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Abstract

Motivation: Several applications in constraint-based modelling can be mathematically formulated as cardinality optimization problems involving
the minimization or maximization of the number of nonzeros in a vector. These problems include testing for stoichiometric consistency, testing
for flux consistency, testing for thermodynamic flux consistency, computing sparse solutions to flux balance analysis problems and computing
the minimum number of constraints to relax to render an infeasible flux balance analysis problem feasible. Such cardinality optimization problems
are computationally complex, with no known polynomial time algorithms capable of returning an exact and globally optimal solution.

Results: By approximating the zero-norm with nonconvex continuous functions, we reformulate a set of cardinality optimization problems in
constraint-based modelling into a difference of convex functions. We implemented and numerically tested novel algorithms that approximately
solve the reformulated problems using a sequence of convex programs. \We applied these algorithms to various biochemical networks and dem-
onstrate that our algorithms match or outperform existing related approaches. In particular, we illustrate the efficiency and practical utility of our
algorithms for cardinality optimization problems that arise when extracting a model ready for thermodynamic flux balance analysis given a human
metabolic reconstruction.

Availability and implementation: Open source scripts to reproduce the results are here https://github.com/opencobra/COBRA.papers/2023_
cardOpt with general purpose functions integrated within the COnstraint-Based Reconstruction and Analysis toolbox: https://github.com/openco
bra/cobratoolbox.

Although reconstructions are generated based on genomic
and experimental data, it is possible that incorrect or incom-
plete specification of biochemical reactions might still occur
within any reconstruction due to errors in experimental data,
human error, or incomplete experimental data. The probabil-
ity of a misspecification tends to increase with the size of a re-
construction, as they tend to capture peripheral, less well
studied metabolic pathways. Consequently, quality control is
especially important for high-dimensional reconstructions.
During the reconstruction process, quality control should be
built into the reconstruction protocol in line with established
best practice (Thiele and Palsson 2010), which is constantly
evolving (Norsigian et al. 2020).

1 Introduction

Systems biochemistry seeks to understand biological function in
terms of a network of chemical reactions. In order to apply this
approach to a particular system, one must first reconstruct the
corresponding network prior to deriving a mechanistic model
from it. There are various approaches to network reconstruction,
depending on the type of data available and the type of compu-
tational model envisaged. Constraint-based Reconstruction and
Analysis (COBRA) places strong emphasis on reconstruction of
biochemical networks from complementary sources of data
(Palsson 2015). Omics data is comprehensive but tends to be
noisy, while biochemical data derived from reductionistic
approaches is limited in scope but tends to be more precise than

omics data. By combining data from these two experimental
approaches one can try to ensure that a reconstructed network
is comprehensive yet consistent with experimental data.

Many biochemically comprehensive genome-scale biochem-
ical networks are available, e.g. for humans (Brunk ez al.
2018, Robinson et al. 2020), yeast (Herrgird et al. 2008),
and the human gut microbiome (Magnasdottir et al. 2017).

Even with quality control during the reconstruction pro-
cess, it is not appropriate to assume that any reconstruction
can be converted directly into a model and used to make pre-
dictions. A model must satisfy certain assumptions before it
can be used to make reliable predictions. Depending on the
type of model, these assumptions will be different. Each as-
sumption should be chemically or biologically motivated and
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expressed in an unambiguous manner and preferably both, in-
tuitively and mathematically. Flux balance analysis is a widely
mathematical method used for studying genome-scale bio-
chemical networks (Raman and Chandra 2009, Orth et al.
2010). It aims to predict steady-state reaction fluxes, where
there is a balance between production and consumption of
each molecular metabolites that is not exchanged across the
specified boundary of the system. In this situation, one might
obtain erroneous predictions if the system boundary is incor-
rectly specified. If a reconstruction contains one or more sup-
posedly elementally balanced reactions, but which are
actually not balanced, such reactions might lead to inadver-
tent leakage of a molecular metabolites from a model, in vio-
lation of mass balance. This could possibly lead to inaccurate
conclusions from model predictions.

Manually testing for misspecification is impractical for
genome-scale biochemical network reconstruction, with sev-
eral thousand molecular metabolites and reactions. In this
context, algorithmic approaches are essential to test mathe-
matically specified modelling assumptions, isolate the subset
of a reconstruction that can be used for modelling, and point
towards solutions to correct the specification within a given
reconstruction. Several computational tools have already
been developed that can be used to test for misspecification,
subject to particular assumptions in a particular modelling
context. Gevorgyan et al. (2008) developed a variety of algo-
rithms, and distributed software (Gevorgyan et al. 2011), to
detect and resolve stoichiometric inconsistency, in the form of
incorrectly specified mass imbalanced reactions.

Besides stoichiometric consistency, when generating a model
for flux balance analysis, it is important to ensure that the
model is flux consistent, i.e. each reaction can carry a nonzero
steady-state flux (Vlassis et al. 2014). When generating a model
for thermodynamic flux balance analysis (Gollub et al. 2021),
it is important to ensure that each reaction in the model admits
nonzero steady-state flux that satisfies energy conservation and
the second law of thermodynamics (Qian and Beard 2005,
Desouki et al. 2015). Such issues arises during the process of
tailoring a generic genome-scale model to represent the feasible
set of fluxes in a specific condition (Opdam et al. 2017). They
are also important when generating genome-scale kinetic mod-
els, where we previously developed a stoichiometric approach
to identify a form of kinetic inconsistency arising from the pres-
ence of redundant molecular metabolites (Fleming ez al. 2016),
elimination of which is necessary and sufficient for duality be-
tween unidirectional fluxes and concentrations, subject to ele-
mentary reaction kinetics.

In flux balance analysis, if no solution exists that satisfies the
set of mathematical constraints specified by a model, then an
industrial quality double-precision linear optimization solver
will return a certificate of infeasibility, which will correctly
identify an infeasible model. When dealing with a multi-scale
model, e.g. with integration of metabolism and macromolecu-
lar synthesis (Thiele et al. 2012, Liu et al. 2014), a double preci-
sion solver might incorrectly return a certificate of infeasibility,
when the model is actually feasible. In this scenario, reformula-
tion to a rescaled problem (Sun et al. 2013) or recourse to a
higher precision solver (Ma et al. 2017) is required.

Identification of an infeasible model is important, but it is
more useful to also be able to isolate the minimal set of con-
straints that combine to cause the infeasibility. An irreducible
infeasible set is a minimal set of constraints and variable
bounds that are infeasible, but becomes feasible if any one
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constraint or bound is omitted (Chinneck 2008). There may
also exist multiple infeasible sets of the same cardinality. A va-
riety of different approaches exist for isolating irreducible in-
feasible sets in linear optimization problems (Chinneck 2008)
and many industrial solvers offer the option to call such algo-
rithms, via software for constraint-based modelling (Heirendt
et al. 2019). However, available approaches do not exploit
the sparsity of the matrices that arise in constraint-based
modelling and are difficult to access for those without special-
ist knowledge of optimization algorithms and software.

Each of the aforementioned problems has the mathematical
form of a cardinality optimization problem, a discrete optimi-
zation problem that requires minimization or maximization
of the cardinality of a vector. That is, optimization of the
number of nonzero components of a vector, or equivalently
the zero norm of a vector. For example, in constraint-based
modelling, the discreteness arises because each row or column
of the stoichiometric matrix derived directly from a recon-
struction must either be present or absent from a model that
satisfies the aforementioned consistency conditions. Similarly,
an inequality constraint can either be relaxed or not. In gen-
eral, cardinality optimization subject to linear equality and in-
equality constraints is a computationally demanding problem,
specifically, it is a nondeterministic polynomial-time hard
problem (Amaldi and Kann 1998). Therefore, heuristics or
approximation strategies are necessary when dealing with the
high dimensional problems typical for genome-scale models.
The discontinuity of the zero norm at the origin results in a
nonconvex optimization problem. To circumvent the disconti-
nuity of the zero norm, continuous approximations have been
intensively studied (Le Thi et al. 2015). When a problem
involves cardinality minimization it is referred to as sparse op-
timization. Efforts in this direction can be divided into two
categories depending on the nature of the approximation.

In the first category, namely convex approximation, one of
the best-known approaches consists of replacing the zero norm
by the one norm (Tibshirani 1996). This approach leads to
good performance results. Its popularity resides in its tractabil-
ity and its ability to find sparse solutions, even if it is not guar-
anteed to attain a global minimum solution of the zero norm
problem in general. However, it has been proven that, under
certain sufficient conditions, a solution of a linear cardinality
optimization problem can be obtained by solving a linear opti-
mization problem with a one norm objective (Gribonval and
Nielsen 2003). This is remarkable because the one norm prob-
lem is a continuous linear optimization problem that can be
readily solved and may result in a solution to the original dis-
crete cardinality optimization problem. However, the known
sufficient conditions for the exact correspondence between the
continuous and discrete optima are currently quite restrictive,
and cannot be easily verified in general. In practice, while these
methods may be efficient, the result may not be a close approxi-
mation to a true minimal cardinality solution.

In the second category, namely nonconvex approximation,
the zero norm, denoted ¢y(-) can be approximated by various
continuous nonconvex functions, such as the piecewise expo-
nential function (Bradley and Mangasarian 1998), the
smoothly clipped absolute deviation (SCAD) function (Fan
and Li 2001), the logarithm (Weston et al. 2003), the £,
norm with 0 < P < 1 (Fu, 1998), the ¢, norm with P <0
(Rao and Kreutz-Delgado 1999), the capped-¢; function
(Peleg and Meir 2008), and the piecewise linear function (Le
Thi et al. 2015). Recently, Le Thi et al. (2015) have shown
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that all of the aforementioned nonconvex approximations can
be expressed as a difference of convex functions, termed a DC
function in the mathematical literature on this topic (Pham
Dinh and Le Thi 1997). This opened up the possibility to
solve the aforementioned nonconvex approximation prob-
lems in a unified way using a general purpose difference of
convex function algorithm (DCA) (Pham Dinh and Le Thi
1997). In several real applications, outside of biology, this ap-
proach has been shown to be scalable and yields better results,
in terms of cardinality, than convex approximations (Le Thi
et al. 2015).

To the best of our knowledge, there exists no report of the
use of nonconvex approximations to minimize the zero norm
in the context of mechanistic modelling in biology. Herein,
we elaborate on several important applications of cardinality
optimization that commonly appear in constraint-based
modelling scenarios. We approximate them with various non-
convex approximations and we solve them with difference of
convex function algorithms. The results of these and alternate
approaches are compared in terms of computational effi-
ciency and the distance of the approximation to a minimal
cardinality solution for a range of genome-scale biochemical
models. We place particular emphasis on real scenarios that
arise while converting human metabolic reconstructions, into
models suitable for flux balance analysis and thermodynamic
flux balance analysis. In this context, the important interplay
between algorithmically and biochemically driven resolution
of inconsistencies and infeasibilities is explained.

2 Materials and methods

Herein, a network refers to either a reconstruction or a model
derived from a reconstruction. We consider six constraint-
based modelling problems involving cardinality optimization.
They are (i) stoichiometric consistency testing: finding the max-
imal set of stoichiometrically consistent reactions in a network
(Gevorgyan et al. 2008), (ii) leak/siphon testing: finding the
minimal number of nonzero fluxes that result in a leak (or si-
phon) of one or more metabolites (Gevorgyan et al. 2008), (iii)
flux consistency testing: finding the maximal number of reac-
tions in a network that admit a nonzero steady-state flux
(Vlassis et al. 2014), (iv) thermodynamic flux consistency test-
ing: finding the maximal number of reactions in a network that
admit a nonzero steady-state flux that satisfies energy conserva-
tion and the second law of thermodynamics (Miiller and
Bockmayr 2013, Desouki et al. 2015), (v) sparse flux balance
analysis: finding the minimal number of nonzero fluxes that
admits a particular objective (Meléndez-Hevia and Isidoro
1985), and (vi) relaxed flux balance analysis: finding the mini-
mal number of bounds or mass balances to relax to render a
flux balance analysis problem feasible. Of these cardinality op-
timization problems, our formulation of stoichiometric consis-
tency testing and thermodynamic flux consistency testing are
novel and the relaxed flux balance analysis problem has not
previously been defined in the literature, so their mathematical
formulation is provided below. Further details, and the mathe-
matical formulation for the remaining problems is provided in
Supplementary Section S1.1.

2.1 Stoichiometric consistency testing

Any stoichiometric matrix S € R”*" may be split into subsets
of columns corresponding to internal and external reactions,
S =[N, B], where internal reactions are stoichiometrically

consistent, i.e. 3¢ € R” such that NT¢ = 0, and external reac-

tions are not stoichiometrically consistent, i.e. ¢ € R” such
that BT/ = 0, as they represent net exchange of mass across
the boundary of the system. Given S the problem is to find the
largest subset that is stoichiometrically consistent. The estab-
lished approach is to maximize the cardinality of a vector
with dimension equal to the number of metabolites
(Gevorgyan et al. 2008), but we take an alternate and novel
approach, that minimizes the number of mass conservation
constraints that need to be relaxed, subject to positive molecu-
lar mass w € R” for each metabolites

ming . ||xl[,
s.t. STw+x=0, (1)
1 <w,

where a nonzero x € R” permits a relaxation of mass conser-
vation. If ||x*||, = O then S is fully stoichiometrically consis-
tent (S=N and B=0). If x7 = 0 for more than one reaction,
then the corresponding reactions are stoichiometrically con-
sistent. Problem 1 is a cardinality minimization problem that
we approximate by a difference of convex functions and solve
using a difference of convex function algorithm specialized
for cardinality optimization (Supplementary Section S1.2).

In Problem (1), if x7 # O then the corresponding reaction is
of unknown stoichiometric consistency, because one subset of
reactions of unknown stoichiometric consistency may be stoi-
chiometrically consistent in a subsequent iteration of Problem
(1), if another subset of reactions of reactions of unknown
stoichiometric consistency are first omitted based on certain
criteria. That is, we implemented a sequential, iterative ap-
proach to identify, and subsequently omit from the network,
a subset of the reactions with x7 # 0, before iterating Problem
(1) again. Two criteria for reaction omission were explored.
Firstly, as molecular formulae are available for most metabo-
lites in human metabolism (Haraldsdottir et al. 2014), our de-
fault approach is to omit a reaction with x* # 0 if it was also
apparently elementally imbalanced, given tfle chemical formu-
lae provided. Secondly, in the case that metabolite formulae
were not available, an alternate approach that avoids check-
ing for elementally (mass) imbalanced reactions, was to omit
those reactions with x* # 0 and with the highest number of
nonzero stoichiometric coefficients (lumped reactions). After
each omission, Problem (1) is iterated again with a reduced
stoichiometric matrix, until no smaller ||x*||, can be obtained.
After the final iteration, the reactions, and corresponding
metabolites, in a reconstruction are split into those that are
stoichiometrically consistent (x7 = 0), those that are stoichio-
metrically inconsistent (x7 # 0 in the final iteration), and
omitted reactions of unknown stoichiometric consistency
(xf #0ina prefinal iteration and omitted).

2.2 Relaxed flux balance analysis

The cardinality optimization problem, termed relaxed flux
balance analysis, is

miny, g Alrllo + 2lpllo + ollallo
s.t. Sv+r=>b,
I—p <v<u+gq,
p.q,7>0,

(2)

where S € R™" denotes a stoichiometric matrix, p,q € R”
denote the relaxations of the lower and upper bounds (I and
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u) on reaction rates of the reaction rates vector v, and r € R”
denotes a relaxation of the mass balance constraint.
Nonnegative parameters A and o can be used to trade off be-
tween relaxation of mass balance or bound constraints, either
globally, or for each individual lower bound, upper bound, or
steady state constraint. Note that this problem is obliquely re-
lated to flux imbalance analysis, which starts with a feasible
model and seeks to analyse the consequences of relaxing the
steady state constraint for each metabolite individually and
relate it to metabolite concentrations (Reznik et al. 2013).

2.3 Thermodynamic flux consistency testing

The largest set of thermodynamically flux consistent reactions
is defined by the cardinality optimization problem

maxz,.y  |zllp + [lwlly
s.t. Nz+ Bw =0,
z
< <
I<[ )l<u 3)

5 >0=Nly<0,vjel.. n,
5 <0=Nly>0,vel..n

where z € R” is an internal reaction flux vector, w € R* is an
external reaction flux vector and y € R” may be interpreted
as a vector proportional to the chemical potentials of each
metabolite (Fleming et al. 2012). As with flux consistency,
typically all reactions in a network do not simultaneously ad-
mit a nonzero thermodynamically consistent flux so the larg-
est set of reactions in a network that admit a
thermodynamically consistent flux is the amalgamation of a
set of thermodynamically flux consistent vectors. The last two
constraints in Problem (3) are a relaxation of the chemical
thermodynamic constraint  sign(z;) = fsign(N/-T y) since
zj=0 Nl-T y = 0. However, they are sufficient to identify a
thermodynamically flux consistent subnetwork because any
internal reaction with zero flux in all thermodynamically flux
consistent vectors is considered thermodynamically flux
inconsistent.

2.4 Cardinality optimization via a difference of
convex functions

Problems (i), (ii), (iii), (v), and (vi) are each an instance of car-
dinality optimization over a polyhedral convex set. However,
Problem (iv) requires cardinality optimization over a polyhe-
dral nonconvex set because the set of thermodynamically fea-
sible fluxes is nonconvex (Beard et al. 2004). Nevertheless, we
demonstrate that each of these problems can be approxi-
mately solved by reformulation into an optimization problem,
or a sequence of optimization problems, each involving a dif-
ference of convex functions (Le Thi et al. 2015), i.e.

min {(s) = ¢(s) — ¢(s) (4)

seR”

where ¢(s) : R” - R and ¢(s) : R” - R are lower semi-
continuous proper convex functions. As detailed in
Supplementary Section S1.2, the form of the approximation is
mainly determined by the choice of continuous function to ap-
proximate a step function. That is, depending on the choice of
approximate step function, ¢(s) and ¢(s) may be linear or
nonlinear. In our difference of convex function approach for
solving (4), an outer iteration linearizes ¢(s) to obtain a con-
vex sub-problem. When ¢ is also linear, each sub-problem is

Fleming et al.

a continuous linear optimization problem that may be solved
using many established solvers. To summarize, in our differ-
ence of convex function approach there are two approxima-
tions. The first approximation is of the zero norm to get a
difference of convex function program and the second ap-
proximation is lineariation of the second component of the
difference of convex function.

2.5 Application to human metabolic networks

The Recon3D publication (Brunk ez al. 2018) released a com-
prehensive, manually curated, genome-scale human metabolic
reconstruction (ID: Recon3.01) as well a derived Recon3D
model (ID: Recon3.01model) that satisfies the sufficient con-
ditions for application of flux balance analysis, i.e. all internal
reactions are stoichiometrically and flux consistent, while all
external reactions are flux consistent. The Recon3D recon-
struction encompasses 3297 open reading frames, 8399
metabolites, as well as 13 543 reactions distributed over nine
cellular compartments: cytoplasm, lysosome, nucleus, mito-
chondrion, mitochondrial intermembrane space, peroxisome,
extracellular space, Golgi apparatus, and endoplasmic reticu-
lum. During quality control of Recon3D, we extensively
tested our cardinality optimization algorithms as early draft
versions were an amalgamation of biochemical reactions from
multiple sources, which can lead to inconsistencies. The
Recon3D model (ID: Recon3.01model) consists of 5385
metabolites and 10 600 reactions, derived from the Recon3D
reconstruction. Besides Recon3D, a selection of other repre-
sentative published human metabolic networks [Recon1.0
(Duarte et al. 2007), Recon2.04 (Thiele et al. 2013),
Recon2.2 (Swainston et al. 2016), HMR2.0 (Mardinoglu
et al. 2014), and Human1.0 (Robinson et al. 2020)] were
used for numerical tests to evaluate the computational perfor-
mance of difference of convex function algorithms for the
aforementioned applications of cardinality optimization prob-
lems and to compare the consistency of different human meta-
bolic reconstructions and models evaluated with different
methods.

3 Results
3.1 Stoichiometric, flux, and thermodynamic flux
consistency

Table 1 gives the results of testing for stoichiometric consis-
tency, leak/siphon testing, flux consistency testing and ther-
modynamic flux consistency testing, computed using
cardinality optimization, for seven different genome-scale
human metabolic networks. A stoichiometrically consistent
metabolite is one that is exclusively involved in stoichiometri-
cally consistent reactions. A flux consistent metabolite is one
that is involved in at least one flux consistent reaction, and
likewise for thermodynamic flux consistency. The numbers of
stoichiometrically consistent reactions and metabolites are
compared with the heuristic assignment of internal and exter-
nal reactions, as well as with the results of checking the ele-
mental balance of each reaction, using chemical formulae.
Table 1 reveals that all internal reactions in Recon3Dmodel
are stoichiometrically consistent and flux consistent,
and furthermore all external reactions are flux consistent.
Recon3Dreconstruction is larger than Recon3Dmodel and
does contain a subset of heuristically internal reactions that
are either stoichiometrically inconsistent, flux inconsistent, or

both.
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Table 1. Comparison of human metabolic network properties.?

Properties Generic human metabolic networks

Identifier Recon1.0  Recon2.04model Recon2.2model HMR2.0 Recon3.01 Recon3.01model Human1.0

Citation Duarte et al. Thiele et al. Swainston et al. Mardinoglu et al.  Brunk et al. Brunk et al. Robinson et al.

(2007) (2013) (2016) (2014) (2018) (2018) (2020)

rank [N B] 2674 4666 4945 5396 8121 5739 8161

Reactions = Cols of 3742 7440 7785 8181 13 543 10 600 13 520
[N B]

Internal reactions = 3310 6738 7033 7666 11 646 8791 11795
Cols of N

Stoichiometrically 3302 6451 7032 7655 11 345 8791 10 944
consistent rxns.

Elementally bal- 3257 6231 6992 6993 10710 8416 8412
anced reactions

Omitted reactions 3 30 1 7 245 0 322

Stoich. and flux con- 2092 3646 5232 6779 8869 8791 7835
sistent rxns.

Stoich. not flux con- 1210 2805 1800 876 2476 0 3109
sistent rxns.

Stoich. and thermo 1884 2734 4498 5815 7546 7468 6782
flux consistent
rxns.

Stoich. not thermo. 1418 3717 2534 1840 3799 1323 4162
flux consistent
rxns.

Reactions exclusive 0 0 0 0 1245 0 5
to leaks

Reactions exclusive 0 0 0 0 3849 0 297
to siphons

External reactions = 432 702 752 515 1897 1809 1725
Cols of B

External flux consis- 342 563 680 488 1816 1809 1448
tent reactions

Metabolites = 2766 5063 5324 5546 8399 5835 8438
Rows of [N B]

Stoichiometrically 2764 5058 5317 5538 8380 5835 8408
consistent mets.

Elementally bal- 2265 3764 4465 3221 4651 3528 3026
anced mets.

Metabolites not sto- 2 5 7 8 19 0 30
ich. consistent

Omitted metabolites 0 4 0 0 15 0 14

Stoich. and flux con- 1567 2289 3225 4634 5816 5835 5533
sistent mets.

Stoich. not flux con- 1197 2769 2092 904 2564 0 2875
sistent mets.

Stoich. and thermo 1509 1958 2984 4274 5428 5433 5108
flux consistent
mets.

Stoich. not thermo 1255 3100 2333 1264 2952 402 3300
flux consistent
mets.

Leak metabolites 0 0 0 0 1322 0 8

Siphon metabolites 0 0 0 0 3807 0 338

External mets. = 2 1 7 8 3 0 16

Mets. exclusive
toB

? The properties of each network may be read vertically and compared with other networks horizontally. Consider the first genome-scale human metabolic
reconstruction, Recon1.0, consisting of 3742 reactions, involving 2766 metabolites. According only to heuristic assignment 432 columns of S correspond to
external reactions and 3310 columns of S correspond to internal reactions. Heuristic assignment tends to underestimate the actual number of external
reactions. Of the 3310 internal reactions, 3302 are stoichiometrically consistent, and the stoichiometric consistency of the remaining 8 reactions could not be
confirmed so are suspected to be stoichiometrically inconsistent, especially the 3 reactions that were omitted while sequentially testing for stoichiometric
consistency. Of the 3302 stoichiometrically consistent reactions only 3257 reactions are elementally balanced according to metabolite formulae pointing to the
need for an audit of the biochemical fidelity of the chemical formulae involved in the 5§ mismatched reactions. Of the 3302 stoichiometrically consistent
reactions, only 2092 were also flux consistent. Of 432 external reactions only 342 were also flux consistent. This subset is the part of the Recon1.0
reconstruction that can be used for prediction of mass balanced steady-state reaction rates, with no bounds on reaction rates. Tests for leaks and siphons,
using the full network composed of 2766 metabolites and 3742 reactions, reveals that mass is conserved with the reaction bounds provided with Recon1.0.
Here, the most important metric is the number of leak and siphon metabolites, since the corresponding cardinality for columns only shows the number of
reactions exclusively involved in leakage or siphon modes, respectively. For Recon1.0, relaxing the bounds on any of the reactions that are suspect
stoichiometrically inconsistent could result in leaks or siphons and unintentional violation of mass conservation in a flux balance model. Recon1.0 has two
external metabolites, which have nonzero stoichiometric coefficients only in columns corresponding to external reactions. Of the 3302, and 2764,
stoichiometrically consistent reactions, and metabolites, in Recon1.0, approximately 1884 reactions also admit a thermodynamically consistent nonzero flux,
which corresponds to 1509 metabolites, or approximately half of the network.

€20z Jaquiadaq |z U J8sn DN / uapleT yensIanun Ag L61692//0S7PEIG/6/6E/9101HE/SOBWIONUIOIG/WOD dNO"dlWapeoe//:Sdjy WOy pOPEO|UMOQ



As detailed in Supplementary Section S1.1.1, the stoichio-
metrically consistent subset of a reconstruction was identified
by a sequence of iterations, where each iteration minimized
the cardinality of a mass conservation relaxation vector
(x € R” in Problem 1) using a Difference of Convex function
Cardinality Optimization (DCCO) algorithm (Le Thi et al.
2015). A reaction is stoichiometrically consistent if no relaxa-
tion is required (x; = 0). However, in all except the final iter-
ation, a reaction is of undetermined stoichiometric
consistency if relaxation is required (x7 # 0). This is because a
reaction of undetermined stoichiometrically consistency may
become stoichiometrically consistent if another reaction of
undetermined stoichiometric consistency is omitted from the
network. After each iteration, among the reactions of undeter-
mined stoichiometric consistency, the subset of reactions that
were either elementally imbalanced according to the given me-
tabolite formulae, or the subset of reactions with the highest
number of nonzero stoichiometric coefficients, were omitted
and the mass conservation relaxation vector of minimial car-
dinality was computed again. This approach allows for com-
putation of a larger stoichiometrically consistent subset than
other published approaches (Supplementary Table S3), which
underestimate the largest stoichiometrically consistent subset.

Stoichiometric consistency is invariant with respect to lower
and upper bounds on reaction rates, while the results of test-
ing for leaks, siphons, flux consistency and thermodynamic
flux consistency are dependent on the lower and upper
bounds on reaction rates given for each metabolic network.
For example, there are no leaks or siphons in Reconl1.0
(Duarte et al. 2007), Recon2.04 (Thiele et al. 2013),
Recon2.2 (Swainston et al. 2016), HMon R2.0 (Mardinoglu
et al. 2014), or Recon3.01model (Brunk et al. 2018).
However, there are leaks and siphons in both Recon3.01
(Brunk et al. 2018) and Human1.0 (Robinson ez al. 2020).
The size of the human metabolic reconstruction, Recon3.01,
and the size of the human metabolic network, Human 1.0,
are almost the same. However, Recon3.01 contains 11 345
stoichiometrically consistent reactions, while Human1.0 con-
tains 10 944 stoichiometrically consistent reactions. Also,
Recon3.01 contains 8869 reactions that are both stoichiomet-
rically and flux consistent, while Human 1.0 contains 8412
such reactions. Also, Recon3.01 contains approximately
7546 reactions that are stoichiometrically, flux and thermo-
dynamically flux consistent, while Human 1.0 contains ap-
proximately 6782 such reactions. Recon3.01model is a model
for flux balance analysis that was derived from Recon3.01.
Accordingly, note that the 8791 internal reactions in
Recon3.01model are all stoichiometrically and flux consis-
tent, while all of the 1809 external reactions in
Recon3.01model are flux consistent.

3.2 Sparse flux balance analysis

3.2.1 Numerical performance

Sparse flux balance analysis (Supplementary Section $1.1.5)
involves the minimization of the number of nonzero fluxes,
subject to attainment of an optimal objective derived from a
flux balance analysis problem p* = max{c’v : Sv=0b,
I < v < u}. We compared the performance of sparse flux
balance analysis implemented by a Difference of Convex func-
tion Cardinality Optimisation (DCCO) algorithm (Le Thi
et al. 2015), with that of flux balance analysis (Orth et al.
2010) and absolute flux (one norm) minimization (Holzhiitter
2004), which acts as a linear (convex) approximation of the
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zero norm, by a one norm. In a DCCO algorithm, the zero
norm function may be approximated by variety of different
continuous, nonconvex functions that approximate a step
function. We performed DCCO with six continuous, noncon-
vex approximations to a step function (Supplementary Table
S1) and then compared the results (Supplementary Table S4).
DCCO with the best nonconvex approximation typically
yields a smaller set of predicted active reactions than sparse
optimization approximated by one-norm minimization. That
is, for sparse flux balance analysis, the best nonconvex ap-
proximation outperforms a linear (convex) approximation of
the zero norm.

Sparse flux balance analysis (Supplementary Problem S14)
implemented with a DCCO algorithm requires the solution to
a sequence of linear optimization problems. However, only
two or three linear optimizations are required, even for high
dimensional models, indicating the scalability of our DCCO
algorithm. Moreover, we heuristically verified whether or not
the set of predicted active reactions given by DCCO is mini-
mal. One by one, we removed a reaction in the set of pre-
dicted active reactions and tested if the optimal objective
value from flux balance analysis, could still be achieved. In 4
out of 6 models, the set of predicted active reactions by
DCCO cannot be reduced (cf. last column in Supplementary
Table S4).

3.2.2 Application to Recon3D

We illustrate the utility of sparse flux balance analysis with
some realistic scenarios that arise during the phase of iterative
refinement of the predictive capacity of a mass balance model
of metabolism. In order to mimic the requirement for energy,
for maintenance of cellular integrity, many flux balance mod-
els contain a cytoplasmic adenosine triphosphate (atp[c]) hy-
drolysis reaction where the products are adenosine
diphosphate (adp[c]) and orthophosphate (pi[c]). In
Recon3D, the full corresponding reaction formula is

atp[¢] + hoo — adplc] + pi[c] + h[¢]. (3)

In a flux balance model, a nongrowth associated energy main-
tenance requirement for synthesis of adenosine triphosphate
can be represented with a lower bound on reaction (5) or in-
clusion of this reaction within a composite biomass reaction,
when cellular growth is being modelled, to represent growth
associated energy requirements (Feist and Palsson 2010). In
order for either of these approaches to result in a constraint
on energy metabolism within the model, no stoichiometrically
balanced set of internal reactions that include reaction (5)
should admit isolated hydrolysis of ATP, given the reaction
bounds supplied with the model. If such a set exists, sparse
flux balance analysis can be used to find one such minimal
cardinality set.

When all external reactions are closed, i.e. when all exter-
nal reaction bounds are set to zero, then the only net flux ad-
missible is within a stoichiometrically balanced cycle, if and
only if, the bounds on each reaction in the stoichiometrically
balanced cycle simultaneously admit net flux in one direction
around the cycle. Net flux around a stoichiometrically bal-
anced cycle is thermodynamically infeasible (Fleming ez al.
2012), but steady-state mass balance constraints do not en-
force thermodynamic constraints. In lieu of such constraints,
the bounds on reactions can be set based on the biochemical
literature to eliminate net flux around a stoichiometrically
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balanced cycle. In Recon3D, with all external reactions
blocked (bounds are set to zero), maximizing reaction (5)
while minimizing the cardinality of all internal reactions, us-
ing sparse flux balance analysis was used to find one such
minimal cycle. The optimal solution involves reaction (5) in a
set of nine stoichiometrically balanced reactions, with bounds
that admit an arbitrary amount of isolated ATP hydrolysis
(Supplementary Table S5). By further constraining the bounds
to convert one reversible reaction in each such cycle to an irre-
versible reaction, isolated ATP hydrolysis can be eliminated,
e.g. though there are important exceptions, a reaction, which
hydrolyses ATP, does not generally operate in a reverse direc-
tion at biochemically realistic metabolite concentrations. This
same approach can also be applied to test for the existence of
a set of reactions, forming a minimal stoichiometrically bal-
anced cycle, that admits nonzero flux through the ATP syn-
thase reaction in the mitochondrial membrane (data not
shown). Recon3Dmodel contains no set of reactions, with
bounds that admit an arbitrary amount of isolated ATP
hydrolysis.

3.2.3 Relaxed flux balance analysis

To illustrate the utility of relaxed flux balance analysis, which
uses the DCCO algorithm, we took Recon3.01model, omitted
all but one biomass reaction (VMH: ‘biomass_reaction’), set a
positive lower bound on the biomass reaction to require the
synthesis of biomass, and close all of the external reactions.
The resulting model is therefore infeasible, i.e. no steady-state
flux vector satisfies the steady-state constraints and the bound
constraints required by the flux balance analysis, irrespective
of the objective coefficients. By solving a relaxed flux balance
analysis (Problem 2), we identified a minimal set of external
reaction bounds that are required to be relaxed in order to
make biomass synthesis feasible. Of the 1809 external reac-
tions, a minimal solution returned was to relax 24 lower
bounds and 2 upper bounds more than the feasibility toler-
ance (1e — 6) for a double precision optimization solver to en-
able biomass production (cf Supplementary Table S6). This
illustrated both the utility of relaxed flux balance analysis and
the dominance that biomass production has over a generic
metabolic network.

4 Discussion

Many constraint-based reconstruction and modelling prob-
lems can be cast as cardinality optimization problems, where
the objective is to minimize, or maximize, the number of non-
zeros in a vector constrained to lie within a feasible set.
Typically this feasible set is represents physicochemical or bio-
chemical constraints on the set of feasible vectors. Typically
this feasible set is polyhedral convex as it is constrained by a
set of linear equality and inequality constraints. Cardinality
optimization subject to linear equality constraints, linear
inequality constraints, or both, is a nondeterministic
polynomial-time hard problem in general (Amaldi and Kann
1998). It is conjectured, and widely believed in the computa-
tional complexity community, that there are no polynomial-
time algorithms for such problems. As genome-scale network
reconstructions continue to grow in size, approximation strat-
egies are necessary to deal with the high dimensional cardinal-
ity optimization problems that result.

Herein, we introduce a difference of convex function ap-
proach to a selection of important cardinality optimization

problems that arise in constraint-based modelling of biochem-
ical networks. In particular, we demonstrate the quality of the
cardinality approximation, the computational efficiency and
the biochemical utility of this approach. Our numerical results
confirm the theoretical basis for difference of convex function
approaches to sparse optimization enunciated by Le Thi ez al.
(2015) and broaden the empirical evidence for the quality and
computational efficiency of difference of convex function
approximations to cardinality optimization problems.

A variety of different functions can be used to approximate
the number of nonzeros of a vector (zero norm of a vector),
which is equivalent to a sum of step functions, using a differ-
ence of convex function approach to cardinality optimization.
We implemented a Difference of Convex Cardinality
Optimization (DCCO) algorithm, which implemented a range
of different approximate step functions. Out of six different
approximations tested, overall, we find that a capped-/; ap-
proximate step function, Y,,(t) = min{1, 0|t|}, performs the
best for the biochemical network applications considered. An
added advantage of using the capped-¢; approximation is
that the convex problem that needs to be solved at each itera-
tion is a linear problem. Therefore capped-¢; DCCO requires
the solution to a sequence of linear optimization problems,
where substantial speed up can be achieved by warm starting
the second and subsequent linear optimizations with the
optimal solution of the previous optimization. Moreover,
capped-¢; DCCO offers better convergence properties than
with the other approximations.

The quality of the capped-¢; DCCO approximation is illus-
trated by our demonstration that it matches the optimal cardi-
nality solution obtained with a mixed integer linear
programming approach, when maximizing the number of
conserved metabolites in a biochemical network. While MILP
is consistently faster for smaller networks, Capped-¢; DCCO
is consistently faster for the largest models tested, that is the
female and male whole body metabolic models (Thiele ez al.
2020). In the same scenario, a linear approximation is faster,
but the result is a local optimum, with cardinality below the
maximum cardinality obtained with either MILP or one itera-
tion of the capped-¢; DCCO approach. As for MILP, differ-
ence of convex optimization algorithms can be used to
enumerate (possibly suboptimal) solutions (Hoai An et al.
1998), but our implementation currently does not encompass
that functionality.

We demonstrate that a difference of convex function ap-
proach to cardinality optimization is accurate and efficient for
a variety of cardinality optimization problems arising in
constraint-based modelling of genome-scale biochemical net-
works. In particular, we demonstrate that our approach is ef-
ficient for high dimensional biochemical networks confirming
the broad numerical utility of our approach. We also demon-
strate the biochemical utility of a difference of convex func-
tion approach to cardinality optimization by illustrative
examples that arose during the process of extracting a model,
suitable for flux balance analysis (Orth et al. 2010), from the
comprehensive human metabolic reconstruction, Recon3D
(Brunk et al. 2018). A model is suitable for flux balance
analysis when all internal reactions are stoichiometrically and
flux consistent, and all external reactions are flux consistent.

Due to its comprehensiveness with respect to metabolism,
the Recon3D reconstruction exposes gaps in the biochemical
literature. It contains content that is incompletely specified
biochemically, often due to incomplete knowledge on the
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Figure 1. Comparison of stoichiometric, flux and thermodynamic flux consistency of human metabolic networks. A schematic stoichiometric matrix (top
left) is provided for conceptual illustration. The vertical and horizontal dimensions are the number of metabolites and reactions in the network,
respectively. Reactions are divided (dashed vertical line) into those heuristically internal (left) and external (right). Metabolites and reactions are split into
those stoichiometric inconsistent (a) and stoichiometrically consistent (b). Of those stoichiometrically consistent, the subset if internal reactions that are
also flux consistent (c), or external reactions that are flux consistent (d), using the bounds provided with the network are indicated. Of those
stoichiometrically and flux consistent, using the bounds provided with the network, the approximation to the subset if internal reactions that are also
thermodynamically flux consistent in both directions (e), only the forward direction (f), or only the reverse direction (g) are indicated. Of the flux consistent
external reactions the approximation to the subset that are thermodynamically flux consistent (h) are indicated. The size of the stoichiometric matrix
approximately doubles with each major Recon iteration, from 1.0 to 2.0 and from 2.0 to 3.0, while the size of Recon3.0 and Human1.0 are almost the
same. Furthermore, in comparison with Human1.0, Recon3.01 contains more reactions that are stoichiometrically consistent, more reactions that are also
flux consistent, and more reactions that are also thermodynamically flux consistent (cf Table 1 for details). Typically, only a few metabolites are
exclusively involved in stoichiometrically inconsistent reactions, so the number of stoichiometrically consistent metabolites is slightly less than the
number of metabolites in a network (a). Depending on the model, there are varying proportions of heuristically internal reactions that are stoichiometrically
inconsistent (b, left of dashed line). In all networks, heuristically external reactions are stoichiometrically inconsistent (b, right of dashed line). Using the
reaction bounds accompanying each published network, the stoichiometrically and flux consistent subset (c) and the external flux consistent subset (d) is
always a strict subset of each stoichiometric matrix, except for Recon3.01model. That is, every internal reaction in Recon3.0Tmodel is stoichiometrically
and flux consistent, while every external reaction is flux consistent. However, for all networks, only a subset could be confirmed to also satisfy

thermodynamic flux consistency.

molecular mechanisms of certain biochemical reactions, e.g.
incompletely specified reaction stoichiometry that is inconsis-
tent with the remaining stoichiometrically consistent reac-
tions. Stoichiometrically inconsistent reactions can be
inadvertently present in draft genome-scale models, so it is im-
portant to them when extracting a model for flux balance
analysis. Our new sequential cardinality optimization
approach to finding the largest stoichiomerically consistent
subset of a given network demonstrates that established
approaches to  detecting  stoichiometric  consistency
(Gevorgyan et al. 2008), which are in widespread use in the
community due to their incorporation into metabolic model
testing portals (Lieven et al. 2020), underestimate the size of
the largest stoichiomerically consistent subset of human me-
tabolism. Unfortunately, this has led to erroneous conclusions
regarding quality, based on a comparison of stoichiometric

consistency in different human metabolic networks (Robinson
et al. 2020).

This approach assumes that the largest set of stoichiometri-
cally consistent reactions in a reconstruction is also consistent
with biochemistry. This is more likely to be an appropriate as-
sumption for a highly interconnected biochemical network. It
is conceivable that this assumption may not be an appropriate
if part of a network is poorly connected, e.g. a large set of in-
ternally consistent synthesis reactions may be inconsistent
with a smaller set of consistent synthesis and degradation
reactions, when the former is only connected to the rest of the
network by synthesis precursors.

Recon3D contains reactions that do not admit a nonzero
steady-state flux. Such flux inconsistencies are consequences
of incomplete knowledge resulting in network gaps (Thiele
and Palsson 2010). Associated reactions, which are not
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completely connected to the remainder of the metabolic net-
work, should still be reported in the reconstruction as the
reactions have generally genomic evidence, physiological evi-
dence, or both. They represent a valuable starting point for
algorithms aiming at filling such gaps (Thiele et al. 2014) and
which thus generate novel hypotheses about missing biochem-
ical knowledge (Reed et al. 2006, Thiele et al. 2014).
Moreover, this approach also enables dynamic modelling
approaches that consider the time varying function of bio-
chemical pathways (Hoops et al. 2006).

Due to the high dimensionality and disparate sources of
data gathered in Recon3D, the process of extracting the larg-
est subset of the reconstruction that is suitable for a flux bal-
ance analysis provides a stiff challenge for applications of
cardinality optimization in practice. Testing for stoichiometric
consistency, testing for leakage or siphon of metabolites, test-
ing for net flux consistency, testing for thermodynamic flux
consistency, computing a minimal number of reactions re-
quired to be active to fulfil a certain biochemical function,
and finding a minimal number of constraints to relax to make
an infeasible model feasible are all cardinality optimization
problems. In each case, we illustrate that a difference of con-
vex function approach to each optimization problem does en-
able each problem to be efficiently solved for a variety of
human metabolic networks.

Comparing the stoichiometric, flux and thermodynamic
flux consistency of various human metabolic networks
(Fig. 1), several trends are evident. Clearly, over time, the
comprehensiveness of human metabolic reconstructions has
grown steadily, with the stoichiometric matrices approxi-
mately doubling in size with each release of a major Recon it-
eration, reflecting the results of a continual community effort.
While the number of reactions that are stoichiometrically con-
sistent does rise monotonically with each release of a human
metabolic network, the fraction of reactions, and correspond-
ing metabolites, that are stoichiometrically and flux consis-
tent, at each model iteration does not monotonically increase.
Moreover, the number of stoichiometrically, flux and thermo-
dynamically flux consistent reactions does not montonically
increase with each release of a human metabolic network. A
larger reconstruction can have a lower fraction of consistent
reactions in a derived model due to elimination of stoichio-
metrically, flux or thermodynamically flux inconsistent reac-
tions. Due to the nonconvexity of the thermodynamically
feasible steady state solution space (Beard et al. 2004), the
predictions we have obtained of the largest thermodynami-
cally flux consistent subset should be considered an
underestimate.

A reconstruction may specify a naming scheme for heuristic
categorization of reactions into internal and external sets (cf.
Tablel). However cardinality optimization cannot confirm
that some internal reactions are stoichiometrically consistent,
warranting manual curation of these reactions with suspect
misspecified stoichiometry. Similarly, a reconstruction may
provide elemental formulae for each metabolites and a check
of elemental balance might indicate that each reaction is ele-
mentally balanced however cardinality optimization cannot
confirm that some supposedly elementally balanced reactions
are stoichiometrically consistent, warranting a check for mis-
specified stoichiometry or misspecified elemental formulae. A
reconstruction may have stoichiometrically inconsistent reac-
tions, yet the corresponding models may not have any leaking
metabolites due to bounds set on the model to avoid leakage,

e.g. Recon1.0. Ultimately, to avoid the possibility of occult
metabolites leaks or siphons due to relaxation of bounds prior
to a steady-state flux prediction, a flux balance analysis model
should have no stoichiometrically inconsistent internal reac-
tions and every reaction should be flux consistent. This is the
case with Recon3Dmodel, which establishes a quality bench-
mark for any future flux balance model that expands beyond
its current content.

5 Conclusions

Many constraint-based modelling problems involve optimiza-
tion of the number of nonzeros in a vector subject to polyhe-
dral convex constraints. However, no polynomial time
algorithms exist for solving such cardinality optimization
problems exactly. We successfully approximated a selection
of high dimensional cardinality optimization problems in
constraint-based modelling by solving an approximate prob-
lem involving a difference of convex functions (Le Thi ez al.
2015). A set of corresponding difference of convex function
algorithms were demonstrably efficient at solving biochemical
cardinality optimization problems, including tests for stoi-
chiometric consistency, flux consistency and thermodynamic
flux consistency, as well as finding a minimal number of con-
straints to relax to render an infeasible flux balance problem
feasible and computing metabolic pathways with minimal
support. Together with our dissemination of the correspond-
ing open source software and instructional material, we envis-
age that our results will theoretically and practically enable
the generation of constraint-based models satisfying mathe-
matical criteria that eliminate important modelling artefacts,
which might arise with less disciplined approaches to
constraint-based modelling.
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