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� A machine learning algorithm can differentiate EMGs from healthy individuals from patients with ALS with a high diagnostic yield.
� The automated approach aimed at limiting all arbitrary choices with regards to epoch selection and hyperparameter optimization.
� This algorithm allows the identification of features used for classification, allowing interpretation of the model.
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Objective: Distinguishing normal, neuropathic and myopathic electromyography (EMG) traces can be
challenging. We aimed to create an automated time series classification algorithm.
Methods: EMGs of healthy controls (HC, n = 25), patients with amyotrophic lateral sclerosis (ALS, n = 20)
and inclusion body myositis (IBM, n = 20), were retrospectively selected based on longitudinal clinical
follow-up data (ALS and HC) or muscle biopsy (IBM). A machine learning pipeline was applied based
on 5-second EMG fragments of each muscle. Diagnostic yield expressed as area under the curve (AUC)
of a receiver-operator characteristics curve, accuracy, sensitivity, and specificity were determined per
muscle (muscle-level) and per patient (patient-level).
Results: Diagnostic yield of the classification ALS vs. HC was: AUC 0.834 ± 0.014 at muscle-level and 0.
856 ± 0.009 at patient-level. For the classification HC vs. IBM, AUC was 0.744 ± 0.043 at muscle-level
and 0.735 ± 0.029 at patient-level. For the classification ALS vs. IBM, AUC was 0.569 ± 0.024 at muscle-
level and 0.689 ± 0.035 at patient-level.
Conclusions: An automated time series classification algorithm can distinguish EMGs from healthy indi-
viduals from those of patients with ALS with a high diagnostic yield. Using longer EMG fragments with
different levels of muscle activation may improve performance.
Significance: In the future, machine learning algorithms may help improve the diagnostic accuracy of
EMG examinations.
� 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction the examiner’s experience. Moreover, even among experts, inter-
Needle electromyography (EMG) is a technique in which an
electrode is inserted into the muscle to record and evaluate the
electrical activity of the muscle at rest and during voluntary con-
traction. Interpretation is usually based on qualitative visual
assessment of the signal (Dumitru et al., 2001). This approach is
subjective, laborious, and its reliability depends substantially on
rater agreement is poor (Narayanaswami et al., 2016). The diagnos-
tic yield of quantitative EMG (qEMG) methods such as turns-
amplitude analysis, is similar to visual inspection (Daube and
Rubin, 2009; Thornton and Michell, 2012) and the limitations of
EMG equipment currently preclude the use of more advanced tech-
niques for routine examinations (Thornton and Michell, 2012).

A neuropathic EMG, with high-amplitude and long duration
motor unit action potentials (MUAPs), and a reduced interference
pattern should theoretically be clearly distinguishable from a myo-
pathic EMG containing smaller, short-duration polyphasic MUPs
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and a full interference pattern. In practice, however, differentiation
between a neuropathy and a myopathy can be challenging. This
challenge is exemplified by the difficulties in distinguishing EMGs
obtained from patients with amyotrophic lateral sclerosis (ALS) from
EMGs obtained from those with inclusion body myositis (IBM)
(Badrising et al., 2005). Both diseases are characterized clinically
by progressive weakness without sensory deficits, but whereas ALS
is a progressive neurodegenerative disease and fatal within several
years, life expectancy is not affected in IBM (Badrising et al., 2005).

Recent advances in computer processing power and machine
learning (ML) techniques enable processing a large number of fea-
tures without any underlying assumptions about the nature of the
signal. We have previously shown that such an approach, devel-
oped for the automotive industry but applied to electroen-
cephalography (EEG) signals, could classify Parkinson’s disease
patients with good cognition from those with poor cognition with
an accuracy of 91% (Geraedts et al., 2021a). Here, we aimed to eval-
uate an automated time series classification algorithm to differen-
tiate EMG time series from healthy individuals, patients with a
neuropathic disease (ALS) or a myopathy (IBM). With this
approach, we aimed to limit all arbitrary choices with regards to
hyperparameter optimization.
2. Methods

2.1. EMG acquisition and storage

All EMGs were recorded at the department of clinical neuro-
physiology of Leiden University Medical Center (LUMC), a tertiary
referral center for neuromuscular diseases, during the period
2004–2019. All EMGs were performed with concentric needle elec-
trodes with a low-frequency (high pass) filter of 30 Hz and a high-
frequency (low-pass) filter of 3 kHz and recorded using Medelec
Synergy electromyography equipment (Oxford Instruments,
Abingdon, Oxfordshire, UK). This equipment routinely stores the
last 40 seconds of an EMG. In general, the assessment takes place
in three phases: with the muscle at rest, during slight activation
and during (near-) maximal activation. Recording at maximal mus-
cle activation is commonly avoided when the EMG signal appears
to be normal at near-maximal activation levels, as the EMG
becomes increasingly painful when the muscle is fully activated.
All data were gathered in the process of routine clinical care and
a formal ethical approval was therefore waived for this particular
study. Dutch law does not require individual informed consent
for the use of anonymized data for retrospective scientific research.
2.2. Selection of patients

Patient selection was retrospective and constituted a sample of
convenience, based on the availability of data. This was unavoid-
able due to the rarity of IBM and our stringent use of selection cri-
teria. Sample size for the ALS and control group were matched to
the IBM sample size. Selection criteria per group were: For IBM,
all patients diagnosed with IBM were identified from searched
electronic patient records for the period 2004–2019. We then
selected all patients with muscle biopsies showing atrophy,
inflammation, and rimmed vacuoles (Hilton-Jones and Brady,
2016) and from whom EMG data were available. For ALS, we used
electronic patient records to select patients with definite ALS fol-
lowing the Awaji criteria, based on typical clinical findings, con-
firmed with EMG (Costa et al., 2012) (although not necessarily on
the first EMG, which was included in the analysis described here).
In all cases, correctness of the diagnosis was confirmed by a clinical
course of neurological deterioration leading to death. Healthy con-
trol subjects (HC) were defined as subjects who fulfilled all of the
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following criteria: (1) the subject was considered unlikely to suffer
from a neurological disease by the treating neurologist, presenting
with non-specific complaints (e.g., muscle aches, pain, or fear of a
neuromuscular disease), (2) no muscle weakness upon neurologi-
cal examination, (3) no abnormalities suggesting a neuromuscular
disease in any available ancillary investigation, and (4) no signs of
muscle weakness during a follow-up period of at least two years.

For a comparison of the accuracy of the ML pipeline with the
results of the clinical conclusion at the time of the evaluation, we
extracted the conclusions from all EMG reports and classified them
in three groups: (1) unambiguously correct (e.g., ‘‘no abnormali-
ties” for a subject from the HC group, or ‘‘myopathic changes” for
a subject in the IBM group), (2) unambiguously incorrect (e.g.,
‘‘neurogenic changes” for a subject in the IBM group and (3)
ambiguous conclusions (e.g., ‘‘findings suggesting a loss of
motorneurons, consider repeating the examination at a later time”
for a subject in the ALS group). We then calculated the accuracy of
the clinical report twice: once with the ambiguous results included
in the group of correct diagnoses, and once with the ambiguous
results included in the group of incorrect diagnoses, to provide
the upper and lower limits of the accuracy of the clinical report.

2.3. Selection of EMG traces

When multiple EMG examinations were available from one
patient, we selected the first (oldest). We assumed that the earliest
EMG in the disease course is both the most challenging, as abnor-
malities are likely to become more pronounced as the disease pro-
gresses and the most important in terms of clinical impact and
prognostication. From the selected examination, we extracted
EMG traces from all investigated muscles. As recordings were made
in the process of routine clinical care, it is likely that the selection of
muscles for investigation depended on the clinical query and dif-
fered between groups (i.e., bulbar muscles were probably more
likely to be included in the examination in cases with a high suspi-
cion of ALS). A complete list of investigated muscles per disease
group is available in Supplemental Table 1. From each muscle, we
visually inspected the raw trace and selected the longest available,
continuous fragment containing MUPs without needle movement,
50 Hz artefacts from wall outlets or other artefacts. From each
EMG fragment, we clipped the last 5 seconds and used this for auto-
mated analysis. In general, these fragments were likely to contain
EMG activity at near-maximal activation but selection based on acti-
vation level did not take place. Some traces were recorded with a
sample frequency of 5000 Hz, others with a frequency of 4800 Hz.
Sample frequency was not related to disease class. All data were
downsampled to 4800 Hz prior to further processing.

2.4. Machine learning pipeline

A previously reported ML pipeline approach was used for time
series classification purposes (Geraedts et al., 2021a, 2021b;
Kefalas et al., 2020). The ML pipeline consists of four phases: (1)
feature-extraction, (2) feature selection, (3) training of a classifier,
and (4) hyperparameter optimization. All four steps are completely
automated, with the EMG time series as the sole input and the
class-labels (i.e. control, ALS patient or IBM) as output. No informa-
tion on the level of activation or results of visual qualitative inspec-
tion of the EMG were used as input data. The library ‘Time Series
FeatuRe Extraction on basis of Scalable Hypothesis tests’ (TsFresh)
was used to extract features from the time series (Christ et al.,
2018), resulting in 794 features per EMG fragment. In this context,
features are best understood as properties of a time series which
may contain information on the nature of the signal. The library
TsFresh contains a large array of potentially relevant features,
including basic features such as the mean, maximum or variance
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of a dataset, but also more compel aspects including Fourier anal-
yses, entropy and skewness.

Feature selection was performed using the Boruta algorithm, by
testing the variable importance (VIMP) of each feature against that
of ‘shadow features’, which are created by random shuffling of the
original features. The VIMP of shadow and original are obtained
from a random forest model trained thereon. An original feature
would be selected if its VIMP frequently dominated the maximal
VIMP of shadow features, in multiple independent trials (Kursa
and Rudnicki, 2010). After feature-selection, the feature set is used
to train a Random Forest Classifier (RFC). An RFC is an ensemble of
decision trees; the resulting decision is the majority vote from all
decision trees (Friedman et al., 2001). To ensure generalizability
of the RFC, a cross-validation procedure was adopted: the data
were randomly split into ten folds, after which training was per-
formed on nine folds and tested on the remaining fold. This process
was repeated until each fold had served as a test set; the average of
all test scores of the computations represented the final score. To
quantify the reliability of the end result, this process was repeated
five times and the results were averaged again. The RFC was exe-
cuted 100 times per fold and the result was averaged. The hyper-
parameters of the RFC, such as the number of decision trees and
their individual tree depths, are optimized with a variant of the
Bayesian Optimization technique called Mixed Integer Parallel Effi-
cient Global Optimization (MIP-EGO) for mixed-integer categorical
search spaces (Wang et al., 2018; Wang et al., 2017). To optimize
the hyperparameters of the RFC, MIP-EGO optimized the F1-
macro score of another (nested) 10-fold cross-validation. This
nested cross-validation was executed on the training-fold of each
split of the overall 10-fold cross-validation process. The F1-macro
score is defined as the average of the F1 score of each class
(Kefalas et al., 2020). We used the F1-score to find the balanced
score between the two classes being considered (ALS vs. HC, ALS
vs. IBM, IBM vs. HC). both cross-validations were stratified in order
to preserve the percentage of samples for each class.

2.5. Muscle-level and patient-level approach.

As described previously (Kefalas et al., 2020), the pipeline was
trained by using the diagnosis of each patient as classification gold
standard for all EMG traces belonging to that patient, resulting in a
probability score for each trace. Diagnostic yield was subsequently
evaluated twice: for the muscle-level approach, we treated each
trace as an independent observation for receiver-operator character-
istics (ROC) analysis to calculate accuracy, sensitivity, and specificity,
based on probability scores. For the patient-level approach, we cal-
culated themedian of the prediction probabilities of all muscles from
the same patient to make a patient-level predictive decision.

2.6. Feature importance

For each comparison (HC vs. ALS, HC vs. IBM, and ALS vs. IBM),
we created a list of features that appeared in the final decision tree
in each of the 10-fold cross-validations. We repeated this by select-
ing the features in each of the 5 repetitions to create a final list of
all features that were retained in each comparison, assuming that
these were the most relevant.

2.7. Statistical analysis

Demographic and clinical variables were compared between
the HC, ALS and IBM groups using one-way ANOVA if normally dis-
tributed and Kruskal-Wallis tests if not normally-distributed in
continuous variables and Pearson’s v2 tests in case of categorical
data.
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All statistical analyses not pertaining to the automated ML pipe-
line (i.e. baseline characteristics) were performed using IBM Statis-
tical Package for the Social Sciences (SPSS) 25 Software (SPSS inc.
Chicago, Illinois, USA).
3. Results

3.1. Patient characteristics

Baseline characteristics for all three groups are provided in
Table 1. A total of 65 patients were included, 20 patients with
ALS, 20 patients with IBM, and 25 healthy controls. Healthy con-
trols were significantly younger than patients with ALS and IBM
(p =< 0.001). A total number of 380 muscles were included in the
measurements. More muscles were measured in the ALS group
than in HC and IBM groups. The accuracy of the clinical EMG report
ranged from 96-100% for the HC group, 65–80% in the IBM group
and 45–85% in the ALS group.

3.2. Diagnostic yield of the ML pipeline

The performance scores for both the muscle-level as the
patient-level approach are shown in Table 2. The muscle-level
approach treats each muscle as a separate observation; for the
patient-level approach, the median probability score of all exam-
ined muscles for that patient was calculated. Each resulting perfor-
mance score represents the average of 5 independent runs of the
automated machine learning pipeline. For all three classification
tasks, accuracy and diagnostic yield (AUC of the ROC curve) were
highly similar across all five repetitions and for both the muscle-
level and patient-level approach (Fig. 1). The highest diagnostic
yield was reached for the classification ALS vs. HC: AUC was 0.83
4 ± 0.014 at the muscle level and 0.856 ± 0.009 at the patient level.
The lowest diagnostic yield was reached for the classification ALS
vs. IBM: AUC was 0.569 ± 0.024 at the muscle level and 0.689 ± 0.
035 at the patient level.

3.3. Feature importance

For the classification ALS vs. HC, 12 significant features were
retained in all cross-validations and repetitions. These features,
derived from the online feature library ‘‘TsFresh” (Christ et al.,
2018) are shown in Fig. 2. Detailed descriptions can be found
online, but in brief, four features were related to the presence of
reoccurring values in the data series: (1) the percentage of values
that were present in the time series more than once”, (2) a factor
which is 1 if all values in the time series occur only once, and below
one if this is not the case, (3) the sum of all data points that are pre-
sent in the time series more than once and (4) percentage of non-
unique data points. Four features were related to spectral measures
of the signal: (1) the absolute value of the 1st coefficient of the 1D
discrete Fourier transformation, (2) the real part of the 1st coeffi-
cient of the 1D discrete Fourier transformation, (3) the absolute
value of the 36rd coefficient of the 1D discrete Fourier transforma-
tion and (4) cross power spectral density of the time series x at dif-
ferent frequencies (the time series is first shifted from the time
domain to the frequency domain. Three features were related to
the amplitude of the signal: (1) the sum of all time series values,
(2) the standard deviation of all values and (3) the absolute energy
of the time series, i.e. the sum over the squared values. One and
one feature represented the frequency of value ‘‘0”. For the classi-
fication IBM vs. HC, two relevant features were retained: ‘‘number_
crossing_m__m_0”, which represents the number of zero crossings
in a signal, with a feature importance of 4.6 ± 0.1 and ‘‘fft_coeffi
cient__coeff_34__attr_‘‘abs””, which represents the absolute value



Table 2
Machine learning model performance scores.

ALS vs. HC IBM vs. HC ALS vs. IBM

Muscle-level Patient-level Muscle-level Patient-level Muscle-level Patient-level

Accuracy 0.779 ± 0.019 0.779 ± 0.025 0.671 ± 0.023 0.684 ± 0.029 0.547 ± 0.170 0.570 ± 0.048
Sensitivity 0.842 ± 0.025 0.850 ± 0.035 0.664 ± 0.030 0.640 ± 0.022 0.685 ± 0.019 0.860 ± 0.055
Specificity 0.688 ± 0.038 0.704 ± 0.036 0.672 ± 0.027 0.720 ± 0.040 0.359 ± 0.020 0.280 ± 0.144
AUC 0.834 ± 0.014 0.856 ± 0.009 0.744 ± 0.043 0.735 ± 0.029 0.569 ± 0.024 0.689 ± 0.035

AUC: Area under the curve for the receiver operator characteristics curve. HC: healthy controls, IBM: inclusion body myositis, ALS: amyotrophic lateral sclerosis. Values
indicate mean +/- standard deviation for 5 repetitions of the pipeline, each consisting of 10 cross-validations. Muscle-level and patient-level analysis yielded highly similar
values.

Table 1
Demographics and clinical characteristics.

HC (n = 25) IBM (n = 20) ALS (n = 20) p value

Age in years, mean ± SDa 51 ± 12 70 ± 7 64 ± 6 <0.001
Female sex, n (%)b 11 (44) 9 (45) 9 (45) 0.997
Symptom duration, median (IQR)c 2 (0.5–10) 3 (2–10) 2 (1–2.75) 0.109
muscles investigated, median (IQR)c 4 (3–7) 5 (3–8) 7 (6–10.5) 0.002
Original report correct, n (%)d 24–25

(96–100)
13–16
(65–80)

9–17
(45–85)

a One-way ANOVA; b Pearson’s v2 test; c Kruskal-Wallis test. SD: standard deviation, IQR: interquartile range. HC: healthy controls, IBM: inclusion body myositis, ALS:
amyotrophic lateral sclerosis.
There were significant differences in patient age and number of muscles investigated between groups. d Range of clinical EMG report: lower bound calculated by interpreting
ambiguous test results as incorrect; upper bound calculated by interpreting ambiguous results as correct.

Fig. 1. ROC curves at the patient-level. ROC: receiver operator characteristics. HC: healthy controls, IBM: inclusion body myositis, ALS: amyotrophic lateral sclerosis. AUC:
Area under the curve. Each colored line represents one of five repetitions of a 10-fold cross-validation. Mean AUC values are provided in Table 2. The highest diagnostic yield
was reached for the comparison ALS vs. HC.
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of the 35th coefficient of the 1D discrete Fourier Transformation
(importance 4.0 ± 0.1). For the classification ALS vs. IBM, only
one feature was consistently present in all 5 repetitions: ‘‘ar_coeffi
cient__k_10__coeff_3”, which represents the third coefficient of the
lag 10 autoregression process, with a mean importance score of
15.8 ± 2.1.
4. Discussion

In this study, we show that an automated time series classifica-
tion algorithm can differentiate EMGs from healthy individuals
from those of patients with ALS with a high diagnostic yield. For
the diagnosis ALS, the accuracy of the ML pipeline and the clinical
EMG reports at the time of the investigation appeared to be within
the same range, although a statistical analysis was not possible due
to the qualitative nature of the latter. Diagnostic yield for the dis-
tinction between IBM and healthy controls, and between ALS and
IBM was somewhat lower. This is in line with clinical experience:
neurogenic abnormalities are relatively easy to distinguish from
a normal EMG. The lowest diagnostic yield was reached for the
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distinction between ALS and IBM. This is also similar to clinical
practice, as the distinction between these diseases on EMG data
can be notoriously difficult. A retrospective study of mislabeled
IBM patients found that routine EMG commonly pointed to a neu-
rogenic disorder: it showed fibrillation potentials and positive
sharp waves, as well as fasciculation potentials and excessive
amounts of polyphasic long-duration ‘‘neurogenic” MUAPs in the
majority of mislabeled patients (Dabby et al., 2001). ALS and IBM
were chosen here as exemplary diseases for neuropathy and
myopathy, because they can be diagnosed based on clearly defined
criteria, thus minimizing diagnostic uncertainty. Our assumption
was that an algorithm capable of distinguishing ALS from IBM
would be useful for the identification of other neurogenic changes
(e.g., traumatic nerve injury, radiculopathy, polyneuropathy) and
myopathies as well. As the ultimate aim was to develop an ML
approach to distinguish neuropathic and myopathic EMG signals,
we did not include clinical data in the analysis, other than to con-
firm the diagnosis.

Previously reported machine learning algorithms differentiating
healthy subjects from patients with myopathy and neuropathy
reported accuracies between 86.3% and 99% (Artuğ et al., 2014;



Fig. 2. Mean feature importance of consistently retained features for the
classification between ALS and HC. HC: healthy controls, ALS: amyotrophic lateral
sclerosis. Features are derived from TsFresh, an online feature library (Christ et al.,
2018). Detailed descriptions can be found online, but in brief, the meaning of all
features from left to right is ‘‘percentage of values that are present in the time series
more than once”, ‘‘factor which is 1 if all values in the time series occur only once,
and below one if this is not the case”, ‘‘absolute value of the 1st coefficient of the 1D
discrete Fourier Transformation”, ‘‘sum of all data points, that are present in the
time series more than once”, ‘‘percentage of non-unique data points.”, ‘‘sum of all
time series values”, ‘‘real part of the 1st coefficient of the 1D discrete Fourier
Transformation”, ‘‘absolute value of the 36rd coefficient of the 1D discrete Fourier
Transformation”, ‘‘count occurrences of value 0”, ‘‘cross power spectral density of
the time series x at different frequencies (the time series is first shifted from the
time domain to the frequency domain)”, ‘‘standard deviation of the signal”,
‘‘absolute energy of the time series, i.e. the sum over the squared values”. Blue
bars indicate features related to the presence of reoccurring values in the data
series, red bars are related to spectral measures, black bars represent features with
the amplitude of the signal and the green bar represents the remaining feature,
which indicates the frequency of value ‘‘0” in the signal.
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Dobrowolski et al., 2012; Elamvazuthi et al., 2015; Istenic et al.,
2010; Mokdad et al., 2020; Naik et al., 2016; Sengur et al., 2017;
Subasi, 2012, 2018). However, these studies lacked a clear descrip-
tion on the criteria used to diagnose IBM, ALS, and healthy subjects,
and generally involved small numbers of patients or simulated
data.

The main strength of our study is the stringent use of clinical
criteria and gold standards that did not reply on subjective expert
opinion. In addition, classification was completely independent of
the EMG signal used for the machine learning pipeline: for IBM,
the gold standard was muscle biopsy and for ALS and healthy con-
trols, longitudinal clinical follow-up. Furthermore we used the ear-
liest available EMG recording. This is the most clinically relevant
recording, but it is likely more difficult to differentiate EMGs from
ALS or IBM patients at early disease stages from healthy subjects.
Diagnostic yield would probably have been better if EMGs from
more advanced disease stages would have been used, although this
would have been less relevant for clinical practice. Another
strength of this study is the use of a sophisticated ML pipeline with
automated hyperparameter optimization, fitting our aim to limit
the use of arbitrary choices as much as possible. In line with this
aim, we did not specifically select EMG fragments based on the
level of muscle activation, as this would require subjective inter-
pretation. Selection of longer traces, containing the EMG signal
from muscles at different stages of activation would likely have
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improved diagnostic yield further, especially if these traces could
be labeled during the examination to indicate the trace contained
a recording of the muscle at rest, at minimal contraction or at
(near) maximal contraction.

In comparison to deep learning algorithms, a major advantage
of the ML approach described here is its ability to identify the rel-
ative importance of features used for classification, allowing inter-
pretation of the model. In particular for the classification ‘‘ALS vs.
HC”, a number of features were retained in all cross-validations
and all repetitions. Although these data should be interpreted with
caution due to the relatively small number of included subjects,
there are some suggestions that the most important features were
indeed indicative of abnormalities that are commonly used in the
clinical interpretation of the EMG. Four features were related to
the percentage of reoccurring values in the signal, which may have
been caused by reduced recruitment patterns consisting of a small
number of repeating motor unit potentials. Four features related to
spectral measures may be influenced by MUAP duration. Three fea-
tures related to power or amplitude of the signal may have been
related to increased MUAP amplitudes observed in ALS, and the
final feature, which represented the frequency of value zero in
the traces, may be affected by the reduced interference pattern
that is commonly seen in ALS. For future research, a more in-
depth analysis of which features are relevant for disease classifica-
tion could lead to the discovery of novel biomarkers for disease
classification and progression.

It is remarkable that performance at the individual muscle-level
(in an approach that treated each muscle as a separate observa-
tion) was similar to performance at the patient-level (in which
all muscles from each patient were combined). Given the ‘‘patchy”
nature of ALS, especially at early disease stages, some EMG traces
from ALS patients were likely to be from apparently unaffected
muscles and thus would appear to resemble normal EMG traces.
Therefore, prior to this analysis we expected the patient-level
approach to reach a higher diagnostic yield. It should be noted that
in both the ALS and IBM groups, all muscles were included in both
the training and the validation set, regardless of whether they
appeared to be affected. An uneven distribution of the level of dis-
ease activity would therefore affect both the muscle and the
patient level analysis, as both are based on the same ML algorithm;
the patient level approach is essentially a post-processing step to
calculate the average score of all muscles from each patient. To
investigate whether the algorithm would improve when only
clearly abnormal traces were included, we performed an additional
analysis using only EMG traces which were labelled neuropathic or
myopathic in the original clinical report. Unfortunately, this analy-
sis did not yield meaningful results (data not shown), probably
because this model was trained on a much smaller and imbalanced
dataset and relied on a subjective assessment.

Limitations of this study are the small data set, which is inevi-
table given the rarity of IBM in particular, and the relatively short
fragments of EMG recordings used. Selection of the fragment was
based on the absence of artifacts, although we aimed to select
the last 5 seconds of every EMG signal assuming that this segment,
usually containing (near-) maximal muscle contraction, would
contain the most useful information for classification. The ML algo-
rithm was validated through a 10-fold cross-validation. Although
this approach reduces the risk of overfitting, a limited degree of
overfitting cannot be ruled out completely. Due to the small sam-
ple size used here, the differences in the number and type of exam-
ined muscles between different disease classes and the (albeit
small) risk of overfitting, the data presented here are best consid-
ered a ‘proof of concept’, showing the potential of an automated
approach. However, prior to clinical application, further refine-
ment of the algorithm and validation on external data, preferably
from another hospital, would be needed to assess generalizability.
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Ultimately, our findings could lead to the development of an ML
pipeline integrated into EMG software for automatic classification
of the signal. Such a tool could improve diagnostic accuracy, reduce
inter-observer variability and reduce the need for assessment by a
trained clinical neurophysiologist, which is laborious, expensive,
and time-consuming.
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