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A graph is called k-extendable if each k-matching can be ex-
tended to a perfect matching. We give spectral conditions 
for the k-extendability of graphs and bipartite graphs using 
Tutte-type and Hall-type structural characterizations. Con-
cretely, we give a sufficient condition in terms of the spectral 
radius of the distance matrix for the k-extendability of a 
graph and completely characterize the corresponding extremal 
graphs. A similar result is obtained for bipartite graphs.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we give conditions for the extendability of matchings in a graph in 
terms of the spectral radius of the distance matrix. We say that a graph is k-extendable
if each matching consisting of k edges can be extended to a perfect matching. Historically, 
matching extension was born out of the canonical decomposition theory for graphs with 
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perfect matchings [19]. The study of the concept of k-extendability gradually evolved 
from the concept of so-called elementary (that is, 1-extendable) bipartite graphs. Hetyei 
[12] provided four useful characterizations of elementary bipartite graphs. Lovász [18]
showed that the class of bipartite elementary graphs plays an important role in the 
structure of graphs with a perfect matching. The first results on k-extendable graphs 
(for arbitrary k) were obtained by Plummer [22]. In 1980, he studied the properties of 
k-extendable graphs and showed that nearly all k-extendable graphs (k ≥ 2) are (k−1)-
extendable and (k + 1)-connected. Motivated by this work, many researchers further 
looked at the relationship between k-extendability and other graph parameters, e.g., 
degree [1,29], connectivity [17], genus [6,24] and toughness [25]. We refer the interested 
reader also to three surveys [26–28] and to the list of references therein.

With the development of spectral graph theory, also the relation between matchings 
and graph eigenvalues was studied, e.g., [9,15,21] for adjacency eigenvalues, [3,11] for 
Laplacian eigenvalues and [16,31] for distance eigenvalues. Recently, Fan and Lin [7]
investigated the k-extendability of graphs from an adjacency spectral perspective. In 
this paper, we study the relationship between k-extendability and the distance spectral 
radius.

Let G be a graph with vertex set V (G) = {v1, v2, . . ., vn} and edge set E(G). The 
distance between vi and vj , denoted by d(vi, vj), is the length of a shortest path from vi to 
vj . The distance matrix of G, denoted by D(G), is a real symmetric matrix whose (i, j)-
entry is d(vi, vj). The distance matrix of a graph was introduced by Graham and Pollak 
[10] to study the routing of messages or data between computers, and this motivated 
much additional work on the distance matrix. For example, Merris [20] provided an 
estimation of the spectrum of the distance matrix of a tree. Since then, there has been 
a lot of research on distance matrices and their spectra; see the three surveys [2,13,14].

By the Perron-Frobenius Theorem, the spectral radius of the distance matrix of G, 
which we denote by ∂(G), equals its largest eigenvalue, and is called the distance spectral 
radius of G. As is usual when studying the distance spectrum, we will assume that the 
graphs under consideration are connected.

Denote by ∨ and ∪ the join and union of two graphs, respectively. Furthermore, we 
denote by Ka,b � Kc,d the bipartite graph obtained from the union of Ka,b and Kc,d

by adding all edges between the parts of the sizes b and c. A bipartite graph is called 
balanced if both parts of the bipartition have equal size. Clearly, every bipartite graph 
with a perfect matching (and hence a k-extendable bipartite graph) must be balanced.

Zhang and Lin [31, Thm. 1.1] showed that the graph of order 2n with the smallest 
distance spectral radius that does not have a perfect matching is Kn−1 ∨ (n + 1)K1 for 
n ≤ 4 and K1 ∨ (K2n−3 ∪ 2K1) for n ≥ 5. They [31, Thm. 1.2] also showed that the 
balanced bipartite graph of order 2n with the smallest distance spectral radius that does 
not have a perfect matching is Kn−1,n−2 �K1,2.

Note that the existence of a perfect matching can be considered as 0-extendability. 
Instead, we will focus on k-extendability for k ≥ 1 and prove that the graph of order 2n
with smallest distance spectral radius that is not k-extendable is K2k∨(K2n−2k−1∪K1). 
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Fig. 1. The extremal graphs that are not k-extendable.

The balanced bipartite graph of order 2n with the smallest distance spectral radius that 
is not k-extendable is Kn−k,n−1 �Kk,1.

See Fig. 1 for a picture of the extremal graphs that are not k-extendable. It is clear 
that these graphs are quite different from the extremal graphs that do not have a perfect 
matching (mentioned above; see Zhang and Lin [31]), and that they do have perfect 
matchings.

Our paper is further organized as follows: In Section 2, we introduce some lemmas 
on the structure of non-extendable graphs (Section 2.1) and distance spectral radius 
(Section 2.2). In Section 3, we determine the graph with the smallest distance spectral 
radius among all non-extendable graphs of given order (Theorem 3.1). In Section 4, we 
give a sufficient condition in terms of the distance spectral radius for the k-extendability 
of a bipartite graph (Theorem 4.1). In Section 5, we finish the paper with an analogous 
result on k-factor-criticality in graphs (Theorem 5.2).

2. Preliminaries

2.1. The structure of non-extendable graphs

We start with a Tutte-type characterization for k-extendable graphs obtained by Chen 
[5]. For any S ⊆ V (G), let G[S] be the subgraph of G induced by S and let G −S be the 
subgraph induced by V (G) \ S. Denote the number of odd components in G by o(G).

Lemma 2.1. [5, Lemma 1] Let k ≥ 1. A graph G is k-extendable if and only if

o(G− S) ≤ |S| − 2k

for any S ⊆ V (G) that contains a k-matching.

A Hall-type condition for bipartite graphs to be k-extendable was obtained by Plum-
mer [23]. For any S ⊆ V (G), let N(S) be the set of all neighbors of the vertices in S.

Lemma 2.2. [23, Thm. 2.2] Let k ≥ 1 and let G be a connected bipartite graph with parts 
U and W . Then the following are equivalent:
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(i) G is k-extendable;
(ii) |U | = |W | and for all nonempty subsets X of U , if |X| ≤ |U | − k, then |N(X)| ≥

|X| + k;
(iii) For all u1, u2, . . . , uk ∈ U and w1, w2, . . . , wk ∈ W , the graph G′ = G −

{u1, . . . , uk, w1, . . . , wk} has a perfect matching.

2.2. The distance spectral radius

An elementary, but fundamental result to compare the distance spectral radii of a 
graph and a spanning subgraph can be obtained by the Rayleigh quotient and the Perron-
Frobenius Theorem.

Lemma 2.3. Let G be a connected graph with u, v ∈ V (G) and uv /∈ E(G), then

∂(G) > ∂(G + uv).

Proof. Let x be a Perron eigenvector for ∂(G + uv), so that x is positive in all entries. 
Note that D(G) = D(G + uv) + M , where M is a nonzero nonnegative matrix. Then

∂(G) ≥ x�(D(G + uv) + M)x
x�x = x�D(G + uv)x

x�x + x�Mx
x�x

>
x�D(G + uv)x

x�x = ∂(G + uv). �
We also need a result mentioned as Claim 1 of the proof of Theorem 1.1 in [31].

Lemma 2.4. [31, pp. 317–319 ] Let p ≥ 2 and ni ≥ 1 for i = 1, . . . , p. If 
p∑

i=1
ni = n − s

where s ≥ 1, then

∂(Ks ∨ (Kn1 ∪Kn2 ∪ · · · ∪Knp
)) ≥ ∂(Ks ∨ (Kn−s−p+1 ∪ (p− 1)K1))

with equality if and only if ni = 1 for i = 2, . . . , p.

3. Extendability and the distance spectral radius of graphs

Using the Tutte-type characterization in Lemma 2.1 and the lemmas in Section 2.2
on the distance spectral radius, we will now prove our main result.

Theorem 3.1. Let k ≥ 1 and n ≥ k + 1. Let G be a connected graph of order 2n. If

∂(G) ≤ ∂(K2k ∨ (K2n−2k−1 ∪K1)),

then G is k-extendable unless G = K2k ∨ (K2n−2k−1 ∪K1).
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Proof. Note that K2k ∨ (K2n−2k−1 ∪ K1) is not k-extendable. We will prove that if 
G is not k-extendable, then ∂(G) ≥ ∂(K2k ∨ (K2n−2k−1 ∪ K1)) with equality only if 
G = K2k ∨ (K2n−2k−1 ∪K1).

Suppose that G is not k-extendable with 2n vertices where n ≥ k + 1, then by 
Lemma 2.1, there exists some nonempty subset S of V (G), say of size s, such that 
s ≥ 2k and o(G − S) > s − 2k. Because G has an even order, o(G − S) and s have the 
same parity, so we have o(G − S) ≥ s − 2k + 2. We may assume that all components 
of G − S are odd, otherwise, we can move one vertex from each even component to the 
set S, and consequently, the number of odd components and the size of S increase by 
the same amount, so that all assumption remains valid. We may also assume that the 
number of odd components equals s − 2k + 2, for additional odd components (of which 
there are an even number) may be added to one of the other odd components (as we 
will not use that a component is connected). Let the odd number ni be the cardinality 
of the i-th odd component of G − S. It is clear then that G is a spanning subgraph of

Ks ∨ (Kn1 ∪Kn2 ∪ · · · ∪Kns−2k+2)

for some odd integers n1, n2, . . . , ns−2k+2 and 
∑s−2k+2

i=1 ni = 2n − s. By Lemma 2.3, we 
have

∂(G) ≥ ∂(Ks ∨ (Kn1 ∪Kn2 ∪ · · · ∪Kns−2k+2))

where equality holds if and only if G = Ks ∨ (Kn1 ∪Kn2 ∪ · · · ∪Kns−2k+2). Write

G(s) = Ks ∨ (K2n−2s+2k−1 ∪ (s− 2k + 1)K1).

By Lemma 2.4, it is clear that

∂(G) ≥ ∂(G(s))

where equality holds if and only if G = G(s). Note that 2n = s +
∑s−2k+2

i=1 ni ≥ 2s −2k+2
and G(2k) = K2k ∨ (K2n−2k−1 ∪K1). As the latter is our claimed extremal graph, let us 
denote its distance spectral radius ∂(G(2k)) by ∂∗. The main idea of the following is to 
show that ∂(G(s)) > ∂∗ when n ≥ s − k + 1 and s ≥ 2k + 1. Let x be the unit Perron 
eigenvector of D(G(2k)), hence D(G(2k))x = ∂∗x. It is well-known that x is constant on 
each part corresponding to an equitable partition [4, §2.5]. Thus we may set

x = (a, . . . , a︸ ︷︷ ︸
2k

, b, . . . , b︸ ︷︷ ︸
2n−2k−1

, c)�

where a, b, c ∈ R+. In order to compare the appropriate spectral radii, we refine the 
partition, and write x as follows:
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x = (a, . . . , a︸ ︷︷ ︸
2k

, b, . . . , b︸ ︷︷ ︸
s−2k

, b, . . . , b︸ ︷︷ ︸
2n−2s+2k−1

, b, . . . , b︸ ︷︷ ︸
s−2k

, c)�.

Accordingly, D(G(s)) −D(G(2k)) is partitioned as

2k s− 2k 2n− 2s + 2k − 1 s− 2k 1⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

2k 0 0 0 0 0
s− 2k 0 0 0 0 −J

2n− 2s + 2k − 1 0 0 0 J 0
s− 2k 0 0 J J − I 0

1 0 −J 0 0 0

where each J is an all-ones matrix of appropriate size and I is an identity matrix. Then 
we have

∂(G(s)) − ∂∗ ≥ x�(D(G(s)) −D(G(2k)))x

= (s− 2k)b · [(4n− 3s + 2k − 3)b− 2c].

Note that s ≥ 2k + 1 and b > 0, hence it suffices to show that

(4n− 3s + 2k − 3)b− 2c > 0. (3.1)

From the equation D(G(2k))x = ∂∗x, we obtain that
⎧⎪⎨
⎪⎩

∂∗ · a = (2k − 1)a + (2n− 2k − 1)b + c

∂∗ · b = 2ka + (2n− 2k − 2)b + 2c
∂∗ · c = 2ka + 2(2n− 2k − 1)b

which implies

c =
(

1 + 2n− 2k − 2
∂∗ + 2

)
b.

By substituting this and s ≤ n + k − 1 into (3.1), it follows that instead of the latter, it 
suffices to prove that

∂∗ > 2 + 4
n− k − 2 ,

unless n = k+2. But this easily follows from the bound ∂∗ > min
i

ri(D(G(2k))) = 2n −1, 
where ri(A) denotes the i-th row sum of a matrix A (note that n ≥ 4 if n ≥ k+3). Note 
that there is a strict inequality in this bound because the row sums are not constant; we 
need this strict inequality below.
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Thus, except for the case n = k+2, which only occurs in conjunction with n = s −k+1, 
the proof is finished. For the remaining case, the above approach does not work, and 
the distance spectral radius is quite close to the claimed optimal value. If n = k + 2
and n = s − k + 1, then G(s) = K2k+1 ∨ 3K1, whereas G(2k) = K2k ∨ (K3 ∪K1). Thus, 
for G(s), there is a clear equitable partition with two parts, and ∂(G(s)) is the largest 
eigenvalue of the corresponding quotient matrix (of D(G(s)))

[
2k 3

2k + 1 4

]

which has characteristic polynomial

φs(x) = x2 − (2k + 4)x + 2k − 3.

Similarly, ∂∗ is the largest eigenvalue of the quotient matrix

[2k − 1 3 1
2k 2 2
2k 6 0

]

of D(G(2k)), and hence ∂∗ is the largest root of the characteristic polynomial

φ(x) = x3 − (2k + 1)x2 − (4k + 14)x + 4k − 12.

Next, we let ϕs(x) = (x + 3)φs(x). In this way, we make sure that ϕs(x) − φ(x) =
−x + 2k + 3. As noted before, we have that ∂∗ > 2n − 1 = 2k + 3 and hence

φs(∂∗) = 1
∂∗+3ϕs(∂∗) = 1

∂∗+3 (ϕs(∂∗) − φ(∂∗)) = 1
∂∗+3 (−∂∗ + 2k + 3) < 0,

which implies that ∂(G(s)) > ∂∗. �
4. Bipartite graphs

We will next restrict our attention to bipartite graphs. Instead of the Tutte-type 
characterization, we will now use the Hall-type characterization in Lemma 2.2.

Theorem 4.1. Let k ≥ 1 and n ≥ k + 1. Let G be a connected balanced bipartite graph of 
order 2n. If

∂(G) ≤ ∂(Kn−k,n−1 �Kk,1),

then G is k-extendable unless G = Kn−k,n−1 �Kk,1.
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Proof. Note that the bipartite graph Kn−k,n−1 �Kk,1 is not k-extendable. We will prove 
that if G is bipartite but not k-extendable, then ∂(G) ≥ ∂(Kn−k,n−1�Kk,1) with equality 
only if G ∼= Kn−k,n−1 �Kk,1.

Let G be a balanced connected bipartite graph with parts U and W (each of size n). 
Suppose that G is not k-extendable, then by Lemma 2.2, there exists some nonempty 
subset X, say of size s, of U such that |N(X)| ≤ s +k−1 and s ≤ n −k. We now proceed 
in a similar way as in Section 3. Here we have that G is a spanning subgraph of

B(s) = Ks,s+k−1 �Kn−s,n−s−k+1,

and, by Lemma 2.3, we have that

∂(G) ≥ ∂(B(s))

where equality holds if and only if G ∼= B(s).
It is clear that B(1) ∼= B(n−k) = Kn−k,n−1�Kk,1, which is our claimed extremal graph, 

and let us denote its distance spectral radius ∂(B(1)) by ∂∗. Note that more generally, 
B(s) ∼= B(n−k+1−s), so it suffices to show that ∂(B(s)) > ∂∗ for 12(n −k+1) ≤ s ≤ n −k−1. 
Note that such s only occur when n ≥ k + 3.

Let z be the unit Perron eigenvector of D(B(1)), hence D(B(1))z = ∂∗z. As before, z
is constant on each part corresponding to an equitable partition [4, §2.5], hence we may 
set

z = (a1, . . . , a1︸ ︷︷ ︸
n−k

, a2, . . . , a2︸ ︷︷ ︸
k

, b1, . . . , b1︸ ︷︷ ︸
n−1

, b2)�

where a1, a2, b1, b2 ∈ R+. Again, we refine the partition, and write

z = (a1, . . . , a1︸ ︷︷ ︸
s

, a1, . . . , a1︸ ︷︷ ︸
n−k−s

, a2, . . . , a2︸ ︷︷ ︸
k

, b1, . . . , b1︸ ︷︷ ︸
s+k−1

, b1, . . . , b1︸ ︷︷ ︸
n−s−k

, b2)�.

Accordingly, we can partition D(B(s)) −D(B(1)) as

s n− k − s k s + k − 1 n− s− k 1⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

s 0 0 0 0 2J 0
n− k − s 0 0 0 0 0 −2J

k 0 0 0 0 0 0
s + k − 1 0 0 0 0 0 0
n− s− k 2J 0 0 0 0 0

1 0 −2J 0 0 0 0

and obtain that
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∂(B(s)) − ∂∗ ≥ z�(D(B(s)) −D(B(1))z

= 4(n− s− k)a1(sb1 − b2). (4.1)

Since D(B(1))z = ∂∗z, we find that

{
∂∗ · b1 = (n− k)a1 + ka2 + 2(n− 2)b1 + 2b2,
∂∗ · b2 = 3(n− k)a1 + ka2 + 2(n− 1)b1.

Because s ≥ 1
2 (n − k + 1), we may assume that s ≥ 3, except for the case that both 

n = k + 3 and s = 2 (which case we will discuss below). If indeed s ≥ 3, then

∂∗ · (sb1 − b2) ≥ ∂∗ · (3b1 − b2) = 2ka2 + (4n− 10)b1 + 6b2 > 0,

and hence (4.1) shows that ∂(B(s)) − ∂∗ > 0. Therefore, except for the case s = 2 and 
n = k + 3, the proof is finished.

In the remaining case, we will again consider the quotient matrices and their char-
acteristic polynomials. We now have B(2) = K2,k+1 � Kk+1,2, which has an equitable 
partition with four parts, and ∂(B(2)) is the largest eigenvalue of the corresponding 
quotient matrix

⎡
⎢⎣

2 2k + 2 k + 1 6
4 2k k + 1 2
2 k + 1 2k 4
6 k + 1 2k + 2 2

⎤
⎥⎦ ,

which has characteristic polynomial

φ2(x) =x4 − (4k + 4)x3 + (3k2 − 6k − 53)x2

+ (12k2 + 88k − 68)x− 36k2 + 72k − 20.

Similarly, B(1) = K3,k+2 �Kk,1 has quotient matrix (of D(B(1)))

⎡
⎢⎣

0 2k + 4 k 9
2 2k + 2 k 3
1 k + 2 2k − 2 6
3 k + 2 2k + 2 4

⎤
⎥⎦ ,

with characteristic polynomial

φ1(x) =x4 − (4k + 4)x3 + (3k2 − 6k − 45)x2

+ (12k2 + 72k − 52)x− 24k2 + 64k + 28.

Note that ∂∗ is the largest root of φ1(x) and ∂∗ > min ri(D(B(1)) = 3k + 7. Then

i
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φ2(∂∗) = φ2(∂∗) − φ1(∂∗) = −8∂∗2 + (16k − 16)∂∗ − 12k2 + 8k − 48

≤ −8(3k + 7)2 + (16k − 16)(3k + 7) − 12k2 + 8k − 48

< 0

and hence ∂(B(2)) > ∂∗. �
5. Concluding remarks

We have studied the relationship between extendability of matchings and the distance 
spectral radius of a graph. Related to extendability is the concept of k-factor-criticality, 
which was introduced by Favaron [8] and Yu [30], independently. Based on results of 
k-extendability, Yu [30] generalized the idea of k-extendability to k 1

2 -extendability for 
graphs of odd order. Besides, Favaron [8] extended some results on factor-critical and 
bicritical graphs.

A graph G is said to be k-factor-critical, if G − S has a perfect matching for every 
subset S ⊆ V (G) with |S| = k. It is clear that if a graph G is 2k-factor-critical then it 
must be k-extendable. Note that for bipartite graphs, one needs another definition that 
includes balancedness.

A Tutte-type characterization of k-factor-criticality due to Yu [30] and independently 
Favaron [8], is as follows.

Lemma 5.1. [30, Thm. 2.11][8, Thm. 3.5] Let k ≥ 1. A graph G of order n is k-factor-
critical if and only if n ≡ k (mod 2) and

o(G− S) ≤ |S| − k

for any subset S ⊆ V (G) with |S| ≥ k.

By using this characterization and a similar analysis as for Theorem 3.1, we can obtain 
a sufficient condition in terms of the distance spectral radius to determine whether a 
graph is k-factor-critical.

Theorem 5.2. Let k ≥ 1 and n ≡ k (mod 2) with n ≥ k + 2. Let G be a connected graph 
of order n. If

∂(G) ≤ ∂(Kk ∨ (Kn−k−1 ∪K1)),

then G is k-factor-critical unless G = Kk ∨ (Kn−k−1 ∪K1).
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