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Abstract 

‘Deepfakes’ are computationally created entities that falsely represent reality. They can take image, 

video, and audio modalities, and pose a threat to many areas of systems and societies, comprising 

a topic of interest to various aspects of cybersecurity and cybersafety. In 2020, a workshop consult- 

ing AI experts from academia, policing, government, the private sector, and state security agencies 

rank ed deepfak es as the most serious AI threat. These experts noted that since fake material can 

propagate through many uncontrolled routes, changes in citizen behaviour may be the only effec- 

tive defence. This study aims to assess human ability to identify image deepfakes of human faces 

(these being uncurated output from the StyleGAN2 algorithm as trained on the FFHQ dataset) from 

a pool of non-deepfake images (these being random selection of images from the FFHQ dataset), 

and to assess the effectiveness of some simple interventions intended to improve detection accu- 

racy. Using an online survey, participants ( N = 280) were randomly allocated to one of four groups: 

a control group, and three assistance interventions. Each participant was shown a sequence of 20 

images randomly selected from a pool of 50 deepfake images of human faces and 50 images of 

real human faces. Participants were asked whether each image was AI-generated or not, to report 

their confidence, and to describe the reasoning behind each response. Overall detection accuracy 

was only just above chance and none of the interventions significantly improved this. Of equal 

concern was the fact that participants’ confidence in their answers was high and unrelated to accu- 

racy. Assessing the results on a per-image basis reveals that participants consistently found certain 

images easy to label correctly and certain images difficult, but reported similarly high confidence 

regardless of the image. Thus, although participant accuracy was 62% overall, this accuracy across 

images ranged quite evenly between 85 and 30%, with an accuracy of below 50% for one in every 

five images. We interpret the findings as suggesting that there is a need for an urgent call to action 

to address this threat. 
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the current and future purview of what a deepfake can be. We acknowl- 
edge that this is a novel definition and as such may be contested especially 
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ntroduction 

 ‘deepfake’ is an entity that is created by complex algorithmic com-
utation with minimal, if any, human supervision (hence ‘deep’) that
alsely represents reality (‘fake’) [ 1–3 ] 1 . ‘Shallowfakes’ or ‘cheap-
 This is the view of the authors of this paper. The words ‘entity’ and ‘re- 
ality’ have been chosen as they are broad enough concepts to encompass 

The Author(s) 2023. Published by Oxford University Press. This is an Open Access article
 https://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribut
where one is more minded towards descriptivism than prescriptivism [ 4 , 
5 ]. A descriptivist might look to definitions given by other people, for in- 
stance the anonymous author(s) of the Wikipedia article on deepfakes [ 6 ] 
who limit the term’s envelope to videos or images in which one person’s 

1  distributed under the terms of the Creative Commons Attribution License 
ion, and reproduction in any medium, provided the original work is properly cited. 
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fakes’ are, in contrast, entities falsely representing reality that have 
been created by a human [ 11 , 12 ]. Deepfakes are considered to fall 
under the umbrella term of ‘synthetic media’, although given the 
field’s nascent state and continuing development there has not been 
a clear positioning of terms in recent literature. A deepfake may take 
many forms and is not confined to being a digital entity: an image 
generated by an artificial intelligence (AI) may be printed on paper,
for example. Prior literature has suggested that deepfakes fall into 
three major categories: head puppetry, face swapping, and lip syncing 
[ 13 ], but the situation is more complex than this summary portrays.
Rather than giving a fuller taxonomy, we attempt in this introduction 
to explain the relevant elements at a conceptual level. 

Deepfake generation processes can be conceptually identical to 
processes that were previously possible, such as the seamless trans- 
plantation of one human face onto another within video footage.
This example is achievable either through a manual or computational 
process that involves cutting and pasting, frame-by-frame, parts of 
existing footage onto the target footage [ 14 ]. While possible, it would 
be impractically time-consuming to do this at scale manually but this 
process can be automated using AI. However, deepfakes can also take 
forms that could not result from manual processes. 

One example of a deepfake is the ‘style transfer’ type of deepfake 
[ 15–19 ]. The deepfake generation method for this type of deepfake 
uses machine learning to conduct pattern-recognition [ 20 ] across, e.g.
a very large dataset of images of human faces. The patterns it is pro- 
grammed to recognize, essentially, are the patterns that make the im- 
age of a human face exactly that: an image of a human face. As such,
the Machine Learning system can then, using these patterns that it 
has learned to recognize, create its own images of human faces. To 
be clear, these images are not images of any of the human faces that 
were given to the system as input; the system has learned what human 
faces look like, and has started generating its own images that effec- 
tively tick the boxes for ‘looking like’ an image of a human face. This 
example is about images of human faces, but any dataset can be given 
to this type of deepfake generator, and new deepfake instances can 
be generated in the ‘style’ of any input dataset. The word ‘style’ here 
is tricky, and should be understood as a human way of describing in 
abstraction a complex algorithmic process. Portrait images may rep- 
resent one ‘style’, while profile images will represent another. This 
deepfake generation method, of creating a new, deepfake instance in 
the ‘style’ of a given dataset—quickly and at scale—does not have an 
achievable analogue equivalent. 
likeness has been replaced by another person’s. A prescriptivist approach 
would step back from common usage to consider how the term should be 
used, from an a-priori standpoint. This is the approach we take, and we ar- 
gue that there are benefits to this approach in that a conceptual definition is 
flexible enough to allow future development in this research area to fall un- 
der the ‘deepfake’ definitional umbrella. The descriptivist approach would 
mean that definitions must be continually updated, and can lead to prob- 
lems when updates are not correctly merged: the existence of a detached 
Wikipedia entry on ‘Audio Deepfake’ [ 7 ] is confusing if not confused when 
the main ‘Deepfake’ entry [ 6 ] limits its definition to videos and images. 
Whether DALL-E or ChatGPT are deepfake generation technologies is, for 
the descriptivist, currently a question of which sources to listen to [ 8 , 9 ]. The 
prescriptivist approach we take in giving our definition incidentally mirrors 
recent research [ 10 ] where, although no definition is given, the meaning 
of ‘deepfake’ encompasses multiple modalities and indeed breaks from the 
Wikipedia definition by acknowledging ‘puppet master’ deepfakes, where a 
person’s likeness is puppeteered rather than replaced by a different person’s 
likeness. We hope that this footnote assuages any criticism of our definition 
but understand if readers are differently minded than ourselves. 
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The central basis behind our preference for a conceptual ap- 
proach to the definition of deepfakes is that the core technology that 
deepfakes are generated by is machine learning, also known as deep 
learning [ 21 ] (this is where the first half of the portmanteau ‘deep- 
fake’ comes from). There are several strands of machine learning 
technology, some of which are used to generate deepfakes (Genera- 
tive Adversarial Networks [ 22 ], Auto-Encoders [ 23 ], Diffusion Mod- 
els [ 24 ]). Machine learning takes data as input, and the nature of its 
output depends fundamentally on the nature of this input data. As 
such, deepfakes generated by these methods will derive much of their 
attributes from the input data that the machine learning process has 
received. There may be empirical nuances that prohibit certain in- 
stances, but on an abstract and conceptual level, machine learning 
technology is agnostic with respect to the modality of the input data 
and to the (human-perceptual) content of that input data. The im- 
port of this is that the content of a deepfake could theoretically be 
anything within a given modality (video, image, audio, or text) [ 25–
32 ]. The existing literature shows that deepfakes can, at least in one 
modality, portray humans [ 33 , 34 ], art [ 18 ], animals [ 35 ], landscapes
[ 18 ], food [ 18 ], satellite imagery [ 18 ], street maps [ 18 ], room interi-
ors [ 36 ], and dashcam footage [ 36 ]. Deepfakes have positive appli- 
cations. For example, audio deepfakes of people’s voices can create 
artificial voice replacements for patients whose ability to speak is 
taken from them by motor neurone disease [ 37 ]; inter-language dub- 
bing in films could be accompanied by deepfake versions of the ac- 
tors in which their mouths are animated to match the new, dubbed,
words [ 38 ]. It could also be claimed that deepfake technology has 
artistic applications [ 39 , 40 ]. Such claims have been questioned by 
experts including senior art critics, on the grounds that the created 
content can be ‘bland’ or ‘boring’, and lacks ‘originality’ [ 41 , 42 ].
Beauty is in the eye of the beholder, of course, and there also appear 
to be hybrid artistic applications. For example, composers have be- 
gun to splice samples of AI-generated music into their compositions,
combining their human imagination with AI-generated inspiration to 
produce a novel, cyborg art form [ 43 ]. However, while positive use 
cases exist, there clearly are harmful applications, such as the ma- 
nipulation of specific visual segments of surveillance camera footage 
in real time [ 25 ]. In addition, there appear to be use cases that need 
further research before implementation to verify whether their pur- 
portedly positive aspects are not in fact harmful in the long term [ 44 ,
45 ]. 

Perhaps most disturbing is the fact that deepfakes enable exten- 
sions of existing criminal threats (‘cyber-enabled’ crimes), and new 

vectors of crime (‘cyber-dependent’ crimes) [ 46 , 47 ]. Also, while the 
widescale use of shallow-fakes is limited by the time that it would 
take a human to produce them, a critical aspect of deepfakes is their 
scalability: the lack of human involvement in the creation process 
means that a computer (or a botnet [ 48 ]) can be set up to do the
intensive computation needed to create immense quantities of deep- 
fakes quickly. In combination with the realism of some deepfakes this 
creates an as yet unmapped threat potential which can be conceptu- 
ally fitted to any domain or context. 

Like the problems of phishing emails and illegal robocalls we 
experience today [ 49 , 50 ], this scalability means that a single ma- 
licious use of deepfakes could affect large numbers of people, and 
could move victim targeting from an individual to a societal scale.
The prevalence of advertising technologies, which allow advertisers 
to target their product’s most relevant audience could also enable at- 
tackers to easily locate specific groups of people that they wish to 
attack online. 

A growing body of literature [ 51–54 ] including independent re- 
ports and whitepapers from the UK Government and Europol [ 37 ,
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5 , 56 ] as well as warning broadcasts from the FBI [ 57 ], provisions in
he US National Defense Authorization Act 2020 [ 58 ], and US Army
evelopment of deepfake detection algorithms [ 59 ], has pointed to
he potential harms deepfakes pose. For example, in a recent study
n ‘AI and Future Crime’ [ 46 ], 31 representatives with expertise in
I from academia, policing, government, the private sector, and state

ecurity agencies, rated deepfake technologies to be the top-ranking
hreat associated with AI. Crime applications of deepfakes included
raud (such as the ‘grandparent scam’ 2 [ 60 ]), authentication forgery
o gain access to secure systems, and fake video evidence of public fig-
res speaking or acting reprehensibly in order to manipulate support.
he study concluded that, since algorithmic methods of detecting
eepfakes may not be possible in the longer term, and because fake
aterial can propagate through many uncontrolled routes, changes

n citizen behaviour may be the only effective defence, at least for
ow. 

A crucial element of the deepfake threat is that it deceives a hu-
an actor into believing that it correctly represents reality, rather

han merely (and explicitly) mimicking it. At the time of writing, tech-
ical solutions are not sufficiently developed to address the deepfake
hreat, although considerable effort is being invested [ 61–63 ]. How-
ver, few studies have inspected the extent to which a given deepfake
nstance actually succeeds in deceiving human perceivers in this way,
nd there are limitations associated with these studies that are dis-
ussed below. Moreover, given that perceptible imperfections exist
n some deepfake creation algorithms [ 64 ], it is possible that simple
uman-oriented solutions to the deepfake threat might work. These

nclude the provision of advice on what imperfections to look for.
uch interventions might reduce at least some of the risks deepfakes
ose, and provide simple scalable solutions. However, whether such
nterventions would be effective is an empirical question. 

The aim of this study was to assess people’s ability to differentiate
etween deepfake (AI-generated) and authentic images of people, and
o test whether advice about how to detect a deepfake improves per-
ormance. The remainder of this article is organized as follows. In the
ext section, we survey the wider context that the study pertains to,
his being the proliferation online of purportedly true false content.

e then outline the literature that has proposed and designed solu-
ions to the deepfake problem, and assess the likely effectiveness of
hese solutions from a conceptual perspective. Next, we inspect one
eepfake generation method in detail, which is the method tested in
his paper. We then discuss the Methods employed, present our find-
ngs, and discuss the results in the wider context of the research. 

ider context of fake online content 

he negative effects of internet falsehoods can be seen in the increas-
ng distrust people express in news distributed online. For example,
ccording to 2020 statistics from Reuters, 56% of people (sampled
cross 40 countries) are concerned about the veracity of news found
nline [ 65 ]. Statistics also suggest an erosion of trust in the news
ore generally, which fell from 44% in 2018 to 38% in 2020 [ 65 ,
6 ]. However, these low levels of trust pale by comparison to peo-
le’s trust in news encountered on social media (23% in 2018, 22%
n 2020) and even in news retrieved using search engines (34% in
018, 32% in 2020) [ 65 , 66 ]. 
 This is an example of a virtual kidnapping, which may take various forms. 
In one scenario, offenders call an individual claiming to have kidnapped 
their child or grandchild and threaten to harm them should a ransom not 
be paid. In reality, the child has not been kidnapped and so while the offence 
is very low cost it can be very profitable to offenders. 
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m  

m  

n  

o  

(  
Fake online content has the potential to intensify a plethora of ex-
sting problems. From a global perspective, fake content has already
ontributed to online interference associated with international pol-
tics. For example, in 2018, the Oxford Computational Propaganda
roject found evidence of organized social media manipulation cam-
aigns in 48 countries [ 67 ]. Many such campaigns use disinforma-
ion tactics in which fake content may be used to variously discredit,
onfuse, or create information cascades by outnumbering authentic
ources of real content [ 68 ], which can alter the direction of history
y influencing election results [ 69 ]. Advances in fake content gen-
ration technologies will likely intensify the use and effect of fake
ontent and possibly increase the (mis)use cases. 

Fake online content (especially advances in fake content gener-
tion technology) also has the potential to exacerbate a number of
ide-reaching societal problems, the effects of which have already
een intensified by the internet. For example, the abuse and harass-
ent of public figures, or members of certain demographic groups,

ncluding women and minorities, is a critical problem that causes
arm at both individual and societal levels by silencing certain voices
nd can dissuade individuals from public-facing careers [ 55 , 70–72 ],
mongst other things. 

roposed solutions to deepfakes 

 number of solution systems have been proposed to address the
hreats that deepfake technologies pose. To date, these mainly lever-
ge either the pattern recognition powers of machine learning sys-
ems to detect deepfake instances in situ [ 73 ], or the ability of
lockchain technologies to create white-lists of non-deepfake in-
tances [ 74 , 75 ]. In the former case, machine learning classifiers
se pattern recognition to effect deepfake detection. The method by
hich they do so is (in simplified form) to give a classifier a labelled

raining dataset (with labels ‘real’ and ‘deepfake’ applied correspond-
ngly to the stimuli). The classifier is then trained to distinguish be-
ween real and deepfake stimuli. These approaches have been shown
o work well for test datasets that are similar in content to the train-
ng dataset [ 76–78 ] but the difficulty will be to find a distinction be-
ween the real and deepfake halves of the training dataset that also
pplies, or in technical terms ‘generalizes to’, other datasets (e.g. with
ifferent content, or where a different deepfake generation method
as been used to create the deepfake stimuli) [ 30 , 79 ]. 

In the latter case, the idea has been put forward that the
lockchain can help to distinguish deepfake stimuli from authentic
timuli [ 75 , 80–82 ]. The idea is that either authentic or deepfake in-
tances, or (for instance) hash fingerprints thereof, could be put on
he Blockchain public ledger. This would allow people to check if
he instance which they suspect of being a deepfake has been refer-
nced on the Blockchain. In this way, the Blockchain public ledger
ould act as, for instance, malware fingerprint storage in antivirus
oftware: a database is formed of real, or of deepfake, instances; the
eracity of a novel stimulus is established by checking if this stimulus
atches any in the database. There are certain problems with this as
 solution that could be relied on in anything other than very limited
ettings. Presuming a scenario where the threat is an attacker who
ould create and use novel deepfake instances, this novel deepfake
ould not yet have been added to the Blockchain, and so would not
e matched to anything on the Blockchain. This is a central, funda-
ental and definitive problem. The most that can be given by this
ethod is a storage of ‘seen-so-far’, which could be useful against
on-‘zero-day’ deepfake instances. However, given that the nature
f deepfake generation methods is such that they are highly scalable
being fundamentally dependent only on computational resources),
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there is little motivation for an attacker to re-use a particular deep- 
fake instance when they can churn out thousands of similar deepfake 
instances in a small amount of time. Moreover, this proposal of a 
Blockchain-based solution reduces to the task of establishing that a 
given instance is a deepfake or non-deepfake, a task which could ei- 
ther be undertaken by deepfake detection algorithms, or by humans.
A similar but distinct option could be to create white-lists of trusted 
user accounts, which would then be trusted not to upload deepfakes.
Problems with this option are that user accounts can be taken over 
[ 83 ], users may be bribed or blackmailed, or untrustworthy users may 
make it onto the white-list. This option could additionally be under- 
mined by human inability to reliably distinguish a deepfake from a 
non-deepfake. 

Moreover, deepfake detection algorithms will suffer from prob- 
lems inherent to the task: deepfakes are improving all the time, they 
can take a variety of modalities, and can comprise a range of content 
(see above). Algorithmic efforts involve the use of training data to 
teach Machine Learning systems what a deepfake is. At present, the 
diversity of the training set used dictates the scope of its effectiveness 
[ 84 ]. For example, a deepfake detection algorithm that succeeds in 
identifying deepfake images of human faces will not know what fea- 
tures to look for in images of horses—unless it has found features in 
deepfake images of faces that successfully generalize to deepfake im- 
ages of horses. The same may apply to other types of human faces if 
the training and real-world images differ in meaningful ways (e.g.
portrait versus profile images). Even if such generalization is suc- 
cessfully found and capitalized upon, it may be undermined either 
by human removal of these distinguishing features in image editors 
(such as Adobe Photoshop [ 85 ] or GIMP [ 86 ]), or by development 
of adversarial machine learning technology [ 87 ]. There are two key 
types of adversarial machine learning technology: the first, ‘evasion 
attacks’, can bypass machine learning systems by sculpting the mali- 
cious data instance (in this context, a deepfake) in such a way that it 
is mis-labelled (i.e. as non-deepfake) by the machine learning system 

[ 88 ]. The second type, ‘poisoning attacks’, works only against ‘live’ 
(or ‘unsupervised’) machine learning models that update themselves 
based on the data instances that they observe in the wild [ 89 ]. A 

classic example is the Twitter bot, which attackers trained to output 
increasingly racist remarks [ 90 ]. Samples correctly belonging to label 
A can be made to look increasingly similar to samples of label B, until 
a systematic mis-labelling of instances is achieved [ 91 ]. This is all to 
say that the development of deepfake detection algorithms is likely 
to be closely followed by the development of adversarial machine 
learning technology that reduces or nullifies their efficacy. Such adver- 
sarial development may take place out of sight, meaning that threat 
actors could be achieving their goals silently and successfully with- 
out anything looking out of place. Development of these opposing 
technologies will very likely devolve into a potentially interminable 
arms race, following precedents in areas such as malware detection,
anti-spam, anti-adblocking, and (offline) vehicle crime prevention 
[ 92–96 ]. 

Deepfake detection algorithms will also struggle to achieve suffi- 
ciently protective implementation. The contexts into which such al- 
gorithms should be instantiated (for instance, to protect social net- 
works from deepfakes) may be managed by authorities, owners, or 
stakeholders that resist the correct, independent, and transparent im- 
plementation of deepfake detection algorithms. Governments and 
regulatory bodies may be able to enforce this implementation, but 
implementation should be recognized as complex: deepfakes can take 
the form of digital but also analogue media—for instance, a photo 
can be printed out onto paper or card. Handheld deepfake scanner 
technology could be part of a solution, but any solution must recog- 
nize that contexts contain complexity and that ‘Security is a process,
not a product’ [ 97 ]. 

Of course, the possibility exists to develop support systems that 
involve humans and technological solutions to detect deepfakes. Re- 
searchers [ 98 ] have, for instance, suggested that content moderation 
systems with human-AI collaboration could be a solution in this area.
However, this possibility should not be considered a straightforward 
one, since even if humans learn from AI predictions as to whether 
a given instance is a deepfake instance or not, research has not ex- 
amined if this helps (or hinders) if the predictions of the AI are in- 
correct. Given the plethora of problems that face deepfake detection 
algorithms, and the contextual complexity of implementing any algo- 
rithm, with or without a human in the loop, within actual defensive 
security situations, any claims that such solutions are available to im- 
plement should be made carefully and investigated thoroughly before 
use. 

One angle rarely explored is testing, and improving, the human 
detection of deepfakes. Many deepfakes have tell-tale signs that are 
visible to the human eye, and hence the possibility exists that humans 
could detect them if they knew what, specifically or generically, to 
look for. If possible, this could provide a scalable solution that could 
work in concert with technical measures. On the other hand, if techni- 
cal measures do not prove to be viable, or until they are developed in 
a scalable and reliable form, this non-technical measure could present 
the only viable mitigation to this new threat, at least for now. 

Human detection ability studies: image deepfakes 

Three studies have so far been conducted on human detection abil- 
ity with respect to static image deepfakes, which are the focus of 
this paper. In the first of these [ 61 ], the study began with a famil-
iarization step where each participant was shown labelled real and 
deepfake images and given time to inspect them. This was followed 
by the main experiment where participants were instructed to label 
a set of new images, one at a time, as ‘real’ or ‘deepfake’. For deep- 
fake images, the study used a mixed dataset of (A) images generated 
by the StyleGAN1 algorithm [ 99 ], which was trained on the Flickr- 
Faces-High-Quality (FFHQ) dataset [ 100 ], (B) images generated by 
that same algorithm but as trained on the CelebA-HQ dataset [ 101 ],
and (C) images generated by the PGGAN algorithm [ 102 ] as trained 
on the CelebA-HQ dataset. The real face dataset used images from 

the FFHQ, Celeb-HQ [ 103 ], and CelebA-HQ dataset, although the 
authors do not state whether these dataset segments (A/B/C) were 
used in distinct experiments or all pooled into one dataset and used 
across all experiments. Results suggested that the StyleGAN1 algo- 
rithm as trained on the FFHQ dataset produced the most convincing 
deepfake images of the three techniques: with participant labelling 
accuracy being 63.9% for (A), 75.15% for (B), and 79.13% for (C).

However, there are some aspects associated with the design of this 
study, which make it difficult to draw conclusions about the reported 
findings with respect to human performance. First, the authors of the 
study do not report standard errors or inferential statistics and so 
it is not possible to determine if accuracy varied in a reliable way 
across the three deepfake dataset conditions. The small sample size 
used ( N = 20) makes this particularly difficult to assess. Second, a 
great deal of familiarization is given to participants but it cannot be 
concluded whether this familiarization had any effect or not on par- 
ticipants’ accuracy because the experimental setup did not include 
a control group that did not receive this familiarization. Moreover,
the familiarization given to participants may have been too much to 
absorb—each participant was shown 10 000 real and 10 000 deep- 
fake images, and was then asked to label 1000 new images. Viewing 
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uch a large number of images would have been cognitively taxing
nd participant fatigue cannot be ruled out as having affected the re-
ults. Furthermore, the mean time that participants took to label each
mage was only 5.14 seconds. This is quite brief and might suggest
hat participants were not giving each decision their fullest attention.
inally, the study also does not state how participants were recruited
nd so it is difficult to know if the findings are generalizable. 

In the second such study [ 104 ], all participants were provided
ith a definition of synthetic faces and then completed the exper-

mental task, which consisted of sequentially labelling 128 images,
ulled randomly from a pool of 800 image stimuli (of which half
ere real and half deepfake). The first experiment ( N = 315), effec-

ively a control, gave no other training than this definition. In the
econd experiment ( N = 219), participants were shown a short tu-
orial describing examples of specific rendering artifacts that could
e used to identify fake, synthesized faces from real faces. In this sec-
nd experiment, participants were additionally given feedback after
ach response as to whether that response was correct or not. Partic-
pants in the second experiment had an average accuracy of 59.0%,
hile participants in the first experiment attained only 48.2% accu-

acy, suggesting an improvement in performance for participants in
xperiment 2. However, participants were not randomly allocated
o Experiments 1 and 2, which means that they should not be di-
ectly compared. To explain, absent random allocation, it is possible
hat the two groups differed in important ways other than the specific
asks completed. Moreover, Experiment 2 participants completed ad-
itional elements that were not controlled for (e.g. through the use
f a ‘filler’ task) in Experiment 1, which creates an additional experi-
ental confound [ 105 ]. It is also not possible to attribute the increase

n accuracy from 48.2 to 59.0% to any one intervention, since Ex-
eriment 2 was different to Experiment 1 in two ways: participants
eceived feedback as well as a short tutorial with examples of render-
ng artefacts that could be used to differentiate real from fake. Since
either of these interventions were present in Experiment 1 (which
ould be seen to act as a control condition), the experimental setup
oes not allow us to attribute this 10% difference in accuracy to
ither intervention in isolation. To isolate the effect of these two in-
erventions would require that they were employed individually as
ell as in combination, and that participants be randomly allocated

o experimental conditions (see above). 
In the final experiment carried out as part of this study, partici-

ants were asked to report on the ‘trustworthiness’ of deepfake and
eal face images. In this experiment, participants reported deepfake
mages to be ‘trustworthy’ significantly more than real images: 4.82
s against 4.48 on a scale of 1 (‘very untrustworthy’) to 7 (‘very trust-
orthy’). The study authors hypothesized that this difference was due

o the deepfake faces looking more like average faces, which some
esearch indicates tend to be more trustworthy [ 106 ]. However, it
hould be noted that while the effect (of 0.34) was statistically sig-
ificant it is a tiny effect. As such, it is unclear whether this would
ave any practical significance in the real world. 

Other details regarding the design of the study also warrant con-
ideration. Perhaps most notable is that the image dataset was not a
epresentative (i.e. random) selection of the FFHQ real face dataset,
r of the StyleGAN2 algorithm as trained on the FFHQ dataset. The
tudy authors curated the dataset in several ways. The real images
ere selected such that they each had a uniform background, an un-
bstructed face, and had no other ‘extraneous cues’ such as visible
rand logos or writing. The deepfake image dataset was also selected
uch that images did not have any ‘obvious rendering artefacts’ and
ad a uniform background. This curation element raises the ques-
ion of what comprises an ‘obvious rendering artefact’, given that the
reatment group were given a short tutorial on ‘rendering artefacts’
hat help to identify an image as deepfake. The difference between a
rendering artefact’ and an ‘obvious rendering artefact’ is not, in this
ase, obvious. If no difference was indeed intended, then participants
ere given a tutorial on how to look for ‘obvious rendering artefacts’,
hich had been removed from the image deepfake dataset that they
ere then tested on. Finally, as with the first study discussed, cognitive
verload was a potential issue in this study. To explain, participants
ere tasked with labelling 128 image items, which is a lengthy and

epetitive experimental task. 
In the third study to evaluate human accuracy at detecting im-

ge deepfakes from authentic images [ 107 ], participants were given
 pair of images, one real and one deepfake, and asked which of the
wo was the deepfake image. In the main experiment, 176 partici-
ants recruited from Amazon Mechanical Turk answered correctly
nly 49.1% of the time. The study authors hypothesized that partic-
pants might have been considering elements other than features of
he faces they were shown to decide whether an image was a deepfake
r authentic. For this reason, they repeated the experiment but using
mages for which the backgrounds were replaced with a solid black
olour, or where the images had a synthetic randomly directioned
unlight effect overlaid upon them. The accuracy for each of these
wo additional experiments was 49.7% ( N = 174 and N = 172). 

The manipulation of the backgrounds used was an interesting in-
ovation that could be implemented at scale if it had proved useful.
owever, in methodological terms, this study also has notable limita-

ions. First, with regard to how the authors sourced the image stimuli:
he authentic image stimuli were taken from a dataset [ 108 ] consist-
ng of photographs collected from 2002 through 2012. The dataset
n question (which is not publicly available) holds a variety of types
f photograph and other media, so the study authors will likely have
ad to manually select suitable images. In doing so, they will have cu-
ated the dataset of authentic image stimuli. What criteria were used
o do this are unclear. In addition, participants were each given 50
uestions to answer, which may have affected the study findings by

ntroducing an element of cognitive overload. 
There is also the question of ecological validity; that is, to what

xtent the experimental set-up emulates a real-world context. In the
ontext of the current work, this is important as we are concerned
ith real-world implications. In the Shen et al. study [ 107 ], partici-
ants were given two images at once, and told that one of them was
 deepfake and that the other was real. It is hard to imagine this
cenario, a forced choice between two options, occurring in real-life
isuses of the technology (e.g. for a dating scam). 

In summary, the existing three studies represent important work
hat provides insight into the human detection of image deepfakes.
owever, as discussed, each of these studies has one or more method-

logical issues that limit the conclusions that can be drawn. More-
ver, none of the studies conducted so far have used an experimental
rocedure that enables the testing of whether training can improve
he human detection of deepfake images. 

uman detection ability studies: video deepfakes 

everal other studies have examined human detection ability with
espect to video deepfakes. Although this difference in modality will
ave complex effects on the human detectability of the deepfakes,
he findings from these may shine light on human image deepfake
etection. However, the findings from the eight studies available [ 73 ,
8 , 109–114 ] do not lead to a consensus: there is a surprisingly large
ange in human accuracy in the labelling of deepfake stimuli across
tudies from 23 [ 109 ] to 87% [ 110 ]. Human accuracy at correctly la-
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belling real, non-deepfake videos shows a much smaller range (from 

75 [ 98 ] to 88% [ 110 ]), and seems to indicate that humans are rela- 
tively reliable at labelling real video stimuli even in the presence of 
deepfake stimuli. 

However, too much weight should not be put on the findings from 

these studies either. Most were quite vague about the study design 
and would be difficult if not impossible to replicate. Many suffered 
from having small sample sizes (across the eight studies, N = 14, 20,
30, 55, 204, 204, 210, 301), and several of the studies spread par- 
ticipants across multiple conditions (such as varying the time length,
compression, or resolution of the video stimuli, or varying the deep- 
fake generation method, or even varying the demographic category 
of the face in the image stimuli), meaning that the number of partic- 
ipants per condition was small, even if the overall sample size was 
not. The low sample sizes employed in most studies mean that the 
confidence intervals associated with the reported estimates would be 
large, making them hard to interpret in a meaningful way. More- 
over, we note that in only one of the studies was an a-priori sta- 
tistical power analysis reported as being conducted to ascertain the 
sample size required to detect effects should they exist [ 112 ]. Fur- 
thermore, descriptive statistics were often absent or hard to extract 
from the study findings [ 61 ], and estimates of uncertainty (standard 
errors and p -values) were mostly omitted. On a different note, in 
four of the studies, participants appear to have been recruited from 

computer science courses, sometimes even from those at the authors’ 
institution [ 73 , 110 , 113 , 114 ], meaning that the study findings are 
far from generalizable. Of the remaining four studies, one obtained 
participants from Amazon Mechanical Turk [ 109 ], two from Prolific 
[ 98 , 112 ], while two others do not state how participants were re- 
cruited [ 61 , 111 ]. In defence of these studies (and study [ 61 ]), for all
but three [ 98 , 110 , 112 ], the focus was on the technical challenge 
of creating either a deepfake generation method or a computational 
deepfake detection method. As such, estimating human accuracy was 
presumably a secondary element. 

An additional issue in this literature is the deepfake generation 
method chosen for testing. In half of the studies reviewed, the method 
tested was also created by the study authors [ 73 , 109 , 111 , 114 ],
which introduces a potential conflict of interest. In all of these cases 
and also the three papers that used the DFDC Kaggle dataset [ 98 ,
112 , 113 ], the deepfake generation method used was also closed- 
source. This means that they are not open to inspection nor neces- 
sarily representative of the quality of open-source deepfake methods 
which—being open-source and widely available—will comprise most 
of the threats that deepfakes pose, at least for the present. Further- 
more, in the case of the [ 112 ] study, the stimuli were cherry-picked 
to be the most convincing deepfake stimuli from the DFDC Kaggle 
dataset. This means that the stimuli used in that experiment were not 
representative of even the closed-source deepfake generation meth- 
ods used to generate the DFDC Kaggle dataset. 

One study [ 112 ] avoids most of these errors but has another 
methodological pitfall. The study had two treatment groups and one 
control group. Prior to testing, one of the treatment groups was 
tasked with the comprehension of over 400 words (from [ 51 ]) to 
inform them of the dangers of deepfakes, but the other two groups 
were not given a filler task, which introduces an experimental con- 
found. However, since this is the literature’s least problematic study,
its findings are important to discuss. The task was labelling a video 
stimulus as authentic or fake; one treatment group was given an addi- 
tional monetary incentive to perform well, while the other treatment 
group read a text excerpt detailing the potentially harmful conse- 
quences of deepfakes. Neither treatment affected self-reported mo- 
tivation levels and nor did it increase accuracy on the experimental 
task. Participants had a tendency to label stimuli as ‘authentic’, do- 
ing so 67.43% of the time (though they were informed at the start 
of the experiment that the likelihood of stimulus authenticity was 
50%). Participant accuracy across conditions was 57.6%, which sig- 
nificantly exceeded chance performance but is self-evidently a poor 
level of accuracy. Despite this, and despite accuracy ranging from 

46.7 to 77.6% across the videos used, self-reported levels of confi- 
dence levels were consistently high (remaining within the range 73.7 
to 82.5%, with 100% indicating complete confidence). 

The Groh et al. [ 98 ] study is also worthy of discussion, since it 
recruited 304 paid participants via the Prolific platform and since its 
analysis included responses from an additional 15 578 participants 
who organically found the survey website and answered a number 
of questions in the survey. In this study, participants completed up 
to 20 single-item fake-or-real tests; once participants had submitted 
a fake/real label for each item, they were told which label had been 
given to the item by a computational deepfake-detection algorithm,
and they were then asked to submit a new label (changing it from 

their initial answer if they wished). Participants’ mean accuracy was 
66%, which exceeds chance performance but is not particularly high.

With such a limited evidence base regarding static images, there 
is a pressing need for studies that employ experimental procedures 
that use appropriate samples, sample sizes, and deepfake generation 
methods to examine human deepfake detection accuracy. We do that 
here. 

StyleGAN2 

A variety of deepfake generation methods have been used in previous 
studies; however, one method in particular currently stands out as ap- 
propriate and relevant for an assessment of human accuracy in the 
detection of deepfakes—StyleGAN2 [ 16 ]. StyleGAN2 can produce 
stationary deepfake images in the ‘style’ of practically any content 
[ 115 ] (such as animals, cars, room interiors), but has demonstrated 
particular proficiency in producing deepfake images of human faces.
It is able to create high-resolution (1024 × 1024 pixels) deepfake im- 
ages and there exists publicly available source code that is currently 
implemented on a server, which outputs one deepfake instance ev- 
ery 2 seconds to a public-facing website [ 116 , 117 ]. This means that 
at present no technical expertise or resources are required to obtain 
these deepfakes at scale. Once they have been obtained, they can be 
used for a range of purposes, including criminal ones. For instance,
the images of human faces could be used as profile pictures for bot 
or scam accounts on social media, including dating websites or apps.
Doing so could have the effect of raising the perceived reputabil- 
ity of such accounts [ 118 , 119 ], and so existing problems of fraud 
and catfishing may be exacerbated by the incorporation of Style- 
GAN2 deepfakes. The technology might also be exploited to open 
fraudulent bank accounts through so-called ‘challenger’ banks that 
lack physical branches and rely on uploaded images (rather than in- 
person visits) to authenticate people’s identity (though note that KYC 

checks mitigate this risk [ 120 ]). The (mis)use of deepfakes as profile 
pictures has already been reported in the wild [ 121–123 ] and con- 
sequently, there is an element of urgency associated with assessing 
human accuracy in detecting deepfake instances generated by this 
method. 

However, while the quality of the images and the speed with 
which they can be produced are impressive, StyleGAN2 deepfake 
images do commonly include visual flaws that are potentially obvi- 
ous to a human observer [ 124 ]. The presence of these imperfections 
make StyleGAN2 a yet better test case—if participants cannot de- 
tect this type of deepfake, they will surely struggle with more robust 
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Table 1: Participant characteristics across conditions. 

Sample size Age (SD) Female (%) 

Control 72 25 .03 (8.67) 30.56 
Familiarization 65 29 .35 (10.12) 48.44 
One-Time Advice 82 25 .48 (7.26) 41.25 
Advice with Reminders 61 25 .27 (7.85) 39.66 
Overall 280 26 .24 (8.62) 39.78 
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ethods or future improvements to this technology. In the next sec-
ion, we report the findings of our study, which uses StyleGAN2 (as
rained on the Flickr FFHQ dataset [ 100 ]) to generate the images
ested. 

esearch questions 

ur research questions were as follows: 

Q1—Are participants able to differentiate between deepfake and
images of real people above chance levels? 

Q2—Do simple interventions improve participants’ deepfake de-
tection accuracy? 

Q3—Does a participant’s self-reported level of confidence in their
answer align with their accuracy at detecting deepfakes? 

ontributions 

his study offers an investigation into the ability of humans to detect
eepfake images from similar authentic images, and into the methods
y which they do so. It differs from the existing published literature
n the following ways: 

1) This study uses (and reports) an a-priori statistical power anal-
ysis to ensure that the sample sizes used would be sufficient to
detect differences between conditions should they exist. The ex-
periment is constructed to avoid cognitive overload (each par-
ticipant examines only 20 images), the control condition fea-
tures a filler task (thus avoiding an experimental confound),
all participants are randomly allocated from the same partici-
pant pool (avoiding allocation error), and the real and deepfake
datasets are each from one data source (FFHQ and StyleGAN2:
FFHQ, respectively). The survey for the study was prepared on
a custom-built Django webapp, which uses JavaScript to ensure
randomization at every relevant point, for instance, randomiza-
tion of the order in which the 20 image stimuli in the familiar-
ization intervention appear. 

2) The study has a strong focus on ecological validity and relevance
to the wider context of the criminal misuse (e.g. in cases of fraud,
such as dating scams) of the technology and policy implications.
As such, the experiment was designed to emulate a realistic sce-
nario. For example, participants could have been asked to com-
pare two images—one real and one fake—and to indicate which
was which. This is the approach taken in the Shen et al. study
[ 107 ]. However, it is hard to imagine a real-world scenario in
which people would need to do this. A realistic situation would
be when an individual encounters a single image (e.g. posted by
a dating scam fraudster) and is required to determine if that is
real or not. For this reason, we avoid the use of a two-alternative
forced-choice task and asked participants to judge each image
on its own (as they would in the real world). Moreover, the
deepfake data source chosen is StyleGAN2 which, at the time
of the experiment, represented the cutting edge in image deep-
fake generation. Importantly, instances of StyleGAN2 (indeed,
of StyleGAN2: FFHQ) are publicly available at scale and so
could be used by anyone [ 116 ]. The real image data source cho-
sen is FFHQ, which is a dataset of images of regular individuals’
faces as pulled from a social media photograph-sharing platform
[ 100 ], thus being fairly representative of the types of image that
a person might see on the internet (as opposed to being repre-
sentative of a laboratory setting). The two data sources are not
only very similar, but the deepfake source has been trained on
the real image source, such that the image stimuli for the experi-
ment in this study are as similar as possible to one another whilst
still being strongly representative of real and deepfake images as
they might be found in the wild. 

3) The study delves deeper into participant decision making. For
example, participants were asked how confident they were about
the correctness of each of their responses, and correlations were
computed to examine the relationship between their confidence
and accuracy. Participants were asked to supply the reasoning
behind each of their responses, both by providing an answer to
an open question and by indicating which part(s) of the image
their responses apply to. These verbal and visual reasonings are
inspected for each response and analysed to establish whether
participants used reasoning that matches any of the elements of
the experiment’s advice intervention or not. After this coding
and categorization, the data are split to establish the extent to
which participants’ use of the advice intervention’s elements was
applied to deepfake images (correct application) or real images
(incorrect application). Results are also inspected on a per-image
level, which allows an analysis of whether some images are uni-
versally more real-seeming than others. 

aterials and methods 

articipants 

n a-priori statistical power analysis was conducted to estimate the
ample size necessary to detect a ‘moderate’ (Cohen’s f = 0.25) effect
ize across experimental conditions (see below). The power analysis
as conducted for a one-way ANOVA with four groups, an alpha

ignificance level of α = 0.05, and statistical power of 0.95. The re-
ulting overall sample size estimate was 280 participants. 

Participants were recruited using the Prolific online platform
 125 ] and received a payment of £6/hr. To increase motivation, they
ere informed that they could earn a 50% bonus payment if their
erformance was in the top 50% of all participants. Participants were

nformed of this bonus payment immediately before the experimental
ask began, and were reminded each time they had to judge an image.
onus payments worth 50% of the original payment were allocated
fter the experiment was complete. 

Table 1 provides summary statistics for participants allocated to
he four conditions. The variation in sample sizes reflects the use of
imple random allocation. Participants had a mean age of 26.24 and
9.78% were female. Of the 273 participants who volunteered their
ationality information, 15 (5.5%) were UK nationals, while 229
84%) were (non-UK) European nationals. 231 participants volun-
eered information about their first language, which for 21 partici-
ants (9%) was English and for 205 participants (89%) was a Euro-
ean language. However, this diversity in nationality had no impact
n comprehension of the experimental task or any elements of the
urvey: where textual input was required of participants full com-
rehension was demonstrated by all. There were no differences in
ny of these characteristics across conditions. 
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Figure 1: Screenshot of the Textual Advice Reminders that participants within the Advice with Reminders condition received. 
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Design 

The study comprised four conditions to which participants were ran- 
domly assigned—a baseline control condition and three ‘experimen- 
tal’ conditions intended to improve participants’ performance on the 
experimental task. The interventions were designed to be simple, scal- 
able, and suitable for widespread use. The first experimental condi- 
tion was a familiarization intervention for which participants were 
shown 20 examples of deepfake images and informed that that was 
what they were. They were asked to spend a few moments looking 
at each image, and told that this was their only chance to familiarize 
themselves with the images before they would complete the experi- 
mental task. The same 20 images, none of which were used for the 
experimental task, were used for each participant but their order was 
randomized each time. 

In the second and third experimental conditions, participants 
were shown a list of 10 ‘tell-tale features’ (see Fig. 1 ) that deepfake 
images of this kind commonly contain and that may be used to dis- 
tinguish them from non-deepfake images. For each item, they were 
provided with a brief description of the features and two deepfake 
images that illustrated them. For the second condition, the advice 
was shown only before the experiment started. For the third, an ad- 
ditional reminder of the names of each tell-tale feature was displayed 
beneath each image throughout the experiment (see Fig. 1 ). 

To encourage participants to pay close attention, they were told 
that they would be quizzed on their memory for these features later.
They were also informed that these tell-tale signs would not necessar- 
ily feature in each AI-generated image, that they were not the only 
features that could be used to distinguish the AI-generated images,
and that it was important that participants applied common sense 
when making decisions. 

To ensure comparability across conditions, participants in the 
Control condition completed a filler task to replace the Familiariza- 
tion or Advice tasks that those allocated to the other three conditions 
received. This filler task was designed to have a neutral impact on per- 
formance. Specifically, participants were told that we were interested 
in developing appropriate greeting and thank you messages for sub- 
sequent studies. They were then shown a series of greeting messages 
and asked to rank them according to how engaging, professional,
and uplifting they perceived them to be. Participants were also asked 
to give their own variant. This process was then repeated but for a 
series of ‘thank you’ messages. 

The key aspect of the experimental task was a binary question 
asking participants whether they believed a given image was a deep- 
fake or not. Of course, differentiating between deepfake and genuine 
images is an absolute task—people are either right or wrong. In the 
real world, when people make the types of decisions that deepfakes 
may be intended to affect, decision-making is unlikely to be quite so 
binary. People may have their doubts about an image, which may in 
turn affect the decisions they make. Consequently, as well as assessing 
participants’ accuracy for an experimental task, we also assessed the 
confidence participants expressed regarding their decisions, which 
enabled us to examine whether this is (for example) uniformly low 

for deepfake images, whether they are more accurate for images that 
they are most confident about, and whether those who are the most 
confident are also the most accurate. 

Materials 

One aim of the study was to determine whether each participant’s 
performance (labelling a stimulus as AI-generated or not) exceeded 
chance. As such, it was important to require each participant to com- 
plete a sufficient number of trials so that this could be detected in- 
dividually as well as in the aggregate. After computing the standard 
error of a proportion for different numbers of trials, we reasoned that 
20 trials would provide a good trade-off between providing sufficient 
precision while minimizing the risk of cognitive overload. 

Images were selected from a pool of 50 real and 50 deepfake im- 
ages. The 50 images of real human faces were drawn at random from 

images in the FFHQ dataset [ 100 ], a dataset of high-resolution im- 
ages sourced from Flickr that only contains photos of human faces. In 
this dataset, each photo underwent automated alignment and crop- 
ping such that the human face takes up the majority of the image.
As such, the dataset is a collection of photos of real people in which 
their faces can be seen in great detail. 

The deepfake images were generated by the StyleGAN2 deep 
learning algorithm [ 64 ], trained using 70 000 images from the FFHQ 

dataset discussed above. All deepfake images were collected without 
any element of curation, and so represent random output of the Style- 
GAN2 algorithm. 

Procedure 

The experiment was implemented using a web application, which 
was written in Django (available at https:// github.com/sergibot/ Fa 
keFacesSurvey ) and hosted on a secure server in The Netherlands.
Participants first read about the study aims and the conceptual dis- 
tinction between images of real human faces and AI-generated equiv- 
alents. Instructions were then provided to explain how they should 
complete the experimental task, and an example provided of how 

the experimental task webpage should be completed. They were then 
provided with details about how their data would be stored (anony- 
mously) and told that they had the right to withdraw from the exper- 
iment at any point without giving a reason. They were subsequently 
asked to complete a series of checkboxes to provide informed con- 

https://github.com/sergibot/FakeFacesSurvey
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Figure 2: Example of highlighting explanatory regions of image during 

experiment. 

Table 2: Deepfake detection accuracy results. 

Sample size Mean (%) 
Standard 

deviation (%) 

Control 72 59.65 14.10 
Familiarization 65 60.54 14.12 
One-Time Advice 82 64.15 13.78 
Advice with Reminders 61 64.26 15.83 
Overall 280 62.18 14.48 

Group sample sizes differ due to the use of a simple random allocation strategy. 
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Table 3: Accuracy split by condition and image truth (real/fake). 

Sample 
size 

Accuracy for 
real images (%) 

Accuracy for 
deepfake 

images (%) 

Control 72 68.40 (21.90) 51.75 (24.87) 
Familiarization 65 59.63 (21.42) 62.01 (23.52) 
One-Time Advice 82 65.77 (19.84) 62.25 (26.70) 
Advice with Reminders 61 60.49 (24.13) 69.10 (27.01) 
Overall 280 63.87 (21.90) 60.99 (26.18) 

Standard deviations in parentheses. 
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ent and provided with the contact details of the first author should
hey have any questions about the study prior to participating. On
roviding consent, they were randomly allocated to one of the four
tudy conditions. 

Participants then viewed the intervention content of the condition
o which they had been allocated and completed the Experimental
ask. Participants were shown one image at a time and no participant
as shown the same image twice. Images were consistently displayed
t a size of 720 × 720 pixels. For each image, participants were asked
o label the image as ‘AI-generated’ or ‘real’ and to rate their confi-
ence in their answer on a 10-point scale (from ‘No confidence at all’
o ‘Complete confidence’). They were additionally asked to answer a
ree-text question about the reasoning behind their decision and to
lick on a ten-by-ten grid (see Fig. 2 ) that was subsequently superim-
osed over the image to highlight which parts of the image influenced
heir decision. Finally, all participants were shown a ‘Debrief’ page,
hich explained the contents of the different interventions tested. 

thics 

he experiment received ethical exemption from the Departmental
thics Committee. 

esults 

verall accuracy 

able 2 shows the mean number of items participants correctly iden-
ified as real or deepfake images overall. On average, participants
ere correct ∼60% of the time. One-sample t -tests confirmed that
ccuracy was significantly greater than chance (50%) for those in
he Control condition [ t (71) = 5.81, p < 0.001, Cohen’s d = 0.685],
he Familiarization condition [ t (64) = 6.02, p < 0.001, Cohen’s
 = 0.746], the One-Time Advice condition [ t (81) = 9.29, p < 0.001,
ohen’s d = 1.03], and the Advice with Reminders condition [ t (60)
 7.04, p < 0.001, Cohen’s d = 0.901]. 

While performance was marginally better for those in the exper-
mental conditions, a one-way analysis of variance [ F (3276) = 1.95,
 > 0.1 ns ] suggested that there were no statistically significant differ-
nces between groups. Simply put, for overall performance, none of
he intervention conditions led to a significant improvement in par-
icipants’ accuracy at detecting deepfake from non-deepfake images.

Table 3 provides a more detailed breakdown, showing accuracy
or real and deepfake images separately (measured as the percentage
f the total number of each stimuli that was correctly labelled). A
 (condition) × 2 (real versus deepfake image type) repeated mea-
ures ANOVA showed no significant main effects ( ps > 0.15 ns ), but
 statistically significant interaction [ F (3276) = 6.96, p < 0.005].
n particular, those assigned to the experimental conditions were
ore likely to correctly identify deepfake images, and accuracy in-

reased with the ‘intensity’ of intervention. However, this improve-
ent was—to varying degrees—offset by a decrease in accuracy at

abelling non-deepfake images. This was to the extent that overall
ccuracy did not significantly differ from that for those in the Con-
rol condition. 

hat influenced decision making? 

s well as indicating whether each image was ‘AI-generated’ or ‘real’,
articipants were asked to provide a ‘free text’ explanation as to the
easoning behind their decisions and to click on locations within the
mages that informed their choices. Here, the free text data were man-
ally coded using NVIVO [ 126 , 127 ] to count the frequency with
hich participants used any of the 10 ‘tell-tale signs’ provided in

he Advice intervention condition. For instance, if a participant re-
orted that the ‘background was impossible’, this was coded to the

Background: Impossible Location’ item. Account was also taken of
here—within an image—participants clicked. For example, if they

licked on a part of the image that clearly included a tell-tale sign,
his was coded accordingly. 

Figure 3 shows the proportion of responses that contained one
r more of the advice items. Only items labelled as deepfakes are
onsidered and we differentiate between those that were correctly
abelled as such and those that were not (i.e. non-deepfake images
abelled as deepfakes). 

Figure 3 suggests that those assigned to the advice conditions were
ore likely to report using features included in the advice provided to

dentify deepfake images than were those in the control or familiar-
zation conditions. Across conditions, the use of these features was
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Figure 3: Use of ‘tell-tale signs’ in participants’ reasoning behind response decisions, by decision correctness (where participants’ responses contained 

‘Deepfake’ as the selected label). 

 

Table 4: Number of deepfake labels applied. 

Sample 
size 

Number of 
deepfake stimuli 
actually seen in 

questions 

Number of 
deepfake labels 

applied in 
questions 

(regardless of 
correctness) 

Control 72 10 .03 (1.85) 8 .43 (3.72) ∗

Familiarization 65 10 .18 (2.08) 10 .23 (3.39) 
One-Time Advice 82 9 .82 (2.16) 9 .72 (3.91) 
Advice with Reminders 61 9 .98 (1.92) 10 .87 (4.05) 

∗p < 0.001. Standard deviations in parentheses. 
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more likely to be associated with correct attributions, but it is evi- 
dent that—in the aggregate across advice items—their use was sub- 
optimal as participants frequently also used these as discriminating 
features when they labelled real images as deepfakes. An unantici- 
pated consequence of the intervention then appears to be that it in- 
creased the number of non-deepfake stimuli that participants incor- 
rectly labelled as ‘deepfakes’. This may explain why performance im- 
proved for deepfake images but decreased for non-deepfake images—
participants allocated to the advice conditions appear to have simply 
labelled more items as deepfakes. 

To examine this more explicitly, we examined the number of deep- 
fake labels that participants applied. In this experiment, the images 
that participants were shown were drawn at random from a large 
pool of image stimuli (without replacement), which had a 1:1 ra- 
tio of deepfake image stimuli to non-deepfake image stimuli (which 
resulted in a mean of 10 deepfake image stimuli seen per partici- 
pant, SD = 2.01). Participants were not made aware of this 1:1 ra- 
tio, the randomness of the draw, or how many faces they would see 
so that they could not use such information to guide their decision 
making. 

If participants assumed that images had a 50–50 chance of being 
a deepfake, this would result in them labelling ∼10 images as fakes.
However, if the number of deepfake images was unbalanced across 
conditions, this could distort the results. Table 4 shows the number 
of deepfake stimuli observed across conditions, along with the mean 
number of deepfake labels applied. It is evident that participants in 
the Control condition saw the same number of deepfake images as 
everyone else [ F (3276) = 0.41, p > 0.7 ns ], but labelled significantly 
fewer pictures as such [ F (3276) = 5.06, p < 0.005]. This was the 
only significant difference observed and shows that those allocated 
to the advice or familiarization conditions did label more items as 
deepfakes. 

In addition to looking at the association between the use of the 
tell-tale advice items in the aggregate, we examined their efficacy indi- 
vidually. Figure 4 shows how frequently each ‘tell-tale sign’ was iden- 
tified when participants labelled an image as a deepfake. It is clear 
that none were used every time, but that some were used more fre- 
quently than others. In particular, the ‘Accessories Don’t Make Sense’ 
item was used most often, but was used incorrectly almost as many 
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Figure 4: Use of each ‘tell-tale sign’ in participants’ reasoning when choosing ‘deepfake’ label (with percentages showing mean accuracy across conditions). 
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imes as it was used correctly. In contrast, the ‘Strange Clothing Fab-
ic’ and ‘Asymmetric Earrings’ signs were used less often but were
ssociated with correct answers most of the time. Put simply, some
tems were more useful than others. 

onfidence 

he second column of Table 5 shows that participants’ mean confi-
ence in their decisions was typically high. A one-way ANOVA re-
ealed that the differences observed across conditions were statisti-
ally significant [ F (3276) = 3.72, p < 0.05], but as is visible from
able 5 , these differences were generally small and hence follow-up
 -tests [see Supplementary Information (SI)] are not discussed here. 

Splitting the responses by the label that a participant applied
deepfake or not) suggests differences between conditions and par-
icipant responses. A 4 (condition) × 2 (labelled real versus labelled
eepfake) repeated measures ANOVA revealed that there was a sig-
ificant main effect of condition [ F (3276) = 3.88, p < 0.01], a sig-
ificant difference for images labelled fake or not [ F (1276) = 29.03,
 < 0.0001], and a statistically significant interaction [ F (3276) =
.25, p < 0.0001]. Again, while the differences were reliable, they
ere small and hence, we do not report follow-up t -tests here but
rovide these in the SI. Put simply, the condition a participant was in
ad a slight impact on the confidence they had when they applied a

deepfake’ label as opposed to a ‘real’ label. 
Comparing responses by the type of image (i.e. whether the im-

ge being labelled is actually a deepfake or real), a 4 (condition) ×
 (image type) ANOVA with repeated measures on the second fac-
or revealed a significant main effect of condition [ F (3276) = 3.68,
 < 0.05], a significant difference for image type [ F (1276) = 6.29,
 < 0.05], and a significant interaction [ F (3276) = 3.42, p < 0.05].
ollow-up t -tests reveal statistically significant differences between
onditions but differences were again small. Again, the important
oint here is that the condition a participant was allocated to had a
light impact on the confidence that they had when applying a label
o an image that was indeed a ‘deepfake’ as opposed to a ‘real’ image.
owever, the differences were small. 

onfidence-accuracy correlation 

here are two ways in which participants’ confidence may be cor-
elated with their deepfake detection abilities. First, we calculated
 within-subject correlation between the confidence and accuracy
f responses for each participant across the 20 questions asked.
oodman–Kruskal Wallace Gamma Correlations were used for this
urpose and showed that while the mean correlation for those in the
ontrol condition ( M γ = 0.06, SD = 0.39) was not significantly dif-
erent from zero [ t (69) = 1.27, p > 0.2], the mean correlations for
hose in the Familiarization ( M γ = 0.13, SD = 0.35), One-Time Ad-
ice condition ( M γ = 0.21, SD = 0.46), and Advice with Reminders
onditions ( M γ = 0.14, SD = 0.50) were [respectively: t (63) = 3.08,
 < 0.005; t (80) = 4.11, p < 0.001; t (58) = 2.17, p < 0.05]. How-
ver, the coefficients were uniformly low. In other words, across any
iven participant’s responses, there was not very much correlation
etween the confidence they had in their answer, and the accuracy of
heir answers. 

Second, we computed between-subjects Pearson’s correlations to
xamine whether those who were overall more confident were also
verall more accurate. None of the correlations were statistically sig-
ificant [Control: r (70) = 0.04, p > 0.7 ns ; Familiarization: r (63) =
0.02, p > 0.9 ns ; One-Time Advice: r (80) = −0.51, p > 0.7 ns ; Ad-
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Table 5: Mean confidence results. 

Sample size Overall confidence Labelled real Labelled deepfake Image real Image deepfake 

Control 72 6.77 (1.41) 7.15 (1.42) 5.92 (1.52) 6.83 (1.52) 6.73 (1.48) 
Familiarization 65 6.47 (1.56) 6.57 (1.72) 6.30 (1.63) 6.42 (1.69) 6.52 (1.55) 
One-Time Advice 82 7.18 (1.08) 7.18 (1.67) 6.99 (1.78) 7.11 (1.22) 7.26 (1.08) 
Advice with Reminders 61 6.80 (1.12) 6.91 (1.29) 6.52 (1.30) 6.63 (1.32) 7.05 (1.17) 
Overall 280 6.83 (1.32) 6.97 (1.42) 6.46 (1.45) 6.77 (1.45) 6.90 (1.35) 

Standard deviations in parentheses. 
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vice with Reminders: r (59) = 0.02, p > 0.9 ns ]. That is, participants 
who were more confident were not necessarily more accurate. 

Are all images equal? Per-image analysis 

Figure 5 shows the mean accuracy rates per image, aggregated across 
conditions. It shows that accuracy was not uniform across images.
For some (real or fake), mean accuracy was well above 50%, whereas 
for others ( ∼20% of images), participants attained a mean accuracy 
below this threshold. Figure 5 also shows the mean confidence ratings 
calculated across participants. While there appears to be no associ- 
ation, a between-item Pearson’s correlation revealed a statistically 
significant correlation between mean confidence and mean accuracy 
[ r (98) = 0.33, p < 0.001]. The effect is, however, only moderate and 
the differences in mean confidence vary within a very small range of 
values (5.82 to 8.10). 

Discussion 

Participant performance 

Algorithms to generate ‘deepfakes’ are increasing in sophistication 
and availability. While there are positive use cases, many potential 
criminal applications also exist. Previous research has examined peo- 
ple’s ability to detect deepfakes but much of the research is subject 
to important limitations (see above) and has used a variety of algo- 
rithms to generate deepfakes, which are of variable quality. Here, we 
test human ability to detect deepfakes generated by StyleGAN2, the 
output from which is freely available. We find that although deepfake 
detection accuracy was significantly better than chance, mean accu- 
racy ranged from only 60 to 64% across conditions suggesting that 
humans are not very good at detecting deepfake images generated by 
StyleGAN2. Moreover, we do not find that there was a significant 
improvement in overall accuracy for participants who completed a 
familiarization exercise, or for those who were provided with explicit 
advice as to how to identify deepfakes. 

Three studies previously measured the deepfake detection abilities 
of participants for static images. The first [ 61 ] used deepfake images 
representative of the earlier version of StyleGAN [ 99 ] as trained on 
the FFHQ [ 100 ] and CelebA-HQ [ 101 ] datasets, and representative 
of the PGGAN algorithm as trained on the FFHQ dataset. Accuracy 
achieved (across N = 20 participants) ranged from 63.9 to 79.13%,
with accuracy being the lowest for StyleGAN1 as trained on FFHQ.
While the sample sized used in that study precludes firm conclusions,
the level of accuracy for StyleGAN1 is within the range of partic- 
ipant accuracies found the current study. The second study [ 104 ] 
used deepfake images from StyleGAN2 also trained on FFHQ, but 
excluded images with ‘obvious rendering artefacts’ from the dataset,
thereby making the labelling task more difficult for participants. Ac- 
curacy varied across experiments from 48.2 ( N = 315 participants) 
to 59.0% ( N = 219 participants)—results, which are relatively con- 

sistent with our own. 
The third study [ 107 ] used equal numbers of deepfake images 
from StyleGAN2 as trained on FFHQ, and from SREFI [ 128 ] as 
trained on an academically collected dataset [ 108 ]. Authentic im- 
ages were exclusively those that the SREFI algorithm was trained 
on [ 108 ]. Across the three experiments participant accuracy varied 
little: 49.1 ( N = 176), 49.7 ( N = 174), and 49.7% ( N = 172). These
results are 10 percentage points lower than those reported in the cur- 
rent study, but one reason for this difference could be the type of 
authentic images used in that study. As noted, none of the FFHQ im- 
ages were used, and, as far as we can tell, the authentic images used 
were qualitatively different to them. That is, rather than resembling 
the sorts of images found on social media platforms (and found in the 
FFHQ dataset, and consequently StyleGAN2 images), these images 
had a uniformity to them. For example, they appear to often consist 
of a person standing with a neutral expression in front of a plain 
single-colour background. This is a potential experimental confound 
that could have confused participants and led to poor performance.
Ideally, the images in the authentic stimulus pool would be as similar 
as possible to the images in the deepfake stimulus pool. 

The second related study [ 104 ] (and to a lesser degree the third 
[ 107 ]) raises the interesting question of whether the dataset for hu- 
man deepfake detection accuracy studies should be curated or sim- 
ply taken as random output from the algorithm. The authors of 
that study [ 104 ] reason that an attacker would be able to curate 
the dataset they use, since they can see ‘obvious’ rendering artefacts 
and simply exclude those from their selection. How easy this would 
be is debatable. Moreover, a crucial difference between the use of 
deepfakes and shallowfakes is the sheer scalability of attacks that 
use deepfakes: since a large number can be made in a short amount 
of time, they can be used for bulk attacks. A curation step is possi- 
ble, but this would decrease the scalability of attacks. However, our 
study also shows that for deepfake images with arguably very ‘ob- 
vious’ rendering artefacts participants did not have great accuracy 
even when given the advice interventions. Additionally, since we took 
output straight from the algorithm and did not curate it, our findings 
suggest that bulk attacks are surprisingly viable—a finding not evi- 
dent from prior literature. 

In other previous work, discussed in the introduction [ 61 ], poor 
performance might be explained by the fact that participants had to 
respond quickly and had to rate a large number of images, which is 
likely to have resulted in fatigue. In our study, participants took a 
mean of 78.28 seconds to answer each question (SD = 123.54 sec- 
onds), which is much longer than the 5.14 seconds taken by partic- 
ipants in one previous study [ 61 ]. Moreover, in our study, each par- 
ticipant was only asked about twenty images (compared with 1000,
128, and 50 images in the three previous relevant studies [ 61 , 104 ]).
As such, the poor performance observed here is unlikely to be due to 
cognitive overload or haste. Participants were just not very good at 
the task. 

Of further concern is the fact that we found little evidence to sug- 
gest that participant’s confidence in their judgements correlated with 
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Figure 5: Results split by image (light colours = accuracy, black = confidence). 
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heir accuracy. If there had been a positive correlation, then the con-
equences of participants’ low accuracy at deepfake detection would
ot be so bad, as people would have lower confidence when their ac-
uracy was lower, and so would be less inclined to assert that their
ncorrect answer was correct. However, the lack of such a correla-
ion as well as the uniformly high confidence given by participants
overall mean = 6.8 on the 0–9 Likert scale) indicates that any deep-
ake/real label decisions that people make about images of human
aces will be likely accompanied by a high degree of confidence re-
ardless of whether the answer is correct or not. There is an extensive
iterature on overconfidence and its dangers in the psychology liter-
ture [ 129 ]. Where deepfakes are concerned, human overconfidence
s particularly dangerous as there are currently no implemented tech-
ical measures or methods by which a person can verify whether an

nstance is a deepfake or not, and so all a person has to go on is their
wn intuition—in which they apparently tend to have a great deal of
onfidence. 

Considering variation in the effectiveness of the advice provided,
e found that some ‘tell-tale’ signs were used more than others and,
ore importantly, some were more discriminatory than others. For

xample, use of the advice regarding the asymmetry of earrings re-
ulted in a rate of about eight correct deepfake detections to only one
alse positive. The advice regarding ‘Strange Clothing Fabric’, ‘Asym-
etric Glasses’, and ‘Colour Bleeds From Background’ also produced

ood rates of true-to-false positive judgements (5.17, 4.36, and 2.07,
espectively). Considering efficacy, these four items were used by par-
icipants who were provided with advice about them for 27.26% of
heir responses. The reason for their relatively low use is likely to do
ith the fact that these features may not be present in all images. That

his is the case would limit their utility in the real world. In addition,
n attacker could remove two of the features (Asymmetric Earrings
 w  
nd Asymmetric Glasses) using an image editor such as Photoshop
r GIMP, or simply exclude images that contained these features. 

A further concern is that real-world conditions may be less
avourable than those employed here. To explain, the image size used
n our experiment was set so that pictures would take up the majority
f the screen when viewed on a normal laptop (the image size was
et to be 720 by 720 pixels so that it would be displayed identically
o each participant regardless of screen size). This means that partic-
pants would have likely viewed the images in a much larger format
han such images would commonly be viewed in real life. For exam-
le, profile pictures on social media platforms will generally take up
 much smaller portion of a screen; with dating apps, images take up
he whole of a smartphone screen, but this size will still be smaller
han images were viewed in our experiment. Some platforms also
imit image size. For example, Instagram has a profile picture limit
f 110 by 110 pixels. The effect of different image sizes upon par-
icipant accuracy is an area for future work, but it seems reasonable
o suggest that certain details (e.g. the absence of symmetry for ear-
ings) that would affect a participant’s decision would be hard or
ear impossible to see in smaller images. In addition, the rectangular
ortrait crop that is forced by some smartphone dating apps may ob-
cure some features of deepfakes that might otherwise be observed.
dditionally, the efficacy of interventions will be reduced if people
o not routinely employ them in real life. However, even if they do,
fficacy will be low if they do not work under controlled conditions.

imitations 

s with any experiment, there is a risk that participants assigned to
xperimental conditions may not have paid attention. In this case,
e can likely rule out this threat since those in the advice conditions
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were found to be more likely to report using the specific advice given 
when making decisions than those in the control condition. 

Additionally, response bias could be an issue; however, we address 
this possibility by computing a Signal Detection Theory measure that 
takes into account response bias. We calculate d prime for each par- 
ticipant, and an ANOVA conducted over these values indicates no 
statistically significant differences [ F (3276) = 2.46, p > 0.05]. 

This study is not without limitations, however. Chief amongst 
these is the fact that participants were mostly young (with a mean 
age of 26.24, SD = 8.62), and few reported that English was 
their first language (9%), with even fewer being UK nationals 
(5.4%) or US nationals (2.5%). However, the responses provided 
by participants consistently demonstrated full comprehension of 
the experimental task and English language fluency. Future work 
might systematically explore deepfake detection accuracy for dif- 
ferent age groups. For example, relative to their younger counter- 
parts, older adults are more often targets of fraud [ 130 ], are likely 
to be less aware of technological developments, and could have 
worse eyesight and attention to detail. Our expectation, however,
would be that the elderly would be less accurate than their younger 
counterparts. 

Another limitation is that the a-priori statistical power analysis 
was calculated such as to detect a ‘moderate’ (Cohen’s f = 0.25) 
effect size across experimental conditions. This means that the ex- 
periment would likely not have enough statistical power to de- 
tect effects that were ‘small’ in size; if the advice increased par- 
ticipants’ accuracy by a ‘small’ effect size, then this would not be 
detected in this experiment. However, the authors consider practi- 
cal significance to be important too. That is, using a sample size 
of 1000 participants, we could perhaps have detected (say) a 2% 

difference in accuracy between conditions. However, from a pol- 
icy perspective, achieving such a small effect would be of little 
value. 

The size of the stimulus pool ( N = 100) from which the im- 
ages were drawn could have been too small for the deepfake stim- 
uli to fully represent the output of the StyleGAN2 method. This 
size was chosen to allow for a sufficient number of participants 
to respond to each image for per-image accuracy results to be re- 
liable but this represents a trade-off. The study findings are also 
limited to the specifics of the interventions tested, these mainly be- 
ing the number of images shown in the Familiarization interven- 
tion (20) and the particulars of the Advice provided. Different ad- 
vice may result in different outcomes, which future work might 
explore. 

Finally, the experimental setup employed is unlikely to reflect in- 
the-wild circumstances, both in that the participants here had full 
awareness of the presence of AI-generated images in the stimulus 
pool, and in that participants were explicitly taking part in an exper- 
iment. In both cases, we would expect this to mean that participants 
in the experiment would perform better than those in a real-world 
scenario, meaning that our estimates may be—if anything—on the 
optimistic side. Of course, judgements made in the real-world can 
have real consequences and this too may impact upon their accuracy,
the confidence people have in their judgements, and the subsequent 
choices they make. In the current study, we used an (albeit small) eco- 
nomic incentive to encourage participants to pay full attention to the 
task. Whether this had the intended effect is hard to know but the 
amount of time participants took to make decisions (again, a mean 
of 78 seconds per decision) and the frequency with which they re- 
ported items from the Advice intervention (see Figs 3 and 4 ) suggests 
that they did so. 
Future work 

The limitation of this study to the use of the StyleGAN2 deepfake 
generation method prompts the need for comparative future work 
with other deepfake generation methods, of image modality or other 
modalities. Other versions of the Familiarization or the Advice in- 
tervention could be investigated, using a subset of the advice items,
different advice, or other types of Advice intervention such as ex- 
planatory or demonstrative video segments, or cartoon strips [ 131 ].
A different direction should also be investigated: giving participants 
advice on how to tell that an image is a real image, that it is not a
deepfake. This could be fruitful advice since the deepfake generation 
algorithms find certain things difficult, like brand logos or other text,
or objects that partially obscure the face. 

An attacker could hand-forge these elements into deepfake im- 
ages, however. Therefore, future work should also test the impact of 
basic and quick image editing of the deepfake image stimuli in Adobe 
Photoshop [ 85 ] (or GIMP [ 86 ], a cost-free alternative) on participant 
accuracy. Any successful human interventions or technological solu- 
tions should pass this test too: such image-editing is available to an 
attacker, albeit at the cost of a small amount of time and effort per 
image. 

Conclusion 

The findings of this study suggest that people are better than random 

but imperfect at detecting deepfakes and that the simple interventions 
tested do not help. Unfortunately, participants tended to be confident 
in their ability to differentiate real and deepfake images but their 
confidence was misplaced. This is a cause for concern and emphasizes 
the threat that the misuse of deepfake images poses. 

The StyleGAN2 deepfake generation method whose output this 
study has assessed has been expanded such that the images can 
be altered within the StyleGAN2 algorithm. The result is that the 
same facial identity can be retained while adjustment is made to 
elements including head pose, baldness, lipstick, background, illu- 
mination, and face shape [ 132–134 ]. These adjustments can also 
be applied to a picture of an existing person [ 135 ]. The fact that 
this adjustment is made within the StyleGAN2 method (in its ‘la- 
tent space’) means that the resultant images will be of the same 
quality as the regular output of StyleGAN2; in fact, the images 
can be carefully tweaked to reduce the appearance of visual tell- 
tale features (e.g. an ‘Impossible Location’ background can be 
blurred). 

These developments expand the potential harms of this technol- 
ogy. For example, a portfolio of facial images can be made with dif- 
fering expressions, apparent contexts, and even apparent age. This 
could be put to use to create fraudulent dating app or social media 
accounts, and the potential to use an existing face as input means that 
identity theft and a plethora of consequent harms have also become 
possible. Use of a portfolio of multiple images means that the individ- 
ual images may no longer carry such a burden of veracity: if people 
are not aware that several images of a human face could be created 
with differing expressions, they may be even less likely to consider 
that what they are looking at is a fake. 

This expansion of the StyleGAN2 method could also be combined 
with deepfakes in the audio modality, which can take a sample input 
voice and generate samples of that voice’s identity saying custom text 
[ 136 , 137 ]. This could be used to strengthen a fake portfolio of an
existing or a non-existent personal identity to enable further harms.
This audio deepfake technology is available via an existing company 
[ 138 ] but is also freely available as code on GitHub [ 139 ]. 
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The question of having the source code for deepfake genera-
ion technologies available for download from GitHub is a debate
hat should be framed in terms of Responsible Research and Inno-
ation [ 140 ]: the potential societal impacts should be considered
nd taken into account. On the one hand, having the code avail-
ble on GitHub allows researchers to create and test defence mech-
nisms for these deepfake technologies, as has been done in this
tudy. On the other, having the code publicly available allows any-
ody to download it and use it for malicious purposes, for which
uitable defences may not yet have been developed. Perhaps a bet-
er solution would be to have the authors provide the code on re-
uest, if the requester provides a suitable reason and easily authen-
icatable credentials (for accountability). In this way, there would
t least be an additional barrier to entry for would-be-attackers to
vercome. 

Perhaps more concerning is the fact that at the time of writing,
here is a public-facing website that publishes a new deepfake in-
tance (of the StyleGAN2: FFHQ type) every 2 seconds [ 116 ]. A host
f similar websites [ 115 , 124 ] additionally publish new deepfake in-
tances from the StyleGAN2 method as trained on datasets with dif-
erent content (e.g. UK MP headshots [ 141 ]). These websites are not
osted or maintained by the authors of the StyleGAN2 publication,
ut by various private individuals who will have downloaded the
tyleGAN2 code from GitHub, trained a StyleGAN2 model on the
iven dataset, and routed the model’s output to the given website.
n terms of Responsible Research and Innovation [ 140 ], there is a
otential argument for this activity: such websites spread awareness
f the various capabilities of this deepfake technology, and may in
his way be helping to alert the public to the potential threats this
echnology may cause. 

However, such awareness could easily be achieved by hosting
 small dataset (e.g. N = 20) that showcases the output of such
eepfake generation methods. An argument against these websites is
hat their maintained presence may have unintended consequences.
here is a difference between the StyleGAN2 code being hosted on
itHub, and the output from a carefully trained StyleGAN2 model
eing published continually to a public website. In the first case, sev-
ral barriers of effort and resource stand between an attacker and
 well-crafted deepfake instance: implementing the code requires a
egree of programming proficiency and understanding; a dataset
f the desired type of instance (e.g. photo of an MP) needs to be
ourced, and sifted either automatically or manually, cropped, and
ligned; and expensive computing equipment is then needed to train
he StyleGAN2 model, all before any deepfake output is created.
n the second case, none of these barriers exist, and all that is re-
uired for malicious application is the imagination to figure out
ow to exploit the given deepfake instances. Given all of this, it
ay not be surprising that several deepfake instances (of the Style-
AN2: FFHQ type) have been found in malicious applications in

he wild [ 121–123 ]. Open Science should be embraced [ 142 ], but
ust be accompanied by an appropriate degree of responsibility
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