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a b s t r a c t

Novel high-throughput deep sequencing technology has dramatically changed the way that the functional
complexity of transcriptomes can be studied. Here we report on the first use of this technology to gain
insight into the wide range of transcriptional responses that are associated with an infectious disease pro-
cess. Using Solexa/Illumina’s digital gene expression (DGE) system, a tag-based transcriptome sequencing
method, we investigated mycobacterium-induced transcriptome changes in a model vertebrate species,
the zebrafish. We obtained a sequencing depth of over 5 million tags per sample with strong correlation
between replicates. Tag mapping indicated that healthy and infected adult zebrafish express over 70%
of all genes represented in transcript databases. Comparison of the data with a previous multi-platform
microarray analysis showed that both types of technologies identified regulation of similar functional
groups of genes. However, the unbiased nature of DGE analysis provided insights that microarray analy-
ifferential expression
ranscript isoforms

sis could not have achieved. In particular, we show that DGE data sets are instrumental for verification of
predicted gene models and allowed us to detect mycobacterium-regulated switching between different
transcript isoforms. Moreover, genomic mapping of infection-induced DGE tags revealed novel transcript
forms for which any previous EST-based evidence of expression was lacking. In conclusion, our deep
sequencing analysis revealed in depth the high degree of transcriptional complexity of the host response
to mycobacterial infection and resulted in the discovery and validation of new gene products with induced

ividu
expression in infected ind

. Introduction

Cellular identity and function is determined by the tran-
criptome: the complete repertoire of expressed RNA transcripts.
evelopment and disease processes in multicellular organisms are
overned by complex variations in transcriptional activities. Deci-
hering the functional complexity of transcriptomes is extremely
hallenging, especially since recent studies indicate that much
ore of the genome is transcribed than previously thought and

hat the majority of genes is transcribed in a bidirectional man-

er (Carninci et al., 2005; Katayama et al., 2005; Yelin et al., 2003).
ecent advances in the development of ultra high-throughput deep
equencing technologies are making a huge impact on genomic
esearch. These next generation sequencing systems, such as
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the Solexa/Illumina Genome Analyzer and the ABI/SOLiD Gene
Sequencer, can sequence in parallel millions of DNA molecules
derived directly from mRNA, without the need to use bacterial
clones (Cloonan and Grimmond, 2008; Morozova and Marra, 2008;
Wang et al., 2009). The direct sequencing yields libraries of short
sequences (25–50 nucleotides), referred to as RNA-Seq data or
Digital Gene Expression (DGE) data. Sequencing-based methods
generate absolute rather than relative gene expression measure-
ments and avoid many of the inherent limitations of microarray
analysis (Irizarry et al., 2005; Pedotti et al., 2008; t Hoen et al., 2008;
Wilhelm and Landry, 2009), which has been the most commonly
used technology for transcriptome profiling over the last decade.

The first results of transcriptome profiling using next generation
sequencing technology have recently been published (Cloonan et

al., 2008; Lister et al., 2008; Mortazavi et al., 2008; Nagalakshmi
et al., 2008; Sultan et al., 2008; Wilhelm et al., 2008). These RNA-
Seq studies were based on different procedures starting either with
mRNA fragmentation or with cDNA synthesis that is followed by
fragmentation. Dependent on the protocol used, information on

http://www.sciencedirect.com/science/journal/01615890
http://www.elsevier.com/locate/molimm
mailto:a.h.meijer@biology.leidenuniv.nl
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ranscript directionality, which is useful for annotation and detec-
ion of antisense transcription, was retained or not (Shendure,
008). RNA-Seq studies of yeasts detected transcription of 92–99%
f all known genes and demonstrated that most of the genome
equence is transcribed (75% in Saccharomyces cerevisiae and >90%
n Saccharomyces pombe) (Nagalakshmi et al., 2008; Wilhelm et
l., 2008). Evidence of transcript heterogeneity and of novel tran-
cribed regions, including non-coding and antisense transcripts,
as obtained. Furthermore, a genome-wide regulation of splic-

ng was revealed (Wilhelm et al., 2008). Bioinformatical analysis
f RNA-Seq data needs to deal with mapping of short reads to the
enome, issues of multi-mapping, and mapping of splice-crossing
eads. The analysis becomes even more challenging when dealing
ith the more complex genomes of vertebrate species. Never-

heless, the first applications of RNA-Seq methodology to mouse
nd human have now already provided rich information for new
r revised gene models. By indicating the presence of additional
romoters, alternative exons, alternative 3′ UTRs, non-coding tran-
cripts and bidirectional transcripts, these studies have made it
lear that genome annotation is far from complete (Cloonan et al.,
008; Morin et al., 2008; Mortazavi et al., 2008; Pan et al., 2008;
osenkranz et al., 2008; Sultan et al., 2008; Wang et al., 2008).

An alternative to RNA-Seq is the use of tag-based transcriptome
equencing methods, such as serial analysis of gene expression
SAGE), which generates short signature sequences (tags) for the
′-end regions of mRNA transcripts (Harbers and Carninci, 2005;
elculescu et al., 1995). SAGE-derived technologies include MPSS

massive parallel signature sequencing) and PMAGE (polony mul-
iplex analysis of gene expression) that rely on amplification of
′ tag sequences on microbeads (Brenner et al., 2000; Kim et al.,
007). Other useful tag-based sequencing technologies include the
′-SAGE or CAGE (cap analysis of gene expression) methods that
etermine the 5′-ends of mRNAs by oligo-capping or cap-trapping
Harbers and Carninci, 2005; Hashimoto et al., 2009). The classi-
al LongSAGE technique is based on the cleavage of cDNA with two
estriction enzymes, an anchoring enzyme (commonly NlaIII, which
uts at CATG sites) and a tagging enzyme (MmeI) cutting 17 bp
ownstream of the anchoring enzyme’s recognition site. Although
AGE, LongSAGE and similar SuperSAGE methods have greatly con-
ributed to transcriptome analysis, their application has previously
een limited by laborious ditag formation and concatemer cloning
rocedures and by the costs and throughput level of sequencing
teps. However, SAGE-derived methods, which are particularly suit-
ble for quantitative expression analysis, are back into view with
ext generation sequencing technology that entirely eliminates the
eed for tag cloning and provides a much greater sequencing depth.

Here, we used the second Illumina Genome Analyzer platform
GA II) to perform a SAGE-derived Digital Gene Expression (DGE)
nalysis of the zebrafish transcriptome response to mycobacterium
nfection. The zebrafish-mycobacterium model recapitulates hall-

ark features of human tuberculosis (Lesley and Ramakrishnan,
008; Swaim et al., 2006). We have previously performed a multi-
latform microarray study showing that mycobacterium-infected
ebrafish express many homologs of human immune response
enes and genes that have previously been implicated in the
esponse to mycobacterial infection (Meijer et al., 2005). We also
bserved induction of genes with previously unknown relationship
o the immune response, indicating that the use of the zebrafish-
ycobacterium model can assist functional annotation of genes and

rovide new leads in the investigation of mycobacterial pathogen-
sis. The previous study was limited by contents of commercially

vailable microarray designs, whereas the DGE analysis reported
ere provides wide unbiased coverage of the entire transcriptome.
omparison of DGE and microarray data revealed a substantial
egree of overlap in differentially expressed transcripts as well
s technology-dependent differences, indicating the value of using
ology 46 (2009) 2918–2930 2919

two complementary transcriptome analysis methods. Furthermore,
by mapping our DGE tag data onto transcript databases and onto the
genomic sequence we could show that many alternative transcript
forms and novel transcripts are disease-specifically regulated, infor-
mation that could not have been obtained by microarray analysis.

2. Materials and methods

2.1. Zebrafish husbandry and infection experiments

Zebrafish were handled in compliance with the local animal
welfare regulations and maintained according to standard proto-
cols (http://ZFIN.org). The infection experiment was approved by
the animal welfare committee (DEC) of Leiden University. Adult
male zebrafish were infected by intraperitoneal inoculation with
approximately 1 × 103 Mycobacterium marinum bacteria as previ-
ously described (Meijer et al., 2005). Four of the RNA samples used
for this study were identical to those from our previously published
chronic infection study (control fishes c1, c2 and infected fishes
i1, i2) (Meijer et al., 2005). Four additional RNA samples (control
fishes c3, c4 and infected fishes i3, i4) were from an independent
M. marinum E11 infection experiment performed under similar con-
ditions. All four infected fish were sacrificed when they showed
overt signs of fish tuberculosis, including lethargy, skin ulcers and
extensive granuloma formation in organs, such as liver and kid-
ney. Histological examination of fish from the same experiments
confirmed that the pathology of infected fish corresponded to fish
tuberculosis (Swaim et al., 2006; van der Sar et al., 2004) and that
no characteristics of the disease were present in the control fish.

2.2. RNA isolation

Fish were snap frozen in liquid nitrogen, stored at −80 ◦C, and
homogenized in liquid nitrogen using a mortar and pestle. Portions
of 50–100 �g of powdered tissue were used for extraction of total
RNA with 1 ml of TRIZOL® Reagent (Invitrogen) according to the
manufacturer’s instructions. The RNA samples were incubated for
20 min at 37 ◦C with 10 units of DNaseI (Roche Applied Science)
to remove residual genomic DNA prior to clean up using RNeasy
columns (Qiagen). The integrity of the RNA was confirmed by Lab-
on-chip analysis using the 2100 Bioanalyzer (Agilent Technologies).
The samples used had an average RIN value of 9.5 and a minimum
RIN value of 8.9.

2.3. Digital gene expression-tag profiling (DGE)

For DGE analysis RNA samples from the four control fish (c1,
c2, c3, c4) were pooled, and RNA samples from the four infected
fish (i1, i2, i3, i4) were pooled. Before pooling the individual RNA
samples had been checked by microarray analysis for correlation
between biological replicates. From each pool duplicate libraries for
tag sequencing were prepared in order to assess technical repro-
ducibility. Tag library preparation was performed using the DGE:
Tag Profiling for NlaIII Sample Prep kit from Illumina according
to the manufacturer’s instructions. In brief, 1 �g of total RNA was
used for mRNA capture using magnetic oligo(dT)beads. First- and
second-strand cDNA was synthesized and bead-bound cDNA was
subsequently digested with NlaIII. Fragments other than the 3′

cDNA fragments attached to oligo(dT) beads were washed away and
a GEX NlaIII adapter was ligated to the free 5′-end of the digested
bead-bound cDNA fragments. The GEX NlaIII adapter contains a

restriction site for MmeI which cuts 17–18 bp downstream from the
NlaIII site, thereby releasing 21–22 bp tags starting with the NlaIII
recognition sequence, CATG. A second adapter (GEX adapter 2) was
ligated at the site of MmeI cleavage, and the adapter-ligated cDNA
tags were enriched using PCR-primers that anneal to the adaptor

http://zfin.org/
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ing analysis. We sequenced two DGE libraries (technical duplicates)
of a pool of four control fish (cont-a, cont-b) and two DGE libraries of
a pool of four mycobacterium-infected fish (inf-a, inf-b). The total
count number of tags per library ranged from 5.3 to 8.4 million
and the number of tag entities with unique nucleotide sequences
920 Z. Hegedűs et al. / Molecular

nds. The resulting 85 bp fragments were purified from a 6% acry-
amide gel. Purity and yield were checked by Lab-on-chip analysis
sing the 2100 Bioanalyzer (Agilent Technologies). A total of 6 pmol
f cDNA per tag library was used for cluster generation on individ-
al lanes of Illumina’s 1.4 mm channel flow cell, and sequencing
y synthesis was performed using the Illumina Genome Analyzer II
ystem (ServiceXS, Leiden, the Netherlands) according to the manu-
acturer’s protocols. Image analysis, base calling, extraction of 17 bp
ags and tag counting were performed using the Illumina pipeline.
he raw data (tag sequences and counts) were deposited in the GEO
atabase under submission number GSE14782.

.4. Statistical evaluation of DGE libraries

The tag entities and count numbers of DGE libraries from con-
rol and infected fish were collected and summarized by custom
erl and PHP scripts. Statistical comparison was performed using
he Bayesian method described by Lash et al. (2000) with the soft-
are tool available from the SAGEmap resource. We accepted the

hange of a tag expression as significant if the chance of a false pos-
tive hit was less than 5% (P < 0.05). The correlation of the detected
ount numbers between parallel libraries was statistically assessed
y calculation of Pearson correlation coefficient using the built-in
unction of Microsoft Excel.

.5. Mapping of DGE tags

For mapping of DGE tags to different transcript databases or to
he zebrafish genome we created virtual libraries containing all the
ossible 17 bases length sequences of these resources located next
o an NlaIII restriction site. For transcript mapping we used the
niGene (Danio rerio build 105), Refseq (2007 07) and Ensembl

ZFISH7.49) transcript databases. For genomic mapping we used
he native and the masked form of the zebrafish genome ver-
ion Zv7, which were downloaded from the FTP server of the
nsembl database. For mapping against UniGene transcripts we
sed the file containing the sequence with the longest region of
igh-quality sequence data from each UniGene cluster. For mon-

toring the mapping events on both strands, both the sense and
he complementary antisense sequences were included in the data
ollection. Information on the position of polyadenylation signals
nd the length of polyadenylation tails was also collected from
he transcript databases. Virtual tag libraries and the DGE libraries
ere uploaded into an in house developed data warehouse using
relational database engine for mapping of DGE tags onto virtual

ibraries. Only perfect matches over the entire 21 bp length of the
7 bp tag plus the 4 bp NlaIII recognition site were allowed. Dur-
ng the mapping process the system tracked the so-called multiple

apping events where tags detected in the experiments could be
ssigned to more than one transcript or to more than one position
n the genome.

.6. Microarray analysis

Agilent microarray analysis was performed using a custom
esigned platform (GEO submission number GPL7735) with pre-
iously described conditions for labeling, hybridization, scanning
nd feature extraction (Stockhammer et al., 2009). Samples from
ontrol fish (c1–c4) were labeled with Cy3 dye and samples from
nfected fish (i1–i4) with Cy5 dye. After feature extraction, data
ere imported into Rosetta Resolver 7.1 (Rosetta Biosoftware, Seat-
le, Washington) and subjected to default ratio error modeling.
atio results from four control fish vs. four infected fish (c1 vs. i1,
2 vs. i2, c3 vs. i3, c4 vs. i4) were combined using the default ratio
xperiment builder. Data were analyzed at the level of UniGene
ology 46 (2009) 2918–2930

clusters (UniGene build #105). Microarray data were submitted to
the GEO database under series GSE14782.

2.7. RT-PCR

Real-time quantitative RT-PCR (qPCR) was performed as previ-
ously described (Stockhammer et al., 2009). All reactions were done
in duplicate. For normalization ppial (peptidylprolyl isomerase A
like), which was unaffected by mycobacterium infection, was taken
as reference. Sequences of forward and reverse primers are shown
in Supplementary Table 1.

RT-PCR verification of the mycobacterium-induced novel tran-
script variant of the zgc:112143 gene was performed using the
SuperScript III One-Step RT-PCR System with Platinum Taq DNA
Polymerase (Invitrogen). A primer overlapping with one of the
significant tags located downstream of the known 3′ transcript
end was used for the reverse transcription reaction (CCAGACACT-
CAAACAGACATG). The same primer was subsequently used in the
PCR amplification step, in combination with a forward primer in
exon 3 of the known transcript (ATGAGCGAGTTACCAACGGA). The
resulting PCR product was sequenced using the sequencing service
of ServiceXS (Leiden, The Netherlands) and submitted to GenBank
under accession number FJ754358.

3. Results

3.1. Basic quantitative parameters and reproducibility of DGE
library sequencing

In previous microarray studies we have show that mycobac-
terium infection of zebrafish results in a highly reproducible host
response at the transcriptome level (Meijer et al., 2005; van der Sar
et al., 2009). Here we have pooled biological replicates from these
previous studies to make representative samples for deep sequenc-
Fig. 1. Distribution of tag entities and total tag counts over different tag abundance
categories. Categories of tag abundance were assigned by setting the lower limit of
the count number that includes a tag as a category member. The percentages of total
tag counts (filled squares) and number of different tag entities (open squares) per
category are plotted on a logarithmic scale.
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ig. 2. Correlation analysis of DGE libraries. Correlation charts are shown of the tag
nd cont-b) and from mycobacterium-infected fish (inf-a and inf-b). Dots in the char
eft corner of each plot.

anged from 0.8 to 1.1 million (Supplementary Table 2). As shown
n Fig. 1, the distribution of tag entities and total tag counts over
ifferent tag abundance categories showed very similar tendencies
or all four DGE libraries. The lowest abundant tags that were still
onsistently detected in all four libraries occurred at a frequency of
elow 1 count per million. To further investigate the reproducibil-

ty of DGE library sequencing we performed correlation analyses of
ll four possible sample combinations (cont-a vs. cont-b, inf-a vs.
nf-b, cont-a vs. inf-a, and cont-b vs. inf-b) (Fig. 2). Pearson correla-
ions for the parallel libraries (cont-a vs. cont-b and inf-a vs. inf-b)
ere 0.99 and 0.95, indicating the high technical reproducibility of

he DGE method. In contrast, Pearson correlations for control vs.
nfected library pairs were much lower (0.77 and 0.81), consistent

ith a large effect of mycobacterium infection on the host transcrip-
ome as previously observed in microarray experiments (Meijer et
l., 2005; van der Sar et al., 2009).
.2. Efficiency of tag mapping to transcript databases

Mapping the tags to known transcripts is the most efficient way
o reveal the molecular events behind DGE profiles. In our study
counts of the four possible combinations of DGE libraries from control fish (cont-a
icate individual tag entities. Pearson correlation coefficients are shown in the upper

the tag sequences of the four DGE libraries were mapped to the
zebrafish transcript datasets of the UniGene, RefSeq and Ensembl
databases and found to match with over 70% of all sequence entries
in these databases (Table 1). The mapping efficiency increased sig-
nificantly as the count number of tags increased. Specifically, a 50%
mapping efficiency was observed for tags with around 10 copies
and the mapping efficiency increased to about 80% for tags with
an abundance of over 200 copies (Fig. 3). This means that the most
abundant tags correspond to the most highly expressed transcripts,
which in turn are most likely to be found in the existing zebrafish
transcript collections. Tags mapping to a unique sequence position
form the most important subset of the DGE libraries as they can
unambiguously identify a transcript. Up to 54% of the sequence
records in the different transcript databases could be unequivocally
identified by unique tag mapping (Supplementary Table 3). Exam-
ples of the most abundantly expressed genes in all libraries that
could be unequivocally identified by tag mapping comprised more

than ten different ribosomal subunit genes, translation initiation
and elongation factor genes (eif5a and ef1a), creatine kinase genes
(muscles a and b) and several cytoskeletal protein genes, including
those encoding alpha and beta actin, keratin and skeletal muscle
myosin proteins.
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Table 1
Representation of transcript databank entries in the DGE libraries.

Transcript databank Total number of databank entries cont-a + cont-b librariesa inf-a + inf-b librariesa

UniGene 56,561 73% 77%
RefSeq 37,396 69% 73%
E

entag
h
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nsembl 31,841

a Replicate DGE libraries (a and b) were merged in silico and indicated is the perc
it by mapping of DGE tags from the merged libraries.

.3. Changes in tag profile induced by mycobacterium infection

In order to identify the tags showing a significant change in
xpression between the two control vs. infected library pairs we
sed the Bayesian approach described by Lash et al. that takes into
ccount differences in library size (Lash et al., 2000). The cont-
vs. inf-b library pair showed the highest number of significant

ag entities (Supplementary Fig. 1), which can be explained by
he greater sequencing depth of inf-b library compared with the
nf-a library (Supplementary Table 2). A total of 5049 significantly
hanged tag entities were detected in the intersection of the cont-
vs. inf-a and the cont-b vs. inf-b library pairs (Supplementary

ig. 1; Supplementary Table 4). Efficiencies of tag mapping to the
niGene, RefSeq and Ensembl transcript databases were very sim-

lar for the two parallel library pairs (Supplementary Table 5).
n both cases the highest percentage of significant tags (ca. 40%)
ould be mapped to the UniGene database, which is the largest in
ize (Supplementary Table 5). The intersection of the two library
airs contained a total of 1051 different UniGene transcripts, con-
tituting 2% of the total number of transcripts in this database
Supplementary Fig. 1). Mapping to a unique UniGene transcript
as observed for 27% of the significant tags. Approximately 2-

old more significant tag entities mapped to the sense strand of
he transcripts than to the antisense strand in any of the three

nvestigated transcript databases (Supplementary Table 5). By com-
arison, the ratio of sense to antisense mapping of the total number
f tags (significant and non-significant) was approximately 1:1
or all libraries. This suggests that in spite of the high number
f antisense mapping events detected, the transcriptional regula-

ig. 3. Efficiency of tag mapping to the UniGene transcript database. Bars indicate the p
vents for the different categories of tag abundance as assigned in Fig. 1. The numbers of
74% 86%

e of entries from the UniGene, RefSeq and Ensembl transcript databanks that were

tion in the mycobacterium-induced immune response acts most
strongly on the sense strand. The possibility that the host response
to mycobacterium infection may also depend on the regulation of
antisense expression is of great interest and will require further
investigations. In the present study, we focused on the regulation
of sense strand transcripts.

3.4. Comparison of DGE tag data with a reference set of
mycobacterium-regulated genes

Previously we analyzed the zebrafish transcriptome response
to mycobacterium infection using three different microarray plat-
forms (Sigma-Compugen spotted oligonucleotide library, MWG
spotted oligonucleotide library and Affymetrix). In that study we
identified a set of genes whose differential expression was detected
irrespective of the type of microarray used and that could there-
fore serve as a multi-platform reference for future transcriptome
profiling studies in the mycobacterium—zebrafish model (Meijer et
al., 2005). For the present study we took the exact same samples as
used for DGE tag profiling and hybridized these to a fourth microar-
ray platform (Agilent 44k). Next, a new reference set was defined
consisting of 121 mycobacterium-regulated genes (55 up-regulated
and 66 down-regulated) confirmed in two separate studies and by
in total four microarray platforms (Supplementary Table 6). This

reference set was used for comparison with our DGE tag data. As
shown in Supplementary Table 6, 120 genes out of the 121 genes
in the reference set were represented by transcript tags in our DGE
libraries. The only gene not represented lacks the NlaIII restriction
site that is required for detection by DGE. For 100 out of the 120

ercentages of successful (dark grey) and non-successful (light grey) tag mapping
tag entities per category are indicated below the graph.
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Fig. 4. Correlation between DGE and microarray analysis. (A) Comparison of DGE
results with a reference set of mycobacterium-regulated genes based on four
microarray platforms. DGE results were evaluated by P-value with the significance
threshold at 0.05. (B) The same comparison as in (A), but based on the direction of
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hange of all the tags (significant and non-significant) mapped on the same tran-
cript. This approach gives a raw estimation of concordance even in those cases
here DGE detected non-significant mappings. (C) Comparison of DGE and Agilent
icroarray results.

enes detected (83%) the DGE experiments identified significantly
ifferent tag counts between control and infected libraries, whereas
he significance threshold was not met for 20 genes. 79 out of 100
ignificantly changing genes were unambiguously identified by the
GE tags. In 97% of these cases (77 out of 79) the direction of change
ositively correlated between DGE and microarray analysis (Fig. 4A;
upplementary Table 6). Identification of the remaining 21 genes
as ambiguous because the tags mapped to multiple UniGene

ranscripts. However, in nearly all cases (20 out of 21) multiple map-
ing occurred to highly related transcripts, encoding a fragment or

soform of the same protein or a near-identical protein. Further-
ore, the direction of change positively correlated between DGE

nd microarray data in 90% of the cases where multiple mapping
ccurred (19 out of 21) (Fig. 4A; Supplementary Table 6). There-
ore, we conclude that in most cases even the multi-mapped tags,
hich are usually discarded in SAGE-based experimental systems,

an also reveal useful information. Finally, when we extended the
omparison of the direction of change between DGE and microar-

ay analysis to include also the non-significant tags (mapping to
0 UniGenes in the reference set), we found a positive correlation

n 93% of the cases (112 out of the 120 detected genes, Fig. 4B).
n conclusion, comparison of our DGE tag data with the reference
et of mycobacterium-regulated genes indicates a strong agree-
ology 46 (2009) 2918–2930 2923

ment between data obtained by different transcriptome profiling
technologies.

3.5. Comparison of DGE tag data with Agilent microarray data
and qPCR

The flexibility of the Agilent platform is a major advantage for
microarray analyses of zebrafish since it allows continuous upgrad-
ing of custom designed probes. Agilent is also a preferred platform
because previously used platforms (Meijer et al., 2005) are no
longer available (MWG, Sigma-Compugen) or several years out-
dated (Affymetrix). In order to compare our DGE tag data to Agilent
microarray data we used the subset of UniGene transcripts that
were identified in both control-infected library pairs by unambigu-
ous mapping of significant tags to the sense strand. A total of 815
different UniGene identifiers met these criteria but only 580 of
these UniGenes were represented in the Agilent probe set. Agi-
lent microarray analysis showed a significant change in the same
direction as determined by DGE analysis for 348 of these genes
(60%) (Fig. 4C; Supplementary Table 7). Only 14 genes showed a
conflicting significant change in the opposite direction, and no sig-
nificant change was detected for 218 genes (Fig. 4C; Supplementary
Table 7). These results indicate a substantial overlap between DGE
and Agilent microarray results in addition to technology-dependent
differences.

In order to verify a subset of the DGE tag data by a third inde-
pendent technology we used quantitative reverse transcriptase PCR
(qPCR) analysis. The selection of genes tested included 6 genes
that showed a conflict between DGE and Agilent microarray data
(Fig. 5A), 3 genes that behaved similarly between the two tech-
nologies (Fig. 5B), and 5 genes whose differential expression was
detected only by DGE analysis because they were not represented
on the Agilent microarray (Fig. 5C). For almost all genes tested, with
the exception of jak1 only (Fig. 5A), qPCR analysis confirmed the
direction of change detected by DGE analysis.

3.6. Functional annotation and human disease relationships

To achieve an unbiased functional annotation of the infection-
responsive genes that were identified by DGE analysis we
tested for significant enrichment of Gene Ontology (GO) groups
(Supplementary Table 8). Among the up-regulated UniGene tran-
scripts we observed specific enrichment of gene groups including
immune response related transcription factors, proinflammatory
cytokines and MHC class II proteins (with enriched GO-terms
‘immune system process’, ‘response to stimulus’, ‘extracellular
region’, ‘catalytic activity’). Gene groups encoding proteolytic
enzymes (such as matrix metalloproteinases, cathepsins and pro-
teasome subunits) and lysosomal proton transporting ATPases were
also enriched among the up-regulated transcripts. Statistical test-
ing of the down-regulated UniGene transcripts revealed significant
enrichment of genes groups encoding enzymes involved in carbo-
hydrate, alcohol, steroid, amino acid and lipid metabolism (with
enriched GO-terms ‘metabolic process’ and ‘catalytic activity’).
Additionally down-regulated were genes encoding cytoskeletal
proteins (among which skeletal muscle actin and myosin), tight
junction proteins, solute carriers and fatty acid binding proteins
(with enriched GO terms ‘structural molecule activity’, ‘transporter
activity’, ‘binding’, ‘envelope’). The up- and down-regulated gene
groups corresponded well with those identified in our previous
microarray analysis of the zebrafish host response to mycobac-

terium infection (Meijer et al., 2005), indicating that DGE and
microarray analysis identified similar functional groups of genes.

Gene ontology analysis allowed identification of only 41% of the
significantly up- or down-regulated transcripts. In order to extend
and improve the annotation of the DGE data set we retrieved the
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Fig. 5. qPCR validation of DGE tag data. (A) Genes showing a significant change by DGE analysis and for which Agilent microarray analysis showed a significant change in
the opposite direction (jak1, slc2a7, zgc:110304, zgc:153647, zgc:158405) or no change (stc1). (B) Genes showing a significant change in the same direction by DGE and Agilent
microarray analysis. (C) Genes showing a significant change by DGE analysis and not represented on the Agilent microarray platform. Up-regulation of gene expression by
mycobacterium infection is indicated by a positive fold change and down-regulation by a negative fold change. Bars touching the chart border indicate infinite fold changes
(zero tags in either the control or infected libraries). The following selection of genes was tested with their gene description, UniGene ID and Entrez Gene ID indicated between
brackets: jak1 (janus kinase 1, Dr.74470, 30280), slc2a7 (slc2a7 solute carrier family 2 (facilitated glucose transporter), member 7, Dr.77040, 100006415), stc1 (stanniocalcin
1, Dr.88421, 393511), zgc:110304 (predicted tumor-associated calcium signal transducer 1 homolog, Dr.39071, 550255), zgc:153647 (predicted cytochrome P450, family 2,
s troph
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ubfamily J, polypeptide 2 homolog, Dr.79897, 768288), zgc:158405 (predicted neu
rotein (C/EBP), delta, Dr.1280, 140817), slc5a1 (solute carrier family 5 (sodium/gluc
7, Dr.91624, 777651), nos2b (nitric oxide synthase 2b, inducible, Dr.118320, 563654
OC556194 (hypothetical LOC556194, Dr.77733, 556194), zgc:77231 (predicted fast s

utative human orthologs of the zebrafish genes by using the g:Orth
unction of the g:Profiler web server (http://biit.cs.ut.ee/gprofiler)
nd by searching the NCBI HomoloGene database. In addition, we
ompiled information on protein similarities from the UniGene
atabase. As a result, we were able to annotate 73% of the up-
egulated and 83% of the down-regulated transcripts, whereas the
emaining transcripts lacked any similarity to genes with known
unction (Fig. 6; Supplementary Table 9).

Since M. marinum infection of zebrafish is considered as an

nimal model of human tuberculosis, next we analyzed how the
hole set of mycobacterium-regulated genes may associate with a

nown human pathological condition. A search using GeneALaCart,
rovided by GeneCards (www.genecards.org), linked our data set
o 397 OMIM (Online Mendelian Inheritance in Man) disorders,

ig. 6. Distribution of transcripts over different annotation categories. (A) Tran-
cripts up-regulated by mycobacterium infection. (B) Transcripts down-regulated
y mycobacterium infection.
il cytosolic factor 2 homolog, Dr.66415, 562473), cebpd (CCAAT/enhancer binding
transporter), member 1, Dr.87868, 93654), crfb7 (cytokine receptor family member
0 (sorting nexin 10a, Dr.13606, 403027), wt1b (wilms tumor 1b, Dr.91799, 568416),
l myosin alkali light chain 1 isoform 1f homolog, Dr.1448, 336165).

of which 132 were additionally represented by UniProt disor-
ders that are associated with monogenic human genetic diseases
(Supplementary Table 9). This is a substantial proportion (16%) of
the mycobacterium-regulated UniGene clusters identified by DGE
analysis.

3.7. Genomic mapping of DGE tag sequences

Disease-related genes may be underrepresented in the zebrafish
transcript databases that are mostly based on sequencing of cDNA
libraries from healthy fish. Therefore, additional mycobacterium-
regulated transcripts can be revealed by genomic mapping of the
DGE tag sequences (Supplementary tables 2 and 5). Genomic map-
ping of the significant tags had a success rate of 59% (of which
84% unique mapping events), which was approximately 1.5-fold
more efficient than mapping to the UniGene transcript database
(Supplementary Table 5). The fact that we did not allow mismatches
and that the zebrafish genome is highly polymorphic may explain
that still a substantial proportion of the significant tags could not be
mapped. In addition, tags extending over intron boundaries would
not be picked up in genomic mapping and gaps in the zebrafish
genome sequence still exist. The chromosomal distribution of the
complete collection of tag entities (significant and non-significant)
was roughly proportional to the chromosome length (Fig. 7A). How-
ever, the chromosomal distribution of the significant tags was less
flat (Fig. 7B) and specific regions could be identified within the indi-
vidual chromosomes where a number of tags clustered together,
suggestive of potential genomic hotspots linked with the physio-
logical processes induced by mycobacterium infection. In Fig. 7C,
we show an example of such a region on chromosome 3 where
10 mycobacterium-regulated genes were identified. These included
grb2 and ras family genes (zgc:112091, rac2, arl6ip1) linked with

immune response and hematopoietic signaling (e.g. Diebold and
Bokoch, 2001; Martin et al., 2005; Pettersson et al., 2000), several
genes involved in inflammation and defense (encoding granulin
a, ferritin-like, nucleobindin-1 and actinoporin proteins (Aroian
and van der Goot, 2007; He and Bateman, 2003; Leclerc et al.,

http://biit.cs.ut.ee/gprofiler
http://www.genecards.org/
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Fig. 7. Distribution of genomic DGE tag mapping sites over the different chromosomes. (A) Normalized chromosomal distribution of DGE tags (significant and non-significant)
per megabase. Mapping results of one DGE library (cont-a) are shown as a representative example. The total number of mapping sites and the number of mapping sites with
unique sequence were determined using the unmasked and masked versions of the Zv7 zebrafish genome sequence. Both the upper and lower strand of genomic DNA was
equally populated by the tags of the DGE libraries (Supplementary Table 3). (B) Normalized chromosomal distribution of the DGE tags that were significantly changed by
mycobacterium infection. (C) Distribution of the unique and significant tags mapping to chromosome 3. A region between 27.2 and 29.9 Mb where 29 significant tags map
closely together, assigning an active chromosomal region during mycobacterium infection, is indicated in red with the genomic structure shown below. Genes that are hit
on the sense strand by the significant tags are shown in yellow and other genes in blue. Annotations of encoded proteins on the two strands of the genomic sequence are
indicated by rectangles above and below the ruler. The coronin 1a gene (coro1a; coronin, actin binding protein, 1A) that is hit by 2 up-regulated tags has a direct link with
tuberculosis infection (Jayachandran et al., 2007; Kaul, 2008). The proteins encoded by other genes that were hit by up-regulated tags are indicated in grey boxes. All these
proteins have previously been linked with responses to inflammation or infection (e.g. Aroian and van der Goot, 2007; Diebold and Bokoch, 2001; He and Bateman, 2003;
Leclerc et al., 2008; Martin et al., 2005; Pettersson et al., 2000; Recalcati et al., 2008). Proteins encoded by genes hit by down-regulated tags are shown in white boxes (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.).
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008; Recalcati et al., 2008), and the zebrafish homolog of the
uman CORO1A gene, which encodes the actin-binding protein
oronin that has long been implicated in mycobacterial pathogen-
sis (Jayachandran et al., 2007; Kaul, 2008).

.8. Verification of predicted gene models based on DGE tag
nformation

Since DGE is a SAGE-based transcript profiling method, theoret-
cally all the observed tags in the DGE libraries should be mapped
o the so called canonical site, a sequence region located following
he last NlaIII cutting site on the sense strand at the 3′-end of the
ranscript. In our experiments only about 40% of the sense strand

appings fell to the canonical site. Furthermore, approximately
0% of the detected transcripts were represented by more than one
ag. These observations are consistent with similar results in DGE

nalysis of the mouse transcriptome (t Hoen et al., 2008) and may
e explained partly by incomplete NlaIII digestion during library
reparation as well as by frequent use of alternative polyadenyla-
ion and/or alternative splicing sites (Pan et al., 2008; Wang et al.,
008). The existence of multiple tags per transcript can be conve-

ig. 8. Genome data mining using DGE tag information. Arrows pointing up indicat
ycobacterium-infection conditions. Arrows pointing down indicate tags significantly

old arrows correspond to tag counts above 100 in the DGE libraries of mycobacterium
xons of the predicted GENSCAN00000043834 gene, a homolog of the human olfactom
upports the existence of at least two alternative splice forms, represented by ENSDARES
witching. Arrowheads below the gene indicate the positions of the last two polyadenyla
he significant induction of more upstream tags suggest alternative polyadenylation indu
nfection-dependent up- and down-regulation of two transcript isoforms of the ctsd gen
luster of 5 significant tags was detected downstream of the known zgc:112143 gene, enc
orizontal arrows indicate the position of RT-PCR primers used to verify the expression of
nalysis of the amplified product we could derive alternative splicing of the 5th exon to a
xon 6 was not determined (open rectangle).
ology 46 (2009) 2918–2930

niently utilized for the experimental verification of ab initio gene
predictions from the Ensembl database. Many of these predicted
transcripts gather more than one tag hit and many of them have
count numbers over several hundred up to thousands. Detection
of multiple tags with high count numbers specific for a predicted
transcript indicates the reliability of the transcript sequence and
the biological importance of the given gene. In a specific exam-
ple (Ensembl: GENSCAN00000043834, encoding a homolog of the
human olfactomedin 4 (OLFM4) gene induced by mycobacterium
infection in our DGE study) we show how tag mapping over differ-
ent Genscan exons can support predicted gene models (Fig. 8A).

3.9. Infection-induced transcript isoform switching

Next we have tried to identify transcripts where the infec-
tion triggered unbalanced alterations in tag expression pattern

that may be caused by the selective induction or repression of
particular transcript isoforms generated by alternative splicing,
alternative polyadenylation or alternative transcription initiation.
To this extent we selected transcripts with at least two mapped tags,
and we investigated how their tag expression patterns changed

e the mapping positions of tags with significantly increased expression under
down-regulated by mycobacterium infection. Lines indicate non-significant tags.
-infected fish. (A) Verification of an ab initio gene prediction from Ensembl. Three
edin 4 gene, are supported by DGE tag information. The tag distribution further

TT00000036260 and ENSDARESTT00000036258. (B) Infection-dependent isoform
tion signals in the stc1 transcript. The unchanged expression of the most 3′ tag vs.
ced by mycobacterium infection leading to a transcript with a shorter 3′ UTR. (C)
e. (D) Infection-dependent alternative splicing leading to a novel gene product. A

oding the zebrafish homolog of the tumor-necrosis factor alpha-induced protein 9.
an alternative transcript form that comprises the tag cluster region. From sequence
new exon 6, encoding a different C-terminal domain of the protein. The 3′-end of
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ithin the transcripts upon mycobacterium infection. Among the
ycobacterium-regulated gene set we identified over 30 cases
here part of the detected tag repertoire changed to a much greater

xtent than other tags, or where different tags for the same tran-
cript were changed in the opposing direction. An example of a case
here only part of the tag repertoire was changed is stanniocal-

in 1 (stc1), a gene for a calcium-regulating glycoprotein hormone.
p-regulation of this gene upon mycobacterium infection was con-
rmed by qPCR analysis (Fig. 5A). Five tags at the 3′-end of the
ranscript showed a significant change with 4–10 times increase in
ount number in the two control vs. infected library pairs (Fig. 8B).
owever, the most 3′ tag of this transcript was unchanged in both

ibrary pairs. Since the last four tags are located in the 3′ UTR of
his transcript, this observation most probably reflects a selectively
nduced alternative polyadenylation event, where the infection
esults in the expression of a transcript variant having a shorter
′ UTR region. This hypothesis is also supported by the finding that
he 3′ UTR contains two polyadenylation signals, one at the very
nd of the sequence after the last weakly changing tag and another
n a more upstream position. Alternative polyadenylation might be
mechanism for regulation of stc1 mRNA stability, which was pre-
iously shown to be affected by external stimuli (Ellis and Wagner,
995). An example of a case where tags for the same transcript
hanged in opposite directions is cathepsin D (ctsd). The tag expres-
ion pattern for this gene indicates selective down-regulation of a
onger transcript form with concomitant up-regulation of a tran-
cript with a shorter 3′ UTR (Fig. 8C).

.10. Identification of novel transcript forms induced by
ycobacterium infection

Finally, we attempted to find novel mycobacterium-regulated
ranscript forms (splice variants) without any previous indications
rom different prediction methods. As above, we took advantage
f the observation that the majority of known transcripts were
epresented by more than one tag. We anticipated that the same
ould likely be true for currently unknown transcript forms and

herefore searched for tag clusters with significant tags that could
ot be mapped to any of the three transcript databases used in
his work, but having genomic localizations close to each other.
ext, we examined the neighboring genomic environment of these

ag clusters, and inspected the gene annotations in that region for
he presence of potential immune relevant functions. Out of 98
nvestigated clusters 29 proved to be located close to a gene that

ight have a function in immune defense (Supplementary Table
0). As an example, we experimentally confirmed the expression
f a novel splice form of the zgc:112143 gene, which is homologous
o the human tumor necrosis factor alpha-induced protein 9 gene
TNFAIP9, also known as STEAP4), encoding a six transmembrane
utative channel or transporter protein (Moldes et al., 2001). To
his extent we performed RT-PCR on RNA samples from control and
nfected fish, taking a forward primer in one of the known exons of
he gene (exon 3) and a reverse primer overlapping with one of the
ycobacterium-induced tags located downstream of the known 3′

ranscript end in a region without any predicted or EST-based indi-
ations of transcription. An RT-PCR product could be amplified from
nfected but not from control RNA samples, in agreement with the

uch higher tag counts in the DGE libraries from infected fish (total
ount numbers: cont-a/cont-b: 3/2; inf-a/inf-b: 86/369). Sequence

nalysis of the resulting product revealed alternative splicing in the
nown exon 5 resulting in a novel transcript form comprising a 6th
xon that is the source of the significant DGE tags that we identified
n our study (Fig. 8D). Alternative splicing changes the C-terminal
omain of the TNFAIP9 homolog, downstream of the six predicted
ransmembrane domains of this protein.
ology 46 (2009) 2918–2930 2927

4. Discussion

Major advances in transcriptomics have become possible as
a result of novel technology developments in deep sequencing
(Cloonan and Grimmond, 2008; Morozova and Marra, 2008; Wang
et al., 2009; Wilhelm and Landry, 2009). Here we report on the first
deep sequencing study of the vertebrate host response to infectious
disease. We chose the mycobacterium-zebrafish infection model as
a case study because of its relevance to human tuberculosis, a dis-
ease that is characterized by an intricate interaction between host
and pathogen (Lesley and Ramakrishnan, 2008; Pieters, 2008). Fur-
thermore, multi-platform microarray data sets of infection in this
model were available for validation purposes (Meijer et al., 2005).
Transcriptome alterations underlying a complex process like infec-
tious disease are characterized not only by massive gene induction
and repression responses, but also by subtle changes in transcript
levels and presumably in the expression of alternative transcript
forms (Vos et al., 2007). Our results demonstrate that deep sequenc-
ing is a major improvement over microarray analysis for detection
of transcriptional changes over such a wide range. Moreover, the
unbiased nature of deep sequencing data gives a fundamental
advantage for gene discovery and genome annotation.

In this study we used Solexa/Illumina’s Digital Gene Expres-
sion (DGE) system, which is essentially a SAGE-based tag profiling
approach. We could reach a sequencing depth of 5–8 million tags
per library and confirmed the reproducibility of replicate DGE
library constructions by correlation analysis. Using a Bayesian
method for statistical evaluation of our DGE tag data from con-
trol and mycobacterium-infected animals, we found over 5000
sequence tags to be differentially expressed. Count numbers of the
significant tags spanned a dynamic range of three orders of mag-
nitude. An example of one of the most abundant tag sequences
represented skeletal muscle actin alpha 1, which was detected by
over 40,000 copies in the controls and down-regulated to around
10,000 copies upon mycobacterium infection. As an example of the
sensitivity of the method, a tag sequence specific for the transcript
encoding peptidoglycan recognition protein 1 was undetectable
in the DGE libraries from control fish and was significantly up-
regulated to around 20 copies in the DGE libraries from infected fish.
The sensitivity of DGE profiling is further demonstrated by the fact
that our analysis of a single developmental stage of the zebrafish
(adult stage) could detect over 70% of all transcripts in the Uni-
Gene, RefSeq and Ensembl databases. The significantly changed tag
sequences mapped to approximately 2% of the transcripts in these
databases.

Since only one other Illumina-based DGE study has presently
been reported (t Hoen et al., 2008), it was important to validate our
DGE results by independent transcriptome profiling technologies.
Our DGE data showed strong correlation (over 90%) with a refer-
ence set of mycobacterium-regulated genes that had previously
been confirmed in a multi-platform microarray study. Comparison
with microarray data obtained from a single microarray platform
(Agilent) also showed a substantial level of correlation (60%). Fur-
thermore, gene ontology analysis showed significant enrichment of
similar functional groups of genes in DGE and Agilent microarray
data sets. In most of the investigated cases where DGE and microar-
ray analysis gave conflicting results, qPCR analysis supported the
DGE results. Conflicts between DGE and microarray results may
occur for technical reasons, but may also result from the fact that
microarray probes will often detect a mixture of different tran-
script isoforms, whereas DGE analysis can discriminate between

specific transcript isoforms (t Hoen et al., 2008). Both methods
have their intrinsic limitations, as discussed extensively by t Hoen
et al. (2008). In short, important drawbacks of microarray analy-
sis concern limited sensitivity, cross-hybridization problems and
inadequate probe design. On the other hand, DGE will fail to iden-
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ify some transcripts that lack a unique tag sequence or cutting
ite for the DGE anchoring enzyme (NlaIII in this study). Therefore,
icroarray analysis and DGE can be considered complementary to

ach other. DGE compares favorably to microarray analysis in stan-
ardization between laboratories (Irizarry et al., 2005; Marioni et
l., 2008; Pedotti et al., 2008; t Hoen et al., 2008). The most impor-
ant advantage of DGE analysis is that the method is not limited
y predefined array content. In our study, we detected differen-
ial expression of many transcripts that were not represented on
he available microarray platforms. By qPCR analysis we confirmed
he differential expression of a subset of these transcripts, with tag
bundances in the range of 20–400 copies.

Classical SAGE studies (Velculescu et al., 1995), based on con-
entional sequencing of cloned tags, have focused on analysis of
he canonical tags, which are the tags resulting from the most 3′

ocated NlaIII restriction site on the sense strand of the transcript.
he drawback of mapping only the canonical tags is that any infor-
ation on alternative polyadenylation or alternative splicing is lost.

n addition to biological mechanisms, partial digestion may also
ontribute to non-canonical mappings. As long as partial digestion
s carefully controlled for by simultaneous preparation of parallel
ibraries with the same batch of reagents it does not present a prob-
em. Rather, as a result of the enormous sequencing depth achieved
n DGE analysis, the more 5′ located non-canonical tags can provide

useful source of additional information. Furthermore, valuable
nsights can be obtained from genomic mapping of those tags that
ail to hit the transcript databases. Here we have shown that the
nformation obtained from genomic mapping of the entire set of
GE tags can be used (i) to investigate genomic clustering of co-

egulated transcriptome responses, (ii) to verify the expression of
b initio predicted genes, (iii) to detect switching between alter-
ative transcript forms induced by mycobacterial infection, and
iv) to detect and map novel mycobacterium-regulated transcript
orms for which any previous EST-based evidence of expression was
acking. Altogether, we found a 50% higher efficiency for genomic

apping of the significant tag entities than for mapping to the Uni-
ene transcript database. This shows the limitations of the use of
DNA sequence data for disease studies, a problem that is solved by
eep sequencing strategies.

Contrary to tag-based DGE analysis, full RNA sequencing pro-
edures (RNA-Seq), in which mRNA or cDNA is fragmented
echanically, result in overlapping short fragments that cover the

ntire transcriptome. Clearly this approach is even more powerful
or unraveling transcriptome complexity. However, tag sampling

ethods, which produce a less complex data mass, are currently
ore suitable and affordable for comparative expression studies of

arger numbers of samples. For the mouse it has been estimated
hat 40 million RNA-Seq reads are required to achieve coverage
f most transcripts and to allow accurate analysis of expression
ifferences between samples (Mortazavi et al., 2008). In contrast,
pproximately 2 million transcript-specific DGE tags from mouse
ere shown to be sufficient to reliably detect low abundant genes

t Hoen et al., 2008). Whereas the quantification of RNA-Seq results
ay be complicated by unequal coverage of transcripts by sequence

eads, the quantitative comparison of DGE tag libraries can build
irectly on the vast knowledge of statistical evaluation of conven-
ional SAGE experiments (Lash et al., 2000; t Hoen et al., 2008; Zhu
t al., 2008).

Unlike some of the RNA-seq protocols, SAGE-derived DGE anal-
sis provides information on transcript directionality. In our study
pproximately 40% of the mapping events were detected on the

ntisense strand of UniGene, RefSeq or Ensembl database tran-
cripts. This is comparable to data reported for mouse DGE analysis,
here evidence for bidirectional transcription was found for 51%

f all detectable UniGene clusters (t Hoen et al., 2008). Similar as
n their study, we found no correlation between the abundance of
ology 46 (2009) 2918–2930

sense and antisense tags for the same transcript. To what extent
antisense transcripts might result from transcriptional noise is cur-
rently unknown. However, there is accumulating evidence for the
widespread occurrence of antisense transcription and its biologi-
cal relevance (Beiter et al., 2009; Carninci et al., 2005; Katayama
et al., 2005). For example, the proper dosage of expression of the
human and murine hematopoietic transcription factor PU.1, critical
for suppression of leukemia, was shown to rely on antisense RNA
modulators (Ebralidze et al., 2008). We found that mycobacterium
infection significantly induced both sense and antisense DGE tags of
the zebrafish homolog of the PU.1 gene (spi1), suggesting that anti-
sense regulation of the expression of this gene may be an ancient
evolutionary mechanism.

The mycobacterium-infected zebrafish analyzed in this study
were at the late stage of chronic tuberculosis. As previously
observed in microarray analysis, our DGE study showed mas-
sive changes in the expression levels of known immune response
genes and of genes that have been implicated in human tubercu-
losis (Meijer et al., 2005). Many of the mycobacterium-regulated
genes that we could functionally annotate were homologous to
human genes that have been linked with genetic diseases. These
included inflammatory and hematologic disorders, for example,
anemia, which is commonly associated with tuberculosis (Lee et
al., 2006). We also identified many interesting genes that had not
been linked to tuberculosis in previous studies. For example, we
demonstrated infection-dependent up-regulation of an ab initio
predicted homolog of olfactomedin 4 (OLFM4), also known as gran-
ulocyte colony stimulating factor stimulated clone-1 (hGC-1). This
gene encodes a glycoprotein of unknown function, suggested to be
involved in cell adhesion, cancer progression and myeloid develop-
ment (Chin et al., 2008; Liu et al., 2008). We also observed induction
of a specific transcript variant of the zebrafish homolog of stan-
niocalcin 1 (stc1), a gene suggested to be involved in macrophage
chemotaxis and transendothelial migration of inflammatory cells
(Chakraborty et al., 2007; Kanellis et al., 2004). Furthermore, by
genomic tag mapping we demonstrated induction of a novel alter-
native splice form of a gene homologous to the human tumor
necrosis factor alpha-induced protein 9 gene (TNFAIP9, also known
as STEAP4). This gene encodes a six transmembrane putative chan-
nel or transporter protein implicated in inflammatory responses
and cancer progression (Korkmaz et al., 2005; Wellen et al., 2007).
The above mentioned genes are merely given as examples to illus-
trate how our deep sequencing-based systems approach can quickly
lead from mapping of total transcriptome responses to detailed
functional annotation. More importantly, the entire description of
all mycobacterial regulated genes provides an unbiased basis for
subsequent candidate gene approaches that was not possible with
prior microarray-based transcriptome profiling. In future studies
we will use deep sequencing technology to compare the present
data set of the late stage of tuberculosis with earlier stages of dis-
ease progression, including granuloma formation in the zebrafish
embryo model that is more amenable to experimental manipula-
tion (Lesley and Ramakrishnan, 2008).

5. Conclusions

We have demonstrated here that deep sequencing analysis,
using Solexa/Illumina’s digital gene expression (DGE) system, pro-
vides a robust, sensitive and unbiased alternative to microarray
analysis with major advantages for detection of the broad range

of transcriptional responses that occur during the process of an
infectious disease, as exemplified in this study using the zebrafish-
mycobacterium model. First, by mapping of DGE sequence tags
to transcript databases we showed that mycobacterium infection
induced quantitative changes in the expression levels of many
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enes, including those previously implicated in human tuberculo-
is. These data showed over 90% concordance with a reference set
f mycobacterium-regulated genes that had previously been con-
rmed in a multi-platform microarray study. Second, by genomic
apping of the DGE sequence tags we could reveal transcriptional

esponses that microarray analysis would have failed to detect,
uch as the switching between alternative transcript isoforms, the
xpression of novel splice products not present in the current tran-
cript and EST databases, and a high level of antisense transcription.
ur DGE study substantiates recent RNA sequencing results in other
odel species indicating a much larger extent of genome transcrip-

ion than previously thought. Furthermore, it demonstrates the
dvantages of a deep sequencing approach for gene discovery and
enome annotation and provides new leads for functional studies
f candidate genes involved in host–pathogen interaction.
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