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of State-of-The-Art
Methods
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Abstract

Including a large number of predictors in the imputation model underlying a mul-

tiple imputation (MI) procedure is one of the most challenging tasks imputers face.

A variety of high-dimensional MI techniques can help, but there has been limited

research on their relative performance. In this study, we investigated a wide range

of extant high-dimensional MI techniques that can handle a large number of pre-

dictors in the imputation models and general missing data patterns. We assessed

the relative performance of seven high-dimensional MI methods with a Monte

Carlo simulation study and a resampling study based on real survey data. The per-

formance of the methods was defined by the degree to which they facilitate

unbiased and confidence-valid estimates of the parameters of complete data ana-

lysis models. We found that using lasso penalty or forward selection to select the

predictors used in the MI model and using principal component analysis to reduce

the dimensionality of auxiliary data produce the best results.
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Introduction
Today’s social, behavioral, and medical scientists have access to large multi-
dimensional data sets that can be used to investigate the complex roles that
social, psychological, and biological factors play in shaping individual and
societal outcomes. Large social scientific data sets—such as the World
Values Survey and the European Values Study (EVS)—are easily accessible
to researchers, but making use of the full potential of these data requires
dealing with the crucial problem of multivariate missing data.

The State of Imputation in Sociology

Sociologists working with social surveys are usually interested in drawing
inferential conclusions based on a substantively interesting analysis model.
Generally, these analysis models require complete data, so the researcher
must address any missing values before moving on to their substantive ana-
lysis. There are many possible missing data treatments from which to choose,
and their relative strengths and weaknesses are covered elsewhere (e.g., Little
and Rubin, 2002; Enders, 2010; Van Buuren, 2018). In this article, we will
focus on Rubin’s (1987) multiple imputation (MI), which is one of the
most effective ways of addressing missing values in survey data.

MI is a three-step procedure that entails imputation, analysis, and pooling
phases. The fundamental idea of the imputation phase is to replace each
missing data point with d plausible values sampled from the posterior predict-
ive distribution of the missing data, given the observed data. This phase gen-
erates d completed versions of the original data set that are each analyzed
separately during the analysis phase, using any standard complete data ana-
lysis model. Finally, in the pooling phase, the d sets of estimates from the
analysis models are pooled following Rubin’s rules (Rubin, 1987) to create
a single set MI parameter estimates and standard errors.

Missing values are one of the main factors impacting the quality of data
gathered with surveys (Meyer, Mok, and Sullivan, 2015), and nonresponse
rates in large social survey have risen drastically over the last two decades
(Brick and Williams, 2013; Massey and Tourangeau, 2013; Williams and
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Brick, 2018). To explore how sociologists are addressing the issue of nonre-
sponse in their research, we reviewed how missing data have been discussed
in the articles published over the last five years in two leading sociological
journals: American Journal of Sociology (AJS) and American Sociological
Review (ASR). We found that of the 148 AJS research articles that mentioned
using a survey, or some form of sample, for inferential analysis, 24 addressed
the presence of missing values, and 17 conducted some form of imputation.
Of these 17, only 13 performed MI, and among these 13, only three articles
gave information on which predictors were used in the imputation models.
Turning to ASR, the picture was similar. Of the 191 research articles pub-
lished between January 2017 and January 2022 that met the inclusion criteria
described above, 20 reported performing MI. Of these 20 articles, only six
gave information regarding which predictors were used in the imputation
models. Across the two journals, in the nine papers we found that described
which predictors were used in the imputation models, the predominant choice
was to use only the analysis model variables in the imputation model.

In general, it seems that even when sociologists pay attention to the
problem of missing values, little attention is given to which variables
should be used in the imputation models. Similar conclusions were drawn
in other literature reviews (Mustillo, 2012; Mustillo and Kwon, 2015).
However, which variables to include in the imputation models is a crucial
decision in MI. Leaving out important predictors of missingness can induce
missing not at random (MNAR) data (Collins, Schafer, and Kam, 2001),
while including good predictors can both correct for nonresponse bias and
improve the efficiency of the parameters estimates (Collins, Schafer, and
Kam, 2001; von Hippel and Lynch, 2013).

The Challenge of Specifying Good Imputation Models

Specifying the imputation model is one of the most challenging steps in
dealing with missing values. As described by Van Buuren, Boshuizen, and
Knook (1999), the task involves defining two aspects of the model: the
model form (e.g., linear and logistic) and the predictor matrix (i.e., the set
of predictors that enter the imputation model). The first choice is straightfor-
ward in virtually any imputation task, as it depends primarily on the measure-
ment level of the variables under imputation. The second choice requires a
careful selection process aimed at identifying the subset of variables that
will be most useful in a given imputation model.

Generally, the variables that will be part of the analysis model should also
be included in the imputation model. When some analyzed variables
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(including transformations such as polynomials or interactions) are excluded
from the imputation, the analysis and imputation models are said to be uncon-
genial (Meng, 1994). Such uncongeniality can lead to biased parameter esti-
mates and invalid inferences. When designing an imputation model, the range
of analysis models for which the resulting imputations will be congenial is an
important consideration. In the methodological literature, this concept is
known as the scope of the imputation model. Van Buuren (2018: 46) distin-
guishes three typical imputation model scopes:

• Narrow scope: Narrowly scoped imputation models are matched to
individual analyses. In such a scenario, the imputation is a customized
pre-processing step intended to facilitate only a single analysis model.
When imputing with a narrow scope, the primary objective is to ensure
that all the variables in the analysis models (including relevant transfor-
mations) appear in the imputation model. An analyst who imputes their
own data and plans to estimate only one model (or a single series of
nested models) may wish to specify a narrow scoped imputation model.

• Intermediate scope: Imputation models with an intermediate scope are
designed to support several different analysis models. The imputer will
generally know approximately which analyses are intended but may not
have an exhaustive list of all variables that will be analyzed. The object-
ive is to design an imputation model that will be congenial with all
planned and unplanned analysis models. Such analytic contexts fre-
quently arise within research teams wherein several different analyses
contribute to a larger research program. The evaluation of the Dating
Matters intervention (Tharp, 2012) is an example of one such research
program. Due to the size and complexity of the data and the diversity of
the intended analyses, treating the missing data in the Dating Matters
evaluation took several months of dedicated work (Niolon et al.,
2019). The resulting imputations were then used to support the substan-
tive analyses by which various dimensions of the intervention were
evaluated (e.g., Vivolo-Kantor et al., 2021; Estefan et al., 2021).

• Broad scope: Imputation models with a broad scope are designed to
create imputations that will be congenial to the most general set of ana-
lysis models feasible. The imputer cannot know beforehand which vari-
ables will be part of the analysis models, so the imputation models are
designed to be general enough to accommodate a wide range of poten-
tial analyses. Practically speaking, the objective is to recreate the
moments of the hypothetically fully observed data as closely as pos-
sible. Rubin (1987: 3) originally envisioned MI as a method using
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broadly scoped imputation models to treat publicly released data and
argues that well-implemented MI can accommodate models that were
not contemplated by the imputer (Little and Rubin, 2002: 218). Any
data curation institution imputing data that are intended for public
release will need imputation models with a broad scope. The Federal
Reserve Board’s Survey of Consumer Finances (Kennickell, 1998)
and the Luxembourg Wealth Study (LWS, 2020) are two examples
of surveys released after performing MI, and used by sociologists pub-
lishing in AJS and ASR.

Despite its importance, congeniality should not be considered the sole
guiding principle when defining imputation models. There are even cases
where uncongeniality can improve on the efficiency of the standard com-
plete data procedure, a phenomenon known as superefficiency (Meng,
1994: 544-46; Rubin, 1996: 481; Little and Rubin, 2002: 217-18).
Furthermore, an imputation model that is congenial to a given analysis
model may nevertheless fail to produce proper imputations. Rubin (1976:
584-85) described the three conditions under which the distribution of the
missingness is ignorable. The first of these conditions is that the missing
data are missing at random (MAR), meaning that the probability of being
missing is the same within groups defined by the observed data (i.e., condi-
tioning on the observed data). When this condition is violated, standard MI
can lead to biased parameter estimates, even if the analysis and imputation
models are congenial.

Meeting the MAR assumption requires specifying imputation models that
include the variables that correlate with the missingness and the analysis
model variables. Omitting such variables from the imputation model results
in imputation under MNAR (Collins, Schafer, and Kam, 2001: 339).
Applying standard MI under MNAR can lead to bias in the parameter esti-
mates and can invalidate inferences involving the imputed variables
(Collins, Schafer, and Kam, 2001: 341-43). Therefore, including as many
good predictors of the variables under imputation as possible in the imput-
ation model is generally advisable. In this study, we focus on methods that
assume MAR data. However, a considerable amount of research has been
devoted to developing missing data treatments for MNAR data. We refer
interested readers to Enders’s (2010: 287-28) review of the two classes of
MNAR models (i.e., selection models and pattern mixture models) and to
Little and Zhang’s (2011) subsample ignorable multiple imputations: a
method to obtain valid inferences with MI under MNAR under certain add-
itional assumptions.
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We refer to all variables that are not targets of imputation, as potential auxiliary
variables. This set of potential auxiliaries may include important predictors of
missingness, variables that correlate with the imputation targets, and variables
that are not useful for imputation. Discerningwhich of the potential auxiliary vari-
ables may be useful predictors in the imputation model can be a daunting task.
Following an inclusive approach (i.e., including numerous auxiliary variables in
the imputation model) reduces the chances of omitting important correlates of
missingness, thereby making the MAR assumption more plausible (Rubin,
Stern, and Vehovar, 1995: 826-27; Schafer, 1997: 23; White, Royston, and
Wood, 2011; Van Buuren, 2018: 167). Furthermore, Collins, Schafer, and Kam
(2001) showed that the inclusive strategy reduces estimation bias and increases
efficiency.When designing broad and intermediate imputation models, the inclu-
sive strategy can also grant congeniality with a wider range of analysis models.

Although following the inclusive strategy may be beneficial for the imput-
ation procedure, it is often infeasible to use all potential auxiliaries as predic-
tors with standard imputation methods. Standard imputation methods, such as
imputation under the normal linear model (Van Buuren, 2018: 68), face com-
putational limitations in the presence of many predictors. For example, using
traditional (unpenalized) regression models for the imputation model requires
the number of predictors (p) in the imputation models to be smaller than the
number of observed cases (n) to avoid mathematical singularity of the under-
lying system of equations (James et al., 2013: 203). As a result, imputers need
to balance the benefits of the inclusive strategy with its computational limits.
The large number of variables available in modern social scientific data sets
makes the difficult step of deciding which predictors to include in the imput-
ation models even more arduous.

In addition to their size, other aspects of social surveys and other social
scientific data can further complicate the task of specifying good imputation
models. Sociologists and researchers working with large social surveys often
want to estimate analysis models that use composite scores (i.e., aggregates of
multi-item scales). When working with multi-item scales, the imputer needs
to decide if variables should be imputed at the item level or at the scale level.
When all a scale’s items are usually missing or observed together, scale-level
imputation can be effective (Mainzer et al., 2021). When item-level missing
predominates, however, the literature generally suggests imputing multi-item
scales at the item level (Van Buuren, 2010; Gottschall, West, and Enders,
2012; Eekhout et al., 2014), but pursuing such a strategy can lead to increased
dimensionality of the imputation models (Eekhout et al., 2018).

Furthermore, social surveys are often longitudinal, and it is usually most
convenient to impute such a data structure in wide format (Van Buuren,
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2018: 312). A wide data set has a single record for each unit, with observa-
tions made at subsequent time points coded as additional columns in the
data set. As a result, long-running panel studies might easily induce large
pools of potential auxiliary variables with which the imputer must contend.

High-Dimensional Imputation

The factors discussed above—or combinations thereof—may result in high-
dimensional imputation problems wherein the pool of potential auxiliary vari-
ables is larger than the available sample size. Such high-dimensional pro-
blems preclude a straightforward application of MI and force researchers to
choose which variables to include in the imputation model or otherwise regu-
larize the imputation model. One possible solution to this problem is using
high-dimensional prediction models as the imputation model. When we say
“high-dimensional prediction,” we are referring to the branch of statistical
prediction concerned with improving prediction in situations where the
number of predictors is larger than the number of observed cases (the
so-called p > n problem). Recent developments in high-dimensional imput-
ation techniques leverage high-dimensional prediction methodology to
offer opportunities for embracing an inclusive strategy while substantially
diminishing its downsides.

MI has been combined with high-dimensional prediction models in algo-
rithms that use shrinkage methods (Zhao and Long, 2016; Deng et al., 2016)
and dimensionality reduction (Song and Belin, 2004; Howard, Rhemtulla,
and Little, 2015) to avoid the obstacles of an inclusive strategy. Tree-based
imputation strategies (Burgette and Reiter, 2010; Doove, Van Buuren, and
Dusseldorp, 2014) also have the potential to overcome the computational lim-
itations of the inclusive strategy. The nonparametric nature of decision trees
bypasses the identification issues most parametric methods face in high-
dimensional contexts. To the best of our knowledge, no study to date has dir-
ectly compared the performance of the various high-dimensional MI
(HD-MI) methods recommended in the literature.

Scope of the Current Project

The goal of this project was to compare how different HD-MI methods fare
when imputing data sets with many variables. In particular, we were inter-
ested in the types of imputation problems that may arise in large social scien-
tific data sets. Such data sets do not need to be strictly high-dimensional to be
too large for standard MI routines. Even in low-dimensional settings (i.e.,
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n > p), including too many auxiliary variables in the imputation model can
bias analysis model estimates and lead to convergence problems and other
computational issues (Hardt, Herke, and Leonhart, 2012). The high-
dimensional imputation approaches we compared in this project can be
used to simplify the process of specifying a good imputation model in both
high- and low-dimensional problems.

We compared seven state-of-the-art HD-MI algorithms in terms of their
ability to support statistically valid analyses. We chose these techniques
because they stood out as the most promising candidates in our review of
the HD-MI literature. The comparison was based on two numerical experi-
ments: a Monte Carlo simulation study and a resampling study using Wave
5 of EVS. The simulation study allows us to compare the imputation
methods in an artificial scenario with maximum experimental control. In a
simulation study, we are able to precisely manipulate data features to
match our experimental goals because we define the population model.
However, the variables in a simulation study are usually sampled from
simple multivariate distributions with regular, unrealistic mean and covari-
ance structures. The resampling study allows us to shed the artifice of the
simulation study and compare the methods using real social scientific data.
EVS is a large-scale, cross-national survey on human values administered
in almost 50 countries across Europe. The EVS data contain both numerical
and categorical variables associated via a complicated, heterogeneous covari-
ance structure. Performing a resampling study on this data set allows us to
estimate bias and coverage in a more ecologically valid—albeit still some-
what artificial—scenario than is possible with a Monte Carlo simulation
study.1

The imputation techniques we compared are best suited to data-driven
imputation with an intermediate or broad scope. The potential benefits of
HD-MI methods lie in the automatic imputation model specification that
these techniques offer. Therefore, we focused on data-driven imputation
tasks where the objective is accommodating a wide range of analysis
models. However, the techniques we compared do not exclude the possi-
bility of specifying more narrowly scoped imputation models. With little
tweaking, one can always force specific variables into the imputation
model.

In what follows, we first introduce the missing data treatments that we com-
pared in our study. Then, we present the methodology and results of the two
numerical experiments, we discuss the implications of the results for applied
researchers, and we provide recommendations. We conclude by discussing
the limitations of the study and suggesting future research directions.
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Imputation Methods and Algorithms
We use the following notation: scalars, vectors, and matrices are denoted by
italic lowercase, bold lowercase, and bold uppercase letters, respectively. A
scalar belonging to an interval is indicated by s1 ∈ [s2, s3], while a scalar
taking the values in a set is represented as s1 ∈ {s2, s3}. We use the scope
resolution operator, ::, to designate a function provided by a specific software
package. So, for example, mice::quickpred() represents the quickpred() func-
tion provided by the mice package.

Consider an n × p data set, Z, comprising variables z1, z2,…, zp. Assume that
the first t variables ofZ havemissing values and that these t variables are the targets
of imputation. Denote the columns of Z containing z1 to zt as the n × t matrix, T.
The remaining (p− t) columns ofZ contain variables that are not targets of imput-
ation. These variables constitute a pool of potential auxiliary variables that could be
used to improve the imputation procedure. Let A be a n × (p− t) matrix denoting
this set of potential auxiliary variables and write Z as Z = (T, A). For a given zj,
with j = (1, . . . , p), denote its observed and missing components as z j,obs and
z j,mis, respectively. Let Z−j = (z1, . . . , z j−1, z j+1, . . . , z p) be the collection of
p− 1 variables in Z excluding zj. Denote by Z−j,obs and Z−j,mis the components
of Z−j corresponding to the data units in z j,obs and z j,mis, respectively.

Multivariate Imputation by Chained Equations

Assume that Z is the result of n random samples from a multivariate distribu-
tion defined by an unknown set of parameters θ. The multivariate imputation by
chained equations (MICE) approach obtains the posterior distribution of θ by
sampling iteratively from conditional distributions of the form
P(z1|Z−1, θ1), . . . , P(zt|Z−t, θt), where θ1, . . . , θt are imputation model
parameters specific to the conditional distributions of each variable with
missing values.

More precisely, the MICE algorithm takes the form of a Gibbs sampler2 .
At the mth iteration (m = 1, . . . , M), samples are drawn for the jth target
variable (j = 1, , t) from the following distributions:

θ̂(m)j ∼ p(θj|z j,obs, Ż(m)
−j,obs), (1)

z(m)j,mis ∼ p(z j,mis|Ż(m)
−j,mis, θ̂

(m)
j ), (2)

where θ̂(m)j and z(m)j,mis are draws from the parameter’s full conditional posterior
distribution (1) and the missing data posterior predictive distribution (2),
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respectively. Ż
(m)
−j,obs and Ż

(m)
−j,mis are subsets of the variables in Z

(m)
−j (potentially

every variable in Z(m)
−j ). These subsets are chosen by the imputer to act as pre-

dictors in the elementary imputation model for zj. After convergence, d sets of
values are sampled from (2) and used as imputations. Any analysis model can
then be estimated on each of the d completed data sets, and the parameter esti-
mates can be pooled using Rubin’s rules (Rubin, 1987).

In the following, we describe all the missing data treatments we compared
in this study. First, we describe the seven high-dimensional MICE strategies
we compared in this study. They follow the general MICE framework, but
they differ in which elementary imputation methods they use to define equa-
tions (1) and (2). Second, we describe three benchmark mice strategies,
which are well-established approaches in the field of sociology and the
missing data treatment literature. Finally, we describe two benchmark
non-MI strategies, which are important baselines of comparisons that do
not rely on imputation.

High-Dimensional MICE Strategies
MICE with step-forward selection. A linear regression model is the standard
univariate imputation model for MICE. However, ordinary linear regression
(OLS) faces computational limitations when applied to data sets with many pre-
dictors. If n is not much larger than p, the regression estimates will have large
variances, and, if p > n, there is no unique solution for the regression coeffi-
cients. Researchers have been studying model-building strategies to overcome
these limitations for decades (e.g., Dempster, Schatzoff, and Wermuth, 1977).
One of these strategies, known as forward stepwise subset selection
(Efroymson, 1966), has been implemented in the popular imputation software
IVEware (Raghunathan, Solenberger, and Van Hoewyk, 2002). We refer to this
method as MI step-forward (MI-SF).

Forward selection identifies the subset of the predictors that are most related
to the dependent variables by iteratively evaluating the improvement in fit con-
tributed by including each additional predictor. Starting with an empty imput-
ation model, MI-SF iteratively adds the variable that most increases the
model-explained variance. New predictors are added as long as the additional
proportion of variance they explain exceeds a specified threshold value R2

min.
As a result, MI-SF ensures that the predictors included in equation (1) must
explain some non-trivial proportion variability in the variable under imputation.
The value of R2

min used in the MI-SF algorithm is fixed across iterations, but the
imputation model for every variable might change between iterations.
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MICE with a fixed ridge penalty. The so-called shrinkage methods represent an
alternative to subset selection (see Hastie, Tibshirani, and Friedman, 2009:
62-79 for a review.) These methods address the computational problems
caused by large number of predictors by shrinking the estimated coefficients
toward zero. Ridge regression (Hoerl and Kennard, 1970) is a common
shrinkage method that imposes a penalty during model estimation to shrink
the regression slopes toward zero and allow a large number of predictors to
be included in the model, while still controlling the variance of the estimates.
When applied to the imputation model in MICE, a ridge penalty allows a
more inclusive auxiliary variable strategy.

MICE with a fixed ridge penalty uses the Bayesian normal linear model
described by Van Buuren (2018: 68, algorithm 3.1) as the univariate imput-
ation method. We refer to this method as Bayesian Ridge (BRidge). In this
approach, the sampling of each θ̂(m)j in equation (1) relies on inverting the
cross-products matrix of Ż

(m)
−j,obs

3. Adding a positive constant (the ridge
penalty, κ) to the diagonal of the cross-product matrix stabilizes this inver-
sion. Indeed, if p > n, sufficiently large values of κ will facilitate inversion
of the cross-products matrix and induce a unique (albeit biased) solution
for the regression coefficients.

In BRidge, every variable in Z−j is used as a predictor in the imputation
model, and the ridge penalty is the only precaution taken to address a large
number of predictors. The value of κ is usually chosen to be close to zero
(e.g., κ = 0.0001), because values larger than 0.1 may introduce excessive
systematic bias (Van Buuren, 2018: 68). However, larger values of κ may
be necessary to adequately stabilize the estimation in certain scenarios. In
the present work, we chose the value of κ by means of cross-validation.

Direct use of regularized regression4. Lasso regression (least absolute shrink-
age and selection operator; Tibshirani, 1996) is another popular shrinkage
method. Unlike ridge regression, the lasso penalty achieves both shrinkage
and automatic variable selection (whereas ridge does not exclude any vari-
ables). The extent of the lasso penalization depends on a tuning parameter,
λ, which is selected from a set of possible values by means of cross-
validation. For sufficiently large values of λ, lasso will force some coefficient
estimates to be exactly zero thereby excluding the associated predictors from
the fitted model. When applied to an imputation model, lasso will automatic-
ally select which predictors enter the imputation model. Zhao and Long
(2016) and Deng et al. (2016) used lasso regression as the univariate imput-
ation model in a MICE algorithm to impute high-dimensional data and
referred to this approach as direct use of regularized regression (DURR).
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At iterationm, for a target variable zj, DURR replaces equations (1) and (2)
with the following two steps:

1. Generate a bootstrap sample Z∗(m) by sampling with replacement from
Z(m), and train a regularized linear regression model (such as lasso
regression) with z∗(m)j,obs as outcome and Z∗(m)

−j,obs as predictors.
5 This pro-

duces a set of parameter estimates (regression coefficients and error
variance), θ̂(m)j , that can be viewed as a sample from equation (1).

2. Use Z(m)
−j,mis and θ̂

(m)
j to predict z j,mis, and obtain draws from the posterior

predictive distribution of the missing data as in equation (2).

Hence, at every iteration, each elementary imputation model is estimated as a
lasso regression, and uncertainty regarding the parameter values is included
by bootstrapping.

In high-dimensional cases, lasso selects at most n predictors (Zou and
Hastie, 2005). So, when using lasso for imputation, no elementary imputation
model will contain more predictors than the number of observed cases on the
corresponding outcome. Deng et al. (2016) compared lasso with the elastic
net—which does not have this restriction—for high-dimensional MI, but
they did not find evidence to favor the elastic net over lasso. Lasso is also
computationally simpler than the elastic net because lasso only has one
tuning parameter to estimate whereas the elastic net has two. Therefore, we
chose to implement DURR with lasso as the regularization method.

Indirect use of regularized regression6. While DURR simultaneously performs
model regularization and parameter estimation in equation (1), the indirect
use of regularized regression (IURR; Zhao and Long, 2016; Deng et al.,
2016) algorithm uses regularized regression exclusively for variable selec-
tion. The selected variables are then used as predictors in the imputation
models of a standard MI procedure.

At iteration m, the IURR algorithm performs the following steps for each
target variable, zj:

1. Fit a linear regression model using a regularized method that does vari-
able selection (e.g., lasso). Take z j,obs as the dependent variable and

Z(m)
−j,obs as the predictors (unlike DURR, IURR uses the original data,

not a bootstrap sample). The regression coefficients that are not
shrunk to 0 define the active set of variables that will be used as predic-

tors in the actual imputation model (i.e., the variables in Ż
(m)
−j ).
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2. Obtain the maximum likelihood estimates of the regression coefficients
and the error variance from the linear regression of z j,obs onto the active
set of predictors defined in step . Then, sample new values of these
parameters from a multivariate normal distribution parameterized by
the MLEs7 :

(θ̂(m)j , σ̂(m)j ) ∼ N(θ̂(m)MLE, Σ̂
(m)
MLE), (3)

so that equation (3) corresponds to equation (1) in the general MICE
framework.

3. Impute z j,mis by sampling from the posterior predictive distribution

based on Ż
(m)
−j,mis and the parameters’ posterior draws, (θ̂(m)j , σ̂(m)j ).

DURR uses regularized regression to directly obtain θ̂(m)j , a procedure that
inherently induces estimation bias. Compared to DURR, IURR separates
the variable selection step, which involves using the biasing penalty term,
from the sampling of the imputation model parameters. Assuming the vari-
able selection step does not exclude any important predictors, the two-step
approach of IURR could outperform DURR by using unbiased estimates of
θ̂(m)MLE and Σ̂(m)

MLE to define the posterior distributions of the imputation model
parameters. IURR effectively establishes a data-driven decision rule to
select imputation model predictors while avoiding the direct involvement
of the biasing penalty in the simulation of a random draw from equation (1).

MICE with Bayesian lasso. Zhao and Long (2016) proposed the MICE with
Bayesian Lasso imputation algorithm (BLasso), an MI procedure that uses
the Bayesian lasso as its elementary imputation method: MICE with
Bayesian lasso (BLasso). A Bayesian lasso model is a regular Bayesian mul-
tiple regression model with informative priors on the slope coefficients that
allow interpreting the mode of the slopes’ posterior distribution as lasso esti-
mates (Park and Casella, 2008; Hans, 2009). Following Zhao and Long
(2016), we used the Bayesian lasso specification given by Hans (2010a).
Given data with a sample size, n, a dependent variable, y, and a set of predic-
tors, X, the Bayesian lasso model has the following form.

p(y|β, σ2, τ) = N(y|Xβ, σ2In), (4)

p(βj|τ, σ2, ρ) = (1− ρ)δ0(βj)+ ρ
τ

2σ

( )
× exp

−τβj1
σ

( )
, (5)

σ2 ∼ Inverse− Gamma(a, b), (6)
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τ ∼ Gamma(r, s), (7)

ρ ∼ Beta(g, h). (8)

Equation (4) represents the density function of a multivariate normal random
variable with mean Xβ and covariance matrix σ2In evaluated at y. Equation
(5) is the mixture prior distribution for the regression coefficients βj proposed
by Hans (2010a). This formulation differs from the classical Bayesian lasso
prior proposed by Park and Casella (2008) because of the presence of the
sparsity parameter, ρ (Ley and Steel, 2009: 655-56; Scott and Berger,
2010: 2592), and the point mass at zero, δ0(βj). Finally, equations (6) to (8)

represent hyper priors for the residual variance, σ2, the penalty parameter,
τ, and the sparsity parameter, ρ, respectively. Our implementation of
BLasso imputation replaced equation (1) with the BLasso model defined
by equations (4) to (8) with y = z j,obs and X = Z−j,obs.

The R code used to perform the BLasso imputation was based on the R
Package blasso (Hans, 2010a) and can be found in the code repository for this
article (Costantini, 2023b). For a detailed description of the Bayesian lasso MI
algorithm in a univariate missing data context see Zhao and Long (2016).

MICE with principal component analysis (PCA). By extracting principal compo-
nents (PCs) from the set of potential auxiliary variables, A, the MICE with
PCA (MI-PCA) method summarizes the information contained in A with
just a few components. These PCs can then be used as predictors in a stand-
ard, low-dimensional application of MICE. The MI-PCA procedure can be
summarized as follows:

1. Extract the first PCs that cumulatively explain the desired proportion of
the variance in the set of potential auxiliary variables, A,8 and collect
these components in a new matrix, A′.

2. Replace A in Z with A′ to obtain Z′ = (T, A′).
3. Use the standard MICE algorithm with a Bayesian normal linear model

and no ridge penalty to obtain multiply imputed data sets from Z′.

The MI-PCA method was inspired by Howard, Rhemtulla, and Little (2015)
and the PcAux R package (Lang, Little, and PcAux Development, 2018). For
this study, we used the R function stats::prcomp() to perform the PCA esti-
mation via truncated singular value decomposition. Hence, p > n data are not
a problem. When A has more columns than rows, prcomp() will simply
extract a maximum of n components.

14 Sociological Methods & Research 0(0)



MICE with classification and regression trees. MICE with classification and
regression trees (MI-CART; Burgette and Reiter, 2010) is a MICE algorithm
that uses classification and regression trees (CART) as the elementary imput-
ation method. Given an outcome variable y and a set of predictorsX, CART is
a nonparametric recursive partitioning technique that models the relationship
between y and X by sequentially splitting observations into subsets of units
with relatively more homogeneous y values. At every splitting stage, the
CART algorithm searches through all variables in X to find the best binary
partitioning rule to predict y. The resulting collection of binary splits can
be visually represented by a decision tree structure where each terminal
node (or leaf) represents the conditional distribution of y for units that
satisfy the splitting rules.

For each zj, the mth iteration of MI-CART proceeds as follows:

1. Train a CART model to predict z j,obs from the corresponding Z(m)
−j,obs.

2. Assign each element of z j,mis to a terminal node by applying the split-

ting rules from the fitted CART model to Z(m)
−j,mis.

3. Create imputations for each element of z j,mis by sampling from the pool
of z j,obs in the terminal node containing z j,mis. This procedure corre-
sponds to sampling from the missing data posterior predictive distribu-
tion in equation (2).

This approach does not consider uncertainty in the imputation model para-
meters since the tree structure is not perturbed between iterations.
Therefore, MI-CART cannot produce proper imputations in the sense of
Rubin (1986). The implementation of MI-CART used in this paper corre-
sponds to the one presented by Doove, Van Buuren, and Dusseldorp
(2014: 95, algorithm 1) and the impute.mice.cart() function from the mice
package.

CART searches for the best splitting criterion one variable at a time. As a
result, p > n does not pose the same computational limitations that plague
methods based on linear regression. More variables can increase estimation
times but will not result in computational obstructions.

MICE with random forests. MICE with random forests (MI-RF) is a MICE
algorithm that uses random forests as the elementary imputation method.
The random forest algorithm (e.g., Hastie, Tibshirani, and Friedman, 2009:
588) entails fitting many decision trees (e.g., CART models) to subsamples
of the original data. These subsamples are derived by resampling rows with
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replacement and sampling subsets of columns without replacement. The
random forest algorithm results in an ensemble of fitted decision trees that
generate a sample of predictions for each outcome value. Consequently,
random forests often demonstrate better prediction performance than individ-
ual trees by reducing the variance of the estimated prediction function.

For each zj, the mth iteration of MI-RF proceeds as follows:

1. Generate k bootstrap samples from Z−j,obs.
2. Use these bootstrap samples to fit k single trees predicting z j,obs from a

random subset of the variables in Z−j,obs.
3. Generate a pool of k terminal nodes for each element of z j,mis by apply-

ing the splitting rules from each of the k fitted trees to the appropriate
columns of Z−j,mis.

4. Create imputations for each element of z j,mis by sampling from the z j,obs
contained in the pool of terminal nodes defined above.

Bootstrapping and random input selection introduce uncertainty regarding the
imputation model parameters (i.e., the tree structure), as required by a proper
MI procedure. For more details on the MI-RF algorithm, see Doove, Van
Buuren, and Dusseldorp (2014: 103). To perform MICE with random
forests we used the R function mice::impute.mice.rf(). As with CART, the
random forests algorithm is not subject to computational limitations in high-
dimensional problems because random forests simply aggregate a collection
of univariate decision trees.

Benchmark MICE Strategies
MICE with quickpred. A simple way to select predictors for an imputation
model is to include variables that relate to the nonresponse or explain a con-
siderable amount of variance in the targets of imputation. One popular imple-
mentation of this idea is to select as predictors those variables whose
association with the variables under imputation, or their response indicators,
exceeds some threshold. This selection strategy was proposed by Van
Buuren, Boshuizen, and Knook (1999) and has been implemented in the
quickpred function provided by the popular R package mice (Van Buuren,
2018: 267). We refer to this approach as MI-QP. As both an intuitive, prag-
matic option and the default method of selecting predictors in one of the most
popular MI software packages, MI-QP represents an important benchmark
against which to compare the performance of the more theoretically sound
approaches described above.
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The MI-QP approach has two main drawbacks. First, selecting predictors
based on their correlations with the targets of imputation and the associated
response indicators can still select collinear, redundant predictors. If one pre-
dictor is highly correlated with another and with a variable under imputation,
both will be selected. Second, when applied to p > n scenarios, MI-QP is not
guaranteed to select fewer predictors than observations available for a given
imputation model. As a result, MI-QP often needs to be augmented by other
techniques to address collinearity and linear dependencies in the data.

MICE with analysis model variables as predictors. According to our review of
the articles published in AJS and ASR, a common approach to address the
large number of possible predictors is to use only the analysis model variables
in the imputation model. We refer to this approach as MI-AM. Consider a
researcher working with EVS data who wants to estimate a linear model by
regressing one item on 10 others afflicted by non-response. The MI-AM
imputation strategy would imply using only these 11 variables in the imput-
ation models, instead of manually searching all of the 250 variables contained
in the survey for meaningful imputation predictors.

The MI-AM strategy ensures the congeniality of the analysis and imput-
ation models. Furthermore, as long as the analysis model does not include
more variables than the number of observed cases, MI-AM is not affected
by the dimensionality of the data. However, by following this strategy, any
MAR predictors that are not part of the analysis model will be excluded
from the imputation. In such cases, the MAR assumption is violated, and
the missingness is MNAR.

Oracle MICE. As hinted by the previous two approaches, the MI literature
recommends following three principles to decide which predictors to
include in the imputation models (Van Buuren, 2018: 168):

1. Include all variables that are part of the analysis model(s).
2. Include all variables that are related to the nonresponse.
3. Include all variables that are correlated with the targets of imputation.

In practice, the first criterion can be met only if the analysis model is known
before imputation, which is not always true. Furthermore, researchers can
never be sure that the second criterion is entirely met, as there is no way to
know exactly which variables are responsible for missingness. However,
with simulated data, we know which variables define the response model.
The Oracle MICE approach (MI-OR) is an ideal specification of the MICE
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algorithm that uses this knowledge to include only the relevant predictors in
the imputation models. As such, this method cannot be used in practice, but it
provides a useful reference point for the desirable performance of an MI pro-
cedure. The MI-OR imputations were generated using the Bayesian normal
linear model as the univariate imputation method.

Non-MI Strategies
Complete case analysis. By default, most data analysis software either fails in
the presence of missing values or defaults to analyzing only the complete
cases (R Core Team, 2020; pandas development team, 2020). As the
default behavior of most statistical software, complete cases analysis (CC)
remains a popular missing data treatment in the social sciences (Peugh and
Enders, 2004; Little et al., 2013). CC can also be a useful approach in
certain scenarios (White and Carlin, 2010). For example, when the analysis
model is a linear regression of y onto a set of predictors, X, CC yields
valid inferences if the missingness depends only on X and not on y (Little
and Rubin, 2002: 43; Little and Zhang, 2011). However, even in this case,
CC can be inefficient as it uses a reduced sample size compared to what
could be used through proper imputation (Little and Rubin, 2002: 42;
Schafer and Graham, 2002). Furthermore, unless the data are MCAR, CC
can bias parameter estimates (Rubin, 1987: 8; Schafer and Graham, 2002).
Nevertheless, the continued popularity of CC makes it an important bench-
mark method.

Gold standard. We also estimated the analysis models directly on the fully
observed data before imposing any missing values. In the following, we
refer to the results obtained in this fashion as the gold standard (GS).
These results represent the counterfactual analysis that would have been per-
formed if there had been no missing data.

Simulation Study
We investigated the performance of the methods described above with a
Monte Carlo simulation study. Following a similar procedure to that
employed by Collins, Schafer, and Kam (2001), we generated S = 1000
samples of n = 200 units while varying two experimental factors: the
number of variables in the data set, p ∈ {50, 500}, and the proportion of
missing cases on each of the incomplete variables, pm ∈ {0.1, 0.3}.
Table 1 summarizes the four resulting crossed conditions.
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We chose the values of n and p to reflect extreme dimensionality situations
that would tease apart the relative strengths and weaknesses of the imputation
methods considered here. Nonetheless, we selected these values to be some-
what plausible for real-world social scientific studies. Consider, for example,
that a typical EVS wave has around 55,000 observations and 250 items in its
questionnaire. Therefore, data structures similar to those in both our low- and
high-dimensional conditions could arise by taking reasonable subsets of EVS
data (potentially over several waves). As for the levels of pm, we chose the
lower level to match the 10 percent of missing cases that is typical of variables
in EVS data. We also included a more extreme level to create more challen-
ging—but still realistic—conditions for the imputation methods. For every
iteration, we imposed missing values on six target items, and then we used
all missing data treatment methods described above to obtain estimates of
the means, variances, and covariances of these incomplete variables.

Simulation Study Procedure
Data generation. At every replication, a data matrix Zn×p was generated
according to a multivariate normal model with means equal to five and unit
variances. The distribution was centered around five as typical 10-point
numerical items in the EVS data set have means around five. After sampling
the data, all variables were rescaled to have a variance of approximately five,
which reflects the typical size of the variance of 10-point items in the EVS
data. For the correlation structure, we defined three blocks of variables
based on three strengths of association: strong, weak, and none. The first
five variables were strongly correlated ρ = 0.6

( )
among themselves; vari-

ables six to 10 were weakly correlated ρ = 0.3
( )

with the first five variables
and among themselves; the remaining p− 10 variables were uncorrelated
with any other variable in the data set. Of course, real survey data have

Table 1. Summary of Conditions for Experiment 1.

Condition Label n p pm

1 Low-dim–low-pm 200 50 0.1

2 High-dim–low-pm 200 500 0.1

3 Low-dim–high-pm 200 50 0.3

4 High-dim–high-pm 200 500 0.3

Low-dim (high-dim) represent conditions where the number of predictors is smaller (larger) than

the number of observations available. Low-pm (high-pm) represent conditions where the

proportion of missing values is low (high).
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more complex correlation structures than what we defined for this study.
However, when specifying imputation models for survey data, the main chal-
lenge is often finding a few important auxiliary variables in a large collection
of possible predictors. We defined the population correlation matrix with the
three-block structure described above to replicate this type of situation in an
experimentally unequivocal way.9

Missing data imposition. Missing values were imposed on six of the items in Z:
three variables in the block of highly correlated variables {z1, z2, z3} and
three in the block of lowly correlated variables {z6, z7, z8}. Item nonresponse
was imposed by sampling from a Bernoulli distribution with individual prob-
abilities of nonresponse defined by

pmiss = p(zi,j = miss|Z̃) = exp(γ0 + z̃iγ)
1+ exp(γ0 + z̃iγ)

, (9)

where zi,j is the ith subject’s response on zj, z̃i is a vector of responses to the
set of missing data predictors for the ith individual, γ0 is an intercept param-
eter, and γ is a vector of slope parameters. Z̃was specified to include two fully
observed variables from the strongly correlated set and two from the weakly
correlated set {z4, z5, z9, z10}. Therefore, the probability of nonresponse for a
variable depended on variables present in the data, but never on the variable
itself. As a result, when the elements of Z̃ are included as predictors in the MI
procedures, the MAR assumption is satisfied. All slopes in γ were fixed to 1,
while the value of γ0 was chosen through numerical optimization to produce
the desired proportion of missing values.10

Imputation. We generated ten imputed data sets by imputing the missing
values with all methods described in the preceding section. To evaluate the
convergence of the imputation models, we ran ten replications of the
high-dim–high-pm condition and generated trace plots of the imputed
values’ means. The implementation of MI-SF in IVEware does not provide
trace plots. Therefore, we plotted the distributions of the imputed values
across 30 imputation chains against the observed data at iterations 1, 5, 10,
20, 40, 80, 160, 240, and 320. Based on the information provided by
density and trace plots, we considered all of the imputation algorithms to
have converged after 50 iterations.

IVEware does not offer any data-driven procedure for selecting R2
min; and

the IVEware authors recommend comparing results obtained with different
R2
min values. To optimize the performance of MI-SF, we tuned this parameter
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with a cross-validation procedure. We applied MI-SF with different R2
min

values (i.e., 10−1, 10−2, . . . , 10−7), and we selected the value that resulted
in the smallest average fraction of missing information (FMI; Rubin, 1987:
equation 3.1.10) across the analysis model parameters. The same cross-
validation strategy was used to choose the value of the ridge penalty in the
BRidge algorithm. We considered the values 10−1, 10−2, , 10−8 as candi-
dates for the BRidge penalty parameter.

Both IURR and DURR could have been implemented with a variety of
penalties (e.g., lasso, Tibshirani, 1996; elastic net, Zou and Hastie, 2005;
adaptive lasso, Zou, 2006). In this study, we used lasso as it is computation-
ally efficient, and it performed well for imputation by Zhao and Long (2016)
and Deng et al. (2016). A 10-fold cross-validation procedure was used at
every iteration of DURR and IURR to choose the penalty parameter. To
maintain consistency with previous research, we specified the BLasso hyper-
parameters in equations (6) to (8) as by Zhao and Long (2016):
(a, b) = (0.1, 0.1), (r, s) = (0.01, 0.01), and (g, h) = (1, 1), respectively.
For the MI-PCA algorithm, the set of possible auxiliary variables in A was
defined by all the fully observed variables. Another important decision
when using PCA is the number of components to keep. Howard,
Rhemtulla, and Little (2015) used only the first component in their simula-
tions. Since this component explained, on average, 40 percent of the variance
in the auxiliary data, they recommend using enough components to explain
40 percent of the variance. For our study, we generated more complex data
for which a single component was not likely to suffice. We, therefore,
applied the intuitively appealing—albeit arbitrary—heuristic of using
enough components to explain 50 percent of the total variance in the data.

Running MI-QP in the high-dimensional procedure led to frequent conver-
gence failures. A more common use of the method includes accompanying
the quickpred approach with a ridge penalty and data-driven checks that
exclude collinear variables. We decided to run MI-QP in this more favorable
manner by applying the mice package’s usual data-screening procedures.
Accordingly, the mice() call for MI-QP was specified with Bayesian
normal linear regression as a univariate imputation method and with
default values for the following arguments: ridge = 1e×10−5, eps =
1e×10−4, and threshold = 0.999. Finally, we implemented the MI-AM
method by applying themice::mice() function to only the analysis model vari-
ables with Bayesian normal linear regression as a univariate imputation
method. In this simulation study, the analysis model variables are the vari-
ables with missing values for which we wanted to estimate the means, var-
iances, and covariances.
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Analysis and comparison criteria. The analysis model comprised the joint dis-
tribution of the six variables with missing values. Therefore, we refer to these
six incomplete variables as the analysis model variables below. After imput-
ation, we estimated the six means, six variances, and 15 covariances for these
variables on each imputed data set and pooled the estimates via the Rubin
(1987) pooling rules. We then compared the performances of the imputation
methods by computing the bias, confidence interval coverage, and confidence
interval width for each estimated parameter.

Since we generated multivariate normal data, the sample means, variances,
and covariances were the sufficient statistics for the joint distribution of the ana-
lysis model variables. Hence, we can infer that a method which demonstrates
good performance when estimating these statistics will perform equally well
when estimating other parameters that describe the same joint distribution.
For example, the slopes, β = Σ−1

X ΣX,y, intercept, α = μy − μTXβ, and residual
variance, σ2ε = σ2y − βTΣXβ of a general linear model can be defined directly
in terms of these statistics. Using only this mean vector and covariance
matrix, we could also factor analyze these six variables (Bartholomew,
Knott, and Moustaki, 2011: 53-5) or estimate their structural relations via a
structural equation model (Bollen, 1989: 104-6). Importantly, the inverse impli-
cation does not generally hold. For example, in the special case noted above
wherein CC can produce unbiased slope estimates, the estimated means, var-
iances, and covariances of the underlying data could still be biased unless
the data were MCAR. By focusing our analysis on a general set of sufficient
statistics, we dissociated our results from any specific statistical model or test
and increased the generalizability of our findings.

For a given parameter of interest θ, we used the absolute percent relative
bias (PRB) to quantify the estimation bias introduced by the imputation pro-
cedure:

PRB = θ̂ − θ

θ

∣∣∣∣∣
∣∣∣∣∣ × 100, (10)

where θ is the true value of the focal parameter defined as
∑S

s=1 θ̂
GS
s /S, with

θ̂GSs being the Gold Standard parameter estimate for the sth repetition. The
averaged focal parameter estimate under a given missing data treatment

was computed as �̂θ = ∑S
s=1 θ̂s/S, with θ̂s being the estimate obtained from

the treated incomplete data in the sth repetition. Following Muthén,
Kaplan, and Hollis (1987), we considered PRB > 10 as indicative of problem-
atic estimation bias.
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To assess the performance in hypothesis testing and interval estimation, we
evaluated the confidence interval coverage (CIC) of the true parameter value:

CIC =
∑S

s=1 I(θ ∈ ĈIs)
S

, (11)

where ĈIs is the confidence interval of the parameter estimate θ̂s in the sth repe-
tition, and I(.) is the indicator function that returns 1 if the argument is true and 0
otherwise.

CICs below 0.9 are usually considered problematic for 95% CIs (Van
Buuren, 2018: 52; Collins, Schafer, and Kam, 2001: 340) as they imply
inflated Type I error rates. High CICs (e.g., above 0.99) indicate CIs that
are too wide, implying inflated Type II error rates. Therefore, we considered
CIs to show severe under-coverage (over-coverage) if CIC < 0.9
(CIC > 0.99). From a testing perspective, a CIC can be considered as signifi-
cantly different from the nominal coverage rate if the magnitude of its differ-
ence from the nominal coverage proportion (p0) is more than two times the
standard error of p0, SE(p0) =

���������������
p0(1− p0)/S

√
(Burton et al., 2006). In our

simulation study, the nominal coverage probability was 95 percent.
Therefore, we considered 95 percent CI coverages outside the interval
[0.94, 0.96] to be significantly different from the nominal coverage rate.
We assumed normal sampling distributions for variances and covariances
when computing and pooling their CIs. This assumption is plausible under
large sample conditions.

We also reported the average width of the confidence intervals (CIW), an
indicator of statistical efficiency. An imputation method with a narrower con-
fidence interval indicates higher efficiency and is therefore preferable.
Nevertheless, the narrower CIW should not come at the expense of a lower
than nominal CIC (Van Buuren, 2018: 52).

Results

We computed both PRB and CIC for each of the 27 parameters in the analysis
model (six means, six variances, and 15 covariances). To summarize the
results, we focus on the expected and extreme values of these measures. In
Figures 1 and 2, we report the average, minimum, and maximum PRB and
CIC obtained with the different missing data treatments, for each parameter
type. As the GS estimates were used to define the “true” values of the para-
meters, the bias for this method was by definition 0. So, we do not include
bias of the GS estimates in the figure. For ease of presentation, we report the
results only for the large proportion of missing cases (pm = 0.3) condition.
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While the relative performances were independent of the missing data rate, the
performance patterns were clearer with a larger proportion of missing values. In
the Supplemental Material, we included the same figures for the low proportion
of missing cases (pm = 0.1) condition. This article is accompanied by an inter-
active dashboard that is packaged as an R Shiny app (Costantini, 2023c). We
recommend using this tool while reading the results and discussion sections to
further elucidate the patterns of results discussed below.

Figure 1. Minimum, average, and maximum absolute percent relative bias (PRB) for

the six item means, six variances, and 15 covariances in the simulation study. If no

data points are reported for a method in a panel, all of its PRBs were larger than 50.

The methods reported on the Y-axis are: direct use of regularized regression

(DURR), indirect use of regularized regression (IURR), MICE with Bayesian lasso

(BLasso), MICE with Bayesian ridge (BRidge), MICE with principal component analysis

(MI-PCA), MICE with CART (MI-CART), MICE with random forests (MI-RF), MICE

with step-forward selection (MI-SF), MICE with quickpred (MI-QP), MICE with

analysis model (MI-AM), oracle low-dimensional MICE (MI-OR), and complete case

analysis (CC).

24 Sociological Methods & Research 0(0)



Means. The largest PRB for the means was below 10 for all imputation
methods. Only CC produced problematic degrees of bias. Looking at the rela-
tive performances, IURR, BRidge, MI-PCA, MI-SF, and MI-OR resulted in
smaller biases than the other methods. In terms of CIC, only MI-PCA and
MI-OR showed a consistently strong performance. Neither method demon-
strated any extreme under-/over-coverage (i.e., all CICs ∈ 0.9, 0.99[ ]), and

Figure 2. Minimum, average, and maximum confidence interval coverage

(CIC) for the six item means, six variances, and 15 covariances in the simulation

study. If no data points are reported for a method in a panel, all of its CICs

were smaller than 0.80. The methods reported on the Y-axis are: direct use of

regularized regression (DURR), indirect use of regularized regression (IURR),

MICE with Bayesian lasso (BLasso), MICE with Bayesian ridge (BRidge), MICE

with principal component analysis (MI-PCA), MICE with CART (MI-CART),

MICE with random forests (MI-RF), MICE with step-forward selection (MI-SF),

MICE with quickpred (MI-QP), MICE with analysis model (MI-AM), oracle

low-dimensional MICE (MI-OR), complete case analysis (CC), and gold standard

analysis (GS).

Costantini et al. 25



both methods resulted in only the highest coverage being significantly differ-
ent from nominal coverage (max CIC > 0.96).

IURR resulted in significant under-coverage of the true means
CIC < 0.94( ) in both the high-dimensional p = 500

( )
and low-dimensional

p = 50
( )

conditions, although under-coverage was never severe (with
CICs ∈ [0.90, 0.94]). MI-SF resulted in similarly trivial under-coverage
and always returned CICs ∈ [0.90, 0.94]. DURR and BLasso demonstrated
some significant differences from nominal coverage in the low-dimensional
condition, and both led to extreme under-coverage in the high-dimensional
condition. The tree-based methods and CC performed most poorly. These
methods led to CICs significantly different from nominal coverage rates in
all conditions, and they demonstrated extreme under-coverage even in the
low-dimensional condition. MI-QP resulted in close to nominal coverage in
the low-dimensional condition, performing about as well as MI-OR and
MI-PCA. However, in virtually all replications of the high-dimensional con-
dition, the CIs contained the true parameter values, thereby producing severe
over-coverage. Finally, MI-AM resulted in significant to extreme under-
coverage. This method was not influenced by the dimensionality of the
data as it used the same six variables as predictors in both conditions.

Variances. IURR, BLasso, and the tree-based MI methods resulted in low
biases (i.e., PRB < 10) in both the high and low dimensional conditions.
For BLasso, these low biases were paired with low deviations from
nominal coverage rates. IURR only demonstrated problematic CICs for the
high-dimensional condition, where it produced extreme under-coverage
(largest CIC < 0.9). MI-CART andMI-RF did not produce reasonable cover-
age in either the low- or the high-dimensional condition, with the largest
coverage being significantly different from nominal (CICs < 0.94) and the
smallest being severely below the nominal level (CICs < 0.9).

MI-PCA and MI-SF showed acceptable biases and reasonable coverage
rates in the low-dimensional condition, but they showed large biases and under-
coverage in the high-dimensional condition. In the low-dimensional condition,
DURR produced low bias and reasonable coverage (i.e., only the lowest cover-
age being significantly different from nominal), but it resulted in PRBs > 10
for all variances in the high-dimensional condition, where it also produced
extreme CI under-coverage. BRidge and CC performed poorly in nearly all
conditions. These methods tended to demonstrate substantial biases and
extreme under-coverage. Although MI-QP performed well in the low-
dimensional condition, in the high-dimensional condition, it resulted in PRBs
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larger than 50 and CICs close to one for all six item variances. MI-AM main-
tained low bias and acceptable coverage for all item variances.

Covariances. MI-PCA was the only method that showed consistently strong
performance when estimating covariances. MI-PCA showed negligible bias
and minimal deviations from nominal coverage in both low- and high-
dimensional conditions. In particular, the PRB was smaller than 10 for all
covariances in both conditions and was almost as low as the PRB obtained
by MI-OR. MI-PCA never produced extreme under-/over-coverage, and
when the CIC was significantly different from the nominal rate, the CIs
showed mild over-coverage (i.e., CICs greater than 0.96 but smaller than
0.99). After MI-PCA, IURR and MI-SF demonstrated the next strongest per-
formance, with negligible bias and acceptable coverage in the low-
dimensional condition. However, in the high-dimensional condition, IURR
produced large biases and extreme under-coverage with the average bias
being above the 10 percent threshold and even the largest coverage being
just around the 90 percent threshold. In the high-dimensional condition,
MI-SF showed a similar, albeit less severe, deterioration in performance.

Both MI-QP and BRidge displayed low bias and acceptable coverage in the
low-dimensional condition, but they resulted in unacceptable biases in the high-
dimensional condition. In the high-dimensional condition, MI-QP led to 100
percent coverage of the true values, while BRidge led to extreme under-
coverage of the true values. MI-AM, DURR, BLasso, and the tree-based MI
methods tended to result in PRBs larger than 10, accompanied by under-
coverage of the true covariance values, even in the low-dimensional conditions.

Confidence interval width. In Figure 3, we report the CIW obtained with the
different missing data treatments, averaged per parameter type across the
repetitions. All methods maintained similar CIW independent of the dimen-
sionality of the data. The two exceptions were MI-QP and BRidge. While
the average CIW for MI-QP in the low-dimensional condition was in line
with that of all the other methods, the CIW obtained with this method for
all parameter types became larger than 10 for p = 500. In the high-
dimensional case, the item variance CIWs obtained by BRidge were four
times as large as those obtained in the low-dimensional scenario.

A Note on Collinearity

Following feedback provided by a reviewer of an earlier draft of this article,
we included an additional simulation study to explore the effect of
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collinearity. We used the same simulation procedure described above, but we
adjusted some of the design parameters. We fixed the proportion of missing
cases to the highest value (pm = 0.3), as this factor did not affect the relative
performances of the methods. We varied the number of columns in the data
(p ∈ {50, 500}) and the strength of the correlation between the potential aux-
iliary variables (ρ pav ∈ {0, 0.6, 0.8, 0.9}). Correlations higher than 0.6 are
unlikely in survey data, but including the higher levels provides the

Figure 3. Average confidence interval width (CIW) across the six item means, six

variances, and 15 covariances in the simulation study. If no data points are reported

for a method in a panel, its CIW was larger than 10. The methods reported on the

Y-axis are: direct use of regularized regression (DURR), indirect use of regularized

regression (IURR), MICE with Bayesian lasso (BLasso), MICE with Bayesian ridge

(BRidge), MICE with principal component analysis (MI-PCA), MICE with CART

(MI-CART), MICE with random forests (MI-RF), MICE with step-forward selection

(MI-SF), MICE with quickpred (MI-QP), MICE with analysis model (MI-AM), oracle

low-dimensional MICE (MI-OR), and complete case analysis (CC), and gold standard

analysis (GS).
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opportunity to explore how the imputation methods perform when faced with
problematic levels of collinearity.

In Figure 4, we report the average, minimum, and maximum PRB and CIC
of the 15 covariances between two imputed items. In this report, we focus on
the high-dimensional condition (p = 500), and we omit ρ pav = 0, which can
be considered equivalent to the results already reported. The interactive dash-
board (Costantini, 2023c) contains the complete set of results. The relative
performances of the methods were mostly unchanged. However, a few key
differences should be noted. First, shrinkage-based methods resulted in
lower PRB and closer-to-nominal CIC for higher levels of ρ pav. In particular,
the high PRB and low CIC that characterized BRidge in the original study
results were mitigated as ρ pav increased. For ρ pav = 0.9, the highest bias
returned by BRidge was lower than 10, and the lowest CIC was higher
than 0.80. Similar trends arose for IURR and DURR, for which higher
values of ρ pav led to a lower PRB and closer-to-nominal CIC. Second, for
higher values of ρ pav, the PRB and CIC from MI-PCA essentially mirrored
those of MI-AM. Finally, in the high-dimensional condition (p = 500),
MI-QP had a prohibitively long imputation time. In a small trial run of the
simulation, MI-QP required around 360 min to impute a single data set gen-
erated with ρ pav = 0.6 and around 1130 min to impute a data set generated
with ρ pav = 0.9. IURR and MI-SF, the next two most computationally inten-
sive methods, each took around 10 min to impute these data sets.
Consequently, we included MI-QP only in the low dimensional condition
of this additional simulation study.

EVS Resampling Study
We performed a resampling study based on the EVS data to assess whether
the results of our simulation study would replicate in more realistic data.
EVS is a high-quality survey widely used by sociologists for comparative
studies between European countries (EVS, 2020b). Furthermore, it is freely
available and represents the type of data social scientists regularly analyze.
Variables in the EVS data are discrete numerical and categorical items follow-
ing a variety of distributions.

To perform the resampling study, we treated the original EVS data as a
population. We then resampled S = 1000 data sets of n units from this popu-
lation, and we used these replicates as we used the multivariate normal
samples in the simulation study. For each replicate, we imposed missing
values, and we treated these missing values with the same methods explored
in the simulation study. This procedure was repeated for low-dimensional and
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high-dimensional conditions. As the number of predictors in the data was
fixed at p = 243, we controlled the dimensionality of the data by varying
the sample size (n ∈ {1000, 300}). When the sample size was 300, after
dummy coding categorical predictors, even a small proportion of missing
values (pm = 0.1) led to a high-dimensional (p > n) situation. Although n =
300 might be too low to represent the typical use of EVS data, we do not see
this as a limitation on the following results, for two reasons. First, our purpose
in conducting this resampling study was primarily to see if our simulation

Figure 4. Minimum, average, and maximum absolute percent relative bias (PRB)

confidence interval coverage (CIC) across 15 covariances estimated between items

with imputed values. The methods reported on the Y-axis are: direct use of

regularized regression (DURR), indirect use of regularized regression (IURR), MICE

with Bayesian lasso (BLasso), MICE with Bayesian ridge (BRidge), MICE with principal

component analysis (MI-PCA), MICE with CART (MI-CART), MICE with random

forests (MI-RF), MICE with step-forward selection (MI-SF), MICE with analysis model

(MI-AM), oracle low-dimensional MICE (MI-OR), and complete case analysis (CC).
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results would carry over into data generated from a more realistic population
model, not necessarily to see if those results would hold in a typical social
science data set. Increasing the sample size to match ranges typically seen
in analyzes of EVS data would remove the high-dimensional condition
where we saw the most interesting results in the simulation, thereby greatly
reducing the utility of the resampling study. Second, many social science
studies analyze data with around 300 observations, so our samples are not
unrealistic in a general sense.

Resampling Study Procedure
Data preparation and sampling. We used the third prerelease of the 2017 wave
of EVS data (EVS, 2020a) to create a population data set with no missing
values. The original data set contained 55,000 observations from 34 coun-
tries. We selected only the four founding countries of the European Union
included in the data set (France, Germany, Italy, and the Netherlands)
because keeping all countries would have entailed either including a set of
33 dummy codes in the imputation models or imputing under some form
of a multilevel model. Since both of these options fall outside the scope of
the current study, we opted to subset the data as described. We excluded
all columns that contained duplicated information (e.g., recoded versions of
other variables), or metadata (e.g., time of the interview and mode of data
collection).

The original EVS data set contained missing values. We needed to treat
these missing data before we could use the EVS data in the resampling
study. We used the mice package to fill the missing values with a single
round of predictive mean matching (PMM). We used the quickpred function,
to select the predictors for the imputation models. We implemented the vari-
able selection by setting the minimum correlation threshold in quickpred to
0.3. The number of iterations in the mice() run was set to 200. We used a
single imputation, and not MI, because this imputation procedure was used
only to obtain a set of pseudo-fully observed data to act as the population
in our resampling study and not for statistical modeling, estimation, or infer-
ence with respect to the true population from which the EVS data were
sampled. For the same reason, the relatively poor performance that we
observed for MI-QP in the simulation study is not relevant here. At the end
of the data cleaning process, we obtained a pseudo-fully observed data set
of 8045 observations across four countries with p = 243 variables. For
every replicate in the resampling study, we generated a bootstrap sample
by sampling n observations with replacement from this data set.
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Analysis models. To define plausible analysis models, we reviewed the models
reported in the repository of publications using EVS data that is available on
the EVS website (EVS, 2020b). As a result, we defined two linear regression
models. Model 1 was inspired by Köneke (2014). The dependent variable was
a 10-point item measuring euthanasia acceptance (“Can [euthanasia] always
be justified, never be justified, or something in between?”). The predictors
included an item measuring the self-reported importance of religion in
one’s life, trust in the health care system, trust in the state, trust in the
press, country, sex, age, education, and religious denomination. A researcher
might estimate this model to test a hypothesis regarding the effect of religios-
ity on the acceptance of end-of-life treatments.

Model 2 was inspired by Immerzeel, Coffé, and Van der Lippe (2015). The
dependent variable was a harmonized variable that quantifies the respondents’ ten-
dencies to vote for left- or right-wing parties, expressed on a 10-point left-to-right
continuum. The predictors included a scale measuring respondents’ attitudes
toward immigrants and immigration (“nativist attitudes scale”). The scale was
obtained by taking the average of respondents’ agreement, on a scale from 1 to
10, with three statements: “immigrants take jobs away from natives,” “immigrants
increase crime problems,” and “immigrants are a strain on welfare system.” The
remaining predictors were: attitudes toward law and order, attitudes toward
authoritarianism, interest in politics, level of political activity, country, sex, age,
education, employment status, socioeconomic status, importance of religion in
life, religious denomination, and the size of the townwhere the interviewwas con-
ducted. A researcher might estimate this model to test a hypothesis regarding the
effect of xenophobia on voting tendencies.

Missing data imposition. We imposed missing data on six variables using the
same strategy as in the simulation study. The targets of missing data impos-
ition were the two dependent variables in Models 1 and 2 (i.e., euthanasia
acceptance, and left-to-right voting tendency), religiosity, and the three
items making up the “nativist attitudes” scale. The response model was the
same as in equation (9), and three variables were included in Z̃: age, educa-
tion, and an item measuring trust in new people.11 We chose these predictors
because older people tend to have higher item nonresponse rates than younger
people, and lower educated people tend to have higher item non-response
rates than higher educated people (Guadagnoli and Cleary, 1992; De
Leeuw, Hox, and Huisman, 2003). We also assumed that people with less
trust in strangers would have a higher nonresponse tendency as they are
likely to withhold more information from the interviewer (a stranger).
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Imputation. We treated the missing values with the same methods used in the
simulation study. MI-AM used all the variables present in either of the analysis
models as predictors for the imputation models. MI-PCAwas performed consid-
ering all the fully observed variables as possible auxiliary variables. In other
words, the six variables with missing values were used in their raw form,
while the remaining 237 were used to extract PCs. The other imputation
methods were parameterized in the same way as in the simulation study, and
convergence checks were performed in the same way. These convergence
checks suggested that the imputation models had converged after 60 iterations.

Results

When estimating linear regression models, all partial regression coefficients
can be influenced by missing values on a subset of the variables included
in the model. Therefore, it is important to evaluate the estimation bias and
CIC rates for all model parameters. Figure 5 reports the absolute PRBs for
the intercept and all partial slopes from Model 2 obtained after using each
imputation method, for both the low- and high-dimensional conditions.
Model 2 has an intercept and 13 regression coefficients. Every horizontal
line in the figure represents the PRB for the estimation of one of these 14 para-
meters. Figures 6 and 7 report the CIC and CIW results in the same way. For
ease of presentation, results for Model 1 are reported in the Supplemental
Materials.

As shown in Figure 5, in both the high- and low-dimensional conditions,
DURR, IURR, BLasso, MI-CART, and MI-SF showed only slightly larger
PRBs than MI-OR. However, even MI-OR did not provide entirely unbiased
parameter estimates. After imputing with MI-OR, almost half of the para-
meters in Model 2 were estimated with large bias (PRB > 10 percent).
MI-PCA, MI-RF, and CC showed similar trends but produced larger PRBs
(particularly CC). BRidge demonstrated the same results described in the
simulation studies. It was competitive in the low-dimensional scenario, but
it was inadequate with high-dimensional data (all PRBs > 10 percent.) In
the low-dimensional condition, MI-QP resulted in only three parameter esti-
mates with acceptable bias and only one in the high-dimensional condition.
MI-AM resulted in six parameter estimates with acceptable bias in the low-
dimensional condition but only one in the high-dimensional condition.

As shown in Figure 6, MI-SF, MI-OR, and DURR resulted in the lowest
deviations from nominal coverage, with only one or two coverages differing
significantly from the nominal level. IURR showed a similar trend but four
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Figure 5. Percent relative bias (PRB) for all the model parameters in Model 2. For

each method, the PRBs are ordered by increasing absolute value. The methods

reported on the Y-axis are: direct use of regularized regression (DURR), indirect use

of regularized regression (IURR), MICE with Bayesian lasso (BLasso), MICE with

Bayesian ridge (BRidge), MICE with principal component analysis (MI-PCA), MICE

with CART (MI-CART), MICE with random forests (MI-RF), MICE with step-forward

selection (MI-SF), Oracle low-dimensional MICE (MI-OR), MICE with quickpred

(MI-QP), MICE with analysis model (MI-AM), and complete case analysis (CC).
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Figure 6. Confidence interval coverage (CIC) for all model parameters in Model

2. For each method, the CICs are ordered by increasing value. The methods reported

on the Y-axis are: direct use of regularized regression (DURR), indirect use of

regularized regression (IURR), MICE with Bayesian lasso (BLasso), MICE with

Bayesian ridge (BRidge), MICE with principal component analysis (MI-PCA), MICE

with CART (MI-CART), MICE with random forests (MI-RF), MICE with step-forward

selection (MI-SF), MICE with quickpred (MI-QP), MICE with analysis model (MI-AM),

oracle low-dimensional MICE (MI-OR), complete case analysis (CC), and gold

standard analysis (GS).
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Figure 7. Average width of the confidence intervals (CIW) for all model parameters

in Model 2. For each method, the confidence interval coverages (CICs) are ordered

by increasing value. The methods reported on the Y-axis are: direct use of regularized
regression (DURR), indirect use of regularized regression (IURR), MICE with

Bayesian lasso (BLasso), MICE with Bayesian ridge (BRidge), MICE with principal

component analysis (MI-PCA), MICE with CART (MI-CART), MICE with random

forests (MI-RF), MICE with step-forward selection (MI-SF), MICE with quickpred

(MI-QP), MICE with analysis model (MI-AM), oracle low-dimensional MICE (MI-OR),

complete case analysis (CC), and gold standard analysis (GS).
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coverages were significantly different from nominal in the low-dimensional
condition.

BLasso, MI-PCA, MI-CART, MI-RF, MI-SF, and MI-AM all showed
similar performance in the low-dimensional condition. These methods all sig-
nificantly over-covered most of the parameters but did not produce any
extreme under-/over-coverage, except for one parameter for MI-RF.
BLasso, MI-PCA, and MI-RF maintained similar performance in the high-
dimensional condition, but MI-CART improved to match the performance
of MI-OR, and MI-AM produced extreme over-coverage for most of the para-
meters. BRidge performed well in the low-dimensional condition—around
the level of IURR—but produced very poor coverages in the high-
dimensional condition. MI-QP performed poorly in both the low- and high-
dimensional conditions, producing only two non-significant coverages in
the low-dimensional condition and none in the high-dimensional condition.
CC performed quite well, but it had a much more pronounced tendency
toward under-coverage than the MI methods. Notably, very few of the
CICs fell into the range of extreme under-/over-coverage. Only the high-
dimensional estimates from BRidge and MI-AM consistently exhibited
extreme under-/over-coverage.

Finally, the average CIW for every parameter estimate is reported in
Figure 7. In the low-dimensional condition, all methods result in similar
CIWs. All methods result in larger confidence intervals in the high-
dimensional condition reflecting a natural loss of information due to the
smaller sample size used. However, Bridge, MI-QP, and MI-AM show dras-
tically larger CIWs for the majority of the parameters.

Imputation time. Figure 8 reports the average imputation time for the dif-
ferent methods. IURR and DURR were the most time-consuming
methods, with imputation times above 1 h in the low-dimensional condi-
tion. In the high-dimensional condition, IURR and DURR were not as time-
intensive due to the smaller sample size but still took more than ten times
longer than MI-PCA and BLasso. MI-PCA was the fastest method, with imput-
ation times of under a minute in both the high- and low-dimensional conditions.
BLasso, MI-OR, and MI-AM were close seconds, with imputation times of two
minutes or less in both conditions. BRidge, MI-CART, MI-RF, MI-SF, and
MI-QP fell in the middle, with imputations times ranging from 3.5
(MI-CART) to 15.8 (MI-SF) minutes in the low-dimensional condition and
from 1.2 (MI-CART) to 12.8 (MI-QP) minutes in the high-dimensional
condition.
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Discussion

Methods That Work Well

On balance, IURR, MI-SF, and MI-PCA were the strongest performers across
the simulation study and the resampling study. In the simulation study, IURR
and MI-SF produced trivial estimation bias for all parameters in the low-
dimensional condition and for the means in the high-dimensional condition.
Furthermore, the covariance estimation bias introduced by these two methods
in the high-dimensional condition only slightly exceeded the PRB = 10
threshold, while most of the other MI methods resulted in covariance PRBs
larger than 20 (with MI-PCA being the most salient exception). IURR and
MI-SF produced good coverages in the low-dimensional condition but
tended to under-cover in the high-dimensional condition, especially for var-
iances and covariances. In the resampling study, IURR and MI-SF were
also among the strongest performers. Although they did not demonstrate

Figure 8. Average imputation time in minutes for the different multiple imputation

(MI) methods when applied to the two different resampling study conditions.
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the best performance, there were no conditions in which IURR or MI-SF pro-
duced unacceptable results.

The confidence interval widths of IURR and MI-SF were in line with
that of the other methods. In the simulation study, the confidence intervals
produced by these methods were not influenced by the dimensionality of
the data. In the resampling study, their confidence intervals were wider
in the high-dimensional condition than in the low-dimensional one.
However, this was the same pattern that affected most methods and it
was caused by the smaller sample size we used to achieve the p > n scen-
ario in a data set with a fixed number of predictors. Overall, the confidence
interval width pattern followed by IURR and MI-SF suggests that their
imputation precision is not affected by a larger number of possible
predictors.

From the end-user’s perspective, IURR is an appealing method. IURR
does not require the imputer to make choices regarding which variables are
relevant for the imputation procedure. The only additional decision required
of the imputer is selecting the number of folds to use when cross-validating
the penalty parameter. As a result, an IURR imputation run is easy to
specify, which makes IURR an appealing method for the imputation of
large social scientific data sets. However, IURR is relatively computationally
intensive. If the number of variables with missing values is large, IURR might
result in prohibitive imputation time.

Similarly, an MI-SF run is easy to specify and only requires the user to
choose the minimum sufficient increase in R2 to use in the step-froward algo-
rithm. However, the lack of clear guidelines on how to tune this parameter intro-
duces more researcher’s degrees of freedom than other methods. Finally, the
imputation time ofMI-SF was among the longest of the methods we considered.

In the simulation study, MI-PCA showed small bias and good coverage for
both item means and covariances. Although it exhibited a large bias of the
item variances, the—arguably more interesting—covariance relations
between variables with missing values were always correctly estimated.
Notably, MI-PCA was the only method resulting in small bias and
close-to-nominal CIC for the covariances, even in the high-dimensional con-
dition. When the CICs obtained with MI-PCA deviated significantly from
nominal rates, they over-covered. In most situations, over-coverage is less
worrisome than under-coverage as it leads to conservative, rather than
liberal, inferential conclusions. In terms of confidence interval width,
MI-PCA demonstrated the same pattern as IURR. In the resampling study,
MI-PCA demonstrated middle-of-the-pack performance: somewhat worse
than IURR, but still within acceptable levels.
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In the additional simulation study evaluating the effects of collinearity,
MI-PCA resulted in the same bias and confidence interval coverage as
MI-AM when the potential auxiliary variables were highly correlated. This
trend was caused by a subtle interaction between the data-generating model
and the rule used to select the number of PCs. In every condition, there
were only four true MAR predictors out of the pool of either 44 or 494 poten-
tial auxiliary variables. Consequently, the manner in which these four MAR
predictors were represented in the component scores played a crucial role in
the performance of MI-PCA. When ρ pav was relatively small (i.e., the poten-
tial auxiliary variables were not strongly correlated), retaining enough com-
ponents to explain 50 percent of the variance tended to select
approximately 20 PCs. Furthermore, the first of these components was pre-
dominately defined by the four MAR predictors, since these four variables
comprised the entire subset of predictor data with non-trivial correlations.
For high values of ρ pav, however, the behavior of the MI-PCA algorithm
shifted in two important ways. First, due to the increased homogeneity of the
data, the first PC explained a much larger proportion of the total variance, so
the 50 percent rule selected only one PC. Second, the first PC was predominately
defined by the noise variables, since their high associations represented the major-
ity of the reliable variance in the data. As a result, for large values of ρ pav, the
imputation models used by MI-PCA differed from the MI-AM imputation
models only by adding a principal component that primarily summarized the
noise variables as another useless predictor. A detailed explanation of this phenom-
enon is presented in module 3 of the interactive dashboard (Costantini, 2023c).

Importantly, this finding does not suggest that MI-PCA cannot treat highly
collinear data. Rather, the poor performance seen here suggests that heuristic
decision rules—such as keeping the first PC or enough components to explain
50 percent of the total variance—should not be mindlessly applied when
running MI-PCA. Using a different non-graphical decision rule (e.g., the
Kaiser criterion, Guttman, 1954; Kaiser, 1960) should preclude the
problem described above and allowMI-PCA to compete with other automatic
model-building strategies.

On balance, we believe the strong performance demonstrated by MI-PCA
in the simulation study outweighs the mediocre performance shown in the
resampling study. Furthermore, as noted above, the poor performance of
MI-PCA in the high-collinearity study merely represents a weakness of
our current implementation, not a general flaw in the underlying method.
Consequently, we view MI-PCA as a promising approach for data analysts
interested in testing theories on large social scientific data sets with
missing values.
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Methods With Mixed Results

In both the simulation study and the resampling study, BRidge manifested the
same mixed performance. This method worked well when the imputation task
was low-dimensional but led to extreme bias and unacceptable CI coverage in
nearly all the high-dimensional conditions. Furthermore, the high-
dimensionality of the data led to much wider confidence intervals compared
to the ones obtained by other methods. Our results suggest that BRidge is
effective only for low-dimensional imputation problems or in the presence
of highly collinear data. The poor performance of BRidge compared to the
other shrinkage methods might be explained by the fact that BRidge used a
fixed ridge penalty across all iterations, while DURR, IURR, and BLasso
allowed the penalty parameter to adapt to the improved imputations.

As implemented here, MI-QP was only effective in low-dimensional set-
tings. The instability of MI-QP in high-dimensional scenarios was apparent
not only because of its larger bias but also its very wide confidence intervals.
The much wider confidence intervals obtained by MI-QP in the high-
dimensional scenario resulted in a 100 percent coverage for the 95 percent-
confidence intervals, despite the large bias, revealing grossly imprecise impu-
tations. MI-QP is also unable to address collinearity, as it selects predictors
based on their bivariate relations with the variable under imputation and its
missing data indicator without considering associations between the selected
predictors. Hence, when faced with many highly correlated predictors,
MI-QP can also be extremely computationally intensive due to the need to
invert near-singular matrices.

DURR performed very well in the resampling study and quite poorly in the
simulation study. In the resampling study, DURR was probably the best
overall method in terms of bias and coverage, but it performed very badly
in the high-dimensional condition of the simulation study. In the simulation
study’s low-dimensional condition, DURR produced small bias, good CI
coverage, and similar CIW to IURR for item means and variances.
However, compared to IURR, it suffered from greater deterioration in per-
formance when applied to high-dimensional data, especially in terms of
coverage. Our results suggest that DURR may have some unique benefits
when treating the types of more discrete data seen in the resampling study.
On balance, though, DURR probably should not be preferred to IURR.

There was a little difference in the performance between the use of CART
and random forests as elementary imputation methods within the MICE algo-
rithm. In line with what Doove, Van Buuren, and Dusseldorp (2014) found,
when a difference was noticeable, the simpler CART generally outperformed
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the more complex random forests. Both MI-CART andMI-RF produced large
covariance bias in the simulation study. Although the bias for means and var-
iances was acceptable, it was usually larger than that obtained by other MI
methods. Furthermore, in terms of CI coverage, both methods showed a large
under-coverage of the true values in the high-dimensional condition. In the
resampling study, MI-CART and MI-RF both showed somewhat better per-
formance than in the simulation study but not enough better to outweigh the
mediocre simulation study performance. Although the nonparametric nature
of these approaches elegantly avoids over-parameterization of imputation
models, these methods were still outperformed by IURR and MI-PCA.

In the simulation study, BLasso resulted in small biases for item means
and variances, even in the high-dimensional conditions, but it produced
unacceptably biased covariance in both the low- and high-dimensional con-
ditions. On the other hand, BLasso seemed to recover the relationships
between variables in the resampling study well, where the overall bias
levels for the regression coefficients were similar to those of MI-OR.
However, in terms of CI coverage, BLasso showed poor performance in
both studies resulting in either under-coverage or over-coverage for most
parameters in the high-dimensional conditions.

The mixed performance of BLasso is also accompanied by a few obstacles
to its application for social scientific research. Using Hans’s (2010a) Bayesian
lasso requires the specification of six hyper-parameters, which introduces
more researcher degrees of freedom and demands a strong grasp of
Bayesian statistics. Furthermore, the method has not currently been devel-
oped for multi-categorical data imputation, a common task in the social
sciences. As a result, we do not recommend BLasso for the imputation of
large social science data sets.

Finally, we do not recommend using MI-AM to impute large social science
data sets. MI-AM bypasses the need to select which of the many potential aux-
iliary variables should be included in the imputation models by using only the
analysis model variables as predictors. Therefore, MI-AM can be effective if
the MAR predictors are part of the analysis model, but, as shown in the simu-
lation study, it can lead to biased parameter estimates if they are not. In our
simulation study, smaller biases and better coverages could always be achieved
by using at least one of the alternative methods we evaluated.

Limitations and Future Directions
The present study aimed to compare current implementations of existing imput-
ation methods. As a result, the scope of the simulation and resampling studies
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was limited by the current development state of the different methods. For
example, DURR, IURR, and MI-PCA allow imputation of any type of data:
DURR and IURR have been developed for categorical data imputation
(Deng et al., 2016), and MI-PCA can be performed with any standard imput-
ation model for categorical data. However, BLasso has not been formally
developed for imputing multi-categorical variables yet. This limitation of
BLasso forced us to work with missing values on variables that are either con-
tinuous or usually considered as such in practice (e.g., Likert-type scales). To
maintain a fair comparison with BLasso, all methods were implemented with
the assumption that the imputed variables are continuous and normally distrib-
uted. However, IURR, DURR, and MI-PCA could have performed differently
in the resampling study if we had used their ordinal data implementations.

More generally, the results reported in this article only apply to the specific
implementations of the algorithms we used. Many of the methods discussed
could have been implemented differently. Zhao and Long (2016) proposed
versions of IURR and DURR using the elastic net penalty (Zou and Hastie,
2005) and the adaptive lasso (Zou, 2006) instead of the lasso penalty.
Although no substantial performance differences between penalty specifica-
tions emerged from the work of Zhao and Long (2016) or Deng et al.
(2016), we must acknowledge that we did not investigate the impact of dif-
ferent types of regularization in the present study. Similarly, we have not
investigated the sensitivity of BLasso to different hyper-parameters
choices. Furthermore, the use of random forests within the MICE algorithm
followed Doove, Van Buuren, and Dusseldorp (2014), the version supported
in the popular R package mice. However, Shah et al. (2014) independently
developed another implementation of random forests within theMICE algorithm,
which was available in the now archived R package CALIBERrfimpute (Shah,
2018). We are not aware of any evidence or theoretical reason to expect differ-
ences between the two implementations, but we did not verify this empirically.
Finally, there are many alternatives to OLS estimation that we did not consider.
Dempster, Schatzoff, and Wermuth (1977) compared the properties of 57 such
OLS alternatives, including different variants of ridge regression, subset regres-
sion (e.g., forward and backward model selection), and principal component
regression, when applied to fully observed data. Any of these variants could
be used as the elementary imputation model in a MICE implementation. In the
present study, however, our inclusion criteria for imputation methods precluded
consideration of these alternatives. We considered only those high-dimensional
prediction methods that have already been recommended in the literature specif-
ically for MI. This is the same reason we did not consider many state-of-the-art
prediction methods like (deep) neural networks or support vector machines/
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regressions, even though those methods currently dominate all others in terms of
raw prediction and classification performance.

Our implementation of MI-PCA was limited in several ways. First,
MI-PCA requires choosing the number of components to extract from the
auxiliary variables. In this study, we decided to retain the first components
that explained 50 percent of the total variance in the auxiliary variables.
However, this decision was arbitrary, and the results of collinearity-focused
simulation study clearly demonstrate some of the possible deleterious conse-
quences of this approach. Additionally, the good performance of MI-PCA
may have been partially driven by the fact that, while imputing the jth vari-
able, all other variables under imputation were used directly as predictors.
If the other variables under imputation had been included in the imputation
models through the PCs extraction step, and not used as separate, individual
predictors, the performance of MI-PCA might have been less favorable. By
Costantini et al. (2023), we assess the effects of these two factors on the
MI-PCA method. The unsupervised nature of the classical PCA through
which MI-PCA constructs imputation model predictors may also be a limiting
feature. While classical PCA should optimally distill the variance of the potential
auxiliary variables into a succinct set of component scores, these component
scores may not be useful predictors in the imputation model (e.g., if most of
the potential auxiliary variables were not good predictors to begin with).
Supervised versions of PCA (e.g., supervised PCA, Bair et al. (2006), principal
covariates regression, De Jong and Kiers (1992)) could overcome this limitation.
By Costantini et al. (2022C), we evaluate the performance of MI-PCA when the
component scores are extracted via several different supervised versions of PCA.

Conclusions
Our objective in this project was to find a good data-driven way to select the pre-
dictors that go into an imputationmodel. Awide range ofmethods have been pro-
posed to address this issue, but little research has been done to compare their
performance. With this article, we start to fill this gap and provide initial insights
into applying such methods in social science research. IURR, MI-SF, and
MI-PCA showed promising performance when compared to other high-
dimensional imputation approaches. While all of these methods represent good
options for automatically defining the imputation models of an MI procedure,
MI-PCA is the more practically appealing option due to its much greater speed.
However, the current implementation of MI-PCA is limited, and making the
most of this method will require further research and optimization, especially
regarding methods for the number of components. Finally, Bayesian ridge
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regression is a good alternative when the imputer wants to have an automatic way
of defining the imputation models in a low-dimensional setting (n ≫ p).
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Notes

1. We chose to use the EVS data for a resampling study rather than an applied
example because there is no ground truth in an applied example. The resampling
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study offers much of the ecological validity of an applied example with the added
benefit of supporting the same types of generalizable conclusions provided by a
simulation study.

2. Technically, the MICE algorithm is only a true Gibbs sampler when there exists a
valid joint distribution for all targets of imputation. When such a joint distribution
does not exist, the MICE algorithm is still valid, but it is not a true Gibbs sampler.

3. When estimating ridge regression coefficients, predictors are centered and scaled
to have unit variance

4. The DURR approach is now implemented in the R package mice via the mice::
mice.impute.lasso.norm() and mice::mice.impute.lasso.logreg() elementary imput-
ation methods.

5. As with ridge regression, predictors are centered and scaled to have unit variance.
6. The IURR approach is now implemented in the R package mice via the mice::

mice.impute.lasso.select.norm() and mice::mice.impute.lasso.select.logreg() elem-
entary imputation methods.

7. The sampling notation is the same used by Deng et al. (2016).
8. The columns of A are centered and scaled to have unit variance.
9. We used fixed correlation levels instead of varying the correlation values (e.g., to

manipulate collinearity) for the same reason. Varying the strengths of association
within blocks would have diluted this key feature of our population model.

10. The pseudo R-squared for the logistic regression of the missing value indicator on
the predictors of missingness was around 15 percent. The AUC for the logistic
regression was around 0.72.

11. The pseudo R-squared for the logistic regression of the missing value indicator on
the predictors of missingness was around 14 percent. The AUC for the logistic
regression was around 0.75.
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