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ABSTRACT
This article introduces a network approach to describe the quality
of written scientific explanations. Existing approaches evaluate
explanations mainly on the level of sentences or as a whole but
not on the elementary level of single terms. Moreover, evaluation
of explanations is often based on highly inferential scoring
techniques. We addressed both issues by converting the
elementary structure of terms in explanations into networks (so-
called element maps) and analysing these with mathematical
measures, thus extracting the size and complexity of an
explanation, adequacy, coherence, and use of key terms. A total
of 65 explanations of experts and students were analysed
quantitatively and qualitatively. Differences between expert and
student maps’ measures can be interpreted meaningfully against
the background of existing research findings. Thus, we argue that
our approach using network analysis provides a precise, fine-
grained, and low-inferential tool that complements and refines
existing approaches. Element maps have the potential to improve
teaching and research by precisely revealing the strengths and
weaknesses of explanations.
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Introduction

Explaining natural phenomena is a central practice of doing science and for learning
science (Braaten & Windschitl, 2011; Forman, 2018; Manz et al., 2020). Therefore, cur-
ricula and policy documents for science education place great emphasis on explanations
(e.g. NGSS Lead States, 2013; Quinn et al., 2012). According to these, ‘to construct logi-
cally coherent explanations’ (NGSS Lead States, 2013, p. 52) is considered an essential
practice to learn science.

As scientific explanations are made up mainly of language, language is crucial for both
scientists and students. When explaining a phenomenon scientifically, one must combine
terms in order to (e.g. causally and conditionally) describe and connect events of the
phenomenon it with theory meaningfully to create a linguistic product and enrich it
with appropriate diagrams, pictures, and formulae. Basically, language ‘is a system of
resources for making meaning’ (Lemke, 1990, p. ix) of the world. Thus, ‘learning
science means learning to talk science’ (Lemke, 1990, p. 1, emphasis in original).
However, often, ‘students are not taught how to talk science: how to put together
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workable science sentences and paragraphs, how to combine terms and meanings. [. . .] Is
it any wonder that very few succeed?’ (Lemke, 1990, p. 22, emphasis in original). Thus, an
understanding of how students use language to learn helps to understand their construc-
tion of explanations. Since Lemke’s concerns, science education researchers have made
many efforts to improve learners’ explanations and analyse their abilities and difficulties
in providing high-quality written explanations.

However, although the practice for learners is to compose explanations by interrelating
single terms, no approach in science education research has analysed explanations’ quality
on this elementary and fine-grained meaning-making level. Instead, characteristics of
quality are scored based on coarser levels of analysis. Some scholars evaluate the expla-
nation as a whole (de Andrade et al., 2019; Taber & Watts, 2000; Tang, 2016), whereas
others use clauses (Peker & Wallace, 2011) or components of varying size (McNeill
et al., 2006; Peel et al., 2019; Ruiz-Primo et al., 2010; Sandoval, 2003; Zarkadis & Papageor-
giou, 2020). For example, research has examined whether an explanation as a whole is rel-
evant (de Andrade et al., 2019) or scientifically correct (Taber & Watts, 2000) or if larger
parts of an explanation are logically coherent (McNeill et al., 2006). However, this broader
level of analysis cannot identify where exactly problems in students’ explanations lie. It is
evident that any object, property, or process represented as a term in an explanationmay or
may not be relevant, and any proposition may or may not be correct or coherent. In our
view, reducing the grain size of the analysis to the level of individual terms thus offers
an opportunity to capture structural features - which point to weaknesses and strength -
with particular precision. This not only provides more detailed information on how the
explanationwas build. It further provides precise hints how explanations can be improved,
e.g. by identifying an incorrect proposition in a part of a sentence. So, we see a benefit in a
fine-grained analysis because it helps to understand how students’ explanations are struc-
tured and - building on that - to support students to improve their explanations.

Moreover, the evaluation of explanation features has so far often been based on prop-
erties that are assigned to the explanation as a whole or to larger parts of it by interpret-
ative and often more or less explicit coding rules. Yet explanations themselves, as
linguistic constructs, have measurable structural properties that can be used for the
assessment of features. Thus, we advocate for additional techniques to accurately
assess explanations with higher precision (at the fine-grained level of terms) and
higher objectivity. One approach is to map the structure of these smallest units of
meaning (individual terms) rather than to capture larger components in explanations.
Lemke (1983) showed a possibility for structure mapping in the form of thematic pat-
terns, which essentially are networks. In science education, networks have become
increasingly prominent tools that help make precise statements about conceptual under-
standing or knowledge structures (Siew, 2020), for example, with concept or knowledge
maps and semantic networks (Koponen & Nousiainen, 2018; Kubsch et al., 2020; Novak,
1990; Thurn et al., 2020; Yun & Park, 2018). One limitation so far is that no mapping tool
has been explicitly developed for mapping the fine-grained structure of written expla-
nations with their linguistic specificities. Thus, it is unclear whether and how network
measures are suitable for describing the quality of explanations at an elementary level.

Therefore, we aimed to investigate whether and how such network representations
and measures are suitable to describe the quality of written scientific explanations in a
fine-grained manner based on measurement of their structural properties. To this end,
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we developed a (network) tool that maps the fine-grained structure of explanations in an
appropriate way from a science education perspective. To introduce it, we elaborate on
the fine-grained, elementary structure of explanations and give a short overview of net-
works, relevant network measures, and facets of explanation quality examined in pre-
vious science education research. Then, we briefly describe how to transform
explanations into networks. Using the results of a study in which we collected 65 expla-
nations of an optical phenomenon given by physics students and experts, we checked
whether and how it is possible to interpret network measures as facets of explanation
quality. Finally, we discuss this approach’s possible benefits and limitations for science
education research and the classroom.

Theoretical background

Before we describe what we see as the quality of explanation; the fine-grained, elementary
structure; and a corresponding network approach, we first narrow down the field of
research in which we situate our approach.

Rocksén (2016) distinguished – besides everyday explanations – between explaining as
instructional practice in the science classroom and scientific explanations. In the first
concept, researchers analyse explaining as an interaction of the teacher with the learners
(e.g. Geelan, 2013; Kulgemeyer, 2018). Concerning scientific explanations, researchers
analyse, for example, structural aspects of learners’ written explanations, their quality,
and obstacles. We take a structural perspective following the latter conceptualisation.
Our study asked students to explain a natural phenomenon of apparent depth (see
Figure 2, described in the Method section), and we thus categorise our study under scien-
tific explanation, according to Braaten andWindschitl (2011) who differentiated between
(a) scientific explanation, where learners explain natural phenomena; (b) explanation as
explication, where someone explains relevant scientific concepts; (c) explanation as cau-
sation, where students must focus on the underlying causes of perceptible events; and
finally, (d) explanation as justification, where students must formulate arguments
rather than explain phenomena. All four activities are relevant to science education
but should be clearly distinguished. For example, while scientific explanations aim to
answer questions about a phenomenon that is not in doubt, argumentation in contrast
aims to justify a claim; thus, ‘there is always a substantial degree of tentativeness associ-
ated with any argument’ (Osborne & Patterson, 2011, p. 629). However, both can be rep-
resented in a written manner, thus have an inner structure and quality, and are relevant
to science education. However, because all four notions (a–d) can be presented as dis-
course products, we did not aim to limit our approach to one of them.

There are three (partly overlapping) lines of research on written explanations. First, some
studies introduce new approaches or frameworks to describe (the quality of) explanations
(Alameh&Abd-El-Khalick, 2018; Braaten&Windschitl, 2011; deAndrade et al., 2019; Papa-
douris et al., 2018). Second, there are studies that explore the features and difficulties of lear-
ners with explanations from different perspectives (Herman et al., 2019; Peker & Wallace,
2011; Redfors & Ryder, 2001; Ruiz-Primo et al., 2010; Taber & Watts, 2000; Tang, 2016;
Wiley et al., 2017; Zarkadis & Papageorgiou, 2020). Third, some studies examine explanation
quality in relation to specially designed interventions and support (e.g.Delen&Krajcik, 2015;
McNeill et al., 2006; Tang, 2016; Zacharia, 2005). As we introduce a new instrument, explore
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its characteristics, and identify difficulties in explanations, we see our work as mainly contri-
buting to the first and second research lines. The application of our instrument in interven-
tion studies, as in the third research line, is a future goal.

Quality of explanations

What constitutes the quality of a written scientific explanation and how it is operationa-
lised varies widely among different approaches and frameworks. For example, some
researchers consider causal coherence a relevant characteristic of scientific explanations
(Alameh & Abd-El-Khalick, 2018; Braaten & Windschitl, 2011; de Andrade et al., 2019;
Sandoval, 2003; Taber & Watts, 2000). Some authors regard the employment of theories
or specific concepts as a feature of quality in scientific explanations (Braaten & Wind-
schitl, 2011; de Andrade et al., 2019; Peel et al., 2019; Sandoval, 2003). Further quality
characteristics are the relevance of content present in the written explanation (de
Andrade et al., 2019; Ruiz-Primo et al., 2010), complexity (Herman et al., 2019; Papa-
douris et al., 2018; Zarkadis & Papageorgiou, 2020), correctness (Taber & Watts,
2000), sophistication or accuracy (Herman et al., 2019), appropriate use of models
(Redfors & Ryder, 2001), completeness of a scientific account present in the explanation
(Wiley et al., 2017), or the presence of selected components (McNeill et al., 2006), as well
as surface features such as the number of words (Wiley et al., 2017). Some even use tea-
chers’ marks for evaluating the quality of an explanation without explicating specific cri-
teria (Tang, 2016). Moreover, even those mentioned individual characteristics are
operationalised differently among the approaches.

Thus, no universally valid set of characteristics seems to constitute a high-quality
explanation. Instead, the conceptualisation of quality depends on the framework used,
the focus, and the respective design in the studies. This makes it difficult to compare indi-
vidual studies with each other.

Comparing learners and experts in regard to their explanation quality and conceptual
understanding, findings describe experts as consistently using key-terms (Lachner et al.,
2012; Thurn et al., 2020; Yun & Park, 2018) and stronger interconnecting a phenomenon
with theory (Lintern et al., 2018).

Elementary structure

We aim to obtain insights relevant to science learning about the quality of explanations.
In order to do so, we investigate the quality of explanations at the level of the smallest
units that are meaningful and at the same time can be analysed in a meaningful way
(single terms) from science education perspective. Thus, we now outline the elementary
structure of explanations.

The basis of the theoretical background of our approach can be traced back to the idea
that explanations can be represented as a structure of statements made up of entities and
relations (Kuhn, 2000). In written explanations, these basic elements contain words as
the smallest meaningful units (Bechtel & Abrahamsen, 2005). Thus, some words stand
for entities (Halliday & Matthiessen, 2013) or concepts, whereas other words stand for
relations (Lemke, 1983) between those entities. What these entities and concepts are
and what is considered a relation between them again varies depending on the
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perspective. For our approach, entities can reasonably be associated with real (observa-
ble) or imaginary scientific objects, systems, and properties. Nouns, or pronouns as
stand-ins for nouns, commonly represent such entities (Halliday & Matthiessen,
2013). Relationships are identified by other words, especially verbs, adverbs, conjunc-
tions, and so on, and give meaning to entities (Lemke, 1983). We designate both entities
and relations as elements. Therefore, an element is either an entity or a relation. Because
this fine-grained structure of explanations is made up of elements and is thus the funda-
mental, elementary level that builds up explanations, we call it the elementary structure.

Networks

Networks are by definition structural representations (Barabási, 2016) that can be custo-
mised for various purposes. They basically consist of vertices (or nodes) and connections
between them that are called edges (lines or arrows). Both nodes and edges can be labelled
and thus have the potential to carry semantic content. Therefore, they can represent the
elementary structure of explanations, that is, the entities and the relations between them.
We call networks representing the elementary structure element maps. Element maps can
be considered as modified concept maps (Novak, 1990). In concept maps, nodes rep-
resent concepts and edges show how these concepts relate to each other. However,
usually concept maps are created by learners (and experts) themselves to directly visual-
ise their conceptual structure. They are therefore not designed to map the specific fea-
tures of written language and thus do not meet the requirements for analysing written
scientific explanations.

There are numerous measures to characterise network characteristics, which we illus-
trate in general in Figure 1. A simple characteristic of networks is the number of all
nodes, called the size (s). Next, the number of steps to take the shortest path between
the most distant points in a network is the diameter (d). A further characteristic of a
network is how intertwined or compact it is. A simple measure is to build the ratio
(d/s) of the diameter and size. A network with a high number of nodes and a small

diameter is presumably compact and has a low ratio of
d
s
, 1. In contrast, a long

linear chain of nodes will have a ratio of
d
s
≈ 1.

Some networks consist of components that have no connections to each other. The
number of such unconnected components (c) thus describes the fragmentation of a
network. To describe compactness of networks consisting of several unconnected com-
ponents, one can take the d/s ratio of the component with the largest size.

Size, diameter, ratio, and the number of unconnected components are global measures
for a network. However, there are also measures to characterise individual nodes, such as
how central a node is, for example, the betweenness centrality (bc). For the purpose of this
paper, it is sufficient to understand how bc is interpreted1: A node with high bc lies in
between many other nodes of the entire network (Freeman, 1977) and has a function
of holding different parts of the network together. To consider different network sizes,
we use normalised bc (values lie between 0 and 1).

In previous studies using network techniques, experts are characterised by having
more interconnected knowledge elements (Jonassen et al., 2013). Moreover, in research
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on concept maps, experts create larger (Schaal, 2008; Williams, 1998) and more complex
maps (Williams, 1998). Moreover, experts’ networks show greater coherence (Koponen
& Pehkonen, 2010). Additionally, the size of concept maps of a topic grows with learning
(Thurn et al., 2020).

Knowing that there are many more measures to describe network characteristics, we
focus on the previously mentioned and investigate if and how we can interpret them as
facets of explanation quality.

Figure 1. Four example networks with different characteristics. The highlighted path in (a) and (b)
represents a possible path of the diameter. In (c) and (d), the visual node size represents the between-
ness centrality (bc) of the nodes. Numerical values for bc are omitted from the diagram because other-
wise, there would have to be up to 13 values for each map. In diagram (d), sl and dl represent the size
and diameter of the largest component, respectively.
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Research question

Before we describe our approach in the following Method section, we formulate our
research question.

RQ: How can differences in the quality of written scientific explanations in science
education given by science learners and experts be described using element maps?

To answer our research question, we apply the introduced measures on the networks
that represent the elementary structure of explanations given by science learners and
experts in a study. We use two criteria to legitimise these network measures as descrip-
tions of the quality of scientific explanations. First, the measures must show differences
between learners and experts. Second, the measured characteristics and observed differ-
ences must have a meaningful relationship to relevant existing research in science
education.

Method

Study design

In our study, we used phenomena relating to the context of apparent depth (see Figure 2).
Participants were presented with the experiments as shown in Figure 2 and asked to write
a scientific explanation for their observation in their own words. They were provided
with computers and word processing software and given as much time as they needed.
The requested level of sophistication should correspond to the level at which this
phenomenon is ‘typically’ described in their introductory physics lectures. We collected
nine written explanations from experts and 56 explanations from physics or biophysics
bachelor students. The student participants attended a lecture and completed exercises
about the refraction of light before the survey. All explanations were written in
German. Because we do not make statements regarding personal context but only
analyse discourse products, we did not collect person-specific data. Based on our experi-
ence with this cohort, the participating students can be described as predominantly of

Figure 2. Photo of an apparent depth phenomenon. A pencil is placed in each of two open boxes, one
filled with water (right) and the other empty (left). The pencil in the right box appears kinked and its
tip apparently lifted.
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Central European descent, without disparities regarding the distribution of gender, and
are slightly older than 20 years, with some outliers on the upper side. We would like to
explicitly point out that this sample cannot be considered representative for physics lear-
ners in general. However, we have chosen participants with an advanced learning status
in physics because we expected text products that are well evaluable in an explorative
design on the one hand, and we want to take into account a wider range in the charac-
teristics to be investigated, especially in the direction of possible expertise. Participants
were not supported through, e.g. scaffolding. An appropriate intervention should tie in
with the abilities, strengths and weaknesses that the learners have naturally, i.e.
without support. The aim of our study is to identify these and make them visible. There-
fore, we did not provide any scaffolding. Knowing that the tool works in general, we can
then adapt it to the specifics of other target groups with text products that are probably
harder to evaluate. We chose to employ scholars from physics education as experts in
explaining physics content to a given target group. Furthermore, the experts involved
have dealt with explanations of these phenomena both in an educational context and
in publications. We realise that the number of experts is quite small, especially compared
to the number of students. However, our experts’ explanations offer enough material for
a rich and detailed analysis. Our main concern, further, is to study learners and not
experts. Experts serve us only as a reference point. Calculating differences between the
two groups of participants can, nevertheless, adequately account for the different
sample sizes with the appropriate measures.

In total, we received 65 explanations. All explanations were written using simple text
editor software. Participants were allowed to add pencil and paper sketches. The sketches
served as support for analysing the maps’ content and in the case of unclear meaning of
terms but were not analysed separately. All participants were informed about the purpose
of this study and agreed on using their given responses for our research purpose. Since it
was - at this stage - not our intention to rate the quality of the participants’ explanation
on a scale, no performance expectation was constructed. Instead, the focus was set on
detecting differences between students’ and experts’ explanations with respect to
certain network measures.

The explanations were transformed into (original) element maps using spreadsheet
software to extract the elementary structure and the R environment for network visual-
isation and analysis. Afterwards, a content evaluation was performed, checking all enti-
ties for relevance and all relationships for correctness. We developed and refined a coding
manual in advance that guided the whole process. The manual describes the four trans-
formation parts (identifying entities, identifying relations, evaluating relevance, and eval-
uating correctness). Interrater agreement (two raters) was checked on thirteen
explanations using Cohen’s kappa for the relevance of entities (k = 0.68) and relative
mutual agreement on the correctness of the relations (r = 0.83). A third (senior) research
expert rated the content validity based on the manual’s evaluation description as positive
by evaluating, if the manual uses disciplinary correct rules and examples that lead to a
disciplinary adequate evaluation of correctness and relevance.

As we mentioned in the beginning of the section, we use a phenomenon of apparent
depth for our study. Apparent depth makes objects in water appear closer to the water
surface (above their real position) when viewed from outside the water (see Figure 2).
Instances of this are looking at coins in a fountain or at a paddle protruding out of a
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boat diagonally into the water. This phenomenon is usually explained by the refraction
of light (Snell’s law) that occurs when light passes from one medium (e.g. water) to
another (e.g. air). An observer outside the water constructs an image of the object
from the refracted light (rays). This results in an apparent object position at a shallower
depth in the water than where the image would be without the water (Nassar, 1994).
The interpretation of the visual stimuli by an observer thus plays a special role here.
Whether the person knows that the object is actually in a different place from where
he or she sees it is an important aspect that is essential for an explanation. Therefore,
it is important not only to show a picture of an object that appears to be lifted, but also,
for example, to show the object with and without water and to make the tactile location
of the objects physically accessible to the observer (and not only through a photo), as
we have also done both.

Creating element maps from written explanations

Mapping the elementary structure means assigning the respective components of the
elementary structure to those of networks. We have done this by representing elements
with nodes and the connections between them with arrows. Because there are two
different elements (entities and relations), there will be two different node types: entity
nodes and relation nodes.

The mapping is done in three steps. For a brief report of the procedure, here, we use
the following short (fictional) example explanation:

‘Light is refracted at the water surface. That’s why the pen that is at room temperature
appears to be above its real position.’

In the first step, we extract all nouns and pronouns from the explanation. They are used to
build the entity nodes in element maps. In the first sentence of our example, the nouns
are ‘light’ and ‘water surface’. Additionally, multiple mentions of the same noun as well as
synonymous (pro)nouns are merged into one entity so that an explanation does not grow
because the same entity is named several times. In the second step, we check explanations
for all relations between the entities (e.g. ‘is refracted at’). These relations are depicted as
relation nodes. The entity and relation nodes become connected by arrows in the direc-
tion of reading the explanation. A relation node with its connected entity nodes forms a
proposition. The third step captures all relations between propositions (e.g. ‘that’s why’).
In this way, the entire elementary structure of an explanation is extracted sentence by
sentence and assembled into a map. At this point, we would like to point out why we
decided to represent relations as nodes in contrast to concept maps where relations
are visualised as labelled arrows. An entity can belong to several propositions, whereas
each relation only belongs to precisely one proposition. Therefore, to connect two prop-
ositions, we choose relations as the start and endpoints of the connection. A network
object that is a start or endpoint becomes a vertex (node) by definition. Thus, we rep-
resent it as a node in the element maps.

Because element maps so far represent the elementary structure of an explanation as a
participant originally wrote it, we call them original element maps. For our example
explanation, the original element map is shown in Figure 3 (with all nodes having the
same size) and Figure 4 (with betweenness centrality shown as the visual node size).
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Evaluating content

So far, the map might still contain inappropriate propositions, incorrect relations, and
irrelevant entities. If we want to make meaningful statements about the quality of

Figure 3. Original element map of the example explanation. Filled circle nodes with upright labels
represent entities, and empty circle nodes with italic labels represent relations.

Figure 4. Original element map of the example explanation with betweenness centrality shown as the
visual node size.
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explanations based on network measures, we obviously must consider possible errors.
Accordingly, these shortcomings must be identified in a further step and somehow
made visible in the element map. Therefore, each element must be evaluated as either
relevant or not relevant (entity) and correct or not correct (relation). If an entity is
not relevant or a relation is not correct, we call it a faulty element. Because propositions
consist of these elements, the appropriateness of a proposition can be judged by these two
assignments of relevance and correctness. In our example, the room temperature is not
relevant to the phenomenon. Furthermore, the relation ‘that’s why’ is an incorrect
relation because refraction is a necessary but insufficient condition for the occurrence
of an apparent depth phenomenon. Hence, reducing the cause of the appearance
phenomenon to refraction is an oversimplification. Rather, there must be an observer
in a medium with a refractive index that is different from the one in which the object
is placed. We have thus marked these two elements as faulty. The criterion for evaluating
the entities as relevant was predominantly whether there was any recognisable connec-
tion to the phenomenon from a physical point of view. For example, stating that the
pen is at room temperature is seen as irrelevant since this as no impact on the phenom-
enon as observed. The criterion for evaluating the relationships as correct was that they
did not grossly contradict perception, established principles or common formulations
with regard to the phenomenon context. Simply saying that the pen appears to be
above its real position because light is refracted at the water surface is rated as incorrect
because is oversimplifies an explanation by omitting reasoning with central concepts. We
like to clarify that we counted participants statements, that a pencil that penetrates the
water surface remains ‘unbroken’ even though it appears to be bended, as a correct
and relevant part of the explanation. Because this evaluation is an interpretative step,
its quality must be assessed using interrater agreement. We call a map with marked

Figure 5. Evaluated element map of the example explanation with faulty elements marked in red.
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faulty elements an evaluated element map. For our example, the evaluated map is shown
in Figure 5.

In a third version, we eliminate all propositions affected by faulty elements so that only
valid statements with relevant and correct elements are included. This results in a map
that represents the disciplinarily relevant and correct core of the explanation. We there-
fore call it the core element map of an explanation. The core map for our example expla-
nation is shown in Figure 6.

Applying network analysis

We analysed size (s), ratio (d/s), the number of unconnected components (c), and
betweenness centrality (bc) on the core maps and the number of faulty elements (f )
on the evaluated maps.

Results

In the following, we present both quantitative and qualitative results for each network.
Regarding size, the distributions for both groups – learners and experts – do not signifi-
cantly deviate from a normal distribution. Therefore, we report mean (M) and standard
deviation (SD) and use Welch’s t-test to reveal differences between groups. This test is
recommended if one compares the central tendency of two unrelated groups with
different sample sizes (Ruxton, 2006). The ratio of diameter to size as well as the
numbers of faulty elements, unconnected components, and betweenness centrality out-
liers deviate significantly from a normal distribution in both groups (Shapiro–Wilk test).
Therefore, we report medians (Mdn) and analyse group differences using the nonpara-
metric Wilcoxon signed-rank test for these characteristics. For effect sizes, we report
Cohen’s d (for size) and r for the other network measures. All data are visualised in
Figure 7.

Figure 6. Core element map without faulty elements. The map consists of two unconnected com-
ponents (fragments).
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Size and ratio of diameter to size

Quantitative
Experts’ core maps (M = 90.8, SD = 17.26) are of larger size d than students’ core maps
(M = 43.9, SD = 16.84), with the difference being significant and of large effect (Welch’s
t-test, t = −7.60, p , 0.001, Cohen’s d = 2.77). The ratio of diameter to size (d/s),
however, is smaller for experts’ maps (Mdn = 0.15) than for those of students
(Mdn = 0.33), also with a large effect (Wilcoxon signed-rank test, W = 499.5,

Figure 7. Boxplots to compare students’ and experts’ map characteristics. All differences between
groups are significant (p , 0.001). For the size, mean values and standard deviations are additionally
visualised as black dots and lines.

Figure 8. Core element map of an expert’s explanation from our sample.
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p , 0.001, r = .58). Figure 8 and 9 show two example maps with different sizes and
ratios. The expert’s core element map (Figure 8) contains more elements that are
more intertwined than the student’s map does (Figure 9).

Qualitative
A qualitative analysis reveals what makes experts’ maps larger and more intertwined. All
experts described the phenomenon in great detail by emphasising spatial and attributive
relationships of the observer, the water surface, and so on. For example, one expert
described the pencils (Figure 2) in detail: ‘The pencils (left and right) are diagonally in
box. They are placed before the back walls. Both boxes have the same size. The right
pencil has a knee at the water surface, while the left pencil looks straight. The part
under water seems to be bent upwards. The observer looks at the box obliquely from
above […]’ (translated by the authors). Moreover, they associated a significant part of
the entities of the phenomenon with corresponding theoretical properties, for
example, water and air with their refractive indices, or the perceived image with the inter-
section of extended light rays etc. Some of these entities of the phenomenon and the
theory are linked via causal connections. In the students’ maps, the description of the
pencils are much shorter, for example one student only wrote: ‘The pencil appears
clearly bent to the human eye’ (translated by the authors). Further, we repeatedly miss
features of the phenomenon (e.g. water surface, observer) and of refraction (directions
of light rays, angles, image), as well as spatial, causal, and attributive relations between
these features.

Figure 9. Fragmented core element map of a student’s explanation from our sample.
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Faulty elements

Quantitative
Students’ explanations contain more faulty elements, f (Mdn = 3), than those of experts
(Mdn = 0), which is a significant difference between them and has a large effect
(W = 472, p , 0.001, r = .52). Of students’ faulty elements, two thirds are incorrect
relations and one third are irrelevant entities. In two explanations, an expert included
an irrelevant entity.

Qualitative
In students’ maps, irrelevant entities often originate from concepts of light that are not
relevant to the explanation of apparent depth phenomena. These are the particle concept,
the wave concept of light, and the reflection of light at the water surface. For example, one
student wrote that at the surface ‘[…] light photons are refracted differently’ (translated
by the authors). Furthermore, physical properties that are in our study unnecessary for
apparent depth (humidity, temperature) and misinterpretations of perception (optical
illusion) occur. Our example from the Method section contained such an unnecessary
property (temperature). In two explanations, an expert included an irrelevant entity as
well. Here, the expert pointed to the extreme case of looking vertically into the water
from above. However, because this case was not part of the phenomenon, we decided
to code this as irrelevant. Other than this example, the experts made no errors.

A look at the propositions based on inappropriate relations reveals first that they are
predominantly considered to be violations of physics laws, for example, of Snell’s law or
Fermat’s principle. Another general obstacle is oversimplification, where students
describe the phenomenon in detail and then explain it only by mentioning the term
‘refraction’ without explaining this connection more precisely, as in our example expla-
nation. Furthermore, some statements concern inappropriate formulations, for example,
refraction takes place in water instead of at its surface. The experts did not formulate any
sentences that included an inappropriate connection.

Number of unconnected components

Quantitative
All experts’ core maps appear in one piece. Students’ core maps, by contrast, tend to fall
into fragments (Mdn = 2) after content evaluation and removing faulty elements, with a
maximum of six unconnected components. The difference between groups is significant,
with a moderate effect (W = 432, p , 0.001, r = .44). Figure 8 and Figure 9 illustrate
this difference by showing a coherent, one-piece element map of an expert’s explanation
(Figure 8) and a three-fragment map of a student’s explanation (Figure 9).

Qualitative
Maps of experts’ explanations are held together by many causal, spatial, temporal, quan-
titative, and qualitative relations. A qualitative analysis of the student maps shows that of
the fragments of a map, one often contains a description of a phenomenon (e.g. entities
such as water, the tank, the pen, etc. and the relations between them), whereas theoretical
elements (light, refraction, etc.) are found in another fragment. This peculiarity is also
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illustrated in our example core map in Figure 9. Therein, the short phenomenon descrip-
tion and the mention of refraction are completely separated. However, the fragments can
vary in size from single-element fragments to large and complex fragments. In students’
fragmented maps, different patterns appear. Some students struggle with the conceptual
coordination of certain theoretical elements, either because they include irrelevant ones
or because they do not know how to appropriately connect those theoretical elements to
each other and to the features of the visible phenomenon. Other students’ maps have a
rather large theory fragment that is not (or weakly) connected to the phenomenon
description. Again, other maps lack important elements (e.g. the ‘observer’). Some
maps show a mixture of these three features. Single-element fragments generally seem
to be more often theoretical terms than descriptions of the phenomenon in our sample.

Betweenness centrality

Quantitative
Regarding bc, we focus on nodes that are particularly central for the network because
arranging explanations around key elements is expected to be a characteristic of expertise
(Lachner et al., 2012). Such nodes can be identified by setting the quantile range of a
map’s bc distribution above which nodes start to appear as outliers. We set the quantile
range for betweenness values in the experts’ maps as a threshold, so that each expert has
at least one outlier. Then, we counted the numbers of outliers o in each map and com-
pared those of experts with those of students.

Accordingly, all experts’ maps have at least one element with particularly high bc.
Experts’ explanations thus seem to be arranged around a few elements that are central
to the explanation (similar to example (a) in Figure 1). By contrast, 36 students’ maps
are not arranged around elements of exceptional bc. Instead, compared with experts’
maps, they are often built of many nodes with mid-level centrality. Other students’
maps do have many nodes with high bc but only a few less important elements. Here,
high-bc nodes do not appear as outliers. Such maps are more chain-like (similar to
example (b) in Figure 1). Accordingly, the maps of experts (Mdn = 2) contain more out-
liers than those of students (Mdn = 0), whereby the difference is again significant with a
moderate effect (W = 74.5, p , 0.001, r = .46). Figure 8 shows a map of an expert’s
explanation from our sample, which is arranged around one element with high bc
(here, ‘observer’), whereas the student’s map in Figure 9 has no such element and is
arranged in rather chain-like fragments.2

Qualitative
When examining experts’ central elements qualitatively, we found only a few different
ones. In expert maps, the observer (or the eye) generally takes a central role. In only a
few students’ core maps does the observer also play a central role, and some do not
even contain an entity for the observer. In some expert maps, particular light rays and
their properties (e.g. directions) play a central role. Here, students tend to use the
more unspecific term ‘light’. Finally, the object of the apparent depth phenomenon (in
our examples, the pencil) is central to expert maps. Interestingly, this object has high cen-
trality in only one of the student maps. Again, some student maps that explain the
phenomenon of apparent depth do not even contain that entity. An example is the
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following entire explanation of one student for the observed phenomenon: ‘Due to the
different refractive indices, a change in the direction of the light beam occurs at the
water surface. The light beam is bent downwards when it leaves the water, and the
image appears shifted’ (trans lated by the authors). In other words, those participants
do not mention the object that they are looking. Instead, they speak of refraction, or
the phenomenon in a more general sense.

Quantitative overview

In the left bar chart in Figure 10, we show how many students’ maps achieve an expert-
like level in each single network characteristic. We define that an expert-like level is
reached when the value in a characteristic is within the range of values of all experts.
Only 11% of the students’ maps have an expert-like size. However, about one third of
all explanations are arranged around key terms the way experts construct their expla-
nations. For all other characteristics, the percentage lies between these two limits. The
right bar chart in Figure 10 shows the percentage of students’ maps achieving an
expert-like level in zero to all five network characteristics. About 30% of all students’
explanations reach an expert-like level in none, one, or two of the characteristics and
none in more than three characteristics.

Discussion

In the following, we describe what the network measures of the element maps tell us
about the explanations. We analyse how well the measures describe specific quality
characteristics of explanations, interpret them, and discuss their benefits. The criterion

Figure 10. Bar charts showing the percentage of student core element maps that achieve the expert
level in each characteristic (left) and the percentage of student core element maps that achieve an
expert level in a sum of characteristics (right).
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here is whether the differences found in these measures between the explanations of lear-
ners and experts can be meaningfully explained, for example, with the help of results
from neighbouring research areas.

Size and ratio of diameter to size

The network characteristics size and ratio of diameter to size represent the size and com-
plexity of an explanation. The amount of information and its complexity is understood as
the sophistication of an explanation (cf. de Andrade et al., 2019; Zangori et al., 2015).

In both characteristics, we see significant differences between the maps of experts and
learners. Our results show that experts integrate more extensive, detailed, and strongly
interconnected knowledge in their explanations. In this respect, learners have the most
significant difficulty reaching an expert level compared with other characteristics.

Science education research on expertise using network approaches supports these
findings and the interpretation because experts create more complex and larger maps
and (concept) maps created by learners become larger while concept learning. Since con-
ceptual understanding and scientific knowledge of a phenomenon are strongly connected
with the ability to explain it (Berthold & Renkl, 2009; Zacharia, 2005), it is reasonable that
the elementary structure of written explanations given by experts show similar differ-
ences to those of learners.

Compared with other methods that, for example, only count the number of words,
element maps offer the advantage of actually capturing only the relevant, disciplinarily
correct core of the explanation. In element maps, mere repetitions of words or state-
ments, for example with synonymous terms that increase the word count, do not lead
to improvement of an explanation. In other words, the only way to increase size is to
add information to the explanation that is relevant for the phenomenon at hand. The
only way to decrease ratio of diameter to size is to link existing information in the expla-
nation by correct relations. This supports the internal validity of interpreting size and
ratio of diameter to size of element maps as size and complexity of an explanation. In
addition, the qualitative investigation of the elementary structure also provides a good
account of how expert explanations become larger and more complex, namely through
a detailed description of the phenomenon, an elaborate rendering of the theory, and a
stronger linking of phenomenon and theory, which can plausibly be described as a prop-
erty of expert knowledge (Lintern et al., 2018) but which has not yet been recorded clearly
in the structure of explanations. With these quantitative and qualitative results, element
maps enable more objective and precise statements about the size and complexity than,
for example, dichotomous and more interpretative scoring.

Faulty elements

The number of faulty elements can be used to describe the adequacy – or rather inade-
quacy – of an explanation. A good explanation should only contain appropriate prop-
ositions (Alameh & Abd-El-Khalick, 2018) with relevant information (Alameh & Abd-
El-Khalick, 2018; Salmon, 2006) and correct relations (i.e. no faulty elements). Here,
one must consider that a single error-free proposition is by no means an adequate expla-
nation. Therefore, we use this measure only in connection with other measures.
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Our study shows a significant difference between experts and learners concerning this
measure. This difference can also be plausibly explained. Previous research has shown
that learners find it challenging to use an appropriate concept of light for explanations
(Redfors & Ryder, 2001). In particular, various cohorts have shown difficulties with appar-
ent depth phenomena (Andersson & Kärrqvist, 1983; Galili & Hazan, 2000). Among other
things, learners find it difficult to link the observer, the object, and the image that the obser-
ver sees apparently lifted (Kaewkhong et al., 2010). Our analysis shows one possible reason
for this: the observer’s absence in the explanation. Therefore, with the help of element
maps, detailed content-related error analyses are possible. Thus, we consider the interpret-
ation of faulty elements as the adequacy of scientific explanations as valid, since no other
feature of the written explanation increases or decreases the number of faulty elements.
However, one must be careful to interpret faulty elements as a learner’s conceptual under-
standing or ability to explain a phenomenon at all, because, for example, problems in the
appropriate use of language might lead to use incorrect relations or irrelevant entities.
Element maps depict the structure of a written explanation, not of what an individual
has in mind. Although there is a strong relation, it is not a one-on-one-mapping
between both instances (also see Novak, 1990 for concept maps).

Nevertheless, besides the mention of problems, it should not go unmentioned that in
the comparison of the faulty elements with the number of all elements (size of the maps),
it is noticeable that the learners’ explanations contain much more relevant than irrelevant
terms and much more correct than incorrect relationships. Element maps thus clearly
reveal both the learners’ deficits and potentials in explanations.

Number of unconnected components

Since previous research lacks a clear and well-established conceptualisation of coherence,
we suggest interpreting the number of fragments as the coherence of an explanation
because coherence describes how well an explanation holds together (Sandoval, 2003).
The more a network falls into components, the less coherent it is.

Our study shows up to six fragments among the students and a clear difference from
the experts, all of whom produce coherent explanations. This result confirms other
research on concept networks for explanations, according to which experts’ networks
have shown greater coherence (Koponen & Pehkonen, 2010). So far, we cannot use
this measure to make a statement about causal coherence, which has been the focus of
many studies in science education (cf. de Andrade et al., 2019; Kang et al., 2014; Taber
& Watts, 2000; Zacharia, 2005). In principle, causality could also be captured as an
element map feature. However, our analysis shows that coherence in explanations
cannot be reduced to the causal aspect alone. What makes expert explanations coherent
is causal and, for example, spatial, temporal, attributive, qualitative, and quantitative
relationships. A focus only on causal coherence would narrow the view too much to
assess the quality of an explanation adequately (Braaten & Windschitl, 2011).

Betweenness centrality

The betweenness centrality is well qualified to describe the use of key terms in expla-
nations. Identifying which terms are actually central to an explanation is particularly

654 S. WAGNER AND B. PRIEMER



helpful. Our results confirm previous findings on conceptual understanding, according
to which use of particular key terms is a characteristic of expertise (Lachner et al.,
2012; Thurn et al., 2020; Yun & Park, 2018). The rather chain-like shape of some
student explanations without central terms is also known from studies of conceptual
understanding with the help of concept networks (Koponen & Nousiainen, 2018) and,
with element maps, becomes evident in the structure of science learners’ explanations.
In addition, our results show that the experts all use a set of key terms, but which
term is particularly central to an explanation differs between experts. This set (i.e. obser-
ver, light rays, object) is well interpretable from a physical point of view (see, e.g. Nassar,
1994) and thus supports the validity of betweenness centrality as a measure for the key
function of terms. The ‘observer’ is the end point of the light path and perceives the
image of the object. Thus, the observer can be seen as the mediator of theory and
phenomenon in the explanation. ‘Light rays’ are the essential tools with which the con-
stituents (object, image, interface, observer) are connected and therefore have a central
importance. The object (‘pen’) that the observer sees is of particular importance
because it is precisely its apparent and actual position that diverge. When applied to
the elementary structure, key words mediate between different parts of an explanation
and in this way enable experts to create large explanations with a comparatively small
diameter, that is, greater complexity or sophistication. This shows that the individual
characteristics of the quality of explanations are interrelated and can be advantageously
analysed coherently with the help of networks. Moreover, although it is not the focus of
our study, the results also show significant differences within the group of learners in two
respects. First, in every single facet of explanation quality our results cover a wide range,
qualitatively and quantitatively. Second, students create different kinds of explanations.
While some build a large explanation with many errors, other contain less errors but
are more fragmented, again others are much smaller but more complex at the same
time etc. Thus, our results show that using element maps also enables detecting potential
differences both between explanations of different learners and between explanations of
learners before and after interventions.

Conclusions, limitations, and outlook

We visualised and measured the fine-grained structure of written explanations by lear-
ners and experts using network analysis. The analysed characteristics can be well inter-
preted as facets of the quality of explanations: the size of the maps as the size of the
explanation, the ratio of size and diameter as a measure of complexity, the number of
unconnected components as coherence, and the elements with high betweenness central-
ity as key elements of the explanation.

With a combination of qualitative and quantitative analysis of all measures, element
maps provide a good description of the quality of explanations based on their elementary
structure. The results are precise and objective based on the structural properties of
written scientific explanations. Where interpretations are necessary, we have made the
procedure transparent by assessing interrater reliability and judged it to be very good.
Each measure on its own is conceivable as a support for other procedures to shed
light on a facet of the quality of explanations. Thus, we argue that element maps add a
new, promising tool to known methods of analysing explanations. More precisely,
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element maps provide measures for characteristics of written texts that describe the
quality of an explanation precisely and objectively.

However, the current state of our tool is not without limits. The procedure has so far
only been used in the context of explanations of the optical phenomenon of apparent
depth with a limited number of participants. Explanations of other phenomena could
have other characteristics, which is why the procedure might have to be adapted accord-
ing to the specific context. Moreover, the application of our tool to other phenomena and
a discussion of its compatibility with corresponding research results is essential for exter-
nal validity. What is also still pending is the comparison of our approach with other
methods applied to the same sample. A convergence of both methods would also give
a better picture of validity. Our samples of the learners and the experts clearly also
entail certain limitations. The development of explanations of other phenomena
should therefore also be accompanied by a variation of relevant sample parameters,
such as age, as well as the task and support given to them. Varying the task can as
well unveil if participants may have confused instructional explanations with scientific
explanations. In order to address these limitations, we are currently investigating
written scientific explanations of an acoustic phenomenon by students aged 13–15 and
experts using our tool in parallel with the system of analysis by de Andrade et al.
(2019). Beside this, we aim to elaborate more on differences within the group of learners
and not only between experts and learners as well as proper interventions. Furthermore,
element maps are merely products of a text analysis and, thus, do not include other rep-
resentation (e.g. figures) used in explanations. Thus, integrating other representations
into the network analysis of text would be a fruitful extension of our method. Finally,
as it is with other assessment tools as well, our analysis of the written explanations -
even though it uses a relatively objective procedure - may be prone to biases towards
certain learners. Non-native speakers, students with dyslexia, or students with challenges
to express themselves in the „language of physics“ may be rated low despite an adequate
understanding. However, element maps - when used as a support for learning and not for
simply scoring students’ performance - can help students to overcome their challenges.

Nevertheless, according to our results, it is challenging for learners to reach a level of
expertise in one of the characteristics of explanation quality. Moreover, it is particularly
difficult to produce a comprehensive, high-quality explanation. A promising way to make
our process more economical for teachers and researchers alike lies in machine-learning
approaches (Zhai et al., 2020), which are becoming more and more popular in dealing
with explanations, not least using networks (Wulff et al., 2022). For example, identifying
entities and their synonyms based on word types (nouns, pronouns) can be automated
using example explanations of experts and learners. Further, identifying incorrect and
irrelevant elements can also be automatised. Once the elementary structure is extracted
in this way, it can be directly analysed, measured and visualised. This would also make
fine-grained analysis instantaneously accessible for direct feedback to the explainer.
For example, this would enable pointing out missing entities, missing or incorrect
relations between the entities or unrelated parts in the explanation while it is being
written. Then, the effectiveness of such direct feedback on the quality of explanations
could and should be investigated in science education research to test whether auto-
mation is helpful here. In addition, automation can support teachers in the formative
assessment of students’ explaining skills. For research purposes, automation has the
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advantage of being more economical, so larger samples of written explanations can be
studied. However, when using machine learning, for example, this also requires phenom-
enon-specific training to account for phenomenon-specific word meanings and features of
explanations. Manually extracting the elementary structure of large written explanations is
time-consuming, whereas the process of network visualisation and analysis is compara-
tively fast. In contrast, short explanations comprising only a few sentences can be visualised
quickly, even by hand, and thus offer the possibility of visualising the elementary structure.
Up to now, our tool is therefore intended instead for research purposes.

With element maps, it is possible to analyse student performance in each of the core
map characteristics, highlight the strengths and weaknesses of an explanation, and design
structured supports and interventions that build on the learners’ situation at baseline.
These skills are, for example, to know, identify, and name the relevant entities of both
the phenomenon at hand and the concerned theory. Furthermore, it is necessary to
connect these entities to build scientifically appropriate propositions and to arrange
these propositions around central aspects. Expert maps can potentially guide this process.

The tool offers the possibility to improve teaching by making appropriate recommen-
dations based on the individual characteristics of the explanation features. Furthermore,
if the procedure works well in other contexts, researchers could use element maps to
investigate, for example, whether specially designed instructions actually improve expla-
nation quality or which interventions influence which explanation characteristics. We
argue that using element maps to capture the elementary structure of explanations is
an important step towards improving the quality of explanations, which are an important
scientific practice and a central part of science learning across all levels, from primary
school to university.

Notes

1. For a mathematical description, see Freeman (1977).
2. In both maps, we have removed labels and arrowheads to focus on structural differences

rather than on content. All content information is still available for every map version.
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