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A B S T R A C T   

A subset of autoimmune diseases is characterized by predominant pathogenic IgG4 autoantibodies (IgG4-AID). 
Why IgG4 predominates in these disorders is unknown. We hypothesized that dysregulated B cell maturation or 
aberrant class switching causes overrepresentation of IgG4+ B cells and plasma cells. Therefore, we compared the 
B cell compartment of patients from four different IgG4-AID with two IgG1-3-AID and healthy donors, using flow 
cytometry. Relative subset abundance at all maturation stages was normal, except for a, possibly treatment- 
related, reduction in immature and naïve CD5+ cells. IgG4+ B cell and plasma cell numbers were normal in 
IgG4-AID patients, however they had a (sub)class-independent 8-fold increase in circulating CD20-CD138+ cells. 
No autoreactivity was found in this subset. These results argue against aberrant B cell development and rather 
suggest the autoantibody subclass predominance to be antigen-driven. The similarities between IgG4-AID suggest 
that, despite displaying variable clinical phenotypes, they share a similar underlying immune profile.   

1. Introduction 

An important factor that determines the pathophysiological mecha-
nism in antibody-mediated autoimmune diseases is the dominant 
autoantibody (sub)class. The majority of antibody-mediated autoim-
mune diseases are caused by pro-inflammatory autoantibody subclasses 
such as ImmunoglobulinG 1 (IgG1) and IgG3 [1]. These antibody sub-
classes, through activation of complement or immune cell-mediated 
cytotoxicity, damage the target organ causing the disease-associated 
symptoms [2]. In addition, their bivalent nature allows them to cross-
link their target antigens, often causing internalization and loss of sur-
face antigen function which further contributes to the pathology [3,4]. 
In contrast, IgG4 is generally considered an anti-inflammatory antibody 
subclass. IgG4 has low affinity for most Fc receptors and complement 
factor C1q [5–8]. This means that IgG4 usually does not induce 

antibody-mediated phagocytosis, antibody-dependent cell-mediated 
cytotoxicity or complement-mediated tissue damage. Additionally, IgG4 
antibodies are uniquely capable of Fab-arm exchange meaning exchange 
of antibody half molecules (one heavy chain and one light chain) 
resulting in bispecific, functionally monovalent IgG4 molecules [9–12]. 
Furthermore, IgG4 has a relatively high affinity for its antigen [13–15] 
which is likely caused by its late order in switch region position, its 
relatively later occurence in an immune response and consequently 
more time to acquire VH mutations [16,17]. Because of the inability to 
activate the immune system and its relatively high affinity, the effects of 
IgG4 are usually caused by blocking the function of the target antigen 
[5,18–20]. Interestingly, a group of autoimmune diseases (AID) pre-
dominated by autoantibodies of the IgG4 subclass exists [18]. 

To date, 29 different AID fit the criteria for IgG4-AID [21]. These 
IgG4-AID affect different organ systems and are generally rare with a 
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prevalence of 0.001-5/10.000 individuals [22]. During the last decades 
in vitro and in vivo studies have directly confirmed the pathogenicity of 
IgG4 autoantibodies in at least six IgG4-AID, and more are expected to 
follow [23–26]. Insight in the pathophysiology and immunological 
characteristics of these autoimmune diseases highlights several com-
monalities between these disorders: 1) IgG4 autoantibodies block 
essential protein-protein interactions thereby causing disease, 2) on a 
group level, IgG4 serum titers are only marginally increased [27–29], 3) 
they respond favorably to rituximab treatment [30–33] and 4) they 
show a strong association with HLA-class II haplotypes HLA-DQB1*05 
and HLA-DRB1*04 [21,34]. These observations suggest that, although 
IgG4-AID affect different organs and cause a variety of symptoms, they 
may in fact share a similar underlying immunological profile. 

Why IgG4 predominates in these autoimmune responses is poorly 
understood. This is relevant however as the switching to IgG4 may make 
autoantibodies more pathogenic [35] and treatment strategy may be 
adjusted accordingly. Class switching to IgG4 is known to occur in 
response to prolonged exposure to certain antigens such as bee venom 
and peanuts [5,36] or under influence of Th2 cytokines IL-4, IL-10 and 
IL-13 [37–40]. Indeed, these cytokines were found increased in IgG4- 
AID patients and cross-reactivity was observed with autoantibodies 
from pemphigus patients with IgG4-inducing allergens [41–43]. Lastly, 
dysregulated B cell maturation or aberrant class switching may cause 
overrepresentation of IgG4+ B cells and IgG4 plasma cells in immune 
responses. To further understand what is causing the IgG4 predomi-
nance in IgG4-AID, we investigated in detail the many IgH-isotype 
subsets of the circulating B cell compartment in four archetypical 
IgG4-AID and compared them to two IgG1-3-AID and age-matched 
healthy controls. 

2. Methods 

2.1. Study population 

AID patients with Muscle-specific kinase (MuSK) myasthenia gravis 
(MG), acetylcholine receptor (AChR) MG, Lambert-Eaton myasthenic 
syndrome (LEMS) or pemphigus (vulgaris, foliaceus and para-
neoplastica) were recruited from the Leiden University Medical Centre 

(2017-2021). We obtained blood samples for 10 patients per disease 
except for MuSK MG, for which we obtained 11 samples. Two Contactin- 
associated protein-like 2 (CASPR2) encephalitis and three leucine-rich 
glioma inactivated (LGI1) encephalitis patients were recruited from 
the Erasmus University Medical Center (2019-2021). Patients were 
included based on the presence of symptoms matching MG, pemphigus, 
encephalitis or LE [44–46] and a positive titer on a serological test for 
the respective autoantibody upon standard clinical testing. Patients 
were excluded if they had received rituximab treatment within the past 
12 months. This cutoff is based on literature, although B cell reconsti-
tution post-rituximab may vary between patients [47–53]. Blood sam-
ples were also obtained from 10 age- and sex-matched healthy controls. 
These healthy controls were recruited by the LUMC Voluntary Donor 
Service (LuVDS). Fig. 1 and Supplemental Table 1 provide a detailed 
overview of the study population. 

2.2. Isolation of peripheral blood mononuclear cells 

Peripheral blood mononuclear cells (PBMCs) were isolated from 60 
to 90 ml of sodium-Heparin anticoagulated peripheral blood samples by 
Ficoll-amidotrizoate density gradient centrifugation. Following isola-
tion, cells were immediately frozen at -80 ◦C at a density of 5-10•106 per 
ml in Recovery Cell Freezing medium (Thermo Fisher Scientific, Wal-
tham, MA, USA) in a Mr. Frosty Freezing Container (Thermo Fisher 
Scientific, Waltham, MA, USA) for 24 h before transfer to liquid nitrogen 
storage. 

2.3. Flow cytometry 

The B cell subsets and B cell receptor (sub)classes were identified in 
freshly thawed PBMCs using the standardized EuroFlow 12-color IgH- 
isotype B-cell tube [54–56], with the exception of CD62L which was 
replaced by a Zombie Yellow cell viability stain (BioLegend, San Diego, 
CA, USA) (see Sup. Table 2 for a detailed overview). At least 10•106 cells 
were stained for 30 min in the dark in 100 μl (75 μl EuroFlow B cell tube 
mix and 25 μl Cytognos isotype mix) staining solution according to the 
EuroFlow SOP for sample preparation and staining of markers followed 
by immediate analysis (www.EuroFlow.org). 

Fig. 1. Pre-germinal center B cell fractions of IgG4-AID and IgG1-3-AID patients. (A) Immature, (B) naïve CD5+ and (C) naïve B cell counts as percentage of all pre- 
germinal center (GC) B cells. Treatment status is marked per patient. When treatment consisted of multiple therapies in the past, the most recent one is visualized. For 
all panels, IgG4-AID were compared to both healthy controls and IgG1-3-AID by one-way ANOVA followed by unpaired Student’s t-test (* p < 0.05; ** p < 0.01; *** p 
< 0.005). 
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Flow cytometry was performed on a BD FACS LSR Fortessa 4L (BD 
Biosciences, San Jose, CA, USA) at the Flow cytometry Core Facility 
(FCF) of Leiden University Medical Center (LUMC) in Leiden, 
Netherlands (https://www.lumc.nl/research/facilities/fcf). At least 
3•106 cells were acquired per sample. Instrument setup was according to 
the EuroFlow standardized operating procedures [57]. See Sup. Fig. 1 
for a detailed overview of the gating strategy. 

Plasma cells were sorted on a BD FACSAria 3 cell sorter (BD Bio-
sciences, San Jose, CA, USA). The gating strategy is detailed in Sup. 
Fig. 2. In brief, freshly thawed PBMCs were stained for expression of 
CD38, CD20, CD138 and CD19. Viable cells were identified using 
Zombie Green cell viability stain (BioLegend, San Diego, CA, USA). See 
Sup. Table 3 for a detailed overview of the staining. A dump channel for 
T cells, NK cells and macrophages was created by staining PBMCs for 
expression of CD3, CD14 and CD56. 

2.4. Plasma cell culture 

After bulk sorting, plasma cell subtypes were cultured in RPMI1640 
(Thermo Fisher Scientific, Waltham, MA, USA) supplemented 10% heat- 
inactivated fetal bovine serum, IL-6 (10 ng/ml; Thermo Fisher Scientific, 
Waltham, MA, USA), IL-21 (50 ng/ml; Thermo Fisher Scientific, Wal-
tham, MA, USA), IFN-α (100 U/ml; Merck, Rahway, NJ, USA), BAFF (20 
ng/ml; Miltenyi Biotec, Bergisch Gladbach, NRW, Germany), chemically 
defined lipid mixture 1 (1/200; Thermo Fisher Scientific, Waltham, MA, 
USA), MEM amino acid solution (1×; Sigma-Aldrich, St. Louis, MO, 
USA) on γ-irradiated M2-10B4 stromal cells (1.5*104/well, 100 μl/well) 
in 96-well plates [58]. Every 7 days, 50 μl culture supernatant was 
aspirated for IgG detection (anti-MuSK and total IgG) and replaced with 
fresh medium. 

2.5. ELISA 

Plasma cell culture medium samples were screened for antibody 
production using a total human IgG ELISA assay and for MuSK reactivity 
using a previously described MuSK ELISA assay [59]. 

2.6. Statistics 

Flow cytometry data was blinded and then analyzed using Infinicyt 
2.0 (Cytognos, Salamanca, Spain). Statistical analyses were performed 
using Prism 9 (GraphPad Software, San Diego, CA, USA). Data was log 
transformed and significance was assessed by one-way ANOVA followed 
by unpaired Student’s t-test unless otherwise specified. IgG4-AID pa-
tients were compared to healthy controls and to IgG1-3-AID patients. p- 
values below 0.05 are considered statistically significant (* p < 0.05; ** 
p < 0.01; *** p < 0.005). 

2.7. Study approval 

This study was approved by the local medical ethics committee of the 
Leiden University Medical Centre (CME protocolnumber P17.011). All 
subjects provided written informed consent prior to participation and 
experiments were in accordance with the Declaration of Helsinki, 
including current revisions, and Good Clinical Practice guidelines. 

3. Results 

3.1. Study population 

To investigate the role of abberant B cell development or class 
switching in subclass predominated AID, the B cell compartments of four 
IgG4-AID were immunophenotyped and compared to two IgG1-3-AID 
and healthy donors. An overview of the demographics of the study 
population is given in Table 1. Median age at time of blood draw (p =
0.96, one-way ANOVA) and male:female ratio (p = 0.31, Pearson’s Х2 

test at Df = 6) were comparable between groups. The CASPR2 enceph-
alitis patient samples did not contain enough cells to perform a reliable 
in-depth phenotyping analysis (Sup. Fig. 3), therefore they were only 
included in the pre-germinal center analyses. One pemphigus patient 
sample was excluded due to an abnormally low total B cell count which 
can be attributed to the patient receiving rituximab infusion just before 
blood draw. In this study we aimed to include as many treatment naïve 
patients as possible or those only receiving low dosis of immunosup-
pression to limit a treatment bias. Several patients however received 
multiple treatments simultaneously. A complete description of the 
included study population is given in Sup. Table 1. 

3.2. Decreased numbers of immature and naïve B cells in patients with 
AID may be treatment related 

To investigate early B cell development stages we investigated the 
pre-germinal center (GC) B cells across all cohorts. The relative abun-
dance of immature (Fig. 1A) and naïve CD5+ (Fig. 1B) B cells was lower 
in MuSK MG and pemphigus patients compared to healthy controls and 
LEMS patients. Consequently, the relative abundance of naïve CD5- B 
cells was increased in these patients (Fig. 1C). LGI1 and CASPR2 en-
cephalitis patients show a similar trend, but due to the low number of 
patients per group this analysis lacked power. Treatment status may 
influence immature B cell numbers [61]. The observed reduction in cell 
numbers does not seem to be explained by the use of a single drug. 
Notably, the variance within the autoimmune disease groups was 
considerably larger than in healthy donors. 

3.3. B memory cell numbers are largely normal in IgG1-3-AID and IgG4- 
AID 

GC formation is essential for the development of a functional anti-
body repertoire and is iniated by B cell receptor signaling after antigen 
encounter [62,63]. Pre-GC B cells are mostly of the IgM or IgD isotype 
and have not undergone affinity maturation yet as both class switching 
and somatic hypermutation take place in the GC [63–65]. In the context 
of autoimmunity, post-GC antigen-experienced mature memory B cells 

Table 1 
Study population.   

Number of 
patients 
(excluded) 

Age 
(median, 
min/max) 

Sex 
(M: 
F) 

Immunosuppressive 
treatment (number of 
patients) 

MuSK 
Myasthenia 
Gravis 

11 (0) 59 
(27–79) 

4:7 Untreated (2), 
prednisone (4), rituximab 
(3), azathioprine (4), 
IVIG (1), cellcept (2), 
plasmaferesis (1), 
unknown (2) 

Pemphigus 10 (1) 58 
(26–75) 

5:4 Prednisone (8), 
clobetasol lotion (1) 
rituximab (2; 1 excluded) 

LGI1 
encephalitis 

2 (0) – (48–62) 1:1 Untreated (1), 
prednisone (1), IVIG (1) 

CASPR2 
encephalitis 

3 
(included in 
pre-GC 
only) 

65 
(57–69) 

3:0 Untreated (1), 
azathioprine (2) 

Lambert-Eaton 
Myasthenic 
Syndrome 

10 (0) 56 
(49–74) 

3:7 None (7), prednisone (1), 
azathioprine (1), IVIG 
(1), hydrocortisone (1) 

AChR 
Myasthenia 
Gravis 

10 (0) 63 
(18–79) 

7:3 None (5), prednisone (5), 
IVIG (1) 

Healthy 
control 

10 (0) 58 
(44–68) 

5:5 – 

p-value 
(column 
statistic) 

– 0.96 
(1–way 
ANOVA) 

0.31 
(Х2) 

–  
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and plasma cells are particularly of interest as they may harbor the 
autoreactive cell subsets. Overall total memory B cell levels are normal 
in all autoimmunity groups (Fig. 2A). The total number of switched 
(IgM-/D-CD27+) (Fig. 2B), double-negative (IgM-/D-CD27-) (Fig. 2C) 
and atypical (IgM-/D-CD21-CD27-) (Fig. 2D) memory B cells are similar 
to healthy donors. After stratification for B cell receptor (sub)class, total 
memory B cell (Fig. 2E), switched (Fig. 2F) and double-negative 
(Fig. 2G) memory B cell fractions are still similar between groups. 
Only in MuSK MG patients did we observe significantly lower atypical 
IgG4 B cells (IgM-/D-CD21-CD27-) compared to healthy controls and 
IgG1-3 AID patients (Fig. 2H). Surprisingly, atypical IgG4 memory B 
cells were increased in the IgG1-3 AID LEMS and AChR MG compared to 
IgG4-AID patients. Definitions of atypical B cells vary, as they are still 
relatively understudied and highly heterogenous [66,67]. Furthermore, 
their phenotype seems to be influenced by disease status [68]. Because 
the EuroFlow panel lacks deep specific markers for atypical B cells, such 
as CD11c, we defined them as class-switched, CD19+CD20+CD21-CD27- 

cells in accordance with Ambegaonkar et al. and Gao et al. [66,69]. 

3.4. IgG4-AID patients have 8-fold increased circulating mature plasma 
cell numbers 

Differentiating B cells can also commit to the plasma cell lineage 
upon leaving the GC [70]. These plasmablasts express CD27 and CD38 
and during maturation into plasma cells they gradually lose expression 
of CD20 and gain expression of CD138 [71–74]. Total plasma cell 
fractions were comparable in all groups (Fig. 3A). When stratified by B 
cell receptor (sub)class, we observe increases in IgG1+ and IgG3+

plasma cells, as well as a decrease in IgA1+ plasma cells only seen in the 
pemphigus patients (Fig. 3B). Only IgG3+ plasma cells are increased in 
MuSK MG patients. There were no changes in IgG4+ plasma cell frac-
tions for any of the IgG4-AID [72,73]. To investigate plasma cell 
maturation in IgG4-AID, we quantified three specific plasma cell 
maturation stages: CD20+CD138-, CD20-CD138- and CD20-CD138+. 
IgG1-3-AID patients show a slight reduction in CD20-CD138- interme-
diate plasma cells (Fig. 4A). When stratified by B cell receptor (sub)class 
this reduction is observed in IgG1+ and IgG2+ plasma cells (Fig. 4B-C). 
At the same time, IgG1+ and IgG2+ CD20+CD138- plasmablasts are 
increased in IgG1-3-AID patients. Interestingly, in all three IgG4-AID 
patient groups we observe increased fractions of the CD20-CD138+

fully matured plasma cells in comparison to both healthy controls and 
IgG1-3-AID (on average 8-fold increase, range 4-14; Fig. 4A). This in-
crease is not specific to IgG4+ plasma cells and instead is observed in 
IgG1+ (pemphigus only), IgG2+, IgA1+ and IgA2+ (pemphigus only) 
CD20-CD138+ plasma cells (Fig. 4D, F, G, respectively). 

Mature plasma cells of IgG4-AID patients seem to segregate in two 
populations. Immunosuppresive treatment may alter B cell compart-
ment composition. The acute nature of these autoimmune disease often 
requires patients to start immunomodulatory treatment quickly after 
diagnosis. The samples included in this study were prioritized on no or 
low amounts of immunosuppressive treatment. However, some patients 
did receive prednisone, rituximab or azathioprine (Sup. Table 1). To 
investigate if these treatments biased our analysis we plotted the data 
including the treatment (Sup. Figs. 4 and 5). The low numbers in each 
treatment category prevent statistical analysis, but this plot may suggest 
that untreated patients have higher fractions of mature plasma cells and 
that treatment may have lowered their numbers. 

To investigate whether plasma cell numbers and the increase in 
mature plasma cells in IgG4-AID may be related to disease severity in 
these patient, we performed simple linear regression analysis on the 
pemphigus and MuSK MG cohorts (Sup. Fig. 7). There was no evidence 
that these plasma cell numbers correlated with the disease severity 
status or autoantibody titer. 

3.5. Autoreactivity is not enriched in any of the circulating plasma cell 
maturation stages 

To investigate whether these CD20-CD138+ plasma cells of IgG4-AID 
patients include autoantibody-producing cells, we sorted CD20+CD138-, 
CD20-CD138- and CD20-CD138+ plasma cells of MuSK MG patients and 
compared them to healthy controls (Fig. 5A). We selected 3 untreated 
MuSK MG patients with relatively high numbers of mature plasma cells 
(marked in Fig. 5B and Sup. Table 1) for this experiment. After sorting, 
these populations were taken into culture to collect supernatants for 
screening on MuSK-specific antibodies [23]. Despite detecting total IgG 
in supernatants of all three plasma cell subsets (Fig. 5C), no MuSK- 
specific IgG was found in any of the subsets except for 1 patient in the 
CD20+CD138- population (Fig. 5D). 

4. Discussion 

To investigate whether predominance of IgG4 autoantibodies in 
IgG4-AID is caused by aberrations in B cell development or class 
switching, we compared the full peripheral blood B cell compartment of 
the IgG4-AID MuSK MG, pemphigus, LGI1 and CASPR2 encephalitis 
with the IgG1-3-AID AChR MG and LEMS, as well as healthy controls. 
Generally, B cell relative frequencies, and therefore also B cell devel-
opment, were normal across all autoimmune diseases tested. B cell 
numbers from our healthy donors matched well with previous reports 
[54]. IgG4+ memory B cell or IgG4+ plasma cell fractions were not 
increased in IgG4-AID patients. This suggests that IgG4-AID patients do 
not have aberrant B cell receptor class switching favoring an IgG4 
response. This is in line with studies showing that IgG4 serum levels are 
only mildly, if at all, increased in IgG4-AID patients [27–29]. General-
ized IgG4+ B cell fractions in IgG4-AID patients being comparable to 
healthy controls suggests that the IgG4 predominance in autoimmune 
responses is selective, antigen-specific and perhaps antigen-driven (see 
below). The HLA class II associations as well as the favorable response to 
rituximab across IgG4-AID, in combination with the data presented 
here, further support the hypothesis of an overarching immunopheno-
type across IgG4-AID. This data strengthens the idea that IgG4-AID 
represent a different disease entity from IgG4-related diseases (IgG4- 
RDs). IgG4-RD are hallmarked by increased numbers of circulating 
IgG4+ memory B cells and IgG4+ plasmablasts coupled to high IgG4 
serum titers and tissue fibrosis [75]. While various autoantibodies have 
been found in IgG4-RD patients, these are mainly of the IgG1 subclass 
and are not known to correlate consistently with the disease [76–78]. 
Serum IgG4 autoantibody titers do correlate with disease severity in 
IgG4-AID and cause disease upon passive transfer [25,26,79]. Despite 
the central role of IgG4 in both disease groups, IgG4-AID and IgG4-RDs 
should not be considered part of the same disease spectrum. 

IgG4-AID patients were found to have an overall increase in mature 
(CD20-CD138+) plasma cells, but this increase was not unique to IgG4+

cells. Increased mature plasma cells were previously reported in some 
[80], but not all [81] studies on AChR MG patients. We did not observe 
this in AChR MG patients included in this study. Plasma cell numbers 
decrease with age [54,82]. The differences between the above-
mentioned AChR MG studies may be explained by this confounding ef-
fect. We did not observe any age-dependent plasma cell decrease in our 
study population (Sup. Fig. 6). Disease activity may also reflect in 
plasma cell subset frequencies, however we did not observe a correlation 
with several disease activity markers QMG [83] and MG-ADL [84] 
scores for MuSK MG disease severity, autoantibody titer and clinician- 
reported disease severity for pemphigus (Sup. Fig. 7). Increased 
CD138+ plasma cells are a hallmark of several chronic AID [85,86] and 
both MuSK MG and pemphigus likely fit the same classification. Why the 
other AID did not show increased mature plasma cell numbers is not 
known. 

CD138+ plasma cells are usually contained within the bone marrow 
and are considered responsible for long term immunity [87]. This fully 
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Fig. 2. Memory B cell fractions of IgG4-AID and IgG1-3-AID patients. (A) Overall memory B cell (CD19+CD20+CD27+) counts normalized to total B cell counts, (B) 
switched memory B cell (IgM-/D-CD19+CD20+CD27+) counts normalized to total B cell counts, (C) double-negative B cell (IgM-/D-CD19+CD20+CD27-) counts 
normalized to total B cell counts, (F) atypical B cell (IgM-/D-CD19+CD20+CD21-CD27-) counts normalized to total B cell counts. (E), (F), (G), (H): Respectively total 
memory, switched, double-negative and atypical B cell counts normalized to total memory B cell counts and stratified by B cell receptor (sub)class. For all panels, 
IgG4-AID were compared to both healthy controls and IgG1-3-AID by one-way ANOVA followed by unpaired Student’s t-test (* p < 0.05; ** p < 0.01; *** p < 0.005). 
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matured plasma cell subset shows the highest levels of antibody secre-
tion. Why certain immune responses induce such mature responses is 
not fully understood, but has been reported at day 7 post-vaccination for 
common vaccines against pathogens such as mumps, tetanus, pertussis 
and measles [71,87–89]. In IgG4-AID these mature plasma cell levels 
may be increased as a result of: 1) a net increase in their numbers due to 
a change in antigen-independent maturation, 2) stronger migratory 
signals that may stimulate these cells to leave the bone marrow and 
become increased in PBMCs, possibly during migration towards sites 
with high target antigen availability, or, 3) these may contain the 
autoantibody producing plasma cell subsets which increase their overall 
numbers due to chronic activation. Although there was no selective 
increase of IgG4 subclass mature plasma cells, we tested the third hy-
pothesis by sorting the early, intermediate and mature plasma cell 
populations of MuSK MG patients and testing for autoantibody pro-
duction. We did not find evidence for autoreactivity in any of these 
subsets. Although we detected robust total IgG production in these 
cultures, we cannot exclude a technical limitation as sorting and sub-
sequently culturing these delicate plasma cell populations is challenging 
[90]. A role for these mature plasma cells in the autoimmune response 
may be considered unlikely due to the fact that they do not express 
CD20, but rituximab (anti-CD20 therapy) treatment is usually effective 
in IgG4-AID [30–33]. IgG4 responses are mostly mediated by short-lived 
plasma cells which do not migrate to the bone marrow [91]. Bone 
marrow holds many of the cell types that contribute to humoral im-
munity. PBMCs may therefore not accurately reflect aberrations present 
in the bone marrow compartment. Whether peripheral or bone marrow 
mature plasma cells play a role in the pathophysiology of IgG4-AID re-
quires further investigation. 

Pre-germinal center subsets of immature and naïve CD5+ B cells were 
decreased in IgG4-AID. Previous work has shown that immunosup-
pressants, especially azathioprine, selectively lower naïve CD5+ B cell 
counts, which may explain this observation [61]. Indeed, azathioprine 
treated patients show the most severe decrease in naïve CD5+ B cell 
numbers in our cohorts (Fig. 1). Other immunomodulatory treatments 
may also significantly bias immunophenotyping analysis. The severity of 
the IgG4-AID requiring rapid treatment combined with a poor response 
to symptomatic treatments made inclusion of untreated patients chal-
lenging [92,93]. We therefore aimed to include as much immunosup-
pressive treatment naïve patients for this study, but, due to the rarity of 

these samples, were compelled to also include some who received (low 
amounts of) immunosuppression. Although the included patients all 
experienced significant disease symptoms, we cannot fully exclude that 
in some patients the treatment regimens affected the B cell compart-
ment. Future immune profiling studies should aim to only include un-
treated individuals whenever possible. 

In the memory B cell compartment, we found no differences between 
any of the patient groups in both total cell abundance or when stratified 
for the switched (IgM-/D-CD27+) or double negative (IgM-/D-CD27-) 
subsets. We did observe a significant decrease of IgG4+ atypical (IgM-/ 
D-CD21-CD27-) memory B cells in MuSK MG patients when compared to 
healthy controls or IgG1-AID patients. Like IgG4 responses in general, 
atypical B cell counts increase with prolonged and repeated antigen 
exposure [94] and are associated with several autoimmune diseases 
[68,95–98]. However, we did not detect this in our study for the other 
AID. Notably, the EuroFlow panel used in our study lacks the markers for 
deep, specific identification of atypical B cell subsets, such as CD11c or 
FCRL5 [67,68]. Instead, we defined atypical B cells as class-switched, 
CD19+CD20+CD21-CD27- cells. Given the involvement of atypical B 
cells in autoimmunity, our findings may warrant further research into 
the involvement of atypical B cells in IgG4-AID. 

The question thus remains why these autoimmune diseases are 
characterized by predominant IgG4 autoantibody responses. One pos-
sibility is that the antigen itself directs the response towards IgG4. 
Certain antigens are known to drive IgG4 responses, such as bee venom 
and certain biologicals [99]. Specifically for pemphigus there is evi-
dence of desmoglein 1/3 autoantibody development following exposure 
to walnut or sand fly antigens [41–43]. There is no evidence yet for 
comparable molecular mimicry events in other IgG4-AID. However, 
given the strong correlation between these antigens and IgG4, molecular 
mimicry could be a plausible factor in the etiology of other IgG4-AID. 

5. Conclusion 

Aberrant B cell development or class switching is not likely to 
underly the predominance of IgG4 autoimmune responses in IgG4-AID. 
There are increased levels of mature CD20-CD138+ plasma cells in these 
patients, however this phenomenon was not (sub)class specific and we 
could not link this to production of autoreactive antibodies in MuSK MG. 
Taken together, these observations suggests that the IgG4 response in 

Fig. 3. Plasma cell fractions of IgG4-AID and IgG1-3-AID patients. (A) Overall plasma cell (CD19+CD20+/-CD138+/-) counts normalized to total B cell counts. (B) 
Plasma cell counts normalized to total plasma cell counts stratified per B cell receptor IgH (sub)class. For all panels, IgG4-AID were compared to both healthy controls 
and IgG1-3-AID by one-way ANOVA followed by unpaired Student’s t-test (* p < 0.05; ** p < 0.01; *** p < 0.005). 
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Fig. 4. Distribution of plasma cell maturation stages of IgG4-AID and IgG1-3-AID patients. (A) Overall plasma cell (CD19+CD20+/-CD138+/-) counts normalized to 
total B cell counts and subdivided for maturation status normalized to total plasma cell counts. The same plasma cell populations are shown for IgG1 (B), IgG2 (C), 
IgG3 (D), IgG4 (E), IgA1 (F) and IgA2 (G). For all panels, IgG4-AID were compared to both healthy controls and IgG1-3-AID by one-way ANOVA followed by unpaired 
Student’s t-test (* p < 0.05; ** p < 0.01; *** p < 0.005). 
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IgG4-AID patients has a different etiology. 
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Rheum. (2022), https://doi.org/10.1002/ART.42422. 

[86] C.M. Tipton, C.F. Fucile, J. Darce, A. Chida, T. Ichikawa, I. Gregoretti, S. Schieferl, 
J. Hom, S. Jenks, R.J. Feldman, R. Mehr, C. Wei, F.E.H. Lee, W.C. Cheung, A. 
F. Rosenberg, I. Sanz, Diversity, cellular origin and autoreactivity of antibody- 
secreting cell population expansions in acute systemic lupus erythematosus, Nat. 
Immunol. 16 (2015) 755–765, https://doi.org/10.1038/NI.3175. 

[87] J.L. Halliley, C.M. Tipton, J. Liesveld, A.F. Rosenberg, J. Darce, I.v. Gregoretti, 
L. Popova, D. Kaminiski, C.F. Fucile, I. Albizua, S. Kyu, K.Y. Chiang, K.T. Bradley, 
R. Burack, M. Slifka, E. Hammarlund, H. Wu, L. Zhao, E.E. Walsh, A.R. Falsey, T. 
D. Randall, W.C. Cheung, I. Sanz, F.E.H. Lee, Long-lived plasma cells are contained 
within the CD19-CD38hiCD138+ subset in human bone marrow, Immunity 43 
(2015) 132–145, https://doi.org/10.1016/j.immuni.2015.06.016. 

[88] A.M. Diks, P. Versteegen, C. Teodosio, R.J. Groenland, B. de Mooij, A.M. Buisman, 
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