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Abstract

Historically, deception detection research has relied on factorial analyses of response accuracy to

make inferences. But this practice overlooks important sources of variability resulting in

potentially misleading estimates and may conflate response bias with participants’ underlying

sensitivity to detect lies from truths. We offer an alternative approach using Bayesian

Generalized Linear Mixed Models (BGLMMs) within a Signal Detection Theory (SDT)

framework to address these limitations. Our approach incorporates individual differences from

both judges and senders, which are a principal source of spurious findings in deception research.

By avoiding data transformations and aggregations, this methodology outperforms traditional

methods and provides more informative and reliable effect estimates. The proposed framework

offers researchers a powerful tool for analyzing deception data and advances our understanding

of veracity judgments. All code and data are openly available.

Keywords: deception detection; signal detection theory; bayesian models; veracity; bias



SDT MODELS FOR DECEPTION 3

Introduction

Deception researchers are typically interested in measuring the decision-making process

of different individuals (i.e., judges) or investigating how various manipulations (e.g., providing

training or varying the type of lie) affect veracity judgments. Articles on human veracity

judgments typically report (almost dogmatically) a few key findings: deception detection ability

is on average 54%, just above chance (Bond & DePaulo, 2006, 2008); lies are detected at a lower

rate (below chance) compared to truths (above chance), known as the veracity effect (Levine et

al., 1999); and judges tend to overestimate how often others are truthful, known as the truth bias

(Bond & DePaulo, 2006; Levine, 2014).

These statements underscore two key points. First, findings in deception research are

remarkably stable. Second, for over a century, we have been analyzing deception data using the

same methods, which have constrained our understanding of veracity judgments. In this tutorial,

we present a method that improves on the traditional analysis plan, providing a flexible and

robust framework that adapts to researcher needs and designs, does not require potentially

questionable data transformations, and provides new insights into judge and sender (i.e., liars and

truth-tellers) effects.

Traditional deception detection analysis

The traditional analysis plan involves two to four separate analyses trying to unpack

judges’ accuracy and bias. Judges’ binary1 responses (usually, “Lie” or “Truth”) are used to

compute two measures. Accuracy is computed by matching each individual response to the

1 The most common is a 2AFC lie-truth response, yet there are various scales used in the field. Some researchers
employ a response scale that includes a third option, such as unsure/don’t know, while others use an ordered
Likert-type honesty scale (Levine, 2001). Some argue that veracity judgments must be captured using
multi-dimensional scales and reject the binary notion altogether (Burgoon et al., 1996; McCornack, 1992). The
current tutorial focuses on the binary lie-truth 2AFC, although it is not difficult to expand the framework to
incorporate such alternatives (e.g,. Unequal Variance SDT or Item Response Theory (SD-IRT)). The choice of
response scale should reflect the theoretical model used to conceive the task, as this will have implications on the
interpretation of results and inferences.

https://www.zotero.org/google-docs/?PWUDvv
https://www.zotero.org/google-docs/?DVbX4P
https://www.zotero.org/google-docs/?DVbX4P
https://www.zotero.org/google-docs/?SQ29Fg
https://www.zotero.org/google-docs/?6kk2ob
https://www.zotero.org/google-docs/?yXAHL7
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veracity of the stimulus (e.g., a video or a statement), and if they are congruous (e.g., the judge

said “Lie” and the video was of a lie) it is marked as correct, if they do not match it is marked as

incorrect. A standard procedure is to then tally the values across trials for each participant and

convert these into percentage (%) correct. This percentage reflects the accuracy of the judge.

Bias is often computed by coding all binary responses as “Truth” = 1 and “Lie” = -1, and then

summing the values. When compared to the stimuli base rate in the study (typically, a 1:1 ratio of

lies and truths), if the sum is positive it is taken as indicating the judge was truth-biased, if the

sum is negative it is taken as a lie-bias, and 0 is taken as unbiased.

It is also typical to see subsequent analyses where the above data are converted into an

aggregate form of Signal Detection Theory (SDT) analysis (Green & Swets, 1966). The rationale

for reporting this additional analysis is to permit the researcher to disentangle bias from

accuracy, which the previous two analyses do not permit. We will explain the SDT framework

shortly, but for now, we note the two measures: d-prime and criterion. D-prime is a measure of

discriminability, often (mis)interpreted as reflecting accuracy. Criterion is a measure of the

decision threshold, reflecting the strength of the signal needed to make a judgment.

These two SDT quantities, alongside the accuracy and bias quantities, are then submitted

to a factorial analysis, such as a t-test or an Analysis of Variance (ANOVA), producing four

results from which researchers will make inferences. The results from these four – unconnected –

analyses require substantial assumptions to answer the two questions researchers want answers:

(1) can people detect lies, and (2) are they biased when making veracity judgments?

Assumptions, we argue, are untenable in deception research and not necessary.

Estimating deception detection by aggregating and transforming correct judgments into

percentages can conflate accuracy with bias. For such analyses, studies with low trial counts may

https://www.zotero.org/google-docs/?BePyGj
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produce sizable differences in accuracy due to data artifacts rather than true deception detection

ability (Levine et al., 2022). The aggregate SDT analyses partially address the issue of conflated

effects, but remain suboptimal. Moreover, the d-prime and criterion analyses are not the same as

accuracy and bias, and do not answer the same hypotheses. SDT's discriminability measures the

latent trait of deception detection while accounting for response bias, while the accuracy analysis

merely measures task performance.

The issue of low trial counts also highlights the problem of sender variability in deception

research. Differences in effects can often be attributed to mere differences in sender perception

(Bond & DePaulo, 2008; Levine, 2016). Some senders, regardless of the veracity of their

statement, are perceived as disingenuous (or as honest) the majority of the time, referred to as the

demeanor bias (Levine et al., 2011). In a low trial experiment, effects may emerge simply due to

a few senders biasing judgment. It has also been argued that the above chance performance

(54%) is due to a handful of liars being poor at deceiving (i.e., transparent liars; (Levine, 2010).

Additionally, it is often implicitly assumed that senders are uniformly affected by experimental

manipulations. However, research on sender variability suggests otherwise. Factors such as

cognitive load, interview style, answer types, preparation level, and lie topic, to name a few, can

have non-uniform effects (Hartwig & Bond, 2011; Levine et al., 2010; Vrij et al., 2007, 2008).

Failing to account for sender variability will lead to inaccurate, biased, and potentially spurious

findings, particularly given the lack of stimuli standardization in deception research (Vrij, 2008).

Judge variability is equally crucial in deception research (Bond & DePaulo, 2008;

Levine, 2016). There have even been attempts to identify groups or individuals with superior

deception detection abilities, but these have yielded inconclusive results (Aamodt & Custer,

2006; Bond & Uysal, 2007; Ekman & O’Sullivan, 1991). However, what is evident is the

https://www.zotero.org/google-docs/?mgjAzz
https://www.zotero.org/google-docs/?whkObT
https://www.zotero.org/google-docs/?rXPeZj
https://www.zotero.org/google-docs/?WBZ86C
https://www.zotero.org/google-docs/?xhqV99
https://www.zotero.org/google-docs/?RGvKIf
https://www.zotero.org/google-docs/?uPtnFq
https://www.zotero.org/google-docs/?uPtnFq
https://www.zotero.org/google-docs/?ZEAoHj
https://www.zotero.org/google-docs/?ZEAoHj
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significant variability in accuracy and bias between individuals, which can impact aggregate

estimates (Bond & DePaulo, 2008; Meissner & Kassin, 2002).

Thus, sender and judge variability play crucial roles in deception detection estimates,

highlighting the limitations of traditional approaches that fail to account for these factors. Our

tutorial offers an alternative approach that not only enables the same inferences as traditional

methods but also provides numerous benefits. This approach allows for the direct modeling of

binary judgments without the need for data transformation or aggregation, it accommodates

complex experimental designs, handles missing data, unbalanced designs, and is robust to

outliers and small sample sizes. By providing a unified analysis, it focuses directly on the

quantities researchers aim to measure, eliminating the need for multiple disparate analyses.

Signal Detection Theory

Signal Detection Theory (SDT) (Green & Swets, 1966; Macmillan & Creelman, 2005;

Wickens, 2001) is a widely used framework in psychology for understanding decision-making in

uncertain situations. It incorporates the discrimination ability (d-prime) of judges to distinguish

signal from noise and their decision-making bias (criterion) towards a specific response. In

deception research, SDT has been proposed to provide a superior method for understanding

veracity judgments compared to the accuracy approach, allowing for the simultaneous

measurement of judges' ability to detect deception and their willingness to label someone as

deceptive (Bond & DePaulo, 2006; Masip et al., 2009; Meissner & Kassin, 2002).

In SDT, responses are categorized into hits (H), misses (M), false alarms (FA), and

correct rejections (CR). In a deception context, a hit occurs when the sender lies and the judge

responds with “lie”, while a miss happens when the sender lies but the judge responds with

“truth”. A false alarm is when the sender is honest but the judge responds with “lie”, and a

https://www.zotero.org/google-docs/?fVUAtb
https://www.zotero.org/google-docs/?rNLQqe
https://www.zotero.org/google-docs/?rNLQqe
https://www.zotero.org/google-docs/?WDI6mr
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correct rejection is when the sender is honest and the judge responds with “truth”. The estimation

of the judge's hit rate and false alarm rate, along with their decision-making tendencies on the

latent scale, is based on the observed H and FA. The relationship between these response types is

dependent on task difficulty and response strategy. Task difficulty influences the balance

between hit and false alarm rates (e.g., easier tasks yield higher hit rates and lower false alarm

rates). The response strategy, or bias, of the individual also plays a role. If a person has

extremely stringent criteria for answering “lie”, they will not commit many false alarms

(considered a conservative bias), while a person that easily answers “lie” is likely to have more

hits but also more false alarms (considered a liberal bias). In deception, judges may adopt

different strategies depending on their goals, such as in a forensic setting prioritizing the

identification of liars over the risks of false alarms (Meissner & Kassin, 2002).

Various measures can be computed from an SDT framework (Macmillan & Creelman,

2005), yet commonly d-prime and criterion are reported in the deception literature. D-prime (d')

is calculated on a standardized scale, similar to Cohen's d, making it easily interpretable for those

familiar with effect sizes in psychology. A d' = 0 indicates no discriminability between signal

and noise, while higher values indicate stronger discrimination ability. Typically, d-prime is

viewed as a distance measure, with the 0 point serving as a meaningful boundary (i.e., permitting

comparisons like d’ = 0.4 is twice the discriminability of d’ = 0.2), however, negative d' values

are technically possible. The criterion in SDT represents the decision-making threshold that

determines whether a signal is present or absent. It is influenced by factors such as incentives,

instructions, and expectations.

One often overlooked limitation of traditional aggregate SDT models is the undefined

values of d' in cases of perfect discriminability or total incorrect discriminability (e.g., H = 1 and

https://www.zotero.org/google-docs/?QkfGtr
https://www.zotero.org/google-docs/?g2BVgD
https://www.zotero.org/google-docs/?g2BVgD


SDT MODELS FOR DECEPTION 8

FA = 0). These bounded values are possible and observed in deception research, especially when

only a few trials are presented to each participant. Researchers are then faced with the decision to

either delete these data points, which affects precision and statistical power, or apply a correction

that biases the estimation of d' (Hautus, 1995). We will return to this topic in the model section.

In SDT, judges compare their perception of the stimulus evidence to the decision

threshold (Green & Swets, 1966; Kellen et al., 2021). Unlike other decision-making models,

guessing is not treated as a separate process but is determined by the decision threshold

(DeCarlo, 2020). Figure 1 illustrates the SDT process, showing distributions of evidence for

truths (red) and lies (blue). The distributions refer to judges' perception variability of the

evidence, which can fluctuate even for the same stimulus. Consequently, the same stimulus can

produce different responses due to perceptual variability, not stimulus variability (DeCarlo,

2020).

Figure 1. Illustration of the basic SDT model.

Deception researchers often report an SDT analysis alongside or instead of the accuracy

and bias analyses. The implications of this seemingly innocuous change from accuracy and

d-prime are often overlooked, and often even downplayed as trivial, given their strong

https://www.zotero.org/google-docs/?sfhCM2
https://www.zotero.org/google-docs/?XyTqXz
https://www.zotero.org/google-docs/?kx5u1R
https://www.zotero.org/google-docs/?uw4sB2
https://www.zotero.org/google-docs/?uw4sB2
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correlation (Bond & DePaulo, 2006). However, the two approaches operate on different scales

and have distinct conceptual interpretations.

While Figure 2 may obscure the difference between an SDT and an accuracy analysis, it

is not merely a statistical transformation. SDT aims to capture a latent trait related to

decision-making and serves as both a statistical and theoretical model. Analyzing veracity using

SDT captures the psychological processes involved in judging veracity. By contrast, accuracy

analyses based on the number of correct detections focus on quantitative differences in

performance between conditions or groups. Traditional analyses simply capture task

performance, while SDT provides insights into individuals' ability to differentiate truths and lies.

We refer to this latent space as evidence, representing the internal strength of the

deception signal which the observer then uses to categorize stimuli as “lie” or a “truth”. Our

choice is rather neutral for the sake of the tutorial, yet it is essential to consider the implications

of one's beliefs when conceptualizing the latent space (Macmillan & Creelman, 2005; Rotello,

2017). We merely emphasize the conceptual differences that this change brings to the research

question.

Figure 2. Scatterplot of participant-specific sensitivity and accuracy (percent correct)

parameters.

https://www.zotero.org/google-docs/?2ao1r5
https://www.zotero.org/google-docs/?x5yWuD
https://www.zotero.org/google-docs/?x5yWuD
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Bayesian Generalised Linear Mixed Models

The traditional deception detection analysis plan fails to adequately control for the

variability introduced by the selection of participants and items which can lead to imprecise and

biased estimations (Rouder & Lu, 2005). To address this issue, we propose the use of Bayesian

Generalized Linear Mixed Models (BGLMMs) that simultaneously model participant variability,

item variability, and measurement error, which seems particularly important in deception

detection research. We adopt a Bayesian framework for these models mostly due to its

practicality and the availability of computational techniques (Gelman et al., 2013; Kruschke,

2015; Kruschke & Liddell, 2018a, 2018b; McElreath, 2020).

The shift from t-tests and ANOVAs to BGLMMs provides flexibility in modeling

statistical phenomena that occur at different levels of the experimental design. BGLMMs are

particularly useful for experimental designs involving repeated measurements, unequal sample

https://www.zotero.org/google-docs/?kUJahh
https://www.zotero.org/google-docs/?AkNUmD
https://www.zotero.org/google-docs/?AkNUmD
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sizes, missing data, and complex data structures. The estimation in multilevel models involves

sharing information between groups (e.g. participants), known as partial pooling. This strategy

improves parameter estimation compared to independent estimation (i.e. separate models for

each participant) or complete pooling (i.e., same parameter value for all participants through a

phenomenon known as shrinkage. Shrinkage produces more precise estimations, especially in

scenarios with repeated measurements or unbalanced designs, and mitigates the impact of

extreme values (Gelman et al., 2013; Gelman & Hill, 2006; McElreath, 2020). Figure 3

illustrates the effect of shrinkage.

Figure 3. Scatterplot of participant-specific criterion and sensitivity parameters as estimated by

Model 0 (filled points) and manual calculation (empty points). Line segments connect parameter

estimates from the two estimation methods to illustrate shrinkage.

https://www.zotero.org/google-docs/?a2Jing
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Importantly for our current application, SDT models can be represented as BGLMMs that

incorporate variability from both participants and items (i.e., random effects) (DeCarlo, 1998;

Rouder et al., 2007; Rouder & Lu, 2005). These models rely on the probit transform to map

probabilities onto the z-values of a standard normal (Gaussian) distribution. Unlike aggregate

SDT analyses, this approach directly estimates the quantities of interest with minimal

assumptions or the need to run multiple models, enabling inferences from a single analysis.

Traditional analyses, such as ANOVAs, while popular, have significant drawbacks when

applied to analyzing deception detection data. One limitation of ANOVA is its assumption that

senders can be aggregated into a single group-level effect, known as the stimulus-as-fixed-effect

fallacy. This leads to a loss of information, increased error, biased estimates, and an

underestimation of uncertainty. Implementing recognized solutions for this issue is challenging

due to the typically small number of trials in deception research (Baayen et al., 2002; Clark,

1973). BGLMMs, on the other hand, estimate individual-level effects for senders and judges,

capturing heterogeneity and providing more accurate estimates of the group-level effect (Rouder

et al., 2007).

Another limitation of ANOVA is its handling of incomplete data. ANOVA requires

complete data, often resulting in list-wise deletion of incomplete cases (i.e., removing

participants if only one trial answer is missing). BGLMMs can handle missing data and

unbalanced designs, and offer principled ways of imputing missing values. Moreover, in typical

applications of SDT, especially when participants only complete relatively few trials, it is

common that some participants don’t have any observations in one of the four trial categories

(e.g. misses). As a result, analysts must then adjust the data so that the SDT parameters can be

estimated. Adjusting the data is unnecessary in multilevel models, however, because

https://www.zotero.org/google-docs/?AUP2xu
https://www.zotero.org/google-docs/?AUP2xu
https://www.zotero.org/google-docs/?VFZnkp
https://www.zotero.org/google-docs/?VFZnkp
https://www.zotero.org/google-docs/?khSK94
https://www.zotero.org/google-docs/?khSK94


SDT MODELS FOR DECEPTION 13

individual-specific parameters borrow information from other participants’ estimates.

ANOVA-style analyses of SDT data have been shown to produce an asymptotic

downward bias and underestimate the uncertainty (error) of the effect (Rouder et al., 2007;

Rouder & Lu, 2005). This leads to misleading precision and poor predictive ability. While

considering the accuracy analyses, there is an additional concern with the bounded nature of the

data. ANOVAs and t-tests rely on the assumption of continuous data, yet percentages are

bounded (0-100). These models can predict incorrect or impossible values (e.g., 102% accuracy).

The proposed BGLMM overcomes this issue by mapping the binary responses to the

z-transformed continuous normal distribution.

In sum, BGLMM (SDT) models offer advantages over traditional analyses for deception

detection data. They capture individual differences and variability of senders and judges,

accommodate unbalanced designs and low trial numbers, handle missing data without listwise

deletion, and provide a more flexible approach to inference. Analyzing deception data directly,

without the need to aggregate and transform, improves reliability with unbiased estimates,

realistic uncertainty values, and the ability to incorporate sources of variability ignored in

ANOVA-style approaches.

Deception Detection Analysis within a BGLMM SDT Framework

We provide a tutorial for using a BGLMM with a Bernoulli probability distribution and a

probit link function to analyze deception detection data. Our approach focuses on modeling the

binary decisions judges make (i.e., “Lie” or “Truth”) instead of on their aggregate accuracy

differences, and translating these directly into an SDT framework. Thus, we are attempting to

understand how people judge veracity on a case-by-case basis, while incorporating judge and

sender variability in our estimates. For brevity, we employ a standard modeling and syntax

https://www.zotero.org/google-docs/?mSZmYa
https://www.zotero.org/google-docs/?mSZmYa
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approach, while keeping the code and mathematical notations to a minimum. Elements of the

tutorial have been posited before in: (Vuorre, 2017; Zloteanu, 2022).

The full code and example data can be found here: https://osf.io/kuhzj/. The tutorial is

presented in the R programming environment (R Core Team, 2022). The models are conducted

using the brms package (Bürkner, 2017) and unpacked using the emmeans package (Lenth,

2023). To replicate all results and outputs in this manuscript and the accompanying script you

will also need the following packages: bayestestR (Makowski, Ben-Shachar, & Lüdecke, 2019),

distributional (O’Hara-Wild et al., 2023), ggdist (Kay, 2023a), knitr (Xie, 2023), parameters

(Lüdecke et al., 2020), patchwork (Pedersen, 2022), posterior (Bürkner et al., 2023), scales

(Wickham & Seidel, 2022), tidybayes (Kay, 2023b), and tidyverse (Wickham et al., 2019). All

packages are loaded in R; only the top three are shown in the code box below.

library(brms)
library(emmeans)
library(parameters)

Once the packages are loaded, we focus on the data and specifying the model. For the

current example, a synthetic dataset was generated using the properties of the data presented in

(Zloteanu et al., 2021). In the original experiment, participants were randomly allocated to one of

three deception detection training groups, Emotion, Bogus, or None. They were then presented

with two sets of video stimuli, Affective and Experiential, each containing 20 trials (10 lies and

10 truths). For each of the 40 trials, participants responded using a two-alternative forced-choice

(2AFC) option of either “lie” or “truth”.

Synthesizing data from a real example ensures that its structure (e.g., means, variance,

and correlations) mirror real-world effects, allowing for a more naturalistic simulation of the

results researchers are likely to encounter. However, the only requirement for the data is that it is

https://www.zotero.org/google-docs/?bwUwi8
https://osf.io/kuhzj/
https://www.zotero.org/google-docs/?k1ynaN
https://www.zotero.org/google-docs/?jKdFDE
https://www.zotero.org/google-docs/?oDyzfi
https://www.zotero.org/google-docs/?oDyzfi
https://www.zotero.org/google-docs/?oJOst2
https://www.zotero.org/google-docs/?yyAxgi
https://www.zotero.org/google-docs/?wNTnUi
https://www.zotero.org/google-docs/?symmgf
https://www.zotero.org/google-docs/?IpWMUb
https://www.zotero.org/google-docs/?kKDI30
https://www.zotero.org/google-docs/?fPSwVy
https://www.zotero.org/google-docs/?ugqL2c
https://www.zotero.org/google-docs/?ztljbT
https://www.zotero.org/google-docs/?0qUeJ7
https://www.zotero.org/google-docs/?NzUMAM
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in long-form (i.e., each data point is given one row), and the responses from participants are

coded as 1s and 0s (here, 0 = “Truth”, 1 = “Lie”). Unlike in the traditional approach, no other

processing of the data is needed. See Table 1 for a glimpse at the data. The dataset contains N =

106 participants with 40 trials (20 lies and 20 truths) per participant.

Table 1. Six rows of the example data with response accuracy.

Participant Training LieType Stimulus isLie sayLie

p003 Emotion Experiential 1-1_T No 1

p003 Emotion Experiential 2-2_L Yes 1

p003 Emotion Experiential 3-2_L Yes 1

p003 Emotion Experiential 4-1_T No 0

p003 Emotion Experiential 6-1_L Yes 1

p003 Emotion Experiential 7-1_L Yes 1

Attention should be given to isLie and sayLie columns. The former refers to the coding of

the stimulus as a lie (Yes or No), and the latter is the answers judges provided (0 = “truth” and 1

= “lie”). This coding has theoretical implications2. As discussed in the SDT section, if one

envisions the task as relating to “deception detection”, it implies we are attempting to capture the

latent trait/ability related to accurately perceiving when a lie is occurring. For convenience, we

refer to this trait as evidence discriminability. In this parameterization, we are modeling people’s

ability to discriminate lies from truths. From an SDT perspective, d-prime is the distance

between the two distributions in terms of the latent variable and criterion measures the response

2 If one assumes the task relates to “truth detection” instead, and codes the two columns in reverse (i.e., Truth = 1
and Lie = 0), it only affects the sign of the parameters, not the estimated values. However, it has theoretical meaning
regarding the hypothesized decision-making process. The implications relate to inference and theory-building, and
not to statistical analysis per se.
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threshold for claiming an exemplar belongs to the lie category, instead of the “default” truth

category (see Figure 1).

Estimating d-prime and criterion (simple model)

The first model, Model 0 (baseline), estimates only c and d’, while incorporating two

important sources of variability: participants and stimuli. We do not yet include any other

predictors. To ensure that the model estimates our parameters correctly, the categorical predictor

that reflects the falsehood of the stimuli must use a contrast coding structure (i.e., No = -0.5 and

Yes = 0.5). This ensures the model intercept is “between” Lie and True trials – their average

(grand mean) – corresponding to the negative criterion, -c.3

contrasts(d$isLie) <- c(-0.5, 0.5)
contrasts(d$isLie)

We then define the BGLMM using R’s extended formula syntax (see brms documentation

for details). We regress ‘sayLie’ (0 = “True”, 1 = “Lie”) on an intercept (“1” in R syntax

means an intercept) and the slope of ‘isLie’ (whether the stimulus was a truth or a lie). These

components of the syntax capture the criterion value (-intercept) and discriminability (slope of

isLie). To capture the sources of variance in our design, we specify correlated random effects for

both these elements across ‘Participant’ and model the intercepts as random across

‘Stimulus’. These two components tell the model how to capture the variability between

participants (e.g., p001 might be systematically more liberal) and between stimuli (e.g., a sender

is more likely to elicit a specific response).

f0 <- sayLie ~ 1 + isLie + (1 + isLie | Participant) + (1 |

3 An inconsequential issue of this modeling strategy is that the estimate for criterion (c) has its sign reversed
(DeCarlo, 1998). As such, the intercept of the model is the negative criterion (-c), and will need to be reversed when
making inferences regarding decision threshold. We provide alternative parameterizations of the SDT models in the
online supplementary, which directly estimate c.

https://www.zotero.org/google-docs/?nJZaD2
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Stimulus)

Once the model has been specified, we can pass it to brm() as follows:

m0 <- brm(
formula = f0,
family = bernoulli(link = probit),
data = d,
prior = p0,
file = "models/m0"

)

Let us unpack the above code. The ‘formula = f0’ passes our model to brms, the

‘family = bernoulli(link = probit)’ specifies the model distribution to be used

(here, a Bernoulli distribution with a probit link function), ‘data = d’ points to the data we are

using, ‘prior = p0’ points to the specified model priors (see script for details; the prior can

be omitted), and ‘file = "models/m0"’ saves the model output for later use. Once the

model has run (which may take some time depending on your system performance, data size, and

model complexity) we can print the output. We will use the parameters() function:

parameters(m0, centrality = "mean")

The output includes the model parameters, the mean of the posterior distribution, the 95%

credible intervals (CIs), the probability of direction (pd), the Brooks-Gelman-Rubin scale

reduction factor (Rhat), and the effective sample size (ESS). The pd is an inferential index which

quantifies the percentage of the posterior distribution that is of the same sign as its median value,

and ranges from 50% to 100% (Makowski, et al., 2019). If the model perfectly captures the

analyst’s prior beliefs, then this quantity indicates the posterior belief that the effect has the

indicated sign. The Rhat and ESS are useful diagnostic tools to assess model fit and

https://www.zotero.org/google-docs/?RB2R0O
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convergence. It is recommended that the Rhat does not exceed 1.01 and the minimum ESS is 400

(Vehtari et al., 2021).

# Fixed Effects
Parameter | Mean | 95% CI | pd | Rhat | ESS
-----------------------------------------------------------------
(Intercept) | -0.27 | [-0.47, -0.08] | 99.83% | 1.009 | 574.00
isLie1 | 0.004 | [-0.35, 0.38] | 50.78% | 1.003 | 819.00

Here, the ‘Intercept’ is the negative criterion value (i.e., c = 0.27 when reversed)

and ‘isLie1’ predictor is d-prime (i.e., d’ = 0.00).4 To see the posteriors we can either call

brms’ plotting function, ‘plot(m0)’, but with a little code wrangling (see script) we can plot

the posteriors of our estimates on the correct scale for both parameters and label the results more

clearly.

Figure 4. Estimated posterior distributions for d-prime and criterion, with 66% (thick) and

95%CIs (thin lines) for Model 0.

4 This syntax offers a familiar parameterization of GLMMs in R, mirroring the general guidance found in textbooks
and tutorials on mixed effects models. However, the syntax can be specified to obtain the estimates of interest
directly. We offer such alternative parameterizations in our companion script.

https://www.zotero.org/google-docs/?s3mFwS
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An important aspect of the Bayesian framework is moving away from focusing on point

estimates (e.g, the posterior mean), and interpreting the entire distribution. Here, we see that the

average participant had a conservative response bias, as evidenced by most of the

population-level criterion’s posterior distribution falling above zero, and the 95% credible values

ranging from 95%CI [0.08, 0.47], but excluding 0. Credible interval, unlike the frequentist

confidence interval, allows for statements such as “95% of the credible values fall within this

range”. The posterior mass indicates participants on average are more likely to declare a

statement to be truthful than deceptive, pd = 99.83%. As the 95%CI excludes 0 and pd is over

99% in the positive direction, it can be interpreted as evidence for the existence of the effect

(Kruschke, 2018). Thus, we could conclude that people show a small-to-moderate conservative

bias towards detecting lies (akin to a “truth-bias”).

Moving over to the d-prime estimate, the model finds the mean discriminability to be

approximately 0, d’ = 0.004, but with substantial uncertainty, 95%CI [-0.35, 0.38]. The credible

https://www.zotero.org/google-docs/?nOfN4T
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values range from moderate negative5 to moderate positive discriminability, and including 0 as a

credible effect; due to the large uncertainty, no clear inference can be made, and we conclude that

more data is needed.

If we explore the random effect of different participants in detail, Figure 5, we see this is

due to the variability in judges’ discriminability. This is one of the many benefits of using

BGLMMs to model the data, as we can get a better sense of the individual differences in veracity

judgments. In the caterpillar plots, we present the different decision thresholds (c) and

discriminability (d’) of a few participants to illustrate the spread in response tendencies and

discriminabilities, as well as the response to specific stimuli, highlighting sender-specific effects.

Figure 5. Caterpillar plots for random effects. Left two panels: Criteria and d-primes, illustrating

the variability in individual parameter estimates; negative criteria indicate a liberal bias (i.e.,

lie-bias) and positive conservative bias (i.e., truth-bias). Right panel: Criteria for stimuli. We

show a random sample of 20 participant- and stimuli-specific parameters to reduce overplotting.

5 As a d’ = 0 reflects no discriminability, a negative value if found in real-world data it could indicate either a coding
error (e.g., a reversal in the labeling of veracity), or, theoretically, that judges are detecting some element that
permits discriminability between lies and truths but they are using the information backwards (e.g., interpreting a
“cue” of deceit as one of honesty). Here, it is simply a product of the variability around the estimated effect.
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Another visualization option for such models is a receiver operating characteristic (ROC)

curve; these display the relationships between the probabilities of hits and false-alarms. Although

we do not consider these to be of particular use in deception research, due to the overall low and

variable accuracy rates, they can be easily computed if one so wishes. To maintain a fully

Bayesian approach, we estimate and plot several ROCs (n = 100) to illustrate the uncertainty

around such estimates (see script for details). The ROCs (Figure 6) support our results, indicating

chance-level discriminability with significant uncertainty.

Figure 6. 100 random ROCs from the posterior of Model 0, used to display uncertainty around

the predicted model accuracy. Dotted line represents chance performance.
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Thus, without requiring any data manipulation, our approach provides comprehensive

and transparent results. Crucially, our method uncovers valuable information that would have

been overlooked by traditional analysis plans, such as stimuli and judge variability, and the large

uncertainty in estimates. In traditional approaches, ignoring these sources of uncertainty would

result in misleadingly precise and potentially biased estimates. The BGLMM SDT model

emphasizes the importance of considering the heterogeneity of stimuli in deception research and

the need for sufficient data (judges and stimuli) to obtain reliable and precise effect estimates.

Between-subjects manipulations

Often an experiment will have a more complex design with additional predictors. To

demonstrate the flexibility of our approach, we expand our model to include a between-subjects

manipulation. In the synthetic dataset, there is such a factor, Training, with three levels: Bogus,
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Emotion, and None (see Zloteanu, et al., 2021). Adding this factor to our model is simple. The

syntax includes an additional predictor, ‘Training’, using a dummy coding structure. The

asterisk in ‘isLie * Training’ is shorthand for the model including main effects and the

interaction between the predictors. The rest of the syntax is unchanged.

f1 <- sayLie ~ 1 + isLie * Training + (1 + isLie | Participant)
+ (1 | Stimulus)

We pass the new syntax to brm() as Model 1:

m1 <- brm(
formula = f1,
family = bernoulli(link = probit),
data = d,
file = "models/m1"

)

With this simple modification, we are now capturing the different groups that participants

were randomly assigned to at the start of the experiment. We run the model and print the output.

parameters(m1, centrality = "mean")

In the current parameterisation, adding ‘Training’ with dummy contrasts leads to an

intercept that is the ‘-criterion’ for ‘Training = “None”’ (the baseline, see script). The

two additional Training parameters reflect the difference in the negative criterion between each

group and the baseline (e.g., ‘TrainingBogus’ is the difference in -c from the

‘Intercept’). The parameters with ‘isLie1:’ in their terms refer to the difference in

d-prime from the baseline group; the baseline group’s d-prime is indicated by ‘isLie1’.

# Fixed Effects
Parameter | Mean | 95% CI | pd
----------------------------------------------------------
(Intercept) | -0.23 | [-0.43, -0.03] | 98.78%
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isLie1 | -0.22 | [-0.66, 0.23] | 83.95%
TrainingBogus | -0.05 | [-0.17, 0.07] | 80.67%
TrainingEmotion | -0.05 | [-0.18, 0.07] | 81.10%
isLie1:TrainingBogus | 0.30 | [ 0.04, 0.56] | 98.98%
isLie1:TrainingEmotion | 0.29 | [ 0.03, 0.56] | 98.58%

Interpreting such a table can be challenging. It is often more informative to wrangle the

output to get the quantities of particular interest directly. We use the emmeans package to request

the desired comparisons:

# (Negative) Criteria
emm_m1_c1 <- emmeans(m1, ~Training) %>%

parameters(centrality = "mean")
# Differences in (negative) criteria
emm_m1_c2 <- emmeans(m1, ~Training) %>%

contrast("pairwise") %>%
parameters(centrality = "mean")

# Dprimes for three groups
emm_m1_d1 <- emmeans(m1, ~isLie + Training) %>%

contrast("revpairwise", by = "Training") %>%
parameters(centrality = "mean")

# Differences in dprime between groups
emm_m1_d2 <- emmeans(m1, ~isLie + Training) %>%

contrast(interaction = c("revpairwise", "pairwise")) %>%
parameters(centrality = "mean")

# Show only relevant columns
reduce(list(emm_m1_c1, emm_m1_c2, emm_m1_d1, emm_m1_d2),
bind_rows) %>%

select(c(1:2, 4:5))

We obtain the -c for each group, captured in ‘emm_m1_c1’, and the differences in

criterion between groups (-cdiff; akin to a pairwise test), ‘emm_m1_c2’. We do the same for d’,

where we obtain the discriminability for each group, ‘emm_m1_d1’, and the difference in

discriminability between every two groups (d’diff), ‘emm_m1_d2’.

# Fixed Effects
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Parameter | Mean | CI
------------------------------------------------------
None | -0.23 | [-0.43, -0.03]
Bogus | -0.28 | [-0.48, -0.09]
Emotion | -0.28 | [-0.48, -0.09]
None - Bogus | 0.05 | [-0.07, 0.17]
None - Emotion | 0.05 | [-0.07, 0.18]
Bogus - Emotion | -3.34e-04 | [-0.11, 0.11]
Yes - No, None | -0.22 | [-0.66, 0.23]
Yes - No, Bogus | 0.08 | [-0.34, 0.51]
Yes - No, Emotion | 0.07 | [-0.34, 0.49]
Yes - No, None - Bogus | -0.30 | [-0.56, -0.04]
Yes - No, None - Emotion | -0.29 | [-0.56, -0.03]
Yes - No, Bogus - Emotion | 0.01 | [-0.23, 0.25]

We can then display all the above quantities in a single figure (and reverse -c) which

provides all the relevant information about the experiment (Figure 7). The code for the plot can

be found in the companion script.

Figure 7. Posterior distributions with 66% (thick) and 95%CIs (thin lines) of the criterion and

d-prime parameters from Model 1. The densities are colored according to whether the value lies

within (dark) or outside the ROPE from -0.1 to 0.1. Proportions of the full posterior distribution

within the ROPE are displayed in numbers.
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As in Model 0, inferences about the direction (pd), size (mean), and uncertainty (CI) of

effects can be done using the output and the plot. However, by specifying a region of practical

equivalence (ROPE) we can also quantify effect relevance (Kruschke, 2015; Makowski, et al.,

2019). Setting a ROPE around the null permits us to ask if the estimated effects are practically

equivalent to zero. Decisions about negligible effects can made on the basis of the 95%CI falling

entirely within the ROPE, known as the HDI+ROPE decision rule (Kruschke, 2018), or by using

the entire posterior density, known as the ROPE(100%) decision rule (Makowski, et al., 2019).

For interpretation, the former quantifies the probability that the credible values are not

negligible, while the latter that the possible values are not negligible. To illustrate its use, in

Figure 7, we set an arbitrary6 ROPE from -0.1 to 0.1 (in d’ units), and display the percentage of

6 As with frequentist equivalence tests, the ROPE range should be set after careful consideration. These can be from
a theoretical perspective (e.g., what is a negligible effect) or a practical one (e.g., the level of precision required).
Using a ROPE for inferring effect existence can also alleviate Meehl’s paradox for large samples (Meehl, 1967).

https://www.zotero.org/google-docs/?LxMSKE
https://www.zotero.org/google-docs/?LxMSKE
https://www.zotero.org/google-docs/?aQg8JZ
https://www.zotero.org/google-docs/?eUrwOk
https://www.zotero.org/google-docs/?4NMZpB
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the posteriors within this range.

An easy method to specify your ROPE and obtain summary estimates is to use the

describe_posterior() function. We specify our ROPE as ± 0.1 and set the proportion of posterior

to use for the percentage in ROPE to full (100%).

describe_posterior(m1, centrality = "mean", rope_range =
c(-0.1, 0.1), rope_ci = 1)

The output is similar to that obtained with parameters(), but with additional columns.

The last column provides the percentage of the posterior contained within the ROPE we set.

Summary of Posterior Distribution
Parameter | Mean | 95% CI | pd | ROPE | % in ROPE
------------------------------------------------------------------------------------
(Intercept) | -0.23 | [-0.43, -0.03] | 98.78% | [-0.10, 0.10] | 9.93%
isLie1 | -0.22 | [-0.66, 0.23] | 83.95% | [-0.10, 0.10] | 21.73%
TrainingBogus | -0.05 | [-0.17, 0.07] | 80.67% | [-0.10, 0.10] | 77.45%
TrainingEmotion | -0.05 | [-0.18, 0.07] | 81.10% | [-0.10, 0.10] | 77.22%
isLie1:TrainingBogus | 0.30 | [ 0.04, 0.56] | 98.98% | [-0.10, 0.10] | 5.97%
isLie1:TrainingEmotion | 0.29 | [ 0.03, 0.56] | 98.58% | [-0.10, 0.10] | 7.38%

Based on the ROPE(100%) rule to infer a negligible/no effect (fully contained; 100%) or

a relevant effect (fully outside; 0%), we see that the estimates are too uncertain to make any

strong claims; none show a definitive effect or no effect.

In Bayesian estimation dichotomous judgments are extraneous to the numerical results,

and inferences can be made using the entire posterior, portions of it, or any comparisons of

interest (Kruschke & Liddell, 2018b, 2018a). For instance, if we use the pd metric, we could

infer that there is more evidence in favor of both Bogus, pd = 98.98% and Emotion, pd =

98.58%, training producing an improvement in discriminability over None, with 99% of their

posterior distributions showing a positive effect; unlike in a frequentist framework, we can

interpret this as “there is a 99% probability that the discriminability improvement is positive”.

We also observe that 95%CIs for both estimates do not include 0, supporting the existence of an

https://www.zotero.org/google-docs/?YtFWO1
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effect. However, the mean and CIs should be used for effect estimation, and pd and ROPE for

effect existence and relevance, respectively (Makowski, et al., 2019).

If we look at the ROPE column we can also directly interpret this value in terms of

parameter probabilities, which for the d’diff in Bogus training we could write as “there is a 5.97%

probability that the effect is practically equivalent to zero”. We can similarly make more

tentative claims, such as stating there is more evidence that being assigned the Emotion training

group, cdiff = 0.05, 95%CI [-0.07, 0.18], leads to an increase in the conservative bias (truth-bias),

pd = 81.10%, but does not exclude that it could lead to a more liberal bias, as the 95%CIs

includes positive values7. This flexibility and nuance in reporting is a benefit of this approach.

As with Model 0, the current results highlight the need for more data in deception

experiments. Although the current data is synthetic, the properties reflect real experiments,

including the level of uncertainty. When employing traditional designs with aggregated and

transformed data, effect uncertainties are masked by the (unrealistic) assumptions of the analyses

(Rouder et al., 2007). We will return to this issue in the discussion.

Within-subjects manipulations and interactions

As a final demonstration, we extend the model to include a within-subjects manipulation,

LieType, with two levels: Affective and Experiential. The change in syntax is minimal but has a

few extra elements compared to the previous model. As before, we add this predictor (dummy

coded) to the syntax as part of the main interaction. An additional step for specifying

within-subjects effects is that they should also be incorporated as random slopes for Participants;

below the ‘(1 + isLie * LieType | Participant )’ specifies that we assume each

7 We can directly quantify this amount using the hypothesis() function. Calling ‘hypothesis(m1,
"TrainingEmotion > 0")’ reveals a 19% posterior probability that criterion is smaller in the Emotion
training group than in the no training group (i.e., shift towards a more liberal bias). Note, the interpretation is the
reverse of the requested hypothesis due to the “-criterion” scale in the model.

https://www.zotero.org/google-docs/?zJMP1B
https://www.zotero.org/google-docs/?UkOq4n
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participant may show specific responding patterns based on the type of stimulus they see, the

veracity of a stimulus, and the interaction of these two components. Thus, we specify a “maximal

model” (Barr et al., 2013).

f2 <- sayLie ~ 1 + isLie * Training * LieType +
(1 + isLie * LieType | Participant) + (1 | Stimulus)

Due to the model complexity, it will take longer to run, and may report fit issues (see

brms guidance for solutions).

m2 <- brm(
f2,
family = bernoulli(link = probit),
data = d,
file = "models/m2"

)

The summary output can be quite difficult to interpret given the multiple interactions and

parameters of interest. Thus, we wrangle the results to provide a cleaner summary:

# Dprimes for each group and condition
emm_m2_d1 <- emmeans(m2, ~isLie | Training * LieType) %>%

contrast("revpairwise")%>%
parameters(centrality = "mean")

# Differences in dprime between groups by condition
emm_m2_d2 <- emmeans(m2, ~isLie + Training * LieType) %>%

contrast(interaction = c("revpairwise", "pairwise"), by =
"LieType")%>%

parameters(centrality = "mean")

# (Negative) Criteria
emm_m2_c1 <- emmeans(m2, ~Training * LieType)%>%

parameters(centrality = "mean")
# Differences in (negative) criteria
emm_m2_c2 <- emmeans(m2, ~Training | LieType) %>%

contrast("pairwise") %>%
parameters(centrality = "mean")

# Show only relevant columns
reduce(list(emm_m2_d1, emm_m2_d2, emm_m2_c1, emm_m2_c2),

https://www.zotero.org/google-docs/?ngAUIr
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bind_rows) %>%
select(c(1, 4:6))

This directly provides the quantities of interest: d-prime, criterion, and their differences for each

condition and group.

# Fixed Effects
Parameter | Mean | 95% CI
-------------------------------------------------------------------
Yes - No, None, Affective | -0.56 | [-1.15, 0.01]
Yes - No, Bogus, Affective | -0.30 | [-0.89, 0.25]
Yes - No, Emotion, Affective | -0.31 | [-0.89, 0.24]
Yes - No, None, Experiential | 0.13 | [-0.50, 0.74]
Yes - No, Bogus, Experiential | 0.53 | [-0.09, 1.11]
Yes - No, Emotion, Experiential | 0.47 | [-0.14, 1.06]
Yes - No, None - Bogus, Affective | -0.26 | [-0.57, 0.04]
Yes - No, None - Emotion, Affective | -0.25 | [-0.56, 0.05]
Yes - No, Bogus - Emotion, Affective | 7.47e-03 | [-0.28, 0.30]
Yes - No, None - Bogus, Experiential | -0.40 | [-0.85, 0.06]
Yes - No, None - Emotion, Experiential | -0.33 | [-0.77, 0.13]
Yes - No, Bogus - Emotion, Experiential | 0.06 | [-0.37, 0.49]
None, Affective | -0.23 | [-0.51, 0.06]
Bogus, Affective | -0.18 | [-0.46, 0.10]
Emotion, Affective | -0.38 | [-0.65, -0.10]
None, Experiential | -0.23 | [-0.52, 0.04]
Bogus, Experiential | -0.41 | [-0.69, -0.14]
Emotion, Experiential | -0.19 | [-0.46, 0.08]
None - Bogus, Affective | -0.05 | [-0.20, 0.11]
None - Emotion, Affective | 0.15 | [-0.01, 0.31]
Bogus - Emotion, Affective | 0.20 | [ 0.05, 0.34]
None - Bogus, Experiential | 0.18 | [ 0.00, 0.34]
None - Emotion, Experiential | -0.05 | [-0.21, 0.13]
Bogus - Emotion, Experiential | -0.22 | [-0.38, -0.07]

We plot all the relevant parameters in a single figure (Figure 8).

Figure 8. Posterior distributions and 95%CIs of the criterion and d-prime parameters, or

differences therein, from Model 2.
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From the figure and output, we see the importance of capturing the full design of the

experiment. Participants’ responses differed between the two types of lies, affecting both the

criterion and discriminability, while also revealing effects that were masked by the unmodeled

interaction. For the sake of conciseness, we omit a full interpretation of the results.

Briefly, we note that the above results indicate differences in how judges viewed the two

stimuli sets, especially for d-prime (see lower left panel in Figure 8). To investigate this, we can

modify the emmeans code to request the differences in d-prime between Affective and

Experiential stimuli, split by group:

# Create the contrast of interest
AE_diff_m2_d2 <- emmeans(m2, ~isLie + Training * LieType) %>%

contrast(interaction = c("revpairwise", "pairwise"),
by = "Training")%>%
describe_posterior(centrality = "mean")
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# Display only pd and ROPE columns
reduce(list(AE_diff_m2_d2), bind_rows) %>% select(c(1,6,10))

The pd and ROPE values suggest that no decisive judgments can be made. However,

there is some evidence of an effect between the two sets in each training group. This is most

evident in the Bogus group, with only a 1.79% probability that the effect is negligible.

Summary of Posterior Distribution

Parameter | pd | % in ROPE
----------------------------------------------------------------
Yes - No, Affective - Experiential, None | 94.33% | 5.53%
Yes - No, Affective - Experiential, Bogus | 97.40% | 1.79%
Yes - No, Affective - Experiential, Emotion | 96.25% | 3.79%

For the current “experiment”, an example write-up for a parameter in Model 2 that

indicates an effect – ‘Bogus, Experiential’ – would be as follows (values reversed to c):

“The probability that judges in the Bogus training group have a conservative bias when judging

Experiential truths and lies is pd = 99.92%, displaying an overall positive moderate effect, c =

0.41, 95%CI [0.14, 0.69], that can be considered non-negligible, 0% in ROPE.”

Similar claims can be made for ‘Emotion, Affective’ and ‘Bogus -

Emotion, Experiential’, although these are more uncertain.

Overall, Model 2 reveals the benefits of modeling deception data using a BGLMM SDT

approach. If we had employed an ANOVA, the estimates would (misleadingly) appear more

precise, and many insights would have been hidden behind the strong assumptions factorial

models make regarding the data.

Discussion

This tutorial showcased a hierarchical SDT approach to analyze deception detection data.

Our approach offers a nuanced and robust method to analyze veracity judgments, overcoming
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many of the limitations of the traditional method. The examples presented revealed important

insights into the factors influencing deception detection accuracy, including effects on

discriminability, decision thresholds (bias), and sender variability. These findings challenge the

traditional methods commonly employed in the field, which fail to incorporate crucial sources of

variability, producing biased or inaccurate estimates.

Importantly, the application of BGLMMs reveals a larger degree of uncertainty in the

estimated effects than previously assumed in the field, denoting the potential existence of

spurious effects in prior research, and the limited predictive power of past models. Furthermore,

BGLMMs are amenable to the difficulties present in deception research, handling missing data

more efficiently, accommodating unbalanced groups, and being robust to outliers and small

samples. These models present notable practical and theoretical advantages over the traditional

aggregation approach.

The assumption for items (senders) being homogeneous, we argue, is not realistic in

deception research, given the diversity and lack of standardization of stimuli. It is essential to

consider participant and item variability as more than just nuisance parameters, as they can

provide valuable insights for theory construction. Aggregating trials across items implicitly

assumes that all senders have the same discriminability and induce the same criterion. Similarly,

aggregating trials across participants assumes that all judges have the same discriminability and

criterion. These assumptions are too strict in deception research. In reality, judges will vary from

one another in both discriminability and criterion (Bond & DePaulo, 2006, 2008). Likewise,

senders will also vary in discriminability (i.e., a few transparent liars; Levine, 2010) and effects

on criteria (e.g., demeanor bias; Levine et al., 2011). The unmodeled variability in aggregate

SDT models can lead to an underestimation of discriminability (Rouder et al., 2007; Rouder &

https://www.zotero.org/google-docs/?CR82kQ
https://www.zotero.org/google-docs/?2gVGrj
https://www.zotero.org/google-docs/?cT4Sfg
https://www.zotero.org/google-docs/?VxjIXW
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Lu, 2005) or biased estimates (Hautus, 1995). We also encourage a shift from percentage correct

as a measure of deception detection, as this metric is design-sensitive, conflates accuracy and

bias, and can lead to erroneous inferences.

Models that incorporate random effects (from senders and judges), such as BGLMMs,

provide estimates that are similar to models without full random effects, like ANOVAs, at least

in terms of mean estimate (cf. Rouder et al., 2007). However, the latter will overestimate effect

precision. BGLMMs will yield larger uncertainty but more realistic precision and predictions.

Contrastingly, averaging the data can mask the variability in participants' sensitivity, bias, or

both. This not only introduces potential effect biases but also obscures the variability in

discriminability (Macmillan & Kaplan, 1985). Our approach enables the empirical investigation

of claims regarding sender and judge effects, moving beyond the customary mention of these in

an article’s limitations section without confirmation. With BGLMMs we can examine the impact

of sender and judge variability directly and substantively.

To keep the article self-contained, we provided only a cursory introduction to GLMMs

and the Bayesian framework, so we encourage researchers to delve deeper into these topics

(Kruschke, 2015; Kruschke & Liddell, 2018b, 2018a; McElreath, 2020; Wagenmakers et al.,

2018). The Bayesian framework permits flexibility in discussing patterns in the data, and

provides researchers novel insight for their future work. Similarly, SDT is a robust and

well-documented framework and a valuable tool alongside other approaches, facilitating

theory-building and enhancing our understanding of veracity judgments. Adopting this

framework allows for direct investigations of the quantities that deception researchers want to

measure–people’s ability to detect deception and their veracity judgment process–which are not

accessible when employing accuracy measures.

https://www.zotero.org/google-docs/?VxjIXW
https://www.zotero.org/google-docs/?NLbdyU
https://www.zotero.org/google-docs/?u1mWAy
https://www.zotero.org/google-docs/?uPY0Bf
https://www.zotero.org/google-docs/?Dg0u2t
https://www.zotero.org/google-docs/?Dg0u2t
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The high level of uncertainty in all the models presented underscores the need for

improved precision in deception experiments, which implies larger datasets. While it may be

unfeasible to use more sensitive stimuli given the nature of the topic (e.g., more obvious lies) or

increase the number of trials due to the potential demand effects (e.g., fatigue), including more

judges holds potential for enhancing effect reliability (Levine et al., 2022).

Lastly, we advocate for the sharing of open data and materials within the field,

recognizing the importance of the topic, especially within the forensic and legal sectors, and

promoting transparency in our methodologies to advance veracity judgment research.

Extensions

The current BGLMM SDT framework can easily be extended to accommodate different

designs and intuitions into the underlying judgment process. There are several avenues to explore

beyond the 2AFC Gaussian distribution assumption for the latent space. While SDT models

commonly assume equal variance for the noise and signal distributions and a constant response

criterion across trials, as did the present models, these assumptions can be relaxed (Kellen et al.,

2021). Similarly, if researchers prefer to employ an honesty scale (e.g., Zloteanu et al., 2022), an

unequal variance SDT model can be employed, allowing for more nuanced analyses (see

Bürkner & Vuorre, 2019; Vuorre, 2017). Additionally, there are non-linear models available that

can incorporate guessing, providing a thorough investigation of decision strategies (see Bürkner,

2019). Another potential extension is the application of Type II SDT, which uses accuracy and

confidence meta-judgments, quantifying judges’ awareness of their decisions (Barrett et al.,

2013). By considering and comparing various SDT models, researchers can engage in

theory-building and develop our understanding of the veracity judgment process.

https://www.zotero.org/google-docs/?lsOLDn
https://www.zotero.org/google-docs/?iccZ11
https://www.zotero.org/google-docs/?iccZ11
https://www.zotero.org/google-docs/?qt8gfE
https://www.zotero.org/google-docs/?QDHHEe
https://www.zotero.org/google-docs/?kg7e9t
https://www.zotero.org/google-docs/?kg7e9t
https://www.zotero.org/google-docs/?z3tMaf
https://www.zotero.org/google-docs/?z3tMaf
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Conclusion

In this tutorial, we demonstrated the advantages of utilizing BGLMMs to directly model

deception detection data within an SDT framework. Our approach offers utility, flexibility, and

additional insights over traditional methods, providing a unified analysis for making inferences

and a principled reporting structure. BGLMMs allow for a more detailed exploration of the

decision-making process, while also reducing many limitations of the traditional approach. By

employing BGLMM SDT models, we can gain deeper insights into people’s decisions and the

sources of effects, advance our knowledge of the veracity judgment process, reduce error, and

improve the theoretical and practical application of our findings.
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