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Abstract
Background The connectome, constituting a unique fingerprint of a person’s brain, may be influenced by its prenatal envi-
ronment, potentially affecting later-life resilience and mental health.
Methods We conducted a prospective resting-state functional Magnetic Resonance Imaging study in 28-year-old offspring 
(N = 49) of mothers whose anxiety was monitored during pregnancy. Two offspring anxiety subgroups were defined: “High 
anxiety” (n = 13) group versus “low-to-medium anxiety” (n = 36) group, based on maternal self-reported state anxiety at 
12–22 weeks of gestation. To predict resting-state functional connectivity of 32 by 32 ROIs, maternal state anxiety during 
pregnancy was included as a predictor in general linear models for both ROI-to-ROI and graph theoretical metrics. Sex, birth 
weight and postnatal anxiety were included as covariates.
Results Higher maternal anxiety was associated with weaker functional connectivity of medial prefrontal cortex with left 
inferior frontal gyrus (t = 3.45, pFDR < 0.05). Moreover, network-based statistics (NBS) confirmed our finding and revealed 
an additional association of weaker connectivity between left lateral prefontal cortex with left somatosensory motor gyrus 
in the offspring. While our results showed a general pattern of lower functional connectivity in adults prenatally exposed to 
maternal anxiety, we did not observe significant differences in global brain networks between groups.
Conclusions Weaker (medial) prefrontal cortex functional connectivity in the high anxiety adult offspring group suggests 
a long-term negative impact of prenatal exposure to high maternal anxiety, extending into adulthood. To prevent mental 
health problems at population level, universal primary prevention strategies should aim at lowering maternal anxiety during 
pregnancy.

Keywords Fetal programming · Resting-state functional connectivity · Prospective study · Medial prefrontal cortex · 
Prenatal stress
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Introduction

Worldwide the societal burden of mental health problems 
is increasing (Vigo et al., 2016). Although early stage pre-
vention is more cost-efficient than treatment (Bauer et al., 
2016), prenatal origins of mental health problems that are 
often preventable remain understudied (Browne et al., 2020; 
Glover, 2011; Monk et al., 2019; van den Heuvel, 2022). 
In a UK-based study, it has been estimated that perinatal 
anxiety and depression combined costs the society about 
£8500 per woman giving birth. This results in a striking 
£6.6 billion in total costs (for both mother and child) for 
the United Kingdom alone (Bauer et al., 2016). The major-
ity of these costs were associated with adverse effects of 
maternal perinatal depression on the children, emphasizing 
the need for more research on the underlying mechanisms 
of adverse consequences of maternal psychological distress 
during pregnancy, especially on the long-term.

More than a decade of brain imaging research has shown 
that maternal psychological distress during pregnancy, 
including depression and anxiety, affects the developing 
fetal brain, with later life consequences for offspring’s cog-
nition and mental health (for a review, see Adamson et al., 
2018; Dufford et al., 2021; Pulli et al., 2019; Van den Bergh 
et al., 2018). Recent studies found evidence for changes in 
offspring’s structural grey matter (e.g., Acosta et al., 2019, 
2020; Donnici et al., 2021; Moog et al., 2021) and white mat-
ter (e.g., Demers et al., 2021; Manning et al., 2022; Rifkin-
Graboi et al., 2015) as well as functional brain changes, 
including resting-state functional connectivity (rsFC) using 
fMRI (e.g., Humphreys et al., 2020; Manning et al., 2022; 
Rajasilta et al., 2023; Scheinost et al., 2020) and task-based 
fMRI studies (e.g., Mennes et al., 2020; van der Knaap et al., 
2018). Several pioneering studies have even started to show 
that the timing of these brain alterations is prenatally, by 
studying the offspring in utero with fetal resting-state fMRI 
(De Asis-Cruz et al., 2020; Thomason et al., 2021; van den 
Heuvel et al., 2021; Wu et al., 2022). Such neural alterations 
potentially underlie the observed behavioral problems and 
mental health issues of prenatally exposed offspring (Monk 
et al., 2019; Van den Bergh et al., 2018).

While studies on developmental origins of infant and 
child brain development are still increasing, only very few 
studies examined the lasting effect of prenatal exposure to 
maternal distress into puberty or adulthood. Consequently, 
we lack knowledge about the persistence of brain develop-
mental alterations in the aftermath of prenatal exposure to 
maternal distress. Prospective pregnancy cohorts that con-
tinue into adulthood may add incredibly valuable informa-
tion, especially since several researchers have pointed out 
that neurodegenerative disorders, such as Parkinson’s and 
Altzheimer’s Disease, may find their origin in fetal life 

(Boots et al., 2023; Faa et al., 2014). The limited number of 
studies that do exist clearly show persistent brain alteration 
into adulthood, such as presumed accelerated brain aging 
in young adults prenatally exposed to maternal depression 
(Mareckova et al., 2020), and a deficit in endogenous cog-
nitive control in 20-year-old males as measured with task-
based fMRI (Mennes et al., 2020). Still, more prospective 
research with longer follow-up periods are necessary.

Additionally, an important gap in neuroimaging research 
to date is the focus on predetermined brain areas. Most 
research has focused on structural changes of the amygdala 
and hippocampus or rsFC of the limbic and/or (pre)frontal 
region (Scheinost et al., 2017). Even though several studies 
have found important results in changing brain structure and 
function of these brain regions (Acosta et al., 2019, 2020; 
Donnici et al., 2021; Humphreys et al., 2020; Jones et al., 
2019; Scheinost et al., 2016, 2020; van der Knaap et al., 
2018), this targeted approach may miss important changes 
to global brain function and network properties of the prena-
tally exposed brain (Scheinost et al., 2017). Exploration of 
the adult whole brain network prenatally exposed to mater-
nal distress, with appropriate control for multiple testing, 
has not been conducted to date.

In the current study, we utilize a unique prospective pre-
natal cohort with a postnatal follow-up of 28-years to study 
the long-term effects of prenatal exposure to maternal anxi-
ety on whole brain functional connectivity. To this aim, we 
gathered rs-fMRI scans of the adult offspring to evaluate its 
association with maternal anxiety at 12–22 weeks of preg-
nancy. We examined resting-state functional connectivity 
both locally, by studying differences in ROI-to-ROI con-
nectivity using 32 cortical and cerebral ROIs, and by study-
ing the whole-brain network properties with graph metrics, 
using two different atlases. We expected to observe altered 
brain functional connectivity associated with prenatal expo-
sure to maternal anxiety. Given the lack of adult offspring 
research, a data-driven approach was implemented, with no 
a priori expectations on directions of effects.

Methods

Study design

From the 86 pregnant women that initially participated in 
1986 in a prospective longitudinal study, 52 of their off-
spring participated in our study at age 28 years. Inclusion 
criteria at the start of the study were Caucasian race, Dutch 
speaking, aged between 18 and 30 weeks pregnant, nul-
liparous and without obstetrical complications or medical 
risks, and not using drugs or medication with risks to the 
fetus (Van den Bergh, 1990; Van den Bergh & Marcoen, 
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2004). None of the mothers used SSRI or glucocorticoids 
and none used drugs other than alcohol, nicotine products 
and prescription drugs used for medical purposes. Mater-
nal data assessment included the State Trait Anxiety Inven-
tory which was used to screen for anxiety symptoms during 
weeks 12–22 and was also taken at, 23–31 and 32–40 weeks 
of pregnancy and at several waves postnatally.

The 28-year-old offspring participated in this study 
between July 2014 and September 2015 in a University 
Hospital. The rsFC analyses were performed on the avail-
able high-quality imaging data of 49 subjects (after exclu-
sion of one case of whom the T1 image was not available 
and two cases with Root Mean Square (RMS) motion 
parameters > 1 mm in rs-fMRI images; N = 3). Demo-
graphic characteristics of the total group of mothers and 
offspring (N = 49, final sample) are presented in Table 1 and 
Supplemental demographics, Table S1. As recommended 
by Pulli et al. (2019), we reported on offspring age at MRI 
scan, gestational age at birth, offspring sex, birth weight, 
maternal age, maternal BMI, race/ethnicity, socioeconomic 
status, and drug, alcohol, and tobacco use during pregnancy.

Materials

Maternal anxiety during pregnancy

To investigate the anxiety level of the mothers during preg-
nancy, the Dutch version of the State Trait Anxiety Inven-
tory (STAI) (Van der Ploeg et al., 1980) was used. Two 
offspring anxiety subgroups were defined, “High anxiety” 
(HA; n = 13) group versus “low-to-medium anxiety” (LMA; 
n = 36) group, based on the mother’s STAI state anxiety 
subscale total score during week 12–22 week of pregnancy. 
The threshold of the dichotomous split between the group 
is 43 (i.e., percentile 75 in a reference population (Van der 
Ploeg et al., 1980), which has been used in different cohorts 
(Koelewijn et al., 2017; Mennes et al., 2006; van den Heu-
vel et al., 2018b). As expected, mean maternal anxiety was 
higher in HA group (MHA= 50.29, SD = 6.44) compared to 
LMA group (MLMA = 34.59, SD = 4.73; t = -9.24, p < .001) 
and are situated at respectively decile 9 versus decile 5 of 
a Dutch non-clinical community sample described in the 
STAI Manual (Van der Ploeg et al., 1980).

Covariates

Postnatally, mothers completed the STAI when the child 
was 1, 10, and 28 weeks old (postnatal part of first wave), 
at 8/9 years (second wave), at 14/15 years (third wave), at 
17 years (fourth wave) and at 20 years (fifth wave). In a 
principal component analysis conducted on the postnatal 
trait anxiety measures obtained in wave one to four, the first 

component explained 66.2% of the variance. This standard-
ized component score was created for each mother, and 
labeled “postnatal anxiety”. Given that postnatal experience 
and other potential confounds, i.e., alcohol and caffeine use, 
smoking, gestational age at birth and birth weight, could 
affect neurobehavioral outcomes of the child, all of these 
were recorded and examined. These demographics and 
potential confounds (alcohol and caffeine use, smoking, and 
offspring gestational age at birth and birth weight corrected 
for gestational age, maternal/paternal age, postnatal anxi-
ety) were not significantly different between LMA and HA 
group after correction for multiple testing with Bonferoni 
correction (Table 1).

Offspring MRI and fMRI Data Acquisition and Processing

Data acquisition MR-scans were acquired using a Phil-
ips Achieva 3T scanner (Philips, Best, The Netherlands) 
with 32 channel head coil and in-coil AC/DC conver-
sion (dStream). Functional images for rs-fcMRI were 
obtained with a T2*-weighted echo-planar imaging 
(EPI) sequence (4 × 4 × 4 mm3, TE/TR = 33 ms/1700 ms; 
FOV = 230 × 120 × 230 mm; 4 mm slice thickness, 30 slices, 
7 min acquisition time; 250 volumes). For the acquisition 
of this scan, participants were requested to relax, but not to 
fall asleep. For anatomical mapping and optimal registra-
tion to standard space, a T1-weighted image was acquired 
(MPRAGE, resolution 1 × 1 × 1 mm3, TE/TR = 4.6ms/9.6 
ms, FOV = 192 × 250 × 250, 1.2 mm slice thickness, 160 
slices, 6 min acquisition time).

MRI processing

Preprocessing followed established procedures for func-
tional imaging using FSL software (Smith et al., 2004), see 
Supplemental materials. After preprocessing, functional 
connectivity was analyzed based on a 32 by 32 matrix of 
partial correlations between regional BOLD signals. The 
nodes of interest in this study were all 32 cortical and cer-
ebellar regions (or ROIs) from the network atlas as provided 
by the Conn toolbox (atlas is based on 497 subjects from 
the Human Connectome Project (http://www.humancon-
nectome.org), see Table S2 in supplement for a descrip-
tion of the regions). To estimate the functional connectivity 
between 32 nodes, partial correlations, i.e., corrected for 
the remaining connections to avoid spurious effects in net-
work modeling, were calculated using the Conn toolbox 
(Whitfield-Gabrieli & Nieto-Castanon, 2012) implemented 
in MATLAB (http://www.nitrc.org/projects/conn; version 
17.f).
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Variables Follow-up 
sample mean 
(SD)

Low-Medium 
anxiety (LMA)
group 
mean (SD)

High-anxiety 
(HA) group
mean (SD)

Independent 
sample t-test*

Parents (n = 48) (n = 35) (n = 13)
Maternal state anxiety 12–22 weeks of pregnancy 38.84 (8.74) 34.59 (4.73) 50.29 (6.44) -9.24 

(p < .001)
Postnatal maternal trait anxiety 0.12 (0.99) − 0.16 (0.95) 0.89 (0.61) -3.7 (p < .001)
Maternal age at 12–22 weeks, years 26.19 (2.55) 25.89 (2.54) 27 (2.48) -1.36 (p = .18)
Paternal age at 12–22 weeks, years 28.32 (4.16) 28.16 (4.44) 28.75 (3.44) 174.5 (p = .65)
Social class (based on education both parents) 0.20 (0.99) 0.3 (0.95) − 0.07 (1.09) 280.50 

(p = .21)
Months married 36.5 (25.67) 38.03 (25.98) 31.64 (25.21) 232 (p = .31)
Cigarettes a day in pregnancy 1.02 (2.05) 1.03 (2.18) 1 (1.73) 221.5 (p = .87)
Daily caffeine use (mg) in pregnancy 293.78 (223.01) 322.24 (247.53) 217.15 (111.63) 288.5 (p = .16)
Daily alcohol use (mg) in pregnancy 1.92 (2.94) 1.82 (2.88) 2.19 (3.19) 222 (p = .90)
Maternal BMI start pregnancy 21.24 (2.80) 21.22 (2.86) 21.19 (2.86) 0.036 (p = .97)
Maternal BMI end of pregnancy 26.15 (3.26) 25.99 (3.22) 26.45 (3.22) -0.417 

(p = .68)
N (%) N (%) N (%) Chi square 

test**
Highest level of education mother p = .35
No High-School or Test Equivalent 6 (12.50) 3 (8.57) 3 (23.08)
High School or Test Equivalent 11 (22.92) 7 (20.00) 4 (30.77)
Undergraduate Level (Associate, Bachelor) 13 (27.08) 10 (28.57) 3 (23.08)
Graduate Level (master, PhD.) 18 (37.50) 15 (42.86) 3 (23.08)
Highest level education father p = .76
No High-School or Test Equivalent 7 (14.58) 4 (11.43) 3 (23.08)
High School or Test Equivalent 12 (25.00) 9 (25.71) 3 (23.08)
Undergraduate Level (Associate, Bachelor) 6 (12.50) 5 (14.29) 1 (7.69)
Graduate Level (Master, PhD.) 23 (47.92) 17 (48.57) 6 (46.15)
Mothers employed or not p = .66
Yes 41 (85.42) 29 (82.86) 12 (92.31)
No 7 (14.58) 6 (17.14) 1 (7.69)
Fathers employed or not p = 1.00
Yes 46 (95.83) 33 (94.29) 13 (100.00)
No 2 (4.17) 2 (5.71) 0 (0.00)
Mother level of employment p = .39
Unskilled or low skilled worker 9 (21.95) 5 (17.24) 4 (33.33)
Skilled worker (e.g., technician, clerk) 4 (9.76) 2 (6.90) 2 (16.67)
Highly skilled worker (e.g., civil servant, primary school teacher) 12 (29.27) 9 (31.03) 3 (25.00)
Academic profession (e.g., higher civil servant, academic teacher) 16 (39.02) 13 (44.83) 3 (25.00)
Father level of employment p = .63
Unskilled or low skilled worker 15 (32.61) 9 (27.27) 6 (46.15)
Skilled worker (e.g., technician, clerk) 3 (6.52) 3 (9.09) 0 ( 0.00)
Highly skilled worker (e.g., civil servant, primary school teacher) 6 (13.04) 5 (15.15) 1 (7.69)
Academic profession (e.g., higher civil servant, academic teacher) 22 (47.83) 16 (48.48) 6 (46.15)
Married p = .47
Yes 46 (95.83) 34 (97.14) 12 (92.31)
No 2 (4.17) 1 (2.86) 1 (7.69)
28 years old offspring Follow-up 

sample (n = 49) 
Mean (SD)

Low-Medium 
anxiety (LMA) 
group (n = 36)
Mean (SD)

High-anxiety 
(HA) group 
(n = 13)
Mean (SD)

Independent 
sample t-test*

Birth weight 3214.69 (559.03) 3290.28 (490.6) 3005.38 (695.31) -1.60 (p = .12)
Gestational age at birth 272.29 (12.8) 273.61 (11.76) 268.62 (15.24) 266 (p = .48)

Table 1 Demographics and descriptive statistics between Low-Medium Anxiety group and High Anxiety group
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the small sample of our cohort, the outcome of the NBS will 
be interpreted with care and will mainly serve as a sensitiv-
ity analysis of the ANCOVA.

Third, graph theoretical network metrics were computed 
for each individual participant for two different atlases. 
For the first parcellation, brain regions were selected using 
the 32 cortical and cerebellar regions (or ROIs) from the 
network atlas as provided by the Conn toolbox. For the 
second parcelation, we used 68 cortical regions of the 
FreeSurfer’s Desikan Killiany atlas. Individual weighted 
graphs were thresholded (threshold = 0.3, only positive 
connections > 0.30 ) for both atlases. Individual whole-
brain graph metrics included density, connectivity strength, 
global clustering, normalized global clustering, global effi-
ciency, normalized global efficiency and normalized small 
worldness and were computed using the Brain Connecitv-
ity Toolbox implemented in MATLAB (BCT; Rubinov and 
Sporns, 2010). Normalized graph metrics were obtained by 
taking the ratio of the actual graph metrics and graph met-
rics observed in the 1000 random networks. LMA and HA 
group differences of graph metrics were determined using 
ANCOVAs, i.e., adjusted for sex, birth weight, and postna-
tal anxiety.

Statistical analyses

First, rsFC partial correlations between the 32 nodes of 
interest (as defined by the atlas in the Conn toolbox) were 
compared between the HA and LMA groups using ANCO-
VAs, i.e., adjusted for sex, birth weight (corrected for gesta-
tional age), and postnatal anxiety, since these variables may 
influence rsFC. These comparisons were False Discovery 
Rate (FDR-) corrected for multiple comparisons at p < .05 
(FDR correction for 32*32 comparisons).

Second, Network Based Statistics (NBS; Zalesky et al., 
2010) as part of the Conn toolbox was implemented to com-
pute functional network differences between the HA and 
LMA groups, using a different (more liberal) approach to 
correct for multiple comparisons. The first step in the NBS 
required a threshold based on a significant test statistic for 
each connection based on the HA and LMA group difference 
(i.e., the significant test statistic here was the uncorrected 
p < .05 of the ANCOVA as computed for each ROI-to-ROI 
connection). The second step included cluster-based permu-
tation testing (randomizing group assignment) to determine 
whether the subnetwork is significantly larger than chance 
(NBS seed-based threshold, p < .05, FDR-corrected). Due to 

Variables Follow-up 
sample mean 
(SD)

Low-Medium 
anxiety (LMA)
group 
mean (SD)

High-anxiety 
(HA) group
mean (SD)

Independent 
sample t-test*

Parents (n = 48) (n = 35) (n = 13)
Birth weight adapted for gestational age 0.01 (1.02) 0.08 (0.87) − 0.19 (1.4) 0.82 (p = .42)
Age 28 follow-up (age when tested) 27.84 (0.43) 27.75 (0.39) 28.08 (0.45) 136.5 (p = .03)

N (%) N (%) N (%) Chi square 
test**

Highest level of education offspring p = .62
No High-School or Test Equivalent 0 (0) 0 (0) 0 (0)
High School or Test Equivalent 2 (4.25) 1 (2.86) 1 (8.33)
Undergraduate Level (Associate, Bachelor) 18 (38.30) 14 (40.00) 4 (33.33)
Graduate Level (Master, PhD.) 27 (57.45) 20 (57.14) 7 (58.33)
Offspring level of employment p = .72
Unskilled or low skilled worker 0 (0) 0 (0) 0 (0)
Skilled worker (e.g., technician, clerk) 2(4.54) 1 (3.13) 1 (7.69)
Highly skilled worker (e.g., civil servant, primary school teacher) 17(38.64) 13 (40.62) 4 (30.77)
Academic profession (e.g., higher civil servant, academic teacher) 25 (56.82) 18 (56.25) 7 (53.84)
Offspring employed or not p = .56
Yes 44(93.62) 32 (91.43) 12 (100.00)
No 3(6.38) 3 (8.57) 0 (0.00)
Psychiatric diagnoses, lifetime
Major Depressive Disorder 1 (2.00) 1 (2.90) 0 (0.00) p = .54
Anxiety Disorder (Panic, GAD, Social) 5 (10.2) 3 (9.70) 2 (15.40) p = .59
Note: *Non-parametric analysis by Wilcox Rank Sum test was performed if assumptions for t-test were not met
** Non-parametric analysis by Fisher’s exact test was performed if assumptions for Pearson’s Chi-squared test were not met
Notes: it is possible that some cases are missing data across the variables; summary statistics calculated on available data only. One twin was 
included in our sample, therefore sample size of LMA parents is 35 instead of 36. GAD = Generalized Anxiety Disorder

Table 1 (continued) 
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connectivity between MPFC and left inferior frontal gyrus 
(IFG) (t = 3.45, puncorr = 0.0012, pFDR = 0.0383). More spe-
cifically, this positive correlation was stronger in the LMA 
group (for visualization see Fig. 2). This finding is in line 
with our observations based on Fig. 1. The effect size of 
prenatal anxiety on the connectivity strength between 
MPFC and left IGF was R2 = 0.18, indicating that 18% of 
the variance in the offspring’s connectivity was explained 
by maternal prenatal anxiety. Moreover, the effect size of 
the covariates alone on the connectivity strength between 
MPFC and left IGF was R2 = 0.08. The effect size became 
significantly larger when prenatal anxiety was added to the 
model with covariates, R2 = 0.28 (ΔR2 = 0.20). A boxplot of 
the two connectivity distributions can be found in Supple-
mental FigureS1. Additional to the group comparison, 
we examined the linear association between connectivity 
strength (between MPFC and left IFG) and prenatal anxiety 
using the continuous STAI-scores. The analysis is in line 
with the original ANCOVA and revealed a negative associa-
tion between prenatal anxiety and MPFC and left IFG con-
nectivity strength (bivariate Pearson’s r = -.30, p = .035).

Results

Group based functional connectomes

We examined the functional connectome of the two groups 
(LMA versus HA) by plotting significant ROI-to-ROI con-
nections (pFDR < 0.05) per group (see Fig. 1). Based on this 
Figure, the HA group shows weaker overall connectivity 
compared to the LMA group, indicated by the lower num-
ber of significant connections in the HA group. More spe-
cifically, the medial prefrontal cortex (MPFC) seems at the 
core of the weaker connectivity in the HA group, showing 
less significant connections in the HA group as compared to 
the LMA group.

Association between maternal anxiety in pregnancy 
and offspring rsFC

Results of the ANCOVA group comparison, corrected for 
sex, birth weight (adapted to gestational age), and mater-
nal postnatal anxiety, yielded a significant difference in 

Fig. 2 Functional connectivity 
group-comparison. Signifi-
cant group-differences of adult 
offspring exposed to low-medium 
maternal anxiety (LMA) and high 
maternal anxiety (HA) in func-
tional ROI-to-ROI connectivity 
(p < .05, FDR-corrected). Con-
nections and nodes are displayed 
in red (positive), and represent 
the T-statistics (see color-bar for 
specific values). Left cortical 
regions are displayed on the left 
of the brain
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Group differences in graph metrics

In contrast to the ROI-to-ROI analyses, no group (HA ver-
sus LMA) differences were found for global network-based 
density, connectivity strength, global clustering, normal-
ized global clustering, global efficiency, normalized global 
efficiency and normalized small worldness (all p’s > 0.05, 
see Table S3 for more details). Results remained non-sig-
nificant when controlled for covariates sex, birth weight 
(adapted to gestational age), and maternal postnatal anxiety 
(all p’s > 0.05, see Table S3 for more details).

Discussion

This study demostrated that, in specific networks, adult 
functional brain connectivity is weaker in adults exposed to 
higher maternal anxiety at 12–22 weeks of gestation, com-
pared to adults exposed to low to medium maternal anxiety 
in that period. This association was shown in a prospec-
tive prenatal cohort with a postnatal follow-up of 28 years, 
indicating a long-term effect of prenatal stress exposure on 
functional network connectivity. In the analyses performed, 
differences were most pronounced for the medial prefron-
tal cortex (MPFC), showing weaker functional connectiv-
ity in prenatally exposed adult offspring. Specifically, we 
found weaker functional connectivity between MPFC and 
the left inferior frontal gyrus (IFG) and between the left 
lateral prefontal cortex (LPFC) and the left somatosensory 

Additional analyses were performed to examine the pos-
sible influence of maternal postnatal anxiety as driving fac-
tor. The Variance inflation Factor (VIF) for prenatal anxiety 
and each predictor variable (sex, postnatal anxiety and birth 
weight adapted to gestational age) was low (VIF < 1.31) 
and the correlation between pre- and postnatal anxiety was 
only low to moderate (R = .467, p < .001). Therefore, we 
assumed that multicollinearity was not an issue. We con-
ducted an additional ANCOVA to make sure that the rela-
tionship between prenatal anxiety and offspring FC outcome 
was not conditioned on postnatal anxiety. ANCOVA results 
(corrected for sex and adapted birth weight only) remained 
significant without controlling for maternal postnatal anxi-
ety (MPFC and left IFG, t = 3.54, puncorr = 0.0009, pFDR = 
0.0288).

Network-based statistics

The ANCOVA group comparison, including a network-
based statistic threshold, yielded similar findings with a sig-
nificant group difference in network-connectivity between 
medial prefrontal cortex (MPFC) and left inferior frontal 
gyrus (IFG) (puncorr = 0.0012, pFDR <0.05). We observed 
additional effects; i.e., we also observed a significant group 
difference in network-connectivity between left lateral pre-
frontal cortex (LPFC) and left somatosensory motor gyrus 
(SMG) (puncorr = 0.0015, pFDR <0.05). These positive cor-
relations both showed to be stronger in the LMA group, for 
visualization see Fig. 3.

Fig. 1 Group-based functional connectomes. Figure displays the 
functional group-based connectome rings of offspring of low-medium 
(left) and high (right) prenatal anxiety. Significant ROI-to-ROI con-
nections (p < .05, FDR-corrected) of both groups are displayed in a 
color ranging from blue (negative) to red (positive) and represent the 
T-statistics (see color-bar below the connectome graphs for specific 

values). The arrow points to the MPFC ROI to indicate that this region 
(visually) shows most difference between groups, with less significant 
connections to other areas in the HA group as compared to the LMA 
group. ROI labels and descriptions for the abbreviations can be found 
in the supplemental materials, Table S2
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maternal stress. Secondly, our results are in line with the 
finding that offspring of women (highly) psychologically 
distressed during pregnancy, show altered structural or 
functional connectivity of the prefrontal cortex with other 
brain areas (Hay et al., 2020; Humphreys et al., 2020; Qiu 
et al., 2015; Soe et al., 2018). Most of these studies focus 
their examination on rsFC of the (pre)frontal region with 
limbic structures and were conducted in neonates, infants 
and children only. Moreover, multiple studies linked pre-
natal maternal distress to behavioral dysregulation (DiPi-
etro et al., 2002), enhanced vigilance (van den Heuvel et 
al., 2015; van den Heuvel, Henrichs, Heuvel et al., 2018a, 
b), and executive dysfunction (Buss et al., 2011; Pear-
son et al., 2016), which indirectly suggests frontal neural 

motor gyrus (SMG). By contrast, global brain alterations, as 
measured with graph metrics, did not emerge from our data. 
This may indicate specific alterations of weaker frontal brain 
connectivity, instead of a weaker connectivity throughout 
the brain in adult offspring of mothers with high anxiety 
in pregnancy. Also of interest is the observed laterality in 
effect, with all findings presenting in the left hemisphere.

Our finding of lower functional connectivity of the 
MPFC and left PFC with other brain regions is in line with 
earlier findings of prenatal distress follow-up studies using 
brain imaging techniques. Firstly, our results are in line 
with a very recent study from the FinnBrain Birth Cohort 
study: Rajasilta et al. (2023) also reported altered MPFC 
functional connectivity in neonates prenatally exposed to 

Fig. 3 Functional connectiv-
ity group-comparison using 
network-based statistics. 
Significant functional ROI-to-
ROI connectivity (puncorr <0.01, 
and NBS, seed-based threshold 
of p < .05FDR) group-differences 
of adult offspring that exposed 
to low-medium maternal anxiety 
(LMA) and high maternal anxiety 
(HA). Connections are displayed 
in red (positive) and color of the 
nodes represent the T-statistics 
(see color-bar below the plot for 
specific values). Connections are 
presented on an axial view of 
an average T1 brain. Significant 
clusters can be found between 
medial prefrontal cortex (MPFC) 
and left inferior frontal gyrus (L 
IFG) and between left prefrontal 
cortex (L PFC) and left supramar-
ginal gyrus (L SMG). The figure 
represents an axial MRI slide of 
the brain, left cortical regions are 
displayed on the left of the cortex
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work with fetal imaging showed decreased cerebellar-insu-
lar functional connectivity in fetuses of distressed mothers, 
for the left insula only (van den Heuvel et al., 2021). Given 
that the left hemisphere may develop relatively faster than 
the right hemisphere during the prenatal period (Andescav-
age et al., 2017), it could be more sensitive to prenatal envi-
ronmental insults such as maternal distress. Interestingly, 
Vasung et al. (2020) specifically reported that the left IFG 
– a key region that came up in our results – has a faster 
volume growth than the right IFG, potentially making it 
more vulnerable. Yet, most human studies do not discuss 
laterality effects and no human study to date has specifically 
focused on laterality effects of prenatal stress exposure, nor 
its potential mechansims.

The current study has several strengths and limitations. 
A first evident strength is the prospective design and the 
follow-up study spanning almost 29 years with an offspring 
response rate as high as 60% at ag 28 years. Second, the 
proportion of pregnant women experiencing high levels of 
state anxiety was relatively high; 34% had a score of > 43 
at 12–22 weeks of pregnancy, which is a prerequisite for 
revealing, if any, effects of high anxiety. Nevertheless, our 
study also has several limitation that should be noted. A 
first limitation of our study is the relatively small size of 
the sample (N = 49). This did not allow us to conduct fur-
ther analyses on specific sex-interactions, which could have 
been interesting. Second, the acquisition time of 7 min for 
this study was relatively short. Research has been shown 
that the reliability and similarity can be greatly improved 
by increasing the scan lengths up to 13 mintes (Birn et al., 
2013). Third, this study did not include any physiological 
markers of distress/anxiety of the mother. We focused on 
the subjective, self-reported experience of the mother, rather 
than biological markers. However, since offspring outcome 
measures were biological markers (i.e. brain imaging) and 
not maternal reported measures, shared method variance 
inflating the associations is not at stake. When using subjec-
tive, mother-reported outcome measures, mothers who were 
anxious during pregnancy may have a biased perception 
of the behavior of their child (usually more negative, see 
Pesonen et al., 2005). Fourth, no genetic sensitive design 
was used and, therefore, we cannot rule out genetic mecha-
nisms at play. However, previous research examining the 
effect of prenatal exposure to objective, random stressors, 
such as natural disasters, have shown that genetic mecha-
nisms cannot (only) explain the observed effects of stress 
exposure on the offspring’s brain (Jones et al., 2019).

changes (McKlveen et al., 2015). Lastly, autonomic, motor, 
emotional and neurocognitive problems found in previous 
waves of our offspring cohort, could indirectly be linked to 
altered (pre)frontal functional connectivity. In the cohort 
being examined in the current study, exposure to high mater-
nal anxiety in pregnancy was associated with the follow-
ing observations that indirectly reflect alterations in early 
neurodevelopment: altered fetal and neonatal sleep-wake 
cycles (Van den Bergh, 1990), lower scores on subscales of 
the Wechsler Intelligence Scale for children (WISC)-III at 
ages 14–15 years, deficits in endogenous cognitive control/
sustained attention measured with specific cognitive tasks at 
age 14–15 (Van den Bergh et al., 2005, 2006) and 17 years 
(Mennes et al, 2006), which were corroborated by results of 
functional brain imaging measures, i.e., task-related EEG 
at age 17 years (Mennes et al., 2009) and functional MRI 
measures at age 20 years (Mennes et al., 2020). Behavioral 
(regulation) problems found in previous waves of our off-
spring cohort included crying, eating and sleep problems, 
and difficult temperament in infancy (Van den Bergh, 1990), 
ADHD, impulsivity, and externalizing problems in child-
hood and early adolescence (Van den Bergh & Marcoen, 
2004; Van den Bergh et al., 2005). Still, future longitudinal 
investigations in a different (larger) cohort, preferably with 
repeated testing with neuroimaging methods at consecutive 
ages, should replicate our findings.

It is challenging to interpret the strength of our observed 
effects (18% explained variance) in the context of previous 
findings in the literature, given the small number of stud-
ies with similar research questions and sample. Addition-
ally, we noticed that many articles do not report effect sizes. 
A few related papers did report effect sizes: between 6 and 
13% explained variance in infant ERP responses by mater-
nal anxiety and mindfulness during pregnancy (van den 
Heuvel et al., 2015), 6% explained variance in newborn hip-
pocampal volume by maternal psychological stress during 
pregnancy (Moog et al., 2021), and around 2% explained 
variance in fetal connectome by maternal anxiety during 
pregnancy (De Asis-Cruz et al., 2020). A better comparison 
may be the study by Mareckova et al. (2020), who examined 
the effect of prenatal maternal depression on the structural 
brain age of young adult offspring. They found an effect size 
of 6% explained variance. Since we found an effect size of 
18% explained variance, it seems that our observed effect 
size is relatively large, in comparison with similar studies.

The finding of exclusive effects for the left hemisphere 
could point to lateralization of effect. Some other studies 
have also reported results in the left hemisphere only. For 
instance, in a recent study, Moog et al. (2021) reported 
smaller volumes of the left hippocampus, but not the right, 
in infants prenatally exposed to higher levels of maternal 
perceived distress during pregnancy. Additionally, recent 
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