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Abstract The increasing number of long-term survivors 
of pediatric brain tumors requires us to incorporate the most 
recent knowledge derived from cognitive neuroscience into 
their oncological treatment. As the lesion itself, as well as 
each treatment, can cause specific neural damage, the long-
term neurocognitive outcomes are highly complex and chal-
lenging to assess. The number of neurocognitive studies in 
this population grows exponentially worldwide, motivat-
ing modern neuroscience to provide guidance in follow-up 
before, during and after treatment. In this review, we provide 
an overview of structural and functional brain connectomes 
and their role in the neuropsychological outcomes of specific 
brain tumor types. Based on this information, we propose a 
theoretical neuroscientific framework to apply appropriate 
neuropsychological and imaging follow-up for future clinical 
care and rehabilitation trials.

Keywords Connectome · Pediatric brain tumor · 
Neuroimaging · Neurocognition · Neuropsychological 
assessment

Introduction

Given that the survival rates of pediatric brain tumor patients 
have increased over time, the quality of daily life increas-
ingly requires attention. As the lesion itself, as well as each 
treatment constituent can induce neurotoxicity [1], these sur-
vivors are at risk of long-term educational or work-related 
difficulties. Problems in attention, school results, and social 
functioning can already be observed before or shortly after 
diagnosis. In addition to these initial symptoms, treatment 
can lead to additional neural damage. First, neurosurgery 
causes direct brain tissue damage with related degenerative 
cascade effects. Since functional brain imaging or direct 
electrical stimulation during awake surgery is  implemented 
less often in pediatrics, sparing of eloquent areas is highly 
challenging in this population. Second, cranial radiation can 
additionally lead to a decline in IQ, with younger patients 
being more at risk [2]. Even though more precision radio-
therapy (RT) techniques, including proton beam irradiation 
(PBT), yield less scatter radiation and theoretically could be 
beneficial for cognitive sparing [3], IQ scores and attention 
[4] can still decline in younger irradiated patients [5]. The 
beneficial neurological effects of replacing RT with high-
dose chemotherapy (CT) in younger patients are still to be 
elucidated [6]. In addition, how these treatments interact 
with the developing brain network, or the so-called con-
nectome, needs to be investigated further. In the case of 
pediatric brain tumors, connectome reorganization primar-
ily depends on the location, size, and histological type of 
the primary tumor. To understand the functional impact of 
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neural damage on specific brain areas, we provide an over-
view of the structural and functional brain connectomes 
involved in cognitive outcomes, which can be translated into 
the findings of long-term cognitive outcomes for each pedi-
atric brain tumor type. In addition, we propose a new scheme 
for brain network-informed neurocognitive evaluations and 
potential rehabilitation strategies in the future.

Developing Neural Networks 
with a Neurocognitive Role

Multiple functional brain subnetworks are involved in daily 
life neurocognitive functioning (Fig. 1). There is growing 
evidence that such networks emerge in the first postnatal 
year, with increasing network integration as well as seg-
regation, referring to the functional specialization of brain 
subnetworks [7]. The sensorimotor and visual networks, 
responsible for sensorimotor perception and the processing 
of visual information, develop first [8]. Networks associated 
with language, attention, and executive function develop 
later on. Although the specialized roles of attention-related 
networks have yet to be elucidated, a useful heuristic has 
been to envisage the salience, frontoparietal, and dorsal 
attentional networks as related to external processing while 
the default mode network is primarily related to internal 
processing and representations of one’s self and past. All 

of these networks are well-integrated to produce complex 
human behavior and cognitive outcomes related to atten-
tion, learning, memory, and executive function. They have 
been defined mainly using functional neuroimaging, which 
is based on the activity of single regions. The correlated 
activity of two different regions is often referred to as "func-
tional connectivity". While functional connectivity does not 
necessarily always imply a structural connection (in the form 
of white matter tracts or fiber bundles), there is evidence 
that the functionally-defined networks are underpinned by 
white matter connections (Fig. 2). Crucially, though, there 
is more to the network than the inter-regional tracts. Con-
nectivity rather seems to obey a "small-world" principle, 
whereby some regions act as “railway stations” or so-called 
hubs, showing both local connections to neighboring regions 
and more distant connections to other hubs. With a growing 
understanding of these principles and the particular critical 
structural and functional hubs, it is becoming increasingly 
realistic to link impaired cognitive function in children with 
brain tumors, to the structural disturbances caused by these 
tumors (and their treatment). In turn, this promises a greater 
capacity to predict longer-term outcomes and, potentially, 
to implement targeted neurorehabilitation interventions 
exploiting the great potential for neuroplasticity.

Modern Imaging in Assessing Neural Networks 
in Pediatrics

Regarding conventional neuroradiological approaches, 
standard anatomical imaging includes contrast-enhanced 
imaging to detect primary tumors or metastases. However, 
these imaging techniques do not allow us to estimate brain 
networks or behavioral outcomes. Hence, to improve the 
sparing of daily life functional outcomes, we need to move 
towards the implementation of functional assessments and 
more advanced imaging techniques. Nowadays, advanced 
neuroimaging allows us to estimate not only the local micro- 
and macrostructure of the brain (e.g. cortical thickness, tis-
sue density, gyrification, sulcification) but also estimate the 
topology of the structural networks and functional coherence 
or time-dependency (Fig. 3). More specifically, diffusion-
weighted MRI allows us to estimate tractograms and con-
sequently structural connectomes. On the other hand, rest-
ing-state functional MRI (rs-fMRI) provides an estimate of 
simultaneous or dynamic oxygen supply, resulting in estima-
tions of functional connectomes. Connectomics is increas-
ingly receiving attention, as cognitive outcomes are not 
considered to be explained as one-region-specific anymore, 
but rather as being network-dependent, with the possible 
importance of hub areas [9]. Connectomics research based 
on tractography and rs-fMRI can assist in identifying the 
involved hub areas. In the following sections, specific tumors 

Fig. 1  Functional brain areas showing coherent activity associated 
with certain cognitive or functional tasks. ACC, anterior cingulate 
cortex; FEF, frontal eye fields; IFG, inferior frontal gyrus (Broca’s 
area); IPS, intraparietal sulcus; LP, lateral parietal; LPFC, lateral pre-
frontal cortex; PCC, posterior cingulate cortex; PFC, prefrontal cor-
tex; PPC, posterior parietal cortex; pSTG, posterior superior temporal 
gyrus (Wernicke’s area); SMG, supramarginal gyrus; Superior, supe-
rior section of the S1/M1 areas; Lateral, lateral section of the S1/M1 
areas.
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Fig. 2  Single delineated white 
matter tracts. The most well-
acknowledged single white 
matter tracts, being part of the 
whole-brain tractogram, are 
depicted in the center of the 
figure. Example tracts were 
derived from the HCP tractogra-
phy atlas and created using DSI 
studio [119]. AF, Arcuate Fas-
ciculus, CC, Corpus Callosum, 
CST, Corticospinal Tract, ICP, 
Inferior Cerebellar Peduncle, 
IFOF, Inferior Fronto-Occipital 
Fasciculus ILF, Inferior Longi-
tudinal Fasciculus, MCP, Mid-
dle Cerebellar Peduncle, SCP, 
Superior Cerebellar Peduncle, 
SLF, Superior Longitudinal 
Fasciculus, UC, Uncinate 
Fasciculus.

Fig. 3  Connectome graph demonstrating the complexity of the exist-
ing functional and structural brain networks. A connectome consists 
of nodes (i.e. regions, depicted as circles) and edges (i.e. representa-
tion of a connectivity measure between two regions, depicted as grey 
lines). In this graph, both the whole-brain tractogram (i.e. estimated 
streamlines) and regional activity patterns are depicted, which deter-
mine connectivity measures of structural and functional connectivity, 
respectively. For the streamlines in the background, blue indicates 
tracts along the axial axis (superior-inferior), green indicates tracts 
along the sagittal axis (anterior-posterior), and red indicates tracts 

along the coronal axis (left-right). Different nodes are indicated in 
different colors, presenting different activity patterns. The colored 
mini-graphs show average activity patterns for different nodes. Based 
on such a connectome, graph theoretical metrics can be calculated to 
determine the brain topology. This figure was constructed based on 
the Human Connectome Project tractography atlas Yeh et al. [119], 
which was complemented with an illustrative functional connectome, 
using DSI studio. For both the tract atlas and the functional connec-
tome, cortical parcellation was applied according to the AAL-atlas.
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and associated cognitive outcomes are discussed, with a 
specific translation to their involved hub areas (Table 1). 
Histology-specific tumor locations are depicted in Figure 4.

Site‑and Tumor‑specific Neurocognitive 
Dysfunction and Imaging Findings

Infratentorial Tumors

The infratentorial area is the most common location of 
pediatric brain tumors, with pilocytic astrocytoma (PiA), 
medulloblastoma (MB), and ependymoma occurring most 
frequently. PiA is usually treated with surgery only, while 
treatment of ependymomas and MB can include radiation. 
Ependymomas are treated with focal treatments (surgery and 
RT), whereas craniospinal RT is the standard of care for 
children aged three years or more with MB. These tumors 
located in or neighboring the cerebellum can infiltrate and 
induce pressure in this region, affecting mainly motor func-
tions (Figure 1 and Table 1). In this regard, the most well-
known acute neurological complication is the so-called 
cerebellar mutism syndrome (CMS), which is characterized 
by short-term mutism, reduced speech, hypotonia, and oro-
pharyngeal dysfunction/dysphagia shortly after cerebellar 
surgery. This often co-occurs with the cerebellar cognitive 
affective syndrome, including cognitive regulation of affect 
symptoms as well [10, 11]. These syndromes occur when 
surgery affects the efferent cerebellar tracts (specifically the 
dento-thalamo-cortical tracts [10]) but they are also associ-
ated with altered supratentorial perfusion [12]. In addition 
to surgery, cranial RT and systemic CT can also amplify 
cognitive decline [13].

While PiA presenting as cystic cerebellar lesions are 
associated with a low risk of neurocognitive dysfunction, an 
intrinsic lesion or exophytic brainstem or cerebellar pedun-
cle lesion can still cause significant sequelae, similar to more 
infiltrative tumors. Such symptoms range from difficulties 
in executive functioning to lower attention and processing 
speed problems due to front-cerebellar connectivity [14]. 
Also, patients’ spatial orientation can be affected after sur-
gery [15] as they can suffer from ataxia. Still, the fine motor 
skills of patients with PiA are better at the group level than 
patients with an MB [16].

Neuroimaging studies have indicated that the amount of 
brain tissue resected during surgery is associated with verbal 
or working memory outcomes [17], which could be associ-
ated with secondary demyelination along cerebellar-cortical 
tracts [18]. Regarding functional brain changes, decreased 
activity [19] and decreased N-acetylaspartate metabolite lev-
els [20] in cerebellar areas could explain the encountered 
behavioral outcomes.

Literature is lacking on neurocognitive effects in infraten-
torial ependymoma, probably due to small sample sizes. 
Still, sequelae can be expected, given the possible involve-
ment of the cranial nerves and the brainstem.

Craniospinal RT in MBs is known to increase the risk of 
neurocognitive decline, with the most evidence for decreases 
in intelligence throughout their development [21], with a 
loss of ~ 2.5 estimated IQ points per year [22]. Early find-
ings of decreases in IQ and executive scores (i.e. within 1 
year) can be associated with acute CMS [23], while in the 
longer run, the negative effects of younger age at treatment 
and treatment intensity become increasingly apparent [24]. 
Studies have shown that a higher RT dose to the temporal 
lobe and hippocampus is associated with lower IQ scale 
scores [25]. Although replacing RT with high-dose chemo-
therapy might result in fewer cognitive problems [26], cer-
tainly in infants, high-dose chemotherapy is still associated 
with declines in cognitive scores [27] and with leukomalacia 
[28] as well.

Besides intellectual decline, executive functioning [29] 
and fine motor skills [16] are also more severely affected 
in MB patients than PiA patients, as their craniospinal RT 
plan involves more brain areas, of which some are eloquent.

Not surprisingly, in neuroimaging studies, atrophic pro-
cesses in MB can occur across the entire brain. Cerebel-
lar atrophy in MB patients is specifically associated with 
information processing, attention [30], executive functioning 
[31], and working memory [19]. These outcomes can also 
be explained by decreased cerebellar-cerebral connectivity 
[29, 32]. In addition, hippocampal atrophy [33] can occur 
post-treatment, and this is associated with decreased mem-
ory performance. Other imaging features that are associated 
with the intelligence outcomes of MB patients consist of 
white matter volume [34], white matter lesions (e.g. 16% 
after 8 months [35]), and microstructural alterations [18], 
of which each can be affected by systemic treatment and 
irradiation. It is hypothesized that RT can induce accelerated 
cerebrovascular damage in long-term survivors of pediatric 
brain tumors [36]. The strongest effects of neural changes 
are found in the case of higher RT doses [37] and intrathe-
cal methotrexate [28], mostly when treated at a younger age 
[38]. Also, hydrocephalus [39] and ventricular shunt [38], 
female gender, and seizures [40] are additional risk factors 
for normal brain tissue development.

In comparison to PiA, MB patients show decreased cer-
ebral blood flow [18], more evident leukoencephalopathy 
[30], and less cortical thinning throughout development [41].

Supratentorial Tumors

Supratentorial tumors have different histological sub-
types and can be located either centrally (pituitary/pineal 
gland, basal ganglia) or in the lobe-specific supratentorial 
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cortices. For each supratentorial brain area involved, other 
functional outcomes can arise (Figure 1 and Table 1). In 
the following section, we summarize the literature for each 
specific tumor.

First, germ cell tumors are located at suprasellar, pineal, 
or basal ganglia sites. Although the IQ scores can be stable 
and within the normal range throughout treatment [42, 43], 
the scores can be somewhat lower than the norm [43]. More 
specifically, if the tumor involves the basal ganglia, a lower 
IQ has been found compared to the pineal or suprasellar 
regions [43, 44]. This can partly be explained by microstruc-
tural changes in the white matter [45]. Furthermore, in the 
case of oculomotor or visual problems, the visuospatial and 
fine motor skills can be affected [42], which can affect visual 
memory, processing speed [46], and the performance scale 
of IQ assessments [47]. Such symptoms are more present 
at baseline when the mass is located in the pineal than the 
suprasellar area [42], while the cognitive decline is stronger 
in the latter subgroup [46]. In addition, RT of these tumors 
can potentially lead to cavernous malformations, which can 
affect brain development as well [48].

Craniopharyngiomas and pituitary adenomas are specifi-
cally located in the suprasellar area, which is not only close 
to the hypothalamus but also the hippocampal area. They 
are generally treated with surgery, with or without focal RT. 
These tumors are generally reported to have more significant 
morbidities compared with other suprasellar tumors due to 
the inherent invasive growth pattern (involving the hypo-
thalamus, for example), which leads to an interruption in 
neuroendocrine networks. Long-term sequelae include cog-
nitive deterioration, socio-emotional symptoms, sleep dys-
function, and neuroendocrine problems [49]. Furthermore, 
due to the location close to the hippocampus (Table 1), epi-
sodic memory problems are most often reported in crani-
opharyngioma [50]. Acute post-surgical difficulties can arise 
in encoding and memory recall, both for visual [51] and 
verbal information [52]. Such problems are most prevalent in 
craniopharyngioma involving the hypothalamus [53] (being 
proximal to the hippocampal areas and more invasive than 
pituitary tumors). These problems appear worse in the case 
of hydrocephalus, shunt insertion [54], or growth into the 
third ventricle [55]. Due to disruptions of thalamocortical 

Fig. 4  Histology-specific pediatric brain tumor locations and their 
position in the developing connectome. In the upper figure, the dif-
ferent types of pediatric brain tumors are demonstrated. On the left 
panel below, these locations of brain tumors are mapped on the 

whole-brain functional connectome, where different signaling of dif-
ferent regions is demonstrated. On the right panel below, the tumor 
types are mapped on the whole-brain tractogram, showing which 
tracts are involved for each subtype.
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and supratentorial tracts (Table 1 and Figure 2), but also 
to functional and endocrine changes [56], executive func-
tioning can be altered as well as processing speed [57] or 
impulsivity [58] and working memory problems [59] in 
particular. An important underlying mechanism could be 
the hypothalamic-hippocampal circuitry involvement in 
impulsivity [60], although such deficits are less frequently 
reported than memory.

Besides surgery, cranial RT can exacerbate cognitive 
decline, with the most evidence for memory problems after 
higher temporal lobe RT doses [61], but also a lower IQ 
when RT doses exceed > 30–45 Gy in the supratentorial 
region (specifically in left hippocampal/temporal areas) [62].

Based on imaging findings, memory recall is associated 
with the functional coupling between the medial prefrontal 
cortex and the thalamus [50], the grey matter volume of 
the posterior cingulate cortex [63], and treatment-related 
microstructural changes in  the cingulum [64]. Functional 
imaging has also demonstrated higher amygdala reactivity 
when emotional faces are presented to craniopharyngioma 
patients [65], and this is altered after intranasal oxytocin 
administration [66].

Pituitary adenomas can be functioning (producing excess 
hormone) or non-functioning. Given the heterogeneity in 
endocrine sequelae of these tumors, heterogeneous findings 
exist regarding their neuropsychological profile. Patients 
with non-functioning adenomas (NFAs) show decreased 
verbal memory and processing speed compared to the norm 
before surgery [67]. These findings can be attributed to loca-
tions close to the hippocampus and crossing tracts. Such 
scores remain stable after surgery, also in the case of supra-
sellar extension [67, 68]. Postsurgical hypothyroidism can 
lead to further deterioration [67] due to increased fatigue, 
hyponatremia, and seizures. Furthermore, decreased cogni-
tive scores can still be detected in 41% of long-term sur-
vivors, years after treatment [69], while their intelligence 
assessments remain within the normal range [70]. In the 
case of macroadenomas, NFAs can grow upward, compress-
ing the optic chiasma and resulting in vision loss (blurry 
vision). Limited research on specific cognitive outcomes has 
been performed in these patients. In patients receiving addi-
tional RT (because of a tumor remnant or regrowth), work-
ing memory and verbal memory can either decline further 
[71] or stabilize years after treatment [69]. Gamma-knife 
radiosurgery is specifically not associated with decreased 
performance in this population [72].

Patients with functioning pituitary adenomas (FPAs), 
express more cognitive problems before surgery compared 
to NFA patients [73]. These patients suffer from hyperpi-
tuitarism, of which the most well-known conditions are 
prolactinomas, acromegaly, and Cushing’s disease. This 
pre-treatment hormonal overproduction appears to be more 
important for cognitive outcomes than tumor size. More 

specifically, negative correlations have been found between 
adrenocorticotropic hormone (ACTH) levels and arithme-
tic scores [74], prolactin levels, and memory scores [75], 
and positive correlations between thyroxine and processing 
speed, working memory [76], and visual recall [74]. In other 
words, the relationships between endocrine fluctuations and 
cognitive performance are hormone-specific in FPA patients. 
Endocrine changes can lead to difficulties in concentration, 
learning, planning, and complex attention [77], in addition 
to problems in memory recall [70], while overall IQ scores 
are stable. Furthermore, long-term hypercortisolism (i.e. 
endogenous cortisol) as well as cortisol replacement (e.g. 
exogenous cortisol) can potentially lead to decreased mem-
ory performance [78].

Grey matter volume loss has also been noted in patients 
with pituitary adenomas. More specifically, Cushing’s dis-
ease in FPA is associated with decreased grey matter vol-
ume in the anterior cingulate cortex [79] and cerebellum 
[80], which can be associated with the activity of the dis-
ease (i.e. ACTH and serum cortisol levels) [81]. Although 
NFA patients can demonstrate leukoencephalopathy after 
treatment (certainly in cases with high blood pressure), such 
lesions are not associated with cognitive outcomes [82]. 
With regard to functional imaging, decreased working and 
verbal memory scores are associated with altered perfusion 
in the temporal areas [71]. Furthermore, electroencephalo-
graphic studies have suggested alterations in conflict moni-
toring [83].

Finally, visual impairment can occur in case of altered 
connectivity between visual and higher-order areas [84]. 
Patients with supratentorial tumors who are even more 
at risk for visual disturbance have hypothalamic gliomas 
involving the optic pathway and chiasma [85]. However, this 
population remains to be underinvestigated to date.

Finally, for lobe-specific supratentorial ependymomas/
astrocytomas in pediatrics, no studies have focused on the 
cognitive outcomes of these specific histological subtypes. 
Depending on the tumor locations, specific subnetworks can 
be affected, and result in certain behavioral sequelae in daily 
life (Table 1).

Challenges of Assessing Neurocognitive 
Dysfunction After Treatment for Pediatric Brain 
Tumors

Even though the amount of literature on cognition in pedi-
atric brain tumors is growing exponentially, concerns exist 
regarding current approaches. More specifically, the existing 
literature is highly heterogeneous due to the variability of 
this population, with many confounding factors. These fac-
tors include histological tumor types, multimodal treatments 
with differential surgical approaches and therapeutic doses, 
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wide age ranges, hemisphere dominance, and institution-
specific findings due to the lack of multicenter studies.

Not only irradiation and younger age are significant risk 
factors [5], but also histological tumor type, location, and 
size [31], relapse [86], epilepsy, endocrine problems [74], 
hydrocephalus [39] or ventricular shunt [38], cerebellar mut-
ism/cognitive-affective syndrome [23], anesthesia exposure 
[87], female gender, and seizures [88] can play a major role 
in daily life neurobehavioral outcomes. In addition, hearing 
loss, which can be induced by chemotherapy (e.g. platinum-
based agents) [89] and RT, can negatively affect neurocogni-
tive outcomes [90]. Hence, intensity-modulated RT [91] and 
PBT [92] can be beneficial for cognitive measures by sparing 
healthy brain tissue and decreasing ototoxicity. In addition, 
multiple single nucleotide polymorphisms have been associ-
ated with neurocognitive outcomes [93]. In pediatric brain 
tumors specifically, most studies evidenced the catechol-O-
methyltransferase (COMT) gene involved in neurotransmis-
sion [94] and antioxidant enzyme genes (e.g. glutathione 
S-transferase Theta 1 (GSTT1) and glutathione S-transferase 
Mu 1 (GSTM1) [95] to be possibly involved. The question 
for future research remains how these risk factors in addition 
to a brain tumor interact with the development of the human 
brain connectome. In this review, we provide a framework 
for future studies (see below).

Appraisal of Clinical Tools for Assessing Pediatric 
Neurocognitive Function

Given the heterogeneity in assessment tools, guidelines have 
been constructed to homogenize test materials and timing. In 
Europe, the SIOPe Quality of Life Group has proposed that 
patients below the age of 5 be screened [96] using at least 
measurements of the developmental quotient (<4 years), 
and (>4 years) receptive and expressive language, matrices, 
processing speed, number recall, fine motor, visual motor, 
semantic memory, and long-term memory. Above the age 
of 5 years, tests can additionally include the fine motor peg-
board and sustained attention and processing speed [97]. 
These cognitive screenings are suggested to take place at 
baseline (within the first 6 weeks after diagnosis), 2 years, 5 
years post-diagnosis, and 18 years old. This procedure was 
mainly proposed to standardize assessments across studies, 
and thus to apply in trials across the pediatric brain popu-
lation. By contrast, some clinicians might prefer to define 
time points at the individual level, e.g. to look at specific 
treatment effects.

While this is a proposed core battery of tests to assess 
neurocognitive dysfunction, these measures should addition-
ally be associated with neuroimaging parameters, includ-
ing morphological features of the tumors and non-lesion 
brain volumes, to improve our knowledge of which areas 

are crucial to spare from toxicity in the future. This can be 
a challenge in routine clinical practice. Hence, automated 
methods of image segmentation and parcellation need to 
be developed, e.g. for the segmentation of tumoral tissues, 
as well as regions to be spared (i.e. “organs at risk”). Even 
more, such optimizations will need to take anatomical defor-
mations into account, using normative templates or healthy 
tissue as a reference. In order to take the involved networks 
into account, the selection of cognitive tests could be 
informed by the tumor-, treatment- and location-based infor-
mation (Table 1). More specifically, initial “key” tests can 
be selected and prioritized based on the functional hub (i.e. 
region) that is involved. In addition, we propose to expand 
the assessment measuring related or “connected” functions 
as well (e.g. verbal comprehension as well as speech).

For instance, given that more eloquent areas can be 
affected by craniospinal or whole-brain RT compared to 
focal treatment, patients with infratentorial tumors should 
receive more elaborate testing post-CSI (e.g. IQ, executive 
function, and visuomotor skills). Similarly, supratentorial 
tumors close to the medial temporal lobe, such as crani-
opharyngiomas, can cause more working, verbal, and vis-
ual memory problems. Hence, the involved functional hubs 
should be considered.

Proposal for a Unified Approach to Measure 
Neurocognition in Combination with Its Neural 
Correlates

Regarding functional brain imaging, the acquisition of valid 
active fMRIs can be challenging in a pediatric population 
(due to anxiety, excessive movement, boredom, and little 
understanding of a complicated task). The same limitations 
count for awake electrical stimulation during neurosurgery 
as well. Therefore, most of the functional imaging studies 
outlined above in children applied resting-state fMRI to esti-
mate functional brain networks. However, since functional 
connectivity in the resting state is a state-dependent correla-
tive measure, it does not provide sufficient information about 
the causal role of brain regions in functional outcomes, nor 
about underlying structural connectivity. Furthermore, it 
cannot be interpreted without taking the state of mind of 
the individual into account [98]. What complicates the inter-
pretation of resting-state fMRI even more, is when children 
are too young and sedation is needed; this can affect brain 
signaling [99]. Future research is therefore needed to deter-
mine which functional brain areas apply as hub regions for 
which behavioral outcomes in healthy children. In addition 
to these challenges in pediatrics, the definition of a “hub” in 
brain networks depends on which graph metric is used; this 
is mostly related to the centrality of a node. These metrics 
often include nodal degree, nodal efficiency, or betweenness 
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centrality. However, such individual metrics can provide dif-
ferent results on what brain areas are assumed to be the hub 
regions. Hence, hubness can alternatively be defined based 
on a combination of graph metrics. Van den Heuvel et al. 
[100] proposed such a combination of nodal metrics (nodal 
strength, betweenness centrality, clustering coefficient, and 
characteristic path length), leading to a nodal hub score on a 
scale of 0–4. More specifically, each nodal metric increased 
by 1 point if the nodal value was within the 20% highest 
values. Such an approach could be a more reliable method to 
estimate hubs within a functional or structural connectome.

In addition, how brain networks reorganize throughout 
the child’s brain development (and thus the changing micro-
structural brain environment), up to adulthood, incorporat-
ing resting state fMRI and validation against active fMRI 
is required. Current studies are very limited in acquiring 
longitudinal data in both pediatric brain tumor patients and 
controls [32, 101] due to practical challenges. In this context, 
recent international large-cohort databases have allowed us 
to use better estimates of normative brain development, 
including anatomical cortical development as well as net-
work changes [102] and their relationships [103], from the 
neonatal stage [104] to adulthood [105]. Regarding analyses, 
it would therefore be advisable to use age- and modality-
specific normative templates and parcellations that have 
been developed for T1-weighted MRI [106], susceptibil-
ity mapping [107], perfusion [108], functional networks 
[109], and diffusion-weighted MRI [110, 111]. Given that 

functional networks have been generally defined based on 
the adult population [112], more research on functional pedi-
atric atlases is needed. To handle deformations in the case 
of pediatric brain tumors, new techniques to artificially cor-
rect deformations or lesions are being developed [113] and 
should be further validated.

As neuroimaging findings are scarcer than neurocognitive 
studies, we recommend that centers obtain uniform prospec-
tive imaging data of sufficient quality to perform statistical 
analyses. This includes high-resolution anatomical scanning 
(e.g. T1-weighted or T2-weighted MR scanning, < 1 mm 
isotropic resolution) as well as future imaging studies with 
sufficiently large samples, including yearly functional and 
structural connectomics data acquisition [e.g. resting state 
fMRI and diffusion MRI (including b = 1000)]. Once cent-
ers have acquired these data in a standardized way, pre-and 
post-surgical neural development, as well as RT dosimetry 
plans, can be investigated more in-depth regarding their 
neural sequelae and associations with cognitive measure-
ments. Ideally, advanced imaging acquisition (including 
connectomics data) would take place as close as possible 
to the time points of the standardized neuropsychological 
assessments. In other words, this would at least take place 
at baseline (within the first 6 weeks after diagnosis) and at 
2-year follow-up (Fig. 5). Trials can then be performed com-
paring hub information and functional outcomes in targeted 
neurocognitive rehabilitation arms and control arms with 
the standard of care.

Fig. 5  Flowchart for neuroimaging-informed neuropsychological 
assessment. This figure explains the selection procedure of tests in 
clinical practice based on tumor location and network information. 
First, the brain tumor location is used as prior information, to esti-
mate which functional hub is certainly affected. This core network is 
neuropsychologically assessed in the first place. For example, speech 
can be assessed in case of damage to Broca’s area. Second, related 

functions are assessed. For speech, this could be verbal comprehen-
sion as an example. Third, functions that can be secondarily affected 
by changes in the brain network are assessed in addition. For the 
speech example, this could be auditory sustained attention, which is 
“connected” to speech function via the arcuate fasciculus and supe-
rior longitudinal fasciculus.
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Finally, throughout the procedures of neuropsychological 
and advanced imaging follow-up, it is important to incorpo-
rate shared decision-making with parents as much as pos-
sible. Although this can be challenging in pediatric oncology 
[114], examples of prognostic communication have recently 
been proposed for pediatric patients with neurological condi-
tions [115].

Current Conclusions Towards Treatment 
Optimization

Regarding neurosurgery, subtotal resection is intrinsically 
associated with less brain injury. However, the disease pro-
cess itself might result in secondary damaging effects, and 
thus the aggressiveness of the tumor, as well as shared 
decision-making with parents, are important to keep in 
mind for such decisions. Awake surgery can additionally 
be recommended in adolescents with tumors located in 
eloquent areas. Regarding infratentorial tumors, proximal 
efferent cerebellar pathways are to be spared in modern 
neurosurgery as much as possible, without interfering 
with the superior cerebellar peduncles, to limit the risk of 
cerebellar mutism/cognitive-affective syndrome. Finally, 
FPA surgery can improve neurocognitive outcomes when 
stabilizing the hormonal status.

Second, RT planning can be modified in order to spare 
the eloquent areas as much as possible, of which the hip-
pocampal area has been proposed as a potentially impor-
tant hub [62]. However, hub analyses could yield new 
findings and novel information on tract-based or function-
based sparing. In addition, (hyper-)fractionation of RT or 
PBT [4, 116] could also reduce the cognitive sequelae 
compared to conventional photon beam therapy.

Finally, interventional studies including pharmacologi-
cal studies have only recently shown some preliminary 
positive evidence for metformin [117]. Furthermore, 
behavioral interventions such as physical exercise can 
improve neural sparing [118]. In conclusion, efficient spar-
ing of hub areas associated with specific cognitive func-
tions from atrophy or any treatment-induced toxic mecha-
nisms will require large-scale imaging-neurobehavioral 
research in this population in the near future.
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