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� Two nested artificial neural networks can classify MUAP duration in real world needle EMG recordings obtained during routine care.
� A first model accurately classified segments as rest, contraction or artifacts.
� A second model subsequently classified MUAP duration in contraction segments with moderate accuracy.
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Objective: To develop an artificial neural network (ANN) for classification of motor unit action potential
(MUAP) duration in real-word, unselected and uncleaned needle electromyography (n-EMG) recordings.
Methods: Two nested ANNmodels were trained, the first discerning muscle rest, contraction and artifacts
in n-EMG recordings from 2674 individual muscles from 326 patients obtained as part of daily care. The
second ANN model subsequently used segments labeled as contraction for prediction of prolonged, nor-
mal and shortened MUAPs. Model performance was assessed in one internal and two external validation
datasets of 184, 30 and 50 muscles, respectively.
Results: The first model discerned rest, contraction and artifacts with an accuracy of 96%. The second
model predicted prolonged, normal and shortened MUAPs with an accuracy of 67%, 83% and 68% in
the different validation sets.
Conclusions: We developed a two-step ANN that classifies rest, muscle contraction and artifacts from
real-world n-EMG recordings with very high accuracy. MUAP duration classification had moderate accu-
racy.
Significance: This is the first study to show that an ANN can classify MUAPs in real-world n-EMG record-
ings highlighting the potential for AI assisted MUAP classification as a clinical tool.
� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Classification of motor unit action potentials (MUAPs), obtained
by needle electromyography (n-EMG), is mostly done by clinicians
at the bedside through auditory and visual assessment of MUAP
characteristics, like duration, amplitude and number of phases
(Preston and Shapiro, 2013). In this assessment, changes in MUAP
duration are thought to be most specific and indicative of a neuro-
genic or myopathic disorder (Preston and Shapiro, 2013). Human
ear can precisely and quickly recognize (subtle) pathologies in
MUAP duration, as supported by a simulation study that showed
that humans could hear differences in the duration of simulated
MUAPs of 1 ms (Katirji, 2014). However, this method of MUAP clas-
sification is dependent on clinician’s training and exposure. Ken-
dall et al studied six n-EMG cases reviewed by 66 blinded
examiners and found that overall diagnostic agreement was only
50 %, although it increased with experience (Kendall and Werner,
2006). Low interrater agreement and accuracy of MUAP classifica-
tion, especially in the setting of clinicians not routinely performing
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n-EMG, may lead to misdiagnosis or diagnostic delay (Kendall and
Werner, 2006).

Quantitative methods can provide numerical estimates of
MUAP characteristics which can improve inter-rater agreement
of MUAP classification. However, MUAP quantification is time-
consuming compared to bedside auditory and visual assessment
by clinicians (Fuglsang-Frederiksen, 2006; Farkas et al., 2010). Arti-
ficial intelligence (AI) has been studied as an alternative objective
classification method for MUAPs. An AI algorithm may be trained
to interpret MUAP characteristics and recruitment patterns during
contraction and (abnormal) spontaneous activity during rest, while
it may also rate the quality of the signal, making AI a more flexible
and complete tool than EMG quantification. So far, AI studies
reported high accuracy for some of these aspects, such as 100 %
accuracy for classification of resting n-EMG signals and 90–98 %
for MUAP classification (Katsis et al., 2007; Chatterjee et al.,
2020; Mokdad et al., 2020; Subasi, 2012; Christodoulou and
Pattichis, 1999). However, these studies were all limited by the
use of pre-selected n-EMG segments from which artifacts were
removed manually, whereas real-world n-EMG, recorded as part
of daily care, contain many artifacts and non-informative seg-
ments. Moreover, limited samples were studied, ranging from
18-62 patients, and no studies used an external validation cohort.
Therefore, generalization and potential clinical implementation is
limited so far.

AI algorithms could be developed further in two ways. First, AI
may be trained using clinical diagnoses as the basis. For example, a
recent study using amyotrophic lateral sclerosis and inclusion
body myositis showed that a machine learning algorithm could
discriminate between these disorders without any input on actual
MUAP characteristics (Tannemaat et al., 2023). This approach
allows for unsupervised learning, transcending clinical paradigms,
but may be limited because disease specific abnormalities may not
be readily translatable to myopathic or neuropathic disorders in
general. In addition, depending on the disorder, muscles studied
with n-EMG may be severely, slightly or not affected, complicating
how an overall diagnosis on a patient-level should be translated to
abnormalities on the muscle-level. Alternatively, AI may be trained
to classify known MUAP characteristics that are used in the clinic
such as duration. AI predictions on these characteristics can subse-
quently be incorporated by the clinician into an overall conclusion
on the most likely electrophysiological diagnosis. This approach
may more easily complement current clinical practice and may
therefore be easier to incorporate in routine clinical practice.

The goal of this study was to design and validate an artificial
neural network (ANN) for MUAP duration classification using uns-
elected and uncleaned real-world n-EMG data obtained from clin-
ical practice.
2. Methods

2.1. Design and ethics

For this retrospective study, we set up a data flow of two con-
secutive ANNs mimicking clinical practice. The first ANN (the
‘‘muscle activity classification model”) was designed to label each
data point in a complete n-EMG recording as an assessment of
activity at rest, contraction or needle movement or other artifacts.
The second ANN (the ‘‘MUAP duration classification model”) subse-
quently used only those n-EMG segments labeled as contraction
and was designed to label MUAP duration in these segments as
prolonged, normal or shortened. The medical ethical committee
waived the need for informed consent because of the use of anon-
ymized data that was collected as part of clinical care. Participants
were offered an opt-out option by mail to ascertain if they objected
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to the use of their data for scientific studies. This paper was drafted
according to the Standards for Reporting Diagnostic accuracy stud-
ies (STARD) guidelines on reporting of studies of diagnostic accu-
racy (Cohen et al., 2016).

2.2. Participants and settings

Data for model development were collected as part of clinical
care in the department of Clinical Neurophysiology of the Amster-
dam University Medical Centers (Amsterdam UMC), location AMC,
Amsterdam, the Netherlands a tertiary referral center for neuro-
muscular diseases. Between 29 January 2020 and 22 April 2020,
all n-EMG examinations were consecutively recorded and used
for this study regardless of the reason for study or clinical diagno-
sis. This consecutive cohort was enriched with n-EMG recordings
stored between December 2016 up and November 2021 of patients
suspected of myositis to add short duration MUAPs. We excluded
bulbar muscles (e.g. tongue base, sternocleidomastoid or masseter
muscles) because of the different MUAP characteristics, n-EMG
recordings for which the reference standard had not been stored,
and n-EMG recordings labeled as having both prolonged and short-
ened MUAPs in the same muscle (like what can be observed in
chronic myopathies) (Subasi, 2012). For the MUAP duration classi-
fication model, n-EMG recordings that did not contain contraction
segments were also excluded.

The Amsterdam UMC dataset was split into a training, test and
validation set. Next to this validation set, two additional external
validation cohorts were used. First, a non-consecutive convenience
sample from patients with n-EMG recordings collected at the
department of Clinical Neurophysiology, Leiden UMC, the Nether-
lands (LUMC dataset) that had been classified as either normal or
neuropathic. Second, we used the n-EMGs recordings from the
online available EMGLab database (Nikolic, 2001) classified as neu-
ropathic, normal or myopathic. For both validation sets, we
assumed that neuropathic recordings mainly contained prolonged
MUAPs and myopathic recordings contained shortened MUAPs.

2.3. Data collection

Muscles examined by n-EMG were selected based on the clini-
cal question, as judged by the examiner, and clinical protocols.
Each n-EMG recording involved assessment of activity at rest and
during voluntary contraction. In general, n-EMG assessment took
place in three phases: with the muscle at rest, during slight con-
traction and subsequently gradually increasing to at least moder-
ate contraction. The examiner optimized signal quality
throughout the recording by re-positioning the needle during the
exam so to obtain a reliable recording of one or more MUAPs firing.
All signals were recorded and exported anonymously as audio files
(uncompressed Wav files). For this study, complete and uncleaned
n-EMG recordings were used that were recorded as part of routine
clinical care and without any preprocessing steps other than regu-
lar filtering during acquisition. Filter settings during acquisition for
the Amsterdam UMC and the LUMC were: a low-pass filter of
10 kHz, a high-pass filter of 10 Hz. Filter settings during acquisition
for the EMGLab database were: a low-pass filter of 10 kHz, a high-
pass filter of 2 Hz. The sampling frequency of the audio files from
the Amsterdam UMC and the LUMC was 44100/s, and the length
varied from file to file (2 s up to 120 s). The sampling frequency
of the audio files from the EMGLab database was 23437.5/s.

2.4. Data preprocessing

Data preprocessing is described in detail in the Supplementary
Methods. In short, for the muscle activity classification model, n-
EMG recordings were normalized, split into 2 s segments using a
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sliding window approach of 0.1 s creating overlapping segments.
For the MUAP classification model, n-EMG recordings were nor-
malized and split into 2 s segments creating consecutive segments.
For the muscle activity classification model, all 2 s segments were
used in the following steps. For the MUAP duration classification
model, only 2 s segments classified as contraction were used. From
the 2 s segments, spectrograms were created and scaled to the Mel
scale (Sahidullah and Saha, 2012; Rao and Manjunath, 2017). The
Mel scale approximates the human auditory system’s response
more closely than the linearly spaced frequency bands used in
the normal spectrum (Sahidullah and Saha, 2012; Umesh et al.,
1999). For the muscle activity classification model, we included
frequencies 0–10000 Hz. For the MUAP duration classification
model, we included frequencies 500–5000 Hz because frequencies
below 500 Hz represent distant MUAPs and frequencies above
5000 Hz noise (Tankisi et al., 2020).

2.5. ANN model development: Model 1 muscle activity classification
model

Details on development of the muscle activity classification
model are described in the Supplementary Methods. As reference
standard, muscle activity was annotated throughout each n-EMG
recording as four class labels: i.e. muscle rest, voluntary contrac-
tion, needle movement artifacts, or non-analyzable (e.g. technical
artifacts) by the investigators. This was done by first developing
in-house annotation software (Python 3.9) with a user interface
to annotate a complete n-EMG recording based on auditory and
visual inspection. The four class labels were continuously assigned
to 95n-EMG recordings of 120 s each by at least two investigators
[CV, LW, WVP, DH]. If unsure, an investigator set no annotation.
Class labels for each data point were combined and labels were
maintained only in case of majority agreement of at least two
investigators. Subsequently, two-second segments were labeled
as contraction (in case all data points in that segment had been
labeled as contraction by both investigators), as rest (in case all
data points in that segment had been labeled as rest by both inves-
tigators) or as artifact (needle movement/non-analyzable com-
bined; in case �15 % (�0.3 s for 2 s) of data points in that
segment had received this label). Nine 120 s n-EMG recordings
were annotated by all four examiners to determine the inter-
rater reliability by calculating Krippendorff’s alpha (Zapf et al.,
2016).

Next, we applied transfer learning to train the Incep-
tionResNetV2 model, a convolutional neural network (CNN) pre-
trained on ImageNet (Szegedy et al., 2017), for classification of
the 3 labels. To increase the data segments and equalize distribu-
tions for each reference standard category, we augmented the data
by skewing and distorting the Mel spectrograms (Nodera et al.,
2019). We first trained the CNN using 4-fold cross-validation with
90 % from the annotated segments. The remaining 10 % segments
was then used as an internal validation set. There was no overlap
between muscles included in the training, test and validation set.
Confusion matrices were created and the model’s precision, recall,
F1-score, and accuracy were on the validation sets. Based on the
test loss, the best model was evaluated in the validation set and
used to select data segments for the next model, the MUAP dura-
tion classification model.

2.6. ANN model development: Model 2 MUAP duration classification
model

Details on development of the MUAP duration classification
model are described in the Supplementary Methods. As reference
standard, we used the original MUAP duration classification as
determined by experienced neurophysiologists at the bedside as
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part of clinical care. MUAPs of different durations may be present
in a n-EMG recording, therefore MUAPs could be classified as: pro-
longed duration, normal duration, shortened duration, a mix of
prolonged and shortened duration, borderline (between prolonged
and normal duration), and a mix of normal and shortened duration.
For each complete n-EMG recording, one overall label was pro-
vided at the bedside that best reflected the recording of that mus-
cle. We reclassified borderline as normal and shortened and
normal duration as shortened duration and excluded recordings
that had both shortened and prolonged MUAPs. This led to three
labels that were used for model training: prolonged duration, nor-
mal duration, and shortened duration.

Next, we again applied transfer learning to train the Incep-
tionResNetV2 model for MUAP duration classification. Only two-
second segments predicted as contraction by the muscle activity
classification model (see above) were included in this model. All
the two-second segments predicted as contraction were used
regardless of the level of contraction so that segments containing
individually discernable MUAPs up to segments containing inter-
ference patterns were included in the model. N-EMG recordings
of individual muscles containing more than 10 two-second seg-
ments predicted as contraction were included and divided into a
training and testing set (90 %) and a validation set (10 %), stratified
to obtain comparable distributions of the 3 MUAP duration classes.
To increase the number of data segments and equalize distribu-
tions for each reference standard category, we augmented the data
by skewing and distorting the Mel spectrograms (Nodera et al.,
2019). There was no overlap between muscles included in the
training, test and validation set. The MUAP classification model
was trained and tested using 4-fold cross-validation on 90 % of
the data set. Model output was determined by calculating the pro-
portion of two-second segments per recording where MUAP dura-
tion was predicted as prolonged, normal or shortened. The label
with the highest proportion was used by the model as an overall
label for the entire recording. Confusion matrices for overall labels
and the reference standard were created and the best model was
chosen based on test loss. The accuracy of the best performing
model was subsequently validated with the internal 10 % valida-
tion set from the Amsterdam UMC, the external validation dataset
from the LUMC and the EMGLab database.

2.7. Secondary analyses: Power threshold for clinical MUAP
interpretation

In clinical practice, MUAP characteristics are usually assessed
during slight contraction as this allows for inspection of individual
MUAPs. To mimic this, we retrained the MUAP duration classifica-
tion model using only contraction segments in which individual
MUAP characteristics could be reliably interpreted as would be
done clinically. This was defined using a cut-off based on the
power of that segment. The power of a signal is the sum of the
absolute squares of its time-domain samples divided by the signal
length (Meinsma et al., 2019). Two interpreters [CV, LW] indepen-
dently scored 62 two-second randomly selected contraction-
labeled segments of varying power as interpretable or not. The
maximum power at which both interpreters had scored a segment
to be interpretable was used as cut-off.

2.8. Secondary analyses: MUAP classification model compared to
human performance

We investigated the clinical utility of the MUAP duration classi-
fication model by comparing its diagnostic yield to the perfor-
mance of three experienced clinical neurophysiologists [MT, LW
and CV] who classified the same EMGLab data n-EMG recordings
as having MUAPs of prolonged, normal, or shortened duration in
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the samemanner that they would do during routine clinical assess-
ments. N-EMG recordings were assessed independently and in ran-
dom order and the raters did not know the frequencies of
abnormalities. None of the investigators had seen this dataset
before. Diagnostic yield of each human interpreter was calculated
and compared to performance of the MUAP duration classification
model.

2.9. Data availability

Data not provided in the article may be shared (anonymized) at
the request of any qualified investigator for purposes of replicating
procedures and results.

3. Results

The Amsterdam UMC data set for model development consisted
of n-EMG recordings from 2671 individual muscles from 326
patients.

3.1. ANN model 1: muscle activity classification model

For development and training of the muscle activity classifica-
tion model, the 95 annotated n-EMG files were split in 85 n-EMG
recordings to train and test the model, while the remaining 10 files
were used for validation. On average, 24.8 % of each recording was
excluded due to lack of agreement between examiners. The inter-
rater reliability of the different investigators was 0.77 (Krippen-
dorff alpha). Extraction of the two-second segments resulted in
64,994 segments in the training set and 6417 segments in the val-
idation set. Table 1 shows the confusion matrix of the best muscle
activity classification model evaluated on the validation data set.
Accuracy of this model on the validation data set was 96 %. Preci-
sion, recall and F1-scores for contraction were 99 %, 96 % and 97 %
respectively (for other labels, see Table 2).

3.2. ANN model 2: MUAP duration classification

For development and training of the MUAP classification model,
2341 from the 2674 n-EMG recordings were used (163 recordings
excluded because of bulbar muscle, 115 were excluded because
MUAP duration assessment had not been stored, and 55 recordings
Table 2
Performance ANN model 1: muscle activity classification model. Performance of the mus
contraction and artifact as well as overall accuracy. Data shown are based on 10 needle-EM
column indicates the number of two-second segments used for each measure.

Precision Recall

Rest 92 % 95 %
Contraction 99 % 96 %
Artifact 97 % 98 %

Overall

Table 1
Confusion matrix ANN model 1: muscle activity classification model. Distribution of corr
neural network (ANN) model developed to label segments of needle-EMG recordings a
segments). Data shown are the results for 10 needle-EMG recordings with 6417 two s seg
about which two investigators agreed were used (see methods). The shaded cells indicate

Reference standard Rest
Contraction
Artifact
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had both prolonged and shortened MUAPs). From these n-EMG
recordings, 2108 (90 %) n-EMG recordings were used for training
and testing, and 233 (10 %) were used as a validation set. This divi-
sion was stratified based on class labels of MUAP duration. After
running the muscle activity classification model and selecting con-
traction segments, an additional 49 n-EMG recordings were
excluded because no contraction segments were present. The
external validation set from the LUMC consisted of 30 muscles
(17 prolonged and 13 normal). This dataset did not contain mus-
cles with MUAPs of shortened duration. The EMGLab database con-
sisted of 50 muscles (19 shortened, 21 prolonged, and 10 normal).

Fig. 1 shows proportions of two-second segments of each n-
EMG recording predicted by the best MUAP classification model
as prolonged, normal and shortened stratified according to the ref-
erence standard in the Amsterdam UMC validation dataset. For
most muscles with prolonged MUAPs according to the reference
standard, indeed most segments were predicted as prolonged.
However, segments were predicted as prolonged in a considerable
number of muscles with normal MUAPs. For muscles with short-
ened MUAPs, most segments were indeed predicted as shortened.

Table 3 shows the confusion matrix of the best MUAP classifica-
tion model evaluated on the different validation datasets. Accuracy
was 67 % for the Amsterdam UMC validation dataset, 83 % for the
LUMC dataset and 68 % for the EMGLab dataset. Table 4 shows the
performance matrices for the different validation datasets. Within
the different validation data sets, two important misclassification
patterns were observed: 1) normal MUAPs that were predicted to
be prolonged (observed in the Amsterdam UMC and LUMC valida-
tion datasets) and 2) normal MUAPs that were predicted to be
shortened (or vice versa; observed in the Amsterdam UMC valida-
tion data set and the EMGLab database).
3.3. Power threshold for clinical MUAP interpretation

After evaluation by two investigators, the maximum power of a
segment at which MUAPs could be interpretable as would be done
in the clinic was 1.26 * 108 (V2/Hz). Extraction of the 2 s segments
containing contraction with a power below this cut-off resulted in
a total of 11,753 segments in the training and testing set (pro-
longed 2722, normal 5215, shortened 3816). Training of the MUAP
classification model using only two-second segments with a max-
imum power below this cut-off decreased model accuracy and per-
cle activity classification model in terms of precision, recall and F1-score for all rest,
G recordings with 6417 two-second segments in the validation dataset. The support

F1-score Accuracy Support

94 % 1883
97 % 2488
98 % 2346

96 % 6417

ect and incorrect predictions of the muscle activity classification model: an artificial
s rest, voluntary contraction or artifacts (i.e. needle movement or non-analyzable
ments in the validation set (not used during training). As a reference standard, labels
the correctly classified segments.

ANN model 1 muscle activity classification model prediction

Rest Contraction Artifact

1502 18 63
97 2386 5
27 15 2304



Fig. 1. Distribution of predicted segments according to the reference standard.
Figure displaying proportions of two s segments predicted as prolonged, normal
and shortened in the Amsterdam University Medical Centers (Amsterdam UMC)
validation set consisting of 233 needle EMG (n-EMG) recordings of 120 s, according
to the reference standard for that recording. Each horizontal line represents 1
n-EMG recording in 1 muscle. Red indicates segments predicted as having motor
unit action potentials (MUAPs) with a prolonged duration, yellow as normal and
green as shortened duration.
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formance to an accuracy of 46 % in the Amsterdam UMC dataset
(see Supplementary Table 4 for the performance matrix).

3.4. Human performance of MUAP classification

Three examiners (CV, LW, MT) annotated all 50 n-EMG record-
ings in the EMGLab database. Accuracy was 62 % for all three differ-
ent investigators. Supplementary Table 5 shows the confusion
matrices for the different examiners.
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4. Discussion

We developed a two-step ANN to classify MUAP duration mim-
icking daily clinical practice. The first model discerned rest, muscle
contraction and artifacts from real-world n-EMG recordings with
very high accuracy. The second model subsequently used muscle
contraction segments to classify MUAP duration in these segments
as prolonged, normal or shortened with moderate accuracy.

This two-step approach illustrates the possibilities to use ANNs
as an adjunctive diagnostic tool in a real-world n-EMG setting. This
is the first study that has used AI in unprocessed real-world n-EMG
recordings and the first study to develop an ANN to discern rest,
muscle contraction or artifacts using n-EMG recordings. Previous
studies on studying detection of muscle contraction using AI have
been limited to surface EMG recordings which are not commonly
used for diagnostic investigations. The first-step ANN model we
trained to classify rest, muscle contraction or artifacts in n-EMG
recordings showed very high accuracy overall. Performance was
least for the prediction of muscle rest, although performance
indices were still �92 %, and the most frequent misclassification
was the classification of segments containing contraction as rest.

Model performance of our second step MUAP duration classifi-
cation ANN was moderate whereas other studies reported much
better performances with accuracies approaching 100 % for various
tasks (Bakiya et al., 2020; Chatterjee et al., 2020; Doulah and
Fattah, 2014; Mishra et al., 2016; Mokdad et al., 2020; Nagineni
et al., 2018; Samanta et al., 2020; Sengur et al., 2017). However,
important limitations of previous studies are the use of manually
selected n-EMG data which does not reflect daily clinical care,
the limited sample sizes and the lack of independent data valida-
tion sets which is likely to inflate model performance. As an exam-
ple, most previous studies used the EMGLab dataset, which we
used as an external validation dataset, to train and test their model
without external validation (Bakiya et al., 2020; Chatterjee et al.,
2020; Doulah and Fattah, 2014; Mishra et al., 2016; Mokdad
et al., 2020; Nagineni et al., 2018; Samanta et al., 2020; Sengur
et al., 2017). The EMGLab database is a research dataset in which
n-EMG signals were recorded at a specific level of contraction at
predefined locations only when the signal quality was sufficient.
The n-EMG recordings in this dataset therefore represent an ideal
test set which varies greatly from n-EMG recordings obtained dur-
ing routine clinical care.

Despite the lower accuracy of our model based on real world n-
EMG recordings, the model still shows important potential. No
major misclassification occurred between shortened or prolonged
MUAPs, which is reassuring as this resembles the clinical separa-
tion of two characteristics at opposing ends of a spectrum. Interest-
ingly, model performance did not improve when only using
segments of slight contraction while, for clinical evaluation, slight
levels of contraction are preferred as individual MUAPs can still be
discernible. This indicates that the model can also extract relevant
information from segments with higher levels of contraction
where human interpretation fails. Future work may provide more
insight into the data features or segments used by the ANN model
for classification. Finally, an ANN model lacks important clinical
information available to a clinician when performing n-EMG
recordings, such as the apparent level of contraction, presence of
atrophy or which segments of the recording are most reliable.
When we compared human interpreters to our MUAP duration
classification model, both operating in the same setting of only
having access to the raw n-EMG signal, we found highly similar
accuracies.



Table 3
Confusion matrix ANN model 2: MUAP duration classification. Table showing the distribution of correct and incorrect predictions of the second artificial neural network (ANN)
model developed to classify motor unit action potentials (MUAP) duration as prolonged, normal, or shortened. Table shows results as obtained for all three validation datasets
(see methods). The ANN MUAP duration classification model labeled all two-second segments in a needle-EMG recording that were predicted as contraction by the first ANN
model (see methods). The frequency of each label in the overall recording was calculated and the label with the highest proportion was used as an overall label for the entire
recording. The shaded cells indicate the correctly classified segments.

ANN model 2: MUAP duration classification

Prolonged Normal Shortened

Amsterdam UMC validation set
Reference standard Prolonged 51 3 1

Normal 43 28 11
Shortened 3 0 44

LUMC validation set*
Reference standard Prolonged 17 0

Normal 5 8

EMGlab validation set
Reference standard Prolonged 18 3 0

Normal 0 5 5
Shortened 3 5 11

Amsterdam UMC: Amsterdam University Medical Centers; LUMC: Leiden University Medical Center.
* No MUAPs with shortened duration available in this data set.

Table 4
Performance ANN model 2: MUAP duration classification. Performance of the second artificial neural network (ANN) model developed to classify motor unit action potential
(MUAP) duration as prolonged, normal or shortened that had performed best during training, based on validation loss, and presented for the different validation datasets (see
methods). Support indicates the number of needle-EMG recordings used for each measure.

Precision Recall F1-score Accuracy Support

Amsterdam UMC validation set
Prolonged 53 % 93 % 67 % 55
Normal 90 % 34 % 50 % 82
Shortened 79 % 94 % 85 % 47
Overall 67 % 184

LUMC validation set*
Prolonged 81 % 100 % 90 % 17
Normal 100 % 62 % 77 % 13
Overall 83 % 30

EMGlab validation set
Prolonged 86 % 86 % 86 % 21
Normal 38 % 50 % 43 % 10
Shortened 69 % 58 % 63 % 16
Overall 68 % 50

Amsterdam UMC: Amsterdam University Medical Center; LUMC: Leiden University Medical Center.
* No MUAPs with shortened duration available in this data set.
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The most common misclassifications by the MUAP duration
classification model occurred between normal and prolonged
MUAPs on the one hand and normal and shortened on the other
hand. This misclassification may result from the imperfect refer-
ence standard we used for this study or, in fact, the lack of an
accepted international reference standard for the evaluation of
MUAP characteristics. For example, the proportion of prolonged
or shortened MUAPs that may be present in an otherwise healthy
muscle is not set, probably because it is very difficult for clinicians
to label every MUAP in an n-EMG recording, quantify the propor-
tion of each label and set an optimal cut-off to discern disease from
healthy. In our study, we chose to use the label with the highest
proportion as an overall label for the entire n-EMG recording while
recognizing the limitations of this choice. Fig. 1 indicates that
changing this, for example by classifying a muscle abnormal when
>25 % of all segments is predicted as having prolonged MUAPs, will
have important impact on overall accuracy. There are currently no
large n-EMG datasets available that have been labelled by a
uniform consensus based reference standard to train future ANN
models. As possible other solutions, one or more approaches may
be taken. One approach is to train ANN models on quantitative
MUAP parameters thereby providing a more objective measure of
a specific MUAP characteristics such as duration. Another is to train
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ANN models on datasets where n-EMG recordings are labeled by a
large number of experts and the degree of consensus between
experts is taken into account as measure of overall certainty of a
label. Finally, ANN models may be trained on datasets where not
only MUAP characteristics are used as a reference standard but also
the clinical diagnosis, demographics, like age, the specific muscle
(including bulbar muscles) and involvement of a muscle in that
disorder are used as input (Buchtal and Rosenfalck, 1955). These
combined datasets may help to empirically investigate cut-offs
for the occurrence of different MUAP characteristics in discerning
healthy from disease but may also help to move beyond the cur-
rently known and used MUAP characteristics and investigate the
diagnostic value of potential other features by using unsupervised
learning.

In addition to the limitations concerning the reference standard
we employed for the MUAP duration classification model, this
study has several other limitations. For the muscle activity classifi-
cation model, we used a reference standard based on consensus
between two investigators which resulted in a reliable but not very
efficient reference standard as 25 % of the n-EMG recording was
excluded. In the two external datasets, we assumed that neuro-
genic disorders showed MUAPs of prolonged MUAP duration and
myopathic disorders showed MUAPs of shortened duration while
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this may be an oversimplification of n-EMG abnormalities that
may be found in (some) neurogenic or myopathic disorders.
Although this study used the largest dataset so far, we still
observed signs of overfitting in model 2 as indicated by some
degree of instability during training. As we decided that it was of
importance to exclude distant activity, we increased the high-
pass filter for the MUAP duration classification model, but this
may also have had an impact on MUAP duration of the nearby
MUAPs. The acquisition filter settings were largely the same in
the datasets used, and we did not investigate potential influences
of different low- or high-pass filter settings on our results. We
did not investigate signal quality within each of the segments
and, for example, excluded distant MUAPs, as we wanted to
develop a clinically applicable algorithm. Furthermore, we did
not incorporate the presence of abnormal spontaneous activity,
number of MUAP phases, MUAP amplitudes, or interference pat-
terns that clinically are used in addition to MUAP duration in the
distinction between healthy muscles and muscles affected by neu-
rogenic or myopathic disorders. Finally, we did not directly com-
pare performances of other algorithms with our ANN.

5. Conclusion

We developed a two-step ANN to classify MUAP duration mim-
icking daily practice in the clinic. The first model discerns rest,
muscle contraction and artifacts from real-world n-EMG record-
ings with very high accuracy. The second model subsequently uses
segments predicted as muscle contraction and classifies MUAP
duration in these segments as prolonged, shortened or normal with
moderate accuracy. Future studies should focus on increasing the
number of high quality datasets and solving issues with imperfect
reference standards to further build on the potential of AI assisted
classification of MUAPs.
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