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Background: Linezolid in combination with rifampicin has been used in treatment of infective endocarditis es
pecially for patients infected with staphylococci. 

Objectives: Because rifampicin has been reported to reduce the plasma concentration of linezolid, the present 
study aimed to characterize the population pharmacokinetics of linezolid for the purpose of quantifying an ef
fect of rifampicin cotreatment. In addition, the possibility of compensation by dosage adjustments was 
evaluated. 

Patients and methods: Pharmacokinetic measurements were performed in 62 patients treated with linezolid 
for left-sided infective endocarditis in the Partial Oral Endocarditis Treatment (POET) trial. Fifteen patients 
were cotreated with rifampicin. A total of 437 linezolid plasma concentrations were obtained. The pharmaco
kinetic data were adequately described by a one-compartment model with first-order absorption and first-order 
elimination. 

Results: We demonstrated a substantial increase of linezolid clearance by 150% (95% CI: 78%–251%), when 
combined with rifampicin. The final model was evaluated by goodness-of-fit plots showing an acceptable fit, 
and a visual predictive check validated the model. Model-based dosing simulations showed that rifampicin co
treatment decreased the PTA of linezolid from 94.3% to 34.9% and from 52.7% to 3.5% for MICs of 2 mg/L and 
4 mg/L, respectively. 

Conclusions: A substantial interaction between linezolid and rifampicin was detected in patients with infective 
endocarditis, and the interaction was stronger than previously reported. Model-based simulations showed that 
increasing the linezolid dose might compensate without increasing the risk of adverse effects to the same 
degree.

© The Author(s) 2023. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. All rights reserved. For 
permissions, please e-mail: journals.permissions@oup.com
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Introduction
Infective endocarditis (IE) carries high mortality rates even with 
treatment according to therapeutic guidelines.1 The randomized 
Partial Oral Endocarditis Treatment (POET) trial demonstrated 
that oral antibiotic step-down treatment was non-inferior to 
traditional full-length IV therapy for the treatment of IE after 
6 months.2 To ensure optimal efficacy and safety of oral treat
ments of IE, evaluation and development of different antibiotic 
combinations are needed. Linezolid is regarded as a possible 
treatment option for IE caused by linezolid-sensitive pathogens.

Linezolid is an oxazolidinone that inhibits protein synthesis by 
binding to the bacterial 23S rRNA of the 50S subunit.3 It is useful 
in the treatment of infections by a wide spectrum of 
Gram-positive pathogens including MRSA and VRE.4 Both the ratio 
of AUC to MIC and time above MIC have been reported as predic
tors for efficacy and outcome.5,6 The magnitude of AUC and 
treatment duration has also been related to linezolid-induced 
thrombocytopenia, which is a common adverse effect.7–10

Linezolid is rapidly absorbed from the gastrointestinal tract and 
has a bioavailability of ∼100%.11 The volume of distribution is 
30–50 L and 31% is bound to proteins in plasma.12 Linezolid is 
metabolized in the liver through enzymatic and non-enzymatic 
processes to two major inactive metabolites, and approximately 
30% of a dose is excreted unchanged in the urine.13

Oral antibiotic treatment regimens were developed as part of 
the POET trial.2 All regimens were designed as combinations of 
two different antibiotics to ensure sufficient antibacterial activity 
in cases of inadequate individual absorption or increased elimin
ation. In addition, antibiotic combinations were preferred due to 
the biofilm characteristics of IE such as increased tolerance to 
host responses and antibiotics.14 As a safety parameter, patients 
in the POET trial had plasma concentrations determined for each 
antibiotic. One recommended oral regimen was linezolid com
bined with rifampicin.2 Although previous studies have indicated 
that coadministration with rifampicin reduces the exposure of 
linezolid,7,15–17 which may increase the risk of treatment failure 
or antibiotic resistance, no study has quantified the effect using 
population pharmacokinetic (PK) modelling. Thus, the aims of 
this study were to (i) describe the population PK of linezolid in pa
tients with IE in order to (ii) identify and quantify a drug–drug 
interaction between rifampicin and linezolid and (iii) explore the 
possibility of dosing adjustments to compensate for the effect 
of rifampicin.

Patients and methods
Ethics
The POET trial was approved by the regional scientific ethics committee 
for the Capital Region of Denmark (H-R-2011-40) and by the Danish 
Data Protection Agency (30-0598) and was performed in accordance 
with the principles of the Declaration of Helsinki. All participants provided 
written informed consent.

Patients and study design
The protocol and results from the POET trial have been published 
elsewhere.2,18 The present data were partly included in a previous 
paper analysing pharmacokinetic/pharmacodynamic (PK/PD) target 

attainment for the oral antibiotics used in the POET trial.19 However, no 
previous analyses of interactions have been performed.

In short, eligible subjects were adult patients with left-sided IE and 
positive blood cultures for either Staphylococcus aureus, coagulase- 
negative staphylococci, Streptococcus spp. or Enterococcus faecalis. At 
the time of randomization, the patients had received at least 10 days 
of IV antibiotic treatment with a satisfactory response. The primary out
come was a composite of all-cause mortality, unplanned cardiac surgery, 
embolic events or relapse of bacteraemia with the primary pathogen.

Orally treated patients received two oral antibiotics. Patients in the IV group 
received at least one antibiotic IV. Some patients were changed to alternative 
antibiotic drugs at randomization, and others were maintained on the same 
antibiotics. Thus, the study population for linezolid at Day 1 comprised both pa
tients who were already receiving linezolid and patients who received the first 
dose of linezolid. At Day 5, the patients cotreated with rifampicin and linezolid 
had received at least 4 days of treatment with both antibiotics.

In the present study, all patients from the POET trial who were treated 
with linezolid orally or IV were screened for inclusion. Demographic data, 
clinical characteristics and outcome of patients were collected. CLCR was 
calculated using the CKD-EPI formula (based on age, gender and plasma 
creatinine concentration),20 and fat free mass (FFM) was estimated using 
gender, body weight (BW) and BMI.21

Drug administration and PK sampling
All eligible patients received 600 mg linezolid q12h orally or by IV infusion. 
Patients who were cotreated with rifampicin received 600 mg rifampicin 
q12h orally or IV. Blood samples were obtained at Day 1 and Day 5 after 
randomization for the orally treated group, and at Day 1 for the IV treated 
group. For each patient, up to five blood samples were collected approxi
mately 0.5, 1, 2, 4 and 6 h after administration. Samples were analysed 
by HPLC using Agilent 1290 Infinity (Agilent Technologies, Santa Clara, 
CA, USA) providing the total concentration in plasma. The plasma samples 
were analysed at an accredited hospital laboratory at the Department of 
Clinical Biochemistry at Aarhus University Hospital, Denmark (DS/EN/ISO/ 
IEC 15189), by existing methods validated according to standard labora
tory procedures, essentially as described in a previous publication.22

Patients with extreme (more than five SDs from the mean of the re
maining concentrations) or unrealistic concentrations (e.g. a concentra
tion rise not possible with the administered dose) presumably related 
to measurement errors were excluded. Patients with extreme fluctua
tions presumably related to measurement or sampling errors (e.g. ex
change of sampling times) were excluded (criteria and excluded data 
series are provided in Supplementary Material S1 (available as 
Supplementary data at JAC Online). All exclusions were performed before 
any further analysis to avoid bias.

Population PK analysis
The population PK analysis was carried out in Monolix (Version 2023R1, 
Lixoft, Antony, France) using the Stochastic Approximation Expectation- 
Maximization algorithm. The graphic processing of the Monolix output was 
partly performed with GraphPad Prism 9 (Version 9.0.0, GraphPad Software 
Inc., San Diego, CA, USA).

In the structural model building we visually inspected the semiloga
rithmic concentration–time plots and evaluated PK models with one or 
two compartments, first-order absorption and first-order elimination. 
Inter-individual variability (IIV) and inter-occasional variability (IOV) 
was modelled using a log-normal distribution for each parameter 
(Supplementary Methods), except for oral bioavailability, which was mod
elled with a logit-normal distribution to constrain it between 0 and 1.

To describe the absorption phase, we modelled the absorption with
out lag time, with lag time and with absorption transit compartments.
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The residual unexplained variability was modelled with additive, pro
portional and combined additive and proportional error models 
(Supplementary Methods).

Due to the previously described heterogeneity in terms of treatment 
onset and prior treatment duration as well as no blood samples obtained 
at 0 h (the time of dose administration), we compared models with and 
without estimation of the initial plasma concentrations (the pre-dose 
plasma concentrations at Day 1).

The structural models were evaluated in terms of the objective function 
value (OFV), goodness-of fit (GOF) plots, and the accuracy and reliability of 
the estimated parameters. OFV was defined as −2 × log likelihood value.

The model code used for the final structural model is provided in 
Supplementary Material S2.

Covariate model
Based on correlation analyses and existing literature we selected BW, 
FFM, CLCR and coadministration of rifampicin as candidates for PK covari
ates.8–10,16,23–31 BW, FFM and CLCR were normalized to 70, 60 and 
120 mL/min respectively and introduced as power functions. For BW 
and FFM, the allometric exponents were fixed to 1.0 for V and 0.75 for 
CL. Rifampicin cotreatment was defined as a dichotomous variable RIF 
and introduced as a log-transformed factor (Supplementary Methods). 
BW, FFM, CLCR and RIF were evaluated as covariates for each of the PK 
parameters in the final model. The covariate model was built using step
wise forward inclusion and backwards elimination. Covariates were 
added during forward inclusion if they significantly improved the OFV 
(P < 0.05). Covariates were removed during backwards elimination if their 
removal did not significantly increase the OFV (P < 0.01).

Finally, we retested whether changing the number of compartments or 
changing the absorption model improved the final model with covariates.

Model evaluation
GOF plots were created to evaluate the adequacy of the final model. The 
observed concentrations were plotted against the population predictions 
and individual predictions in two separate plots. Individual weighted re
siduals were plotted against the individual predictions and time after 
last dose, respectively.

A visual predictive check (VPC) was conducted by simulating the final 
model 500 times. In the simulations, we did not sample initial concentrations 
because they are not stochastic parameters but rather model estimates of 
actual concentrations that were not measured in the study. Thus, we treated 
the estimated initial concentration obtained from the final model as a fixed 
covariate for each patient in each simulation. We produced six separate plots 
stratifying for rifampicin cotreatment, route of administration and examin
ation day. In each plot, the 10th, 50th and 90th percentiles of observed 
data in each bin were shown with 90% prediction intervals from simulations.

Model-based simulations for dosage adjustments
To investigate the effect of dosage adjustments in patients cotreated 
with rifampicin, we performed a simulation of the final model in Simulx 
(Version 2023R1, Lixoft). First, PK parameters were sampled for 1000 pa
tients without coadministration of rifampicin. In addition, PK parameters 
were sampled for 4000 patients cotreated with rifampicin organized into 
four groups, each comprising 1000 patients undergoing treatment with 
distinct dosing regimens: 600 mg q12h, 900 mg q12h, 1200 mg q12h 
and 1500 mg q12h. For all patients, we assumed a standard BW of 
70 kg and initial concentrations of 0. Second, we simulated the model 
and computed individual estimates of AUC12, Cmax, and Cmin at Day 
5. Third, we estimated the PTA and risk of haematological adverse effects 
by defining the target of efficacy as AUC12/MIC ≥ 50 and the threshold for 
increased risk of haematological toxicity as Cmin ≥ 7.32 The PTAs were cal
culated for MIC values of 4 mg/L corresponding to the EUCAST breakpoint 

of enterococci and staphylococci,33 and 2 mg/L corresponding to the 
breakpoint for viridans streptococci.

Results
Patient characteristics
Seventy-one linezolid-treated patients from the POET study were 
identified. Two patients were excluded due to missing data, two 
patients were excluded due to extreme and unrealistic concen
tration measurements, and five patients were excluded due to 
extreme fluctuations (Supplementary Material S1 and 
Figure S1). Thus, 62 patients were included in the present study. 
The demographics and clinical characteristics of the patients are 
summarized in Table 1. Fifty-three patients received linezolid or
ally and nine patients IV. Fifteen patients were cotreated with ri
fampicin. None of the rifampicin-cotreated patients reached an 
endpoint in the POET trial, whereas an endpoint occurred in six 
(13%) patients in the group without rifampicin cotreatment.

Population PK model development
A total of 437 plasma concentrations from 62 patients were in
cluded for the population PK modelling. Semilogarithmic concentra
tion–time plots showed a monophasic concentration decline, and a 
one-compartment model with first-order absorption and first-order 
elimination adequately described the data. Absorption lag time or 
absorption transit compartments did not improve the fit. The model 
was parameterized in terms of absorption rate coefficient (Ka), vol
ume of distribution (V ) and clearance (CL). All estimates of oral bio
availability were above 97% (except for one) and inclusion did not 
improve the model. Therefore, it was fixed to 100% as reported by 
the literature.11 We included IOV of Ka and omitted IIV for this par
ameter, because the model could not estimate both. Estimation of 
the initial plasma concentrations was included in the model, and 
Figure S2 shows the distribution of the individual model estimates. 
The residual variability was best described by a combined additive 
and proportional error model.

In the forward inclusion process, rifampicin cotreatment and BW 
were selected for CL, and BW was selected for V. CL and V were 
allometrically scaled using BW (ΔOFV = −19.49) instead of FFM 
(ΔOFV = −18.88) because the drop in OFV was larger. Adding rifam
picin cotreatment to the model as a covariate for CL caused a de
crease in the OFV of 19.06 (P < 0.0001) and a reduction in the IIV of 
CL from 77.3% to 55.6%. Including rifampicin cotreatment as a cov
ariate for V did not significantly improve the model (ΔOFV = −0.05, 
P = 0.82). Further, inclusion of CLCR as a covariate for CL did not im
prove the OFV. In the backwards elimination process, all the included 
covariates were retained in the final model (Table 2).

The effect of rifampicin cotreatment on CL of linezolid was es
timated to 2.50 (95% CI: 1.78–3.51) corresponding to an increase 
by 150% (95% CI: 78%–251%). The population estimate of CL for 
a standard BW of 70 kg was 2.81 L/h (95% CI: 2.33–3.29) for pa
tients without rifampicin cotreatment and 7.02 L/h (95% CI: 
5.00–9.86) for patients with rifampicin cotreatment.

Model evaluation
The population PK models were evaluated according to standard 
practices.34 GOF plots for the final model are provided in Figure 1. 
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They demonstrated an acceptable fit with no visible systematic 
trends. The performed VPC is presented in Figure 2. A small 
underestimation of linezolid plasma concentrations by the PK 

model in orally treated patients at Day 1 (Figure 2a) was ob
served. This observation was not present for orally treated pa
tients at Day 5 (Figure 2b).

Table 1. Demographic and clinical data of the study population

Without  
coadministration  

of rifampicin

With  
coadministration  

of rifampicin P valuea

Total patients, N 47 15
Male, n (%) 37 (78.7) 14 (93.3)
Female, n (%) 10 (21.3) 1 (6.7)
Pathogen, n (%) Staphylococcus spp. 12 (25.5) 6 (40.0)

Streptococcus spp. 13 (27.7) 9 (60.0)
Enterococcus spp. 22 (46.8) 0 (0)

Administration route of linezolid, n (%) p.o. 39 (83.0) 14 (93.3)
IV 8 (17.0) 1 (6.7)

Administration route of rifampicin, n (%) p.o. — 14 (93.3)
IV — 1 (6.7)

Coadministration of other antibiotic, n (%) Amoxicillin 17 (36.2) —
Moxifloxacin 14 (29.8) —
Fucidic acid 5 (10.6) —
Ampicillin 5 (10.6) —
Penicillin 2 (4.3) —
Cefuroxime 2 (4.3) —
Meropenem 1 (2.1) —
Vancomycin 1 (2.1) —

Characteristic: median (IQR) Age (years) 71.0 (64.5–76.5) 71.0 (50.5–75.5) 0.27
Body weight (kg) 76.0 (70.5–91.5) 78.0 (73.5–99.0) 0.42
BMI (kg/m2) 25.6 (23.9–28.9) 24.9 (24.2–31.7) 0.96
FFM (kg) 58.9 (52.5–65.7) 60.9 (58.1–69.5) 0.33
CLCR (mL/min) 65.7 (51.2–87.2) 69.3 (55.3–99.4) 0.34

FFM, fat free mass; p.o., per os (orally). 
aP values were calculated with Mann–Whitney U test.

Table 2. Estimated population pharmacokinetic parameters for linezolid

Parameter Estimate %RSE

Population mean V (L) 30.4 5.9
CL (L/h) 2.81 8.7
Ka (h−1) 2.22 22.8

F 1 (fixed) —
RIF on CL (factor) 2.50 (95% CI: 1.78–3.51)a

BW on V (power) 1 (fixed) —
BW on CL (power) 0.75 (fixed) —

Inter-individual variability (%CV) ω2
V 32.0 14.8

ω2
CL 50.2 15.3

Inter-occasional variability (%CV) κ2
Ka 242.6 14.6

Residual error Additive error (mg/L) 1.56 13.0
Proportional error (%) 9.06 14.6

BW, body weight; CL, clearance; F, bioavailability ; Ka, absorption rate coefficient; RIF, rifampicin cotreatment; V, volume of distribution; %CV, coefficient 
of variation in percentage; %RSE, relative standard error in percentage; ω2, variance of the inter-individual random effects; κ2, variance of the inter- 
occasional random effects. 
aFor rifampicin cotreatment the CI is displayed instead of %RSE for interpretability, because the effect was estimated in log-space.
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Model-based simulations for dosage adjustments
The simulation results are shown in Table 3. The median of the 
simulated AUC12 at Day 5 was 206 mg h/L (IQR: 151–283) with 
the standard dosing regimen for the patients without cotreat
ment of rifampicin. Using a target of AUC12/MIC ≥ 50, the esti
mated PTAs were 52.7% and 94.3% for MIC values of 4 mg/L 
and 2 mg/L, respectively. The probability of reaching the reported 
threshold for increased risk of haematological adverse effects 
was 67.5%.

For the rifampicin-cotreated patients, the median of the simu
lated AUC12 at Day 5 was 83 mg h/L (IQR: 60–114) with the 
standard dosing regimen, and the PTAs were 3.5% and 34.9% 
for MIC values of 4 mg/L and 2 mg/L, respectively. The PTAs 
were increased to 52.7% and 94.3% when a dose of 1500 mg 
q12h was simulated. Correspondingly, the probability of reaching 
the reported threshold for toxicity risk increased from 9.7% to 
34.5%.

Discussion
In the present study we evaluated the population PK of linezolid 
and the effect of rifampicin cotreatment in patients included in 
the POET trial. To our knowledge, this study is the first to demon
strate the effect of rifampicin cotreatment on the clinical 

population PK of linezolid, and no other study has reported a simi
lar increase (150%; 95% CI: 78%–251%) of linezolid CL. However, 
other studies have found evidence of a drug–drug interaction 
between rifampicin and linezolid. A study of eight healthy indivi
duals showed that rifampicin reduced the serum concentrations 
of linezolid by 35% 12 h after a single dose.15 In a crossover study 
of 16 healthy individuals, coadministration of rifampicin reduced 
the AUCτ and Cmax of linezolid by 32% and 21%, respectively.16

Further, a retrospective study of 45 patients showed that linezolid 
trough concentrations and AUC24 were significantly smaller for 
patients cotreated with rifampicin,7 and a prospective clinical 
study of 10 patients found that rifampicin reduced the trough 
concentration of linezolid by 65%.17 The studies used different 
doses of rifampicin. In our study, the patients received doses of 
600 mg rifampicin q12h for multiple days, which is more than 
previously evaluated.15–17

Different mechanisms have been suggested to explain the 
drug–drug interaction. Rifampicin is known as a strong inducer 
of several cytochrome P450 enzymes (CYPs) and enhances the 
metabolism of several drugs.35 However, an animal study indi
cated that rifampicin reduced linezolid concentrations independ
ently of hepatic microsomal enzymes,36 and linezolid is not 
known as a major substrate of common CYPs.37 However, 
CYP3A5 polymorphisms have been shown to alter the exposure 
of linezolid,38 and a recent study found CYP2J2 and CYP4F2 to 

Figure 1. Goodness-of-fit plots of the final model. Observed concentrations are plotted against population predictions (a) and individual predictions 
(b). Individual weighted residuals are plotted against time after last dose (c) and individual predictions (d). The black dots represent data points from 
Day 1, while the remaining dots belong to data points from Day 5. The solid lines represent lines of identity. The dashed grey lines are smoothing lines). 
This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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be the main enzymes responsible for linezolid hepatic metabol
ism.39 Rifampicin is also able to cause drug–drug interactions 
by inducing P-glycoprotein (P-gp), a membrane protein that 
pumps foreign substances out of cells. In the gut, P-gp is highly 

expressed and may inhibit the absorption of linezolid by increas
ing drug transport back to the intestinal lumen. However, to our 
knowledge, linezolid has not been reported as a major substrate 
for P-gp, and one animal study found no changes in intestinal 

Figure 2. Visual predictive check (VPC) of the final model. The 10th, 50th and 90th percentiles of the observed data are displayed together with the 
90% prediction intervals (shaded areas). The dashed lines represent the bin limits. The observed percentiles lying outside the prediction intervals are 
marked with circles. Note that only one patient cotreated with rifampicin was in the IV group. The observed concentration for this patient is plotted 
with the prediction interval of the median. PO, per os (oral). This figure appears in colour in the online version of JAC and in black and white in the print 
version of JAC.

Table 3. Monte Carlo simulations of alternative dosing regimens

No cotreatment With cotreatment of rifampicin

Dosing regimen 600 mg 
q12h

600 mg 
q12h

900 mg 
q12h

1200 mg 
q12h

1500 mg 
q12h

AUC12 (mg h/L) 206 83 124 165 207
Median (IQR) (151–283) (60–114) (91–171) (121–228) (151–285)
Cmin (mg/L) 10.3 1.6 2.4 3.2 4.0
Median (IQR) (5.7–16.6) (0.5–3.8) (0.8–5.7) (1.0–7.6) (1.3–9.5)
Cmax (mg/L) 26.0 16.1 24.1 32.2 40.2
Median (IQR) (20.8–32.1) (12.8–20.3) (19.1–30.4) (25.5–40.5) (31.9–50.6)
PTA (%) MIC = 4 mg/L 52.7 3.5 15.2 34.9 52.7

MIC = 2 mg/L 94.3 34.9 67.6 88.2 94.3
Probability of increased toxicity risk (%) 67.5 9.7 19.4 27.8 34.5
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permeability of linezolid after rifampicin pretreatment.17 In the 
present study, the bioavailability was fixed at 100%, and the ob
served effect of rifampicin can emerge due to either reduced bio
availability (e.g. increased first-pass effect) and/or increased 
metabolism/elimination. Hence, the underlying mechanism for 
a drug–drug interaction between rifampicin and linezolid remains 
unclear.

The estimated effect size and the model-based simulations 
indicate that the evaluated drug–drug interaction may be clinic
ally relevant because the PTA is significantly reduced. Two studies 
have found that a combination of linezolid and rifampicin is asso
ciated with a tendency to a higher probability of treatment failure 
in prosthetic joint infections,40,41 although the difference in treat
ment failure rates was not statistically significant in one of 
the studies.40 In the POET trial, no patients had treatments chan
ged due to critically low serum concentrations of both provided 
drugs, and the primary outcome did not occur in any of the 15 pa
tients treated with linezolid and rifampicin, but the trial was not 
designed to evaluate outcome data in such subgroups of pa
tients. Nevertheless, the combination of rifampicin and linezolid 
may impose a need for treatment change to alternative combi
nations or dosage optimization of linezolid for some patients 
to obtain a satisfactory treatment response. Additionally, our 
results predict that cotreatment with rifampicin decreases the 
risk of linezolid-induced haematological adverse effects. This is 
supported by studies showing diminished risks of thrombocyto
penia or anaemia and a less frequent need for dosage adjust
ments or change of drug due to toxic concentrations.7,42,43 The 
model-based simulations predicted that raising the dose of line
zolid due to insufficient concentrations can increase the PTA 
without increasing the risk of adverse effects to the same degree. 
Nevertheless, the toxicity threshold remains a subject of debate, 
warranting cautious interpretation. The defined threshold was 
based on studies showing a 50% probability of thrombocyto
penia (defined in the studies as a decrease in platelet count 
from baseline of at least 30%) if Cmin exceeds 6.53–8.2 mg/L.7,8

To our knowledge, no clinical PK/PD thresholds for other adverse 
effects like anaemia or peripheral neuropathy have been 
established.32,44

In the present study, the PK data were best described by a 
one-compartment model with first-order absorption and first- 
order elimination possibly due to the sparse nature of the data 
set. The estimated CL of 2.81 L/h (95% CI: 2.33–3.29) for patients 
without rifampicin treatment was low compared with findings 
by others (2.68 to 9.54 L/h), although direct comparisons are 
difficult due to major differences in study designs, study popula
tions, structural models and covariate inclusion.8–11,13,23–31,45–51

IE is a serious illness affecting primarily older people with predis
posing cardiac diseases, diabetes, cancer or renal failure.2,52

These characteristics in combination with the nature of IE in it
self could reduce linezolid CL. It should also be noted that age, 
renal impairment and liver disease have been related to lower 
linezolid CL in some studies.8,23,24,26,29,30 The variation in CLCR 
did not explain the IIV of CL in our study, presumably due to in
sufficient spread in the data, but it is possible that the median 
CLCR of 65.7 mL/min (IQR: 51.2–87.2) of the patients without 
rifampicin-cotreatment could have influenced the population 
estimate of CL compared with studies of patients with better re
nal function.

The final model was validated by GOF plots and a VPC showing 
an adequate fit and no structural misspecification except for a 
small underestimation of the concentrations for orally treated 
patients at Day 1. Because this phenomenon was not observed 
at Day 5, a possible explanation is a remaining effect of the differ
ences in treatment onset leading to high pre-dose linezolid con
centrations at Day 1 for some patients. Hence, we do not expect 
this to substantially influence or bias the estimated effects of ri
fampicin cotreatment nor the reliability of the simulated AUC12 
distributions at Day 5.

Our study has limitations. First, the study had a limited sample 
size of 62 patients, of whom only 15 were cotreated with rifam
picin. Studies with larger patient populations are needed to esti
mate the effect of rifampicin on linezolid PK with more precision 
and to evaluate the consequences for clinical outcome and ad
verse effects, not least if higher doses are used. Second, we can
not be sure whether pharmacogenetics and/or other drugs and/ 
or comorbidities had an impact on CL of linezolid, which may 
have biased the effect size of rifampicin cotreatment. Third, infor
mation regarding the duration of linezolid and rifampicin treat
ment at the time of PK measurement was not extracted at the 
end of the study and is, unfortunately, not available. Such data 
could have indicated whether the interaction is substantial 
from early on or appears significant only after a period of cotreat
ment. Still, the effect of rifampicin has been shown to emerge 
already after a single dose.15

In conclusion, by developing a population PK model of linezo
lid in patients with IE we demonstrated that rifampicin cotreat
ment of patients with IE decreases the plasma concentration 
of linezolid substantially. Model-based simulations showed an 
associated decrease in PTA and predicted that increasing the 
linezolid dose might be a preferable option.
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