµX∆t + pσX(∆t)ν(t)∆t. (3.4.7)

This equation closely resembles an Euler integration scheme of a Langevin equation. The only
difference is that the random process ν(t) is not uncorrelated but possesses a nonvanishing corre-
lation time τX inherited from the process X̄(t; ∆t). However, if the correlation time is significantly
shorter than any other timescale in the system (specifically, the timescale of the leak current τ),
we can find a time window ∆t such that the process ν(t) is practically uncorrelated at two differ-
ent times ∆t apart. In this limit the variance scales as σX(∆t) ∝ 1/

√
∆t (see below) and Eq. 3.4.7

corresponds exactly to the Euler integration scheme of a Langevin equation.
The filtered cluster activity and its convergence to a Gaussian distributed random process for

a fixed cytosolic Ca2+ concentration ci = cT is illustrated in Fig. 3.16 where typical time series of
X̄(t; ∆t) for three different values ∆t = 0s, ∆ = 0.1s and ∆t = 1.0s are shown in Fig. 3.16A1, B1
and C1, respectively. Note that for ∆t = 0 the original process X(t) = ∑k xk(t) is recovered. The
corresponding probability densities are shown by histograms in Fig. 3.16A2, B2 and C2. The red
lines show Gaussian distributions with mean µx and variance σ2

X(∆t). Note that the mean does
not depend on ∆t, while the variance does. This is expected for a moving average. Specifically, for
∆t → ∞, we expect no fluctuations in X̄(t; ∆t). For the time bin ∆t = 0 (Fig. 3.16A) and ∆t = 0.1
(Fig. 3.16B), the variance is still large enough for the Gaussian approximation to predict incor-
rectly that the process X̄(t; ∆t) can take negative values (not shown). This changes if we choose
a time bin ∆t = 1.0 (Fig. 3.16C), in which case X̄(t; ∆t) closely follows a Gaussian distribution
(Fig. 3.16C2).
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FIGURE 3.16: Diffusion approximation of the cluster activity X(t) = ∑ xk(t) for a fixed Ca2+

concentration ci = cT . Panels A, B, and C shows time series of the filtered cluster activity
X̄(t; ∆t) and histograms of the corresponding probability density p(X̄) for three different time
windows ∆t = 0s, ∆t = 0.1s and ∆t = 1s, respectively. Note that for ∆t = 0, the original process
X(t) is recovered. As shown in A2, B2, and C2, the larger the time window ∆t, the better the

probability distribution p(X̄) can be described by a Gaussian distribution (red line).

Mean and variance of the filtered cluster activity

We now turn to the calculation of the mean µX and the variance σX(∆t) of the filtered cluster
activity X̄(t; ∆t). We begin by calculating the mean µX . Since the K clusters are statistically inde-
pendent and identical, it is clear that the mean of the sum is equal to the sum of the means:

µX = ⟨X̄(t; ∆t)⟩ = 1
∆t

∫︂ t+∆t

t
dt1 ⟨

K

∑
k

xk(t1)⟩

=
1

∆t

∫︂ t+∆t

t
dt1 K⟨x(t1)⟩

= Kµx,

(3.4.8)

where the mean of a single cluster µx can be calculated according to Eq. 3.3.40. The variance
is somewhat more complicated but can be related to the correlation function of a single cluster
Cxx(τ):

σ2
X = ⟨∆X̄(t; ∆t)2⟩

=
1

∆t2

∫︂∫︂ t+∆t

t
dt1dt2

K

∑
k1,k2

⟨∆xk1(t1)∆xk2(t2)⟩

=
1

∆t2

∫︂∫︂ t+∆t

t
dt1dt2

[︄
K

∑
k1=1

⟨∆xk1(t1)∆xk1(t2)⟩+
K

∑
k1 ̸=k2

⟨∆xk1(t1)∆xk2(t2)⟩
]︄

,

=
K

∆t2

∫︂∫︂ t+∆t

t
dt1dt2 Cxx(t2 − t1).

(3.4.9)

To get from the second to the third line, we split the double sum into two parts, one considering
only the terms with k1 = k2 and the other considering the remaining terms with k1 ̸= k2. To get
from the third to the last line, we additionally used the fact that the clusters are independent of
each other, i.e., the second sum over different clusters vanishes. Eq. 3.4.9 can be simplified further
using that the correlation function does only depend on the difference τ = t2 − t1 (but not on
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x (horizontal dotted line) for ∆t = 0 and decreases as σ2
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dotted line) for large time windows. Both the mean and the variance increase with ci as the
open probability and the number of transitions increases. Panel C shows that the skewness
decreases with ∆t and ci, improving the quality of the Gaussian approximation. Panel D shows
the correlation time τX , which starts at a small ci-dependent value, but converges to τX ≈ ∆t

for large values of ∆t.

absolute time) and is symmetric Cxx(τ) = Cxx(−τ):

σ2
X =

K
∆t2

∫︂∫︂ t+∆t

t
dt1dt2 Cxx(t2 − t1)

=
2K
∆t

∫︂ ∆t

0
dτ Cxx(τ)(1 − τ/∆t).

(3.4.10)

Finally, if, according to our initial assumption, the time window is much larger than the corre-
lation time of the cluster activity ∆t ≫ τx, then the integral in Eq. 3.4.10 can be approximated
by ∫︂ ∆t

0
dτ Cxx(1 − τ/∆t) ≈

∫︂ ∞

0
dτ Cxx(τ), (3.4.11)

which allows to relate the variance σ2
X of the filtered cluster activity to the noise intensity Dx of a

single cluster by

σ2
X =

2KDx

∆t
. (3.4.12)

This is interesting not only because it shows that in the white noise limit, the relevant quantity
to describe the strength of the fluctuations of a random process is the noise intensity but also
because it provides a practical way to measure the noise intensity of a random process with a
finite correlation time. To emphasize this again, to obtain the noise intensity of a random process
x(t), we introduce the box-filtered process x̄(t; ∆t), increase the time bin ∆t until the variance
of this filtered process σ2(∆t) scales as 1/∆t, and obtain the noise intensity by Dx = σ2(∆t)∆t
(alternatively, one can plot σ2(∆t)∆t directly until it saturates for large ∆t).

In Fig. 3.17 we show the mean µX , variance σ2
X , skewness γX = ⟨(X̄ − ⟨X̄⟩)3⟩/σ3

X and corre-
lation time τX of the filtered cluster activity X̄(t; ∆t) as functions of ∆t for different values of the
cytosolic Ca2+ concentration ci. In accordance with Eq. 3.4.8, the mean µX does not depend on
the time window ∆t but increases with ci (Fig. 3.17A). In contrast, the variance initially shows a
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weak dependence on ∆t when the time window is small and scales as σ2
X ∝ 1/∆t when the time

window is large. This is so because for ∆t → 0, the variance can be approximated by

2K
∫︂ ∆t

0
dτ Cxx(1 − τ/∆t) ≈ KCxx(0) = Kσ2

x , (3.4.13)

which is shown for ci = 0.2 by the horizontal dotted line. The scaling for large values of ∆t is
as in Eq. 3.4.12. Additionally, we observe an overall increase in the variance with ci due to an
increased number of transitions between cluster states. Finally, in Eq. 3.17C and D, we show
the skewness γX and correlation time τX , both should be small for X̄(t, ∆t) to be approximately
Gaussian distributed and uncorrelated. The skewness quickly decreases as ∆t increases. Unfor-
tunately, whether or not the skewness vanishes for ∆t → ∞ is unclear. The correlation time τX
shown in Fig. 3.17D even increases with ∆t. This is so because the filtering of the cluster activity
introduces a new correlation time set by the time window ∆t. However, this is no issue because
the time window ∆t also corresponds to the integration step in Eq. 3.4.3, and the random process
considered at two different times ν(t) and ν(t + ∆t) is practically uncorrelated. In addition, there
is a general decrease in skewness and correlation time with ci. This is again due to an increased
number of transitions and shows that the quality of the diffusion approximation also depends on
ci.

3.4.2 Langevin and Fokker-Planck equation

We have shown in Sec. 3.4.1 that the puff current can be approximated by a ci-dependent mean
µ(ci) = pKµx(ci) and a Gaussian white noise with ci-dependent intensity D(ci) = p2KDx(ci).
This allows reducing the two-component model (Eq. 3.3.43) to a one-dimensional integrate-and-
fire model with a nonlinear drift and a multiplicative Gaussian white noise

ċi = −(ci − c∗0)/τ + µ(ci) +
√︂

2D(ci)ξ(t),

if ci(t) = cT → ti = t and ci(t) = cR,
(3.4.14)

where ξ(t) is a zero mean Gaussian white noise ⟨ξ(t)ξ(t + τ)⟩ = δ(τ). Since the noise intensity
depends on the variable driven by the white noise (multiplicative noise), the stochastic differen-
tial equation (SDE) requires an interpretation [58]. This has to do with the infinite variance of the
white noise. In the next section, we will discuss the problem of interpreting the SDE, the so-called
Ito-Stratonovich dilemma, in somewhat more detail; here, we just note that following Wong and
Zakai [241], we interpret the stochastic differential equation in the sense of Stratonovich. Return-
ing to the model, we note that a one-dimensional IF model with a Gaussian white noise always
generates a renewal point process because resetting ci to a fixed value cR at the end of an interval
erases all memory of the previous ISI and the white noise ξ(t) is by definition uncorrelated. We,
therefore, refer to this variant as the renewal model.

Before we turn to the full stochastic system, we first consider the deterministic limit (D =
0), which allows us to distinguish the mean-driven from the excitable firing regime through the
deterministic drift term:

f (ci) = −(ci − c∗0)/τ + µ(ci). (3.4.15)

In the mean-driven regime, this function is positive for all ci < cT but, in the excitable regime,
has a zero for some value c∗i < cT . This is illustrated in Fig. 3.18A2 where the model possesses no
fixed point between reset and threshold, while in Fig. 3.18B2 there is a fixed point (black circle)
for some value c∗i < cT .

In Fig. 3.18A and B, the same parameters were used as previously in Fig. 3.14A and B. We
can now understand what distinguishes the regular firing regime in Fig. 3.14A from the irregular
firing regime in Fig. 3.14B. In the first case, the model operates in the mean-driven regime, spikes
are fired periodically even in the deterministic limit (D = 0), and the noise from the puff current
plays only a minor role. The system can be considered a deterministic oscillator subject to a weak
noise, which results in rather regular ISIs. In the second case, the model operates in the excitable
regime, and spikes are observed only due to the noise of the puff current. In particular, the
deterministic system cannot reach the threshold but approaches the fixed point c∗i . The transition
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FIGURE 3.18: Firing regimes of the Langevin approximation. Panel A (B) shows the model in
the mean-driven (excitable) firing regime. Panels A1 and B1 show the dynamics of ci(t). Panel
A2 shows the drift function f (ci) in the mean-driven regime, which is positive for all values
cR < ci < cT . Panel B2 shows the drift function in the excitable regime, which has a zero
f (c∗i ) = 0 for some value cR < c∗i < cT . Consequently, the model has a fixed point at c∗i (black

circle). Parameters A: τ = 5s, p = 0.015; B: τ = 1s, p = 0.06.

from c∗i to cT is noise-induced, resulting in highly stochastic ISIs. We note that, in general, spiking
can also be irregular in the mean-driven regime if the noise is strong enough or regular in the
excitable regime if the difference between fixed point and threshold and the noise intensity are
chosen just right. However, neither is the case here.

Eq. 3.4.14 allows us to determine the bifurcation point between these two firing regimes. The
transition between the two firing regimes occurs when the fixed point falls exactly on the firing
threshold f (cT) = 0. This leads to a simple condition for the critical values of τ and p:

τp =
cT − c∗0

Kµx(cT)
. (3.4.16)

Apart from the fact that Eq. 3.4.14 allows us to determine the bifurcation point, the white-noise
approximation is appealing because it permits to use the powerful arsenal of the theory of Markov
processes [59, 60]. For example, the time evolution of the probability density P(ci, t) can be deter-
mined using the Fokker-Planck equation.

Itô-Stratonovich Dilemma

Due to the multiplicative nature of the white noise - the intensity depends on the variable it acts
upon - it becomes necessary to interpret the SDE to determine the corresponding FPE uniquely
[58]. Formally, the interpretation of the SDE corresponds to the specification of the parameter a
within the following FPE:

∂

∂t
P(ci, t) =

∂

∂ci

[︃
− f (ci)− aD′(ci) +

∂

∂ci
D(ci)

]︃
P(ci, t) + r(t)δ(ci − cR). (3.4.17)

The term r(t)δ(ci − cR) is the counterpart of the reset rule of the IF model but does not affect
the interpretation of the FPE. The most common interpretations are the ones by Itô (a = 0), by
Stratonovich (a = 1/2), and by Klimontovich and Hänggi (a = 1). Unfortunately, it is unclear
which of these interpretations (if any [242]) should be chosen for our model. Without diving too
deeply into the sometimes confusing relationship between classical Riemann and stochastic inte-
grals5, we note that according to Wong and Zakai [241], a Langevin equation must be interpreted

5The interested reader is referred to Chapter 8 and 9 in [59]
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FIGURE 3.19: Statistics of the two-component model and interpretation of the Langevin ap-
proximation. Panels A and B show the mean ⟨T⟩ and the CV CV(T) obtained from stochastic
simulations of the two-component model as a function of the parameters τ and p. The red lines
indicate the bifurcation line according to Eq. 3.4.16. Above the bifurcation line (mean-driven
regime), spikes are observed for all combinations of τ and p. Below the bifurcation line (ex-
citable regime), spiking requires some fine-tuning of the parameters and is only observed close
to the bifurcation line. The white area indicates the parameters for which no spikes were ob-
served. In panels C and D, we show the relative deviation of the mean δ⟨T⟩ = (⟨T⟩ − ⟨T̂⟩)/⟨T⟩
and the CV δCV(T) = (CV(T)− ĈV(T)/CV(T)). Here ⟨T⟩ and ⟨T̂⟩ (CV(T) and ĈV(T)) refer
to the mean (CV) obtained from simulations of the two-component model and the Langevin
approximation. The results for the most common interpretations are shown in C1, C2, and C3

(D1, D2, and D3).

in the Stratonovich sense if the white noise is an approximation of a continuous colored noise
with piecewise continuous derivative. This is exactly the case for the process X̄(t; ∆t). This result
has been generalized by Blankenship and Papanicolaou [243] to hold for a large class of colored-
noise processes, including jump processes, such as dichotomous noise or the process X(t) gen-
erated by our cluster model. Thus, there is reason to believe that Eq. 3.4.14 must be interpreted
in the Stratonovich sense. A rigorous derivation of this result would require to show that the
Kolmogorov forward equation of Eq. 3.3.43, when considered in the limit of vanishing correlation
time (τX = 0), corresponds to the FPE 3.4.18.

Although we opt for the Stratonovich interpretation, Fig. 3.19 shows the effect of the three
most common interpretations on the ISI statistics. To do this, we first determine the mean ⟨T⟩ and
the CV CV(T) of the ISIs by stochastic simulations of the two-component model (Fig. 3.19A and
B). We then determine the same statistics from the Langevin approximation in the three interpre-
tations with the same parameters and denote the resulting means by ⟨T̂⟩ and the CVs by CV(T̂).
Finally, we determine the relative deviation between the mean resulting from the simulations of
the two-component model and the means resulting from the simulations of the Langevin approx-
imations δ⟨T⟩ = (⟨T⟩ − ⟨T̂⟩)/⟨T⟩ (Fig. 3.19C) and similarly for the CVs δCV(T) = (CV(T) −
ĈV(T)/CV(T)) (Fig. 3.19D). It turns out that the question of interpretation does not play a signif-
icant role in our model for the parameter range where biophysically plausible ISIs and CVs are
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observed. While deviations between the three interpretations are observed for large values of p
and small values of τ, this is also the parameter regime where the white-noise approximation de-
scribes the system poorly. For small values of τ, the puff current cannot be assumed to be white,
whereas, for large values of p, the puff current cannot be assumed to be Gaussian distributed.
Consequently, the deviations observed in this range are not necessarily due to the interpretation.
For small values of p and large values of τ, where the diffusion approximation describes the
system well, we observe minimal variation among the interpretations.

Stationary probability density function

We have motivated above that the FPE corresponding to Eq. 3.4.14 is given by

∂

∂t
P(ci, t) =

∂

∂ci

[︃
− f (ci)− D′(ci)/2 +

∂

∂ci
D(ci)

]︃
P(ci, t) + r(t)δ(ci − cR)

= − ∂

∂ci
J(ci, t)

(3.4.18)

with the drift function f (ci) = −(ci − c∗0)/τ + µ(ci) and the Stratonovich drift D′(ci)/2. The
FPE is completed by the natural boundary condition, the absorbing boundary condition, and the
normalization condition

lim
ci→−∞

P(ci, t) = 0, P(cT , t) = 0,
∫︂ cT

−∞
dci P(ci, t) = 1. (3.4.19)

The second line in Eq. 3.4.18 relates the temporal derivative of the probability density to the spa-
tial derivative of the probability current J(ci, t), which corresponds to a continuity equation for
the probability density. We emphasize again that the IF model’s reset rule in Eq. 3.4.14 finds its
counterpart in the source term in Eq. 3.4.18 that is proportional to the probability current J(ci, t)
across the threshold

r(t) = J(cT , t) = − ∂

∂ci
D(ci)P(ci, t)

⃓⃓⃓⃓
ci=cT

. (3.4.20)

FPEs with such a source term have been extensively studied in the computational neuroscience
literature [244–247]. However, to the best of our knowledge, the case of multiplicative noise is
rarely considered.

Here, we calculate the stationary probability density P0(ci) and the stationary firing rate r0. To
this end, we consider the stationary FPE

0 =

[︃
− f (ci)− D′(ci)/2 +

∂

∂ci
D(ci)

]︃
P0(ci) + r0Θ(ci − cR), (3.4.21)

where we have omitted the time derivative because we are interested in the stationary case and
subsequently integrate once with respect to ci. As a result of this integration, the δ-function δ(ci −
cR) becomes a Heaviside function Θ(ci − cR). To solve Eq. 3.4.21 we introduce two auxiliary func-
tions, first L(ci) = D(ci)P0(ci) and second the effective drift function g(ci) = f (ci) + D′(ci)/2, to
obtain

∂

∂ci
L(ci) =

g(ci)

D(ci)
L(ci)− r0Θ(ci − cR), (3.4.22)

which is solved by

L(ci) = r0eh(ci)
∫︂ cT

ci

dx e−h(x)Θ(x − cR), with h(x) =
∫︂ x

cR

dy
g(y)
D(y)

. (3.4.23)

The re-substituting of P0(ci) = L(ci)/D(ci) yields the stationary probability density:

P0(ci) = r0
eh(ci)

D(ci)

∫︂ cT

ci

dx e−h(x)Θ(x − cR). (3.4.24)
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This expression also allows us to calculate the stationary firing rate r0 using the normalization of
the probability density

∫︁
dci P0(ci) = 1. Put differently we can integrate ci from −∞ to cT and

obtain

r0 =

(︄∫︂ cT

cR

dx2 e−h(x2)
∫︂ x2

−∞
dx1

eh(x1)

D(x1)

)︄−1

, (3.4.25)

where we have used that the bounds of the integral can be interchanged and that the Heaviside
function can be incorporated into the boundaries as follows∫︂ xT

−∞
dx1

∫︂ xT

x1

dx2 f (x1, x2)θ(x2 − xR) =
∫︂ xT

xR

dx2

∫︂ x2

−∞
dx1 f (x1, x2). (3.4.26)

Moments of the first-passage time

While the stationary FPE allows the calculation of the stationary probability density and the sta-
tionary firing rate, this approach makes higher moments of the ISI inaccessible. However, a sec-
ond approach, where the ISI is interpreted as the first-passage time (FPT) from the reset cR to the
threshold cT , allows to calculate the moments of the ISI density ⟨Tn⟩. This is usually done by
formulating the Kolmogorov backward equation [57], which cannot be formulated for IF mod-
els with a reset mechanism. Instead, we follow the approach developed by Lindner [248] and
calculate the moments of the FPT based on respective the Kolmogorov forward equation or FPE

∂

∂t
P(ci, t) =

∂

∂ci

[︃
− f (ci)− D′(ci)/2 +

∂

∂ci
D(ci)

]︃
P(ci, t) = − ∂

∂ci
J(ci, t) (3.4.27)

with the natural boundary condition, absorbing boundary condition, and initial condition:

lim
ci→−∞

P(ci, t) = 0, P(cT , t) = 0, P(ci, 0) = δ(ci − cR). (3.4.28)

Unlike Eq. 3.4.18, this FPE has no source term because for the first-passage time, the probability
flux across the threshold is absorbed instead of reset. Still, the probability flux across the threshold
at time t is related to the probability of finding a spike at time t:

pFP(t) = J(cT , t), (3.4.29)

where pFP(t) is the FPT density. To compute the moments of the FPT, a hierarchy of differential
equations can be derived. Although the case of multiplicative noise is rarely considered, the
derivation of the hierarchy in this case is completely analogous to the case of additive noise [248],
so we state the differential equations directly

−nJn−1(ci) = −g(ci)J′n(ci) +
∂

∂ci
D(ci)J′n(ci), n > 0, . (3.4.30)

where the auxiliary function Jn(ci) is defined as

Jn(ci) =
∫︂ ∞

0
dt tn J(ci, t) (3.4.31)

and J0(ci) = Θ(ci − cR). Eq. 3.4.30 is completed by the two boundary conditions:

J′n(cT) = n
∫︂ ∞

0
tn−1P(ct, t) = 0, lim

ci→∞
Jn(ci) =

∫︂ ∞

0
tn lim

ci→∞
J(ct, t) = 0. (3.4.32)

Evaluating Jn(ci) at the threshold yields the n-moment of the FPT or equivalently the ISI density
Jn(cT) = ⟨Tn⟩. The solution to Eq. 3.4.30 can be obtained by first solving the homogeneous
problem, then using the variation of parameters method to find the complete solution, and finally



106 Chapter 3. Nonrenewal spiking in Ca2+ signaling

incorporating the boundary condition Jn(ci → −∞) = 0:

Jn(ci) = n
∫︂ ci

∞
dy

eh(y)

D(y)

∫︂ cT

y
dx e−h(x) Jn−1(x). (3.4.33)

For n = 1 this yields the mean ISI

⟨T⟩ = Jn(cT) =
∫︂ cT

cR

dx2 e−h(x2)
∫︂ x2

−∞
dx1

eh(x1)

D(x1)
, (3.4.34)

where we have again used Eq. 3.4.26 to interchange the bounds of the integral. This expression
agrees with the inverse firing rate in Eq. 3.4.25. For n = 2, we obtain the second moment:

⟨T2⟩ = 2
∫︂ cT

cR

dx4 e−h(x4)
∫︂ x4

−∞
dx3

eh(x3)

D(x3)

∫︂ cT

x3

dx2e−h(x2)
∫︂ x2

−∞
dx1

eh(x1)

D(x1)
. (3.4.35)

The evaluation of the four nested integrals is even numerically challenging, but in the case of the
variance, the expression can be simplified to include only two nested integrals [246]:

⟨︂
∆T2

⟩︂
= 2

∫︂ cT

−∞
dx3 e−h(x3)

(︄∫︂ x3

−∞
dx2

eh(x2)

D(x2)

)︄2 ∫︂ cT

x3

dx1 e−h(x1)Θ(x1 − cR). (3.4.36)

3.4.3 Spiking statistics

So far, we have presented a one-dimensional Langevin approximation of the two-component
model, formulated the corresponding FPE, and found analytical expressions for the stationary
probability density along with the first and second moments of the ISI density.

Here, we compare these analytical results to numerical simulations of the two-component
model (Eq. 3.3.43). We also provide an overview of how the spike statistics are influenced by the
timescale of the leak current τ and the permeability-like parameter p. We have already pointed
out that the Langevin approximation allows us to find an expression (Eq. 3.4.16) for the bifurca-
tion line separating the mean-driven from the excitable regime, which is repeated here for conve-
nience:

τp =
cT − c∗0

Kµx(cT)
. (3.4.37)

The dynamics of the two-component model in the mean-driven and excitable regimes have
been shown in Fig. 3.14 and Fig. 3.18 for the two-component model and Langevin approximation,
respectively. The associated statistics in the two firing regimes are depicted in Fig. 3.20.

Fig. 3.20A1 and B1, compares the stationary probability densities P0(ci) obtained from stochas-
tic simulations of the two-component model (histograms) with the corresponding theoretical pre-
dictions according to Eq. 3.3.32 (red line). The two show excellent agreement in the mean-driven
regime and good agreement in the excitable regime. In the mean-driven regime, the probabil-
ity density is close to uniform (Fig. 3.20A1). This distribution arises from the minimal variation
exhibited by the drift term f (ci) as a function of ci (cf. Fig. 3.18A2). Conversely, in the excitable
regime, the deterministic drift term has a zero at the fixed point of the corresponding determin-
istic system c∗i (cf. Fig. 3.18B2). Consequently, the system spends more time near this fixed point,
leading to a pronounced maximum in the probability density (Fig. 3.20B1). However, the max-
imum does not align with the fixed point due to the interplay between the multiplicative noise
and the nonlinear drift term in the model. It is also interesting to note that the theoretical predic-
tion poorly describes the density near the reset in the excitable regime. This has to do with the
finite correlation time of the noise. In the excitable regime, spikes are noise-induced, i.e., the drift
f (cT) < 0 is negative at the threshold, and the noise must take a positive value exceeding the neg-
ative drift to trigger a spike. Since the noise of the puff current has a small but finite correlation
time, and the reset is instantaneous, the noise is more likely to take positive values for some time
after the reset. As a result, the Ca2+ concentration quickly moves away from the reset point after
the spike. This is not the case in the white noise approximation, where all memory is erased after
the reset.
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FIGURE 3.20: Spiking statistics of the two-component model. Panels A and B show the model
in the mean-driven and excitable firing regimes. Panels A1 and B1 show the stationary probabil-
ity density P0(ci) obtained from stochastic simulations (histogram) and according to Eq. 3.4.24
(red line). The density shows a weak dependence on ci in the mean-driven regime and has a
pronounced peak below c∗i in the excitable regime. Panel A2 and B2 compare the ISI density
pISI(t) from stochastic simulations (histogram) with an inverse Gaussian distribution. Mean
⟨T⟩ and CV CV(T) are obtained either from simulations (blue/green line) or Eq. 3.4.34 and
Eq. 3.4.36 (red line). Panels A3 and B3 show the spike train power spectrum S( f ) from simu-
lations (blue/green lines) and calculated according to Eq. 3.4.40 and Eq. 3.4.41 (red line). The
high-frequency limit S( f → ∞) = r0 and low-frequency limits S(0) = r0C2

V(T) are highlighted
by dotted lines. Panels A4 and B4 show the Fano factor of the spike count F(T). Red lines
indicate the approximation F(T) = 1− T/⟨T⟩. The horizontal dotted line shows the large time-
window limit F(T → ∞) = C2

V(T). Parameters A1-A4: τ = 5s, p = 0.015; B1-B4: τ = 1s,
p = 0.06.

Fig. 3.20A2 and B2 illustrate the obtained ISI density from stochastic simulations of the two-
component model (histograms). In the mean-driven regime, the ISI distribution exhibits a dis-
tinct peak (Fig. 3.20A2). The corresponding ISI sequence is rather regular with a moderate CV
of CV(T) = 0.2. In contrast to that, in the excitable regime, the ISI density displays a pro-
nounced skewness (Fig. 3.20B2), and the corresponding ISI sequence is highly irregular with a
CV of CV(T) = 0.8. In both cases, we compare the ISI density obtained from stochastic simula-
tions to an inverse Gaussian distribution

pIG(t) =

√︄
⟨T⟩

2πC2
V(T)t

3
exp

(︄
− (t − ⟨T⟩2)

2⟨T⟩C2
V(T)

)︄
, (3.4.38)

that is fully characterized by the mean ⟨T⟩ and CV CV(T) of the ISI. In Fig. 3.20A2 and B2, the
inverse Gaussian distribution is shown by solid lines, where the mean and the CV of the ISI were
computed from stochastic simulations of the two-component model (blue/green line) and cal-
culated according to Eq. 3.4.34 and Eq. 3.4.36 (red line). The agreement of the two solid lines is
thus also an indication of the quality of the Langevin approximation. In the mean-driven regime
(Fig. 3.20A2), the two solid lines are barely distinguishable, while in the excitable regime, the two
lines are separated (Fig. 3.20B2). This is not too surprising, as we have previously mentioned
that in the mean-driven regime, the timescale τ tends to be larger, and the permeability-like pa-
rameter p tends to be smaller compared to the excitable regime. As a result, both the assumed
timescale separation between the leak and puff current and the assumed Gaussian distribution of
the puff current are better satisfied in the mean-driven regime. The fact that an inverse Gaussian
distribution can describe the ISI density may be surprising. In the mean-driven regime, this is
because the drift function f (ci) shows minimal dependence on ci. In this firing regime, the model
is similar to a perfect IF model, where the drift function is constant, and the ISI density is known
to follow an inverse Gaussian distribution [238, 249]. Surprisingly, even in the excitable regime,
the inverse Gaussian provides a good approximation to the ISI density when the mean and CV
are determined from the stochastic simulation of the two-component model,
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Based on the assumption that ISIs follow an inverse Gaussian distribution, we can also cal-
culate the power spectrum S( f ) of the spike train z(t), that we have defined in Eq. 1.3.8 and is
repeated here

S( f ) = lim
T→∞

⟨|z̃T( f )|2⟩
T

, (3.4.39)

where z̃T( f ) is the (one-sided) Fourier transform of the spike train. If the spike train forms a
renewal point process, it is completely determined by the ISI density (a first-order statistic), and
the power spectrum (a second-order statistic) can be related to the Fourier transform of the ISI
density p̃ISI( f ) according to Eq. 1.3.21:

Srenew( f ) =
1
⟨T⟩

1 − | p̃ISI( f )|2

|1 − p̃ISI( f )|2 . (3.4.40)

For the inverse Gaussian distribution, the Fourier transform is known:

p̃IG( f ) = exp

⎛⎝1 −
√︂

1 − 4πi f ⟨T⟩C2
V(T)

C2
V(T)

⎞⎠ . (3.4.41)

In Fig. 3.20A3 and B3, we compare the power spectrum calculated directly from the spike train
of the two-component model using Eq. 3.4.39 (blue/green lines), with the power spectrum of
an inverse Gaussian ISI distribution calculated according to Eq. 3.4.40 and Eq. 3.4.41 (red lines).
The more regular spiking pattern in the mean-driven regime is evident by a peak in the power
spectrum at the firing rate f = r0. In the excitable regime, the spectrum appears relatively flat,
closely resembling the power spectrum of a Poisson process (which would be constant). In both
cases, the power spectrum of the spike train saturates at the firing rate r0 for large values of f and
approaches r0C2

V(T) for f = 0.
An interesting statistic of the spike count is the Fano factor that we have introduced in Eq. 1.3.10

and repeat here:

F(T) =
⟨∆N(T)2⟩
⟨N(T)⟩ . (3.4.42)

This measure compares the variance to the mean of the spike count N(T) and is shown in Fig. 3.20A4
and B4 as a function of the counting window T. For small time windows T much smaller than the
mean ISI, finding a spike in that window is essentially a Poisson process so that limT→0 F(t) = 1.
We have shown previously (cf. Eq. 1.3.11) that for intermediate times, the Fano factor decreases
linearly according to [66]

F(T) = 1 − T/⟨T⟩ (3.4.43)

up to a characteristic time, which is roughly given by the mean ISI (red line in Fig. 3.20A4 and B4).
For large values of T, the Fano factor saturates at the squared CV limt→∞ F(t) = C2

V(T) (dotted
line) according to Eq. 1.3.12, which is confirmed by stochastic simulations. Finally, in Fig. 3.21A
and B, we present the firing rate r0 = 1/⟨T⟩ as a function of the relative IP3 concentration q. The
arrow indicates the value of q = 1 used thus far. Each circle corresponds to a stochastic simula-
tion of the two-component model and is color-coded based on the corresponding CV(T) obtained
from the same simulation. The theoretical prediction of the firing rate, given by Eq. 3.4.25, ex-
hibits excellent agreement with the simulation results in the mean-driven regime (Fig. 3.21A) and
displays minor deviations in the excitable regime (Fig. 3.21B).

Extending our analysis beyond the two parameter sets examined previously, we revisit Fig. 3.19A
and B, which show the mean and CV of the ISI obtained from stochastic simulations of the two-
component model. In this analysis, we vary the two parameters, τ and p, over two orders of
magnitude. As expected, the mean ISI (Fig. 3.19A) consistently decreases with an increase in the
permeability-like parameter p, which is due to a corresponding increase in the mean µ(ci) and
the noise intensity D(ci) of the puff current. A similar behavior is observed when the timescale of
the leak current, τ, is increased. The bifurcation line between excitable and mean-driven regimes
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FIGURE 3.21: Firing rate of the two-component model. Panel A and B show the firing rate r0
as a function of the relative IP3 concentration q in the mean-driven and excitable regime, re-
spectively. Arrows indicate the IP3 concentration q = 1 that was used thus far. The firing rate
determined by stochastic simulations (circles) is compared to the theoretical prediction accord-
ing to Eq. 3.4.25 (red line). In addition, circles are color-coded to indicate the CV obtained from

stochastic simulations. Parameters A: τ = 5s, p = 0.015; B: τ = 1s, p = 0.06.
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FIGURE 3.22: Illustration of the preprocessing of experimental spike trains from different stim-
ulated HEK cells. The left panel shows exemplary spike trains from three different cells. The
gray area shows the intervals that belong to the transient and are truncated. The middle panel
shows the remaining spike times, where the time t̂ = t/⟨T⟩ for each cell has been rescaled with
respect to the mean ISI ⟨T⟩ of the remaining intervals. The right panel shows the concatenated
spike train. The color coding is for orientation only. The spike trains of different cells are no

longer distinguished.

according to Eq. 3.4.16 is shown by a red line. Because the noise in our model stems exclusively
from the activity of the IP3R clusters, it is often rather weak. Consequently, the excitable regime
extends only to a small part below the bifurcation line, and for a large part of the parameter space,
no spiking is observed (white area). The CV (Fig. 3.19B) shows a more complicated dependence
on the parameters. It is close to one in the excitable regime [100] and drops drastically as soon as
we cross the bifurcation line by increasing p or τ. The CV saturates in the limit of large τ when
the leak current becomes negligible. In contrast, for large p, the CV continues to increase. This
is probably due to the increasing noise intensity combined with the leak current becoming less
important for p → ∞.

3.4.4 Stimulated HEK cells

To test the model, we ask to what extent the renewal model can reproduce experimentally ob-
served ISI sequences. To this end, we compare ISI statistics measured in stimulated HEK cells
(see [7, 8]) with those obtained from the two-component model when fitted to the experimental
data. Specifically, these are the ISI density, the spike train power spectrum, and the spike count
Fano factor.

Unfortunately, measuring ISI sequences long enough to determine these statistics with suffi-
cient precision is difficult. To solve this problem, we rescale and concatenate experimentally mea-
sured ISI sequences to obtain a single long ISI sequence, as suggested by Skupin and Falcke [250].
The procedure is illustrated in Fig. 3.22. Specifically, the procedure is as follows: In the first step,
those sequences are selected from the available data in which the intervals approach a stationary
value. This is the case for 29 out of 36 sequences. In the second step, the number of transient
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FIGURE 3.23: Comparison between ISI statistics of stimulated HEK cells and the two-
component model. Spike trains from different cells were rescaled and combined as described
in the main text. The resulting ISI sequence has a mean ISI ⟨THEK⟩ ≈ 155s (before rescaling)
and CV CV(THEK) ≈ 0.19 (after rescaling). The model parameters τ = 11.1 and p = 0.006 were
chosen to reproduce the mean and CV. Panel A compares the ISI density pISI(t̂) as a function
of rescaled time t̂ = t/⟨T⟩. Panel B compares the power spectra S( f̂ ) of the two ISI sequences
where f̂ = f ⟨T⟩. Both spectra reach the low frequency limit S(0) = r0CV(T̂). Panel C shows the
Fano factors F(T̂) of the corresponding spike counts as a function of the rescaled time window
T̂ = T/⟨T⟩. Both the Fano factor of the experimental and simulated spike trains saturate at

C2
V(T̂) for T̂ → ∞ (horizontal dotted line).

intervals ntr is determined by fitting the exponential function T∞ − (T∞ − T0) exp(−i/ntr) to the
interval sequences. Three examples of stationary ISI sequences and the corresponding transient
intervals are shown in the left panel of Fig. 3.22 in three different colors. In the third step, twice
the number of transient intervals are truncated from the beginning of the sequence (grey area); on
average, 9 out of 20 intervals. For the remaining intervals, the mean ⟨T⟩ is determined, and the
time for each sequence is rescaled so that t̂ = t/⟨T⟩. The rescaled sequences are shown in the mid-
dle panel of Fig. 3.22. Finally, we concatenate the truncated and rescaled sequences into one long
ISI sequence that no longer discriminates between individual cells, as shown in the right panel
of Fig. 3.22 (the color coding is for orientation only). From this concatenated sequence, we calcu-
lated the statistical measures of interest. We emphasize that rescaling the ISI sequences results in
a mean ISI and firing rate equal to one. To determine the parameter set for the two-component
model, we require that the ISI sequence of the model reproduce the mean and CV of the exper-
imental data. Specifically, we require that the model reproduce the mean ISI of the data before
rescaling ⟨THEK⟩ ≈ 155s (before introducing t̂ = t/⟨T⟩) and the CV of the data after rescaling
CV(THEK) ≈ 0.19. Given the large number of parameters in our model, we set the cluster param-
eters according to Table 3.3 and the number of clusters, resting Ca2+ concentration and threshold
Ca2+ concentrations according to Table 3.3 as usual. To determine the remaining two parameters,
we use the Nelder-Mead method [251] to minimize the loss function f (x1, x2) = ∑i |xi − yi|/xi,
where xi ∈ [⟨THEK⟩, CV(THEK)] are the target statistics obtained from the experimental data as
described above, and yi ∈ [⟨T⟩, CV(T)] are the same output statistics of the model. The resulting
values for the two parameters are τ = 11.1 and p = 0.006. (We note that these values are very
close to the bifurcation line, in fact, for the set of standard parameters according to Table 3.3 and
Table 3.4 and for τ = 11.1 the critical value for the permeability type parameter is p∗ = 0.0058.)

In Fig. 3.23A, the ISI density pISI(t̂) of the concatenated ISI sequence obtained from stimulated
HEK cells (red histogram) is compared to the rescaled ISI distribution obtained from stochastic
simulations of the two-component model (black line). Given the limited amount and temporal
precision of the experimental data (5s), the two densities are in good agreement, although the
experimental density is slightly more peaked. Fig. 3.23B shows the power spectrum S( f̂ ) of the
experimental spike train (red line) and compares it to the power spectrum of the model (black
line). The two spectra show excellent agreement with respect to the low-frequency limit, the
height of the peak at f̂ = 1 ( f = 1/⟨T⟩), and the high-frequency limit. The agreement observed in
the high-frequency limit is expected since the power spectrum always saturates at the firing rate
S( f̂ → ∞) = r0. The low-frequency limit of the power spectrum is of particular interest because
it is directly related to the stationary firing rate and the CV of the ISIs when the spike train is
renewal:

Srenew(0) = r0C2
V(T). (3.4.44)
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We have pointed out previously that for a nonrenewable spike train, the sum of the correlation
coefficients ρk is also included in the low-frequency limit:

Snonrenew(0) = r0C2
V(T)

(︄
1 + 2 ∑

k
ρk

)︄
. (3.4.45)

Therefore, the fact that the power spectrum saturates at r0C2
V(T) indicates that the concatenated

spike train is renewal. In Fig. 3.23C, we compare the Fano factors of the experimental spike count
(red line) and the simulated spike count (black line) and find good agreement. Again, the Fano
factor saturates at the renewal limit F(T̂ → ∞) = C2

V(T) for large time windows T̂, indicating
that the concatenated spike train is renewal to a good approximation.

The fact that the spike train appears to form a renewal point process and that the ISIs are
uncorrelated is somewhat surprising since the experimental sequences of the ISIs often show
long transients during which a strong cumulative refractory period builds up over many spike
times (cf. Fig. 3.13C). Usually, such transients are attributed to a slow process that also correlates
intervals and gives rise to a nonvanishing correlation coefficient ρk ̸= 0. According to Skupin and
Falcke [252] have shown that stimulated HEK cells do not exhibit statistically significant interval
correlations. This paradox of a strong cumulative refractory period without significant interval
correlations is addressed in Sec. 3.5.

3.4.5 Extension: Fast Ca2+ buffers

An important aspect of Ca2+ signaling that we have not considered so far is the presence of Ca2+

buffer proteins that can bind a significant portion (up to 99%) of the free Ca2+ both in the cytosol
and ER [253, 254]. Here, we extend our model to account for an additional fast Ca2+ buffer in the
cytosol and discuss the effect on the mean and CV of the ISI. The reaction scheme for a general
Ca2+ buffer is as follows

Ca2+ + B
k+−⇀↽−
k−

CaB, (3.4.46)

where k+ and k− are rate constants for the binding and unbinding processes, respectively. Since
we consider a fast Ca2+ buffer, these rates are chosen to be large compared to the rate of change
of the cytosolic Ca2+ concentration. In terms of the differential equation governing the dynamics
of the cytosolic Ca2+ concentration, a fast Ca2+ buffer can be described by a second differential
equation describing the portion of the Ca2+ concentration currently bound to the buffer as follows
(cf. Sec. 3.2.2):

ċi = −(ci − c∗0)/τ + jpuff(ci)− k+ci(bT − cb) + k−cb,

ċb = k+ci(bT − cb)− k−cb,
if ci(t) = cT → ti = t and ci(t) = cR, cb(t) = c∗b(cR),

(3.4.47)

where cb is the portion of the cytosolic Ca2+ concentration bound to the buffer. A second equation
for the free buffer concentration b does not need to be formulated because we assume that the total
buffer concentration is a constant bT = b + cb. Note that because of the one-to-one binding, the
bound Ca2+ concentration equals the bound buffer concentration cb = bc. Returning to Eq. 3.4.47,
the first term in the second line describes the binding of a Ca2+ ion to a buffer protein, proportional
to the rate constant k+, the free Ca2+ concentration ci and the free buffer concentration b = bT − cb.
In contrast, the second term described the unbinding, proportional to the rate constant k− and
the buffered Ca2+ concentration cb. In an IF model, a fast buffer requires an additional reset rule
to ensure that even after the infinitely fast reset of ci, the bound buffer concentration cb is still
in equilibrium with the free cytosolic Ca2+ concentration. This additional reset rule is given in
the last line of Eq. 3.4.47 and states that cb is reset to its equilibrium value c∗b(cR) when a spike
is triggered. For such a simple binding scheme, the equilibrium value c∗b(ci) can be calculated
analytically by considering the second line in Eq. 3.4.47 and requiring that the temporal derivative
vanishes

0 = k+ci(bT − c∗b)− k−c∗b =⇒ c∗b(ci) =
cibT

K + ci
, (3.4.48)
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where we have introduced the dissociation constant K = k−/k+.
The extension of our model complicates the description by the FPE. There are two reasons for

this. First, we are now dealing with a two-dimensional system, which makes the treatment of the
corresponding FPE much more difficult, and second, it is not clear to what extent the white noise
approximation describes the system well in the presence of a fast buffer. However, Wagner and
Keizer [255] have shown that a fast buffer can be eliminated and affects the dynamics of ci only
by a (ci-dependent) constant β according to

ċi = β[−(ci − c∗0)/τ + jpuff(ci)], with β =
(︂

1 + KbT/(K + ci)
2
)︂−1

. (3.4.49)

Assuming that the ci dependence of β is weak (K ≫ ci), one might conclude that the constant
factor β can be eliminated by introducing a new time t̂ = βt that grows slower than t so that
adding a fast buffer leads to a rescaling of time. This is only true in the deterministic limit but not
when the fluctuations of the puff current are taken into account, which has to do with the fact that
the rates of the Markov model are not rescaled accordingly. To see that the mean and the noise
intensity are affected differently by a rescaling of time, we consider the Langevin approximation
of Eq. 3.4.49 and substitute t = t̂/β:

dci

dt̂
= −(ci − c∗0)/τ + µ(ci) +

√︂
2βD(ci)ξ(t̂), (3.4.50)

where, when measured in the new time t̂, the deterministic drift f (ci) = −(ci − c∗0)/τ + µ(ci) is
unaffected by the fast buffer, but the noise intensity is not. To obtain this equation, we used the
scaling property of white noise ξ(t̂/β) =

√︁
βξ(t̂)6. The factor β is guaranteed to be less than 1, so

an additional fast buffer will always slow down the dynamics. It should be emphasized that the
dependence of the noise intensity on β is not a property of the Langevin approximation. It is just
expressed particularly well there. This is illustrated in Fig. 3.24, where we compare the mean and
CV of the ISIs obtained from stochastic simulations of the two-component model (circles) and the
Langevin approximation (lines), both with an additional fast buffer according to Eq. 3.4.47.

We now return to the question of how a fast buffer affects the mean and CV of the ISI. In
the mean-driven regime, the mean ISI is largely determined by the drift f (ci). Since the drift is
independent of β, this implies that the mean ISI measured in units of t̂ is also independent of β.
Going back to the original time t = t̂/β, the mean ISI scales linearly with 1/β as the time t itself

⟨T⟩ = ⟨T0⟩
β

≈ ⟨T0⟩(1 + bT/K), (3.4.51)

where ⟨T0⟩ refers to the mean ISI without a buffer bT = 0. According to Eq. 3.4.51, the mean ISI is
a linear function of the total buffer concentration bT . This is demonstrated in Fig. 3.24A1 by means
of stochastic simulations of the two-component model with an additional fast buffer according to
Eq. 3.4.47 (circles). As expected, the stochastic simulations show a linear dependence of ⟨T⟩ on
bT in the mean-driven regime, with a slope slightly overestimated by the theory. This is because
the ci dependence has been neglected (cf. the factor β in Eq. 3.4.49) The effect of a fast buffer on
the CV is more complicated. However, when the model is mean-driven, and the noise is not too
strong, the variance of the ISI can be estimated according to Arecchi and Politi [257] by

⟨∆T2⟩ = 2β
∫︂ cT

c∗0
dci D(ci)/ f (ci)

3

= ⟨∆T2
0 ⟩/β,

(3.4.52)

where we have assumed that the factor β is independent of ci and thus can be placed before the
integral. The step from the first to the second line, i.e., from a β-dependency to a 1/β-dependency,
results from the rescaling of time similar to equation Eq. 3.4.51 (which adds another factor 1/β2

to the variance). Combining Eq. 3.4.51 and Eq. 3.4.52 allows us to determine the dependence of

6The scaling property of a white noise can be derived from the fact that the correlation function must be preserved, i.e.,
2Dδ(t − t′) = 2D∗δ(t̂ − t̂′). Using the scaling property of the Dirac delta function δ((t̂ − t̂′)/β) = |β|δ(t̂ − t̂′) allows to
relate the two intensities D∗ = βD so that one finds

√︁
βξ(t̂) = ξ(t̂/β) [256].
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FIGURE 3.24: Spike-train statistics in the presence of a fast Ca2+ buffer. Panels A and B show
spike-train statistics in the mean-driven and excitable regimes. Simulation results of the two-
component model and the Langevin approximation are shown as blue/green circles and lines,
respectively. Theoretical approximations according to Eq. 3.4.51 and Eq. 3.4.53 are shown by
red lines. Panels A1 and B1 show the mean ISI ⟨T⟩ as a function of the total buffer concentration
bT . In the mean-driven (excitable) regime, the ISI scales linearly (superlinearly) with the total
buffer concentration. Panels A2 and B2 show the CV CV(T). In the mean-driven regime, CV(T)
exhibits a square root relationship with respect to the total buffer concentration bT . In the ex-
citable regime, CV(T) appears to saturate as bT increases. Parameters: k+ = 10, k− = 50, A:

τ = 5s, p = 0.025; B: τ = 1s, p = 0.064.

the CV on the total buffer concentration

CV(T) =

√︂
⟨∆T2

0 ⟩/β

⟨T0⟩/β
=

CV(T0)√
1 + bT/K

, (3.4.53)

where CV(T0) refers again to the CV without a fast Ca2+ buffer bT = 0. Eq. 3.4.53 is confirmed in
Fig. 3.24A2.

Finally, in Fig. 3.24B1 and B2, we consider the model in the excitable regime, where the spiking
statistics depend strongly on the noise intensity and thus the buffer concentration. Specifically,
in Fig. 3.24B1, the ISI grows faster than linear with bT . This is due to the fact that in the excitable
regime, the jump from the deterministic fix point c∗i to the threshold cT is fluctuation driven.
Adding a Ca2+ buffer (increasing bT) reduces the noise intensity, which can lead to a superlinear
increase in the mean interval in the excitable regime. Even more complicated is the dependence
of the CV on the total buffer concentration in the excitable regime shown in Fig. 3.24B2. After an
initial decrease of the CV, we observe a minimal dependence of the CV on bT ; apparently, we are
far from the weak-noise limit where the CV decreases with the noise intensity. This may indicate
that we are dealing with an effect similar to coherence resonance [100].

3.5 Spiking statistics: nonrenewal model

We have seen in the previous section that the renewal model is analytically tractable and can re-
produce certain stationary spiking statistics of stimulated HEK cells, such as ISI density, spike
train power spectrum, and the Fano factor. However, many cell types exhibit an initial transient
in response to the onset of a constant stimulation (cf. Fig. 3.13), during which the ISIs are not
identically distributed but gradually increase until the stationary state is reached. Moreover, the
intervals are not statistically independent but correlated in the stationary state. Neither the tran-
sient nor the interval correlations are described by the renewal model. In this section, we return to
the full two-component model, describing the dynamics of Ca2+ concentration in the cytosol ci(t)
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FIGURE 3.25: Spiking statistics of the nonrenewal model. Panel A and B show the time series
of the Ca2+ concentration in the cytosol ci(t) and the ER cer(t) in response to a constant IP3
stimulation q = 1 applied at t = 0. Dotted lines in A indicated the threshold cT and reset
cR = c∗0cer(t+i ). The dotted line B indicates the stationary mean value ⟨c∗er⟩. Panel C shows
the stochastic sequence of ISIs {Ti} by blue circles and the deterministic sequence of mean ISIs
{⟨Ti⟩} by gray circles. The black line is a fit of Eq. 3.5.2 to the sequence of mean ISIs. The number
of transient intervals ntr and cumulative refractory period ∆T = T∞ − T0 are highlighted by a
horizontal and vertical arrow, respectively. Panel D depicts the stationary ISI density pISI(t)
together with an inverse Gaussian distribution (black line). Parameters: τ = 5s, p = 0.015,

τer = 300s, ε = 0.03.

and Ca2+ concentration in the ER cer(t). This model can account for the experimentally observed
transient and some of the observed ISI correlations. We analyze how the cumulative depletion of
the ER affects the statistics of the ISIs. This includes first-order stationary statistics, in particular
the mean and CV of the ISI, and second-order stationary statistics, in particular the interval cor-
relations. We then turn to a statistical description of the transient, characterized by its length and
the strength of the adaptation of the ISI. We also discuss how, according to our model, the two
transient statistics relate to the interval correlations and verify the relations using experimental
interval sequences.

The nonrenewal version of the model is as follows:

ċi = −(ci − c0(cer))/τ + jpuff(ci, cer),

ċer = −(cer − 1)/τer − εcer ∑i δ(t − ti),
if ci(t) = cT → ti = t and ci(t) = cR.

(3.5.1)

We have already discussed the characteristics of the model in Sec. 3.3.2 and repeat the main fea-
tures here for convenience. In Fig. 3.25A and B, we show the cytosolic and ER Ca2+ concentrations
ci(t) and cer(t) in response to a constant IP3 stimulation applied at t0 = 0. We emphasize again
that prior to the stimulation (t < t0) the concentrations are at ci(t < t0) = c∗0 and cer(t < t0) = 1.
That is, neither ci(t) nor cer(t) are affected by any noise because the IP3 receptors - the only noise
source in our model - are inactivated before the stimulation. Upon stimulation, when the IP3Rs
are activated, Ca2+ is released from the ER into the cytosol, and ci(t) begins to rise toward the
threshold. When the threshold is reached, and a spike is fired, cer(t) is immediately decreased
by εcer(t−i ) and ci(t) is reset to c∗0cer(t+i ). After the spike, ci(t) rises again, and cer(t) is slowly
replenished. During the transient, the depletion during a spike is, on average, larger than the
replenishment between two spikes, resulting in a cumulative decrease in cer(t) that builds up
over several spike times (see Fig. 3.25B). Since the ER Ca2+ concentration affects the puff current
and the reset value, the cumulative decrease also results in a transient in the sequence of ISIs that
spans several spikes. This is illustrated in Fig. 3.25C where we show the stochastic ISI sequence
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{Ti} by blue circles and the deterministic sequence of mean intervals {⟨Ti⟩} by gray circles. Dur-
ing the transient, the statistics of the ISI depend on the index i. To characterize the transient, we
introduce the fit function

T∞ − (T∞ − T0)e−i/ntr , (3.5.2)

with the number of transient intervals ntr and the cumulative refractory period ∆T = T∞ − T0.
The black line in Fig. 3.25C shows a fit of Eq. 3.5.2 to the sequence of mean intervals. Note that
we have used this fit function earlier to truncate the transient intervals from the sequence of ISIs
obtained from stimulated HEK cells. After the transient, when the stationary state is reached, the
ISI statistics are independent of i. In this case, all ISIs follow the same probability density pISI(t)
shown in Fig. 3.25D and are still well described by an inverse Gaussian distribution (black line).
However, even in the stationary state, where the intervals are identically distributed, they are not
statistically independent but weakly correlated (inset Fig. 3.25D). This is so because the statistics
of a given interval Ti+1 depends on the value cer(t+i ) taken at the beginning of that interval. At
the same time, cer(t+i ) depends on the previous interval Ti, so that the interval Ti+1 depends on
Ti through the ER Ca2+ concentration cer(t+i ).

Fokker-Planck equation

We start again by formulating the Langevin approximation corresponding to Eq. 3.5.1. In Sec. 3.4,
we showed that when the Ca2+ concentration in the ER is fixed (cer = const), the stochastic puff
current jpuff(ci) can be approximated by a Gaussian white noise with ci-dependent mean µ(ci)
and intensity D(ci).

This approximation assumes that the number of open channels in a cluster x(t) changes rapidly.
More precisely, the correlation time of the random process X(t) = ∑ xk(t) is assumed to be small
compared to any other timescale in the system. This is still the case if we additionally consider
the dynamics of the Ca2+ concentration in the ER, which we assume to mediate the adaptation
of the ISIs. Therefore, the corresponding timescale τer must be chosen to be of the order of the
stationary interval to observe an adaptation effect and is thus larger than τ and much larger than
the correlation time of X(t). Eq. 3.5.1 can then still be approximated by the Langevin equation:

ċi = −(ci − c0(cer))/τ + µ(ci, cer) +
√︂

2D(ci, cer)ξ(t),

ċer = −(cer − 1)/τer − εcer ∑i(t − ti),
if ci(t) = cT → ti = t and ci(t) = cR,

(3.5.3)

where the mean µ(ci, cer) = pcerKµx(ci) and the noise intensity D(ci, cer) = (pcer)2KDx(ci) of
the puff current do not only depend on ci(t), but also on cer(t). The mean µx(ci) and the noise
intensity Dx(ci) of a single cluster still depend solely on ci(t) through the ci dependence of the
opening rate.

Eq. 3.5.3 possesses a corresponding two-dimensional FPE

∂tP(ci, cer, t) =LP(ci, cer, t) + Ji(cT , cer/(1 − ε), t)δ(ci − cR) (3.5.4)

with the Fokker-Planck operator

L =− ∂ci [ f (ci, cer) + D′(ci, cer)/2 − ∂ci D(ci, cer)]− ∂cer g(cer) (3.5.5)

and the two drift functions

f (ci, cer) = −(ci − c0(cer))/τ + µ(ci, cer),
g(cer) = −(cer − 1)/τer,

(3.5.6)

as well as the Stratonovich drift D′(ci, cer)/2. Again, the reset rule of the IF model in Eq. 3.5.3 finds
its counterpart in the source term in Eq. 3.5.4, which is proportional to the probability current in
the ci-direction Ji(ci, t) across the firing threshold:

Ji(cT , cer, t) = −∂ci D(ci, cer)P(ci, cer, t)|ci=cT
. (3.5.7)
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The factor 1/(1 − ε) appearing in the source term in Eq. 3.5.4 reflects that a trajectory crossing the
threshold at (cT , cer/(1 − ε)) is reset to (cR, cer). In terms of the probability density, this means
that the change in the probability density at (cR, cer) is proportional to the probability current
Ji(ci, cer) at (cT , cer/(1 − ε)). Finally, the FPE is completed by the natural boundary condition, the
absorbing boundary condition, and the normalization condition

lim
ci→−∞

P(ci, cer, t) = 0, P(ci = cT , cer, t) = 0,
∫︂ cT

−∞
dci

∫︂ ∞

−∞
dcer P(ci, cer, t) = 1, (3.5.8)

as well as the two reflecting boundary conditions

Jer(ci, cer = 0, t) = Jer(ci, cer = 1, t) = 0, (3.5.9)

where Jer(ci, cer) refers to the probability current in the cer-direction. For the two-dimensional
FPE, the firing rate r(t) is given by the probability current across the threshold line:

r(t) =
∫︂ 1

0
dcer Ji(cT , cer, t). (3.5.10)

Evaluating this integral is already demanding, not to mention higher moments or higher-order
statistics. This is because it requires the solution of Eq. 3.5.4, a two-dimensional partial differential
equation, which is a severe problem even numerically. In the following, we will therefore use
approximation methods. For a detailed study of the two-dimensional FPE of IF models, see [131].

3.5.1 Stationary first-order interspike interval statistics

Here, we focus on first-order stationary interval statistics. That is, we assume that the onset of the
stimulation of the model cell occurred in the distant past, and the interval statistics are indepen-
dent of the absolute time that has elapsed since then. Moreover, we consider first-order statistics,
which can be calculated from the ISI density pISI(t). Interval correlations are thus excluded here.
As we have mentioned earlier, a renewal process with statistically independent intervals is com-
pletely determined by this density [46, 65].

Self-consistent firing rate

We begin by calculating the stationary firing rate r0. To this end, we assume that the Ca2+ con-
centration in the ER can be approximated by its stationary mean value limt→∞⟨cer(t)⟩ = ⟨c∗er⟩ (cf.
Fig. 3.25B). Note that this assumption excludes the possibility of calculating higher-order statis-
tics, which are mediated by the (time-dependent) values cer(ti). In other words, when cer(t) is
replaced by its stationary mean ⟨c∗er⟩, the intervals become statistically independent and identi-
cally distributed. This approach allows to derive two equations that must be solved simultane-
ously (self-consistently) to obtain the firing rate. The first equation is derived from the first line
of Eq. 3.5.3. Assuming cer(t) ≈ ⟨c∗er⟩, the system can be described by a one-dimensional FPE.
The calculation of the firing rate is then analogous to the calculation in Sec. 3.4 but requires the
knowledge of ⟨c∗er⟩. The second equation is obtained by averaging the second line of Eq. 3.5.3 and
considering the limit t → ∞.

The first expression is obtained by substituting cer(t) ≈ ⟨c∗er⟩ in Eq. 3.5.3 and formulating the
corresponding one-dimensional FPE

∂

∂t
P(ci, t) = − ∂

∂ci

[︃
f (ci; ⟨c∗er⟩)− D′(ci; ⟨c∗er⟩)/2 +

∂

∂ci
D(ci; ⟨c∗er⟩)

]︃
P(ci, t) + r(t)δ(ci − cR),

(3.5.11)

where the functions f (ci; ⟨c∗er⟩), D(ci; ⟨c∗er⟩), D′(ci; ⟨c∗er⟩), and the reset point cR = c∗0⟨c∗er⟩ depend
parametrically on ⟨c∗er⟩. As we have already shown in Sec. 3.4.2, Eq. 3.5.11 can be used to calculate
the firing rate according to

r0(τ, p, ⟨c∗er⟩) =
(︄∫︂ cT

cR

dx2 e−h(x2;⟨c∗er⟩)
∫︂ x2

−∞
dx1

eh(x1;⟨c∗er⟩)

D(x1; ⟨c∗er⟩)

)︄−1

(3.5.12)
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with

h(x) =
∫︂ x

cR

dy
g(y; ⟨c∗er⟩)
D(y; ⟨c∗er⟩)

(3.5.13)

as a function of the two parameters τ and p, but also as a function of the stationary mean ⟨c∗er⟩.
The expression cannot be evaluated because ⟨c∗er⟩ is unknown. The second expression is obtained
by considering the stationary average of the second line in Eq. 3.5.3:

0 = −(⟨c∗er⟩ − 1)/τer − ε⟨cer ∑i(t − ti)⟩. (3.5.14)

This equation involves two different mean values. First, the unconditional stationary mean ⟨c∗er⟩,
which appears in the first term, and second, the conditional mean, which appears in the second
term. To see this, we write the average as an integral over a large time window

⟨cer ∑i(t − ti)⟩ = lim
T→∞

1
T

∫︂ T

0
cer(t)∑

i
δ(t − ti)

= lim
T→∞

1
T ∑

ti∈[0,T]
cer(t−i )

= lim
T→∞

N(T)
T

⟨c∗er|t = t−i ⟩

= r0⟨c∗er|t = t−i ⟩,

(3.5.15)

where ⟨c∗er|t = t−i ⟩ is the stationary mean of cer(t) right before a spike. Put differently, taking the
average of cer(t) along with the spike train z(t) introduces a sampling bias such that only those
values of cer(t) are considered for which the time t was a spike time. It should be clear that this
conditional mean is always larger than the unconditional mean ⟨c∗er|t = t−i ⟩ > ⟨c∗er⟩ because cer(t)
takes its maximum value over a given ISI right before the spike at t−i . Substituting Eq. 3.5.15 into
Eq. 3.5.14 yields

0 = −(⟨c∗er⟩ − 1)/τer − εr0⟨c∗er|t = t−i ⟩. (3.5.16)

An expression that has brought us closer to finding a relation between the stationary firing rate r0
and the stationary mean ⟨c∗er⟩, but at the same time raises a new problem, since it is not clear how
the unconditional and the conditional mean are related.

Intermezzo: The averages of the ER Ca2+ concentration

Before we continue to calculate the firing rate, we derive relations between the differ-
ent mean values ⟨c∗er⟩, ⟨c∗er|t = t−i ⟩, and ⟨c∗er|t = t+i ⟩. To this end, note that between
two spike times ti ≤ t < ti+1, the governing differential equation for the ER Ca2+

concentration reduces to

ċer = −(cer − 1)/τer, (3.5.17)

which can be solved by

cer(t) = 1 − [1 − cer(t+i )]e
−(t−ti)/τer with ti ≤ t < ti+1, (3.5.18)

where cer(t+i ) is the value taken immediately after the spike. This value is the initial
condition for the next interval Ti. The final value cer(t−i+1), taken at the end of the
interval, is also known. This somewhat trivial observation allows to establish less
trivial relation between the two conditional means

⟨cer|t = t−i+1⟩ = 1 − ⟨[1 − cer(t+i )]e
−Ti/τer⟩, (3.5.19)

where we have substituted Ti = ti+1 − ti. Note that on the r.h.s. of Eq. 3.5.19, we
take the average over two correlated quantities, namely the value cer(t+i ) taken at the
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beginning of the interval Ti, and precisely that interval. A second relation between
the mean values can be derived using that exactly at a spike time cer(t) is decreased
by εcer(t−i ), which allows to relate the values of cer taken right before and right after
a spike by

cer(t+i ) = cer(t−i )(1 − ε). (3.5.20)

This equation can again be averaged to obtain

⟨cer(t)|t = t+i ⟩ = ⟨cer(t)|t = t−i ⟩(1 − ε). (3.5.21)

In the stationary case, the means do not depend on absolute time, and Eq. 3.5.19 and
3.5.21 become

⟨c∗er|t = t−i ⟩ = 1 − ⟨[1 − cer(t+i )]e
−Ti/τer⟩, (3.5.22)

⟨c∗er|t = t+i ⟩ = ⟨c∗er|t = t−i ⟩(1 − ε). (3.5.23)

To link the two conditional means with the unconditional mean, we express the latter
as integral over a large time window

⟨c∗er⟩ = lim
T→∞

∫︂ T

0
dt cer(t) (3.5.24)

and split the integral at the spike times where cer(t) takes the values cer(t+i )

⟨c∗er⟩ = lim
T→∞

1
T ∑

ti+Ti∈[0,T]

∫︂ Ti

0
dt 1 − [1 − cer(t+i )]e

−(t−ti)/τer

= lim
T→∞

1
T ∑

ti+Ti∈[0,T]
Ti − τer[1 − cer(t+i )][1 − e−Ti/τer ]

= 1 − τer

⟨T⟩

(︂
[1 − ⟨c∗er|t = t+i ⟩]− ⟨[1 − cer(t+i )]e

−Ti/τer⟩
)︂

= 1 − τer

⟨T⟩
(︁
⟨c∗er|t = t−i ⟩ − ⟨c∗er|t = t+i ⟩

)︁
= 1 − ε

τer

⟨T⟩ ⟨c
∗
er|t = t−i ⟩.

(3.5.25)

The first and second lines are obtained by using Eq. 3.5.18 and evaluating the inte-
gral. The get from the third to the fourth line and from the fourth to the fifth line
was used Eq. 3.5.22 and Eq. 3.5.23, respectively. This establishes an exact relation
between the conditional and unconditional mean values. The drawback of this ex-
pression is that it depends on the stationary mean interval ⟨T⟩. Alternatively, we
can derive a simpler approximation assuming that cer(t) is slowly replenished and
evolves linearly according to

cer(t) ≈ cer(t+i ) +
cer(t−i+1)− cer(t+i )

Ti
t with ti ≤ t < ti+1. (3.5.26)

Note that this expression does not correspond to a linear approximation of cer(t)
at t = t+i (or t = t−i+1) in the sense of a Taylor expansion but provides a linear
approximation so that both the values cer(t+i ) and cer(t−i+1) are taken at the beginning
and the end of the interval Ti. In this case, the unconditional mean and conditional
mean are related by

⟨c∗er⟩ ≈
⟨cer|t = t−i ⟩+ ⟨cer|t = t+i ⟩

2
,

≈ ⟨c∗er|t = t−i ⟩(1 − ϵ/2)
(3.5.27)

where we have used Eq. 3.5.23 again. This expression will be used in the following.
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FIGURE 3.26: Self-consistent firing rate. Panels A and B illustrate the self-consistent calculation
of the firing rate in the mean-driven and excitable regimes, respectively. The blue and green
lines show the firing rate according to Eq. 3.5.12, while the black line shows the firing rate
according to Eq. 3.5.28. The intersection point determines the stationary firing rate r0 and the
stationary mean value ⟨c∗er⟩, indicated by the dotted lines. Parameters: (A) τ = 5s, p = 0.015,

ε = 0.03, τer = 300s; (B) τ = 1s, p = 0.06, ε = 0.03, τer = 300s.

Returning to the original problem, we insert Eq. 3.5.27 into Eq. 3.5.16, rearrange the terms, and
find a second expression for the firing rate as a function of the two parameters τer and ε, and the
stationary mean ⟨c∗er⟩

r0(τer, ε, ⟨c∗er⟩) =
1 − ⟨c∗er⟩
ε̂τer⟨c∗er⟩

, (3.5.28)

where ε̂ = ε/(1 − ε/2) accounts for the biased sampling problem introduced by the conditional
mean value [66]. Together Eq. 3.5.12 and 3.5.28 permit the self-consistent calculation of the firing
rate as is illustrated in Fig. 3.26, where the firing rates as a function of ⟨cer⟩ according to Eq. 3.5.12
and Eq. 3.5.28 are shown by blue/green lines and black lines, respectively. At the intersection
of the two lines, both equations are satisfied simultaneously, and the stationary firing rate and
stationary mean can be read off the y-axis and x-axis, respectively (horizontal and vertical lines in
Fig. 3.26). We note that Eq. 3.5.12 is a monotonically increasing function of ⟨cer⟩, while Eq. 3.5.28
is a monotonically decreasing function of ⟨cer⟩, so the point of intersection and the firing rate are
uniquely determined.

In Fig. 3.27A1 and B1, we compare the mean ISI obtained from stochastic simulations of the
two-component model and the Langevin approximation with the theoretical prediction by the
self-consistent method. First, we observe that the mean ISI increases with both τer and ε. This is
expected since an increase in either of these parameters decreases ⟨c∗er⟩. Furthermore, we observe
excellent agreement between theory and simulations for all values of τer and small values of ε. The
fact that the net loss ε rather than timescale τer serves as the limiting factor of the approximation
(cer(t) ≈ ⟨c∗er⟩) may seem surprising since the self-consistent method relies on the assumption
that the Ca2+ concentration in the ER changes slowly - a property intuitively associated with
the parameter τer. However, in the stationary state, the depletion during a spike (determined
by ε) and the replenishment between two spikes (determined by the ratio ⟨T⟩/τer) must balance
on average. Consequently, the ε parameter determines how strongly cer(t) changes over an ISI.
Conversely, the relative change of cer(t) depends on the timescale only through the ratio ⟨T⟩/τer.
Since ⟨T⟩ itself depends on τer (cf. Fig. 3.27A1), small values of τer do not necessarily imply that
cer(t) changes significantly over an ISI.

As we have also shown in Sec. 3.4.2, the mean-adaptation approximation does, in principle,
also allow to calculate of the variance ⟨∆T2⟩ of the ISI according to

⟨︂
∆T2

⟩︂
= 2

∫︂ cT

−∞
dx3 e−h(x3)

(︄∫︂ x3

−∞
dx2

eh(x2)

D(x2)

)︄2 ∫︂ cT

x3

dx1 e−h(x1)Θ(x1 − cR) (3.5.29)

and thus also the CV CV =
√︁
⟨∆T2⟩/⟨T⟩. However, the time dependence of cer(t) is often crucial

for the variability of the ISI and cannot be neglected. In the following, we discuss in which cases
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FIGURE 3.27: Stationary first-order interspike interval statistics. Panels A and B show the mean
⟨T⟩ and CV CV(T) as functions of τer and ε. Blue/green circles and lines indicate statistics
calculated from stochastic simulations of the two-component model (Eq. 3.5.1) and the Langevin
approximation (Eq. 3.5.3), respectively. Red lines indicate theoretical predictions according to
Eq. 3.5.12, 3.5.28 and 3.5.29. Parameters Mean-driven: τ = 5s, p = 0.015; Excitable: τ = 1s,

p = 0.06; A: ε = 0.03; B: τer = 300s.

the CV can nevertheless be determined by means of Eq. 3.5.29 and Eq. 3.5.12.

Coefficient of variation

A distinctive feature of Ca2+ signaling is the persistence of the CV of the ISIs between different
cells of a cell line stimulated with the same agonist, despite considerable cell-to-cell variability
[7, 8]. This experimental finding is difficult to reproduce with the renewal model, where the
ISI variability is solely due to the fluctuations of the cytosolic Ca2+ concentration caused by the
random discharge of Ca2+ from the ER into the cytosol through IP3R clusters. As a result, the
noise acting on the cytosolic Ca2+ concentration is relatively weak, and spiking is either nearly
deterministic in the mean-driven regime or highly stochastic in the excitable regime. In order to
reproduce the ISI statistics of stimulated HEK cells with an intermediate CV, the parameters had
to be chosen close to the bifurcation line in the mean-driven regime.

Introducing the ER Ca2+ concentration cer(t) as an adaptation variable solves this problem
to some extent because it affects the variability of the ISIs differently, depending on the specific
choice of parameters. On the one hand, it provides a second source of ISI variability by adding
a stochastic component to the initial conditions ci(t+i ) and cer(t+i ). This can potentially increase
the CV. On the other hand, the negative feedback of the adaptation variable can also give rise to
a relative refractory period. This usually reduces the CV. It is easy to show that introducing an
absolute refractory period always leads to a decrease in the CV. To see this, consider a new interval
T′ = T + τref consisting of a stochastic time T and a deterministic absolute refractory period
τref. The mean of the new interval is given by ⟨T′⟩ = ⟨T⟩ + τref, while the variance ⟨∆T′2⟩ =
⟨(T + τref − ⟨T + τref⟩)2⟩ =

⟨︁
∆T2⟩︁ is independent of the refractory period. Consequently, the CV

of the interval T′ is reduced compared to the CV of the interval T. The dependence of the CV
on the parameters τer and ε is shown in Fig. 3.27A2 and B2, respectively. When τer and ε take
small values, the nonrenewal model closely resembles the renewal model. In this scenario, the
CV is approximate CV(T) ≈ 0.20 for the specific parameters in the mean-driven regime (blue
lines and circles) and CV(T) ≈ 0.75 for the specific parameters in the excitable regime (green lines
and circles). In the mean-driven regime, the CV exhibits a non-monotonic dependence on both
parameters. Initially, as τer increases, there is a slight decrease in the CV, followed by an increase
as τer continues to increase. Conversely, as the parameter ε increases, the CV experiences a slight
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FIGURE 3.28: Ca2+ store depletion and interspike interval variability. Panels A and B show the
mean ⟨T⟩, the CV CV(T), and the relative change of the CV compared to the renewal model
δCV = (CV − C∗

V)/C∗
V , in the mean-driven and excitable regimes, respectively. Panels A1 and

B1 show that the mean interval is prolonged when either τer or ε is increased. The effect on the
CV shown in A2, A3 and B2, B3 is less obvious. In the mean-driven regime, the CV can either
be increased as for the parameters marked by the cross (τer = 500s, ε = 0.02) or decreased as
for the parameters marked by the star (τer = 500s, ε = 0.2). In the excitable regime, the CV is
generally decreased, as shown for the parameters marked by the pentagon (τer = 500s, ε = 0.1).
Panels C, D, and E show the ISI density pISI(t̂) and the spike-train correlation function Cz(t̂) for
the three sets of parameter in the two regimes. Parameters Mean-driven: τ = 5s, p = 0.015;

Excitable τ = 1s, p = 0.06.

initial increase before decreasing as ε is further increased. In the excitable regime, regardless of
whether τer or ε is varied, we observe a general decrease in the CV with increasing adaptation
strength. Thus, the introduction of an additional adaptation variable leads to a less pronounced
difference in the ISI variability between the excitable and mean-driven regimes compared to the
renewal model.

To provide a more comprehensive overview of the observed behavior, we show in Fig. 3.28A
and B the mean ⟨T⟩, the CV CV(T), and most importantly, the relative change in the CV δCV =
(CV − C∗

V)/C∗
V over a wide range of the parameters τer and ε. Here, C∗

V refers to the CV ob-
tained from stochastic simulations of the renewal model with the same values for the parameters
τ and p as for the nonrenewal model. From Fig. 3.28A3, it is evident that when the ER is sig-
nificantly depleted during a single spike, roughly when ε > 0.1, the CV decreases compared to
the renewal case, regardless of the value of τer. Recall that in the stationary case, larger values
of ε imply stronger changes of cer(t) over an interval because ε is closely related to the differ-
ence between the values of cer(t) at the beginning and the end of an ISI. The strong depletion
leads to a strong inhibition of the spiking probability right after a spike is fired, similar to a re-
fractory period. This is illustrated in more detail for the specific parameters marked by the star
in Fig. 3.28A3 by comparing the ISI density pISI(t̂) and the spike-train autocorrelation function
Cz(t̂) = ⟨z(t̂′ + t̂)z(t̂′)⟩ − ⟨z(t̂′)⟩2 of the renewal model (gray histogram and line) and the non-
renewal model (blue histogram and line) in Fig. 3.28C. Since the depletion of the ER strongly
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affects the mean ISI (see Fig. 3.28A1 and B1), we rescale the time axis t̂ = t/⟨T⟩ to allow for a
comparison of the two statistics. Consistent with our reasoning, the ISI density of the nonrenewal
model is more strongly peaked, and spiking is almost completely inhibited until right before the
mean ISI t̂ ≈ 1. In contrast to that, when the depletion of the ER during a single spike is small,
roughly when ε < 0.1, and the replenishment is slow, the CV can even be increased. This is the
case for the parameters marked by the cross in the lower right corner of Fig. 3.28A3 and further
illustrated in Fig. 3.28D where we again compare the ISI density and correlation function of the
renewal model (gray histogram and line) and the nonrenewal model (blue histogram and line).
We notice that the ISI density is broadened for the nonrenewal model, and the correlation func-
tion is flattened. For the specific value of ε, the change in cer(t) over an ISI is rather small so
that cer(t) is approximately constant. In addition to reducing the reset point cR, this essentially
reduces the permeability according to p̂ = p⟨c∗er⟩ so that the model operates closer to the bifur-
cation, which generally increases the CV in the mean-driven regime. The fact that in Fig. 3.27A2,
where ε is small, the dependence of the CV on τer is accurately captured by the mean-adaptation
approximation cer(t) ≈ ⟨c∗er⟩ indicates that the effective reduction of the parameter p is indeed the
mechanism through which the adaptation variable enhances the CV in the mean-driven regime.
Finally, in the excitable regime, we consistently observe a decrease in the CV for all combinations
of τer and ε compared to the renewal case and a monotonic decrease in the CV as a function of
these two parameters. Increasing either τer or ε leads to a stronger inhibition of the spike gener-
ation over a certain period, which always reduces the CV compared to the renewal case, where
spiking is almost Poissonian. This is illustrated in Fig. 3.28E, where the ISI density and correla-
tion function of the renewal model show clear characteristics of a Poisson process (exponential
ISI density, vanishing correlation function), except for a reduced firing probability immediately
after a spike is fired. In contrast, when the depletion of the ER is taken into account, both the ISI
density and the correlation function show characteristics of a more regular spiking process, often
associated with the mean-driven regime but here mediated by the adaptation variable.

3.5.2 Stationary second-order interspike interval statistics

So far, we have considered stationary first-order ISI statistics that are based on the ISI density
pISI(t). However, because the adaptation is usually mediated by a slow process that affects the
spiking statistics over multiple spikes, the intervals are often also correlated by this process [18,
74, 97]. In our model, this slow process is the Ca2+ concentration in the ER cer(t).

The intervals generated by our model are statistically dependent as shown by several second-
order statistics in Fig. 3.29. The full picture of the dependence of subsequent intervals is provided
by probability density p(Ti+1, Ti) shown in Fig. 3.29A (dotted lines indicated the mean ISI ⟨T⟩).
The conditional probability densities p(Ti+1|Ti) for an interval Ti can be inferred as the density
along a given vertical line and shows a dependence on Ti. For example, for Ti < ⟨T⟩, the proba-
bility is shifted to larger values of Ti+1. For Ti > ⟨T⟩, the probability is shifted to smaller values
of Ti+1. Adjacent intervals are thus anticorrelated. The conditional mean ⟨Ti+1|Ti⟩ shown by the
red line illustrates these anticorrelations more clearly.

As we have explained in detail in the previous chapter, such interval correlations can be quan-
tified by the SCC

ρk =
⟨δTiδTi+k⟩
⟨δTi⟩2 , (3.5.30)

where δTi = Ti − ⟨T⟩ is the deviation of the i-th ISI Ti from the mean. In Fig. 3.29B, we show
the pattern of interval correlations ρk as a function of the lag k (blue circles) and observed a pro-
nounced anticorrelation that decays monotonically over a few lags according to

ρk ≈ ρ1e−(k−1)/ncorr , (3.5.31)

where ncorr is the number of correlated intervals. The fact that for our model, the SCC is initially
negative and monotonically approaches 0 as k increases can be well understood in the frame-
work developed in the previous chapter. Let us briefly recall the properties that the model must
fulfill in order to apply the theory of the previous chapter. First, the model must operate in the
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Parameters: τ = 5s, p = 0.015, τer = 300s, ε = 0.03.

mean-driven regime, i.e., possess a deterministic limit cycle to define a phase. Second, the devi-
ations from this limit cycle must be weak so that they can be described in the framework of the
phase-response curve. If these two conditions are met, the theory predicts two possible patterns
of interval correlation for a one-dimensional IF model with a spike-triggered adaptation variable
[74]. In both cases, the SCC starts at negative values ρ1 < 0 and approaches 0 either monotonically
or oscillatory with the lag k. Schwalger and Lindner [74] have shown that the observed pattern is
related to the drift f (ci, cer) at the reset point. If this drift is positive, the sequence ρk decays mono-
tonically; if it is negative, the sequence decays oscillatory. In other words, if (in the deterministic
limit) the cytosolic Ca2+ concentration ci(t) begins to rise toward the threshold immediately af-
ter the reset, the SCC will decay monotonically. This is the case for our model. The drift at the
reset cR = c∗0cer is given by f (cR, cer) = µ(cR, cer) > 0 and is guaranteed to be positive because
the mean puff current is positive for all values of cer. The fact that ρk decays monotonically, has
consequences for the first SCC ρ1, since the sum over all SCCs is bound according to

∑k ρk ≥ −1/2, (3.5.32)

which implies ρ1 > −1/2 when all SCCs are negative. Combining Eq. 3.5.31 and Eq. 3.5.32,
evaluating the sum and rearranging terms, allows to derive an upper limit for the number of
correlated intervals

ncorr ≤ − 1
ln(1 + 2ρ1)

, (3.5.33)

given −1/2 ≤ ρ1 ≤ 0. In Fig. 3.29B we show the sequence ρk according to Eq. 3.5.31 with
ncorr = −1/ ln(1 + 2ρ1) by the solid blue. The estimate provides a good approximation even
though the actual sequence ρk decays somewhat faster. The corresponding power spectrum S( f )
in two different frequency ranges is shown in Fig. 3.29C and D. In both cases, we compare the
power spectrum of the original spike train (blue line) to the power spectrum of the same spike
train with the ISIs shuffled (yellow line). Shuffling the sequence of ISIs provides a simple method
to decorrelate intervals without changing first-order statistics (cf. Fig. 3.29B). Because the low-
frequency limit of a nonrenewal spike train is given by S(0) = r0C2

V(T)(1 + 2 ∑∞
k=1 ρk) the power
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B show the SCC ρk and the number of correlated intervals ncorr as functions of τer and ε.
Blue/green circles and lines indicate statistics calculated in the mean-driven/excitable regime
from stochastic simulations of the two-component model and the Langevin approximation. The
number of transient intervals has been calculated according to Eq. 3.5.34 and thus relies on the
assumption that the SCC decays monotonically with the lag k. Dotted lines in A2 and B2 show
the theoretical (upper) limit of ncorr according Eq. 3.5.33. Parameters Mean-driven: τ = 5s,

p = 0.015; Excitable: τ = 1s, p = 0.06; A: ε = 0.03; B: τer = 300s.

spectrum of the shuffled spike train has larger power compared to the original spike train.
Beyond the specific parameters used so far, we show in Fig. 3.30 the first SCC ρ1 and the

number of correlated intervals ncorr as functions of τer and ε in both the mean-driven and excitable
regimes. First of all, the SCC shown in Fig. 3.30A1 and B1 is always negative as expected [74,
82, 97, 176, 258]. Secondly, no correlation coefficient falls below the ρ1 < −1/2 limit resulting
from the monotonic pattern of interval correlations. This suggests that the argument made earlier
regarding the pattern of interval correlation may hold more generally beyond a weakly perturbed,
mean-driven model. Thirdly, we find that ρ1 decreases monotonically as a function of τer and
exhibits a local minimum as a function of ε. The minimum with respect to ε results from the fact
that the correlation coefficient must vanish for both ε = 0 and ε = 1. We pointed out earlier that
two neighboring intervals are correlated by cer(t+i ), which depends on the interval Ti and serves
as an initial condition for the interval Ti+1. For ε = 0, it is evident that cer(t+i ) does not depend
on Ti, simply because cer(t) does not change at all. Conversely, for ε = 1, the initial conditions
cer(t+i ) are again independent of Ti, this time because the ER is completely depleted with each
spike, i.e., cer(t+i ) = 0. In both cases, the intervals are uncorrelated, and there is a minimum for
some intermediate value of ε.

Finally, in Fig. 3.30A2 and B2 we show the number of correlated intervals ncorr as a function
of τer and ε. To calculate the number of correlated intervals, we assume that the SCC decays
monotonically according to Eq. 3.5.31, which allows us to derive the expression

ncorr =
1

ln(ρ1/ρ2)
. (3.5.34)

Since the second correlation coefficient ρ2 is difficult to measure (especially when it is close to zero,
as is often the case here), we show only the results from numerical simulations of the more effi-
cient Langevin approximation (blue/green solid lines). The results are compared to the theoretical
upper limit according to Eq. 3.5.33 (dotted lines). Interestingly the limit ncorr = −1/ ln(1 + 2ρ1)
implies that if adjacent intervals are strongly anticorrelated, the number of correlated intervals
ncorr is small. Since the SCC ρ1 decreases with τer, this leads to the somewhat counterintuitive
conclusion that the number of correlated intervals decreases as τer increases. This is shown in
Fig. 3.30A2, where, after an initial increase ncorr decreases with τer. At the same time, we find that
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FIGURE 3.31: Timescale of ER depletion and replenishment. The upper and lower panels show
the response of the firing rate r(t) and the ER Ca2+ concentration cer(t) to a constant IP3 stimu-
lation. The stimulation is activated at t = 0s and deactivated at t = 1000s, as illustrated by the
upper black step function. Vertical lines below the stimulation line indicate spike times. The
corresponding time series cer(t) is depicted by black lines in the lower panel. Switching to an
averaged description, the firing rate r(t) and the ensemble average ⟨cer(t)⟩ are shown as gray
lines. Notably, the effective timescale τeff at which ⟨cer(t)⟩ converges to its stationary value in
response to the stimulus differs from the timescale τer at which ⟨cer(t)⟩ approaches its station-
ary value in the absence of a stimulus. The red line indicates the stationary firing rate r0(cer(t)).

Parameters: τ = 5s, p = 0.015, τer = 300s, ε = 0.03.

for all values of τer, the number of correlated intervals rarely exceeds one. A larger number of
correlated intervals is observed for small values of ε, as shown in Fig. 3.30B2.

3.5.3 Timescale of the transient - Ca2+ store depletion

So far, our investigation has focused on the effect of the depletion of the intracellular Ca2+ store
on stationary ISI statistics. To this end, we have assumed that the initial stimulation of the model
cell occurred in the distant past, rendering the ISI statistics independent of the absolute time
elapsed since then. However, there is a period of time when this assumption does not hold, and
the spiking statistics do depend on the absolute time since stimulation. This period is called the
transient. Here, we derive a timescale corresponding to the duration of this transient. In what
follows, we will again focus on the computation of statistics that characterize the ISIs specifically
during this transient. The mechanism underlying the time dependence of the spiking statistics is
the cumulative depletion of the ER over multiple spikes. Therefore, it is suggestive to consider
the timescale on which the variable cer(t) approaches the stationary state as an estimate of the
duration of the transient. This effective timescale τeff, at which the ER is depleted when spikes are
fired repeatedly, should not be confused with the timescale τer at which the ER is replenished in
the absence of spikes. The fact that these two timescales are different is demonstrated in Fig. 3.31,
where a constant IP3 stimulation is applied to the model over a period of time indicated by the
top black line. This stimulation activates the IP3Rs and triggers the release of Ca2+ from the ER
into the cytosol, causing the model to fire spikes. The vertical black lines represent an exemplary
sequence of spike times during the stimulation period. Even by visual inspection, it is clear that
the reduction of cer(t) with each spike significantly prolongs the ISIs. The corresponding time
series of the variable cer(t) is shown in the lower panel, represented by a black line.

To estimate the effective τeff, we consider the time-dependent ensemble average of the ER Ca2+

concentration ⟨cer(t)⟩ obtained from a large number of simulations Nsim of the two-component
model where the Ca2+ concentrations are initiated at ci,n(0) = cR, cer,n(0) = 1, and the clusters
are initiated in the state C1. The ensemble average is then calculated by

⟨cer(t)⟩ = ∑Nsim
n=1 cer,n(t)/Nsim (3.5.35)

and the firing rate r(t) can be estimated by the fraction of realizations ci,n(t) that have crossed
the threshold cT in the small time window [t, t + ∆t] divided by ∆t. The instantaneous firing rate
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r(t) and the average ⟨cer(t)⟩ are shown in Fig. 3.32 by gray lines. Interestingly, r(t) exhibits a pro-
nounced "ringing", characterized by alternating periods of high and low firing rates. This can also
be observed for ⟨cer(t)⟩, although less pronounced. Two factors contribute to this ringing. First,
our model is constructed so that neither the Ca2+ concentration in the cytosol nor the Ca2+ con-
centration in the ER are subject to any noise when the model cell is not stimulated. Consequently,
the initial conditions at the time of the stimulation ci(t = 0) = c0 and cer(t = 0) = 1 are identical
for each unit in the ensemble from which the firing rate is obtained. Second, the parameters are
chosen so that the model operates in the mean-driven regime, where spiking is rather regular.
Consequently, the first few spikes occur in relative synchrony across the ensemble, resulting in a
pronounced peak in firing rate around multiples of the mean ISI at t ≈ n⟨T⟩ with n = 1, 2, . . . .
As the number of spikes increases, this effect diminishes as the ensemble diffuses. Interestingly,
negative correlations counteract this diffusion because if, in a realization, an early spike is fired
(short ISI), it is typically followed by a late spike (long ISI). The negative correlations in the ISIs
thus maintain a higher degree of synchronization in the ensemble over a longer time.

To estimate the effective timescale, we assume that the time series of the averaged ER Ca2+

concentration ⟨cer(t)⟩ can be fitted by a single exponential function

⟨c∗er⟩+ (1 − ⟨c∗er⟩)e−t/τeff (3.5.36)

indicated by the lower red line in Fig. 3.32. The estimate of τeff according to this fitting proce-
dure is shown in Fig. 3.32 (blue circles) and can differ significantly from τer depending on the
parameters. We note that the assumed fit function Eq. 3.5.36 introduces some ambiguity in the
interpretation of τeff, since the time series of cer(t) will, in general, not be described by Eq. 3.5.36.
In the following, however, we will show in which case cer(t) is indeed solved by an exponen-
tial function and τeff can be interpreted as the timescale on which the stationary mean ⟨c∗er⟩ is
approached.

To derive an analytical approximation for the effective τeff, we consider the time-dependent
ensemble average of the ER Ca2+ concentration governed by

d
dt
⟨cer⟩ = −(⟨cer⟩ − 1)/τer − ε̂⟨cer⟩r(t), (3.5.37)

where we have assumed that the relation between the conditional mean ⟨cer(t)⟩ and ⟨cer(t)|t =
t−i ⟩ that we derived earlier for the stationary case also holds during the transient. In addition, we
assume that the firing rate adjusts adiabatically to ⟨cer(t)⟩, which omits the previously explained
"ringing" and allows the instantaneous firing rate to be approximated by the stationary firing rate
r(t) ≈ r0(⟨cer⟩(t)) so that Eq. 3.5.37 becomes

d
dt
⟨cer⟩ ≈ −(⟨cer⟩ − 1)/τer − ε̂⟨cer⟩r0(⟨cer⟩). (3.5.38)

The firing rate r0(⟨cer⟩(t) is shown in Fig. 3.31 by the upper red line. Equation Eq. 3.5.38 cannot
be solved due to the complex functional relation between the stationary firing rate and ⟨cer⟩, as
described by Eq. 3.5.12. In order to obtain an approximate solution for ⟨cer(t)⟩, we expand the
firing rate around ⟨c∗er⟩, considering terms up to zeroth and first order. To simplify the subsequent
derivations, we introduce the abbreviated notation x(t) = ⟨cer(t)⟩ and x = ⟨c∗er⟩.

In the zeroth-order approximation r0(x) ≈ r0(x∗), the firing rate is constant and independent
of x(t). Consequently, Eq. 3.5.37 simplifies and becomes a linear differential equation

ẋ = −(x − 1)/τer − ε̂xr0(x∗), (3.5.39)

which is solved by

x(t) = x∗ + (x0 − x∗)e−t/τ1 , (3.5.40)

with the initial condition x0 = 1 and the timescale

τ1 =
τer

1 + ε̂τerr0(x∗)
. (3.5.41)
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The solution to x(t) in the zeroth-order approximation of the firing rate provided by Eq. 3.5.40
matches the assumed fit function according to Eq. 3.5.36, and it follows that τeff = τ1. Notably,
even in this case, where the firing rate is assumed to be independent of x(t), the effective timescale
τeff does not agree with τer, but is smaller. This is due to the fact that the adaptation is multiplica-
tive, i.e., the amplitude of the spike-triggered term depends on cer so that the second term in
Eq. 3.5.39 also depends on cer. In Fig. 3.32, we compare the effective timescale τeff with τ1 and
find that the latter is a poor approximation of the true timescale. This observation is not surpris-
ing since Fig. 3.26 has already revealed that the firing rate changes significantly with respect to
the mean ER Ca2+ concentration.

A more accurate approximation can be obtained by expanding the firing rate up to the first
order r0(x) ≈ r0(x∗) + r′0(x∗)(x − x∗), where the prime denotes the derivative with respect to x.
In this case, Eq. 3.5.37 becomes a quadratic differential equation

ẋ = −(x − 1)/τer − ε̂x[r0(x∗) + r′0(x∗)(x − x∗)], (3.5.42)

that can still be solved analytically by

x(t) = x∗
1 + (x0 − x∗)/(x0 + x∗)e−t/τ2

1 − (x0 − x∗)/(x0 + x∗)e−t/τ2
, (3.5.43)

again with the initial condition x0 = 1 and the timescale

τ2 =
τer√︂

(1 + ε̂τer[r0(x∗)− r′0(x∗)x∗])2 + 4ε̂τerr′0(x∗)
. (3.5.44)

As mentioned before, we cannot expect the two timescales τ2 and τeff to coincide since they are
derived from different functions and thus have different meanings. However, we can introduce
a new quantity ∆x = x0 − x∗, which describes the difference between the (mean) ER Ca2+ con-
centration before stimulation and the mean ER Ca2+ concentration in the steady state, thus the
cumulative depletion of the ER, and substitute ∆x in Eq. 3.5.43 to obtain

x(t) = x0
2x∗ + ∆x + ∆xe−t/τ2

2x∗ + ∆x − ∆xe−t/τ2
. (3.5.45)

Similar to the firing rate, this expression is expanded to the first order in ∆x to obtain an expo-
nential function with a single timescale:

x(t) ≈ x∗ + (x0 − x∗)e−t/τ2 . (3.5.46)

In essence, when the difference x0 − x∗ = 1 − ⟨c∗er⟩ is small, indicating a weak cumulative ER
depletion, we can approximate τeff with τ2. In Fig. 3.32, we compare the effective timescale τeff
with τ2 and observe good agreement over a wide range of parameters, except for small values
of τer, indicated by the gray area in Fig. 3.32A. This discrepancy does not reflect a failure of the
theory itself but rather the limitations of estimating τeff from simulation data. This is because the
model operates in the mean-driven regime and fires regularly for the specific parameters used
in Fig. 3.32. We have already explained that this results in a fairly synchronous firing of the first
spike across the ensemble. The difference between the time the stimulus was presented and the
first spike was fired also results in a delay between stimulus presentation and the decrease in
⟨cer(t)⟩ of the order of the first ISI. Consequently, an estimate of the effective timescale τeff by
fitting cer(t) with an exponential function starting at t = 0 will always also reflect this delay.
In most cases, this inaccuracy will not significantly affect the estimate of the effective timescale
since the mean of the first ISI is usually much shorter than the effective timescale. However,
if the timescale τer is small compared to the mean of the first ISI, this can lead to a significant
overestimation of τeff. This is illustrated in Fig. 3.32 where τeff saturates roughly at the mean of
the first ISI ⟨T1⟩ ≈ 30s.

Finally, we note that in Fig. 3.32 the model operates in the mean-driven regime. In this case,
τ2 provides a good approximation to the effective timescale τeff because the r0(⟨cer⟩) can be well
approximated by a linear function (cf. Fig. 3.26A). This is not the case in the excitable regime (cf.
Fig. 3.26B), and the estimation becomes worse (not shown).
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FIGURE 3.32: Effective timescale of ER depletion. Panel A and B show the effective timescale
τeff has a function of τer and ε, respectively. Estimations of τeff from stochastic simulation of the
two-component model are shown by blue circles. The timescale τer and the zero- and first-order
approximations τ1 and τ2 are shown by black dotted lines, red dotted lines, and red dashed
lines, respectively. The region where ⟨T0⟩ falls below the timescale τer is indicated by the gray

area in panel A. Parameters: τ = 5s, p = 0.015, τer = 300s, ε = 0.03.

3.5.4 Transient interspike interval statistics

The method for the estimation of the effective timescale τeff detailed in Sec. 3.5.3 is based on
the firing rate r(t) and thus on the average over a large ensemble. This is usually infeasible
in experimental settings. Here, we return to a description of the ISIs during the transient. As
mentioned before, the sequence of mean ISIs ⟨Ti⟩ is well approximated by a single exponential
function

T∞ − (T∞ − T0)e−i/ntr , (3.5.47)

described by three fit parameters, namely the initial (mean) interval T0, the stationary (mean)
interval T∞, and the number of transient intervals ntr. We use this fit function for both numeri-
cally simulated and experimentally measured ISI sequences. For the simulation data, we use the
function to fit the interval sequence {⟨Ti⟩} averaged over many realizations. In the case of experi-
mental sequences, the function is fitted to individual realizations {Ti}. For this reason, we refrain
from referring to the fit parameters as mean values but emphasize that here the fit parameters T0
and T∞ correspond to the means of the initial interval ⟨T0⟩ and the stationary interval ⟨T⟩. Two of
the three fit parameters are combined to define the cumulative refractory period ∆T = T∞ − T0,
which indicates how strongly the ISI adapts due to the depletion of the ER. The third fit parameter
ntr indicates the number of intervals over which the ISIs approach their stationary value. We note
that the fit function was chosen ad hoc and does not necessarily reflect the actual dependence of
the (mean) intervals Ti on the index i. This leads to some difficulty in the interpretation of the
fit parameters, which does not so much affect the meaning of the cumulative refractory period
∆T, but rather the meaning of the number of transient intervals ntr. The reason is that the inter-
pretation of ∆T, i.e., the difference between the first and the stationary interval, is independent
of the functional relation between Ti and i, whereas the interpretation of ntr is not. This can be
seen in Fig. 3.25C, where we have plotted a fit of Eq. 3.5.47 (black lines) to the sequence of mean
ISIs (gray circles) and highlighted the cumulative refractory period ∆T as well as the number
of transient intervals ntr. A closer look reveals that the sequence of intervals deviates slightly
from the fit function. Specifically, the first few mean intervals increase more slowly than the fit
function, while the following intervals increase more rapidly until the stationary state is reached.
Despite this difficulty, we provide estimates of the cumulative refractory period and the number
of transient intervals in the following.

We begin by calculating the cumulative refractory period ∆T. Both the first and the stationary
interval T0 = ⟨T0⟩ and T∞ = ⟨T⟩ can be calculated according to the self-consistent scheme de-
tailed in Sec. 3.5.1. For the first interval, Eq. 3.5.12 can be solved directly since the value of the ER
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FIGURE 3.33: Transient interspike interval statistics. Panels A and B show transient statistics
as functions of τer and ε, respectively. Panels A1 and B1 show the cumulative refractory pe-
riod ∆T obtained from stochastic simulations of the two-component model in the mean-driven
regime (blue circles) and excitable regime (green circle). Theoretical predictions according to
Eq. 3.5.48 and Eq. 3.5.49 are shown by red lines. Panels A2 and B2 compare the number of tran-
sient intervals obtained by fitting Eq. 3.5.47 to a simulated sequence of mean ISI {⟨Ti⟩} to the
theoretical prediction according to Eq. 3.5.50 where the effective timescale τeff is approximated
by Eq. 3.5.44. Parameters Mean-driven: τ = 5s, p = 0.015; Excitable τ = 1s, p = 0.06; and A:

ε = 0.03; B: τer = 300s.

Ca2+ concentration before the first spike is known, namely cer(t < t1) = 1:

T0 =
1

r0(⟨cer⟩ = 1)
. (3.5.48)

For the stationary interval, both Eq. 3.5.12 and Eq. 3.5.28 have to be solved simultaneously

T∞ =
1

r0(⟨cer⟩ = ⟨c∗er⟩)
. (3.5.49)

We take the difference between the two intervals to obtain the cumulative refractory period ∆T =
T∞ − T0. In Fig. 3.33A1 and B1, we compare the theoretical prediction according to Eq. 3.5.48 and
Eq. 3.5.49 (dashed red line) with the cumulative refractory period obtained by fitting Eq. 3.5.47 to
the sequence of mean intervals {⟨Ti⟩} obtained from stochastic simulations of the two-component
model (blue circles). As for the stationary mean interval, we observe a general increase in ∆T with
respect to both τer and ε. Moreover, we find good agreement between the simulation results and
the theory for all values of τer and for small values of ε. This is for the same reason we have dis-
cussed in the context of the stationary mean interval. Briefly, the mean-adaptation approximation
cer(t) ≈ ⟨c∗er⟩ fails for large values of ε.

The number of transient intervals ntr can be estimated based on the approximation of the
effective timescale τeff ≈ τ2 derived in Sec. 3.5.3. To this end, we consider the simple estimate

ntr ≈ τeff/T0. (3.5.50)

Recall that τeff is the length of the transients measured in units of time. The ratio τeff/T0 is a
dimensionless number that indicates how many intervals T0 the transients would span. Thus,
Eq. 3.5.50 can be considered as an upper bound on the number of transient intervals since T0 ≤ Ti
(provided that the timescale τeff is correctly described). In Fig. 3.33A2 and B2, we compare the
number of transient intervals determined by fitting Eq. 3.5.47 to the sequence of mean intervals
obtained from stochastic simulations of the two-component model (blue/green circles), and the
number of transient intervals calculated according to Eq. 3.5.50 (red lines), where τeff is estimated
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FIGURE 3.34: Stationary over transient interspike interval statistics. Panels A1 and A2 show the
SCC ρ1 as a function ∆T and ntr when the parameter τer is varied. The color code indicates the
value of τer. Panels B1 and B2 show the SCC ρ1 as a function ∆T and ntr when the parameter
ε is varied. The gray area indicates the region where ε is small and ρ1 increases monotonically
with ε. In the white area, ε is larger, and ρ1 decreases monotonically with ε. Parameters: τ = 5s,

p = 0.015; and A: τer = 300s, B: ε = 0.03.

according to Eq. 3.5.44 and T0 according to Eq. 3.5.48. We find excellent agreement in the mean-
driven regime (blue circles) and a general overestimation by the theory in the excitable regime
(green circles). That the number of transient intervals in the excitation regime is poorly described
by the theory is not surprising because already the estimation of the effective timescale by τ2 is
based on the assumption that the firing rate can be linearized around ⟨c∗er⟩. As shown in Fig. 3.26B,
this is not the case in the excitable regime. It turns out that the number of transient intervals
depends only moderately on τer. Even for large values of this timescale, such as τer ≈ 103, one
observes only a small number of transient intervals, ntr ≈ 3 in the mean-driven regime (blue
circles) and ntr ≈ 1 in the excitable regime (green circles). Increasing the number of transient
intervals from two to three in the mean-driven regime requires a tenfold increase in the timescale
τer (note the logarithmic scale). Surprisingly, more transient intervals are observed when the
parameter ε is decreased. This suggests that a large number of transient intervals is due to a weak
depletion of the ER with each spike rather than due to a slow replenishment.

We also examine how the serial correlation coefficient ρ1 relates to the experimentally more
easily accessible number of transient interval ntr and cumulative refractory period ∆T when the
three statistics are varied as a function of ε and τer. It turns out that the dependence of the three
statistics on τer shown in Fig. 3.34A1 and A2 is rather simple. Increasing τer leads to an increase in
all three statistics, although the SCC ρ1 and the number of transient intervals ntr seem to saturate
for large values of τer. As shown in Fig. 3.34B1 and B2, the case is more complicated when the
parameter ε is varied. The nonmonotonic dependence of ρ1 on ε leads to a nonmonotonic depen-
dence of ρ1 on both ntr and ∆T. It is thus reasonable to distinguish two regions, one in which
the intervals are more strongly correlated the larger ε (gray area) and one in which the intervals
are less strongly correlated the larger ε (white area). If we restrict ourselves to small values of ε
(gray area), i.e., a case where the ER is only slightly depleted with each spike, we can conclude
that, regardless of whether ε or τer is changed, the ISIs are the more strongly correlated the larger
the cumulative refractory period |ρ1| ∝ ∆T. In contrast, the relation between the SCC ρ1 and the
number of transient intervals ntr is ambiguous and depends on whether τer or ε is varied. Con-
versely, if we consider large values of ε (white area), where the ER is considerably depleted with
each spike, we find that the ISIs are more strongly correlated the larger the number of transient
intervals, |ρ1| ∝ ntr. In this case, the relation between the SCC ρ1 and the cumulative refractory
period ∆T becomes ambiguous. We expect the first case to be more relevant since experimental
ISI sequences often show long transients associated with a small net loss ε.

Finally, in Fig. 3.35, we ask what conclusions can be drawn about the adaptation parameters
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FIGURE 3.35: Summary of the behavior of the slow store Ca2+ dynamics. Panels A and B show
the relations between the transient statistics ntr, ∆T and the system parameters ε, τer as well as
the SCC ρ1 in the mean-driven (A) and excitable (B) regime. White regions in the plots show the
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slow replenishment (large τer). Large cumulative refractory periods can be realized by a large
net loss or slow replenishment. Interval correlations are maximized for an intermediate number
of transient intervals and intermediate cumulative refractory periods. Parameters Mean-driven:

τ = 5s, p = 0.015; Excitable τ = 1s, p = 0.06.

τer and ε and the SCC ρ1 when the statistics of the transient are known. These conclusions also de-
pend on the two model parameters τ and p, which determine whether the model is mean-driven
or excitable. Regardless of the firing regime, however, the results tend to be similar. Typically,
long transients coincide with a small net loss of Ca2+ (small ε) and a slow replenishment process
(large τer). Substantial adaptation of the ISI requires a substantial net loss unless the replenish-
ment process is extremely slow. The SCC ρ1 increases with ∆T except for very short transients
(Fig. 3.35A3 and B3). The dependence of ρ1 on ntr is nonmonotonic. This was previously observed
and attributed to the nonlinear dependence of the SCC on ε but is shown here over a wider range
of transient statistics and in both firing regimes.

3.5.5 Stimulated HEK cells

Here, we ask to what extent the nonrenewal model can reproduce experimentally observed ISI
sequences from stimulated HEK cells. In contrast to Sec. 3.4.4, where we tested the ability of
the renewal model to reproduce stationary ISI statistics, we are now also interested in transient
statistics. For this reason, we do not truncate the transients nor average the interval sequences
of different cells as we did previously but consider the entire interval sequence of each cell in-
dividually. To fit our model to the data, we first determine four statistics of the experimental
ISI sequence, namely the initial interval THEK

0 , the stationary interval THEK
∞ , the stationary CV

CV(THEK), and the number of transient intervals nHEK
tr . Based on these four statistics, the four

model parameters p, τ, ε, and τer are determined so that the initial mean interval ⟨T0⟩, the sta-
tionary mean interval ⟨T⟩, the stationary CV CV(T), and the number of transient intervals ntr
obtained from the stochastic simulation of the model agree within a certain tolerance with the
corresponding statistics from the experimental sequences. As in Sec. 3.4.4, we consider only those
sequences that become stationary and exclude a small number of traces where the first intervals
are not clearly distinguishable. For 24 out of 36 sequences, both conditions are met.

To determine the four statistics, we proceed in two steps. In a first step we fit Eq. 3.5.47 to
the experimental ISI sequence {Ti} in order to determine THEK

0 , THEK
∞ , and nHEK

tr . To this end, we
use the curve_fit function of the SciPy module [259] with the additional condition that all fitting
parameters are positive. In a second step, we truncate the first 2ntr (rounded up) intervals from
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FIGURE 3.36: Transient interspike interval statistics from stimulated HEK cells. Panels A1 and
A2 show two ISI sequences from stimulated HEK cells (red circles) with the corresponding
least-square fit of Eq. 3.5.2 (black lines). The resulting number of transient intervals ntr and the
cumulative refractory period ∆T are given in the legend. Panels B1 and B2 show the frequency
with which certain values of ntr and ∆T are observed. The solid vertical lines indicate the mean,
the dotted vertical lines indicate the mean plus or minus the standard deviation. Panels C1 and
C2 show the frequency at which the resulting model parameter τer and ε are observed. Again

the lines indicate the mean and the standard deviation.

the ISI sequence and calculate CV(THEK) from the remaining stationary sequence. We emphasize
again that in contrast to Sec. 3.5.4 where sequences of mean intervals {⟨Ti⟩} have been considered,
here single realizations {Ti} are used. In Fig. 3.36A1 and A2, the fit procedure is illustrated by
means of two experimental ISI sequences (red circles). The black lines show the least-square fit,
while the gray area indicates the intervals that are truncated in order to determine the CV. As
can be seen from these two figures, the cells are subject to considerable cell-to-cell variability. For
instance, the cell in Fig. 3.36A1 exhibits only a short transient but a large cumulative refractory
period, whereas the opposite is true for the cell shown in Fig. 3.36A2. In Fig. 3.36B1 and B2,
we show the frequency with which certain values for the two transient statistics ntr and ∆T are
observed. The solid black line indicates the mean

µ(x) =
1
n

n

∑
i=1

xi, (3.5.51)

whereas the dotted lines indicated the standard deviation

σ(x) =

√︄
1

n − 1

n

∑
i=1

(xi − µ(x))2. (3.5.52)

In both cases, x is a dummy variable. We find that both the number of transient intervals ntr with
a mean of µ(ntr) = 3.5 and a variance of σ(ntr) = 1.9, as well as the cumulative refractory period
∆T with µ(∆T) = 200 s and σ(∆T) = 80 s vary significantly across different cells.

To determine the four parameters τ, p, ε, and τer we require that the model reproduce the
four statistics. To this end, we use again the Nelder–Mead method to minimize the loss function
f (x1, . . . , x4) = ∑i |xi − yi|/xi, where xi ∈ [THEK

0 , THEK
∞ , CV(THEK), nHEK

tr ] are the target statistics
obtained from the fit procedure described above and yi ∈ [⟨T0⟩, ⟨T⟩, CV(T), ntr] are the output
statistics of the model.

A problem of the fit procedure arises from the fact that the output statistics of the model are
themselves stochastic quantities when determined from a finite ISI sequence. This can give rise
to serious problems for the Nelder-Mead method since the gradient of the cost function may not
be determined correctly. In principle, this problem can be solved by longer simulation times, but
this is often not feasible due to time constraints. Therefore, we use the numerically more efficient
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FIGURE 3.37: Parameters of the renewal model. Panel A shows that the two parameters τ and
p obtained from the fit procedure (red circles) are highly correlated. This is because the model
operates close to the bifurcation line (solid black line) given by Eq. 3.4.37 but still in the mean-
driven regime. Panel B shows the "effective" permeability p⟨c∗er⟩. The model would still operate

in the mean-driven regime even when the stationary mean value ⟨c∗er⟩ is considered.

Langevin approximation to compute the output statistics. Unfortunately, this is still not sufficient
to solve the minimization problem in a reasonable time. Therefore, we split the four-parameter
minimization problem into two two-parameter minimization problems. We determined the pa-
rameters of the renewal model p and τ in the first step and the remaining two parameters of the
nonrenewal model ε and τer in the second step. We recall that the first ISI of the nonrenewal
model is statistically equivalent to the intervals of the renewal model. Therefore, to determine the
parameters p and τ, we require that the mean ISI of the renewal model matches the fit parameter
THEK

0 . This does not suffice to determine two model parameters uniquely. In addition, we require
that the CV of the renewal model reproduces the experimental CV of the stationary intervals. We
note that this introduces a systematic error in the estimation of the model parameters because we
are essentially assuming that the CV is unaffected by the depletion of the ER. As discussed in
Sec. 3.5.1, this is not the case. However, it turns out that the change in variability due to the adap-
tation results in an absolute error in the CV that is usually well below 0.1 (with two exceptions
where the error is just above 0.1). The resulting parameter pairs p and τ are shown in Fig. 3.37A.
The solid black line indicates the bifurcation line separating the excitable from the mean-driven
regime. It can be seen that, in order to reproduce the statistics of the stimulated HEK cells, the
model always operates in the mean-driven regime but close to the bifurcation line. The proxim-
ity to the bifurcation leads to a strong correlation of the two parameters p and τ. Exactly on the
bifurcation pbif(τ) = a/τ with a = (cT − c∗0)/(pKµx(cT)) holds and also near the bifurcation the
relation of the two parameters can be well described by the function p = a/τ + b. The additional
parameter b reflects that for large values of τ, the parameter p still has to take a finite value for the
model to generate physiologically plausible interspike intervals. That the model operates in the
mean-driven regime would still be the case when instead of p, the effective permeability p⟨c∗er⟩ is
considered, as shown in Fig. 3.37B.

To determine the remaining two parameters of the nonrenewal model, we require that the
stationary interval ⟨T⟩ agrees with THEK

∞ and that the number of transient intervals ntr, which
we obtain as a fit parameter from the numerical data, is equal to the number of transient intervals
nHEK

tr , which we obtain as a fit parameter from the experimental data. The distributions of the two
parameters τer and ε are shown in Fig. 3.36C1 and C2 and reveal that the timescale τer with a mean
of µ(τer) = 800s and a variance of σ(τer) = 500s is rather large, while the depletion amplitude ε
with µ(ε) = 0.07 and σ(ε) = 0.04 is small. That the parameter ε is rather small has already been
suspected due to the often large number of transient intervals observed.

Using the model parameters, we simulate long sequences of ISIs to determine the cumulative
refractory period ∆T, the number of transient intervals ntr, and the SCC ρ1. In Fig. 3.38A1 and A2
we show the resulting correlation coefficient as a function of ∆T and ntr, similarly to what was
done in Fig. 3.34. We note that the distribution of correlation coefficients is not a numerical error
but reflects the variability of the model parameters. First of all, we observe stronger interval cor-
relations ρ1 for larger cumulative refractory periods ∆T (Pearson correlation coefficient ρ = −0.6)
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FIGURE 3.38: Stationary over transient interspike interval statistics. Panels A1 and A2 show the
SCC ρ1 as functions of the cumulative refractory period ∆T and number of transient intervals
ntr, obtained from stochastic simulations. Parameters have been chosen to reproduce experi-
mental ISI sequences as described in the main text. The red line shows a linear regression. The
corresponding Pearson correlation coefficient is given in the legend. Panels B1 and B2 show the
same statistics as A1 and A2, except that the SCC ρHEK

1 was determined from the stationary part
of the experimental ISI sequence. The error bars correspond to the standard deviation σ(ρ1),
determined according to Eq. 3.5.54. Panels C1 and C2 show both the SCC ρ1 and ρHEK

1 . The
solid lines show the linear regressions. The gray area highlights the region ρ1 < −1/2 that is

inaccessible if the SCCs ρk decay monotonically with k.

and weaker interval correlations ρ1 for larger numbers of transient intervals ntr (ρ = 0.4). Based
on our discussion of Fig. 3.34, the fact that adjacent intervals are the more anticorrelated the larger
the cumulative refractory period (|ρ1| ∝ ∆T) is to be expected. This is so because, for small values
of ε, any increase in ∆T leads to a decrease in ρ1. The relation is less clear for the correlation coef-
ficient ρ1 and the number of transient intervals ntr. If the number of transient intervals increases
because τer is varied, we expect more pronounced interval correlations ρ1 for larger numbers of
transient intervals ntr (Fig. 3.34A2). If the number of transient intervals increases because ε is var-
ied (for ε small), we expect less pronounced interval correlations ρ1 for larger numbers of transient
intervals ntr (gray area in Fig. 3.34B2). Which of the two relations will dominate? We have already
pointed out that for large values of τer, the number of transient intervals hardly changes with τer.
In contrast, the number of transient intervals is much more sensitive to a change in ε. Since τer
is indeed large and the relative standard deviation for both parameters τer and ε is similar (see
Fig. 3.36B1 and B2), we expect the dependence on ε to reflects the relation between ρ1 and ntr. This
is likely why we observe in Fig. 3.38A2 that adjacent intervals become less strongly correlated as
the number of transient intervals increases. In Fig. 3.38B1 and B2, we show ρHEK

1 as a function
of ∆T and ntr, where the SCC has been determined from the stationary part of the experimental
ISI sequences. We find that the general trend is also confirmed here, although the SCC is often
positive, which our model cannot explain.

Before we discuss why this might be the case, it should be noted that the sequences of sta-
tionary intervals over which the sample SCC has been determined are often relatively short (17
intervals on average). As a consequence, the estimation of the SCC is rather imprecise, and the
error is large.

According to Cox and Lewis [46] the variance of the SCC ρ̃k estimate from a finite sequence of
n intervals can be approximated in leading order of 1/n by

σ2(ρ̃k) ≈
1

n − k

(︄
1 + 2

∞

∑
k=1

ρ2
k

)︄
. (3.5.53)
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Assuming for simplicity that only the first correlation coefficient is finite and every other coeffi-
cient vanishes (ρk = ρ1δ1,k), this allows us to estimate the error of the SCC ρ̃k as follows

σ(ρ̃1) ≈
√︃

1
n − 1

(1 + 2ρ2
1). (3.5.54)

In addition to the difficulty of accurately determining the SCC from a relatively short sequence of
intervals, there are two other possible explanations for the observed positive correlations between
adjacent intervals. First, even slight nonstationarities may cause several consecutive intervals to
be systematically above or below the mean. Such trends lead to positive correlations. Indeed,
we have determined the SCC over the last n − 2nHEK

tr , which are only approximately stationary.
This can be seen in Fig. 3.36A1 and A2 by the fact that even after 2nHEK

tr intervals, the black lines
still systematically deviate from the stationary mean interval (upper dotted line). Second, the
positive correlations could be due to processes not described by our model. Two possibilities
come to mind. First, depending on the number of Orai1 ion channels responsible for SOCE, the
slow replenishment of the ER could also be noisy. This could result in an additional slow noise
leading to positive ISI correlations (cf. Chapter 2 and [96]). Second, the mitochondria are also
known to store Ca2+ in addition to the ER. Although the release of Ca2+ from the ER via IP3
receptors is the most important process for triggering Ca2+ spikes, a slow release of Ca2+ from the
mitochondria could affect the intervals over multiple spike times or result in a small trend in the
data. The distribution of the correlation coefficients in Fig. 3.36C1 and C2 might suggest this. In
particular, Fig. 3.36C1 clearly illustrates that the experimental correlation coefficients (red circle)
fall into two well-separated groups, one with negative correlations that are well reproduced by
our model (blue circles) and a second with positive correlations that our model cannot explain.
This could suggest that, at least for the negative interval correlations, ER depletion is the relevant
process. This hypothesis is supported by the fact that the lower bound ρ1 > −1/2 predicted by
us is not violated. Conversely, the process leading to positive correlations is not captured by our
model.

3.6 Summary

This chapter has been concerned with the modeling of Ca2+ spikes and the analytical calcula-
tion of their statistics. To this end, we have developed a phenomenological but biophysically
grounded model that describes the formation of Ca2+ spikes and accounts for randomness and
adaptation in the spike generation. The model has two components: The first describes the num-
ber of open IP3R channels in a cluster using a cyclic Markov chain; the second uses an integrate-
and-fire approach to describe the dynamics of the cytosolic and the ER Ca2+ concentration. We
have shown that the description of individual IP3R channels using Markov chains has a certain
tradition. In contrast, the description of Ca2+ spikes using the integrate-and-fire framework rep-
resents a new approach. In the past, Ca2+ spikes were often conceptualized as oscillations and
considered from a dynamical systems point of view [179, 180, 182]. However, the fact that cell-
wide Ca2+ spikes are rather stereotyped and reliably initiated by CICR suggests that we are deal-
ing with an excitable system that can be described similarly to neural spike generation. Thus, it is
reasonable to focus on Ca2+ spiking as a stochastic point process [65].

Regarding the first component of our model, which describes the activity of clusters of IP3Rs,
deriving such models from single-channel models is difficult because the channels are strongly
coupled by local positive feedback. Since the resulting waiting time distributions for closed and
open cluster states are often relatively simple, we took a different approach and built our model
on various experimentally available puff statistics. Specifically, the following observations have
been used to build the model:

1. Puffs occur randomly [193].

2. The opening of any channel can trigger a puff, i.e., the opening rate is a linear function of
the number of channels in a cluster [197].

3. The number of responding channels in a cluster is uniformly distributed over the total num-
ber of channels in a cluster [225].
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4. Dwell times in a cluster state with a given number of open channels are independent of this
number [201].

5. The intervals between the puffs exhibit a refractory period [206].

In addition, we have assumed that the opening rate of the cluster depends on Ca2+. Unfortunately,
little is known about the exact nature of this dependence. However, since we have assumed that
the opening of a single channel triggers the opening of the cluster, it is reasonable to assume that
the cluster and channel opening rates depend similarly on Ca2+. For the resulting cluster model,
we were able to analytically calculate statistics of the puff strength and the interpuff intervals,
assuming a static cytosolic Ca2+ concentration. This assumption is often fulfilled because the
state of a cluster changes rapidly compared to the cytosolic Ca2+ concentration. Interestingly,
it turns out that because the number of responding channels is uniformly distributed, the puff
strength is highly stochastic and closely follows an exponential distribution. This may motivate
the formulation of even simpler cluster models with only one open state. Most importantly, we
have shown that the mean and noise intensity can be calculated from the transition rate matrix of
the cluster model. While the calculation of the mean has been known, this was not the case for
the noise intensity. Furthermore, we have shown that the method is generally applicable and not
limited to our specific cluster model. This could also find application in models of cardiomyocytes
and their Ca2+ release units.

The second component of our model describes the dynamics of the cytosolic and the ER Ca2+

concentrations. To this end, we have adopted the famous integrate-and-fire framework from
computational neuroscience and modeled the cytosolic Ca2+ concentration only up to a certain
threshold, at which point a spike is fired, and the cytosolic Ca2+ concentration is reset. We have
assumed that the IP3-independent currents below the threshold can be summarized into a linear
leak current, whereas the IP3-dependent puff current resulting from the cluster activity is Ca2+-
dependent and mediates the positive feedback (CICR). Moreover, we have shown that the puff
current is stochastic, resulting in a cluster noise acting on the cytosolic Ca2+ concentration that is
very similar to the channel noise acting on the membrane potential of neurons. For the dynamics
of the ER Ca2+ concentration, we have assumed that some of the Ca2+ released into the cytosol
during the spike is lost to the extracellular medium and that the ER is slowly replenished between
spikes by SOCE. The resulting dynamics are very similar to those of spike-triggered adaptation.

We have seen that the two-component model is numerically expensive and difficult to treat
analytically because the puff current is a complicated stochastic process that is neither Gaussian
nor uncorrelated. However, the characteristic timescale of the puff current, or more precisely, the
cluster activity, is usually small compared to the characteristic timescale of the leak current. This
allowed us to derive a Langevin approximation of the two-component model where the number
of open channels in a cluster is replaced by a Gaussian white noise that is fully determined by
the mean and noise intensity of a cluster. Stochastic simulations of the Langevin approximation
are orders of magnitude faster than simulations of the two-component model. Moreover, the
Langevin approximation allows us to distinguish the mean-driven from the excitable regime and
to formulate the corresponding Fokker-Planck equation, i.e., to use the powerful arsenal of the
theory of Markov processes [59, 60].

We considered the two-component model and the corresponding Langevin approximation in
two variants. The first was the renewal variant, where we assumed that the Ca2+ concentration in
the ER is fixed. This corresponds to a situation where the ER is either weakly depleted or rapidly
replenished. In this case, the model is one-dimensional, and the ISIs are statistically independent
and identically distributed. Put differently, spiking is a renewal process. Solving the correspond-
ing one-dimensional Fokker-Planck equation is a standard problem in the theory of stochastic
processes and allowed us to derive expressions for the mean and the CV of the ISI [57, 248]. In
addition to validating our simulation results, the Langevin approximation allows us to explore
the effect of a fast Ca2+ buffer on spiking statistics. Contrary to popular belief, we have shown
that a fast Ca2+ buffer is equivalent to a rescaling of time only in the deterministic limit. When the
noise is taken into account, the statistics of the ISI depend on the fast Ca2+ buffer in a more com-
plicated way. In short, the fast buffer reduces the noise intensity more strongly than the mean. We
have shown that this can be well understood using the scaling properties of white noise and has
different effects on the ISI statistics depending on whether the model operates in the mean-driven
or excitable regime and how close it is to the bifurcation between these two regimes (coherence
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resonance). Finally, we demonstrated that the renewal model can quantitatively reproduce spik-
ing statistics of stimulated HEK cells, ranging from ISI density to spike train power spectrum to
spike-count Fano factors.

The second variant of the model is the nonrenewal version, which accounts for the cumulative
ER depletion and is very similar to an adaptive integrate-and-fire model. Since spike generation
is largely driven by the passive release of Ca2+ from the ER into the cytosol, a decrease in ER Ca2+

concentration affects spiking statistics. Most obviously, we have shown that ER depletion leads
to a slowing of the spike generation. In addition, this adaptation reduces the difference in the ISI
variability between the mean and excitable regimes, thereby increasing the robustness of the CV.
However, ER depletion not only affects first-order stationary statistics but also causes intervals
to be neither independent in stationary state nor identically distributed during the transient. We
have described correlations between intervals by the SCC ρk. In terms of the previous chapter,
our model corresponds to a Type 1 neuron model with a weak adaptation. This implies that, at
least in the weakly perturbed mean-driven regime, the SCC decreases monotonically with lag k,
which in turn implies a lower bound on the first correlation coefficient ρ1 > −1/2. We have
shown that this lower bound is obeyed not only in the mean-driven but also in the excitable
regime. To characterize the transients, we have fitted the ISI sequences with a simple exponential
function T∞ − (T∞ − T0) exp(−i/ntr), which allows to determine the cumulative refractory period
∆T = T∞ − T0 and the number of transient intervals ntr. We have provided approximations for
both of these statistics. Interestingly, we have shown that the number of transient intervals, which
characterizes the length of the transient, is not so much affected by the timescale at which the ER
is replenished but by the amplitude at which the ER is depleted. In addition, we find that when
ER depletion with each spike is not too strong (small ε), larger cumulative refractory periods
are associated with stronger interval correlations and smaller number of transient intervals are
associated with stronger interval correlations. This suggests that long transients indicate weak
ER depletion with each spike. (However, the cumulative depletion can still be strong.)

Finally, we used the nonrenewal model to reproduce the transient statistics of ISI sequence
from stimulated HEK cells. The resulting model parameters suggest that ER depletion with each
spike is indeed weak. We note that this does not necessarily contradict the substantial depletion of
the ER required to activate STIM1 and SOCE. This is so because the licensed IP3Rs are well placed
to locally deplete the stores closest to the ER-PM junctions where SOCE occurs [260]. We also de-
termined the correlation coefficient of the experimental ISI sequence. It was found that the lower
bound ρ1 > −1/2 is always obeyed and that the trends with respect to the cumulative refractory
period and the number of transient intervals predicted by the model are confirmed. However, it
should be noted that we also frequently observe positive correlations between adjacent intervals
in the experimental data. This cannot be explained by our model. Whether these positive correla-
tions are due to an imprecise estimation of the correlation coefficient, a slow process that we have
not accounted for, or weak nonstationarity, is not clear.
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Chapter 4

Discussion and outlook

This thesis was concerned with the nonrenewal generation of spikes. We have studied two bio-
physical signaling systems. First, neural signaling, where the spikes are short electrical pulses,
and second, Ca2+ signaling, where the spikes are chemical pulses. In both cases, the generation
of the spike is a nonrenewal stochastic process. This not only implies a rich statistical structure of
the spike train, but can also improve the transmission of a time-dependent signal or the perfor-
mance in a signal detection task [70–73]. It is therefore an important theoretical task to understand
spiking models that generate nonrenewable spike trains.

In the case of neurons, spiking is nonrenewal due to various slow processes. One of the most
essential and ubiquitous processes often associated with negatively correlated intervals are self-
inhibitory adaptation currents, which are responsible for the phenomenon of spike-frequency
adaptation [18]. Positive correlations are often associated with a positively correlated input noise,
which can result from slow channel gating, synaptic filtering, or slow network processes [85–91].
It is interesting to ask how these two processes, adaptation and correlated noise, interact with
the dynamics of the membrane potential to shape the correlations between ISIs. So far, these two
processes have only been considered separately and in a number of special cases, assuming a
slow noise [66, 174], a weak noise [74, 92, 95, 115, 175], a weak adaptation [97, 176], or a discrete
Markov-state description [96, 261]. The most realistic case, in which ISI correlations are evoked
by a combination of adaptation and correlated noise, has not yet been theoretically understood.

In Chap. 2 of this thesis, we have extended the weak-noise theory developed by Schwalger
and Lindner [74] to cover precisely this case. The theory is based on the phase reduction of a
deterministic oscillator. Consequently, the system must be in the mean-driven firing regime, i.e.,
it must emit spikes even in the absence of fluctuations. In this case, perturbations of the higher di-
mensional system from its limit cycle can be translated into perturbations of the one-dimensional
phase variable via the phase response curve and finally into shifts of the spike time. This approach
has been very fruitful in computational neuroscience [136, 145, 262]. Here, it allowed the analyt-
ical calculation of the variance ⟨δT2⟩, the covariance ⟨δTiδTi+k⟩, and the correlation coefficients
ρk of the ISIs in leading order of the perturbation. It turns out that the SCC ρk for an adaptive
integrate-and-fire model driven by correlated noise can be expressed as the weighted sum of the
two SCC that would result if the correlation-inducing processes were considered separately. We
have also shown that how adaptation and correlated noise affect the interval correlations de-
pends crucially on the shape of the PRC, which in turn is closely related to i) the neuron type,
determined by the spike-onset bifurcation, and ii) the neuron class, determined by the shape of
the F-I curve [99, 145]. In particular, the behavior can be counterintuitive for neuron models with
partially negative PRC because adaptation currents can induce positive interval correlations, and
positively correlated noise can induce negative interval correlations. Furthermore, two biophys-
ically relevant special cases were studied, one where a finite population of adaptation channels
causes both adaptation and correlated noise and another where the noise resembles that of a re-
current network in the asynchronous irregular state. Finally, although developed for IF models,
we have shown that the theory also applies to the conductivity-based Traub-Miles model with an
M-type current and correlated noise. In all these cases, the SCC can be predicted quantitatively,
demonstrating the broad applicability of the theory.

We have studied the spontaneous activity of neurons under the influence of Gaussian noise.
Two extensions of this case come to mind. First, as explained in the introduction, the assumption
that the fluctuations are Gaussian distributed relies on the superposition of many small random
events in a short interval - for example, due to the random opening and closing of a large number
of ion channels or synaptic bombardment in the cortex. However, the effect of individual spikes
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on the postsynaptic voltage may not always be small. Some postsynaptic potentials can be as
large as 1 mV to 10 mV [263–265] with distances from resting to threshold voltage between 10 mV
to 20 mV in pyramidal cells [42, 264]. Thus, a small number of arriving spikes can be sufficient
to elicit a response. In addition, at higher levels of processing, as the neural response becomes
more selective, the spike trains become increasingly sparse [266, 267]. In both cases, the input
spike trains are poorly represented by a Gaussian random process but can be more accurately
described by shot noise. Although integrate-and-fire models driven by shot noise have been con-
sidered in the past to calculate first-order statistics such as the firing rate [114], response charac-
teristics such as the susceptibility [268, 269], and even interval correlations in a neural population
[270], renewal models are often considered, or the shot noise is assumed to be uncorrelated. The
calculation of higher-order statistics for more complicated nonrenewal models driven by corre-
lated shot noise may be feasible through a phase description of the spike generator. Second, while
the spontaneous activity is certainly important, so are the response properties of neuron models
driven by time-dependent signals. We have repeatedly pointed out that negative interval corre-
lations can improve the signal-to-noise ratio for slow periodic signals by reducing the power of
the spontaneous activity at low frequencies; furthermore, it has been shown that negative ISI cor-
relations can improve the transmission of a broadband signal [70, 73, 271]. Conversely, positive
interval correlations can also be beneficial if the increased power at a low frequency is compen-
sated by reduced power at another frequency; a process known as noise shaping [272–274]. The
computation of statistical measures related to the signal transmission, such as the cross-spectrum
or coherence over a broader frequency range, or even a frequency-resolved mutual information
[275], is also of interest. It has been shown that the cross-spectrum and coherence function depend
crucially on whether an integrator or a resonator model is considered [276, 277]. Since this differ-
ence is well reflected in the PRC, it may turn out that such measures are analytically accessible in
the framework presented here, even for more complicated models equipped with an adaptation
mechanism or subject to correlated noise.

The limiting factor, however, is that the method relies on the phase reduction of a deterministic
oscillator. For this case, the theory allows the calculation of second-order statistics, which are ex-
tremely difficult to determine otherwise. The generalization of the theory to stochastic oscillators
that do not have a periodic solution in the deterministic limit is, of course, interesting. In the
context of neuron models, this corresponds to a generalization of the theory to the excitable firing
regime. The first step in this direction would be to generalize the notion of a phase to stochastic
oscillators. Significant progress has been made in this regard recently [278–280]. Unfortunately,
these theories are often based on the formulation of the Kolmogorov-backward operator, which
has not yet been formulated for IF models with a reset rule. However, this difficulty does not in
principle prevent the definition of a phase for stochastic IF models, as we have shown numer-
ically for the adaptive leaky integrate-and-fire model [3]. It turns out that the stochastic (mean
return-time) phase has interesting properties. For example, if one generates event times when-
ever a certain isochrone (instead of the firing threshold) is crossed, the intervals between these
times do not show linear correlations. Despite the difficulties of determining the stochastic phase
of an IF model, the theory presented here, the possible applications outline above, and the recent
progress in reducing stochastic oscillators should encourage further research in this direction.

In Chap. 3, we have dealt with the nonrenewal spike generation in cells that use Ca2+ as a
second messenger. We have seen that although neural and Ca2+ spikes are observed in differ-
ent physical quantities and on different timescales, both signaling systems share some important
principles concerning the generation of spikes. First, a spike is reliably initiated by a strong posi-
tive feedback mechanism as soon as a certain threshold is exceeded. Second, the generation of the
spike is a stochastic process [33, 34, 64]. Third, the sequence of ISIs in response to the onset of a
constant stimulus often shows an initial transient during which the (mean) ISIs gradually increase
to a stationary value. In the case of Ca2+ signaling, the stochasticity is due to the random release
of Ca2+ from the ER through IP3Rs [184, 201, 206, 281], and the transient is thought to result from
the depletion of the ER [30–32]. However, the literature on nonrenewable Ca2+ spike generation
is thin. This may also be because mathematical models describing the generation of Ca2+ spikes
often follow the spirit of conductance-based models and formulate high-dimensional and nonlin-
ear current-balance equations [179, 180, 183, 213–215, 229]. Reduced models that follow the idea
of the IF framework have not yet been developed. This is surprising given the many similarities
in spike generation and the great success of the IF model in computational neuroscience. Here,
we have formulated such a phenomenological but biophysically grounded model of Ca2+ spiking
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that accounts for the stochastic release of Ca2+ by the puffs and follows the idea that the transient
is due to the cumulative depletion of the ER.

We have shown that the stochastic activity of the IP3R channels described by a Markov chain
generates a stochastic Ca2+ current that is neither uncorrelated nor Gaussian distributed. For this
reason, the computation of ISI statistics is difficult. Experimentally, it is known that the timescale
of the ISI is not reflected in the kinetics of the channels [206]. In particular, the ion channel activ-
ity is fast compared to the spike dynamics. This motivates a diffusion approximation in which
the stochastic Ca2+ current is replaced by Gaussian white noise that is fully determined by the
Ca2+-dependent mean and noise intensity. We have developed a method to calculate both these
statistics using the transition rate matrix that defines the Markov chain. While the calculation of
the mean was known, the calculation of the noise intensity was not. This approximation allowed
the formulation of a Langevin equation, the corresponding FPE, and the calculation of spiking
statistics.

We then considered the model in two scenarios, one in which the Ca2+ concentration in the
ER remains constant and one in which the ER is partially depleted with each spike. In the first
case, spike formation is a renewal process. In this case, statistics such as the moments of the ISI
density can be calculated analytically using the FPE [57, 248]. Although this model variant cannot
account for the transient or the correlations between intervals, the power spectrum (including the
low-frequency limit) of a normalized and concatenated spike sequence of different HEK cells can
be well reproduced. In the second case, when the depletion of the ER is taken into account, spik-
ing is a nonrenewal process, and the model can reproduce both transient and stationary statistics
of individual HEK cells. For the nonrenewal model, we have shown that in agreement with other
studies [187, 250, 282–284], the CV of the stationary ISIs is, to a large extent, determined by the
recovery from the negative feedback after a spike and is provided with a certain robustness to
a variation of other cell parameters. Furthermore, we find that ER depletion induces negative
correlations between adjacent intervals ρ1 that do not fall below −1/2. This is exactly what is
expected according to the considerations in Chap. 2, because our model corresponds to a Type
1 neuron model with weak adaptation. Interestingly, the lower bound ρ1 > −1/2 is also not
violated in the excitable firing regime, possibly indicating that the results of the second chapter
can be generalized. Beyond stationary statistics, we have described the ISI sequence during the
transient by the exponential function T∞ − (T∞ − T0) exp(−i/ntr) and derived approximations
for the cumulative refractory period ∆T = T∞ − T0 and the number of transient intervals ntr.
We have also examined how the transient statistics are related to the adaptation parameters. It
turned out that a large number of transient intervals tends to coincide with a weak depletion of
the ER per spike. Experimental ISI sequences tend to have relatively long transients. We conclude
that the ER is significantly depleted only over many spikes. This restricts the relevant parameter
space and allows to draw conclusions about the relationship between ∆T and ρ1 as well as ntr and
ρ1. Specifically, we observe that for our model, larger cumulative refractory periods are associ-
ated with stronger interval correlations, and larger numbers of transient intervals are associated
with weaker interval correlations. These trends are confirmed in the experimental data. How-
ever, positive correlations are also often observed. Whether this is due to poor statistics, weak
nonstationarities in the data, or some slow process that we have not accounted for is not clear.

The analytical treatment of our model is based on a diffusion approximation of the Ca2+ re-
leased from the ER. Such approximations go back to Einstein [285] and Smoluchowski [286, 287]
and have been used in the past to study the generation of Ca2+ spikes [288]. In our model, the
release of Ca2+ is controlled by the stochastic activity of IP3R clusters, which are described by a
Markov chain. The transition rates of the Markov model were chosen to depend on the intra-
cellular Ca2+ concentration but not explicitly on time. Thus, when [Ca2+]i is fixed, the transitions
between the discrete cluster states is a homogeneous Poisson process. In this case, we have shown
how the noise intensity can be determined using an algebraic equation. Because the generation of
Ca2+ spikes can also be described by inhomogeneous Poisson processes [284], the question arises
whether the theory can be extended to apply to Markov models with explicitly time-dependent
rates. In its current form, this is not the case.

The model proposed here is able to reproduce the spiking statistics of stimulated HEK cells.
These cells are known to generate rather regular spike times with coefficients of variation of the
interspike intervals on the order of 0.2. This variability is consistent with the notion that stimu-
lated HEK cells are mean-driven oscillators subject to a weak noise. However, as we have shown,
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slow adaptation can lead to highly regular spiking even in the excitable regime. We cannot ex-
clude that this is also the case for HEK cells. Indeed, CVs observed in other cell lines ranges from
0.17 in heptocytes to 0.90 in astrocytes [7, 8, 289]. In particular, the high variability in astrocytes
is a strong indication that these cells are excitable. In our model, the range of parameters for
which fluctuation-driven spikes are observed is small due to the rather weak noise resulting from
the stochastic activity of the IP3R channel clusters. Thus, the generation of ISI sequences with
high variability requires fine-tuning of the model parameters, which seems unlikely to occur in
biological systems given the large cell-to-cell variability.

This raises the question of whether there are other relevant sources of noise in the generation of
Ca2+ spikes that we have not considered. Several processes could be important in this regard. The
first is the cluster noise itself. So far, we have considered a population of homogeneous clusters.
However, the number of channels per cluster actually varies [197, 225]. Taking this variability
into account could imply that the puff current through all the different clusters is effectively de-
termined by a few large clusters, since both the mean and the noise intensity of a cluster depend
superlinearly on the number of channels. Indeed, it has been reported that in Xenopus oocytes
Ca2+ spikes are often initiated at a few focal puff sites [290]. Second, we have considered only
cluster noise caused by the IP3Rs. This is plausible because the activity of functionally coupled
channels in a cluster remains highly stochastic even for a large number of channels. However,
it cannot be excluded that among the multitude of ion channels responsible for maintaining the
Ca2+ gradient, generating the spike, or refilling the ER, there are some that generate a significant
channel noise, for example, due to a relatively long correlation time. Third, we assumed that
the dynamics of the ER Ca2+ concentration does not depend on the dynamics of the subthresh-
old intracellular Ca2+ concentration because [Ca2+]er is orders of magnitude larger than [Ca2+]i
[19, 29]. The assumption that the ER Ca2+ concentration is significantly reduced only during the
spike is consistent with other studies [30]. However, if the released Ca2+ is also included in the
dynamics of the ER, fluctuations in the intracellular Ca2+ concentration would also be reflected
there and feed back into the intracellular Ca2+ concentration. This could increase the overall noise
intensity. Finally, we considered a point model that neglects the spatial extent of the cell and thus
the local release of Ca2+. It is known that such models, which assume that the intracellular Ca2+

concentration is homogeneously distributed throughout the cell, often underestimate the variabil-
ity of interspike intervals [64]. Therefore, spatially extended models may be needed to describe
cells that generate highly stochastic spike times. Such models exist and are often referred to as
fire-and-diffuse models [63, 291–293] but are extremely difficult to treat analytically.

Finally, we have observed positive interval correlations in the experimental data that cannot
be explained by our model. We have already pointed out that, due to the limited number of
measurable interspike intervals, we cannot rule out the possibility that this is simply due to an in-
accurate calculation of the correlation coefficient. Furthermore, such correlations may result from
a weak nonstationarity in the data. Especially for the considered HEK cells with relatively low ISI
variability, weak nonstationarity can lead to significant correlation coefficients. However, other
biophysical processes not considered in our model could also be responsible for the observed
positive correlations. As shown in the second chapter of this thesis, the primary processes to
consider in this regard are those that generate temporally correlated noise. A possible candidate
for this could be the already discussed counterpart of the fluctuations of the intracellular Ca2+

concentration in the ER Ca2+ concentration. In this case, the fluctuations of the intracellular Ca2+

concentration would be low-pass filtered by the dynamics of the ER Ca2+ concentration and thus
re-enter the intracellular Ca2+ concentration as a correlated noise. Another possible process that
we have not discussed is the storage and release of Ca2+ in and from mitochondria. Although
mitochondria are unlikely to be of primary interest for the generation of Ca2+ spikes themselves,
their precise role in Ca2+ signaling is a subject of ongoing research [294–298]. From a dynamical
point of view, the abundance and small size of the mitochondria could lead to a slow stochastic
release of Ca2+ if the kinetics of the channels involved are slow.

In any case, the universality of Ca2+ as a second messenger should be a strong incentive to
further study this fascinating biophysical system and to solve some of the problems outlined
above.
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