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a b s t r a c t 

Humans learn through reinforcement, particularly when outcomes are unexpected. Recent research suggests sim- 
ilar mechanisms drive how we learn to benefit other people, that is, how we learn to be prosocial. Yet the neuro- 
chemical mechanisms underlying such prosocial computations remain poorly understood. Here, we investigated 
whether pharmacological manipulation of oxytocin and dopamine influence the neurocomputational mechanisms 
underlying self-benefitting and prosocial reinforcement learning. Using a double-blind placebo-controlled cross- 
over design, we administered intranasal oxytocin (24 IU), dopamine precursor l -DOPA (100 mg + 25 mg car- 
bidopa), or placebo over three sessions. Participants performed a probabilistic reinforcement learning task with 
potential rewards for themselves, another participant, or no one, during functional magnetic resonance imaging. 
Computational models of reinforcement learning were used to calculate prediction errors (PEs) and learning rates. 
Participants behavior was best explained by a model with different learning rates for each recipient, but these 
were unaffected by either drug. On the neural level, however, both drugs blunted PE signaling in the ventral 
striatum and led to negative signaling of PEs in the anterior mid-cingulate cortex, dorsolateral prefrontal cortex, 
inferior parietal gyrus, and precentral gyrus, compared to placebo, and regardless of recipient. Oxytocin (versus 
placebo) administration was additionally associated with opposing tracking of self-benefitting versus prosocial 
PEs in dorsal anterior cingulate cortex, insula and superior temporal gyrus. These findings suggest that both l - 
DOPA and oxytocin induce a context-independent shift from positive towards negative tracking of PEs during 
learning. Moreover, oxytocin may have opposing effects on PE signaling when learning to benefit oneself versus 
another. 
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. Introduction 

Learning about the consequences of our actions is critical for success-
ul and adaptive functioning as it enables us to maximize rewards. Ac-
ording to reinforcement learning theory (RLT), we learn to form asso-
iations between actions and outcomes through prediction errors (PEs),
hich signal the discrepancy between expected and experienced out-

omes ( Rescorla et al., 1972 ; Sutton and Barto, 2018 ). PEs drive learn-
ng by updating our expectations of the value of a particular action or
timulus. It does so together with the learning rate, which quantifies
he degree to which new information updates the expected value by
caling the PE. The feasibility of RLT as a framework for understand-
ng brain-behavior associations is supported by a wealth of research in-
icating that midbrain dopamine (DA) neurons code PEs, showing in-
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reased firing after better-than-expected outcomes (positive PEs) and
educed firing when outcomes are worse than expected (negative PEs)
 Schultz, 2016 ). RLT therefore provides an important framework for un-
erstanding learning based on reinforcers, and points to a critical role
f the dopaminergic system in learning. 

Neuroimaging studies have used RLT to identify the brain regions in
hich blood-oxygen-level-dependent (BOLD) responses correlate with
Es ( Fouragnan et al., 2018 ; Garrison et al., 2013 ). These studies have
hown responsiveness to positive (versus negative) PEs in regions that
re associated with reward processing, such as the ventral striatum (VS)
nd ventromedial prefrontal cortex (vmPFC). In contrast, responsive-
ess to negative (versus positive) PEs has been associated with activity
n networks thought to be linked to salience- and performance monitor-
ng and known to be involved in the regulation of alertness and switch-
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ng behavior, such as the anterior mid-cingulate cortex (aMCC), pre-
upplementary motor area (pre-SMA), anterior insula (AI), dorsomedial
refrontal cortex (dmPFC), dorsolateral prefrontal cortex (dlPFC), in-
erior parietal gyrus (IPG), amygdala and thalamus ( Fouragnan et al.,
018 ). Additionally, a comparable network of brain regions that in-
ludes the aMCC, dorsal mid-cingulate cortex (dMCC), AI, precentral
yrus, IPG, dorsal striatum, and midbrain has been implicated in the
oding of ‘surprise’ PEs, which signal the unexpectedness of outcomes,
ndependent of their valence ( Fouragnan et al., 2018 ), and there is ev-
dence that these ‘unsigned’ or ‘absolute’ PEs are also encoded by (spe-
ific) DA neurons (see e.g., Diederen and Fletcher, 2021 ). 

A wide range of pharmacological studies on reinforcement learning
nd performance monitoring indicate that PE coding in above regions
s modulated by DA ( Barnes et al., 2014 ; De Bruijn, Hulstijn, Verkes,
uigt, and Sabbe, 2004 , 2006 ; Diederen et al., 2017 ; Forster et al., 2017 ;
ocham et al., 2011 , 2014 ; Pessiglione et al., 2006 ; Santesso et al., 2009 ;
pronk et al., 2016 ; Zirnheld et al., 2004 ). Most studies point towards
nhanced positive and negative PE signaling after administration of DA
gonists ( Barnes et al., 2014 ; De Bruijn et al., 2004 ; De Bruijn, Hulstijn,
erkes, Ruigt, and Sabbe, 2005a ; Pessiglione et al., 2006 ; Santesso et al.,
009 ; Spronk et al., 2016 ) and reduced signaling after DA antagonists
 De Bruijn et al., 2006 ; Diederen et al., 2017 ; Jocham et al., 2011 ,
014 ; Pessiglione et al., 2006 ; Zirnheld et al., 2004 ). Pharmacologi-
al alterations of (learning) performance have been observed as well
 Diederen et al., 2017 ; Guitart-Masip et al., 2014 ; Pessiglione et al.,
006 ; Pizzagalli et al., 2008 ; Santesso et al., 2009 ; Vo et al., 2018 , 2016 ;
irnheld et al., 2004 ), suggesting that pharmacological stimulation of
A may impact how we learn to obtain rewards by enhancing neural
E encoding in brain regions associated with salience and reward pro-
essing. 

Importantly, to behave in a socially adaptive manner we do not only
eed to learn how to obtain rewards for ourselves but also how to bene-
t others, since actions that intend to benefit others, also referred to as
rosocial behaviors, are crucial for social functioning and the formation
nd maintenance of reciprocal social relationships ( Carlo, 2013 ). Prior
esearch suggests that this so-called “prosocial learning ” relies on the
ame reinforcement algorithms as individual or self-benefitting learn-
ng ( Cutler et al., 2021 ; Lockwood et al., 2016 ; Martins et al., 2022 ;

esthoff et al., 2021 ). However, whereas the encoding of PEs during
oth types of learning involved the VS, only prosocial PEs were found
o be encoded in the subgenual anterior cingulate cortex (sgACC), with
tronger responses in this latter brain region for those with higher levels
f empathy, suggesting social specificity on the implementation level
 Lockwood et al., 2016 ; Martins et al., 2022 but see; Westhoff et al.,
021 ). 

Nevertheless, how PE encoding during prosocial learning is affected
y DA is less clear. Research indicates that social rewards and predic-
ion errors activate the same DA-innervated regions (e.g., nucleus ac-
umbens and ventral tegmental area) as non-social rewards do (see e.g.,
ohls et al., 2012 ; Manduca et al., 2021 ). Studies in rodents have ad-
itionally shown that DA neurons appear to also code social reward
rediction errors ( Solié et al., 2022 ), suggesting that DA may impact
E encoding and learning in a domain-general way. However, other
tudies have shown, for example, that administration of the DA precur-
or l -DOPA increased selfish behavior in healthy men in an economic
argaining game ( Pedroni et al., 2014 ) and reduced the hyperaltruistic
endency of preferring harming oneself over harming others in a harm
version task ( Crockett et al., 2015 ). Conversely, blocking DA transmis-
ion using amisulpride during an interpersonal decision reduced proso-
ial behavior in women and selfish behavior in men ( Soutschek et al.,
017 ). This suggests that upregulating DA might also stimulate a self-
erving bias where personal outcomes become more salient compared
o the rewards of others, at least in men. 

Importantly, a recent study by Martins et al. (2022) demonstrated
hat oxytocin (OT), a neuropeptide implicated in many aspects of social
ehavior (see e.g., Y. Ma et al., 2016 ), may specifically modulate proso-
2 
ial learning and its neurocomputational mechanisms. They reported
ose-dependent effects of intranasal OT administration on PE encoding
n the midbrain and sgACC specifically during prosocial learning, with a
ow dose (9 IU) of OT increasing- and higher doses (18 and 36 IU) of OT
ecreasing PE encoding in these regions. The low OT dose also prevented
 decreased in prosocial performance over time. Another study compar-
ng self-benefitting with prosocial learning found that a 24-IU dose of
T specifically reduced self-benefitting performance ( Liao et al., 2021 ).
ur own lab recently demonstrated OT-induced enhancements of early
lectrophysiological brain responses to errors thought to reflect nega-
ive PEs only in a social context ( de Bruijn, Ruissen, and Radke, 2017 )
hereas another study found that OT increased amplitudes of a later
lectrophysiological brain component associated with error awareness
nd motivation in response to social feedback and enhanced learning
rom positive social feedback ( Zhuang et al., 2021 ). These finding are
ongruent with the social salience hypothesis, which proposes that OT
pecifically targets social processes by altering the salience of social cues
hrough its interaction with the brain’s dopaminergic system ( Shamay-
soory and Abu-Akel, 2016 ). There is indeed substantial evidence that
T acts on the mesolimbic DA system to mediate social rewards (see
.g., Borland et al., 2019 ; Hung et al., 2017 ). For example, research in
ice indicates that OT facilitates the release of DA during social inter-

ction ( Hung et al., 2017 ). Importantly, however, the majority of stud-
es reporting links between DA and OT were performed in preclinical
opulations and further determination of this association in humans is
ritically required. Here, we will address this gap by manipulating OT
nd DA levels in a single study within the same subjects. With this, we
an investigate potential neurocomputational overlap in the effects of
hese neurochemicals for the first time. 

Hence, the current study aimed to improve our understanding of
he role of OT and DA in self-benefitting and prosocial reinforcement
earning. Disentangling the neurochemical mechanisms that support
earning in a prosocial context and its underlying neural computa-
ions is important, given that disruptions in reinforcement learning
 Maia and Frank, 2011 ) and prosocial behavior (e.g., Mayer et al., 2018 ;
alsh et al., 2021 ) are key transdiagnostic factors. Studying these mech-

nisms may therefore provide more insights into clinical conditions and
ay lead to the identification of targets for interventions. Using a dou-

le blind, cross-over design, healthy male adults ( N = 30) were adminis-
ered DA precursor l -DOPA, OT, or placebo across three sessions. In each
ession ( Fig. 1 A), they performed a probabilistic reinforcement learn-
ng task ( Fig. 1 B) while in the MRI scanner. In this task, participants
ere asked to choose between two abstract symbols. One of these sym-
ols was associated with a high probability of obtaining reward (75%),
hile the other symbol was associated with a low reward probability

25%). These probabilities were not known to the participants but had
o be learned through trial and error. Importantly, this task was per-
ormed in three different conditions where they could gain rewards for
hemselves (self-benefitting learning), an anonymous other participant
prosocial learning), or no one (non-social control condition). We then
pplied computational reinforcement learning models to the behavior
uring the task to obtain relevant learning parameters and trial-by-trial
E computations. We focused on the ‘signed’ PE, which incorporate both
he valence (better- versus worse-than-expected) and the degree of un-
xpectedness of outcomes, and assessed both positive and negative cor-
elations of this parametric PE with BOLD responses ( Lockwood and
lein-Flügge, 2021 ). Based on the literature discussed above, we hy-
othesized that l -DOPA would enhance learning and PE encoding in
hose regions known to be implicated in processing reward (positive) as
ell as salience (negative/surprise) PEs ( Fouragnan et al., 2018 ) either

n a domain-general or a self-serving manner whereas OT would specif-
cally enhance learning and PE encoding in these regions in a prosocial
ontext. We performed region-of-interest (ROI) analyses focusing on the
S, sgACC and midbrain given previous research implicating these re-
ions in self-benefitting or prosocial learning ( Lockwood et al., 2016 ;
artins et al., 2022 ; Westhoff et al., 2021 ) and additionally performed
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Fig. 1. Overview of the time table for each session (A) and the prosocial learning task (B). (A) During each session participants received a tablet followed by 
a nasal spray exactly 15 min later (either a placebo tablet followed by a placebo spray, a placebo tablet followed by a spray containing oxytocin, or a l -DOPA tablet 
followed by placebo spray). On average 78 min ( SD = 3.4) after administration of the tablet and 63 min ( SD = 3.4) after administration of the nasal spray, participants 
performed the prosocial learning task in the scanner. Subjective drug effects (alertness, mood and anxiety) were assessed using the Bond and Lader (1974) mood rating 
scale (B&L) right before administration of the tablet (T1), approximately one hour later (T2), and at the end of the visit (T3). (B) In this probabilistic reinforcement 
learning task, participants had to learn the probability that abstract symbols were rewarded to gain points. At the start of each block, a text screen (2000 ms) indicated 
whether participants performed that block for their own outcomes, for the outcomes of an anonymous other participant, or for no one. Then, each trial started with 
the presentation of the two symbols (cue), for a maximum of 3000 ms. When a button was pressed, the selected option was highlighted (for 3500 ms – the reaction 
time to the cue), or when no response was given, the words “Too late ” appeared for 500 ms. Then, after a 2000 ms fixation cross, the outcome (100 vs. 0 points) 
was presented for 1000 ms. Each trial ended with a jittered fixation cross (2000 – 4000 ms). During the cue and outcome screen, the recipient condition was always 
indicated by the words “you / other / no one ”. The task was presented using E-prime 3.0 software (Psychology Software Tools, Pittsburgh, PA). 
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hole-brain analyses to examine potential drug effects in the broad
ange of regions implicated in coding salience PEs ( Fouragnan et al.,
018 ). 

. Materials and methods 

.1. Participants 

Based on a medium effect size ( f = 0.25) found in previ-
us studies investigating similar pharmacological manipulations (e.g.,
outschek et al., 2017 ; Vo et al., 2018 , 2016 ), with 85% statistical power
nd a correlation between repeated measures of 0.5, an a priori power
alculation showed that a sample size of 26 would be sufficient to detect
ffects. Taking into account potential drop-out (10%), 30 healthy, right-
anded males between age 18 and 35 ( M = 22.8, SD = 3.6) with a good
ommand of the Dutch language were included in this study. We chose
o only include males in order to avoid menstrual cycle-dependent in-
eractions between the dopaminergic system and gonadal steroids (e.g.,
ocham et al., 2011 , 2014 ). Exclusion criteria were as follows: history
f cardiovascular, endocrine, psychiatric, neurological or hematologi-
al disease, counter-indications to MRI, history of medication or drugs
ithin 1 month prior to the start of the study with the exception of occa-

ional use of paracetamol, previous experience of allergic reaction upon
dministration of a drug, participation in another drug study within 3
3 
onths preceding participation in the current study, intake of more than
 units of alcohol a day, smoking more than 5 cigarettes a day and scor-
ng > 8 on the anxiety or depression subscale of the Hospital Anxiety
nd Depression Scale ( Spinhoven et al., 1997 ). Participants were asked
o refrain from using caffeine, alcohol and smoking 24 h prior to drug
dministration and to refrain from eating and drinking (except water)
.5 h prior to arrival at the laboratory. Participants received a monetary
ompensation of €140 after completion of the experiment. The study
as approved by the medical ethical committee of the Leiden Univer-

ity Medical center (P19.031) and was conducted in accordance with
he latest version of the declaration of Helsinki. 

.2. Procedure 

Participants were recruited using advertisements on social media in-
luding Facebook and via the Leiden University Research Participation
ystem (SONA). Participants indicating their willingness to participate
n the study received the information letter of the study by email and
lled out an online screening questionnaire in Qualtrics. Participants
eeting inclusion criteria were assessed for MRI contraindications by

elephone. Each participant visited the LUMC three times, each visit sep-
rated by at least one week (mean- / mode- / max interval = 13.6 / 7 / 46
ays) to ensure complete washout of the drugs ( Jocham et al., 2014 ). All
isits took place between 9:00 AM and 5:30 PM, with the time of day for
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he visits always being the same for each session of a participant (max-
mum time difference: 1.5 h). Using a double-blind cross-over design,
articipants received a tablet containing either l -DOPA (100 mg in com-
ination with 25 mg carbidopa) or a placebo tablet containing no active
ngredients, followed by a nasal spray containing either oxytocin (24 in-
ranasal units / one puff of 0.37 ml per nostril) or a placebo (chlorobu-
anol nasal spray). This dosage of l -DOPA has been shown to reach max-
mum concentration in plasma after approximately 50 min and has an
limination half-life of approximately 80–90 min ( Nyholm et al., 2012 ).
ence, we expected that drug effects would be sustained during the task,
hich started approximately 78 min after administration of the tablet

see Fig. 1 A for a timetable). Evidence for effects of intranasal OT ad-
inistration on central levels of OT has mostly been indirect or stem

rom animal work ( Quintana et al., 2021 ). While many studies test ef-
ects of OT already after 20 to 60 min after administration, research has
lso suggested that a 24-IU dose of OT may take up to 75 min to in-
rease cerebrospinal fluid concentrations of OT ( Striepens et al., 2013 ).
iven that a recent study found that the most robust effects on amyg-
ala reactivity were observed between 45 and 70 min after 24 IU of OT
 Spengler et al., 2017 ), we aimed to start within this timeframe. Par-
icipants performed the prosocial learning task (see Experimental Task)
n the MRI scanner by using fiber-optic buttons that were attached to
heir legs. We also assessed subjective effects of the drugs at three dif-
erent timepoint during the session (see Fig. 1 A, Supplemental results
nd Table S6). The order of drug administration across visits was ran-
omized by the Clinical Pharmacy of the LUMC so that both researchers
nd participants were blind to the drug condition. While in the scanner,
espiration and heart rate of participants was continuously monitored
sing a breathing belt and finger clip peripheral pulse unit. After the
ask and at the end of every session, participants were asked to complete
ome statements measuring subjective responses to the task (see Supple-
entary Results and Table S5). Besides the prosocial learning task, we

ssessed a resting-state task, a performance-monitoring paradigm, and
 task measuring working memory, which will be reported in separate
apers. The procedure was the same for each session. 

.3. Experimental task 

The prosocial learning task ( Lockwood et al., 2016 ) is a probabilistic
einforcement learning task, whereby participants completed a series of
rials on which they were asked to choose between two abstract symbols
 Fig. 1 B). One of these symbols was associated with a high probability
f obtaining reward (75%), while the other symbol was associated with
 low probability of reward (25%). These probabilities were not known
o the participants but they had to be learned through trial and error.
articipants performed the task in three different conditions. They were
nformed that during the task, they could earn points that would be con-
erted to money at the end of the study, whereby they would either play
or their own monetary bonus (self-benefitting learning), the bonus of
nother participant (prosocial learning) or neither’s bonus (non-social
ontrol condition). The order of these conditions were counterbalanced
etween participants. They were additionally informed that the other
articipant would be randomly chosen and would remain anonymous,
nd that this participant in his turn played for someone else’s bonus,
n order to prevent feelings of reciprocity. Central to our manipulation,
one of the participants reported disbelief in the other person at debrief-
ng. Even though the confederate was not present in the lab, previous
ork has shown that it is beliefs that are important in evoking neu-

al activity and behavior related to social decision-making (reviewed in
ockwood et al., 2020 ). At the end of the final visit, participants were
nformed that, for ethical reasons, they would not receive a monetary
onus based on task performance, but would instead receive a fixed
onus of 10 euros. 

Each symbol pair was presented for 16 trials, with the location (left
s. right) of the symbols randomized across trials, after which a new
ymbol pair was presented in a new block. In total, participants per-
4 
ormed 3 blocks of 16 trials per recipient condition, resulting in a total
f 144 trials per session. The order of the conditions were pseudoran-
omized, with the same condition never appearing twice in a row. 

.4. Computational modeling 

In line with previous studies ( Cutler et al., 2021 ; Lockwood et al.,
016 ; Martins et al., 2022 ; Westhoff et al., 2021 ), we modelled learning
uring the prosocial learning task using a standard reinforcement learn-
ng model ( Rescorla et al., 1972 ). The Rescorla-Wagner rule ( Eq. (1) )
tates that individuals form an expectation of the value of an action or
timulus ( 𝑖 ) for each future trial ( 𝑡 + 1 ) as a function of the current ex-
ected value 𝑄 𝑡 ( 𝑖 ) and the prediction error 𝛿𝑡 , which is the difference
etween the current expectation and the actually received outcome 𝑅 𝑡 

where 1 is reward and 0 is no reward). The prediction error is scaled
y the learning rate 𝛼 (bounded between 0 and 1), which determines to
hat extent the prediction error on the current trials is used to update

he expected value. This means that lower learning rate indicate that
ew information has less influence on the expected value. 

 𝑡 +1 ( 𝑖 ) = 𝑄 𝑡 ( 𝑖 ) + 𝑎 ∗ 
[
𝑅 𝑡 − 𝑄 𝑡 ( 𝑖 ) 

]
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝛿𝑡 

(1)

The softmax choice rule provides a model for how people use these
xpected values to guide their decisions by quantifying the relation be-
ween the expected value of stimulus or action 𝑖 and the probability of
hoosing this stimulus or action on trial t. The model ( Eq. (2) ) assumes
hat people usually choose the option with the highest expected value,
ut occasionally explore other options or make a mistake by selecting an
ption with a lower value. The degree of this exploration or noisiness is
etermined by the temperature parameter 𝛽, where higher 𝛽 values in-
icate a larger degree of randomness or exploration in choices, whereas
ower 𝛽 values indicate that the actions or stimulus with the highest
xpected value is chosen more often. 

 𝑡 

[(
𝑖 |𝑄 𝑡 ( 𝑖 

))
] = 

𝑒 ( 𝑄 𝑡 ( 𝑖 ) ∕ 𝛽) ∑
𝑖 ′ 𝑒 

( 𝑄 𝑡 ( 𝑖 ′) ∕ 𝛽) 
(2)

.5. Model fitting 

Model fitting was done using MATLAB 2019b (The MathWorks Inc).
he model was fitted across the drug sessions, which provides a more
onservative comparison compared to performing model fitting sepa-
ately for each session. An iterative maximum a posteriori (MAP) ap-
roach was used, which consists of first estimating the model param-
ters 𝛼 and 𝛽 for each participant using maximum likelihood estima-
ion (MLE), and then estimating the parameters again using priors.
his approach is less susceptible to outliers compared to using a sin-
le step MLE. Group-level Gaussians were initialized as uninformative
riors with means of 0.1 (plus some added noise) and variance of
00. During the expectation, model parameters ( 𝛼 and 𝛽) were esti-
ated for each participant using the MLE approach, calculating the log-

ikelihood of the subject’s series of choices given the model. We then
omputed the maximum posterior probability estimate, given the ob-
erved choices and given the prior computed from the group-level Gaus-
ian, and recomputed the Gaussian distribution over parameters dur-
ng the maximization step. We repeated expectation and maximization
teps iteratively until convergence of the posterior likelihood summed
ver the group or a maximum of 800 steps. Convergence was defined
s a change in posterior likelihood < 0.001 from one iteration to the
ext. Note that bounded free parameters were transformed from the
aussian space into the native model space via appropriate link func-

ions (e.g., a sigmoid function in the case of the learning rates) to en-
ure accurate parameter estimation near the bounds. The detailed code
sed for model fitting can be found on the Open Science Framework:
ttps://doi.org/10.17605/OSF.IO/9XZDH. 
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Table 1 

Overview of candidate computational models and model selection criteria. We tested four 
different variations of the classical Rescorla Wagner model which differed in whether learning 
rates and beta parameters were fitted separately for the recipient conditions or not. All models 
were pooled across drug conditions. Our model selection procedure was based on three criteria: 
the integrated Bayesian Information Criteria (iBIC, lower is better), choice probability (higher is 
better) (R 2 ) and the exceedance probability of each model (higher is better). The 3 𝛼1 𝛽 model (2) 
was the winning model according to all three criteria. 

Model Learning rate ( 𝛼) Beta ( 𝛽) iBIC Choice probability (R 2 ) Exceedance probability 

1 A 𝛽 10,837 0.701 0.38 
2 𝛼self , 𝛽 10,713 0.724 0.62 

𝛼other , 
𝛼no one 

3 𝛼self , 𝛽 10,820 0.713 0.00 
𝛼not-self 

4 𝛼self , 𝛽self , 10,960 0.721 0.00 
𝛼other , 𝛽other , 
𝛼no one 𝛽no one 
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.6. Model comparison 

In line with previous work ( Cutler et al., 2021 ; Lockwood et al.,
016 ), we compared four different learning models, which differed
n whether parameters 𝛼 and 𝛽 were modelled separately for each
ecipient condition or not. For model comparison, we calculated the
aplace approximation of the log model evidence (more positive val-
es indicating better model fit) and submitted these to a random-effects
nalysis using the spm_BMS routine from SPM12 (http://www.fil.ion.
cl.ac.uk/spm/software/spm12/). This generates the exceedance prob-
bility: the posterior probability that each model is the most likely of the
odel set in the population (higher is better, over 0.95 indicates strong

vidence in favor of a model). For the models of real participant data,
e also calculated the integrated Bayesian Information Criteria (iBIC,
uys et al., 2011 ; Wittmann et al., 2020 ) (lower is better) and R 

2 as ad-
itional measures of model fit. To calculate the model R 

2 , we extracted
he choice probabilities generated for each participant on each trial from
he winning model. We then took the squared median choice probability
cross participants. Table 1 displays the different models and the iBIC,
xceedance probability and R 

2 for each model. Model 2 (3 𝛼, 1 𝛽) was
he winning model according to all three criteria. There was no signifi-
ant difference in median choice probability of this model between the
lacebo (R 

2 = 0.67), l -DOPA (R 

2 = 0.84) and oxytocin (R 

2 = 0.72) ses-
ions, Z s < 1.4, P s > 0.2. Table S1 describes model fit and comparisons
or each drug session separately. 

.7. Simulation experiments 

Model identifiability was established in a previous study using the
xact same task and models ( Cutler et al., 2021 ). This study also showed
trong parameter recovery using 1296 simulated participants will all
ombinations of alpha and beta values: 0, 0.2, 0.4, 0.6, 0.8 and 1 (see
igure S1A for confusion matrix), for details see Cutler et al. (2021) .
ere, we additionally demonstrated recoverability of the parameter es-

imates using 90 synthetic participants with parameter values drawn
andomly. Strong Pearson’s correlations were obtained between the true
imulated and fitted parameter values (all r s > 0.62, all P s < 0.001, see
igure S1B for confusion matrix), suggesting our experiment was well
uited to estimate the model’s parameters. A simulation experiment plot-
ing 3000 synthetic learning rates against performance also indicated an
ptimal learning rate of approximately 0.55 in this task ( Cutler et al.,
021 ). As in this previous study, the range of 𝛼 values for our partici-
ants was below this peak, such that higher learning rates are associated
ith better performance. In line with this, we observed positive relations
etween learning rates from our winning model and performance (see
upplemental results). 
5 
.8. Behavioral analysis 

All data analyses were performed in Rstudio version 1.3.959
 Team, 2020 ). One-sample t-tests were used to investigate whether par-
icipants selected the option with higher probability of being rewarded
bove chance (0.5) in each drug and recipient condition separately.
he learning rates were analyzed with linear mixed models (LMMs)
sing the lme4 package ( Bates et al., 2014 ) using drug (placebo, l -
OPA, oxytocin) and recipient (self, other, no-one) as fixed effects. Beta
arameters were analyzed with an LMM including only the fixed ef-
ect of drug. All mixed models contained random intercepts for par-
icipants to account for dependency in the data. The random-effects
tructure for each model was determined according to the procedure
escribed in ( Bates et al., 2015 ), which consists of 1) fitting the max-
mal random-effects structure or, if the maximal model does not con-
erge or is degenerate, fitting a reduced zero-correlation parameter
odel, 2) removing random effects estimated at zero or close to zero

hat do not result in a significant loss of goodness of fit according to
 likelihood-ratio test, and 3) extending the model with correlation
arameters again (only) if this improves model fit. The final random-
ffects structure of each model can be found in the analysis script
n https://doi.org/10.17605/OSF.IO/9XZDH after publication. All cat-
gorical predictor variables were deviation coded. Post-hoc tests were
erformed using the emmeans package ( Lenth et al., 2018 ). All post-hoc
omparisons were corrected for multiple testing using a false discovery
ate (FDR) at P < 0.05 ( Benjamini and Hochberg, 1995 ). Correlations
etween learning rates and task performance were computed using the
earson correlation coefficient. 

To quantify the evidence for or against the learning rate effects, we
dditionally computed Bayes factors (BFs) using a Bayesian repeated
easures ANOVA (JASP, 2020) with default priors. BFs represents the
robability ratio of observed data under one model versus another and
hus provides an index of the relative strength of evidence for the null or
lternative hypothesis ( Marsman and Wagenmakers, 2017 ). BFs > 1 and
 1 favor the alternative hypothesis and null hypothesis, respectively.
Fs between 0.33–3 are considered anecdotal evidence indicating data

nsensitivity. BFs between 3-10, 10–30 and 30–100 or between 0.33–
.1, 0.1–0.3, and 0.03–0.01 are considered moderate, strong and very
trong evidence for the alternative or null hypothesis, respectively. For
ignificant interaction effects we report the matched models BFinclu-
ion ( Clyde et al., 2011 ), which compares all models with a particular
actor to equivalent models without that factor. One participant showed
n outlying learning rate (Z-score of 5.07) for the “Placebo – No one ”
ondition, hence for this specific participant this condition was removed
rom the LMM model and the participant was removed entirely for the
ayesian model. 

https://doi.org/10.17605/OSF.IO/9XZDH
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.9. fMRI data acquisition and preprocessing 

MRI data was acquired at the LUMC using a 3.0T Philips scanner with
 32-channel head coil. 3DT1 structural images were acquired using 155
lices (FOV 195.8 × 250 × 170.5 mm, voxel size = 1.1 mm 

3 , 0 mm slice
ap, matrix size = 228 × 177, flip angle = 8°) with a TR of 7.9 ms
nd a TE of 3.5 ms. Functional scans were acquired in three separate
uns (12 min each) using 40 transverse slices in descending order (FOV
20 × 220 × 120.7, matrix size = 80 × 77, voxel size = 2.75 mm 

3 , slice
ap = 0.275 mm, flip angle = 80°) with a TR of 2200 ms and a TE of
0 ms. The first two volumes of each run were discarded to allow for
quilibration of T1 saturation effects. Head motion was restricted using
oam inserts. 

Imaging data were preprocessed and analyzed using SPM12 (Well-
ome Trust center for Neuroimaging, University College London). Pre-
rocessing was performed for each session separately and consisted of
he following steps: slice-time correction, correction for field-strength
nhomogeneity’s using b0 field maps, unwarping and realignment,
oregistration to subject-specific structural images, segmentation, nor-
alization to MNI space using the DARTEL toolbox ( Ashburner, 2007 )

nd smoothing using an 8-mm full width half maximum isotropic Gaus-
ian kernel. 

.10. fMRI analysis and ROI selection 

On the first level, we defined a general linear model for each drug
ession for each participant with separate regressors for the cue and
utcome onsets in each condition (cue_self, cue_other, cue_noone, out-
ome _self, outcome _other, outcome_noone) and for each run. We added
arametric modulators to each of these regressors based on our winning
omputational model. The prediction error 𝛿𝑡 , was added as a paramet-
ic modulator at the time of outcome presentation. Additionally, the
xpected value 𝑄 𝑡 ( 𝑖 ) (EV) was added at the time of cue presentation for
omparability with previous work ( Lockwood et al., 2016 ; Martins et al.,
022 ; Westhoff et al., 2021 ). However, as we did not have specific hy-
otheses about this, we focused our analyses exclusively on the PE. For
ompleteness and comparability with previous work, we show the main
ffects of expected value per recipient condition after placebo in Ta-
le S3. In line with prior work ( Martins et al., 2022 ), the EV and PE
ere mean-centered at the session level and estimated using the aver-
ge alpha estimates across all participants and drug conditions, for each
ecipient condition separately. Additionally, a regressor for the onsets of
he instructions at the start of each block was modelled. For missed re-
ponses, a separate regressor for missed trials was included as well. We
ncluded the 6 realignment parameters for each run to capture resid-
al effects of head motion and additionally included censor regressors
 Siegel et al., 2014 ) for volumes with more than 1 mm scan-to-scan mo-
ion or more than 5 mm absolute motion. All events were modelled with
ero duration. We excluded two participants from the fMRI analysis for
aving to censor more than 5% of the volumes in at least two out of the
hree sessions. Additionally, we excluded a single drug session for two
ther participants based on this same criteria, resulting in a final sample
ncluded in the MRI analysis of N = 28 (of which n = 2 with only 2 out
f 3 sessions). 

First-level contrast maps for each condition were submitted to a flex-
ble factorial model with 9 levels, where we computed main and interac-
ion effects for Drug and Recipient using t-contrasts. We created a single
egion of interest (ROI) mask consisting of the bilateral VS (Harvard-
xford Atlas), sgACC (Brodmann areas 25 and s24 from the Anatomy
oolbox) and the midbrain (including both the ventral tegmental area
nd substantia nigra, derived from a high-resolution atlas of subcortical
tructures ( Pauli et al., 2018 ), see also Martins et al. (2022) . Whole brain
ffects are reported at P < 0.05 family-wise error (FWE) corrected at the
oxel level and effects in ROIs at P < 0.05 FWE-small volume corrected
SVC). One sample- and paired t-tests were used to test extracted cluster
stimates. 
6 
. Results 

.1. Behavioral findings 

.1.1. Behavior is best explained by a model with separate learning rates 

or each recipient condition 

We applied computational modeling to quantify learning. In line
ith previous work ( Cutler et al., 2021 ; Lockwood et al., 2016 ), we fitted

our different reinforcement learning models which differed in whether
he key learning parameters of these models were fitted separately for
ach recipient condition or not. The learning rate ( 𝛼) represents the
peed by which estimates of reward values are updated, whereas the
emperature parameter ( 𝛽) reflects the extent to which participant’s
hoices are deterministic versus more random or exploratory. Bayesian
odel comparison showed that the winning model included different

earning rate parameters for each recipient condition and one single
emperature parameter across conditions (3 𝛼1 𝛽: 𝛼Self, 𝛼Other and 𝛼No
ne, one 𝛽, see Table 1 and ‘Methods’ for details of the computational
odel, model fitting and model comparison). Model identifiability and

ecoverability of the estimated parameters were established in a pre-
ious study using the exact same task and model(s) (see Cutler et al.,
021 ). 

Participants learn at a higher rate for others than for self and no
ne. A linear mixed model (LMM) including the factors recipient and
rugs revealed that, independent of the drug condition, learning rates
ere significantly higher when playing for the other participant com-
ared to when playing for Self ( b = 0.0038, SE = 0.0010, t = 3.69, P
 0.001, Fig. 2 B) and No one ( b = 0.0104, SE = 0.0037, t = 2.80, P <
.001), while the difference between playing for Self and No one did
ot reach significance ( b = − 0.0066, SE = 0.0035, t = − 1.88, P = 0.07).
 Bayesian repeated measures (rm) ANOVA including the same factors
evealed very strong and strong evidence, respectively, for a difference
etween Other and Self (BF 10 = 42.3) and between Other and No one
BF 10 = 11.3), while there was no conclusive evidence for or against a
ifference between the Self and No one condition (BF 10 = 0.928). 

.1.2. l -DOPA and oxytocin do not significantly impact learning rates 

The learning rate LMM revealed no main or interaction effects in-
olving drugs (all t s < 1.24, P s > 0.22). In line with this, the Bayesian
m ANOVA revealed moderate evidence against the presence of an ef-
ect for both l -DOPA (BF 10 = 0.186) and OT (BF 10 = 0.179), and also
oderate evidence against an interaction between drug and recipient

BF inclusion = 0.124). 
Analysis of the Beta parameters ( Fig. 2 C) also did not reveal any

rug effects ( t s < 1.47, P s > 0.15). A Bayesian rm ANOVA on the Beta
arameters indicated moderate evidence against an effect of l -DOPA
BF 10 = 0.228) while there was only anecdotal evidence against a dif-
erence between OT and placebo (BF 10 = 0.578). 

The absence of significant drug effects were not due to a lack of
earning in any drug condition (see Fig. 2 A & Supplementary Results),
on-significant or non-positive associations between performance and
earning rates (Table S2 & Supplementary Results), or reaching max-
mum performance early in each block (see Supplementary Results).
dding session to the model did also not significantly alter effects (see
upplementary Results). Analysis results for choice performance can be
ound in the Supplementary Results. 

.2. fMRI findings 

.2.1. ROIs - l -DOPA and oxytocin both blunt positive signaling of PEs in 

entral striatum (independent of recipient) 

Next, we examined BOLD responses that correlated with estimated
E magnitude during feedback presentation. Differences and common-
lities in neural encoding of prediction errors between recipients after
lacebo only (for comparison with previous studies) can be found in the
upplementary Results and Table S3. Importantly, testing an additional
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Fig. 2. Choice performance (A), learning rates (B) and beta parameters (C) across conditions. (A) Learning curves for choice behavior in the Self, Other and 
No one recipients for each drug condition separately showing improved performance for the Self and Other recipients compared to No one, independent of drug 
condition. Trials are averaged over the three blocks (48 trials in total per recipient presented in three blocks of 16 trials) of the three recipients. Error bars are 
standard error of the mean. (B) Learning rates ( 𝛼) from the winning 3 𝛼1 𝛽 computational model behavior for the Self, Other and No one recipients in each drug 
condition separately showing higher learning rates when playing for the other compared to self. Error bars display standard error of the mean. (C) Beta estimates ( 𝛽) 
from the winning 3 𝛼1 𝛽 computational model behavior showing no significant differences between drug conditions. Error bars display standard error of the mean. 
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odel with session number as a covariate did not significantly impact
ny of our fMRI results, confirming that findings do not reflect order
ffects. 

ROI analysis for the main effect of drug (Table S4) revealed a sig-
ificant effect of l -DOPA (Placebo > l -DOPA) in the left VS ([ x = − 14,
 = 11, z = − 12], k = 10, Z = 3.66, P = 0.020 SVC-FWE), which showed
ignificant positive signaling of PEs under placebo ( t (26) = 5.785, P <
.001) but not after l -DOPA ( t (26) = 1.4, P = 0.18). 

ROI analysis also revealed significant main effects of OT (Placebo >
T) in multiple peak clusters in left and right VS ([all P s < 0.043 SVC-
WE, see Table S4 for complete list of peaks). In some of these clusters
here was significantly positive signaling after placebo ([ x = − 17, y = 18,
 = − 2], t (26) = 4.61, P < 0.001; [ x = 17, y = 20, z = − 9], t (26) = 3.00,
 = 0.006; [ x = 6, y = 6, z = − 5], t (26) = 4.59, P < 0.001) but not after OT
 t = − 0.91, P = 0.37; t (27) = − 1.33, P = 0.20; and t = − 0.74, P = 0.46,
espectively). In contrast, two clusters within the VS mask that lie in the
allidum ([ x = − 9, y = 3, z = − 3], k = 1 and [ x = − 11, y = 5, z = − 2],
 = 1) showed significantly negative signaling after OT ( t (27) = − 2.24,
 = 0.033; t (27) = − 2.71, P = 0.012, respectively) but not after placebo
 t (26) = 1.59, P = 0.12; t = 1.37, P = 0.18, respectively). 

The reverse contrasts ( l -DOPA > Placebo & OT > Placebo) revealed
o significant ROI effects and no significant peaks for any of the con-
rasts were observed in the sgACC or midbrain. 

.2.2. Whole brain - l -DOPA and oxytocin both lead to negative signaling 

f PEs in other brain regions (independent of recipient) 

Whole-brain analysis for the contrast Placebo > l -DOPA showed ac-
ivation in a range of brain regions with peaks in the aMCC extending to
he (pre-)SMA, dlPFC, IPG, superior parietal gyrus (SPG), angular gyrus
nd precentral gyrus (see Table S4 for full list of regions and Fig. 3 A).
nspection of the peak coordinates indicates that there was significantly
7 
egative signaling in each of these clusters after l -DOPA (all t s > 2.1,
ll P s < 0.042). In contrast, after placebo, there was significantly posi-

ive PE signaling in the dlPFC ([ x = − 36, y = 32, z = 35], t (26) = 2.58,
 = 0.016) and [ x = 18, y = 32, z = 32], t (26) = 2.06, P = 0.049) whereas
here was no significant PE signaling in any of the other regions ( t s <
.69, P s > 0.10). 

The whole-brain Placebo > OT contrast also revealed significant dif-
erences in a wide range of brain regions, including again the aMCC ex-
ending to the (pre-)SMA, DLPFC, IPG, SPG, and angular gyrus, as well as
he pallidum, caudate, thalamus (anteroventral nucleus) and precuneus
see Table S4 for full list of regions and Fig. 3 B). Inspection of the peak
oordinates indicates that except for two clusters in the caudate ([ x = 23,
 = 26, z = − 9], t (27) = − 1.36, P = 0.19) and angular gyrus ([ x = 50, y =
 68, z = 33], t (27) = − 1.82, P = 0.081), there was significant negative
ignaling after OT in each of these regions ( t s > 2.24, P s < 0.033). In
ontrast, after placebo, there was significantly positive signaling of PEs
n the caudate ( t (26) = 3.21, P = 0.029), pallidum ([ x = − 12, y = 0,
 = 5], t (26) = 3.11, P = 0.005), precuneus ([ x = 9, y = − 56, z = 35],
 (26) = 2.15, P = 0.041), angular gyrus ([ x = 50, y = − 68, z = 33], t (26)
 2.45, P = 0.021), and dlPFC ([ x = − 29, y = 17, z = 48], t (26) = 2.16,
 = 0.040) and no significant signaling in the remaining regions (all t s
 1.87, P s > 0.072). 

The reverse contrasts ( l -DOPA > Placebo & OT > Placebo) revealed
o significant whole-brain effects. 

.2.3. Conjunctions - l -DOPA and oxytocin show overlapping modulatory 

ffects on PE signaling 

A conjunction analysis ([Placebo > l -DOPA] = [Placebo > OT])
ithin our ROIs revealed significant overlap in signaling for l -DOPA and
T in a peak cluster within the VS ([ x = − 14, y = 11, z = − 12], k = 10,
 = 3.66, P = 0.020 FWE-SVC, see Fig. 3 C and Table S4), showing sig-
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Fig. 3. Whole brain main effects of l -DOPA (A) and Oxytocin (OT) (B), parameter estimates for the ventral striatum conjunction (C) and the whole-brain conjunction 
of l -DOPA and OT (D). (A) Whole brain activation for the Placebo > l -DOPA contrast, displayed at P < 0.05 FWE. The reverse contrast ( l -DOPA > Placebo) revealed 
no significant effects. (B) Whole brain activation for the Placebo > OT contrast, displayed at P < 0.05 FWE. The reverse contrast (OT > Placebo) revealed no significant 
effects. (C) Parameter estimates for the significant conjunction in the ventral striatum [ x = − 14, y = 11, z = − 12]. (D) Whole brain activation for the conjunction 
analysis ([Placebo > l -DOPA] = [Placebo > OT]) showing overlap in activation for l -DOPA and OT, displayed at P < 0.001 uncorrected for illustration purposes. ∗ P 
< 0.05, ∗ ∗ P < 0.01 ∗ ∗ ∗ P < 0.001. For all whole brain images: x = 3, y = 10, z = 30. 
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ificantly positive signaling under placebo ( t (27) = 5.79, P < 0.001) but
ot after l -DOPA ( t (27) = 1.40, P = 0.11) or OT ( t (28) = 0.80, P = 0.43).

A conjunction analysis ([Placebo > l -DOPA] = [Placebo > OT]) on the
hole brain level additionally revealed significant overlap in negative

ignaling for l -DOPA and OT in peak clusters within the aMCC extending
o the (pre-)SMA, dlPFC, IPG, SPG, angular gyrus and precentral gyrus
all P s < 0.042, see Fig. 3 D and Table S4). 

The reverse contrast ([ l -DOPA > Placebo] = [OT > Placebo]) did not
eveal significant effects. 

.2.4. Opposing signaling of self and prosocial prediction errors after 

xytocin (versus placebo) in dorsal anterior cingulate cortex, insula, and 

uperior temporal gyrus 

We computed interaction contrasts to investigate the effect of self-
enefitting versus prosocial PE signaling after OT, which revealed no sig-
ificant effects within our ROIs. However, on the whole-brain level, the
ontrast (Placebo:-Self[1]-Other[ − 1], OT:-Self[ − 1]-Other[1]) revealed
ignificant interactions between OT and recipient in the dACC ([ x =
 17, y = 33, z = 26], Z = 4.90, k = 4, P = 0.011 FWE), insula ([ x = 44,
 = 3, z = − 12], Z = 4.76, k = 18, P = 0.019 FWE), and the superior
emporal gyrus (STG; [ x = − 59, y = − 2, z = − 11], Z = 6.16, k = 577,
 < 0.001 FWE) extending to the inferior frontal gyrus, pars orbitalis
[ x = − 47, y = 17, z = − 12], Z = 5.24, P = 0.002 FWE]). Four signif-
cant white matter clusters were observed as well but not interpreted
see Table S4). The reverse contrast (Placebo:-Self[ − 1]-Other[1], OT:-
elf[1]-Other[ − 1]) revealed no significant effects. 

Parameter estimates for each of these regions ( Fig. 4 BCD) showed
hat after placebo, there was on average positive signaling for Self versus
egative signaling for Other. After OT, however, average signaling in
he Self condition was negative, while signaling in the Other condition
as either less negative (dACC) or positive (insula, STG). Significant
ifferences from zero and between conditions for each region can be
ound in Fig. 4 and the Supplemental results. 
8 
Similar interaction contrasts for l -DOPA (Placebo:-Self[1]-
ther[ − 1], l -DOPA:-Self[ − 1]-Other[1]; Placebo:-Self[ − 1]-Other[1],
 -DOPA:-Self[1]-Other[ − 1]) only revealed a significant whole brain-
evel cluster in the SPG ([ x = 33, y = − 69, z = 56], Z = 4.77, P = 0.019
WE, k = 10), see Supplemental results and Figure S2. 

.2.5. After oxytocin, prosocial prediction error signals in dorsal anterior 

ingulate cortex, insula and superior temporal gyrus are associated with 

igher prosocial learning rates 

We next explored whether these differential neural patterns for self-
enefitting versus prosocial learning under influence of OT would be re-
ated to behavioral differences in the rate of learning. For each of these
bove regions, we observed significant correlations between learning
ates and parameter estimates in the Other condition after OT (dACC:
 (28) = 0.507, P = 0.006; insula: r (28) = 0.537, P = 0.003; STG: r(28)
 0.547, P = 0.003, respectively, see Fig. 5 A-C) but not after placebo
 r s < 0.205, P s > 0.31), though the correlations between the difference
n prosocial learning rates and parameter estimates between OT ver-
us placebo were not significant ( r s < 0.249, P s > 0.22). For the dACC
nd insula we additionally found that after OT, more positive parameter
stimates in the Other versus Self condition related to higher prosocial
ersus self-benefitting learning rates ( r (28) = 0.391, P = 0.040 and r (28)
 0.420, P = 0.026, respectively, Fig. 5 D and E), which was not found af-

er placebo ( r s < 0.203, P s > 0.32), though again the direct comparisons
etween placebo and OT of these prosocial versus self-benefitting rates
nd parameter estimates were not significantly correlated ( r s < 0.063,
 s > 0.76). 

. Discussion 

The current study examined the neurochemical mechanisms under-
ying self-benefitting versus prosocial reinforcement learning by phar-
acologically manipulating DA and OT levels in the brain. While we
id not observe a modulating impact of l -DOPA and OT on the compu-
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Fig. 4. Whole brain image (A) and extracted parameter estimates in the dACC (B), insula (C) and STG (D) for the interaction between OT and recipient. (A) Whole 
brain interaction between OT and recipient (Placebo:-Self[1]-Other[ − 1], OT:-Self[ − 1]-Other[1]), displayed at P < 0.001 uncorrected for illustration purposes, [ x = 
− 17, y = − 3, z = − 12]. The reverse contrast (Placebo:-Self[ − 1]-Other[1], OT:-Self[1]-Other[ − 1]), revealed no significant effects. (B) Extracted parameter estimates 
from the whole-brain interaction in the dorsal anterior cingulate cortex (dACC), [ x = − 17, y = 33, z = 26], Z = 4.90, k = 4, P = 0.011 FWE. (C) Extracted parameter 
estimates from the whole-brain interaction in the insula, [ x = 44, y = 3, z = − 12], Z = 4.76, k = 18, P = 0.019 FWE. (D) Extracted parameter estimates from the 
whole-brain interaction in the superior temporal gyrus (STG), [ x = − 59, y = − 2, z = − 11],], Z = 6.16, k = 577, P < 0.001 FWE. ∗ P < 0.05, ∗ ∗ P < 0.01 ∗ ∗ ∗ P < 0.001. 

Fig. 5. Scatterplots depicting recipient-specific correlations between extracted parameter estimates and learning rates in dACC, insula and STG after OT. (A) Sig- 
nificant correlation between parameter estimates in the dorsal anterior cingulate cortex (dACC) and learning rates in the prosocial condition under influence of OT, 
r (28) = 0.507, P = 0.006. (B) Significant correlation between parameter estimates in the insula and learning rates in the prosocial condition under influence of OT, 
r (28) = 0.537, P = 0.003. (C) Significant correlation between parameter estimates in the superior temporal gyrus (STG) and learning rates in the prosocial condition 
under influence of OT, r (28) = 0.547, P = 0.003. (D) Significant correlation between parameter estimates in the dACC and learning rates in the prosocial versus 
self-benefitting condition under influence of OT, r (28) = 0.420, P = 0.026. (E) Significant correlation between parameter estimates in the insula and learning rates 
in the prosocial versus self-benefitting condition under influence of OT, r (28) = 0.391, P = 0.040. 

9 
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ational parameters or learning performance itself, we show that both
rugs widely modulate neural PE encoding during learning. First, our
ndings indicate that, regardless of the recipient condition, both drugs
lunted positive signaling of PEs in the VS. Second, both drugs led to
egative signaling of PEs in several regions associated with the encoding
f negative or surprise PEs, with conjunction analysis showing substan-
ial overlap after l -DOPA and OT within - amongst others - the aMCC ex-
ending to the (pre)-SMA, dlPFC, IPG, and precentral gyrus. Thirdly, we
ound opposing signaling of self-benefitting and prosocial PEs in dACC,
nsula and STG after OT (versus placebo). Exploratory analyses also in-
icated that after OT, more positive encoding of prosocial PEs in these
egions related to higher prosocial learning rates. 

We observed widespread modulatory effects of both drugs on neu-
al PE signaling. Importantly, we found blunted positive signaling of
Es in the VS after l -DOPA administration compared to placebo, inde-
endent of the recipient-condition. While we hypothesized that posi-
ive signaling in VS would be enhanced rather than attenuated, previ-
us neuroimaging studies investigating DA agonists have been inconsis-
ent. Whereas the few studies administering l -DOPA report enhanced
ignaling in the VS ( Pessiglione et al., 2006 ), restored VS signaling in
ld age ( Chowdhury et al., 2013 ) and increased VS activity to rewards
 Pleger et al., 2009 ), several factors may contribute to different findings.
or example, Pessiglione et al. (2006) employed a between-subject de-
ign with a small sample size ( N = 13 per group) and only observed an
ncrease in signaling compared to the DA antagonist haloperidol and not
ompared to placebo, while the study by Chowdhury et al. (2013) ob-
erved enhanced VS signaling only in (a subgroup of) older adults, who
re more likely to show suboptimal DA functioning than our sample of
ealthy young adults. Additionally, the VS enhancement reported by
leger et al. (2009) was based on a somatosensory judgement task and
ocused on the BOLD response to reward rather than the positive PE
irectly. Sex differences could play a role here as well, as these pre-
ious studies have been conducted in mixed-sex samples, whereas our
urrent study only included male participants, and previous research
as for example shown that there are sex differences in striatal DA re-
ease ( Munro et al., 2006 ). Importantly, in line with our current results,
wo other studies using DA agonists methamphetamine ( Bernacer et al.,
013 ) and methylphenidate ( Evers et al., 2017 ) also found reduced
E signaling in VS. The latter authors speculated that methylphenidate
ight have led to decreased (phasic DA-dependent) PEs through a drug-

nduced increase in tonic levels of DA ( Evers et al., 2017 ), which can
nhibit phasic DA release through increased stimulation of presynaptic
A autoreceptors ( Beaulieu and Gainetdinov, 2011 ) and reduce postsy-
aptic responses to phasic DA ( Jonasson et al., 2014 ). This explanation
ould be relevant to l -DOPA as well, since this drug is also known to
ncrease tonic DA levels ( Harun et al., 2016 ). Our results could also be
een to be in line with an “overdose ” hypothesis of DA ( Cools, 2006 ),
hereby l -DOPA administration may impair PE signaling in the VS due

o an overdosing of this already optimally-functioning brain area. How-
ver, other studies report no significant effects of DA agonist bromocrip-
ine on PE signaling ( Diederen et al., 2017 ) or processing of rewarding
eedback ( van der Schaaf et al., 2014 ) in the VS, and increased signal-
ng after low dose amisulpride, a specific D2 receptor antagonist that is
hought to boost D1 signaling ( Jocham et al., 2011 ). These inconsistent
esults highlight the need for further research on the exact circumstances
nder which (different types of) DA-stimulating drugs lead to enhanced
ersus reduced VS encoding of PEs during reward learning. 

Interestingly, we observed similar blunting of PEs in the VS after OT
dministration. This effect was independent of the recipient condition,
hich is consistent with OT exerting domain-general effects on PE sig-
aling during learning. While most studies report social-specific effects
f OT, there is an increasing amount of research indicating that OT may
lso have effects outside of- or independent of the social domain and
erves general approach-avoidance behavior ( Harari-Dahan and Bern-
tein, 2014 ) or the regulation of allostatic processes ( Quintana and
uastella, 2020 ). OT is known to affect the mid-brain DA circuit, which
10 
upports processing of both social and non-social reward, and as such
as been proposed to exert both social and non-social behavioral effects
 Harari-Dahan and Bernstein, 2014 ). 

Importantly, our design uniquely enabled us to conduct conjunc-
ion analyses, which demonstrated overlap in the modulatory effects
f l -DOPA and OT within specific voxels in the VS. This fits with a
rowing number of studies highlighting the extensive interactions be-
ween DA and OT (for reviews see e.g., Love, 2014 ; Shamay-Tsoory and
bu-Akel, 2016 ). For example, OT receptors are located throughout the
esocorticolimbic dopamine system ( Love, 2014 ). Moreover, animal

tudies have demonstrated that optogenetic manipulation of OT release
nduces DA release in the midbrain during social interaction ( Hung et al.,
017 ) whereas optogenetic stimulation of oxytocinergic terminals have
lso been found to generally modulate midbrain DA activity ( Xiao et al.,
017 ). There is also evidence from a human neuroimaging study that OT
dministration increases the BOLD signal in the midbrain to (non-social)
onetary reward ( Mickey et al., 2016 ). Hence, our analogous findings

fter OT and l -DOPA suggest that, in humans, administration of OT may
nduce similar effects through its alteration of DA. 

Furthermore, whole-brain analyses revealed that both l -DOPA and
T induced negative signaling of PEs in several brain regions, with con-

unction analyses showing significant overlap in many brain regions in-
luding the aMCC (extending to the [pre]-SMA), dlPFC, IPG, and pre-
entral gyrus, all areas previously implicated in coding negative or sur-
rise PEs ( Fouragnan et al., 2018 ). These overlapping effects of OT
nd DA on negative signaling of PEs again fit with the notion that
T may exert effects through its impact on DA release ( Love, 2014 ;
hamay-Tsoory and Abu-Akel, 2016 ). The findings are also line with
revious electroencephalography studies indicating that DA stimulation
nhances electrophysiological brain responses thought to reflect nega-
ive PEs ( Barnes et al., 2014 ; De Bruijn et al., 2004 ; de Bruijn, Hulstijn,
erkes, Ruigt, and Sabbe, 2005b ; Spronk et al., 2016 ), and originate

rom the aMCC ( Debener et al., 2005 ). Our results furthermore indicate
hat, rather than enhancing both positive and negative signaling of PEs,
oth drugs may in fact induce a (recipient-independent) shift from pos-
tive to negative signaling of PEs in the brain. Given the switch from
ositive signaling in areas associated with reward to negative signal-
ng in areas primarily associated with the coding of negative and sur-
rise PE, the current outcomes might reflect an attentional shift whereby
orse-than-expected outcomes become more salient than better-than-

xpected outcomes. However, since we focused on parametrically signed
Es, we cannot disentangle whether this negative signaling of PEs is
ore likely to reflect an inverse tracking of better-than-expected out-

omes or increased tracking of worse-than-expected outcomes, or both.
otably, previous pharmacological fMRI studies using similar learning
aradigms have mainly focused on positive correlations with paramet-
ically signed PEs, whereas negative correlations are either ignored or
ot observed. Our findings thus additionally highlight the importance
f testing for negative correlations when investigating the neural encod-
ng of PEs ( Lockwood and Klein-Flügge, 2021 ). We would also like to
cknowledge that there is some debate with regard to the classification
f prediction errors. Some researchers argue that to justify that a brain
egion truly encodes PEs rather than mere outcome valence, BOLD ac-
ivity should be positively correlated with the outcome and negatively
ith the expectation term ( Behrens et al., 2008 ; Zhang et al., 2020 ),
hich could be followed up in future work. 

In addition to domain-general drug effects, we also observed whole-
rain interactions between recipient and OT. Administration of OT ver-
us placebo resulted in opposite prosocial versus self-benefitting PE sig-
aling in dACC, insula and STG. Importantly, these regions have previ-
usly been associated with the encoding of negative and surprise PEs
 Fouragnan et al., 2018 ), but also form part of the social brain network,
ith each of these regions implicated in, for example, the represen-

ation and/or experience of other’s mental states ( Bzdok et al., 2012 ;
ieberman, 2007 ). Hence, from a social salience perspective ( Shamay-
soory and Abu-Akel, 2016 ), the fact that OT modulated activity in these
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reas in a recipient-dependent manner, may reflect OT-induced changes
n saliency of other- versus self-relevant outcomes. Interestingly and in
ine with this, exploratory analyses indicated that individual differences
n prosocial learning rates correlated with PE signals in these areas after
T, which suggests that the extent to which these specific brain areas are
ngaged in PE encoding may be predictive of how well individuals learn
n a prosocial (versus self-benefitting) context. While our interpretation
f neural differences is complicated by the absence of significant behav-
oral differences, these findings may indicate that OT induces alternative
r additional neural mechanisms during learning, with OT specifically
nducing a role for these regions in learning for others. 

Previous studies using this task have suggested enhanced
gACC signaling in the prosocial versus self-benefitting condition
 Lockwood et al., 2016 ) and recipient-specific modulations of PE sig-
aling in midbrain and sgACC after a medium dose of OT ( Martins et al.,
022 ). We did not observe these effects here. Notably, we also did
ot observe midbrain involvement when looking at recipient-specific
orrelations with the PE for the placebo condition separately (see Table
3). These differences between the current and previous work could,
owever, be explained by the different behavioral learning patterns:
rucially, our participants showed comparable levels of prosocial and
elf-benefitting performance and even enhanced prosocial learning rates
lready under placebo, in contrast to previous research, showing mainly
elf-biases in learning performance ( Cutler et al., 2021 ; Liao et al.,
021 ; Lockwood et al., 2016 ; Martins et al., 2022 ; Westhoff et al.,
021 ). The fact that we failed to show such biases and even observed
 bias towards better learning for others, is noteworthy. Possibly,
ifferences in participant characteristics and contextual factors play
 role here. For one, in contrast to previous studies, our data was
ollected in the middle of the COVID outbreak, a time which may have
acilitated altruistic behavior through a heightened sense of common
dentity and emotional connection with others that are experiencing
he same challenges ( Drury, 2018 ; Wider et al., 2022 ). Moreover, most
revious studies were carried out in the United Kingdom and there may
hus be cultural differences with our native Dutch-speaking participants
 Cutler et al., 2021 ; Lockwood et al., 2016 ; Martins et al., 2022 ). The
nly other study conducted in the Netherlands consisted of both males
nd females and concerned a younger age group ( Westhoff et al.,
021 ), while previous work suggests that self-biases in learning tend to
ecrease as we age ( Cutler et al., 2021 ). Hence, it would be interesting
o see if our finding can be replicated in future studies. 

Based on what we know about the neurobiology of reinforcement
earning in non-human animals ( Schultz, 2016 ) and research in humans
 Pessiglione et al., 2006 ), it may be expected that l -DOPA would fa-
ilitate learning rates. Similarly, based on the social salience hypoth-
sis ( Shamay-Tsoory and Abu-Akel, 2016 ), which argues that OT en-
ances the salience of social versus self-relevant stimuli, and prior find-
ngs ( Liao et al., 2021 ; Martins et al., 2022 ), we expected that OT would
pecifically facilitate prosocial learning. However, we did not find ev-
dence for behavioral learning effects of either drug. Several explana-
ions for this may be put forward. First of all, it should be acknowl-
dged that the lack of significant behavioral findings in the presence of
eural differences could be due to insufficient sensitivity of our learn-
ng paradigm or analyses to detect behavioral effects. Importantly, the
ask was perceived as relatively easy (see Table S5) and accuracy rates
ere high (see Fig. 2 A), which together with the within-subject design

ould have contributed to ceiling effects. In line with our null-findings,
 recent review of the literature investigating the impact of DA agonists
n self-benefitting learning indicated very mixed results (for a compre-
ensive review see Webber et al., 2021 ), with l -DOPA enhancing (e.g.,
essiglione et al., 2006 ), decreasing (e.g., Guitart-Masip et al., 2014 ;
izzagalli et al., 2008 ; Vo et al., 2016 ) or not impacting ( Weis et al.,
013 ; Wunderlich et al., 2012 ) learning rates and/or performance.
hese inconsistencies have been suggested to stem from the fact that
ealthy adults already show optimal DA levels, meaning that further
nhancement of DA is unlikely to lead to improvements ( Webber et al.,
11 
021 ). Some studies also indicate that individual differences in base-
ine levels of DA (e.g., Clatworthy et al., 2009 ; Cools et al., 2009 ;
ueller et al., 2014 ) determine how DA affects learning, and may need

o be taken into account. Furthermore, while we also speculated about
 potential self-serving bias of l -DOPA on performance based on pre-
ious studies observing modulatory effects on decisions regarding self-
ersus other-benefitting outcomes ( Crockett et al., 2015 ; Pedroni et al.,
014 ; Soutschek et al., 2017 ), it is important to note that these studies
nvolved a trade-off where others’ outcomes influenced own rewards.
n this respect, it may be interesting for future research to study how
 -DOPA affects learning for others when this comes at personal costs. 

Additionally, while we expected that OT would specifically facilitate
rosocial learning, we noted that in our study, learning performance and
ates were already similar and higher, respectively, when playing for
he other versus oneself in the placebo condition. Hence, unlike previ-
us studies reporting OT modulations of prosocial versus self-benefitting
earning ( Liao et al., 2021 ; Martins et al., 2022 ), our sample appeared al-
eady highly motivated to play for others to begin with. Also in contrast
ith our study, Liao et al. (2021) employed a between-subject design in
oth males and females from a different cultural background, all factors
hat could modulate OT effects ( Borland et al., 2019 ; Xu et al., 2017 ).

hile our task contained three blocks of trials in each recipient condi-
ion, Martins et al. (2022) observed preserving effects of OT on prosocial
erformance only in a fourth block, which could suggest that their OT
ffect related to the increased efforts required to sustain performance.
oreover, this effect was only observed for a low dose (9 IU), and not

igher doses (18 and 36 IU). Interestingly, a recent account proposes
hat OT is an allostatic hormone that helps maintain stability through
hanging environments, and predicts that OT may specifically improve
eversal- rather than stable learning, regardless of whether the stimuli
re social or non-social ( Quintana and Guastella, 2020 ). Hence, it may
e worthwhile for future studies to explore drug effects on learning tasks
hat require higher effort or cognitive demands, using different doses. 

It has also been proposed that DA agonists may generally enhance
xploration over exploitation during learning ( Beeler, 2012 ), which
ould be reflected in enhanced temperature parameters. Yet, our find-

ngs indicate moderate evidence against a difference in beta values be-
ween placebo and l -DOPA. Interestingly, recent research shows that
 -DOPA may specifically facilitate directed exploration during learning
 Chakroun et al., 2020 ), suggesting that such effects of l -DOPA may only
e captured with more complex reinforcement learning models that dif-
erentiate between directed and random exploration. 

It should be acknowledged that the current study focused on one
pecific type of prosocial setting. Specifically, learning took place in a
rivate context, where outcomes affected another participant who was
n turn responsible for the outcomes of someone else, which allowed us
o capture altruistic motivation to benefit others while ruling out effects
f reciprocity and reputation, in line with previous work ( Cutler et al.,
021 ; Lockwood et al., 2016 ; Martins et al., 2022 ; Westhoff et al., 2021 ).
f course, in real-life settings learning and prosocial behavior often take
lace in the presence of others, or require significant personal costs or ef-
orts ( Lockwood et al., 2017 ). However, the advantage of our task was
hat self and other-benefitting learning could be directly compared as
nterpretation of neural signals is more complicated in situations where
enefitting others come at personal costs (i.e., does a region signal loss
o self or benefit to other?). Furthermore, in the current study partici-
ants played for an anonymous peer. Prosocial learning may also differ
epending on the beneficiary, and l -DOPA and OT may differentially
odulate learning when benefitting close others such as friends or fam-

ly members as compared to those with higher perceived social distance,
nd these effects may also differ in female versus male participants (e.g.,
. Ma et al., 2018 ). Future research should therefore aim to explore these
ifferent kinds of scenarios. 

Using a novel design, where both l -DOPA and OT were adminis-
ered to the same subjects for the first time, we demonstrated that both
ompounds modulated brain responses underlying self-benefitting and
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rosocial learning in a sample of healthy male adults. The effects of DA
n PE signaling were primarily domain-general, suggesting that DA fa-
ilitation may impact the neural implementation of reinforcement learn-
ng independent of whether one is learning for their own benefit or
hat of another. Interestingly, our results showed that OT also induced
omain-general effects. Conjunction analyses revealed widespread over-
ap in signaling between OT and l -DOPA, with both drugs blunting
ositive PE signaling in the VS and inducing negative PE signaling in
everal other regions. This is in line with a growing body of preclini-
al research highlighting the extensive interactions between DA and OT
n the brain. Additionally, we observed recipient-specific effects of OT
n PE signaling in the brain, with opposing signaling of self-benefitting
nd prosocial prediction errors after OT in dACC, insula and STG, with
 positive correlation between these areas and prosocial learning rates.
his suggests that OT-induced recruitment of these areas specifically
upports learning for others. A possible mechanism for OT-induced
hanges in these areas may be through attention shifts as a result of al-
ered salience of social versus self-relevant stimuli ( Shamay-Tsoory and
bu-Akel, 2016 ). However, social salience cannot explain the currently
emonstrated recipient-independent effects of OT, clearly revealing OT-
nduced domain-general effects on PE encoding during learning as well
 Harari-Dahan and Bernstein, 2014 ; Quintana and Guastella, 2020 ).
pecifically, the neural overlap between OT and l -DOPA suggests that
ffects of OT may indeed be established through its interactions with DA.
he current findings thus reveal the communalities between these neu-
ochemicals for the first time and provide support for their involvement
n the neural computations underlying self-benefitting and prosocial re-
nforcement learning. 
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