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The potential of bioacoustics for surveying carrion insects
Elena Gorgevaa, James Robertsona, Sasha Vossb and Jurian Hoogewerffa

aNational Centre for Forensic Studies, University of Canberra, Bruce, Australia; bCentre for Forensic 
Anthropology, School of Social Sciences, The University of Western Australia, Crawley, Australia

ABSTRACT
Knowledge of the sequential cadaver colonization by carrion 
insects is fundamental for post-mortem interval (PMI) estimation. 
Creating local empirical data on succession by trapping insects is 
time consuming, dependent on accessibility/environmental condi-
tions and can be biased by sampling practices including distur-
bance to decomposing remains and sampling interval. To 
overcome these limitations, audio identification of species using 
their wing beats is being evaluated as a potential tool to survey and 
build local databases of carrion species. The results could guide the 
focus of forensic entomologists for further developmental studies 
on the local dominant species, and ultimately to improve PMI 
estimations. However, there are challenges associated with this 
approach that must be addressed. Wing beat frequency is influ-
enced by both abiotic and biotic factors including temperature, 
humidity, age, size, and sex. The audio recording and post- 
processing must be customized for different species and their 
influencing factors. Furthermore, detecting flight sounds amid 
background noise and a multitude of species in the field can pose 
an additional challenge. Nonetheless, previous studies have suc-
cessfully identified several fly species based on wing beat sounds. 
Combined with advances in machine learning, the analysis of bioa-
coustics data is likely to offer a powerful diagnostic tool for use in 
species identification.
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Introduction

Estimation of the post-mortem interval (PMI) is a key factor in criminal investigations 
involving human remains, as it informs the scope and direction of inquiry around 
a reconstructed timeline of a crime. Inaccurate estimation of the PMI can misdirect the 
investigation, waste resources and hinder lines of inquiry. Ultimately, this may play out in 
court if not recognized and potentially lead to unreliable evidence and/or contribute to 
a miscarriage of justice. PMI can be estimated based on the physiological changes in the 
body in the first 96 hours after death or by examining the carrion insects present on and 
around the body at the time of discovery1,2. Certain species of the order Diptera (true flies) 
associate with the body within minutes of death and remain in proximity until the late 
stages of decay. Adult, carrion breeding flies attend decomposing remains to lay their 
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offspring and, where immature specimens are collected from remains, these specimens 
can provide a timeframe for the length of time a body has supported their growth. Their 
lifecycle consists of four stages: eggs, larvae (also called maggots), pupae and adult (fly), 
and is facilitated by the environmental conditions, primarily temperature3–5. The time that 
it takes for their development under different temperature conditions has been docu-
mented for many commonly encountered species6–8. Such temperature-dependent 
development data are used to model growth rates and allow prediction of specimen 
age based on the thermal conditions under which the specimen developed. Hence, their 
lifecycle and development on the body in accordance with the environmental conditions 
are used to estimate the period of insect activity and PMI9. Additionally, the arrival and 
colonization of a body by species, known as insect succession, is orderly and predictable 
for a given geographic region and climatic conditions5,10. Knowledge of the expected 
insect succession patterns can provide a basis for estimating the time frame between 
death and colonization and combined with immature specimen age estimates can 
indicate a minimum PMI. In the late stages of decomposition, it is difficult to determine 
the oldest individuals of a single species, as often colonizing insects have completed their 
development. Thus, the community composition of all species present is instead used to 
predict the PMI based on knowledge of the predicted successional order11,12.

Many successional studies have been undertaken throughout the world to establish 
successional data for use in entomological estimation of PMI. However, the arrival of the 
different insect species on the body and their abundance is dependent on climatic 
conditions, seasonality, geographical location, and habitat13–16. For example, the com-
munity composition in agricultural land in Australia is significantly different to that of 
a bushland community17. This contrast is amplified by the season with some species 
acting as primary (early) colonizers in summer, while being secondary (subsequent 
colonizers) in other seasons or inactive altogether in the cooler seasons16,17. Certain 
species, such as the ‘hairy maggot blow fly’ Chrysomya rufiacies Macquart 1842 (Diptera: 
Calliphoridae), are known as both a primary and secondary colonizer depending on the 
geographical location18,19. The black soldier fly, Hermetia illucens Linnaeus 1758 (Diptera: 
Stratiomyidae), is universally known as a colonizer in the late stages of decay20, yet a study 
of pig decomposition in South Georgia observed the species from the first week of 
cadaver placement21. Since succession can be different in different locations, baseline, 
reference data used for estimation of PMI in legal proceedings should ideally be from the 
same geographical area22,23. Additionally, the individual conditions of the body, for 
example, presence of drugs24 or inaccessibility,10 can also impact insect arrival timeframes 
and ongoing association with the body. Consequently, baseline data of insect succession, 
should be established under the various conditions and parameters known to influence 
the colonization of decomposing remains for improved accuracy when calculating 
the PMI.

Sampling procedure and guidelines

Current procedures for building reference data of the carrion insect community includes 
invasive physical sampling of live and preserved larvae, fly capturing by sweeping, and 
subsequent laboratorial species identification25. The preserved immature specimens are 
used to determine the life stage at the time of discovery for the purpose of calculation to 
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the day they were deposited, in accordance with previously obtained experimental data. 
The adult and/or reared live specimens are used for developmental data and identifica-
tion using visual examination of key morphological features.

This physical and time-consuming approach is necessary and unavoidable at crime 
scenes but may introduce a component of error in data related timeframes due to 
investigator disturbance of the decomposition environment during collection. Using 
this method to conduct successional studies on a local and reproducible scale is also 
a challenge due to various concerns primarily associated with sampling design and time 
requirements. The sampling intervals can impact the data and community composition 
either by collecting an inadequate representative sample by under sampling, or even 
oversampling which can interfere with the population and consequently the related 
progression of decomposition/succession26,27. Manual trapping can introduce bias as 
only the flies present in the trap will be counted. Sudden drops in temperature can 
cause temporary immobilization for certain species that are only active in narrow tem-
perature ranges28. The temporary sampling intrusion may also interfere with the coloniz-
ing insect’s activity and mating behaviour. Visual surveying is also not always possible at 
isolated locations or where sampling access is restricted by replicating common death 
scenariosfor example, where a body is wrapped, concealed, placed in cars, or buried. In 
such studies, the data rely on all the species, or their remnants collected at the end of 
a trial.

The sampling method and subsequent analyses require practitioners to commit to 
long-term studies covering seasons and annual replication. According to Wallman and 
Archer29, there are 10 to 15 active practitioners in Australia and New Zealand. Limited 
researcher availability can result in inadequate replication and failure to sample all 
environmental, individual, and circumstantial impacts on insect lifecycles relevant to 
forensic cases26. The low number of practitioners also limits the research on spatial 
variability. This implies that forensic entomologists may need to rely on previously 
published data from different regions, yet such data may not be accurate or accepted 
in a court of law. For example, most successional data publications in Australia originate 
from the Eastern states and Perth30,31, while there are no published data from the 
Northern Territory; despite the significant variation in climate among these regions32. 
On a global scale, most research and publications originate from the USA33, while other 
countries are still in the process of establishing standardized protocols for the collection 
and use of carrion insects in legal cases34. The USA has been at the forefront of the field 
due to its experimental facilities that allow taphonomic research on human cadavers. 
Such facilities are now operational or launching in other part of the world, including 
Australia. Although, practitioners have raised the issue of interdependence between 
cadavers at the experimental sites26,35 as the ongoing access to nutrient resources 
promotes species richness and diversity, including a thriving population of opportunistic 
species36.

To address for these concerns, more studies need to be performed on human cadavers 
with long and time-consuming insect surveying, invasive manual capturing of individuals, 
and identification along with interpretation of their presence by experienced 
entomologists37. Recent advances in machine learning and audio processing offer an 
alternative methodology for obtaining such data that has the potential to minimize 
investigator disturbance of the body during surveying and reduce the heavy time 
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commitment of collection and identification. Here, we suggest the use of species-specific 
sound (‘buzzing’) and machine learning (ML) to identify species attending decomposing 
remains and thus, help forensic entomologists focus on the dominant species in the local 
area for further developmental studies, which could inform PMI estimations in local 
casework. In this paper, we review current knowledge on insect audio identification and 
discuss the potential for taphonomic insect database building.

History

The identification of insects using their sound is not a novel concept, particularly for pest 
control or prevention of fly-borne diseases. Its use was first mentioned in the publication 
of termite detection in 190938. Since then, an ever-increasing number of papers have been 
published with promising results for the detection of various insects’ species39,40. To 
assess if this method can be adapted to carrion flies for surveying, first there is a need 
to understand the mechanism of sound production and causes of species-specific sounds.

Sound production

Insect sound is defined by Potamitis et al.41, as the ‘muscle power contraction leading to 
mechanical vibration of the sound-producing structure and finally to acoustic loading of this 
source and sound radiation’. Dipterous flies, for instance, produce vibrational signals by 
beating the wings in the air42,43 using a coordinated system involving a set of power and 
steering muscles and the nervous system44. Dipteran wings are made of translucent, 
micro-thin chitin with interconnected veins45,46. Most fly wings are covered in small hairs 
on the surface, called microtrichia47. They also have hairs running longitudinally on the 
top of the wings and the bottom of the wings, increasing the wing surface area, and 
facilitating flight. The wings are connected to the flight power muscles either directly or 
indirectly. Synchronous power muscles activate as a response to neural input to generate 
upstroke and downstroke movement of the wings around their base48. These muscles 
require electrochemical flow of ions and therefore take time for activation. Similarly, 
structures are found in insects with larger wings, such as moths and butterflies.

Notably, smaller winged, flying insects, relative to body size (e.g. blow flies and bees), 
require faster wing beats to stay airborne and therefore use asynchronous flight muscles 
that operate on oscillatory stretching and contracting, after the initial neural input48,49. 
These highly coordinated and repetitive wing movements create a resonant system and 
therefore a predictable sound output49. The faster wing beating of such smaller winged 
taxa creates a higher frequency output. To the human ear, the difference of the wing beat 
frequency (WBF) is translated as the loudness and pitch of the source; for example, 
between the high-pitched buzzing of mosquitoes and the more resonant buzzing of 
the large blow fly. The swift rotation of the wings creates vorticity at the base of the wing, 
which travels along the surface and expels from the tip50,51. This vortex is known as the 
leading-edge vortex and enables both the lift and drag motion of the fly50,51. The larger 
the wings are, relative to the body, the greater the displacement of particles in the air 
which creates more powerful vortices, thus requiring less wing beats to sustain the insect 
in the air52,53.
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In addition to the influence of wing size relative to body size on WBF, an 
insect’s response to environmental stimuli can also alter WBF. The steering muscles 
are essential for dynamic stability flight and the insect’s response to environmental 
stimuli. They act indirectly on the wing hinges through mechanoreceptors to 
generate time-varying deformation in flight, and in turn changing the frequency 
output54. A comprehensive review of fly aerodynamics is available in a series of 
papers by Ellington55 and Dickinson44,50.

The wing beats of a fly cause a disturbance of the air particles which move in 
a back-and-forth motion in response to the compression and retraction of the 
medium (air) through which the insect flies. The pressure from each displacement 
causes the consecutive particles to be displaced, creating a wave. The wave is 
composed of a ‘fundamental’ frequency and overtones or harmonics (Figure 1). 
Harmonics are used to describe frequencies that are an integral multiple of the 
fundamental, while overtones are used to describe any frequency above the 
fundamental. The different overtone pattern is the result of the different physical 
properties of the sound producing source, which create a distinctive sound57. In 
the case of flies, the overtone pattern is influenced by the wing morphology, size, 
and structural properties, such as venation, hairs, and flexibility, and therefore 
contain species-specific information.

The amount of particle displacement in the air caused by the wings is determined by 
the force of the fly, which in turn is influenced by the size, sex, and age. However, the 
effect of some of those variables on WBF has not been systematically studied and remains 
conflicting between studies.

Figure 1. An example of a fly’s WBF output, illustrating the fundamental frequency and overtones. 
Spectrogram (top) and oscillogram (bottom) of a wingbeat of Lucilia cuprina wiedemann 1930 
(Diptera: Calliphoridae), generated in RStudio using seewave56 package.
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Sex

Sexual dimorphism is present among fly species, and this consequently creates differ-
ences in the WBF. The abdomen of the female fly is larger due to the biological and 
physiological factors related to reproduction, and to compensate for the larger body 
mass the wings are also larger. For example, the wing area of the female Lucilia 
sericata Meigen 1826 (Diptera: Calliphoridae) has been recorded as 16 mm2, while 
the male only at 13 mm253. Sueur et al.53, recorded the fundamental frequency 
and second harmonic for the males and females L. sericata and observed similar 
fundamental frequency but a higher second harmonic in the male. The fundamental 
frequency and second harmonic of the males was on average 195 Hz and 390 Hz 
respectively, while the female average at 191 Hz and 377 Hz53. This suggests that the 
fundamental frequency could be used as an indication of the species and the harmo-
nics as an indicator of sex, traits, or other communication cues. Other studies of the 
same species have reported a larger difference of 13 Hz58 and 23 Hz59 in the funda-
mental frequency of males and females. But for different species, such as the mosquito 
Aedes aegypti Linnaeus 1762 (Diptera: Culicidae), the reported difference between 
males and females is noticeable at more than 200 Hz difference60–62. The female 
produces a fundamental frequency of 664 Hz in free flight in the field, while the 
male at 982 Hz61. Laboratory recordings of the same species show a smaller difference 
and smaller WBF of 511 Hz for the female and 711 Hz for the male60. This intraspecies 
difference in fundamental frequency across studies may be the result of different 
environmental conditions. The opposite trend, where the female produces a higher 
fundamental frequency than the male, has been observed in Musca vetustissima 
Walker 1849 (Diptera: Muscidae)59.

Communication

Certain species of flies can also actively control their wings to convey a signal intended for 
a specific receiver43. However, most research to date has been focused on mosquitoes, 
which are not representative of the whole order Diptera. Examples of acoustic commu-
nication cues have been recorded in the form of harmonic convergence63–67, wing 
fanning58,68–71, wing buzzing72, wing flicking73 and wing vibrating with whole body 
waggle74. These acoustic communication cues last less than a minute74. Thus, the brief 
WBF change is insignificant for the purpose of fly identification. If other long-lasting 
communication cues are observed, similar to those found in bird communication, they 
should be accounted for in any classification model.

Age

The physiology of the fly changes from emergence until sexual maturation. The flight 
muscles and reproductive organs continue developing gradually the first few days75– 

77. For instance, the WBF of the mosquito Ae. aegypti increases by around 100 Hz in 
the first few days, starting just below 400 Hz and increasing close to 500 Hz on day 
four76. The WBF then stabilizes until day 10 and afterwards decreases again, caused 
by the consumption of finite energy78. In a more recent study79, the WBF increase 
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was observed to subtly increase until week 3. Similar increases in WBF with age have 
been noted in other flying insects, such as the rice leafroller moth80. The increase in 
WBF can also be associated with improved capability of flight and sexual 
maturation58.

Size

Body size and wingspan determine the number of wing beats needed to produce lift and 
maintain in the air. Byrne et al.81, and Burkart et al.82, recorded the sound of flies and bees, 
respectively, and found a negative correlation between the body size and WBF. Larger 
flies produced a lower WBF, and smaller flies produced a higher WBF. This was also 
observed in bumble bee species83, as well as bee colonizes where the large queen 
produced a lower WBF than the smaller workers84. However, flies weighing below 30  
mg did not fit in this general model as they seem to have adapted a different flying style 
to account for their exceptionally small size81. Other studies found no difference in WBF 
between mosquitoes of different sizes62,85 within a species, however these studies 
explored a relatively narrow size range not representative of all sizes found in nature. 
Conversely, studies of different mosquito species found that the larger flies generated 
higher wing beat frequency than the smaller flies79,86. While the size of the mosquitoes is 
not reported in these studies, the study of Byrne et al.81, counted the mosquito, Ae. aegypti 
in the category below 30 mg.

Ultimately, the size of the wings and the amount of pressure they can tolerate from the 
body of the fly will determine the wing loading ratio81,87. It is calculated by the division of 
the fly’s body mass (m), measured in grams over the total wing area (S), measured in 
square centimetres, shown in Equation 1. 

WL ¼
m
S

(1) 

This means that flies with a larger body relative to wing area will compensate by 
beating the wings more frequently in comparison to flies with smaller body and same 
wing area. This has been experimentally supported by loading a fly with a nylon thread 
and observing an increase in WBF to account for the extra weight76.

Sound propagation

Sound attenuates as a result of atmospheric absorption or reflection on obstacles in the 
environment, and distance from the sound source88–93. The largest acoustic obstacle in 
the environment for flies is leaves, dispersing the energy of the sound wave88,94. In 
addition, changes in temperature, humidity, wind speed and the density of vegetation, 
can further attenuate the acoustic signal. The amplitude of the sound wave decreases 
with the increase in distance from the source by a factor of 6 dB per metre94. As the 
amplitude of the fly sound is already small, such an amount of attenuation will limit the 
efficiency of acoustic communication in nature. It has been suggested that this could 
result in fly adaptations and therefore acoustical geographic separation95. The degree of 
attenuation can also impact the quality and quantity of acoustic data collected in nature.
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The orientation of a receiver around the sound source is also important for the 
perception of sound96. The sound radiation of the wing beats in the air changes 
around the fly as a result of the vortices created during upstroke and downstroke 
movements. The fundamental frequency is known to have the highest energy output 
and that is true when perceiving the sound from the front of the fly53. Sueur et al.53, 
found that when the microphone is positioned at the sides of a fly species, 
L. sericata, the air movement results in the second harmonic displaying the highest 
amplitude. They argue that the lack of knowledge of how sound radiates relative to 
position has led earlier research to disagree upon a fundamental frequency of 
certain species53. In hovering flight, the fundamental frequency emits a dipole 
radiation pattern, while the second harmonic emits a monopole radiation pattern, 
thus displaying higher amplitude on the sides97. At the rear of the fly, however, the 
frequency output is a combination of the flight tone and unstructured frequency 
output. This is a result of the complicated wing motions and air vortices that shed 
from the tip of the fly’s wing44,52. Klopsch et al.97, observed the same sound field of 
dipole fundamental and monopole second harmonic for Calliphora erythrocephala 
Macquart 1834 (Diptera: Calliphoridae), but in their study the fundamental frequency 
preserved the highest amplitude in all directions. Similarly, the small mosquito Ae. 
aegypti shows no radiating changes and a dominant fundamental in all directions60. 
The size of the experimental species may play a significant role in the sound 
radiation patterns as the shedding of the vortices has been observed to be different 
among insects of different sizes98. This should be further explored for the forensically 
important species as flies as in the wild are rarely flying in a straight trajectory; they 
manoeuvre to avoid obstacles and accelerate and decelerate for take-off and land-
ing, particularly around a cadaver.

Temperature

Temperature changes the air density and consequently the aerodynamic support. At 
higher temperatures, the air particles are more dispersed, reducing the flight performance 
of the fly. It is expected that the flies will compensate by increasing their WBF linearly with 
the increase in temperature99,100. Although this general statement does not consider the 
various mechanisms of thermoregulation adapted by insects. The increase in WBF will 
have a cooling effect on the large surface of the smaller flies but warming effect on the 
small surface of the larger flies as the thoracic heat gained from the muscles will exceed 
the amount of cooling on the surface101. Therefore, the smaller flies are expected to 
increase their WBF to cool at high temperature, while the larger flies are expected to 
minimally increase the WBF or slowdown their activity all together102,103.

The relationship between WBF and temperature has been acknowledged in many 
research papers76,101,102,104,105. Unwin and Corbet101 observed a linear increase of the 
WBF and temperature for Calliphora vicina Robineau-Desvoidy 1830 and Musca spp. 
(Diptera: Calliphoridae and Muscidae respectively). The change is not reported as a rate 
per ºC; although it is evident from the graphs in their article that the change is steeper for 
the smaller Musca spp., than the larger C. vicina. For the even smaller fly, the mosquito Ae. 
aegypti, the change reported is up to 13 Hz/ºC79,85.
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Moisture

Moisture affects the air density and again the flight performance. Depending on the 
micro-structure and material of the wings, small air bubbles can be trapped to provide 
a surface for water repulsion to a certain degree and direct the water drops away from the 
fly47,106,107. The degree of wettability is the measurement of the contact angle between 
water droplets and the surface of the wings108. A recent study of three dipteran species, 
among which are the forensically important, L. sericata and Chrysomya marginalis 
Wiedemann 1830 (Diptera: Calliphoridae), determined unequal water permeability109. 
L. sericata wings showed hydrophobic properties, while C. marginalis exhibited strongly 
hydrophilic behaviour109. Water permeability of the wings can increase the mass of the 
wing and the wing load of the fly, and subsequently it can shift the resonant system. 
Besides the direct impact of the raindrops, the increase in humidity following rainfall may 
affect the wing indirectly by demanding an increase in frequency and power to maintain 
in the air. Some studies of mosquitoes reported an increase in WBF with the increase in 
humidity, albeit minor104,105. It is worth noting that there are studies that have investi-
gated the effect of the relative humidity on flight activity110,111, but only a few studies are 
available on the effect of humidity on WBF.

Insect audio classification

Despite the WBF variations caused by the internal and external variables, practitioners 
have managed to successfully classify and identify different species of insects. Most 
studied are the singing insects: cicadas (Hemiptera)112–117, katydids 
(Orthoptera)116,118,119, and crickets (Orthoptera)115,120, and the agriculturally and health 
important: bees (Hymenoptera)102,121,122, and mosquitoes (Diptera)100,116. The singing 
insects produce distinctive sounds based on dedicated sound producing structures123, 
so they will not be discussed here. Bees and mosquitoes produce WBFs like that of 
forensically important fly species. In the absence of published literature that investigated 
the forensically important fly species, bees and mosquitoes are the most suitable analo-
gues for developing a classification system.

The general workflow for developing a classifier includes data collection and 
processing, feature extraction and selection, classifier training, and evaluation. For 
audio classification is it the extraction of suitable audio features that will determine 
the merit of the classifier124. The audio features, meaningful acoustic properties of the 
sound source, can be as simple as the fundamental frequency, or more complex 
transformations, such as those used in human speech recognition systems, for exam-
ple in Siri and Alexa. Transformations convert the sound waveform to a compact and 
meaningful representation that shows the potential discriminative properties of the 
different sound sources125. The extraction and representation of the audio features can 
be completed in several domains, most used are the temporal, spectral, and cepstral 
domain126. Temporal features are the easiest and fastest features to compute as they 
are extracted directly from the time domain and consequently do not require any 
transformation126. They are a useful indicator of a signal within noise-free recordings 
and thus can be used to reduce data storage. Spectral features are the largest group of 
features that characterize the frequency content of the signal. Cepstral features are 
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more complex and require more computation as they are extracted from the log 
magnitude of the frequency spectrum. Arbitrary use of all the different features can 
lead to misclassification based on overlapping or irrelevant features to the sound of 
interest127 and since there is no set of features that can be applied to different types 
of sound with equal success rate, finding the right audio feature/s is solely dependent 
on the target sound. As the wing beat of small flies preoccupies the low-frequency 
range where many other background noises are present, some features, particularly 
temporal features, can be ineffective, unless the audio undergoes filtering and proces-
sing. To overcome this issue, practitioners have developed different types of opto- 
acoustic sensors that capture the wing beats as they move through a receptor as they 
do not suffer from background noise100,128. Besides dipteran species, optical sensors 
are well suited for aphid species as the sound they produce has even lower frequency 
and amplitude. Attributing to the success, these sensors are now available for com-
mercial use, an example is the Wingbeat Recorder® (Insectronics, Greece). This sensor 
was used to record six aphid species and later classify to species with accuracy of 80%, 
based on multiple audio features129.

Extracted audio features are then fed into an appropriate machine learning (ML) 
algorithm, which is responsible for generating identification predictions. The approach 
of the ML algorithm can be based on supervised or unsupervised learning. Supervised 
learning requires prior training with labelled data to make a prediction output on new 
data. Different models are available and have been successfully used in the literature, 
including decision trees, random forest (RF)84, support vector machine (SVM)130,131, 
artificial neural networks (ANN), including deep learning models57,132,133, and others. 
Unsupervised learning does not require labelled data; instead, it explores the entire 
dataset and looks for patterns or relationships between the data points. This approach 
has failed to produce an effective identification method of four Dipteran flies using the 
fundamental frequency in our earlier work134. Although, it outperformed the supervised 
models in identification of mosquito species using multiple audio features135. Some 
studies have compared multiple machine learning algorithms on the same dataset, yet 
no single algorithm consistently outperformed the others84,136–138. Regardless, the goal of 
the model should be aligned with the capabilities of the algorithm. Some algorithms, such 
as the SVM, can perform well with small data quantity, while others, such as ANN, require 
large datasets. There is also a trade-off between interpretability and accuracy. Regression 
based models are generally simpler and the relationship between the sample points can 
be interpreted, while other more complex models, such as the neural network, are harder 
to interpret and may be used with a black-box approach, but generally offer better 
accuracy. Therefore, the choice of algorithm is an iterative process and should be based 
on the desired outcome, complexity of the problem, data amount, and computing time.

Moreover, commercially available algorithms and software are available and promote 
the building of a self-classifier, however, often revolving around the detection of clear and 
repetitive sound patterns or vocalizations. For instance, Kaleidoscope Pro (Wildlife 
Acoustics Inc., Concord, MA, USA) can cluster datasets based on predefined frequency 
range, duration, and inter-syllable gap of the signal. While this can be effectively applied 
for birds, bats, cicadas, and crickets, it is ineffective for the wing beats of flies. Flies do not 
produce syllables or precisely timed bursts of signal, and the duration of their wing beats 
is dependent on the distance travelled.
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Research in the field

Bees have been the target of acoustic monitoring research as a non-destructive method 
for observing the health of the colony and early prevention of population decline139. One 
study successfully classified three bee species with precision rates between 73% and 88%, 
and one hornet species, the Japanese yellow hornet, Vespa simillima xanthoptera Smith 
1868 (Hymenoptera: Vespidae), with a precision rate of 100%121. The authors used SVM 
and considered the fundamental frequency and Mel Frequency Cepstral Coefficients 
(MFCC), which is a psycho-acoustic feature, regularly used in human speech processing. 
The average fundamental frequency of the hornet, around 100 Hz, is lower than that of 
the bees allowing for more accurate recognition within its own frequency range. The 
WFBs of the bees in their study overlap between 200 and 300 Hz, and therefore there are 
some misclassifications between species. Another study140 also considered the funda-
mental frequency and MFCC, and tested multiple algorithms, namely logistic regression, 
SVM, RF, and decision trees. They successfully classified the flight and sonification sounds 
of 15 bee species with highest accuracy of 69% when multiple ML algorithms are 
combined140. Moreover, Gradisek and colleagues84 developed an internet and mobile 
application for recognition of bumble bee species with a reported accuracy of 86%. Public 
use of such applications allows the algorithm to strengthen its recognition capability and 
accuracy rate by reinforced learning. However, the quality of the recordings can be an 
issue. Generally, the fundamental frequency of all flies’ ranges from 100 to 1000 Hz141 and 
in this range there are many background sounds. This is why some researchers choose to 
record the training data in noise-controlled environments or in specifically designed and 
acoustically treated recording studios. In such instances, the accuracy can reach up to 
99%142. However, during field studies, the noise levels are more challenging and often 
beyond the researchers’ control. Using optical sensors, the bumble bee species were 
recorded and classified with an accuracy of 88%, based only on the fundamental 
frequency83.

Mosquitoes have also been the focus of bioacoustics research to aid in the reduction of 
mosquito-borne diseases and to develop a targeted pesticide spraying method that 
would not be destructive to other favourable insects. Generally, the fundamental fre-
quency of mosquitoes starts around 500 Hz60, noticeably higher than that of bees and 
most other flies starting around 150 Hz59, therefore the accuracy rate of mosquito classi-
fication is relatively higher. Several studies have explored acoustic classification of mos-
quitoes. One study successfully classified eight mosquito species of similar morphology 
with an accuracy of 79%143. Similarly, other studies successfully classified mosquito 
species with overlapping fundamental frequencies138 and accuracy of 94% and 93%100. 
González-Pérez et al.138, considered multiple audio features including the fundamental 
frequency, spectral power density, and MFCC, and using multiple algorithms, of which 
deep neural network yield the best results. Batista et al.100, used the fundamental 
frequency and circadian rhythm to adjust the probability of species appearance. Some 
studies on mosquitoes have also made their audio databases publicly available, promot-
ing collaborative research62,143,144. Using optical sensors, Ouyang et al.135, recorded three 
mosquito species, extracted 12 features from the cepstrum and tested supervised and 
unsupervised machine model with 80% accuracy of genus identification. An earlier study, 
which also used optical sensors to record five mosquito species, achieved an accuracy of 
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73% when used the fundamental frequency and harmonics from the spectrum to train an 
artificial neural network145.

Despite considerable interest throughout the years, insect bioacoustics research 
did not progress until the post-2000 due to the absence of recording equipment 
that could capture the low amplitude insect sound while neglecting the high 
amplitude background noise. The advancement of recording technology meant 
that the issue of background noise and the other previously reported concerns in 
bioacoustics research are no longer a hindrance. Background noise can now be 
easily reduced with directional microphones, frequency filters, amplification adjust-
ment and the use of optical sensors. Large data storage is also available, providing 
researchers the means to generate, store and share large datasets, as well as crowd 
source data, albeit subject to quality146. Still, further research is required to under-
stand the effect of environmental conditions on WBF and its impact on the recogni-
tion capabilities, as well as the value of different audio features for species 
identification. Such research will greatly benefit from collaboration between practi-
tioners from various disciplines, namely forensic entomologists, and computer 
scientists.

Outlook

There are numerous potential benefits to using an audio identification system in 
carrion insect surveying. Primarily, offering a non-invasive method of data collection 
that may deliver uninterrupted and continuous monitoring regardless of the external 
conditions. Data processing is considerably faster than manual identification, further 
reducing the need of long-term species preservation. Once established, it would 
require minimal human supervision, enabling more widespread studies in less acces-
sible locations as often encountered in homicides. It can be deployed seasonally or 
annually to provide a timeline of the species assemblage and preference of weather 
conditions. Lastly, it may offer more unified approach to surveying the flies whilst 
reducing the bias in selective capturing of anticipated species. While this tool is not 
designed to replace practitioners, it can assist them in identifying locally significant 
species and prioritize further studies on those species.

In summary, there is strong evidence in the literature for the potential for audio 
recordings of insect flight to be used as a diagnostic tool to identify species, based on 
analysis of WBF. Bioacoustics research involving insects has been used in numerous 
applications; however, no studies are currently published that implement this in the 
forensic entomological workflow. Factors impacting WBF, such as environmental vari-
ables, sound radiation patterns, and wing-related communication cues, present chal-
lenges in field applications relating to forensic succession data. However, further 
development of the underlying data and processing/analysis techniques (e.g. machine 
learning) are likely to address these challenges, establishing classification parameters and 
greatly refine classification accuracy for field application. Upon review, the potential for 
bioacoustics monitoring in the field is substantial and the approach offers considerable 
advantages over traditional field monitoring in a forensic context. Further research is 
warranted to advance the development and implementation of the approach as a viable 
diagnostic tool for use in forensic studies of carrion surveying.
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