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Abstract
Multiple Imputation (MI) is one of the most popular approaches to addressing missing values in questionnaires and surveys.
MI with multivariate imputation by chained equations (MICE) allows flexible imputation of many types of data. In MICE, for
each variable under imputation, the imputer needs to specify which variables should act as predictors in the imputation model.
The selection of these predictors is a difficult, but fundamental, step in the MI procedure, especially when there are many
variables in a data set. In this project, we explore the use of principal component regression (PCR) as a univariate imputation
method in the MICE algorithm to automatically address the many-variables problem that arises when imputing large social
science data. We compare different implementations of PCR-based MICE with a correlation-thresholding strategy through
two Monte Carlo simulation studies and a case study. We find the use of PCR on a variable-by-variable basis to perform best
and that it can perform closely to expertly designed imputation procedures.

Keywords Missing data · Multiple imputation · Principal component regression · High-dimensional data

Introduction

Missing values are a problem afflicting virtually all data sets
in the social and behavioral sciences. Multiple Imputation
(MI) is one of the most popular approaches to address the
issue of non-response. Although MI can treat essentially any
missing data problem, it was originally designed to impute
large surveys, especially when those surveys are used to cre-
ate publicly released data that many researchers will analyze
independently (Rubin, 1996). In this context, MI was envi-
sioned as being especially useful when the data collector (and
imputer) is distinguished from the ultimate user (or analyst).

The imputer’s main task is to define an imputation model
that supports analyses from many users. A well-designed
imputation model should include all the predictors of miss-
ingness present in the data, and it should incorporate all the
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features of the substantive analysis models that will be used
by the data analysts. If important predictors of missingness
are left out of the imputation model, the missing at random
(MAR) assumption is violated (Collins et al., 2001, p. 339).
If some features of the substantive analysis model of inter-
est do not appear in the imputation model, the two models
are said to be uncongenial, a situation that can invalidate
the inferential conclusions obtained after imputation (Meng,
1994; Little and Rubin, 2002, p. 218.)

To decide which predictors to include in the imputation
model, a commonly recommended strategy is to include
as many predictors as possible (i.e., the inclusive strategy,
Collins et al., 2001). However, the scale of modern social
surveys and data collection endeavors complicates the task
of selecting these predictors. Cross-sectional social surveys
(e.g., World values survey, Haerpfer et al., 2020; European
values study, EVS, 2020) commonly measure hundreds of
variables, and including all of these variables in the imputa-
tion model can lead to prohibitively long imputation times
and convergence failures (Van Buuren, 2018, p. 259). Social
and behavioral scientists also frequently work with longitu-
dinal surveys and panel studies (e.g., Panel Study of Income
Dynamics, McGonagle et al., 2012; LISS Panel, Scherpen-
zeel and Das, 2018), which can lead to data sets with many
more columns than rows. This high-dimensionality can result
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in singularity issues (Hastie et al., 2009, p. 46) when esti-
mating the imputation models. The imputer needs to address
this many-variables problem by thoroughly scanning all the
available variables to decide which of them should be used
in the imputation models. In this article, we explore the use
of principal component regression to automate the definition
of the imputation model by replacing a large number of pos-
sible predictors with a small subset of principal components
(PCs).

MICE and themany-variables problem

In social science research,multivariate imputationbychained
equation (MICEVanBuuren&Groothuis-Oudshoorn, 2011)
has been implemented in all major statistical software
(e.g., Stata, StataCorp, 2013; SPSS, IBM Corp., 2020; R,
VanBuuren andGroothuis-Oudshoorn, 2011) and is arguably
the most popular way to implement MI. MICE, also known
as fully conditional specification and sequential regression
imputation (Raghunathan et al., 2001), is an iterative algo-
rithm that obtains imputations from the implied multivariate
distribution of the missing data by sampling from a set of
univariate conditional densities. This algorithm requires the
definition of a conditionally specified univariate imputation
model for each variable under imputation. At every iteration,
each univariate imputation model is used to obtain replace-
ment values for themissing data points.When convergence is
reached, any sample from the univariate imputation models’
predictions represents a sample from the target multivariate
data distribution. These samples are used to define multiple
versions of the original data, with different plausible values
used to replace the original missing data. Any analysis model
of scientific interest can then be estimated on each of the
multiply imputed datasets. The estimates of the parameters
of interest in the analysis model are then pooled following
Rubin’s rules (Rubin, 1987, p. 76).

The definition of the univariate imputation models is a
fundamental step for the good performance of the MICE
procedure. For each variable under imputation, the imputer
needs to define a univariate imputation model. This task
involves two decisions:

1. Selecting the model form;
2. Selecting the predictors.

The first decision is usually guided simply by themeasure-
ment level of the variables under imputation. For example,
continuous variables can be imputed using a linear regres-
sion model, while binary variables can be imputed using
logistic regression. The second decision requires choosing
the variables to be included as predictors in the imputa-
tion model. In general, it is advisable to adopt an inclusive
strategy (Collins et al., 2001), meaning including as many

predictors as possible in the univariate imputation models.
Using as much information as possible from the data leads
to multiple imputations that have minimal bias and maximal
efficiency (Collins et al., 2001; Meng, 1994). Furthermore,
including more predictors in the univariate imputation mod-
els makes the MAR assumption more plausible (Collins et
al., 2001, p. 339). Finally, if the imputation model omits
variables that are part of the analysis model that will be esti-
mated on the imputed data, the analysis model’s parameter
estimates might be biased (Enders, 2010, p. 229), and the
attendant confidence intervals might be too wide (Little &
Rubin, 2002, p. 218). As a result, including more predic-
tors in the imputation models increases the range of analysis
models that can be estimated with a given set of imputations
(Meng, 1994).

When a data set consists of only a few variables (i.e.,
tens of variables), it may be feasible to include all of these
variables in all the univariate imputation models. However,
standard imputation methods face computational limitations
in the presence of a large number of predictors (i.e., hun-
dreds). For example,MICE using Bayesian imputation under
the normal linear model (Van Buuren, 2018, p. 68) requires
the number of predictors (p) in the univariate imputation
model to be smaller than the number of observed cases (n)
to avoid computational problems with the system of equa-
tions (James et al., 2013, p. 203). Even when the number of
predictors is smaller than the number of observations, includ-
ing many predictors in the imputation models can increase
the chances of collinearity issues (Van Buuren, 2018, pp.
167–170) and can bias the analysis model parameter esti-
mates (Hardt et al., 2012).

The type of data social and behavioral scientists workwith
today often contains many variables. For example, a single
wave of the World Values Survey (Haerpfer et al., 2020)
contains more than 300 variables, and a single wave of the
European Values Study (EVS, 2020) contains around 250
variables. Running a MICE algorithm on this type of data,
without selecting a subset of variables to use as predictors in
the univariate imputation models, requires the algorithm to
estimate regression models with hundreds of predictors for
each variable under imputation. With such a specification,
the algorithm will be extremely slow, and the imputations
will usually be poor. However, selecting a smaller subset
of predictors for each univariate imputation model can be a
daunting task. Choosingwhich predictors should be included
in the univariate imputation models that constitute a run of
the MICE algorithm entails a considerable degree of subjec-
tive judgment and requires both statistical and substantive
expertise to achieve satisfactory results.

Van Buuren (2018, pp. 270–271) provides a summary
of different strategies an expert imputer can employ when
designing imputationmodels for social science data sets with
many variables. The imputer can:
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1. Remove constants and collinear variables.Collinear pre-
dictors will lead to unstable imputation model parameter
estimates. Using one of a set of collinear predictors
reduces the size of the predictor space for imputation
models without losing any important information.

2. Evaluate statistics describing the connection between
variables in the data. For example, one can compute
the proportion of usable cases for imputing a variable
based on another (i.e., inbound statistic Van Buuren,
2018, p.108). The more cases that are usable, the more
connected the two variables are. The influx-outflux coef-
ficients (Van Buuren, 2018, pp. 109–111) provide overall
measures of how each variable connects to the rest of the
data. In general, variables with high influx and outflux
are preferred as predictors in an imputation model.

3. Apply a correlation-thresholding strategy.Only variables
that are associated with the variables under imputation
can be effective predictors in the imputation models. As
a result, an intuitive strategy to select a small number
of important predictors is to include only variables that
correlate with the ones under imputation more strongly
than a chosen threshold. However, the optimal threshold
is not obvious. While choosing a low threshold might
lead to selecting too many variables, choosing a high
threshold might lead to excluding important predictors.

These strategies are not guaranteed to avoid over-
parameterization of the univariate imputation models, and
more complex (combinations of) strategies are often needed.
The nature of some social science data sets offers a few other
opportunities to reduce the dimensionality of the imputa-
tion models. For example, with longitudinal data sets, the
imputer might decide to use only the first measurement of the
same construct when imputing other variables, or she may
use the total score in place of the many items constituting a
scale.Additionally, an imputer can use high-dimensional pre-
diction methods as univariate imputation models. Shrinkage
methods, non-parametric prediction algorithms, and dimen-
sion reduction techniques can all be incorporated into MICE
to reduce the complexity of the predictor selection step.

Zhao et al. (2016) and Deng et al. (2016) proposed the use
of lasso regression (Tibshirani, 1996) within MICE. Lasso is
a shrinkage technique that can provide a data-driven selection
of important predictors for each imputation model. Deci-
sion trees are a popular class of semi-parametric prediction
algorithms that can accommodate many predictor variables
and represent complex, nonlinear relations among the vari-
ables (Burgette & Reiter, 2010; Doove et al., 2014; Shah
et al., 2014). Decision trees have already been integrated
into popular imputation software (e.g., the R package mice,
Van Buuren & Groothuis-Oudshoorn, 2011). Howard et al.
(2015) proposed using principal component analysis (PCA;

Jolliffe, 2002, pp.1–6) to reduce a set of auxiliary variables
into a small set of principal components (PCs). By extracting
PCs from the (potentially numerous) auxiliary variables, this
method can summarize the information contained in the aux-
iliary variables with just a few component scores. These PCs
can then be used as predictors in a standard, low-dimensional
application of MICE.

The approaches described above have the potential to
automatically address many of the issues caused by hav-
ing too many variables available as potential imputation
model predictors. By default, high-dimensional prediction
methods avoid collinearity issues and hence stabilize imputa-
tion model estimation. Furthermore, many high-dimensional
methods offer some form of variable selection or dimension-
ality reduction that can reduce the burden ofmaking predictor
choices. Finally, algorithms that incorporate some form of
regularization or dimension reduction allow the imputer to
include more predictors in their imputation model, thereby
increasing the chances of satisfying the MAR assumption.

A bespoke application of the MICE algorithm driven by
subject-matter expertise may lead to better imputations than
using automatic, data-driven approaches (though, aswe illus-
trate in “Case study: fireworks disaster data” section, this
need not always be the case). However, expert knowledge
is not always available for every project that could benefit
from imputation. Furthermore, high-dimensional prediction
models do not need to be the sole solution to the many-
variables imputation problem. These methods can always be
combinedwith expert knowledge to further improve the qual-
ity of imputation.

Costantini et al. (2022) compared a wide range of high-
dimensional MI approaches, including the use of (Bayesian)
lasso, ridge regression, random forests, correlation-
thresholding, and PCA within the mice algorithm. They
found that using frequentist lasso to select the imputation
model predictors and using PCA to reduce the dimensionality
of the imputationmodels produced the best results. ThePCA-
based approach was the strongest overall performer, though.
Incorporating PCA into the MICE algorithm consistently
led to small estimation bias and close-to-nominal confi-
dence interval coverage for the analysis model parameters.
However, that study considered only a single implementa-
tion of PCA that was applied in a limited set of conditions.
In this paper, we extend the findings of Costantini et al.
(2022) by further investigating the use of PCA within the
MICE algorithm. We use Monte Carlo simulation studies
and a real-data case study to compare the performance of
three alternativePCA-basedMI approaches and evaluate how
certain data characteristics impact that performance. Two
of these PCA-based MI approaches have been previously
described in the literature. We propose a novel third method
here.
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Principal component analysis for MICE

PCAis adimensionality reduction techniquebywhich a set of
variables is summarizedwith a smaller number of PCs. These
PCs are defined such that they explain the largest possible
proportion of the original data’s variance, given the number
of PCs. PCA can be used in conjunction with many statistical
techniques, and its use in regression analysis has been exten-
sive (e.g., De Jong & Kiers, 1992; Park et al., 2021; Reiss &
Ogden, 2007; Rosipal et al., 2001). In particular, one of the
best-known uses of PCA in multiple regression is principal
component regression (PCR; Jolliffe, 2002, pp. 168–173),
where PCs act as predictors in a multiple regression model.

Standard implementations of the MICE algorithm cycle
through a sequence of univariate imputationmodels (i.e., one
model for each incomplete variable). Any, or all, of these uni-
variate imputation models can be replaced by PCR. We refer
to this use of PCR in conjunction with MICE as MI-PCR.
The MI-PCR method is a broad approach that can be imple-
mented in many different ways. For example, a single set of
PCs could be estimated before running MICE. These PCs
could then be used in a subsequent run of MICE as impu-
tation model predictors. Alternatively, a new PCA could be
run within every iteration of MICE to produce updated PCs
that incorporate the information from the most recent impu-
tations. These updated PCs could then be used as predictors
to generate the imputations for that single iteration. In this
report, we primarily wish to investigate how different imple-
mentations of MI-PCR impact imputation quality.

We also explore how the number of components used as
predictors in MI-PCR influences imputation quality. Based
on their analysis of data with a simple unidimensional latent
structure, Howard et al. (2015) proposed retaining only the
first PC1. However, medical and social science data are
frequently characterized by complex latent structures that
are unlikely to be well-summarized by a single component.
Therefore, evaluating the impact of the number of PCs is a
secondary purpose of the present study. Finally, as a tertiary
focus, we also explore how key characteristics of the data
affect MI-PCR. In particular, we evaluate how the measure-
ment level of the potential predictors and their strengths of
association impact the performance of MI-PCR.

In this manuscript, we present the results of two Monte
Carlo simulation studies through which we explore the per-
formance of MI-PCR. We assess this performance based on
the estimationbias, confidence intervalwidth, and confidence
interval coverage (see “Analysis and outcome measures”
section for details). We also apply the different implementa-

1 Since the first component explained 40% of the variance in their sim-
ulations, Howard et al. (2015) alternatively recommended using the
minimum number of components necessary to explain 40% of the vari-
ance in the auxiliary variables.

tions of MI-PCR to the Fireworks Disaster data (i.e., a real
clinical psychology data set that has previously been used
to demonstrate high-dimensional imputation problems, Van
Buuren, 2018, p. 313). Inwhat follows,wedescribe howPCA
can be used within the MICE algorithm (“MI-PCR: MICE
using PCR” section). We then discuss the simulation stud-
ies and the case study in “Simulation study 1”, “Simulation
study 2:More variables”, and “Case study: fireworks disaster
data” section, respectively. We provide a general discussion
in “General discussion” section, and share somefinal remarks
on the selection of the number of components in “Some
final remarks on the number of components” section. We
discuss limitations and future directions in “Limitations and
future directions” section. Finally,we state our conclusions in
“Conclusions” section.

MI-PCR: MICE using PCR

Here we briefly describe theMICE algorithm, PCA, and how
PCA can be used in conjunction with MICE. We use the
following notation. Scalars are denoted by lowercase letters
in light typeface (non-bold).Vectors andmatrices are denoted
by bold lowercase and bold uppercase letters, respectively.
We use the superscripts obs and mis to refer to the observed
and missing elements in a vector. For a given data set, we
refer to the variables that are part of the researcher’s model
of scientific interest (e.g., the linear regression used to answer
a research question) as the analysis model variables.We refer
to all other variables as potential auxiliary variables for the
imputation models. We use the subscripts am and av to refer
to variables that are part of either the analysis model or the
set of potential auxiliary variables, respectively.

Multivariate imputation by chained equations

Consider an n × p data set X . Its columns, x1, . . . , x p, rep-
resent variables, and the rows represent observational units
(e.g., people participating in a social survey). Assume the
first t columns of X have missing values. For each partially
observed x j , with j = 1, . . . , t , the imputer defines a uni-
variate imputation model:

f (x j |X− j , θ j ), (1)

where X− j is the collection of variables in X excluding x j ,
and θ j is a vector of imputation model parameters. Model
(1) is usually a generalized linear model chosen according to
the measurement level of x j . The MICE algorithm starts
with replacing the missing values in each x j with initial
guesses. Then, at every iteration, each variable is imputed by
its univariate imputation model. First, the imputation model
parameters are drawn from their fully conditional posterior
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distributions, and then imputations are drawn from the pos-
terior predictive distribution of x j .

For the j th variable under imputation at iteration k, the
algorithm draws from the following distributions:

θ
(k)
j ∼ f (θ j ) f (xobsj |X(k)

− j , θ j ), (2)

xmis(k)
j ∼ f (xmis

j |X(k)
− j , θ

(k)
j ) (3)

Equation 2 is the fully conditional posterior distribution
defined as the product of f (θ j ), a prior distribution for

θ j , and f (xobsj |X(k)
− j , θ j ), the likelihood of observing xobsj

under the imputation model for x j . Equation 3 is the
posterior predictive distribution from which updates of
the imputations are drawn. In both equations, X(k)

− j is

(x(k)
1 , . . . , x(k)

j−1, x
(k−1)
j+1 , . . . , x(k−1)

p ), meaning that at all
times the most recently imputed values of all variables are
used to impute other variables.

Each iteration comprises one complete cycle through all t
variables under imputation. After a sufficient number of iter-
ations, the algorithm converges to a stable equilibrium, and
the imputations represent samples from the target multivari-
ate distribution. With this process, one can generate as many
imputed data sets as desired. Finally, the analysis model is
estimated on each imputed data set, and the parameter esti-
mates are pooled using Rubin’s rules (Rubin, 1987).

Principal component analysis

PCA finds a low(er)-dimensional representation of X with
minimal loss of information.We refer to this low-dimensional
representation as the n × q matrix Z, where q < p. The
columns of Z are called the principal components (PCs) of
X . Thefirst PCof X2 is the linear combination of the columns
of X with the largest variance:

z1 = x1w11 + x2w12 + · · · + x pw1p = Xw1, (4)

with w1 being the p × 1 vector of weights w11, . . . , w1p.
The second principal component (z2) is defined by finding
the vector of weights w2 giving the linear combination of
x1, . . . , x p with maximal variance out of all the linear com-
binations that are uncorrelated with z1. Every subsequent
column of Z can be understood in the sameway: for example,
z3 is the linear combination of x1, . . . , x p that has maximal
variance out of all the linear combinations that are uncorre-
lated with z1 and z2. As a result, all PCs are uncorrelated by
definition and every subsequent PC has a lower variance than
the preceding one. We can write the relationship between all

2 We follow the common practice of assuming that the columns of X
are mean-centered and scaled to have a variance of 1.

the PCs and X in matrix notation:

Z = XW , (5)

where W is a p × q matrix of weights, with columns
w1, . . . ,wq . Equation 5 also allows us to understand PCA
as the process of projecting the original data from a p-
dimensional space to a q-dimensional space. The weight
vectors w1, . . . ,wq define the directions in which the n
observations of x1, . . . , x p are projected. The projected val-
ues are the principal component scores Z.

Principal component regression

PCR replaces the p predictors of a regression model with
q PCs extracted from those predictors. Given the data X ,
consider a standard regression model where the j th variable
is regressed on the other columns in the data:

x j = X− jβ + ε, (6)

where x j is a n × 1 vector of dependent variable scores, β is
a (p − 1) × 1 vector of p − 1 regression coefficients, and ε

is a n × 1 vector of independent normally distributed errors.
With PCR we use the PCs of X− j in place of X− j in the
regression model so that Eq. 6 can be rewritten as:

x j = Zγ + ε, (7)

where γ is a q×1 vector of regression coefficients. The lower
dimensionality of Z compared to X− j , and the independence
of its columns, allow Eq. 7 to address the computational lim-
itations of Eq. 6 in the presence of many predictors.

MI-PCR

Standard MICE formulations are based on univariate impu-
tation models that suffer from the same computational
limitations that we discussed for multiple regression. In gen-
eral, the idea of MI-PCR is to use Eq. 7 as the univariate
imputation model for every variable under imputation. By
doing so, we aim to address the many-variables problem by
summarising the imputation models’ predictors with just a
few PCs. However, this idea can be implemented in many
ways. PCA can be used at different stages of the MICE algo-
rithm, and different sets of variables can be summarized by
the PCs. In the following sections, we describe the three
implementations evaluated in this study.

MICE with PCA on auxiliary variables

The most straightforward way to use PCA within MICE is
to compute a single set of PCs based only on the potential
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auxiliary variables. In general, potential auxiliary variables
include predictors of missingness, variables related to the
ones under imputation, and variables that are useless for
imputation. To reduce the dimensionality of imputationmod-
els, an expert imputer would usually examine these variables
to locate and exclude members of the last group from the
imputation models. PCA can be used as an alternative,
data-driven pre-processing step to project all the poten-
tial auxiliary variables onto a lower-dimensional space and
bypass the need to select which variables to use as predictors
in the imputation models. We refer to this approach as MICE
with PCA on the auxiliary variables (MI-PCR-AUX).

InMI-PCR-AUX, the univariate imputationmodels use as
predictors the raw version of any variable that is part of the
analysis model, and the principal components summarizing
the potential auxiliary variables. We can write the univariate
imputation model as:

f (x j |Xam,− j , Zav, θ j ), (8)

where Xam,− j is the set of analysis model variables except
the one under imputation, and Zav is the set of PCs estimated
from the set of potential auxiliary variables Xav . This use of
PCA was proposed by Howard et al. (2015).

The strength of MI-PCR-AUX is using the raw analysis
model variables (not filtered via the PCA) while including as
much auxiliary information as possible (filtered via thePCA).
However, MI-PCR-AUX requires knowledge of the analysis
model before imputation, and the possible presence of miss-
ing values in the potential auxiliary variables needs to be
addressed.Howard et al. (2015) suggested using single impu-
tation to create a complete set of potential auxiliary variables,
but implementing this idea is not necessarily straightforward.
All the obstacles to defining the univariate imputationmodels
previously discussed still arise during this single imputation
procedure.

MICE with PCA on all variables

One way to relax the requirements of knowing the analysis
model before running the imputation procedure is to extract
PCs from all available variables—including the ones under
imputation—and then use only these PCs as predictors in the
imputationmodels. This approach (hereafter,MI-PCR-ALL)
is implemented in the R package PcAux (Lang et al., 2018).
The univariate imputation model for this approach can be
written as:

f (x j |Z, θ j ), (9)

where Z is the set of PCs estimated on X . Ideally, MI-
PCR-ALL supports a wide range of analysis models, as the
information on every available variable is summarized by the

PCA procedure and included in all the imputation models. In
theory, the imputer could even augment X before extracting
the PCs with every desired interaction and polynomial term
that might be present in an analysis model.

As noted above, PCA cannot be performed in the presence
of missing values. Yet, to implementMI-PCR-ALL, wemust
perform PCA on all the variables in X—even the ones tar-
geted by imputation. So, we must first (temporarily) treat the
missing data to allow the PC extraction. Our implementation
of MI-PCR-ALL begins by filling in the missing values with
a single imputation and extracting PCs from this completed
data set. It is important to note that these imputations will
not be used for statistical inference. So, the attenuated stan-
dard errors known to result from single imputation are not
a concern. As long as the imputations are well-constructed
and consistent with the distribution of the original variables,
inference based on data imputed with MI-PCR-ALL should
not be negatively impacted. Nevertheless, the performance of
MI-PCR-ALL is tied to the quality of this first single impu-
tation.

In MI-PCR-ALL, the PCs are the only predictors used in
the univariate imputation models and do not have missing
values. Therefore, a single iteration of the MICE algorithm
is sufficient. Computationally, this is an advantage as there
is no need to perform any burn-in iterations.

MI with PCA on a variable-by-variable basis

The most flexible way to incorporate PCA into MICE is to
extract PCs at every iteration. When imputing x j at the kth

iteration, PCs can be estimated from X(k)
− j and used as pre-

dictors in the univariate imputation model. Each univariate
imputation model can then be defined as:

f (x j |Z(k)
− j , θ j ), (10)

where Z(k)
− j is the matrix storing the PC scores estimated on

X(k)
− j . We refer to this approach as MI-PCR-VBV because of

the variable-by-variable use of PCA.
As with MI-PCR-ALL, MI-PCR-VBV does not require

knowledge of the analysis model prior to imputation and it
can support a wide range of analysis models. Moreover, by
extracting PCs at every iteration from variables with themost
recently imputed values, MI-PCR-VBV addresses missing
values in one step, without requiring a pre-processing single
imputation procedure. The disadvantage of MI-PCR-VBV is
in the higher computational intensity relative to both MI-
PCR-AUX and MI-PCR-ALL. Performing PCA on large
social surveys involves demanding matrix operations. MI-
PCR-VBV requires repeating these intensive manipulations
for every variable under imputation and for every iteration of
the MICE algorithm.
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Simulation study 1

We investigated the relative performance of the methods
described above with aMonte Carlo simulation study. In par-
ticular, we were interested in assessing the estimation bias,
confidence interval width, and confidence interval coverage
of statistics estimated from the imputed data. The purpose
of this study was to evaluate these statistical properties of
MI-PCR in several settings that differed in the proportion of
noise variables present in the data, the measurement level of
the variables, and the number of PCs used in the imputation
models.

When defining the univariate imputation model, an expert
imputer would usually exclude all variables that are weakly
associated with the variables under imputation. We refer to
these weak predictors of the imputation targets as noise vari-
ables. When using MI-PCR, noise variables will contribute
to the construction of the PCs as much as the important pre-
dictors of the variables under imputation. Consequently, PCs
extracted from data that contain a large proportion of noise
variables may be more weakly associated with the variables
under imputation. We expect that the presence of a larger
proportion of noise variables will negatively impact the per-
formance ofMI-PCR (i.e., larger bias, lower efficiency, larger
deviation from nominal coverage). Additionally, in real sur-
vey applications, theoretical constructs of interest are often
measured with discrete items such as Likert scales. The num-
ber of categories with which information is recorded in a
variable can impact on how well Z represents X . Finally,
each of the implementations ofMI-PCR described above can
be used with different numbers of PCs. Howard et al. (2015)
suggested that using the first PC may be sufficient. However,
they used a set of strongly associated potential auxiliary vari-
ables measuring a single latent factor. When the underlying
correlation structure is more complex (i.e., more than one
latent factor, different correlation levels) using only the first
PC is likely to result in a poor representation of the data and
poor imputation performance. In what follows we outline the
simulation study procedure, discuss the experimental factors
in detail, and report the results.

Method

The simulation study procedure involved five steps:

1. Data generation: We simulated S = 500 data sets from
a confirmatory factor analysis model, following the pro-
cedure described in “Data generation” section.

2. Missing data imposition: We imposed missing values on
four target items in each generated data set, following
the procedure described in “Missing data imposition”
section.

3. Imputation: For each incomplete data set, we applied
each of the different imputation methods to generate d
multiply imputed data sets, as described in “Imputation
procedures” section.

4. Analysis: We used the d imputed data sets to estimate
the means, variances, covariances, and correlations of
the four items with missing values, and we pooled the
estimates according toRubin’s rules (Rubin, 1986, p. 76).

5. Evaluation: We assessed the performance of each
imputation method by computing the bias, confidence
interval width, and confidence interval coverage of the
above statistics, as described in “Analysis and outcome
measures” section.

Data generation

For each replication, we generated a 500 × 56 matrix of
fully observed data X . We fixed the sample size to 500
observations to generate data sets that would have statisti-
cal properties similar to large social science data sets without
needlessly increasing the computational demands of the sim-
ulation study. Each data set was generated based on the
following confirmatory factor analysis model:

X = F�′ + E, (11)

where F is a 500 × 7 matrix of latent variables scores, �

is a 56 × 7 matrix of factor loadings, �′ is its transpose,
and E is a 500 × 56 matrix of measurement errors. The
dimensionality of the data resembles that of short-scale ques-
tionnaires used in the social sciences. For example, consider
the NEO Five-Factor Inventory (Costa & McCrae, 2008,
NEO-FFI), which measures the Big Five personality (i.e.,
Extraversion, Agreeableness, Conscientiousness, Emotional
Stability/Neuroticism, and Openness to Experience) with 12
items each, for a total of 5 × 12 = 60 items.

The factor loading matrix � described a simple measure-
ment structure (i.e., a structure wherein every item loads on a
single factor, Bollen, 1989, p.234). The factor loadings were
set to the fixed value of λ = 0.85 to represent a plausible,
but reasonably high, item-scale association. We generated
data with relatively high factor loadings because we wanted
to mitigate the impact of measurement error on our findings
without resorting to implausibly precise data. We sampled
the latent scores for seven factors from a multivariate normal
distribution with mean 0 and covariance matrix �:

� =

⎡
⎢⎢⎣

1 ψ12 . . . ψ17

ψ21 1 . . . ψ27

. . . . . . . . . . . .

ψ71 ψ72 . . . 1

⎤
⎥⎥⎦ . (12)
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The matrix of measurement errors E was sampled from a
multivariate normal distribution with mean 0 and covariance
matrix �. The off-diagonal elements of � were set to 0 to
reflect uncorrelated errors, while the diagonal elements were
specified as 1−λ2 to give the simulated items unit variances.
After sampling, data were rescaled to have approximately a
mean of 5 and a variance of 6.5, which are common values
for Likert items in social surveys measured on a 10-point
scale.

Each data matrix generated with the procedure described
above was partitioned into three sub-matrices:

X = (T , M, A) (13)

where:

• T is an n×4 matrix consisting of the first four indicators
(x1, . . . , x4) of the first latent variable f 1. We imposed
missing data on these items as described in “Missing data
imposition” section.

• M was an n × 4 matrix consisting of the other four
items (x5, . . . , x8) measuring the first latent variable.
These items were used to define the probability of non-
response for the items in T as described in “Missing data
imposition” section.

• Awas an n×48 matrix consisting of 48 items measuring
the the remaining six latent variables f 2, . . . , f 7.

In generating the data, we varied two design factors:
the number of categories into which the potential auxil-
iary variables were coarsened (nCat = ∞, 7, 5, 3, 2), and
the proportion of noise variables (pn = 0, 0.33, 0.67, 1).
We crossed these factors in a 5(nCat) × 4(pn) factorial
design. The variables in M and A represented the pool of
potential auxiliary variables. We discretized these variables
according to the nCat factor to study the impact of data
coarseness on the performance of the imputation methods.
The nCat = ∞ level represents the uncoarsened, continu-
ous variables. Although the data were coarsened, we applied
the PCA underlying the MI-PCR methods to the Pearson
correlation matrix. We recognize that we could have used
polychoric, polyserial, or tetrachoric correlations, yet we
purposefully chose not to do so. In the context of imputa-
tion, using alternative correlation computations impacts the
imputations only through the predictive performance of PCR.
Kolenikov and Angeles (2009) showed that estimating PCA
based on the polychoric correlation instead of the Pearson
correlation did not improve the predictive performance of
PCR when applied to reduce the dimensionality of a set
of ordinal predictors. Furthermore, extracting PCs based on
these alternative correlations ismore computationally expen-
sive than using Pearson correlations. Considering the lack of
expected advantages and the higher computational load of

these alternatives, we decided to treat the ordinal data as
numeric and estimate the PCA from Pearson correlations.

We used the pn factor to define the proportion of noise
variables in A. That is, the proportion of items in A that are
uncorrelated with the items in T . We controlled this factor
at the latent variable level through the values of ψ jk , the
latent correlation in Eq. 12. When pn = 0.33, two out of
the six latent variables indicated by the items in A had a low
correlation (0.1) with f 1, and the remaining four had a high
correlation (0.7) with f 1. As a result, one-third of the items
in A were also lowly correlated with the items in T and M.
When pn = 0, all latent variables were correlated at 0.7, so
every variable in A correlated highly with the variables in T
and M. When pn = 1, all latent variables were correlated
at 0.1, so all variables in A were trivially correlated with the
variables in T and M.

Missing data imposition

We imposed missing values in T by first generating an indi-
cator of missingness (δ) for each column of T . When the
indicator took value 0, we left the original sampled value;
when the indicator took value 1, we replaced the sampled
value with a missing value. The indicator was produced
by sampling from Bernoulli distributions with probabilities
defined based on the following logit model:

logi t(δ = 1) = β0 + Mβ, (14)

where β0 is an intercept parameter, and β is a vector of slope
parameters. Because only the variables in M were used to
predict missingness in T , the probability of nonresponse for
a variable never depended on the variable itself. We defined
the value of β0 to align the missing values with the positive
tail of Mβ, which is a mechanism known as right-tail MAR
(Schouten & Vink, 2021).

All slopes in β were fixed to 1, while the value of β0

was chosen with an optimization algorithm that minimized
the difference between the actual and desired proportion of
missing values3. We fixed the proportion of missing values
for each variable to 0.3, which represents a realistic—but
reasonably large—value for social science data. There are no
universal guidelines on which values to choose for the pro-
portion ofmissing caseswhen conducting simulation studies.
Even efforts to standardise the methodology behind missing
data simulation studies struggle with providing general rec-
ommendations for this choice (Oberman &Vink, 2023). The
only concrete advice is to tie the decision to the research
question and reality (Graham, 2012, p. 231). We selected the

3 The pseudo R-squared for the logistic regression of the missing value
indicator on the predictors of missingness was approximately 14%. The
AUC for the logistic regression was approximately 0.74.
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proportion of missing cases to be plausible for social science
data yet large enough to create substantial problems if the
missing values were poorly treated4.

Missingness was imposed using M in its original con-
tinuous form, even in those conditions where the potential
auxiliary variables were coarsened (i.e., nCat �= ∞). We
made this decision tomaintain the strengthof theMARmech-
anism as consistently as possible across conditions.Using the
coarsened versions of M to impose missing values would
have generated a weaker MAR relation (closer to missing
completely at random, MCAR) for conditions with lower
numbers of categories. At the same time, the solution we
adopted is also imperfect. For a lower number of categories,
the data available to use as predictors in the imputation mod-
els were worse representations of the actualMAR predictors.
As a result, onemight argue that, for the conditionswith fewer
categories, imputation was closer to a missing not at ran-
dom (MNAR) situation rather than MAR. When designing
the study we reasoned that making imputation more difficult
(closer toMNAR) rather than easier (closer toMCAR)would
lead to more informative results.

Imputation procedures

After generating the data and imposingmissing values, every
variable in T was imputedwith the three versions ofMI-PCR
described above:

• MI-PCR-AUX. The PCs used in the univariate imputa-
tion model for the j th variable were estimated from the
set of potential auxiliary variables (the variables in M
and A). For every variable under imputation, the other
variables in T were also used as predictors.

• MI-PCR-ALL. The PCs used in the univariate imputa-
tion model for the j th variable were estimated from the
entire data set (T , M, A). An initial single imputation
step was required to obtain a complete version of T from
which estimate the PCs. We implemented this imputa-
tion by running a single chain of the mice algorithm for
20 iterations. We selected the predictors for this single
imputation model via a correlation-thresholding strategy
whereby all variables correlating at least r = 0.3 with
the imputation targets were used as predictors.

• MI-PCR-VBV.The PCs used in the univariate imputation
model for the j th variable were estimated from all other
variables (T− j , M, A), at every iteration.

We also imputed the missing data using two non-PCR
methods to act as additional points of comparison:

4 We report plots showing the impact of the response mechanism we
used on complete case analysis in the supplementary material.

• MI with correlation-based thresholding (MI-QP). As a
pragmatic point of comparison, this method used the
quickpred function from theRpackagemice (VanBuuren
& Groothuis-Oudshoorn, 2011) to select the predictors
for the univariate imputation models via the correlation-
based thresholding strategy described by Van Buuren et
al. (1999, pp. 687–688). To implement this approach,
we selected only those predictors that correlated with
the imputation targets (or their associated missingness
indicators) at r = 0.1 or higher. For every j th variable
under imputation, quickpred selected predictors from the
remaining variables (T− j , M, A).

• MI with oracle properties (MI-OR). This method rep-
resented the idealized, hypothetical situation wherein
the imputer knows the optimal imputation model. The
univariate imputation models included the remaining
analysis model variables (which were also the other
imputation targets, in this case) and the predictors that
were used to impose missingness (T− j , M). For this
method, we used our perfect knowledge of the miss-
ing data mechanism to define which variables should
be predictors in the imputation models. As such, MI-
OR represents an optimal point of comparison but is not
replicable in practice.

To explore how the number of PCs used in MI-PCR
impacts performance, we implemented the MI-PCR meth-
ods with different numbers of components. We implemented
each method with fixed numbers of components (i.e., 1, 2,
. . . , 10, 20, 25) as well as the maximum number of com-
ponents possible (which varied by method). In PCA, the
maximum number of components cannot exceed the num-
ber of rows or columns of the data, so this number depends
on the specific MI-PCR implementation:

• For MI-PCR-AUX, the maximum number of PCs was
56− 4 = 52, the number of variables in matrices M and
A.

• For MI-PCR-ALL, the maximum was 56, the total num-
ber of variables in the data set.

• For MI-PCR-VBV, the maximum was 56 − 1 = 55, the
number of variables available as predictors for each uni-
variate imputation model.

Using the maximum number of components addresses pos-
sible collinearity among the imputation model predictors
without performing any dimensionality reduction.

Every imputation algorithm was used to obtain five
imputed data sets, the default in themiceRpackage. All start-
ing imputations were created by a simple random draw from
the data. We set the number of iterations to 20 after checking
convergence for a subset of replications. We evaluated con-
vergence by plotting themeans and standard deviations of the
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imputed variables. For more information on this approach,
see Costantini et al. (2022). Convergence plots are provided
in the supplementary material5.

Analysis and outcomemeasures

For each of the S = 500 simulated data sets, we imputed the
variables in T with the different methods described above,
andwepooled the estimates of theirmeans, variances, covari-
ances, and correlations6 across themultiple imputations. The
pooled estimates were stored and used to assess the perfor-
mance of the imputation methods. For a given parameter φ

(e.g., mean of x1, correlation between x1 and x2), we used
the absolute percent relative bias (PRB) to quantify the esti-
mation bias introduced by the imputation procedure:

PRB =
∣∣∣∣∣

¯̂
φ − φ

φ

∣∣∣∣∣ × 100 (15)

where φ is the true value of the focal parameter defined as∑S
s=1 φ̂

f ull
s /S, with φ

f ull
s being the parameter estimate for

the sth repetition computed on the original fully observed
data. The averaged focal parameter estimate under a given

missing data treatment was computed as ¯̂
φ = ∑S

s=1 φ̂s/S,
with φ̂s being the estimate obtained from the treated incom-
plete data in the sth simulated data set. Following Muthén
et al. (1987), we considered PRB > 10 as indicative of prob-
lematic estimation bias.

To measure the statistical efficiency of the imputation
methods we computed the average width of the confidence
intervals (CIW).

C IW =
∑S

s=1 Ĉ I
upper
s − Ĉ I

lower
s

S
, (16)

with Ĉ I
upper
s and Ĉ I

lower
s being the upper and lower bounds

of the estimated confidence interval for the sth repetition.
In general, narrower CIWs indicate higher efficiency. How-
ever, narrower CIWs are not preferred if they come at the
expense of good confidence interval coverage (CIC) of the
true parameter values. CIC is the proportion of confidence
intervals that contain the true value of the parameter, across
the S simulated data sets:

C IC =
∑S

s=1 I (φ ∈ Ĉ I s)

S
, (17)

5 The interested reader can interact with the trace plots through an
interactive results dashboard that can be downloaded and installed as
an R package (Costantini, 2022)
6 We applied Fisher’s z transformation to the correlation coefficients
before pooling.We then back-transformed the pooled correlation coeffi-
cient estimates with the inverse Fisher’s z transformation (Van Buuren,
2018, p. 146).

where Ĉ I s is the confidence interval of the parameter esti-
mate φ̂s in the sth replication, and I (.) is the indicator
function that returns 1 if the argument is true and 0 otherwise.
CIC depends on both the bias and the CIW for a parameter
estimate. An imputation method with good coverage should
result in CICs greater than or equal to the nominal rate. For
95% CIs, CIC below 0.9 is usually considered problematic
(e.g., Van Buuren, 2018, p. 52; Collins et al., 2001, p. 340)
as it implies inflated Type I error rates. High CIC (e.g., 0.99)
implies inflated Type II error rates.

Results

Bias

In Fig. 1, we report the PRB for the correlation coefficient
between x1 and x2—two of the four imputed items in T—in
an illustrative selection of conditions. In this report, we focus
on the estimates of the correlation as this was the hardest
parameter to recover (i.e., the performance differences were
most pronounced). In the supplementarymaterial7, we report
the same figures for the mean, variance, and covariance. In
what follows, we write the number of components used for
PCR-based methods in subscript, so that MI-PCR-AUX(1)

refers to the use of MI-PCR-AUX with a single component.
Similarly, we use the subscript to discuss the performance of
PCR-based methods using a range of PCs. For example, we
refer to the performance of MI-PCR-VBV using 7 to 10 PCs
as MI-PCR-VBV(7:10).

MI-PCR-AUX resulted in acceptable bias in all condi-
tions (PRB < 10.) The bias resulting from MI-PCR-AUX
depended on the number of PCs retained as predictors. The
bias obtained by MI-PCR-AUX(1:6) was around a PRB of
2.5 for all the levels of nCat and pn. MI-PCR-AUX(7:10)

resulted in PRBs below 2.5 for nCat = ∞ and 5, while the
bias increased to approximately 2.5 for nCat = 2, for both
pn = 0 and 1.

Independently of the coarseness of the data, MI-PCR-
VBV(1:6) resulted in PRBs between 10 and 20, and above
20, for pn = 0 and 1, respectively. MI-PCR-VBV(7:10) led
to PRBs below 2.5 for nCat = ∞ and 5, and to PRBs around
5 for nCat = 2. These values were not affected by the vary-
ing proportion of noise variables.

In the condition with no noise variables, MI-PCR-ALL(3)

already returned PRB smaller than 10 for nCat = ∞ and 5,
while for nCat = 2 MI-PCR-ALL needed at least 4 compo-
nents to return acceptable bias. In the conditionswith pn = 1,
the number of components needed by MI-PCR-ALL to pro-
duce PRB < 10 were 6, 5, and 4, for nCat ∞, 5, and 2,

7 The interested reader can choose which results to plot with an inter-
active Shiny app that can be downloaded and installed as an R package
(Costantini, 2022)
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Fig. 1 Percent relative bias for the correlation between x1 and x2 in
simulation study 1. pn is the proportion of noise variables in A. npc is
the number of PCs used by a given imputation method. The X-axis of
each histogram distinguishes three levels of coarsening for the potential

auxiliary variables (nCat = (∞, 5, 2)). For each MI-PCR method, we
reported a different vertical bar for each PRB obtained using a different
number of PCs (from 1 to 10, from left to right)

respectively. As with the other MI-PCR methods, MI-PCR-
ALL(7:10) resulted in low bias (PRB < 2.5) for both pn = 0
and 1. With pn = 1 and nCat = 2, MI-PCR-ALL(7:10)

resulted in lower bias compared to other levels of nCat , and
in the smallest bias across all methods.

MI-QP resulted in acceptable bias in all conditions (PRB
< 10.) The PRB obtained with this method increased as
a function of the coarseness of the data: the smallest PRB
was obtained for nCat = ∞ and the highest was obtained
for nCat = 2. Furthermore, the bias obtained by MI-QP
was smaller for pn = 1 than for pn = 0. Finally, MI-OR
produced PRBs below 2.5 in all conditions and, while this
performance was not affected by the proportion of noise vari-
ables, the bias slightly increased as the data were coarsened
to fewer categories.

Confidence intervals

CICs for the correlation coefficient between x1 and x2 are
plotted in Fig. 2. As a general trend, the fewer categories
used for discretization, the higher the deviation from nominal
coverage was. MI-PCR-ALL was the only exception to this
trend, showing lower deviations of CIC from 0.95 for lower
numbers of categories.

MI-PCR-AUX(1:6) resulted in small deviations from nom-
inal coverage (CIC ≈ 0.9) for pn = 0 and in clear
under-coverage (CIC < 0.9) for pn = 1. These trends
were constant across the different levels of nCat . MI-PCR-
AUX(7:10) resulted in acceptable coverage (CIC between
0.9 and 0.95) independently of pn, but smaller numbers
of categories led to more deviation from nominal cover-
age. MI-PCR-VBV(1:6) led to severe under-coverage (CIC
< 0.7) in all data conditions. MI-PCR-VBV(7:10) resulted
in close to nominal coverage, with a tendency toward over-
coverage (CIC > 0.95), in all conditions except the ones
with nCat = 2, when it resulted in severe under-coverage
(CIC< 0.8), for both pn = 0 and 1.MI-PCR-ALL(1:6) led to
CIC< 0.9 in all data conditions, expect for MI-PCR-ALL(6)

which produced CIC between 0.9 and 0.95 for pn = 0 and
nCat = ∞ and 5. MI-PCR-ALL(7:10) showed more severe
under-coverage than the other MI-PCR methods in all con-
ditions except for nCat = 2, for both pn = 0 or 1. Finally,
MI-QP resulted in approximately nominal coverage only in
the condition with pn = 1 and nCat = ∞, and MI-OR
resulted in under-coverage only for nCat = 2.

Figure 3 shows the average CIW for the correlation
between x1 and x2. All MI-PCR methods using at least
seven components produced narrower confidence intervals
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Fig. 2 Confidence interval coverage for the correlation between x1 and
x2 in simulation study 1. pn is the proportion of noise variables in A.
npc is the number of PCs used by a given imputation method. The
X-axis of each histogram distinguishes three levels of coarsening for

the potential auxiliary variables (nCat = (∞, 5, 2)). For eachMI-PCR
method, we reported a different vertical bar for each CIC obtained using
a different number of PCs (from 1 to 10, from left to right)
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Fig. 3 Average confidence interval width for the correlation between x1 and x2 in simulation study 1. nCat is the number of categories for the
items in matrices M and A. pn is the proportion of noise variables in A
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than the intervals obtained with MI-QP. MI-PCR-ALL(7:10)

resulted in the narrowest confidence intervals, followed by
MI-PCR-VBV(7:10), and MI-PCR-AUX(7:10). However, the
confidence intervals obtained with MI-PCR-ALL and MI-
PCR-VBV almost doubled in size when using fewer than
seven components.MI-PCR-AUX(1:6) was less influenced by
the number of PCs, providing only slightly wider confidence
intervals than MI-PCR-AUX(7:10). MI-PCR-VBV(7:10) and
MI-PCR-AUX(7:10) resulted in approximately the same CIW
independently of the coarseness of the data and the proportion
of noise variables. For pn = 1,MI-PCR-ALL(1:6) resulted in
narrower confidence intervals when data were dichotomized
compared to when they were not, while MI-PCR-ALL(7:10)

resulted in approximately the same CIW, independently of
the data coarseness.

Discussion

Themost important factor influencing the performance of the
MI-PCR methods was the number of components used. This
result followed avery clear, dichotomous pattern: using fewer
than seven components led to poor performance across all
outcome measures for all MI-PCR methods, whereas using
more than seven components universally producedmuch bet-
ter performance. As we generated the data based on seven
latent variables, this result suggests that researchers using
MI-PCR must employ at least as many components as there
are latent variables in the data-generatingmodel. Thankfully,
except for MI-PCR-ALL, our results suggest no substantial
consequences for using more components than necessary.

For all methods except MI-PCR-ALL, bias was higher
when the potential auxiliary variables were discretized to
fewer categories. This pattern probably reflects the loss of
observed information caused by discretization. As a result
of discretization, the association between variables is atten-
uated, which makes every auxiliary variable less useful as
an imputation model predictor. Furthermore, missing values
were imposed on the target variables based on the continu-
ous variables in set M. When the variables in set M were
discretized, they became poorer representations of the actual
MAR predictors. As a result, even MI-OR follows a trend of
increasing bias for decreasing numbers of categories. The
discretization of the potential auxiliary variables did not
seem to impact the performance of MI-PCR more than other
approaches.

MI-QP was strongly influenced by the proportion of noise
variables in the set of potential auxiliary variables. The quick-
pred approach is most effective when the proportion of noise
variable is high, because there is a clear distinction between
variables that are correlated with the targets of imputation
and those that are not. However, the method loses its efficacy
as more variables correlate strongly with the imputation tar-
gets, because a large number of nearly collinear predictors

end up selected into the model. For the most part, the pro-
portion of noise variables did not have a strong impact on the
performance of theMI-PCRmethods. A higher proportion of
noisy variables resulted in higher bias when fewer than seven
components were selected. However, when enough PCswere
retained, the MI-PCR methods’ performances were indistin-
guishable across different proportions of noise variables.

The variable-by-variable approach seems to be the most
promising way of using PCA within MICE. Although some-
times outperformed by MI-PCR-AUX (e.g., when using
fewer than seven components or when the potential auxil-
iary variables were dichotomized), MI-PCR-VBV produced
low bias, good coverage, and its competitive imputation per-
formance was also accompanied by a few other desirable
features. Compared to the other MI-PCR approaches, when
MI-PCR-VBV deviated from nominal coverage, it showed a
tendency toward over-coverage. An imputationmethod char-
acterized by over-coverage will inflate type II error rates,
making inferences more conservative than they should be.
Although this is undesirable, it is usually less worrisome than
the problem of under-coverage, which inflates type I error
rates. Furthermore, MI-PCR-VBV does not rely on an initial
single imputation step to obtain complete data for extracting
PCs. By performing PCA at every iteration, there is no need
to pre-impute the variables from which PCs are extracted.
Finally, MI-PCR-VBV does not require knowledge of the
analysis model, while MI-PCR-AUX needs this knowledge
to distinguish which variables in the data should be summa-
rized by PCs and which variables should be used in their raw
form. At the same time, MI-PCR-VBV can still incorporate
important features of the analysis model, if these features
are known before imputation. Analysis model variables can
be included in any desired functional form as predictors in
the imputation models and excluded from the PC estima-
tion. In such a scenario, MI-PCR-VBV would supplement
each imputation model with PCs representing information
that would have otherwise been ignored by the imputation
procedure.

Simulation study 2: More variables

Psychological self-report inventories and large social surveys
can have hundreds of variables. For example, the NEO-PR-I
(Costa Jr. et al., 1991) measures the same 5 personality fac-
tors as theNEO-FFI but uses 48 (instead of 12) items to define
each factor. Consequently, this single personality inventory
comprises 240 items. To evaluate the extent to which the
results from the above simulation study generalize to prob-
lems with more variables, we replicated simulation study
1 with a larger number of potential auxiliary variables. A
larger pool of potential auxiliary variables could cause prob-
lems in a couple of ways. If more auxiliary variables bring
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a larger number of important imputation predictors, there
is an increased risk of collinearity among these predictors.
Likewise, if more auxiliary variables produce more noise
variables, the added noise could reduce the effectiveness of
PCA as a dimensionality reduction technique (at least, with
respect to the task of generating imputation model predic-
tors).

In the second simulation study, we were only interested
in exploring whether the relative performance of the meth-
ods studied was impacted by a larger dimensionality of the
auxiliary set. We did not want to confound the compari-
son by altering the nature of the missing data problem, as
well. Hence, we increased the size of the auxiliary set, A, by
increasing the number of itemsmeasuring the latent variables
in A from 8 to 39. We kept the number of items measuring
the first latent variable equal to 8 to keep the missing data
problemcomparable between the two simulation studies (i.e.,
same number of items under imputation, same number of
MAR predictors, same correlation between variables with
missing values and MAR predictors). As a result, the data
sets we generated for the second simulation study comprised
8 + 6 × 39 = 242 variables. Otherwise, we used the same

simulation study procedure described in “Method” section
to generate the data, impose missing values, perform impu-
tations, and analyze the results.

In Figs. 4, 5, and 6, we reported the PRB, CIC, and CIW,
respectively, for the correlation coefficient between x1 and
x2 in an illustrative selection of conditions. The same over-
all patterns described in the first simulation study were still
present. However, a few key differences did arise:

• In simulation study 1—with only 56 total predictors—
MI-PCR-ALL and MI-PCR-VBV showed a gradual
improvement in performance as more components were
used. However, with p = 242, both methods showed
a persistently high bias (PRB > 10) and low coverage
(CIC < 0.7) when using fewer than 7 components. Both
methods also demonstrated a more sudden improvement
in performance at the 7th PC mark.

• The performance ofMI-QP suffered relativelymore from
decreasing proportions of noise variables. In both stud-
ies, it was clear that MI-QP led to lower bias and better
CIC when only a few predictors were correlated with the
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Fig. 4 Percent relative bias for the correlation between x1 and x2 in
simulation study 2. pn is the proportion of noise variables in A. npc is
the number of PCs used by a given imputation method. The X-axis of
each histogram distinguishes three levels of coarsening for the potential

auxiliary variables (nCat = (∞, 5, 2)). For each MI-PCR method, we
reported a different vertical bar for each PRB obtained using a different
number of PCs (from 1 to 10, from left to right)
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variables under imputation (i.e., for higher values of pn.)
However, in simulation study 2, the increased collinear-
ity due to pn = 0, resulted in extreme bias (PRB > 20)
and under-coverage of the true parameter values (CIC
< 0.7).

In Fig. 7 we reported the average imputation time in sec-
onds for all imputation methods. MI-PCR-AUX was the
fastest, taking just a few seconds to run through thefive chains
and 20 iterations of the mice algorithm. MI-PCR-VBV was
the PCA-based method taking the longest time, with an aver-
age imputation time of around 40 seconds. MI-PCR-ALL
and MI-QP were impacted by the number of noise variables
in the data. Both took less than 10 seconds in the presence
of many noise variables. However, for pn = 0, they took
around 20 and 80 seconds, respectively. Both methods also
took a few seconds less when the predictor data had been
dichotomized.

Case study: fireworks disaster data

To understand the performance of MI-PCR in real data, we
compared the performance of the three MI-PCR implemen-
tations described above to an imputation carried out by an
imputation expert on a real-world data set.VanBuuren (2018,
pp. 315–317) gives a detaileddescriptionof howhe solved the

many-variables problem for the Fireworks’ disaster data set
(FDD).OnMay13, 2000, the explosionof afireworks storage
facility in Enschede, the Netherlands, killed 23 people and
injured approximately 950 others. Many people residing in
the neighborhood of the explosion experienced signs of post-
traumatic stress disorder (PTSD). The FDD was collected as
part of a randomized controlled trial carried out in the after-
math of the explosion. The data were collected to assess the
efficacy of two treatments of anxiety-related disorders in chil-
dren, in terms of reducing PTSD symptoms over time. The
main outcomemeasure for this analysis was the PTSDReac-
tion Index (PTSD-RI), measured as reported by the child and
by the parent, at three different time points. Fifty-two chil-
dren were assigned either Eye Movement Desensitisation
and Reprocessing (EMDR) treatment or Cognitive Behav-
ioral Therapy (CBT). Of the 65 variables recorded in the data
set, 49 were incomplete. The percentage of missing values
on each variable ranged from 3% to 50%. A complete-case
analysiswould have resulted in analyzing only eight cases. To
avoid the unacceptable reduction in sample size and biased
parameter estimates, a principled missing data treatment was
needed.

The major difficulty in imputing these data was the large
number of predictors relative to the sample size (p =
65, n = 52). To avoid over-parameterized imputation mod-
els, the imputation models’ predictors needed to be carefully
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Fig. 7 Average imputation time in simulation study 2. nCat is the number of categories for the items in M and A. pn is the proportion of noise
variables in A
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selected. Van Buuren employed two main strategies to
address the high-dimensional nature of the data:

• Use only the first measurement of the outcomes as pre-
dictors in the imputation models of other outcomes. This
choice reduced the number of predictors by two-thirds.

• Use the total scores of scales as predictors in the univari-
ate imputation models of other variables, instead of the
individual scale items. Thiswas done using passive impu-
tation (Van Buuren & Oudshoorn, 2000, p. 12; Eekhout
et al., 2018, pp. 1129–1130).

Each of the three MI-PCR strategies considered in this
report is suitable to address the large number of potential
imputation model predictors in the FDD. The advantage of
MI-PCR is the automatic way in which large numbers of
predictors can be accommodated. Through this case study,
we wish to illustrate the degree to which MI-PCR can pro-
duce results similar to those obtained by an expertly designed
imputation procedure. There are several reasons why the
FDD is ideally suited to this purpose:

• The data have key characteristics of social and behavioral
science data sets (e.g., composite scales, longitudinal
data).

• The code Van Buuren used to perform the MI procedure
is freely accessible.8

• The data are freely accessible through the mice R pack-
age (Van Buuren & Groothuis-Oudshoorn, 2011).

• The reasoning behind the expert’s MI procedure is well
documented (Van Buuren, 2018, p. 313).

Method

The main analysis reported in Van Buuren (2018, p. 313)
focused on the effect of treatment on the mean PTSD-RI
scores (both child-reported and parent-reported) across three
time points. Therefore, six variables were analyzed: the
PTSD-RI total scores reported by children and their parents
at three different time points. We imputed these six analysis
variables with the threeMI-PCR procedures evaluated above
and compared the pooled means obtained thereby with the
results of Van Buuren’s imputation procedure. To evaluate
the variability of the imputation methods, we repeated this
procedure with 20 different random number seeds.

The results of the simulation study suggested thatMI-PCR
performs poorly if an insufficient number of components is
extracted, whereas its performance is not severely impacted
by selecting too many components. Therefore, to choose the
number of PCs in this case study, we decided to use the max-
imum number of PCs allowed by each imputation procedure.

8 https://github.com/stefvanbuuren/fimdbook/blob/master/R/fimd.R

The two variables with the most missing values had 25 cases
observed. Hence, at most 24 predictors could be used for
each imputation model, and we could use at most 24 PCs.

We specifiedMI-PCR-AUX to impute the six items under
analysis. In each of the six univariate imputationmodels,MI-
PCR-AUX used as predictors the other five variables under
imputation and the first 19 PCs estimated from the remaining
auxiliary columns (5 + 19 = 24). We performed single impu-
tation on the potential auxiliary variables to allow the PC
estimation. We used predictive mean matching as univariate
imputation method and kept the imputations obtained after
20 iterations. The predictors for the imputation models were
selected by correlation-thresholding, with the threshold set
to 0.1.

TheMI-PCR-ALLmethod used the first 24 PCs estimated
on the entire data set—including the 6 analysis variables—as
the sole predictors in each of the six univariate imputation
models. The same single imputation specification used for
MI-PCR-AUX was used here to generate the complete data
from which to estimate the PCs. Finally, MI-PCR-VBV was
performedby extracting 24 components fromall the variables
not under imputation for each univariate imputation model,
at every iteration of the mice algorithm.

All starting imputations were created by a simple random
draw from the data. Convergence of the pre-processing single
imputation used for MI-PCR-AUX and MI-PCR-ALL was
assessedwith the trace plots of the imputedvalues’means and
standard deviations produced by the plot.mids() func-
tion from the mice package. We assessed the convergence
of all the imputation methods with the same technique. We
considered all methods to have converged within 20 itera-
tions. The plots of convergence trends can be viewed in the
supplementary material.

Results

Figures 8 and 9 report the (pooled) mean level of PTSD-RI
over the three time points after imputation with the following
approaches:

• Expert’s imputation models;
• The three MI-PCR approaches;
• Default run ofmicewithout any pre-processing and using
all default argument values.

While all methods led to similar trends, variability of
the imputations was noticeably higher for MI-PCR-AUX,
MI-PCR-ALL, and the default run of mice. At every time
point, the 20 different pooledmeans of the analyzed variables
spread over a wider range of values compared to the expert’s
imputation. This pattern held for both outcome variables,
but it was most conspicuous for the child-reported PTSD-
RI. MI-PCR-AUX and MI-PCR-ALL had lower imputation
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precision than even the default run of mice in this setup.
The performance of MI-PCR-VBV was on par with that of
the expert’s imputation: both methods produced comparable
location and spread of the outcome variables pooled means.

General discussion

In this study, we were interested in understanding the per-
formance of the various MI-PCR methods as a function
of the number of components used, the coarseness of the
predictor data, and the amount of noise in the data. Our
findings suggest that MI-PCR performs well across a wide
range of conditions, and MI-PCR-VBV shows the best per-
formance of the three implementations we evaluated. So long
as the number of PCs met or exceeded the true number
of latent variables, MI-PCR-VBV outperformed the stan-
dard correlation-thresholding approach (MI-QP) on all the
metrics we considered. Furthermore, the good imputation
performance of MI-PCR-VBV comes with some desirable
features that are missing from the other MI-PCR methods.
First, MI-PCR-VBV does not rely on knowledge of the anal-
ysis model, although such knowledge is easily incorporated
when available. Second, MI-PCR-VBV does not require
a pre-processing single imputation step. Third, when MI-
PCR-VBV resulted in deviations from nominal coverage,
it tended towards over-coverage. Finally, in the case study,
MI-PCR-VBV was able to automatically obtain results that
were essentially indistinguishable from those produced by
an expertly designed imputation model.

The good performance of MI-PCR-VBV comes at the
expense of computation time. Performing PCA for every
variable under imputation at every iteration of the MICE
algorithm requires a much larger number of computations
than the other two MI-PCR methods which leads to a dras-
tically higher imputation time. As the number of variables
to impute increases, computation time might become exces-
sive. This makes the MI-PCR-VBV strategy more suitable
for broad and intermediate imputation scopes (Van Buuren,
2018, p.46), where imputation is performed once by an
institution with adequate computational resources, and then
delivered to a collection of researchers to be used in their
analysis.

Some final remarks on the number of
components

In practice, imputers using MI-PCR need a decision rule
to select the number of components. Using the same num-
ber of components as the total available variables, as we
did in “Case study: fireworks disaster data”, is not a viable
solution for data sets with hundreds of variables (or more).

Fortunately, a variety of decision rules have been proposed
for this purpose (Zwick&Velicer, 1986). Based on the results
described in “Simulation study 1” and “Simulation study 2:
More variables” sections, we can infer that any decision rule
that selects the “true” number of components, ormore, would
produce satisfactory results with MI-PCA.

To gain some preliminary insight into how these decision
rules could impact the performance of MI-PCA, we applied
four non-graphical decision rules9 described by Raîche et al.
(2013) to 500 data sets generated according to the procedure
described in “Simulation study 1” and “Simulation study 2:
More variables” section. Specifically, we implemented the
optimal coordinates index (oc), the acceleration factor (af ),
the Kaiser criterion (kc), and the parallel analysis criterion
(pa) using both the fully observed, discretized data and the
complete cases available after imposing the missing values.

In Table 1, we report the lowest, the highest, and the
median number of principal components retained with each
decision rule across the 500 data sets. For each decision rule,
the number of PCs selected when analyzing the complete
cases was always equal to or higher than the number of PCs
selectedwhen analyzing the fully observed data. The oc crite-
rion demonstrated mixed performance. The median number
of PCs selected by ocwas always at least 7, but the minimum
number of components selected was less than 7 in all condi-
tions. The kc and pa decision rules selected between 7 and
15 PCs when applied to data sets with P = 56 columns and
between 7 and 39 PCs when applied to data with P = 242
columns. Hence, kc and pa appear to be safe options when
considering our desideratum of selecting no fewer than the
true number of components. In line with results presented
by Raîche et al. (2013), af underestimated the number of
PCs to retain and always selected fewer than 7 PCs. Based on
these results, we can tentatively suggest applying the Kaiser
criterion or the parallel analysis criterion to the complete case
as a viable method of selecting the number of PCs to use in
MI-PCA.

Limitations and future directions

In the preceding section, we provide some preliminary
insight into how four non-graphical PC enumerationmethods
might affect the performance ofMI-PCR, but our results sup-
port only tentative recommendations. Future research should
focus specifically on the issue of PC enumeration in MI-
PCA and thoroughly explore which rule is most suitable for
the imputation task. Furthermore, the unsupervised nature of
PCA introduces an additional dimension into the decision
calculus. The MI-PCR implementations we compared here

9 We used the implementation of these rules provided by the ‘nScree()’
function in the R package nFactor (Raiche, 2010).
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Table 1 The lowest, the highest, and the median number of principal components selected by four non-graphical decision rules across 500 data
sets generated according to the simulation design described in “Simulation study 1” and “Simulation study 2: More variables” sections

data Fully observed Complete cases
pn 0 0.67 1 0 0.67 1

rule oc af kc pa oc af kc pa oc af kc pa oc af kc pa oc af kc pa oc af kc pa

P = 56

nCat = ∞ highest 7 1 7 7 7 1 7 7 7 7 7 7 7 1 7 7 7 7 7 7 7 7 7 7

median 7 1 7 7 7 1 7 7 7 7 7 7 7 1 7 7 7 1 7 7 7 7 7 7

lowest 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 2 1 7 7 1 1 7 7

nCat = 5 highest 7 1 7 7 7 1 7 7 7 7 7 7 8 1 8 8 8 7 8 8 7 7 7 7

median 7 1 7 7 7 1 7 7 7 7 7 7 7 1 7 7 7 1 7 7 7 7 7 7

lowest 1 1 7 7 2 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7

nCat = 2 highest 8 1 8 8 8 1 8 8 8 7 8 8 14 1 15 15 13 7 13 13 13 7 13 13

median 7 1 7 7 7 1 7 7 7 7 7 7 11 1 12 12 10 1 11 11 10 7 10 10

lowest 1 1 7 7 1 1 7 7 1 1 7 7 1 1 9 9 1 1 8 8 1 1 8 8

P = 242

nCat = ∞ highest 7 1 7 7 7 5 7 7 7 6 7 7 35 1 35 35 28 6 29 29 25 6 25 25

median 7 1 7 7 7 1 7 7 7 1 7 7 21 1 25 25 19 1 21 21 18 6 19 19

lowest 1 1 7 7 2 1 7 7 1 1 7 7 2 1 14 14 2 1 14 14 1 1 14 14

nCat = 5 highest 7 1 7 7 7 5 7 7 7 6 7 7 39 1 39 39 32 6 32 32 27 6 31 31

median 7 1 7 7 7 1 7 7 7 1 7 7 23 1 28 28 22 1 24 24 20 6 22 22

lowest 1 1 7 7 2 1 7 7 1 1 7 7 3 1 19 19 3 1 17 17 3 1 16 16

nCat = 2 highest 13 1 13 13 13 5 13 13 13 6 13 13 41 1 41 41 35 6 39 39 34 6 34 34

median 10 1 10 10 10 5 10 10 10 1 10 10 29 1 34 34 28 5 30 30 26 6 29 29

lowest 1 1 8 8 2 1 8 8 1 1 8 8 1 1 26 26 1 1 24 24 3 1 22 22

The decision rules reported are the optimal coordinates index (oc), the acceleration factor (a f ) the Kaiser criterion (kc), and the parallel analysis
criterion (pa). The table distinguishes between the results obtained when applying the four decision rules to two types of data (the originally
fully observed data and the complete cases), data with two different dimensionalities (P = 56, 242), data with different discretization levels
(nCat = ∞, 5, 2), and data with different proportions of noise variables (pn = 0, 0.67, 1). Numbers below 7 are reported in bold

extract PCs without considering the relationship between the
imputation model’s predictors and outcome. Consequently,
theMI-PCRmethods we evaluated could, potentially, extract
components that explain relatively little variance in the vari-
ables under imputation, regardless of how many PCs are
retained. To mitigate this possibility, MI-PCR-VBV could
be implemented with some form of supervision, such as
supervised PCA (Bair et al., 2006) or principal covariates
regression (De Jong & Kiers, 1992). In addition to avoid-
ing poorly predictive PCs, a supervised version of MI-PCR
might require fewer components to obtain the same imputa-
tion quality. We are currently exploring these possibilities in
a follow-up to the study reported here.

It is common for social scientists to analyze non-normal
data such as ordinal rating scales (e.g., any item in the NEO-
FFI and NEO-PI-R) or skewed social variables (e.g., items
affected by extreme response styles). The results of this study
apply directly to situations wherein the non-normal vari-
ables are the targets of imputation. MI-PCR only adjusts
the right-hand-side of the univariate imputation models. So,

our approach can be directly applied to univariate impu-
tation models for non-normal data (e.g., Bayesian logistic
and polytomous regression models, predictive mean match-
ing). However, using PCA to extract components from a set
of non-normal predictors requires more careful considera-
tion. In general, as a tool to summarize variation on a set
of variables, PCA does not need to meet rigorous distribu-
tional assumptions (Jolliffe, 2002, pp. 19,49,338). However,
when the variables in X deviate from normality because of
the presence of extreme cases, robust PCA can be used to
reduce the impact these observations have on the estima-
tion of the PCs. For example, Croux and Ruiz-Gazen (2005)
and Hubert et al. (2009) proposed alternative PCA compu-
tations that are robust to outliers and asymmetry. Similarly,
PCAMIX (Chavent et al., 2012; Kiers, 1991) can be used
in the presence of a mix of continuous, ordinal, and nomi-
nal variables. Luckily, MI-PCR has a modular structure, and
the classical PCA estimation we applied in this study can
be replaced by any alternative PCA approach. These alterna-
tives could improve the performance of MI-PCR when it is
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applied to non-normal data, but we do not expect this change
to have an impact on the relative performances of the different
MI-PCR implementations we evaluated here. Any possible
improvement in the quality of the PCs would impact each
implementation equally, so our overall conclusions would be
unlikely to change. Nevertheless, it would be interesting to
evaluate the extent of the improvement that could be achieved
by incorporating more robust versions of PCA.

The missing data mechanism studied in this paper is
relatively simple. The probability of missing values on T
depends, through a logit function, on the linear combination
of the predictors M. However, interactions and polynomial
terms might be present in the linear component of Eq. 14.
MI-PCR can address this complexity by augmenting the set
of variables from which PCs are extracted with all the inter-
action and polynomial terms of interest. To what extent this
strategy is feasible and effective remains to be explored. Fur-
thermore, while we focused on right tail MAR, Schouten
and Vink (2021) and Collins et al. (2001) have shown that
the ‘shape’ of the missing data mechanism has an impact on
the severity of a missing data problem. In the worst case, we
expect the different MAR shapes to impact the absolute per-
formance of theMI-PCRmethods compared in this study, but
not their relative performance. Future research could address
this issue in detail.

Multilevel data provide a similar avenue for future
research. Social science data are often characterized by
clusters of observations. Imputation procedures that ignore
this feature of the data can lead to biased estimates as
imputations are generatedwithout considering cluster depen-
dencies (Reiter et al., 2006). One way to address this issue is
to include dummy variables representing the cluster effects
in the imputation models (fixed effect imputation, Enders
et al., 2016). However, this approach has the disadvantage
of increasing the dimensionality of the design matrix to
an impractical extent. Using PCs to reduce dimensionality
might be a good way to address grouping in the data without
incurring estimation difficulties of sophisticated multilevel
imputation procedures.

Finally, the good performance of MI-PCR-ALL in the
conditions with dichotomized auxiliary variables remains
something of a mystery. We did not expect this pattern, and
we do not have an explanation for this finding. Since the other
MI-PCR methods performed at their worst in the nCat = 2
condition, it would be interesting to further explore the capa-
bilities of MI-PCR-ALL in this special case.

Conclusions

This study extends and refines the findings of Costantini et al.
(2022) by providing further information on how to best incor-
porate PCA into MI. In our simulation studies, using PCR

as a univariate imputation method within every iteration of
a MICE algorithm (i.e., MI-PCR-VBV) provided small bias,
good statistical efficiency, and close to nominal coverage.
Our case study added to these findings by showing that MI-
PCR-VBV can provide performance on-par with expertly
designed imputation. Although computational demand could
become a limiting factor in some situations, our findings
suggest that MI-PCR-VBV is a promising general-purpose,
imputation algorithm that can streamline the process of con-
ducting principled MI in data sets with many variables.
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