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Abstract

We define and study a natural system of tautological rings on the moduli spaces of marked
urves at the level of differential forms. We show that certain 2-forms obtained from the natural
ormal functions on these moduli spaces are tautological. Also we show that rings of tautological
orms are always finite dimensional. Finally we characterize the Kawazumi–Zhang invariant
s essentially the only smooth function on the moduli space of curves whose Levi form is a
autological form.
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1. Introduction

In the last four decades, tautological rings on the moduli spaces of curves have been
ntensively studied, starting with a fundamental paper by Mumford [17]. One usually
efines these rings as subrings of Chow rings, or of cohomology rings. The aim of the
resent work is to initiate a study of natural tautological rings at the level of differential
orms.
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1.1. Tautological rings in Chow and cohomology

We start by recalling briefly the usual tautological rings. Let g ≥ 2 be an integer, and
let Mg be the moduli space of complex connected genus g curves. Let p : Cg → Mg

e the universal family. We are interested in Mg and the fiber products Cr
g for r ∈ Z>0

lassifying genus g curves with r (not necessarily distinct) marked points on them. To
ach pair of integers r, s ≥ 0 and each map of sets φ : {1, . . . , s} → {1, . . . , r} we have
ssociated a tautological morphism f φ : Cr

g → Cs
g given by sending a marked curve

C, x1, . . . , xr ) to the marked curve (C, xφ(1), . . . , xφ(s)).
In [13] Looijenga initiated the study of the tautological rings R∗(Cr

g) of the moduli
paces of r -marked curves. The rings R∗(Cr

g) are characterized as the smallest Q-sub-
lgebras of the Chow rings C H∗(Cr

g) with rational coefficients that are closed under
ushforward and pullback along tautological morphisms. At level r = 0 the system of
autological rings R∗(Cr

g) specializes to give the tautological ring R∗(Mg) introduced by
umford [17]. Among other things, Looijenga proves in [13] that the tautological rings

Rd (Cr
g) vanish in degree d > g − r + 2.

As a variant on the above, one can consider the tautological rings RH∗(Cr
g) in

ohomology with rational coefficients. These rings are obtained as the image of the
anonical ring map R∗(Cr

g) → H 2∗(Cr
g,Q). Our goal in this paper is to propose a lift

f the R-algebras RH∗(Cr
g) ⊗Q R ⊂ H∗(Cr

g,R) to the level of smooth differential forms.

.2. The rings of tautological forms

Unfortunately, the characterization of tautological rings as given above does not
mmediately generalize to the setting of differential forms. One issue is that pushforwards
f differential forms are in general not defined. They are defined though for submersions,
sing the process of integrating along the fiber. We therefore decide to restrict pushfor-
ards to the cases where the tautological morphism f φ is submersive, i.e., when the
ap φ is injective. The price we pay for this restriction is that we will give ourselves

ne specific 2-form h representing the diagonal class on C2
g as a starting point, and

eclare it to be tautological. Our choice of the 2-form h is motivated by the work of
awazumi [10,11].
Let ∆ denote the diagonal class on C2

g . We also use ∆ to denote the diagonal morphism
g → C2

g , i.e., the tautological morphism corresponding to the unique map {1, 2} → {1}.
he identity ∆∗(1) = ∆ of classes shows that ∆ is a tautological class. Let G : C2

g → R
e the canonical Green’s function as introduced by Arakelov [1], see Section 3. The
unction G defines a smooth Hermitian metric ∥ · ∥ on the line bundle O(∆) on C2

g by
etting ∥1∥ = G, where 1 denotes the canonical global section of the line bundle O(∆).

We take the 2-form h to be the Chern form of the line bundle O(∆) with the given
etric,

h := c1 (O(∆), ∥ · ∥) .

his leads to the following definition for the tautological rings at the level of forms.
hen f : Cr

g → Cs
g is a tautological submersion we denote by

∫
f : A∗(Cr

g) → A∗(Cs
g) the

ntegration along the fiber operating on differential forms.
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efinition. The rings of tautological forms R∗(Cr
g) (r ≥ 0) are the unique sub-R-algebras

∗(Cr
g) ⊆ A∗(Cr

g) such that the following hold:

(1) h ∈ R∗(C2
g);

(2) If f : Cr
g → Cs

g is a tautological morphism, then f ∗(R∗(Cs
g)) ⊆ R∗(Cr

g);
(3) If f : Cr

g → Cs
g is a tautological submersion, then

∫
f (R∗(Cr

g)) ⊆ R∗(Cs
g);

(4) R∗(Cr
g) are minimal: if S∗(Cr

g) ⊆ A∗(Cr
g) (r ≥ 0) is a collection of sub-R-algebras

that satisfies (1)–(3), then R∗(Cr
g) ⊆ S∗(Cr

g) for all r ≥ 0.

lements of the rings R∗(Cr
g) are called tautological (differential) forms.

As any system satisfying (1)–(3) above can always be reduced to a smaller system
atisfying (1)–(3) by removing all odd-degree forms, it follows that all odd-degree
ubspaces R2d+1(Cr

g) vanish. A similar argument shows that the rings of tautological
orms consist entirely of closed forms.

From the definition we readily obtain the tautological differential forms

eA
:= ∆∗h ∈ R2(Cg) (1.1)

s well as

eA
d :=

∫
Cg/Mg

(eA)d+1
∈ R2d (Mg) , d ∈ Z>0. (1.2)

he notation eA is borrowed from [10,11].
Let r ∈ Z≥0. Based on the examples (1.1) and (1.2), it is easy to see that (as desired)

he canonical map R∗(Cr
g) → H 2∗(Cr

g;R) obtained by taking cohomology classes surjects
nto the sub-R-algebra RH∗(Cr

g) ⊗Q R. Indeed, let p : Cr
g → Mg denote the projection

ap, for i = 1, . . . , r denote by pi : Cr
g → Cg the projection onto the i th coordinate,

nd for 1 ≤ i < j ≤ r denote by pi j : Cr
g → C2

g the projection onto the i th and j th
oordinate. Let K denote the cohomology class of the relative cotangent bundle of Cg

ver Mg , and let κd = p∗K d+1 denote the kappa-classes on Mg . The surjectivity claim
ollows immediately from the following observations:

• the tautological ring RH∗(Cr
g) is generated by the classes p∗κd , p∗

i K and p∗

i j∆ —
this follows immediately from how the tautological rings are defined in Chow rings
in [13];

• the tautological form eA represents the class K up to a sign, the tautological form
eA

d represents the class κd up to a sign, and the tautological form h represents the
class ∆;

• the projections p, pi and pi j are tautological morphisms.

t follows from Looijenga’s result in [13] that all tautological forms of degree larger than
(g + r − 2) are exact. We will show in this paper that certain 2-forms obtained from
atural normal functions on the moduli spaces Cr

g are tautological (Theorem A), and in
act generate the tautological rings in a suitable sense (Theorem B). Also we show that
ings of tautological forms are finite dimensional (Theorem C). Finally, we describe a
asis of the degree-two part R2(Cr

g) of the ring of tautological forms (Theorem D), as
ell as a basis of the space of exact tautological 2-forms on M (Theorem E).
g
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1.3. Statement of the main results

We assume that g ≥ 2. Let Jg → Mg denote the universal Jacobian. Let P denote the
Poincaré bundle on Jg ×Mg J ∨

g , equipped with the tautological rigidification along the
projection onto the second coordinate. Let λ :Jg

∼
−→ J ∨

g denote the canonical principal
polarization, and write B for the rigidified line bundle (id, λ)∗P on Jg . We remark that
the restriction of B to a fiber of Jg → Mg represents twice the principal polarization λ.

By for instance [7, Sections 6–7] the Chern class c1(B) ∈ H 2(Jg,R) contains a
canonical (1, 1)-form 2ω0, uniquely characterized by the following two properties:

• the form vanishes along the given rigidification;
• the form is fiberwise translation invariant.

Following [3, Section 2] we call ω0 the Betti form on Jg .
Let r ≥ 0 be any integer, let n ∈ Z, and let m = (m1, . . . ,mr ) be an r -tuple of

ntegers whose sum equals (2g − 2)n. These data give rise to a natural map

Fm : Cr
g → Jg

iven by sending an r -marked curve (C, x1, . . . , xr ) to the class of the degree zero line
undle OC (m1x1+· · ·+mr xr )⊗ω⊗−n

C in the Jacobian of C . Here ωC denotes the canonical
ine bundle on C .

Our first main result says that the canonical 2-forms F∗
mω0 are all tautological.

heorem A. Each of the 2-forms 2F∗
mω0 is an integral linear combination of the

autological 2-forms p∗eA
1 , p∗

i eA and p∗

i j h.

Let 2φ0 denote the Chern class of B in H 2(Jg,Q). It follows from a result of Hain
n [6, Theorem 11.5] that each of the classes 2F∗

mφ0 is an integral linear combination of
he tautological classes p∗κ1, p∗

i K and p∗

i j∆. Theorem A can be viewed as a refinement
f Hain’s result at the level of forms. Theorem A can in principle be proved by following
he lines of [6, Section 11], however we will follow here a slightly different route using
eligne pairings, a tool that we will need anyway.
Let δ = F(1,−1) denote the difference map C2

g → Jg . Our next result gives perhaps a
ore canonical description of the rings of tautological forms.

heorem B. The rings of tautological forms R∗(Cr
g) are the smallest R-subalgebras of

A∗(Cr
g) stable under pullback along tautological morphisms and fiber integration along

autological submersions, and containing the 2-form 2δ∗ω0.

For the proof, we need to show that we can obtain the form h from the form 2δ∗ω0
sing pullbacks and fiber integrations.

We next have the following finiteness result for our tautological rings.

heorem C. For each r ≥ 0 and g ≥ 2, the ring of tautological forms R∗(Cr
g) is

nite-dimensional as an R-vector space.

The proof proceeds in a few steps. First, we develop a graphical formalism that allows
r
o attach tautological forms on Cg to what we call r -marked graphs. We will see that the
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orms associated to r -marked graphs span the tautological ring R∗(Cr
g) as an R-vector

pace. In fact, we shall see that it suffices to take only contracted r -marked graphs; and
hese will be seen to be classified by a finite set.

Our next result gives an explicit description of the degree-two part R2(Cr
g) of the ring

f tautological forms. We set

ν :=

∫
C2

g/Mg

h3
∈ R2(Mg). (1.3)

heorem D. Let r ≥ 0. If g ≥ 3 a basis of R2(Cr
g) is given by the 2-forms

{p∗

i j h : 1 ≤ i < j ≤ r} ∪ {p∗

i eA
: 1 ≤ i ≤ r} ∪ {eA

1 , ν}.

f g = 2 a basis of R2(Cr
g) is given by the 2-forms

{p∗

i j h : 1 ≤ i < j ≤ r} ∪ {p∗

i eA
: 1 ≤ i ≤ r} ∪ {eA

1 }.

We note that the forms eA
1 and ν have the same class in cohomology. In particular,

he difference ν − eA
1 is an example of an exact tautological form. As it turns out, this

xact form is intimately connected with the Kawazumi–Zhang invariant ϕ :Mg → R
ntroduced in [10,11] and in [21], independently. Namely, the Kawazumi–Zhang invariant
s given as the fiber integral

ϕ :=

∫
C2

g/Mg

log G h2
∈ A0(Mg). (1.4)

small calculation, using that ∂∂ commutes with fiber integration, shows that

ν − eA
1 =

1
π i
∂∂ϕ . (1.5)

e refer to [9, Proposition 5.3] for details. Our final result says that the Kawazumi–Zhang
nvariant exactly explains all exact tautological 2-forms over Mg .

Theorem E. The subspace of exact 2-forms in R2(Mg) is one-dimensional, spanned
y the form 1

π i∂∂ϕ = ν − eA
1 . When g ≥ 3, the Kawazumi–Zhang invariant can

e characterized as the only C∞-function on Mg , up to additive and multiplicative
onstants, whose Levi form is a tautological form.

.4. Future directions

Using a counting argument on contracted graphs, it is possible to show that for all
∈ Z≥0 there exists a polynomial fd of degree 2d such that for all g ≥ 2, r ≥ 0 the

ound dimR2d (Cr
g) ≤ fd (r ) holds. The polynomials fd can in principle be computed.

e refer to [14] for details.
Theorem D shows that dimR2(Cr

g) is essentially given by a quadratic polynomial in r .
nfortunately, we have found it complicated to obtain precise information about (the
rowth behavior of the dimensions of) the R∗(Cr ) in higher cohomological degrees.
g
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A possible starting point might be to first obtain a better understanding of the
omogeneous ideal I ∗(Cr

g) ⊂ R∗(Cr
g) of exact tautological forms, as our knowledge of

he usual tautological rings gives us information about the quotient rings RH∗(Cr
g)⊗QR.

or example, it would be interesting to find generators for the ideals I ∗(Cr
g).

Other possible directions for future research could be to extend our constructions and
esults to the setting of cochains for suitable mapping class groups, and to the setting of
he moduli spaces of marked stable curves.

.5. Overview of the paper

Sections 2–4 are used to set notations and to review known results. In Section 5 we
roperly introduce the forms h and eA and discuss some of their basic properties. In
ection 6 we prove Theorems A and B. In Sections 7–11 we carry out foundational
ork for our proofs of Theorems C, D and E, which are then presented in Sections 12

nd 13.

. Preliminaries

In this paper we work with stacks over the category CMan of complex manifolds. For
thorough discussion of this notion, and of the results below, we refer to [14, Chapter 2]

nd the references therein.

.1. Stacks

Roughly speaking, a stack (over CMan) is a category X equipped with a functor
F :X → CMan that allows base changes, gluing of isomorphisms, and gluing of objects.

complex manifold S becomes itself naturally a stack by considering the category of
omplex manifolds over S; the structure functor F in this case is the functor that forgets
he base manifold S.

Stacks form a 2-category. One has a natural notion of 2-cartesian diagrams of stacks.
hen X , S are stacks the category of morphisms from X to S is denoted S(X ). A
orphism of stacks f : X → S is called representable if for each complex manifold S

nd each morphism of stacks Φ : S → S there exists a 2-cartesian diagram of the form

X X

S S
□ f

Φ

with X a complex manifold.
Let P be a property of morphisms of complex manifolds that is compatible with

ase change. Then we say a morphism f : X → S of stacks has property P if it
is representable and for each 2-cartesian diagram as above the morphism of complex
manifolds X → S has property P. In particular, one can talk about a morphism of
stacks being a submersion, being proper, being surjective, or being a family of Riemann
surfaces.
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.2. Moduli stacks of curves

Stacks that are central in this paper are the stack Mg of families f : C → S of compact
connected Riemann surfaces of genus g and the stack Cg of such families f : C → S
together with a section σ : S → C. The functor p : Cg → Mg that forgets the section
is a representable morphism of stacks, called the universal family of compact connected
Riemann surfaces of genus g.

For each r ∈ Z>0 the stack Cr
g is defined to be the r -fold fiber product of the morphism

p with itself. The tautological morphisms f φ : Cr
g → Cs

g considered in the introduction
are proper morphisms of stacks.

2.3. Differential forms on stacks

We denote by A∗ the category whose objects are differentiable forms on a complex
manifold. If η and ω are differential forms on complex manifolds T and S, respectively,
then the morphisms η → ω in A∗ are precisely those morphisms f : T → S of the
underlying manifolds for which f ∗ω = η.

We have a natural functor A∗
→ CMan given by sending a differential form to its

underlying complex manifold. This functor turns A∗ into a stack over CMan.
When X is a stack, a differential form on X is defined to be a morphism of stacks

X → A∗. For instance, differential forms on a complex manifold correspond bijectively
to differential forms on the associated stack; differential forms on the stack Mg are
differential forms that occur universally on the bases of families of genus g compact
Riemann surfaces. The category A∗(X ) is a discrete category: there are no 2-morphisms
between two differential forms on a given stack, apart from identity morphisms. Hence
the notion of equality of differential forms makes sense.

There are natural d-, ∂- and ∂-operators on differential forms extending the usual ones,
in particular we can talk about exact and closed differential forms.

When f : X → S is a morphism of stacks, we immediately obtain a pullback functor
f ∗

: A∗(S) → A∗(X ). The next lemma says that the pullback functor is well-behaved
ith respect to submersions.

emma 2.1 (See [14, Lemma 2.5.4]). Let f : X → S be a surjective submersion of
tacks. Then the functor f ∗

: A∗(S) → A∗(X ) is injective.

When f : X → S is a proper submersion, we have a natural fiber integral functor

f : A∗(X ) → A∗(S) generalizing the usual fiber integral operator [20, Appendix II].
n particular we have that the projection formula is satisfied: for all ω ∈ A∗(X ) and
η ∈ A∗(S) we have the identity∫

f

(
ω ∧ f ∗η

)
=

(∫
f
ω

)
∧ η

in A∗(S). Fiber integration satisfies the base change formula for 2-cartesian diagrams.
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Lemma 2.2 (See [14, Proposition 2.5.9]). Consider a 2-cartesian diagram of stacks

X ′ X

S ′ S

f ′

h

□ f

g

where f and f ′ are proper submersions. Let ω be a differential form on X . Then the
following identity holds in A∗(S ′):

g∗

(∫
f
ω

)
=

∫
f ′

h∗ω.

2.4. Hermitian line bundles on stacks

Similarly, one has a stack Pic of line bundles on complex manifolds. Morphisms in
Pic are cartesian diagrams; when X is a stack, a line bundle on X is defined to be a
morphism of stacks X → Pic. For instance, a line bundle on the moduli stack Mg is a
line bundle that occurs universally on the bases of families of genus g compact Riemann
surfaces. When f : X → S is a morphism of stacks, we immediately obtain a pullback
functor f ∗

:Pic(S) → Pic(X ).
In a very similar vein one has the stack Pic of Hermitian line bundles on complex

manifolds. The Chern form is realized as a morphism of stacks c1 :Pic → A∗.

3. Arakelov–Green’s function and Arakelov metric

In this section we introduce the Arakelov–Green’s function G of a compact and
connected Riemann surface. Also we introduce the Arakelov metric on the holomorphic
cotangent line bundle. The main reference for this section is [1].

Let C be a compact and connected Riemann surface of genus g. We will assume in
the sequel that g ≥ 1. Denote by ωC the holomorphic cotangent line bundle of C . Then
on the space ωC (C) of global sections we have a natural Hermitian inner product, given
by the prescription

(η, η′) ↦→
i
2

∫
C
η ∧ η̄′ . (3.1)

Let (η1, . . . , ηg) be an orthonormal basis of ωC (C). The Arakelov (1, 1)-form of C is
defined to be the element

µ :=
i

2g

g∑
j=1

η j ∧ η j ∈ A2(C). (3.2)

t follows from the Riemann–Roch theorem that µ is a volume form on C ; we clearly
ave

∫
C µ = 1.

When P ∈ C is a point we denote by δP the Dirac delta current at P . The
rakelov–Green’s function of C is the real-valued generalized function on C×C uniquely
etermined by the conditions

∂∂̄ log G(P, z) = π i (µ(z) − δ (z)) (3.3)
z P
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nd ∫
C

log G(P, z)µ(z) = 0 (3.4)

or all P ∈ C . An application of Stokes’ theorem shows that one has a symmetry property

G(P, Q) = G(Q, P) (3.5)

for all P , Q in C . Let U ⊂ C be an open set and let t : U
∼
−→ D be a local coordinate

here D denotes a small open disk in C. Then we have a local expansion

log G(P, Q) = log |t(P) − t(Q)| + O(1) (3.6)

or all distinct P , Q ∈ U . In this expansion, the O(1)-term is a C∞ function depending
n the choice of coordinate.

Let ∆ denote the diagonal on C × C . The Arakelov–Green’s function G induces a
atural Hermitian metric ∥ · ∥ on the holomorphic line bundle OC×C (∆) on C × C by
utting ∥1∥(P, Q) = G(P, Q) for P, Q in C . Here 1 denotes the canonical global section
f OC×C (∆). By restriction to vertical or horizontal slices of C × C we obtain natural
ermitian metrics on the line bundles OC (P) for each P ∈ C .
Let ∆ also denote the diagonal embedding of C into C × C . Recall that we have a

anonical isomorphism

ω⊗−1
C

∼
−→ ∆∗OC×C (∆) (3.7)

f holomorphic line bundles on C (the adjunction formula). By pullback along the
somorphism (3.7) and taking the dual one obtains an induced C∞ metric on ωC , called
he Arakelov metric.

efinition 3.1. A Hermitian line bundle (L , ∥ · ∥) on the Riemann surface C is called
dmissible if its Chern form c1(L , ∥ · ∥) is a multiple of the Arakelov (1, 1)-form µ.

Eq. (3.3) can be used to show that each OC (P) with its metric derived from G is
dmissible. We also have that ωC equipped with its Arakelov metric is admissible, as
hown in [1, Section 4]. The dual of an admissible Hermitian line bundle is admissible,
nd the tensor product of two admissible Hermitian line bundles is admissible.

. Deligne pairing and its metric

Let C and S be complex manifolds. Let p : C → S be a family of compact Riemann
urfaces of positive genus. Then following [4] we have a canonical bi-multiplicative
airing ⟨L ,M⟩ for line bundles L ,M on C, with values in line bundles on S. Here
nd in the following, line bundles are always taken in the holomorphic category. As
ur construction will show, the formation of the Deligne pairing is compatible with base
hange. It follows that the notion of Deligne pairing generalizes to the context of families

f compact Riemann surfaces over stacks.
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Locally on an open set U ⊂ S the line bundle ⟨L ,M⟩ is generated by symbols ⟨ℓ,m⟩

ith ℓ a nonzero rational section of L on p−1U and m a nonzero rational section of M
n p−1U , such that the divisors of ℓ,m on p−1U have disjoint support. These symbols
bey the relations

⟨ℓ, f m⟩ = f (div ℓ)⟨ℓ,m⟩ , ⟨ f ℓ,m⟩ = f (div m)⟨ℓ,m⟩ (4.1)

or rational functions f on C. The function f (div ℓ) should be interpreted as coming
rom a norm: when D is an effective relative Cartier divisor on C, then we put f (D) =

mD/S( f ). The Weil reciprocity law f (div g) = g(div f ) on compact Riemann surfaces
an be used to show that this construction by generators and relations indeed gives a line
undle on S. Let a, b ∈ H 2(C,Q) be the Chern classes of the line bundles L ,M on C.

Then the Chern class of ⟨L ,M⟩ is equal to p∗(a ∪ b) ∈ H 2(S,Q).
Let P : S → C be a section of p. Let L ,M be line bundles on C, and let N be a line

undle on S. Then we have canonical isomorphisms

⟨M, p∗N ⟩
∼
−→ N⊗ deg M , ⟨L ,M⟩

∼
−→ ⟨M, L⟩ , ⟨OC(P), L⟩

∼
−→ P∗L (4.2)

f line bundles on S.
Assume now that each of L ,M, N is equipped with Hermitian metrics. Then by

4, Section 6] the Deligne pairing ⟨L ,M⟩ has a canonical structure of Hermitian line
undle, which can be given explicitly as follows. Let ℓ, m be non-zero rational sections
f L resp. M with disjoint support. Then we set

log ∥⟨ℓ,m⟩∥ := (log ∥m∥)[div ℓ] +

∫
p

log ∥ℓ∥ c1(M) (4.3)

s functions on S. We have a symmetry relation ∥⟨ℓ,m⟩∥ = ∥⟨m, ℓ⟩∥, cf. [4, Section 6.3].
t follows from (4.3) that for rational functions f on C we have

log ∥⟨ℓ, f m⟩∥ = log ∥⟨ℓ,m⟩∥ + (log | f |)[div ℓ],

howing that the norm ∥ · ∥ is compatible with the relations (4.1).
The canonical isomorphisms

⟨M, p∗N ⟩
∼
−→ N⊗ deg M , ⟨L ,M⟩

∼
−→ ⟨M, L⟩ (4.4)

rom (4.2) are easily seen to be isometries. For the third isomorphism from (4.2) we have
o be a little careful. First of all, we equip OC(P) with the Hermitian metric derived from
he Arakelov Green’s function in the fibers.

roposition 4.1. Assume that the Hermitian line bundle L is fiberwise admissible
in the sense of Definition 3.1) with respect to p. Then the canonical isomorphism
OC(P), L⟩

∼
−→ P∗L from (4.2) is an isometry.

roof. Denote by 1P the canonical global section of OC(P). Let ℓ be any nonzero
ational section of L with support away from P . Then by the definition of the metric on
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he Deligne pairing in (4.3) and by the normalization condition (3.4) we find

log ∥⟨1P , ℓ⟩∥ = (log ∥ℓ∥)[div 1P ] +

∫
p

log ∥1P∥ c1(L)

= log ∥P∗ℓ∥ +

∫
p

log G(P,−) c1(L)

= log ∥P∗ℓ∥.

(4.5)

he proposition follows. □

We note that OC(P) is itself fiberwise admissible with respect to p. Also the relative
otangent bundle ω of C over S is fiberwise admissible with respect to p, if one equips
ω with the fiberwise Arakelov metric.

We have the following useful expression for the Chern form of the Deligne pairing.

Proposition 4.2. Let p : C → S be a family of compact Riemann surfaces, and L and
M two Hermitian line bundles on C. Let ⟨L ,M⟩ be the Deligne pairing of L ,M along p,
quipped with its Hermitian metric determined by (4.3). Then the equality of differential
orms

c1(⟨L ,M⟩) =

∫
p

c1(L) ∧ c1(M)

olds in A2(S).

roof. This is [4, Proposition 6.6]. □

Finally, we briefly discuss the connection with the Poincaré bundle on the Jacobian.
e refer to [15] for an extensive discussion of this connection.
Let J → S denote the family of Jacobians associated to the family of compact

iemann surfaces C → S. Let P denote the Poincaré bundle on J ×S J ∨, equipped
ith its tautological rigidification along the zero section of the projection on the second

oordinate. Let λ :J ∼
−→ J ∨ denote the canonical principal polarization, and write P0

or the rigidified line bundle (id ×λ)∗P on J ×S J .
The line bundle P carries a canonical Hermitian metric, uniquely characterized by the

ollowing properties:

• the metric is compatible with the given rigidification;
• the Chern form of the metric is translation invariant in all fibers over S.

ere, the norm on the trivial line bundle is taken to be the canonical one with ∥1∥ = 1.
he canonical Hermitian metric on P induces by pullback along (id × λ) a Hermitian
etric on the line bundle P0.
We have the following fundamental result that we shall use in our proof of Theorem A.

heorem 4.3. Let L ,M be two fiberwise admissible line bundles on C. Assume that
L ,M have relative degree zero. Let [L], [M] denote the resulting sections of the Jacobian
bration J → S. We have a canonical isometry of Hermitian line bundles

[L], [M] ∗ P⊗−1 ∼
−→ ⟨L ,M⟩
( ) 0
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on S. Here, the left hand side is equipped with the metric induced by pullback from the
canonical metric on P0.

Proof. This follows from [15, Corollaire 4.14.1]. □

5. The universal case

Let g ≥ 2 be an integer. The constructions and results from Sections 3 and 4 generalize
to the setting of the universal compact Riemann surface p : Cg → Mg , following the
general remarks in Section 2. To start with, we have a natural Hermitian metric ∥ · ∥ on
the line bundle O(∆) on C2

g , by setting ∥1∥(P, Q) = G(P, Q) for a pair of points P, Q
on a compact Riemann surface C , with G the Arakelov–Green’s function of C .

Definition 5.1. We set

h := c1(O(∆), ∥ · ∥) ∈ A2(C2
g), (5.1)

the Chern form of the Hermitian line bundle O(∆) on C2
g . The 2-form h represents the

lass ∆ of the diagonal in H 2(C2
g,R).

Let ω = ωCg/Mg denote the relative holomorphic cotangent bundle of the family of
ompact Riemann surfaces p : Cg → Mg . We endow ω with the fiberwise Arakelov

metric; this turns ω into a Hermitian line bundle on the stack Cg . Let ∆ : Cg → C2
g also

enote the diagonal embedding. Then by construction of the Arakelov metric via the
djunction formula (3.7) we arrive at a canonical isometry

ω⊗−1
≃ ∆∗O(∆) (5.2)

f Hermitian line bundles on Cg .

efinition 5.2. We set

eA
:= c1(ω⊗−1, ∥ · ∥) ∈ A2(Cg), (5.3)

he Chern form of ω−1 equipped with the dual of the Arakelov metric. The 2-form −eA

epresents the class K of ω in H 2(Cg,R), and we have eA
= ∆∗h.

Let p1 : C2
g → Cg be the projection on the first coordinate. One readily finds the

dentities∫
p

eA
= 2 − 2g ∈ A0(Mg),

∫
p1

h = 1 ∈ A0(Cg). (5.4)

e will also need the following results.

emma 5.3. Consider the family of compact Riemann surfaces p1 : C2
g → Cg . If L is

Hermitian line bundle on C2
g which is fiberwise admissible with respect to p1, then∫

h ∧ c1(L) = ∆∗c1(L) ∈ A2(Cg).

p1
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n particular, we have:∫
p1

h2
= eA

and for i = 1, 2 we have∫
p1

h ∧ p∗

i eA
= eA.

Proof. From Proposition 4.2 we obtain∫
p1

h ∧ c1(L) =

∫
p1

c1(O(∆)) ∧ c1(L) = c1(⟨O(∆), L⟩) = c1(∆∗L) = ∆∗c1(L),

here the third equality follows Proposition 4.1. The other identities now follow from:

h = c1(O(∆)), and p∗

i eA
= p∗

i c1(ω⊗−1) = c1(p∗

i ω
⊗−1). □

emma 5.4. Let p12, p13, p23 : C3
g → C2

g be the three projections. Then∫
p12

p∗

13h ∧ p∗

23h = h ∈ A2(C2
g).

roof. Let σ1, σ2 : C2
g → C3

g be the two canonical sections of p12, such that p3◦σi = pi :
2
g → Cg for i = 1, 2. Notice that p13 ◦ σ2 : C2

g → C2
g is the identity. Endow the induced

ine bundles O(σ1),O(σ2) on C3
g with their canonical metrics. We use Proposition 4.2 to

obtain∫
p12

p∗

13h ∧ p∗

23h =

∫
p12

p∗

13c1(O(∆)) ∧ p∗

23c1(O(∆))

=

∫
p12

c1(O(σ1)) ∧ c1(O(σ2))

= c1(⟨O(σ1),O(σ2)⟩)

= σ ∗

2 c1(O(σ1))

= σ ∗

2 p∗

13c1(O(∆))

= c1(O(∆))

= h. □

efinition 5.5. We set

eA
1 :=

∫
p
(eA)2

∈ A2(Mg). (5.5)

ote that eA
1 equals the Chern form of ⟨ω,ω⟩, when the latter is equipped with the

Deligne pairing metric, by Proposition 4.2. The 2-form eA
1 represents the kappa class

2

1 in H (Mg,R).
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6. Proof of Theorems A and B

We continue to assume that g ≥ 2. Let Jg → Mg denote the universal Jacobian in
genus g, i.e., the Jacobian fibration associated to the universal family p : Cg → Mg . Let
P denote the Poincaré bundle on Jg×Mg J ∨

g , equipped with its tautological rigidification
along the zero section of the projection on the second coordinate. Let λ :Jg

∼
−→ J ∨

g denote
the canonical principal polarization, write P0 for the rigidified line bundle (id, λ)∗P on
Jg ×Mg Jg and write B for the pullback of the line bundle P0 along the diagonal. This
is a rigidified line bundle on Jg .

Following the discussion at the end of Section 4, we see that the line bundle P carries
a canonical Hermitian metric, uniquely characterized by the following properties:

• the metric is compatible with the given rigidification;
• the Chern form of the metric is translation invariant in all fibers over Mg .

The canonical Hermitian metric on P induces by pullback a Hermitian metric on the line
bundles P0 and B. We observe that the Chern form of B is equal to the form 2ω0 on Jg

that we introduced in 1.3.
Let r ≥ 1 be any non-negative integer, let n be any integer, and let m = (m1, . . . ,mr )

be an r -tuple of integers whose sum equals (2g−2)n. These data give rise to a morphism
f stacks

Fm : Cr
g → Jg (6.1)

given by sending a family p : C → S of compact Riemann surfaces of genus g together
ith an r -tuple of sections (σ1, . . . , σr ) to the section of the associated Jacobian fibration
ver S given by the relative degree zero line bundle OC(m1σ1 +· · ·+mrσr )⊗ω⊗−n

C/S on C.
Here ωC/S denotes the relative holomorphic cotangent bundle of C over S.

Theorem 6.1. Let ω = ωCg/Mg denote the relative holomorphic cotangent bundle of the
universal family of compact Riemann surfaces of genus g, equipped with the fiberwise
Arakelov metric. We have a canonical isometry of Hermitian line bundles on Cr

g:

F∗

mB⊗−1
≃

⨂
1≤i< j≤r

p∗

i jO(∆)⊗2mi m j ⊗

r⨂
i=1

p∗

i ω
⊗−m2

i −2mi n
⊗ ⟨ω,ω⟩

⊗n2
.

Proof. We temporarily write p : Cr+1
g → Cr

g for the projection forgetting the last
coordinate. We have canonical sections σi : Cr

g → Cr+1
g of p for i = 1, . . . , r obtained

by repeating the i th coordinate. By a slight abuse of notation we write ω also for the
relative cotangent bundle of p. We then set

Lm = O(m1σ1 + · · · + mrσr ) ⊗ ω⊗−n,

a line bundle on Cr+1
g of relative degree zero over Cr

g . Following the constructions and
results from Sections 2–4 we have a natural Hermitian metric on Lm , obtained from
the metric determined by the Arakelov–Green’s function on the line bundles O(σi ) and
from the fiberwise Arakelov metric on ω. The Hermitian line bundle L is fiberwise
m
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dmissible. By Theorem 4.3 we have a canonical isometry

F∗

mB⊗−1 ∼
−→ ⟨Lm, Lm⟩,

where the Deligne pairing is taken along p. As the Deligne pairing is bimultiplicative,
we find another canonical isometry

⟨Lm, Lm⟩
∼
−→

r⨂
i=1

r⨂
j=1

⟨
O(σi ),O(σ j )

⟩⊗mi m j
⊗

r⨂
i=1

p∗

i ω
⊗−2nmi ⊗ ⟨ω,ω⟩

⊗n2
.

Now for all 1 ≤ j ≤ r we have a canonical isometry

O(σ j )
∼
−→ p∗

j,r+1O(∆)

so taking the pullback along σi yields a string of canonical isometries⟨
O(σi ),O(σ j )

⟩
≃ σ ∗

i O(σ j ) ≃ σ ∗

i p∗

j,r+1O(∆) ≃

{
p∗

j iO(∆) = p∗

i jO(∆) if i ̸= j
p∗

j∆
∗O(∆) = p∗

jω
⊗−1 if i = j.

Here the first isometry follows from Proposition 4.1. In the last equality we have used the
isometry (5.2). By combining the above canonical isometries we obtain the result. □

The following corollary has Theorem A as an immediate consequence. It is a
refinement of [6, Theorem 11.5] at the level of forms.

Corollary 6.2. We have the following equality of 2-forms on Cr
g:

−2F∗

mω0 =

∑
1≤i< j≤r

2mi m j p∗

i j h +

r∑
i=1

(m2
i + 2mi n)p∗

i eA
+ n2eA

1 ∈ A2(Cr
g).

roof. Simply take Chern forms on left and right hand side in Theorem 6.1. □

A key example is obtained by setting m = (1,−1). Writing δ = F(1,−1) we obtain
rom Corollary 6.2 the identity

− 2δ∗ω0 = −2h + p∗

1eA
+ p∗

2eA (6.2)

n A2(C2
g). See also [9, Theorem 1.4].

roof of Theorem B. We need to show that we can obtain the 2-form h from the 2-form
δ∗ω0 by using pullbacks and fiber integrals. This is not difficult using the results from
ection 5; we refer to [14, Section 4.3] for details of the following computation. Squaring

eft and right hand side of the identity in (6.2) and integrating the result along the fibers
f p1 : C2

g → Cg first of all yields∫
p1

(−2δ∗ω0)2
= −4geA

+ p∗eA
1 .

Next, squaring the latter form and integrating it along the fibers of p : Cg → Mg gives∫
(−4geA

+ p∗eA
1 )2

= 16g(2g − 1)eA
1 .
p
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We conclude that we can obtain eA
1 , then eA, and finally h from 2δ∗ω0 by taking fiber

integrals and pullbacks. □

Remark 6.3. It is not hard to see using the explicit description of the Betti form ω0
in e.g. [3, Section 2] that the (2g + 2)-form ω

g+1
0 vanishes identically on Jg . We see

that raising the right hand side in Corollary 6.2 to the (g + 1)-st power gives rise
to a polynomial relation among the tautological forms p∗

i j h, p∗

i eA and eA
1 ; one gets

further relations by fiber integrating these down to Cr
g’s with smaller r , and/or by using

the fact that we get a polynomial in the variables mi that vanishes identically. This
method to generate relations among tautological forms refines a powerful idea due to
Randal-Williams [19] to obtain relations among tautological classes in cohomology.

We present here only one example: setting g = 2, and working with 2δ∗ω0 we get
from Eq. (6.2) the identity(

−2h + p∗

1eA
+ p∗

2eA)3
= 0 ∈ R6(C2

2 ) .

Expanding the parentheses, and fiber integrating the resulting ten tautological 6-forms
down to M2 turns out to yield the interesting relation

8ν + 12eA
1 = 0 ∈ R2(M2), (6.3)

where ν is the form defined in Eq. (1.3). We refer to [14, Section 4.10] for details of this
computation, and for a further discussion of Randal-Williams’ method for forms.

Remark 6.4. Each of the morphisms Fm from Eq. (6.1) is an example of a “normal
function” on Cr

g in the sense of Hodge theory. In [6] Hain considers, apart from the normal
functions Fm , also a certain normal function on Mg related to the Ceresa cycle. The
analogue of the line bundle F∗

mB above is the so-called Hain–Reed line bundle, studied
extensively in [7]. By [9, Proposition 10.2] the Chern form of the Hain–Reed line bundle
is proportional to the 2-form called eJ

1 in [10,11]. As follows from [9, Theorem 1.4], the
2-form eJ

1 on Mg is a linear combination of the 2-forms eA
1 and 1

π i∂∂ϕ, and hence is a
tautological 2-form.

Now [6, Theorem A.1] states, in a very rough form, that the normal functions Fm and ν
re essentially the only normal functions on the moduli spaces Cr

g that satisfy the property
hat their monodromy representation factors through a rational representation of Sp2g . We
nd that Theorem B can be rephrased as saying that the system of rings of tautological
orms can be characterized as the smallest system of R-algebras of differential forms that
s closed under tautological pullbacks and submersions, and contains all natural 2-forms
btained from the normal functions whose monodromy representations factor through a
ational representation of Sp2g . We mention that the corresponding result in cohomology
s implicit in the work of Kawazumi and Morita [12] and Petersen, Tavakol and Yin [18].

. Marked graphs
The purpose of Sections 7–11 is to prepare for the proofs of Theorems C–E.
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.1. The category of r-marked graphs

In this paper, a graph is a pair (V, E), consisting of a finite set V of vertices, and
finite multiset E of edges consisting of unordered pairs (multisets of cardinality 2) of

lements of V . If e ∈ E is an edge, its two elements are called the endpoints of e. If these
ndpoints are the same, we call e a loop. The degree of a vertex v ∈ V , denoted deg v, is
he number of times v occurs as an endpoint of an edge of E ; that is: the multiplicity of

in the multiset sum of all edges e ∈ E . In particular, we see that each loop contributes
to the degree of the vertex it is based on.
If Γ = (V, E) is a graph, then the (Euler) characteristic of Γ is defined as

χ (Γ ) = |V | − |E |.

he Euler characteristic is additive on disjoint unions of graphs.
Let r ≥ 0 be an integer. An r -marked graph (V, E,m) is a graph Γ = (V, E) equipped

ith a marking m; that is: an injective map m : {1, . . . , r} → V . So a marked graph can
e seen as a graph of which r vertices are labeled 1, . . . , r . An unmarked graph is a
-marked graph, which is the same as an ‘ordinary’ graph.

Let Γ = (V, E,m) be an r -marked graph. A vertex v ∈ V is marked if it is in the
mage of m, and unmarked otherwise. We have a partition of V in a subset V+ of marked
ertices and a subset V− of unmarked vertices.

Let Γ = (V, E,m) and Γ ′
= (V ′, E ′,m ′) be two r -marked graphs. A morphism of

-marked graphs f : Γ → Γ ′ is a pair of maps ( fv : V → V ′, fe : E → E ′), such that
fv respects the r -marking (that is: fv ◦ m = m ′), and such that for each edge e ∈ E with
endpoints v,w, the edge fe(e) ∈ E ′ has endpoints fv(v) and fv(w).

We obtain a category Gr of r -marked graphs. Two r -marked graphs Γ and Γ ′ are
somorphic if and only if there exists a bijection on vertices that respects the markings
f Γ and Γ ′, such that for each pair of vertices v,w of Γ the number of edges between
and w equals the number of edges between the corresponding vertices of Γ ′.
Assume that Γ = (V, E) is a graph, and let f : V → V ′ be a map of finite sets. The

raph induced from Γ by f , notation Γ f , is the graph (V ′, E ′) with set of vertices equal
o V ′, and with edges

E ′
= {{ f (v1), f (v2)} : {v1, v2} ∈ E}.

otice that in particular we have |E | =
⏐⏐E ′

⏐⏐.
The characteristic of Γ f equals

χ (Γ f ) = χ (Γ ) +
⏐⏐V ′

⏐⏐ − |V |.

f v′
∈ V ′ is a vertex in V ′, its degree is given by:

deg(v′) =

∑
v∈ f −1(v′)

deg(v).

.2. Gluing marked graphs

In this section we define a binary operation ⊔r on the category of r -marked graphs Gr .

t turns out that ⊔r is the coproduct in the category Gr . We define the binary operation ⊔r



548 R. de Jong and S. van der Lugt / Expo. Math. 41 (2023) 531–565

w

o

e

on two r -marked graphs Γ ,Γ ′ by gluing their marked vertices pairwise. More precisely,
e proceed as follows.
Let Γ = (V, E,m) and Γ ′

= (V ′, E ′,m ′) be two r -marked graphs, and let Γ ⊔ Γ ′
=

(V ⊔V ′, E + E ′) denote the disjoint union of the underlying (unmarked) graphs. Consider
the set V ′′ defined by the pushout diagram

{1, . . . , r} V

V ′ V ′′.

m

m′

⌟
(7.1)

In other words, V ′′ is the set (V ⊔ V ′)/ ∼, where ∼ is the smallest equivalence relation
n V ⊔ V ′ such that m(i) ∼ m ′(i) for all i ∈ {1, . . . , r}. Note, moreover, that the map

m ′′
: {1, . . . , r} → V ′′ induced by the above diagram is injective, since m and m ′ are

injective.

Definition 7.1. The r -marked graph Γ ⊔r Γ
′ is the graph induced from the disjoint union

Γ ⊔Γ ′ by the natural map V ⊔V ′
→ V ′′, endowed with the r -marking m ′′

: {1, . . . , r} →

V ′′ obtained from pushout diagram (7.1).

Suppose that Γ has u unmarked vertices and e edges, and that Γ ′ has u′ unmarked
vertices and e′ edges. It follows that Γ ⊔r Γ

′ has u + u′ unmarked vertices and e + e′

dges. Therefore, the characteristic of Γ ⊔r Γ
′ is given by

χ (Γ ⊔r Γ
′) = χ (Γ ) + χ (Γ ′) − r. (7.2)

The set of vertices of Γ ⊔r Γ
′ is the pushout of the maps m and m ′. The operator ⊔0

on G0 is simply the disjoint union. On G1 the operator ⊔1 is the wedge sum.

7.3. Pushforward maps on marked graphs

Let φ : {1, . . . , s} → {1, . . . , r} be a map of sets. We will define a pushforward
functor φ∗ : Gs → Gr . Given a graph Γ ∈ Gs , the pushforward φ∗Γ is obtained from Γ
by replacing the s marked vertices by r marked vertices, as follows.

Let Γ = (V, E,m) be an s-marked graph. Consider the pushout diagram (of sets)

{1, . . . , s} V

{1, . . . , r} V ′.

m

⌟
φ φV

m′

(7.3)

As m is injective, it follows that m ′ must be injective.
We define φ∗Γ to be the graph (V ′, E ′,m ′), where (V ′, E ′) is the graph induced from

(V, E) by φV , and m ′ is the map defined in diagram (7.3). Notice that φV then induces
a bijection between the unmarked vertices of Γ and φ∗Γ .

The characteristic of φ∗Γ is given by

χ (φ Γ ) = χ (Γ ) − s + r.
∗
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Moreover, if f : Γ1 → Γ2 is a morphism of s-marked graphs, we obtain an induced
orphism of r -marked graphs φ∗ f : φ∗Γ1 → φ∗Γ2, via the universal property of the

ushout diagram (7.3). We obtain a covariant functor

φ∗ : Gs → Gr .

The following properties of the pushforward functor are not hard to show.

roposition 7.2. Let φ : {1, . . . , s} → {1, . . . , r} and ψ : {1, . . . , t} → {1, . . . , s} be
aps. Then the functors φ∗ψ∗ and (φψ)∗ from Gt to Gr are naturally isomorphic. □

roposition 7.3. Let φ : {1, . . . , s} → {1, . . . , r} be a map. Let Γ and Γ ′ be two
-marked graphs. Then there is a canonical isomorphism of graphs

φ∗(Γ ⊔s Γ
′) ≃ φ∗(Γ ) ⊔r φ∗(Γ ′).

.4. Pullback maps on marked graphs

The next operation we will consider is a pullback operation. Let

φ : {1, . . . , s} → {1, . . . , r}

e an injective map. Then we define a pullback functor

φ∗
: Gr → Gs

s follows. For any r -marked graph Γ = (V, E,m) we simply define φ∗Γ by precom-
osing the marking m with the injection φ:

φ∗(Γ ) = (V, E,m ◦ φ).

It follows that

χ (φ∗Γ ) = χ (Γ ).

If f : Γ1 → Γ2 is a morphism of r -marked graphs, then f induces a morphism
∗ f : φ∗Γ1 → φ∗Γ2 in a natural way. It is straightforward to verify that φ∗ is a functor

rom Gr → Gs .
Similarly to the pushforward, it is easy to see that the pullback is well-behaved with

espect to compositions.

roposition 7.4. Let φ : {1, . . . , s} → {1, . . . , r} and ψ : {1, . . . , t} → {1, . . . , s} be
njective maps. Then the functors ψ∗φ∗ and (φψ)∗ from Gr to Gt are equal. □

One can check that the pushforward and pullback functor are adjoints. Contrary
o what the terms ‘pushforward’ and ‘pullback’ might suggest to a geometer, the
ushforward functor is left adjoint to the pullback. To ease our minds, we recall that
he (left adjoint) pushforward functor does pushouts on sets of vertices, and the (right
djoint) pullback functor is a functor that forgets some of the markings.
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8. Graphical formalism

Fix an integer g ≥ 2. In this section, we will describe an operation that takes an
-marked graph and outputs a tautological form on Cr

g . Let r, s ≥ 0 be a pair of integers
nd consider a map of sets φ : {1, . . . , s} → {1, . . . , r}. We recall that to these data we
ave associated the tautological morphism f φ : Cr

g → Cs
g given by sending a marked

amily (C → S, σ1, . . . , σr ) of compact connected Riemann surfaces of genus g to the
marked family (C → S, σφ(1), . . . , σφ(s)). A tautological morphism f φ is a submersion if
and only if the map φ is injective.

The following examples list some tautological morphisms that we often use.

Example 8.1. If 1 ≤ i ≤ r is an integer, the map {1} → {1, . . . , r} given by 1 ↦→ i
induces the map Cr

g → Cg that projects onto the i th coordinate. We denote this map by
pi . More generally, if 1 ≤ i1, . . . , is ≤ r are integers, we denote by

pi1,...,is : Cr
g → Cs

g

the tautological morphism associated to φ : {1, . . . , s} → {1, . . . , r} : k ↦→ ik .

xample 8.2. Let 1 ≤ i1 < · · · < is ≤ r be integers. Consider the unique increasing
ap φ : {1, . . . , r − s} → {1, . . . , r} whose image is {1, . . . , r} \ {i1, . . . , is}. Denote by

p(i1,...,is ) : Cr
g → Cr−s

g

he tautological morphism associated to φ (notice the parentheses!). Then p(i1,...,is ) is the
tautological submersion that ‘forgets the coordinates i1, . . . , is’. For instance, the map
p(2) : C2

g → Cg equals the map p1 : C2
g → Cg .

Consider a commutative diagram of sets, together with the associated diagram of
moduli stacks:

{1, . . . , u} {1, . . . , s}

{1, . . . , t} {1, . . . , r}

η

χ

ψ

φ

Cu
g Cs

g

Ct
g Cr

g

f η

f χ f φ

f ψ

It is not difficult to see that the diagram of moduli stacks is cartesian if and only if the
diagram of sets is a pushout diagram. We will be using such cartesian diagrams often.

Let Γ = (V, E,m) be an r -marked graph, and let u be the number of unmarked
ertices of Γ . Choose a bijective extension

m̄ : {1, . . . , r + u}
∼
−→ V

of the marking m : {1, . . . , r} → V . We will define a differential form µΓ on Cr+u
g that

will depend on the choice of this extension m̄.
First, we associate to every edge e ∈ E a 2-form he on Cr+u

g . This form is defined as
follows. Suppose that the endpoints of e are m̄(i) and m̄( j). We define

h = p∗ h ∈ R2(Cr+u),
e i, j g
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here pi, j : Cr+u
g → C2

g is the projection on the i th and j th coordinate. If e is a loop
ased at vertex m̄(i), then

he = p∗

i,i h = p∗

i ∆
∗h = p∗

i eA,

here pi : Cr+u
g → Cg is the projection on the i th coordinate, and ∆ : Cg → C2

g is the
iagonal morphism. Notice that he does not depend on the order of i and j as the form

h is symmetric in the two coordinates of C2
g .

Now, we let µΓ denote the product of all these 2-forms:

µΓ =

⋀
e∈E

he ∈ R2|E |(Cr+u
g ).

This form depends on the choice of m̄. However, the form obtained from a different
choice of m̄ only differs from µΓ by permutation of the last u coordinates of Cr+u

g .
Therefore, by Fubini’s theorem, the fiber integral

αΓ :=

∫
p1,...,r :Cr+u

g →Cr
g

µΓ ∈ R2(|E |−u)(Cr
g) (8.1)

does not depend on the choice of m̄. It is clear that the forms αΓ are all tautological
forms. Note that the degree 2(|E |−u) of αΓ can alternatively be written as 2(r −χ (Γ )),
with χ (Γ ) = r + u − |E | the Euler characteristic of Γ .

Definition 8.3. Let Γ be an r -marked graph. The 2(r − χ (Γ ))-form αΓ on Cr
g defined

n Eq. (8.1) is the (tautological) form associated to Γ . Here χ (Γ ) denotes the Euler
haracteristic of Γ .

As the following examples show, all tautological differential forms we found so far
an be expressed as tautological forms associated to marked graphs.

xample 8.4. Consider the unique 2-marked graph Γ with no unmarked vertices and
single edge between the two marked vertices. The associated 2-form αΓ on C2

g is h.

Γ =
1 2

Example 8.5. Consider the unique 1-marked graph Γ with no unmarked vertices and a
single loop based at the unique vertex of Γ . The associated 2-form αΓ on Cg is ∆∗h = eA.

Γ =
1

Example 8.6. Consider the two 0-marked graphs in the following picture.

Γ1 = Γ2 =
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The associated forms on Mg are

αΓ1 =

∫
C2

g/Mg

h3
= ν

nd

αΓ2 =

∫
C2

g/Mg

h ∧ p∗

1eA
∧ p∗

2eA

=

∫
Cg/Mg

∫
p1:C2

g→Cg

h ∧ p∗

1eA
∧ p∗

2eA

=

∫
Cg/Mg

(
eA

∧

∫
p1

h ∧ p∗

2eA
)

=

∫
Cg/Mg

(eA)2

= eA
1 ,

here we have used the projection formula for fiber integrals and Lemma 5.3.

. Tautological forms and graph operations

In this section we will see that the forms αΓ based on marked graphs Γ behave rather
icely with respect to pullbacks, pushforwards, and gluing of marked graphs. By using
his fact, we will be able to prove the following theorem.

heorem 9.1. For every integer r ≥ 0, the ring of tautological differential forms R∗(Cr
g)

s spanned as an R-vector space by forms αΓ associated to r-marked graphs Γ .

By our definition of tautological forms it suffices to prove that the system of linear
ubspaces S∗(Cr

g) ⊆ R∗(Cr
g) spanned by forms associated to r -marked graphs is a system

f sub-R-algebras, that the system is closed under pullbacks and fiber integrals, and that
h is contained in S∗(C2

g). The last item is accomplished by Example 8.4. The first two
tems will be accomplished by the propositions below.

We start by proving that S∗(Cr
g) ⊆ R∗(Cr

g) is a subring for every r ≥ 0. First of all,
he form associated to the unique r -marked graph consisting of r vertices and no edges
s 1. The following proposition implies that S∗(Cr

g) is closed under wedge products and
herefore a subring of R∗(Cr

g).

roposition 9.2. Let Γ = (V, E,m) and Γ ′
= (V ′, E ′,m ′) be two r-marked graphs,

nd let αΓ and αΓ ′ be the associated tautological forms on Cr
g . Then

αΓ ∧ αΓ ′ = αΓ⊔rΓ ′ .

roof. Assume that Γ and Γ ′ have respectively u and u′ unmarked vertices. Choose
ijective extensions

∼

m̄ : {1, . . . , r + u} −→ V
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m̄ ′
: {1, . . . , r + u′

}
∼
−→ V ′

of m and m ′. Let φ : {1, . . . , r + u} → {1, . . . , r + u + u′
} be the inclusion, and define

the map

ψ : {1, . . . , r + u′
} → {1, . . . , r + u + u′

} : k ↦→

{
k if k ≤ r
k + u if k > r.

It follows that the diagram

{1, . . . , r + u + u′
} {1, . . . , r + u}

{1, . . . , r + u′
} {1, . . . , r}

φ

ψ

is a pushout diagram of sets, so we have the associated cartesian diagram of moduli
stacks

Cr+u+u′

g Cr+u
g

Cr+u′

g Cr
g.

p1,...,r+u

p1,...,r,r+u+1,...,r+u+u′ p1,...,r

p1,...,r

Now let Γ ′′
= (V ′′, E ′′,m ′′) = Γ ⊔r Γ

′. By the universal property of the pushout, we
ave an induced r + u + u′-marking

m̄ ′′
: {1, . . . , r + u + u′

}
∼
−→ V ′′

f the set of vertices V ′′ of Γ ′′ that extends m ′′. If e ∈ E is an edge in Γ between
ertices m̄(i) and m̄( j), then the corresponding edge in Γ ′′ has endpoints m̄ ′′(φ(i)) and
¯

′′(φ( j)). Similarly, if e ∈ E ′ is an edge in Γ ′ between vertices m̄ ′(i) and m̄ ′( j), then
he corresponding edge in Γ ′′ has endpoints m̄ ′′(ψ(i)) and m̄ ′′(ψ( j)). It follows that

µΓ ′′ =

⋀
e∈E ′′

he

=

⋀
e∈E

p∗

1,...,r+uhe ∧

⋀
e∈E ′

p∗

1,...,r,r+u+1,...,r+u+u′he

= p∗

1,...,r+uµΓ ∧ p∗

1,...,r,r+u+1,...,r+u+u′µΓ ′ .

sing the base change formula and the projection formula for fiber integrals, we find
hat the fiber integral αΓ⊔rΓ ′ equals αΓ ∧ αΓ ′ . □

Next, we will show that the system of vector spaces S∗(Cr
g) ⊆ R∗(Cr

g) is closed under
ullbacks along tautological morphisms. Let f φ : Cr

g → Cs
g be a tautological morphism,

nduced by a map φ : {1, . . . , s} → {1, . . . , r}. Recall that φ induces a pushforward
perator φ∗ : Gr → Gs from r -marked graphs to s-marked graphs. The following
roposition implies that the pullback map f φ,∗ on differential forms is compatible with
he pushforward map on graphs. From this one easily deduces that the system of forms
S∗(Cr ) is closed under pullbacks along tautological maps.
g
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Proposition 9.3. Let f φ : Cr
g → Cs

g be the tautological morphism associated to a map
: {1, . . . , s} → {1, . . . , r}. Suppose that αΓ ∈ S∗(Cs

g) is the form associated to an
-marked graph Γ . Then

f φ,∗αΓ = αφ∗Γ

ith φ∗Γ the pushforward of Γ along φ.

roof. The proof is similar to the proof of Proposition 9.2, so only a short sketch is
iven here. We extend the labeling on Γ to an (s + u)-labeling, with u the number of
nmarked vertices of Γ . This induces an (r + u)-labeling of φ∗Γ , and it follows that the
ullback of µΓ along the induced map Cr+u

g → Cs+u
g equals µφ∗Γ . By the base change

ormula the desired result follows. □

Now, let f φ : Cr
g → Cs

g be a tautological submersion, associated to an injective map
: {1, . . . , s} ↪→ {1, . . . , r}. Recall that we have a pullback map φ∗

: Gr → Gs . The
ollowing proposition shows that the pullback map on graphs is compatible with the
ber integral map on differential forms. This implies that the system S∗(Cr

g) ⊆ R∗(Cr
g)

s closed under fiber integrals.

roposition 9.4. Let φ : {1, . . . , s} → {1, . . . , r} be an injective map, and let
f φ : Cr

g → Cs
g be the associated tautological submersion. Let Γ ∈ Gr be an r-marked

raph, and let φ∗Γ be the s-marked graph induced by φ. Then∫
f φ
αΓ = αφ∗Γ

roof. Let u be the number of unmarked vertices in Γ . Extend the inclusion φ :

{1, . . . , s} → {1, . . . , r} to a permutation {1, . . . , r} → {1, . . . , r}, and then join this
ap with the identity on {r + 1, . . . , r + u} to obtain a bijective map

φ̄ : {1, . . . , r + u}
∼
−→ {1, . . . , r + u}

hat extends φ.
Moreover, choose a bijective extension m̄ : {1, . . . , r + u}

∼
−→ V of the marking m of

. We immediately obtain an extension

mφ = m̄ ◦ φ̄ : {1, . . . , r + u}
∼
−→ V

f the marking mφ of the s-marked graph φ∗Γ = (V, E,mφ). We have a commutative
iagram of sets, inducing a commutative diagram of moduli stacks:

{1, . . . , r + u} {1, . . . , r}

{1, . . . , r + u} {1, . . . , s}

⊇

φ̄

⊇

φ

Cr+u
g Cr

g

Cr+u
g Cs

g.

p1,...,r

f φ̄ f φ

p1,...,s

If e is an edge in Γ with endpoints m̄(i), m̄( j), then the corresponding edge φ∗e
in φ∗Γ has endpoints mφ(φ̄−1(i)) and mφ(φ̄−1( j)). It follows that the corresponding
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-forms on Cr+u
g are related as follows:

he = f φ̄,∗hφ∗e.

rom this, we find that

µΓ = f φ̄,∗µφ∗Γ ,

o

µφ∗Γ =

∫
f φ̄
µΓ .

We therefore have:∫
f φ
αΓ =

∫
f φ

∫
p1,...,r

µΓ =

∫
p1,...,s

∫
f φ̄
µΓ =

∫
p1,...,s

µφ∗Γ = αφ∗Γ ,

proving the proposition. □

10. Contracted graphs

Let Γ be an r -marked graph.

Definition 10.1. We say Γ is contracted if all its unmarked vertices have degree at least
3, and each unmarked vertex of degree 3 is incident to three distinct edges.

If a graph is not contracted, we can attempt to turn this graph into a contracted graph
by altering the problematic vertices.

Definition 10.2. Let Γ = (V, E,m) be an r -marked graph, and let v ∈ V be an
unmarked vertex such that deg(v) ≤ 2, or such that deg(v) = 3 and v is incident to a
loop. The graph obtained from Γ by contracting v is an r -marked graph Γ ′ defined by
the following operation:

(0) If deg v = 0, remove v;
(1) If deg v = 1, remove v and the unique edge incident to v;
(2) If deg v = 2, smooth out the vertex v; that is:

(a) If v is incident to two distinct edges, whose other endpoints w,w′ are
distinct, remove v and these two edges, and add an edge between w and
w′;

(b) If v is incident to two distinct edges, whose second endpoint is the same
vertex w, remove v and these two edges, and add a loop at w;

(c) If v is incident to a single loop, remove v and this loop;

(3) If deg v = 3, and w is the other endpoint of the non-loop edge incident to v,
remove v, this edge, and the loop at v, and add a loop at w.

It follows that the vertex set of the graph obtained from Γ by contracting v is equal
to V \ {v}. In case (0), the Euler characteristic drops by 1 upon contracting; in the other

cases (1)–(3) the Euler characteristic remains the same.
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If we are given an r -marked graph Γ , we can always reduce Γ to a contracted r -
arked graph by applying a finite amount of graph contractions. As the contraction

perations only apply to unmarked vertices, it follows that contraction of vertices
ommutes with gluing of r -marked graphs.

0.1. Counting contracted graphs

The following result will be crucial in obtaining our basic finiteness result on
autological rings.

heorem 10.3. Let r ≥ 0, and χ ∈ Z. There are, up to isomorphism, only finitely many
ontracted r-marked graphs of characteristic χ .

roof. Let Γ be a contracted r -marked graph of characteristic χ , and let u denote its
number of unmarked vertices, and e its number of edges. As every unmarked vertex has
degree at least 3 it follows that

2e =

∑
v∈Γ

deg(v) ≥ 3u.

After substituting e = r + u − χ , we find:

u ≤ 2r − 2χ,

and hence

e = r + u − χ ≤ 3r − 3χ.

We have obtained upper bounds for the number of vertices and edges of Γ , and a simple
combinatorial argument then shows that there can only be finitely many graphs of this
form up to isomorphism. □

11. Tautological forms and contractions

The purpose of this section is to show that contracted graphs suffice to span the rings
of tautological forms. Let g ≥ 2 be an integer.

Theorem 11.1. Let d ≥ 0 and r ≥ 0 be integers. The space R2d (Cr
g) of tautological

forms of degree 2d on Cr
g is the linear span of the forms αΓ associated to contracted

-marked graphs Γ with Euler characteristic χ (Γ ) = r − d.

By combining Theorems 11.1 with 10.3, we obtain the following.

Theorem 11.2. For all integers r ≥ 0 and d ≥ 0, the space R2d (Cr
g) of tautological

orms of degree 2d on Cr
g is finite-dimensional. □

For the proof of Theorem 11.1 we need the following technical result.
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roposition 11.3. Let Γ = (V, E,m) be an r-marked graph, and suppose that Γ has
n unmarked vertex v, such that either deg(v) ≤ 2, or deg(v) = 3 and v is incident to
recisely two edges. Let Γ ′ be the r-marked graph obtained from Γ by contracting v,
ee Definition 10.2.

0. If deg v = 0, then αΓ = 0.
1. If deg v = 1, then αΓ = αΓ ′ .

2a. Suppose that deg v = 2 and that v has two distinct neighbors w ̸= w′. Then
αΓ = αΓ ′ .

2b. Suppose that deg v = 2 and that v has a single neighbor w ̸= v. Then αΓ = αΓ ′ .
2c. Suppose that deg v = 2 and that v is its own neighbor; that is: there is a loop

based at v. Then αΓ = (2 − 2g)αΓ ′ .
3. Suppose that deg v = 3 and that v is incident to precisely two edges. Then
αΓ = αΓ ′ .

roof of Theorem 11.1. Theorem 9.1 implies that the space R2d (Cr
g) is the linear span

f the forms associated to r -marked graphs Γ with Euler characteristic χ (Γ ) = r − d .
roposition 11.3 implies that if Γ is an r -marked graph and Γ ′ is an r -marked graph

hat is obtained from Γ by successively contracting vertices, then the form αΓ can be
btained from the form αΓ ′ by multiplying it by zero or a power of (2−2g). This shows
hat R2d (Cr

g) is the linear span of forms associated to contracted r -marked graphs. □

roof of Proposition 11.3. Let Γ = (V, E,m) be an r -marked graph, and let v be an
nmarked vertex of degree ≤ 2, or an unmarked vertex of degree ≤ 3 with a loop. Define
graph Γ ′′ by removing v, and all edges emanating from v, from Γ . Moreover, we have

he graph Γ ′ that is obtained from Γ by contracting v.
The graph Γ ′′ represents an ‘intermediate step’ in obtaining Γ ′ from Γ . The following

icture describes the situation in the case where v has two distinct neighbors.

w

v

w′

Γ
w w′

Γ ′′

w w′

Γ ′

Let u ≥ 0 be such that Γ has u + 1 unmarked points. Fix an extension of m to an
r + u + 1)-marking

m̄ : {1, . . . , r + u + 1}
∼
−→ V,

such that m̄(r + u + 1) = v.
Restricting m̄ to {1, . . . , r +u} induces an (r +u)-marking on Γ ′ and Γ ′′ that extends

the r -marking on these graphs. We obtain differential forms µΓ , µΓ ′ , and µΓ ′′ that live
on Cr+u+1, Cr+u , and Cr+u , respectively.
g g g
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The inclusions {1, . . . , r} ⊆ {1, . . . , r + u} ⊆ {1, . . . , r + u + 1} induce tautological
submersions

Cr+u+1
g Cr+u

g

Cr
g.

q

pq
p

We have

αΓ =

∫
pq
µΓ and αΓ ′ =

∫
p
µΓ ′ .

If we can prove that ∫q µΓ = 0 in case 0, ∫q µΓ = µΓ ′ in cases 1, 2a, 2b, and 3, and
∫q µΓ = (2 − 2g)µΓ ′ in case 2c, we are done.

0. Suppose v has degree 0. The set of edges of Γ is equal to the set of edges of Γ ′,
so we obtain

µΓ = q∗µΓ ′ .

Taking fiber integrals and applying the projection formula yields:∫
q
µΓ = µΓ ′

∫
q

1 = 0,

and we find that αΓ = 0.
1. Suppose v has degree 1; let i ∈ {1, . . . , r +u} be such that m̄(i) is the neighbor of
v. The graph Γ is obtained from Γ ′ by adding the vertex v and the edge between
v and m̄(i). We therefore have:

µΓ = q∗µΓ ′ ∧ p∗

i,r+u+1h,

so ∫
q
µΓ = µΓ ′ ∧

∫
q

p∗

i,r+u+1h.

By using the base change formula with the cartesian diagram

Cr+u+1
g C2

g

Cr+u
g Cg,

□

pi,r+u+1

q p1

pi

we find:∫
q

p∗

i,r+u+1h = p∗

i

∫
p1

h = 1,

where the latter equality follows from Eq. (5.4). This shows that ∫q µΓ = µΓ ′ , so
αΓ = αΓ ′ .

2a. Suppose v has degree 2, and that v has two distinct neighbors w and w′. Let
i, j ∈ {1, . . . , r + u} be such that m̄(i) = w and m̄( j) = w′. In this case, we find

∗
′′

∗ ∗
µΓ = q µΓ ∧ pi,r+u+1h ∧ p j,r+u+1h,
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and

µΓ ′ = µΓ ′′ ∧ p∗

i, j h.

In this case, another application of the base change formula, together with the
identity of forms∫

p12

p∗

13h ∧ p∗

23h = h

from Lemma 5.4 shows that
∫

q µΓ = µΓ ′ , and hence αΓ = αΓ ′ .
2b. The proof in this case is very similar to the proofs for cases 1 and 2a. In this case,

we use the identity∫
p1

h2
= eA

from Lemma 5.3.
2c. Again, the proof of this case is similar to that of the previous cases. The identity

used here is∫
Cg/Mg

eA
= (2 − 2g),

see Eq. (5.4).
3. Finally, the proof in case 3 is analogous to that of earlier cases, where we use the

identity∫
p1

h ∧ p∗

2eA
= eA

from Lemma 5.3. □

2. Proof of Theorem C

Theorem C is a consequence of Theorem 11.2 as follows. Let Tg denote Teichmüller
pace in genus g. Let Xg → Tg denote the universal family of genus g Riemann
urfaces with Teichmüller structure and X r

g the r -fold fiber product of Xg over Tg . We
ave a natural surjective submersion X r

g → Cr
g . By Lemma 2.1 we obtain an inclusion

A∗(Cr
g) → A∗(X r

g ). As X r
g is a manifold of (real) dimension 6g − 6 + 2r , it follows that

Ad (X r
g ) is zero for all d > 6g − 6 + 2r . We see that the same is true for Ad (Cr

g) and
ence for Rd (Cr

g). We see that

R∗(Cr
g) =

⨁
d≥0

Rd (Cr
g) =

3g−3+r⨁
d=0

R2d (Cr
g).

ach of the finitely many direct summands is finite-dimensional by Theorem 11.2, hence
he ring R∗(Cr

g) is itself finite-dimensional. This proves Theorem C.

emark 12.1. For each d ∈ Z≥0 there exists a polynomial fd ∈ Q[X ] of degree 2d

uch that for all r ∈ Z≥0 the number of isomorphism classes of contracted r -marked
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graphs of characteristic r − d is given by fd (r ). We refer to [14, Section 3.8] for a proof
of this statement. We see that for d fixed, the dimension dimR2d (Cr

g) is bounded by a
olynomial in r , independent of the genus.

3. Proof of Theorems D and E

Let r ≥ 0 be an integer. We start with the following result.

heorem 13.1. The degree-two part R2(Cr
g) of the ring of tautological forms is spanned

y the following collection of 2-forms:

{p∗

i j h : 1 ≤ i < j ≤ r} ∪ {p∗

i eA
: 1 ≤ i ≤ r} ∪ {eA

1 , ν}. (13.1)

roof. By Theorem 11.2, we find that the space R2(Cr
g) is spanned by forms αΓ , where

ranges over all contracted r -marked graphs of characteristic r − 1. It is not hard to
how using an argument as in the proof of Theorem 10.3 that a contracted r -marked
raph of characteristic r − 1 is one of the following graphs:

• Graphs Γ with r marked vertices, no unmarked vertices, and a single edge:
1 2 1 2 1 2

If this edge is a loop based at vertex i then the associated form is

αΓ = p∗

i eA.

If the edge is not a loop, and its endpoints are vertices i and j , then the associated
form is

αΓ = p∗

i j h.

• The graph Γ with r marked vertices, one unmarked vertex, and two loops based at
the unmarked vertex:

1 2

The associated form is

αΓ =

∫
p1,...,r :Cr+1

g →Cr
g

p∗

r+1(eA)2
= eA

1

by the base change formula. Note the slight abuse of notation here: we write eA
1 for

the pullback of eA
1 along the tautological morphism Cr

g → Mg .
• The graph Γ with r marked vertices, two unmarked vertices, and three edges

between the unmarked vertices:
1 2

By using the base change formula we obtain

αΓ =

∫
r+2 r

p∗

r+1,r+2h3
= ν
p1,...,r :Cg →Cg
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where we again abuse the notation by writing ν for the pullback of ν along the
projection Cr

g → Mg .

he theorem follows. □

Lemma 13.2. Assume that g ≥ 3. Every pluriharmonic function on Mg is constant.

Proof. This follows from the existence of a Satake compactification of Mg , where all
boundary components have complex codimension at least two. See also [11, Lemma
8.1]. □

Let ϕ :Mg → R be the Kawazumi–Zhang invariant, see Eq. (1.4).

Lemma 13.3. The tautological 2-form 1
π i∂∂ϕ on Mg is non-zero.

Proof. By observing the asymptotic behavior of ϕ near the boundary of Mg studied
in [8], we find that ϕ is not constant. When g ≥ 3 the result then follows from
Lemma 13.2. When g = 2, the result follows from the identity (∆ − 5)ϕ = 0, proved
in [5], where ∆ is the Laplace–Beltrami operator with respect to the metric on M2
induced from the Siegel metric on the Siegel upper half space in degree two. □

Lemma 13.4. Assume that g ≥ 3. The form eA
1 is not exact, in particular eA

1 and 1
π i∂∂ϕ

are linearly independent elements of R2(Mg).

Proof. It follows from [16, Theorem] that the Picard group Pic(Mg) injects into the
cohomology group H 2(Mg,Q). Let λ1 ∈ Pic(Mg) be the first Chern class of the Hodge
bundle on Mg . It is shown in [17, Section 5] that κ1 = 12λ1, and in [2, Theorem 1] it is
proved that λ1 freely generates the Picard group of Mg . It follows that the cohomology
class κ1 does not vanish. This proves that eA

1 is not exact. The linear independence then
follows from Lemma 13.3. □

Proposition 13.5. If g = 2, then R2(Mg) is one-dimensional, and spanned by eA
1 . If

g ≥ 3, then R2(Mg) is two-dimensional, and spanned by eA
1 and ν.

Proof. It follows from Theorem 13.1 that R2(Mg) is spanned by ν and eA
1 . Therefore,

the dimension of R2(Mg) is at most two. From Lemma 13.3 combined with Eq. (1.5) we
find that the dimension of R2(Mg) is at least one. We obtain the proposition for g = 2
by observing that in R2(M2) we have Eq. (6.3). We obtain the proposition for g ≥ 3 by
Lemma 13.4. □

Proof of Theorem D. We use induction on r . The case r = 0 is proved in
Proposition 13.5. For the case r = 1 we observe that by Lemma 2.1 the projection
p : Cg → Mg induces an inclusion p∗

: R2(Mg) → R2(Cg). Moreover, forms in the
mage of p∗ are in the kernel of the fiber integral along p, by the projection formula. As∫

eA
= (2 − 2g) ̸= 0,
p
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we find that eA is not an element of p∗R2(Mg). As R2(Cg) is spanned by the forms eA,
A
1 , and ν, see Theorem 13.1, we obtain the statement in the case r = 1.

Now let r ≥ 2, and assume that R2(Cs
g) has a basis as given in the Theorem for

≤ s < r . Consider the following three tautological morphisms:

p(r ) : Cr
g → Cr−1

g : (x1, . . . , xr ) ↦→ (x1, . . . , xr−1);

p(r−1) : Cr
g → Cr−1

g : (x1, . . . , xr ) ↦→ (x1, . . . , xr−2, xr );

q(r−1) : Cr−1
g → Cr−2

g : (x1, . . . , xr−1) ↦→ (x1, . . . , xr−2).

e have a cartesian square

Cr
g Cr−1

g

Cr−1
g Cr−2

g .

p(r )

p(r−1) □ q(r−1)

q(r−1)

These maps induce linear subspaces W1 := Imp∗

(r ), W2 := Imp∗

(r−1), and W12 := W1∩W2

f R2(Cr
g). The forms eA

1 , ν, p∗

i eA, and p∗

i j h, (possibly) except for the form p∗

r−1,r h, all
ie in W1 or W2. It follows from Theorem 13.1 that

R2(Cr
g) = (W1 + W2) + R · p∗

r−1,r h.

Obviously the pullback of each form on Cr−2
g along the composition q(r−1) ◦ p(r−1) =

(r−1) ◦ p(r ) is an element of W12. Conversely, we claim that each form in W12 is the
ullback along this composition of some form on Cr−2

g . Indeed, let α ∈ W12 be any
orm; we may write α = p∗

(r )β = p∗

(r−1)γ for forms β, γ ∈ R2(Cr−1
g ). Let µ ∈ R2(Cg)

e the 2-form given by µ = eA/(2 − 2g); it follows that
∫
Cg/Mg

µ = 1, and by the base
hange formula we obtain∫

p(r )

p∗

rµ = 1.

e then find by repeatedly using the base change formula and the projection formula:

β = β ∧

∫
p(r )

p∗

rµ

=

∫
p(r )

p∗

(r )β ∧ p∗

rµ

=

∫
p(r )

p∗

(r−1)γ ∧ p∗

rµ

=

∫
p(r )

p∗

(r−1)(γ ∧ p∗

r−1µ)

= q∗

(r−1)

∫
q(r−1)

γ ∧ p∗

r−1µ,
nd therefore
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α = p∗

(r )β = p∗

(r )q
∗

(r−1)

∫
q(r−1)

γ ∧ p∗

r−1µ,

which proves our claim.
As pullbacks along tautological submersions are injective, we see that a basis of

R2(Cr−1
g ) pulls back to give bases of both W1 and W2, and that a basis of R2(Cr−2

g )
ulls back to give a basis of W12. Applying the induction hypothesis and using simple
inear algebra we see that W1 +W2 has a basis consisting of exactly the forms mentioned
n the Theorem, except for the form p∗

r−1,r h.
If we can prove that p∗

r−1,r h /∈ W1 + W2 then we may conclude that R2(Cr
g) has a

asis as given in the Theorem. Suppose, therefore, that p∗

r−1,r h ∈ W1 +W2; we can write
p∗

r−1,r h = p∗

(r )α + p∗

(r−1)β for some 2-forms α, β on Cr−1
g . As h is symmetric, we may

ven assume with no loss of generality that α = β:

p∗

r−1,r h = p∗

(r )α + p∗

(r−1)α.

onsider the map

f : Cr−1
g → Cr

g : (x1, . . . , xr−1) ↦→ (x1, . . . , xr−1, xr−1);

his map is a section of both p(r ) and p(r−1) and fits in a cartesian diagram

Cr−1
g Cr

g

Cg C2
g .

f

pr−1 pr−1,r

∆

We then find:

p∗

r−1eA
= p∗

r−1∆
∗h = f ∗ p∗

r−1,r h = 2α;

o α =
1
2 p∗

r−1eA, and

p∗

r−1,r h =
1
2 p∗

r−1eA
+

1
2 p∗

r eA
∈ R2(Cr

g).

ntegration along the fibers of the morphism p(r ) : Cr
g → Cr−1

g then yields:

1 =

∫
p(r )

p∗

r−1,r h =

∫
p(r )

1
2 (p∗

r−1eA
+ p∗

r eA) = 0 +
1
2 (2 − 2g),

hich contradicts with our assumption that g ≥ 2. We conclude that p∗

r−1,r h /∈ W1 + W2.
he theorem follows by induction. □

emark 13.6. We have observed in the above proof that for high values of r , no ‘new’
autological 2-forms appear; more precisely, for r > 2 the space R2(Cr

g) is spanned by
ullbacks of 2-forms in R2(C2

g) along tautological submersions. This pattern generalizes
o higher cohomological degrees: let d ≥ 0 be an integer, then for all r > 2d the
pace R2d (Cr

g) is spanned by pullbacks of tautological 2d-forms on C2d
g along tautological

ubmersions Cr
→ C2d . We refer to [14, Section 4.9] for more details.
g g
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Proof of Theorem E. It follows from Lemma 13.3 that 1
π i∂∂ϕ spans a subspace of

I 2(Mg) of dimension one. If g = 2 this concludes our proof, since R2(Mg) is one-
dimensional by Proposition 13.5. Assume now that g ≥ 3. Then by Lemma 13.4 we
have that I 2(Mg) is a proper subspace of R2(Mg), and by Proposition 13.5 the latter
space is two-dimensional. This gives the first part of the theorem. The second part of the
theorem is then immediate from the first part and Lemma 13.2. □

Remark 13.7. An argument very similar to the proof of Theorem D will show that the
degree-two part RH 2(Cr

g) of the tautological ring in cohomology has basis given by the
lasses p∗

i j∆ and p∗

i K when g = 2 and the classes p∗

i j∆, p∗

i K and p∗κ1 when g ≥ 3.
his result is well known. Combined with Theorem D we obtain that for each r ≥ 0 the
anonical surjection R2(Cr

g) → RH 2(Cr
g) ⊗ R has one-dimensional kernel. We conclude

hat in fact (0) ̸= I 2(Cr
g) = R ·

1
π i∂∂ϕ for all r ≥ 0.
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