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Abstract

We discuss three processes of price adjustment, respectively proposed by Smale

(1976), van der Laan and Talman (1987), and Kamiya (1990). The latter two pro-

cesses are guaranteed to converge to a competitive equilibrium for a generic set of

exchange economies for any initial price system and the former process for a generic

set of exchange economies for any initial price system such that one of the prices

is zero. The simplest way to describe these processes is by characterizing the path

of prices that they generate. Convergence proofs then rely on results from differ-

ential topology and establish that these paths have a manifold structure. The van

der Laan and Talman (1987) process was shown by Herings (1997) to exhibit global

and universal convergence. The required tools, involving regular constraint sets and

manifolds with generalized boundary, are explained in detail and can be fruitfully ap-

plied in other domains as well. The paper concludes with an overview of globally and

universally convergent processes in other environments like production economies,

economies with price rigidities, and normal-form games.
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1 Introduction

The simplest price adjustment process studied in general equilibrium theory is the Wal-

rasian tâtonnement process. The famous examples of Scarf (1960) made it apparent that

Walrasian tâtonnement may not converge to a competitive equilibrium. The work of Son-

nenschein (1972, 1973), Mantel (1974) and Debreu (1974), basically claiming that any

continuous function satisfying homogeneity of degree zero and Walras’ law is the excess

demand function of some economy, makes clear that the examples of Scarf (1960) do not

correspond to exceptional cases and that it is possible to construct many examples where

Walrasian tâtonnement does not converge and displays highly irregular dynamic behavior.

The work of Saari and Simon (1978) and Saari (1985) points out that simple adaptations

of the Walrasian tâtonnement process will not have better convergence properties.

Still, at least three universally convergent price adjustment processes are known in the

literature: Smale’s global Newton method introduced in Smale (1976), the process of van

der Laan and Talman (1987), and the process proposed in Kamiya (1990). Such processes

can also be used to compute equilibria, thereby enabling comparative statics exercises as

well as policy recommendations. See also Judd (1997) and Eaves and Schmedders (1999)

for further elaborations on this point.

The global Newton method of Smale adjusts prices in such a way that the vector of

excess demands remains proportional to the vector of excess demands at the initial price

system. The method does converge to a competitive equilibrium for almost any economy,

but it does not do so for any initial price system. Only when the initial price system is

chosen such that the prices of some commodities are sufficiently close to zero, convergence

to a competitive equilibrium can be guaranteed. The work by Keenan (1981) makes clear

that there may exist an open set of starting price systems for which Smale’s process does

not converge to a competitive equilibrium.

Another universally convergent price adjustment process has been presented in Kamiya

(1990). Kamiya’s process can be interpreted as a weighted average of Smale’s global Newton

method and Walrasian tâtonnement. At the initial price system, the process corresponds

to Walrasian tâtonnement, whereas it approaches Smale’s global Newton method when

prices are close to a Walrasian equilibrium. Under rather weak conditions on the excess

demand function, convergence to a competitive equilibrium price system is guaranteed for

almost every starting price system. Although the boundary conditions of Kamiya (1990)

are weak, they are still more demanding than boundary conditions that are derived from

assumptions on the primitives of the model.

Yet another price adjustment process has been proposed in van der Laan and Tal-

man (1987). In this process, prices of commodities with positive excess demand are kept

relatively maximal, that is relative to the initial price system, whereas prices of commodi-
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ties with negative excess demand are kept relatively minimal. For this process universal

convergence has been shown in Herings (1997). Under standard conditions on utility func-

tions, consumption sets, and initial endowments, this price adjustment process converges

to a Walrasian equilibrium price system for almost all economies and any starting price

systems.

To show convergence of these processes, one first defines a set of price systems for

which excess demands satisfy the properties of the price systems generated by the price

adjustment process. For instance, for Smale’s global Newton methods, this would be the

set of price systems at which excess demand is proportional the excess demand at the

initial price system. Next one shows that, for generic economies, this set consists of an arc

connecting the initial price system and precisely one competitive equilibrium as boundary

points, a finite number of arcs containing precisely two competitive equilibria, both being

boundary points, and a finite number of loops that neither contain the initial price system

nor any competitive equilibrium. The proofs for the van der Laan and Talman (1987)

process have to deal with the complication that the path of prices generated by the process

displays non-differentiabilities whenever one of the markets gets equilibrated during the

process. To deal with such issues we need tools from differential topology like regular

constraint sets and manifolds with generalized boundary. We explain these tools in detail

as well as how they are applied in the convergence proof of the van der Laan and Talman

(1987) process.

The price adjustment processes of Smale (1976), van der Laan and Talman (1987), and

Kamiya (1990) are defined for exchange economies. The paper concludes with an overview

of extensions of such processes to production economies and to processes where not only

prices but also quantities may adjust. It also makes the connection to strategy adjustment

processes in game theory. Although all processes discussed admit a natural economic or

game-theoretic interpretation, they may also be considered as algorithms to compute an

equilibrium. Finally, we briefly discuss the role of universally convergent price adjustment

processes in experimental economics.

The organization of the paper is as follows. Section 2 provides the general set-up and

Sections 3, 4, and 5 are devoted to the processes of Smale (1976), Kamiya (1990), and van

der Laan and Talman (1987), respectively, which are defined by the properties of the orbits

that they generate. Section 6 explains how these orbits can be obtained as the solutions to

an appropriate system of differential equations. Section 7 presents an overview of the tools

from differential topology that are needed for the convergence proofs and Section 8 explains

how these tools are used in the convergence proof for the van der Laan and Talman (1987)

process. Section 9 concludes the paper by discussing some further developments.
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2 Price Adjustment Processes

We consider an economy E where L commodities are traded. Excess demand for the

commodities in this economy as a function of prices is given by a function z : P → RL,

where P denotes the set of possible price vectors. Typical choices for P are RL
+ \ {0L} =

{p ∈ RL | p > 0L},1 i.e., the non-negative orthant of RL excluding the zero vector, or the

set of strictly positive price vectors RL
++ = {p ∈ RL | p� 0L}. The excess demand function

z satisfies homogeneity if, for every p ∈ P, for every λ ∈ R such that λp ∈ P, z(λp) = z(p).

Because of homogeneity, it is possible to normalize prices. In some of the price adjustment

processes studied in this paper, it is convenient to require the sum of the prices to be equal

to one and take P equal to the unit simplex ∆L = {p ∈ RL
+ |
∑L

`=1 p` = 1} or the relative

interior of the unit simplex ∆̇L = {p ∈ RL
++ |

∑L
`=1 p` = 1}, or to consider prices whose

squares sum up to one and take P equal to SL = {p ∈ RL
+ |
∑L

`=1(p`)
2 = 1}.

Apart from homogeneity, the excess demand function is assumed to satisfy Walras’ law,

the property that, for every p ∈ P, p · z(p) = 0.

A Walrasian equilibrium is p∗ ∈ P such that z(p∗) = 0L. We are interested in the

question whether processes of price adjustment terminate in a Walrasian equilibrium, i.e.,

converge to a price vector at which excess demand of all commodities is equal to zero when

starting from a price vector that does not correspond to a Walrasian equilibrium.

A standard way to define a price adjustment process is by means of a system of first-

order differential equations

dp(t)

dt
= f(p(t)),

where p(t) ∈ P denotes the price vector reached at time t ∈ R+ and f is a function from

P into RL. The initial price vector p(0) is assumed to be given. The function f determines

the way in which prices adjust. A common specification is that f is in proportion to excess

demand at the price system p. This results in a price adjustment process that is known as

Walrasian tâtonnement, described in Walras (1874), and formalized in Samuelson (1941).

Conditions for which the system of differential equations has a solution are well-known,

see for instance Hirsch and Smale (1974) for details. The orbit γ(p(0)) is the set of price

vectors that is generated by the system of first-order differential equations when the initial

state is p(0),

γ(p(0)) = {p ∈ P | ∃t ≥ 0, p = p(t)}.

The closure of γ(p(0)) is denoted by γ(p(0)) and is called an orbit as well.

Rather than describing the three price adjustment processes of interest in this paper by

a system of differential equations, it will turn out to be more convenient to describe them

1We denote the L-dimensional vector of zeroes by 0L and the L-dimensional vector of ones by 1L.

3



by the orbit that they generate. The next three sections describe this orbit as the solution

to a particular system of equations that has one degree of freedom, where each section is

devoted to one particular price adjustment process.

3 Smale’s Global Newton Method

To describe Smale’s global Newton method, we take P = ∆L. The mean excess demand at

p ∈ RL
+ \ {0L} is denoted by z(p) =

∑L
`=1 z`(p)/L.

We make the following assumption on the excess demand function z throughout this

section.

Assumption 3.1: The excess demand function z : ∆L → RL is twice continuously differ-

entiable, satisfies Walras’ law, and has the following boundary behavior:

For every p ∈ ∆L with at least one zero component, z(p)− z(p)1L is not radially outward

pointing, i.e., there is no µ > 0 such that z(p)− z(p)1L = µ(p− (1/L)1L).

Assumption 3.1 is weaker than the assumptions in Smale (1976), where a stronger condition

on boundary behavior is stated. The assumption that for every p ∈ ∆L with at least one

zero component z(p)−z(p)1L is not radially outward pointing is satisfied if, for every p ∈ ∆L

with at least one zero component, for some ` = 1, . . . , L with p` = 0, it holds that z`(p) > 0,

a rather natural requirement. To see this, observe that by Walras’ law there is `′ with p`′ > 0

and z`′(p) ≤ 0, so z`(p)−z(p) > z`′(p)−z(p), whereas −1/L = p`−1/L < p`′−1/L, which

is easily seen to imply that z(p)− z(p) is not radially outward pointing at p.

Smale (1976) discusses a number of variations when defining the global Newton method.

Here we follow Herings (2002) and combine the approaches as suggested in Smale (1976),

p. 117, and Varian (1977). Let

DL = {p ∈ RL |
∑L

`=1(p` − 1/L)2 ≤ 1 and
∑L

l=1 pl = 1},

a disk containing ∆L in its interior, and let π̃ : DL → ∆L be the radial projection on ∆L.

For p ∈ ∆L the radial projection of p on ∆L is equal to p and for p ∈ DL \∆L, the radial

projection of p on ∆L is given by the price system at which the line between p and (1/L)1L

intersects the relative boundary of ∆L, so

π̃(p) =

{
p, if p ∈ ∆L,

1/L
1/L−min`=1,...,L p`

p+
−min`=1,...,L p`

1/L−min`=1,...,L p`
(1/L)1L, otherwise.

We apply Smale’s global Newton method to the function z̃ : DL → RL defined by

z̃(p) = π̃(p)− p+ (1− ‖p− (1/L)1L‖2)
(
z(π̃(p))− z(π̃(p))1L

)
, p ∈ DL.
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The function z̃ extends a function equal to a positive multiple of z − z1L from ∆L to DL.

The vector z̃(p) is a weighted sum of the terms π̃(p) − p and z(π̃(p)) − z(π̃(p))1L, with

weight 1 on the former term and non-negative weight (1 − ‖p − (1/L)1L‖2) on the latter

term. Note that π̃(p) − p vanishes on ∆L, while the contribution of the term (1 − ‖p −
(1/L)1L‖2)z(π̃(p)) − z(π̃(p))1L is equal to zero on the relative boundary of DL, where it

holds that ‖p− (1/L)1L‖2 = 1. The function z̃ is therefore radially inward pointing on the

relative boundary of DL.

We argue next that the zero points of z and z̃ coincide, so when a price adjustment

process finds a zero point of z̃, it has found a Walrasian equilibrium. Let p belong the

relative boundary of DL. The term 1 − ‖p − (1/L)1L‖2 vanishes and the remaining term

is π̃(p) − p, which is clearly not equal to zero. Let p ∈ DL \∆L be such that it does not

belong to the relative boundary of DL. Then z̃(p) = 0L if and only if

π̃(p)− p+ (1− ‖p− (1/L)1L‖2)(z(π̃(p))− z(π̃(p))1L) = 0L,

so

z(π̃(p))− z(π̃(p))1L =
1

1− ‖p− (1/L)1L‖2
(p− π̃(p))

=
−Lmin`=1,...,L p`

1− ‖p− (1/L)1L‖2
(π̃(p)− (1/L)1L),

where the second equality follows from the definition of the radial projection at a price

system in DL \∆L. We find that z is radially outward pointing at π̃(p), a contradiction to

Assumption 3.1. Finally, let p ∈ ∆L. Then z̃(p) is a positive multiple of z(p)− z(p)1L, so

z̃(p) = 0L if and only if z(p) = 0L.

Take a starting price system p0 in the relative boundary ofDL. Smale’s process generates

prices at which the excess demand is a non-negative multiple of the excess demand at p0.

The orbit generated by Smale’s process therefore belongs to the set

P = {p ∈ DL | ∃θ ≥ 0, z̃(p) = θz̃(p0)},

The choice of θ = 1 shows that p0 ∈ P and the choice of θ = 0 guarantees that p∗ ∈ P if

p∗ is a Walrasian equilibrium.

In general, the set P consists of multiple components. Suppose the component of

P containing p0 is homeomorphic to an interval, containing p0 and a unique Walrasian

equilibrium as its boundary points. The price adjustment process then generates the prices

of that component and terminates in a uniquely specified Walrasian equilibrium. Smale

(1976) shows that, for a generic economy, the component of P containing p0 is indeed

homeomorphic to an interval and connects p0 to a Walrasian equilibrium.

Instead of defining Smale’s global Newton method by the orbit that it generates, we can

also describe it by a system of differential equations. To do so, drop the last component
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of z̃ and denoted the resulting function by ẑ. Consider the following system of differential

equations:

∂ẑ(p)
dp

dt
= −λ(p)ẑ(p),

1L
> dp

dt
= 0,

where λ is an arbitrary scalar function of p such that

sign(λ(p)) = sign det

(
−∂ẑ(p)

−1L
>

)
.

Since ∑L
`=1 z̃`(p) =

∑L
`=1(π̃`(p)− p`) + (1− ‖p− (1/L)1L‖2)

∑L
`=1(z`(π̃(p))− z(π̃(p)))

= 1− 1 + (1− ‖p− (1/L)1L‖2) · 0 = 0,

it holds that 1L
>
∂z̃(p) = 0. Then

∂ẑ(p)dp
dt

= −λ(p)ẑ(p)

implies

∂z̃L(p)dp
dt

= −λ(p)z̃L(p),

so the price of commodity L is adjusted on the basis of the same principles as the prices of

the other commodities. The equation 1L
> dp
dt

= 0 makes sure that the sum of the prices is

kept equal to one, so prices remain in DL. The fact that z̃ is radially inward pointing on

the relative boundary of DL makes sure that prices move towards the relative interior of

DL. It is now immediate that the orbit of the system of differential equations belongs to

the set P .

The convergence of Smale’s global Newton method to a Walrasian equilibrium depends

crucially of the choice of p0 in the relative boundary of DL. Keenan (1981) shows that

convergence may not hold for starting price systems in the relative interior of DL. This

is problematic from both a computational and an economic point of view. From a com-

putational point of view, it makes sense to take the initial price system such that it is

expected to be close to a Walrasian equilibrium price system. There is no reason to expect

that such a price system is located near the relative boundary of DL. From an economic

point of view, it would be natural to take the equilibrium prices of the previous period

as a starting point of the adjustment process to find the equilibrium prices of the current

period. Again, there is no reason to expect the previous period’s equilibrium prices to be

close to the relative boundary of DL.
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4 The Price Adjustment Process of Kamiya

Kamiya (1990) introduces a price adjustment process that can be interpreted as a weighted

average of Smale’s global Newton method and Walrasian tâtonnement. This process ad-

dresses the problem that Smale’s process may not converge when p(0) belongs to the relative

interior of DL. For Kamiya’s process it is convenient to normalize commodity prices by

taking the sum of the squares of prices equal to one, so P = SL.

We make the following assumption on the excess demand function throughout this

section.

Assumption 4.1: The function z : SL → RL is twice continuously differentiable, satisfies

Walras’ law, and has the following boundary behavior:

For every p ∈ SL, for every ` = 1, . . . , L, p` = 0 implies z`(p) > 0.

We have argued in Section 3 that the boundary behavior on z imposed in Assumption 4.1

is more demanding than the boundary behavior required in Assumption 3.1.

Walras’ law in combination with Assumption 4.1 implies that we may drop the last

component of z in the search for an equilibrium. Also, it is possible to represent the price

system by the first L− 1 components only, and take the price system in the set

ṠL−1 = {p ∈ RL−1
+ |

∑L−1
`=1 (p`)

2 < 1}.

We can then replace the function z : SL → RL by the function z̃ : ṠL−1 → RL−1, where

z̃`(p) = z`(p1, . . . , pL−1,
√

1−
∑L−1

k=1 (pk)2), ` = 1, . . . , L− 1.

The function z̃ is obtained by omitting the last component of z and making use of the

price normalization.

Take a starting price system p0 in the interior of ṠL−1. In Kamiya’s process the prices

are adjusted in such a way that z̃(p) is proportional to p − p0. The orbit generated by

Kamiya’s process therefore belongs to the set

P = {p ∈ SL−1 | ∃θ ∈ [0, 1], (1− θ)z̃(p) = θ(p− p0)}.

The choice of θ = 1 yields p0 as the unique solution, so p0 ∈ P . The choice of θ = 0

guarantees that (p∗1, . . . , p
∗
L−1) ∈ P if (p∗1, . . . , p

∗
L−1, p

∗
L) is a Walrasian equilibrium with∑L

`=1(p
∗
`)

2 = 1.

Again, suppose the component of P containing p0 is homeomorphic to an interval,

containing p0 and a unique Walrasian equilibrium as its boundary points. The price ad-

justment process then generates the prices of that component and terminates in a uniquely
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specified Walrasian equilibrium. Kamiya (1990) shows that, for a generic economy, the

component of P containing p0 is indeed homeomorphic to an interval and connects p0 to a

Walrasian equilibrium. The considerable advantage of Kamiya’s price adjustment process

over the global Newton method, both form a computational and an economic point of view,

is that it converges for any initial price system.

Instead of defining Kamiya’s price adjustment process by the orbit that it generates, we

can also describe it by a system of differential equations. If we denote the (L−1)× (L−1)

identity matrix by I, then at prices p different from p0 such that z̃(p) 6= 0L−1, Kamiya’s

process is defined by(
∂z̃(p)

‖z̃(p)‖2
− I

‖p− p0‖2

)
dp

dt
= −λ(p)z̃(p),

where λ is an arbitrary scalar function of p such that

sign(λ(p)) = sign det

(
I

‖p− p0‖2
− ∂z̃(p)

‖z̃(p)‖2

)
.

At p = p0 and at p ∈ ṠL−1 such that z̃(p) = 0L−1, the price adjustment process is defined

by taking a limit.

Kamiya’s process can be seen to be a weighted average of Smale’s global Newton

method, ∂z̃(p)dp
dt

= −λ(p)z̃(p), and Walrasian tâtonnement, dp
dt

= z̃(p). The weights de-

pend on the norm of the excess demand and the distance between p and p0. The process

is approximately equal to Walrasian tâtonnement at prices close to p0 and it approaches

Smale’s global Newton method when prices are close to a Walrasian equilibrium.

5 The Price Adjustment Process of van der Laan and

Talman

Although Kamiya’s process displays generic convergence to a Walrasian equilibrium for

any initial price system, the required boundary behavior, though fairly natural, does not

follow from standard assumptions on primitives like consumptions sets, utility functions,

and initial endowments. This section presents a price adjustment process proposed by van

der Laan and Talman (1987), which displays generic global and universal convergence, i.e.,

convergence takes place for any initial price system and for excess demand functions that

can be derived from standard assumptions on the primitives.

To describe the price adjustment process of van der Laan and Talman (1987), we

normalize prices of commodities to belong to ∆̇L, i.e., the relative interior of the unit

simplex.
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We make the following assumption on the excess demand function throughout this

section.

Assumption 5.1: The function z : ∆̇L → RL is twice continuously differentiable, satisfies

Walras’ law, and has the following boundary behavior:

If (pn)n∈N is a sequence in ∆̇L converging to p ∈ ∆L \ ∆̇L, then limn→∞ ‖z(pn)‖∞ = +∞.

The boundary behavior postulated in Assumption 5.1 requires that excess demand

explodes when one of the commodity prices converges to zero. Contrary to Assumption 4.1,

it is possible to derive Assumption 5.1 from standard assumptions on consumption sets,

utility functions, and initial endowments.

Take a starting price system p0 in ∆̇L. The dynamics of the price adjustment process can

be described as follows. First, the sign of the excess demand is evaluated at the starting

price system p0. Typically it holds that for every commodity ` = 1, . . . , L, z`(p
0) 6= 0.

Initially, the price of a commodity ` with z`(p
0) < 0 is decreased, while the price of a

commodity ` with z`(p
0) > 0 is increased. The ratio of prices of commodities for which

there is a negative excess demand is kept constant among those commodities for which

there is a negative excess demand, and similarly for the ratio of prices of commodities for

which there is a positive excess demand. This generates a line segment of prices. The price

system is adjusted in this way until a market, say the market for commodity `1, attains an

equilibrium. Typically, there is exactly one market for which this happens.

The price adjustment continues by keeping the market for commodity `1 in equilibrium,

while the price p`1 is relatively increased (decreased) if there was a negative (positive) excess

demand in the market for commodity `1 before attaining equilibrium. Other prices are kept

relatively minimal in case of a negative excess demand and relatively maximal in case of

a positive excess demand. In general this generates a 1-dimensional curve of prices. Two

situations can occur. Either another market, say the market of a commodity `2, attains

an equilibrium. In this case the price system is adjusted in such a way that the markets of

commodities `1 and `2 are kept in equilibrium, while the price of commodity `2 is relatively

increased (decreased) when there was a negative (positive) excess demand on the market

of commodity `2 before attaining equilibrium. Or the price on the market of commodity

`1 becomes relatively minimal or maximal. In this case the market of commodity `1 is no

longer kept in equilibrium but its excess demand is allowed to become negative or positive,

respectively, while p`1 is kept relatively minimal or relatively maximal, respectively. The

price adjustment process continues in this way until a Walrasian equilibrium is reached.
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Formally, the orbit generated by van der Laan and Talman’s process belongs to the set

P = {p ∈ ∆̇L | for `′ = 1, . . . , L, z`′(p) < 0⇒ p`′
p0
`′

= min`=1,...,L
p`
p0`
,

for `′ = 1, . . . , L, z`′(p) > 0⇒ p`′
p0
`′

= max`=1,...,L
p`
p0`
}.

(5.1)

For a price system to belong to P it should hold that the relative price of a commodity, i.e.

the ratio of the price of a commodity and its initial price, is minimal if the commodity is in

positive excess supply and it is maximal if the commodity is in positive excess demand. This

is closely related to the ideas behind Walrasian tâtonnement, where prices of commodities

in positive excess supply are decreased and those of commodities in positive excess demand

are increased. The starting price system p0 belongs to P as all relative prices are equal

to one at p0, so the relative prices of all commodities are both minimal and maximal at

the same time. A Walrasian equilibrium p∗ belongs to P , since if z(p∗) = 0L then all

implications in the definition of P are trivially met.

Herings (1997) shows, for a generic economy, that the component of P containing p0

is indeed homeomorphic to an interval and connects p0 to a Walrasian equilibrium. Like

Kamiya’s process, there is convergence to a Walrasian equilibrium for any starting price

system. There are two differences with Kamiya’s process. First, standard assumptions on

the primitives suffice to guarantee convergence to a Walrasian equilibrium. Second, whereas

the orbit of Kamiya’s process is generically a differentiable manifold with boundary, the

orbit of van der Laan and Talman’s process is generically a piecewise differentiable manifold

with boundary.

It is also possible to present the price adjustment process of van der Laan and Talman

(1987) as the solution to a system of differential equations. In fact, it is possible to do so

for any piecewise differentiable orbit. The next section explains how to do this in general.

6 From Orbits to Systems of Differential Equations

After making some minor modifications to the formulations in Sections 3 and 4, it is

possible to formulate the orbits of the processes of Smale (1976) and Kamiya (1990) as

the zero points of a function f : [0, 1] × P → RL, where the set P is L-dimensional. The

explicit construction for Smale’s process is presented later in this section. The variable in

the interval is denoted by λ and is equal to 1− θ for the processes of Smale and Kamiya.

The variable λ is not explicit in the formulation of van der Laan and Talman’s process, but

as demonstrated in Herings (2002) it can be taken equal to maxk,`∈L(pk/p
0
k − p`/p0`) and

belongs to the interval [0,max`=1,...,L 1/p0` ]. It is easy, though not essential, to renormalize

prices to ensure that λ belongs to the interval [0, 1] as in the other two processes.

The orbits generated by the processes of Sections 3, 4, and 5 are well-behaved sets

10



under suitable assumptions. We now ask the question whether it is possible to find a

system of differential equations that generates a given orbit. Let (λ(t), p(t)) be the orbit

corresponding to the zero points of f, parametrized by arc length t. The starting point of the

price adjustment process equals p(0) and corresponds to parameter λ(0) = 0. Assume that

zero is a regular value of both f and of the restriction of f to {0, 1}×P. Let J(λ, p) denote

the Jacobian of f evaluated at (λ, p), a matrix of dimension L × (L + 1). The regularity

assumption implies that the Jacobian has rank L. It also implies that there is a unique

vector v(J(0, p(0))) ∈ RL+1 such that J(0, p(0)) · v(J(0, p(0))) = 0L, ‖v(J(0, p(0)))‖2 = 1,

and the first component of v(J(0, p(0))) is positive. For p ∈ P, let v(J(λ, p)) denote the

unique vector such that J(λ, p) · v(J(λ, p)) = 0L, ‖v(J(λ, p))‖2 = 1, and

det

(
J(λ, p)

v(J(λ, p))>

)
= det

(
J(0, p(0))

v(J(0, p(0)))>

)
.

It can be shown that the orbit of zero points induced by f is generated by the system of

differential equations

(dλ
dt
, dp
dt

) = v(J(λ, p))>,

see for instance Allgower and Georg (1983). This system of differential equations was first

proposed by Davidenko (1953) and is also referred to as the system of Davidenko equations.

We now illustrate that using the Davidenko equations immediately leads to Smale’s

process. The function f : [0, 1] × P → RL whose zero points correspond to the orbit of

Smale’s process is obtained by taking P = RL
+ \ {0L} and defining, for (λ, p) ∈ [0, 1]× P,

f(λ, p) =

{
ẑ(p)− (1− λ)ẑ(p0),

1−
∑L

`=1 p`.

It follows that

J(λ, p) =

[
z̃(p0) ∂z̃(p)

0 1L
>

]
.

The Davidenko equations specify that

(dλ
dt
, dp
dt

) = v(J(λ, p)),

from which it follows that

∂ẑ(p)
dp

dt
= −dλ

dt
ẑ(p0),

1L
> dp

dt
= 0.

Substituting ẑ(p) = (1− λ)ẑ(p0) leads to the specification of Smale’s process in Section 3.
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7 Regular Constraint Sets and Manifolds with Gen-

eralized Boundary

In Sections 3, 4), and 5 it was asserted that the orbits generated by the various price ad-

justment processes are generically well-behaved sets. Section 6 required 0L to be a regular

value of f, the function whose zero points describe the orbit, and of the restriction of f

to {0, 1} × P. This section presents the tools that can be used to give precise definitions

of “well-behaved” and to demonstrate that certain sets are actually well-behaved. The

exposition is based on Section 2.10 of Herings (1996). For further elaborations of this ma-

terial, the reader is refererred to Milnor (1965), Golubitsky and Guillemin (1973), Jongen,

Jonker, and Twilt (1983, 1986), and Mas-Colell (1985).

We use the notation N = {0, 1, . . .}, N+ = {1, 2, . . .}, N∗ = N ∪ {∞}, and N∗+ =

N+ ∪ {∞}. Let X and Y be topological spaces. The set of continuous functions from X

into Y is denoted by C0(X, Y ). Let U be an open subset of Rm and V a non-empty subset

of Rn. For r ∈ N+, C
r(U, V ) is defined as the set of r times continuously differentiable

functions from U into V. The set C∞(U, V ) is defined by C∞(U, V ) = ∩r∈NCr(U, V ).

A k-dimensional topological manifold, where k ∈ N, is a set which is locally like Rk.

More formally, we have the following definition.

Definition 7.1 For k ∈ N, a subset X of Rm is a k-dimensional topological manifold if

for every element x of X there exists an open subset U of X containing x, an open subset

V of Rk, and an injective and surjective function ϕ : U → V such that ϕ ∈ C0(U, V ) and

ϕ−1 ∈ C0(V, U), i.e., ϕ : U → V is a homeomorphism.

Every neighborhood of a point in a k-dimensional topological manifold can be continuously

deformed via a function ϕ into a set which looks like Rk and vice versa. Since only continuity

is required, such a manifold can have kinks. For the special case where k = 0, the definition

implies that a 0-dimensional topological manifold is a discrete set of points. The function ϕ

is called a coordinate system for X around x. When the coordinate systems ϕ are required

to be Cr diffeomorphisms instead of homeomorphisms, we obtain the definition of a Cr

manifold.

Definition 7.2 For k ∈ N, for r ∈ N∗+, a subset X of Rm is a k-dimensional Cr manifold

if for every element x of X there exists an open subset U of X containing x, an open subset

V of Rk, and an injective and surjective function ϕ : U → V such that ϕ ∈ Cr(U, V ) and

ϕ−1 ∈ Cr(V, U), i.e., ϕ : U → V is a Cr diffeomorphism.

12



It follows from Definition 7.2 that the empty set is a k-dimensional C∞ manifold for every

k ∈ N. When the coordinate systems are required to be differentiable as in Definition 7.2,

it is not possible for the manifold to have kinks.

We next generalize the concept of a Cr manifold to a piecewise Cr manifold.

Definition 7.3 For k ∈ N, for r ∈ N∗+, a subset X of Rm is a k-dimensional piecewise Cr

manifold if X is a k-dimensional topological manifold being a finite union of Cr manifolds.

In Definition 7.3 it is allowed that the dimension of some of the Cr manifolds whose union

is equal to X is less than k. A piecewise Cr manifolds can have kinks, but these kinks are

restricted to occur at a finite number of lower-dimensional manifolds.

For k ∈ N, for r ∈ N∗+, a characterization of a k-dimensional Cr manifold is given

in the following theorem. Some authors use this characterization as a definition of a k-

dimensional Cr manifold. A function ϕ : U → V is a Cr coordinate system of Rm around

x if x ∈ U, U and V are open sets of Rm, ϕ is injective and surjective, ϕ ∈ Cr(U, V ), and

ϕ−1 ∈ Cr(V, U).

Theorem 7.4 For k ∈ N+, for r ∈ N∗+, a subset X of Rm is a k-dimensional Cr manifold

if and only if for every element x of X there exists a Cr coordinate system ϕ : U → V of

Rm around x satisfying ϕ(x) = 0k and ϕ(X ∩ U) = {y ∈ V | ∀i ∈ {1, . . . ,m− k}, yi = 0}.

To study globally and universally convergent price adjustment processes, the notion of

a manifold is too restrictive. Typical choices for P like RL
+ \ {0L} or ∆L are not even

topological manifolds because they have a boundary. The same is true for the various

sets P defined in Sections 3, 4, and 5. For the set ∆L it holds that even the boundary

has a boundary when L ≥ 3. It turns out that the formulation of a manifold presented in

Theorem 7.4 can be easily generalized to deal with manifolds that have boundaries, and

where the boundaries may have boundaries themselves, and so on.

Definition 7.5 For k ∈ N, for r ∈ N∗+, a subset X of Rm is a k-dimensional Cr manifold

with generalized boundary (MGB) if for every element x of X there exists a Cr coordinate

system ϕ : U → V of Rm around x and an integer `(x), 0 ≤ `(x) ≤ k, satisfying ϕ(x) = 0m

and

ϕ(X ∩ U) = {y ∈ V | ∀i ∈ {1, . . . ,m− k}, yi = 0,

∀i ∈ {m− k + 1, . . . ,m− k + `(x)}, yi ≥ 0}.

The neighborhood of an element x in a k-dimensional MGB X looks like the set R`(x)
+ ×
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Rk−`(x). The unit simplex ∆L is an (L− 1)-dimensional C∞ MGB with, for every x ∈ ∆L,

`(x) = #{i ∈ {1, . . . ,m} | xi = 0}.
For k ∈ N, for r ∈ N∗+, let the set X be a k-dimensional Cr MGB. For j ∈ {0, . . . , k},

define the set Bj(X) by

Bj(X) = {x ∈ X | `(x) = j}.

For every j ∈ {0, . . . , k}, a path-component of Bj(X) is called a stratum of X. A stratum

in Bj(X) of a Cr MGB is a (k − j)-dimensional Cr manifold. The collection of strata of

X forms a partition of X. The set B0(X) is called the relative interior of X and the set

X\B0(X) is called the relative boundary of X. If X = B0(X), then X is a k-dimensional Cr

manifold. If X = B0(X)∪B1(X), then X is called a manifold with boundary. The following

theorem reveals that compact 1-dimensional MGB’s have a particularly nice structure.

Theorem 7.6 For r ∈ N∗+, let the set X be a compact 1-dimensional Cr MGB. Then X

has a finite number of components, each being Cr diffeomorphic to either the unit circle or

the unit interval.

A set which is homeomorphic to the unit circle is called a loop and a set homeomorphic

to the unit interval is called an arc. Theorem 7.6 therefore implies that a compact 1-

dimensional Cr manifold with generalized boundary consists of a finite number of arcs and

loops.

Many sets that play a role in economic theory are so-called regular constraint sets. Let

U be an open set of Rm and let, for some n1 ∈ N, for every i ∈ {1, . . . , n1}, gi : U → R,
and, for some n2 ∈ N, for every i ∈ {1, . . . , n2}, hi : U → R. Define the set M [g, h] by

M [g, h] =
{
x ∈ U

∣∣ ∀i ∈ {1, . . . , n1}, gi(x) = 0, ∀i ∈ {1, . . . , n2}, hi(x) ≥ 0
}
.

Notice that n1 and n2 are allowed to be zero in the definition above. For every element x

of U, define the set I0(x) = {i ∈ {1, . . . , n2} | hi(x) = 0}.

Definition 7.7 For n1, n2 ∈ N, for r ∈ N∗+, let U be an open set of Rm, for every i ∈
{1, . . . , n1}, gi ∈ Cr(U,R), and, for every i ∈ {1, . . . , n2}, hi ∈ Cr(U,R). The pair (g, h) is a

Cr regular constraint system if for every x ∈M [g, h] the vectors (∂xgi(x)i∈{1,...,n1}, ∂xhi(x)i∈I0(x))

are linearly independent. The set X is a Cr regular constraint set (RCS) if there exists a

Cr regular constraint system (g, h) such that X = M [g, h].

The next result shows the relation between an RCS and an MGB.

Theorem 7.8 For r ∈ N∗+, let the subset X of Rm be a Cr RCS and let (g, h) be a Cr
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regular constraint system such that M [g, h] = X. If g has n1 components, then X is an

(m− n1)-dimensional Cr MGB and, for every x ∈ X, `(x) = #I0(x).

Theorem 7.8 is very convenient to show that a certain set is an MGB. Let us illustrate this

for the unit simplex ∆L. Define the functions g : RL → R and, for every i ∈ {1, . . . , L},
hi : RL → R by

g(x) =
∑

j∈{1,...,L} xj − 1, x ∈ RL,

hi(x) = xi, x ∈ RL.

It is easy to verify that (g, h) is a C∞ regular constraint system. Since M [g, h] = ∆L, it

holds that the unit simplex ∆L is a C∞ RCS and by Theorem 7.8 a C∞ MGB.

Next, the tangent space and the tangent cone of a manifold with generalized boundary

are defined.

Definition 7.9 For k ∈ N, for r ∈ N∗+, let X be a k-dimensional Cr MGB. Let x be an

element of X and let ϕ be a Cr coordinate system for Rm around x. The tangent space of

X at x, denoted by TxX, is the set ∂ϕ−1(0m)({0m−k} × Rk) and the tangent cone of X at

x, denoted by CxX, is the set ∂ϕ−1(0m)({0m−k} × Rk−`(x)
+ × R`(x)).

It can be shown that both the tangent space TxX and the tangent cone CxX as defined in

Definition 7.9 do not depend on the choice of the coordinate system. It is easily verified

that a tangent cone is indeed a cone. Since ϕ−1 is a Cr diffeomorphism, it holds that

∂ϕ−1(0m) is an invertible matrix and therefore TxX is a k-dimensional vector space. The

tangent cone CxX is a k-dimensional MGB.

In case a set X is an RCS, the following theorem gives an easy way to determine the

tangent space of X at an element x of X.

Theorem 7.10 For k ∈ N, for r ∈ N∗+, let the subset X of Rm be a k-dimensional Cr

RCS, let x be an element of X, and let the pair of functions (g, h) be a regular constraint

system such that X = M [g, h]. Then

TxX =
{
x ∈ Rm

∣∣∂g(x)(x) = 0m−k
}
.

For r ∈ N∗+, let the subsets X of Rm and Y of Rn be Cr manifolds, let x be an element

of X, and let f be a function of Cr(X, Y ). Let U be an open set of Rm such that X ⊂ U

and let the function g ∈ Cr(U,Rn) be such that, for every x ∈ X, g(x) = f(x). It can be

shown that ∂g(x)|TxX is a function from TxX into Tf(x)Y. Moreover, the function ∂g(x)|TxX

does not depend on the choice of the function g. The derivative of f at x, denoted by
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∂f(x), is defined by ∂f(x) = ∂g(x)|TxX . The element x is called a regular point of f if

∂f(x)(TxX) = Tf(x)Y. Otherwise x is called a critical point of f. Let an element y of Y be

given. The element y is called a critical value of f if it is the image of a critical point of

f. Otherwise y is called a regular value of f. Notice that every element y of Y \ f(X) is a

regular value of f.

For r ∈ N∗+ \ {1}, for m ∈ N+ \ {1}, let the subset X of Rm be an m-dimensional Cr

manifold with boundary. Let x be an element of B1(X). To each element x we associate

the vector ĝ(x) of Rm satisfying ∀x ∈ TxB1(X), ĝ(x) · x = 0, ∀x ∈ CxX, ĝ(x) · x ≤ 0, and

‖ĝ(x)‖2 = 1. It is easily verified that the vector ĝ(x) is uniquely determined. Obviously, it

belongs to the set B̃m−1(0m, 1) = {x ∈ Rm |
∑m

j=1(xj)
2 = 1}. The function ĝ : B1(X) →

B̃m−1(0m, 1), obtained by associating with every element x of B1(X) the vector ĝ(x), is

called the Gauss map of B1(X). The function ĝ is continuously differentiable and, for every

x ∈ B1(X), ∂ĝ(x) is a function from TxB
1(X) into TxB

1(X). For every x ∈ B1(X), the

determinant of the linear function ∂ĝ(x), is called the Gaussian curvature of B1(X) at x.

Let C1 manifolds X, Y, and Z, Z being a subset of Y, an element x of X, and a function

f ∈ C1(X, Y ) be given. The function f is said to intersect Z transversally at x ∈ X,

denoted by f >� �Z at x, if

f(x) /∈ Z, or f(x) ∈ Z and Tf(x)Z + ∂f(x)(TxX) = Tf(x)Y.

The function f is said to intersect Z transversally if f >� �Z at every x ∈ X. The following

theorem follows almost immediately from the definition of transversality.

Theorem 7.11 For k1, k2, k3 ∈ N, let X be a k1-dimensional C1 manifold, Y a k2-

dimensional C1 manifold, Z ⊂ Y a k3-dimensional C1 manifold, and f ∈ C1(X, Y ) be

such that f >� �Z. If k1 − k2 + k3 < 0, then f−1(Z) = ∅.

The following result is complementary to Theorem 7.11 and applies to the case where

k1 − k2 + k3 ≥ 0.

Theorem 7.12 For k1, k2, k3 ∈ N, for r ∈ N∗+, let X be a k1-dimensional Cr manifold, Y

a k2-dimensional Cr manifold, Z ⊂ Y a k3-dimensional Cr manifold, and f ∈ Cr(X, Y )

be such that f >� �Z. If k1 − k2 + k3 ≥ 0, then f−1(Z) is a (k1 − k2 + k3)-dimensional Cr

manifold.

The following result is an easy corollary to Theorems 7.11 and 7.12.

Theorem 7.13 For k1, k2 ∈ N, for r ∈ N∗+, let X be a k1-dimensional Cr manifold, Y

a k2-dimensional Cr manifold, and f ∈ Cr(X, Y ). Let the element y of Y be a regular
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value of f. If k1 − k2 < 0, then f−1({y}) = ∅, and if k1 − k2 ≥ 0, then f−1({y}) is a

(k1 − k2)-dimensional Cr manifold.

To state the last result in this section, we need the notion of Lebesgue measure zero of a

set in a manifold X. For k ∈ N, for r ∈ N∗+, let the subset X of Rm be a k-dimensional Cr

manifold and let S be a subset of X. Then the set S is said to have Lebesgue measure zero

in X if there exists a countable cover {Un | n ∈ N} of S and, for all n ∈ N, a coordinate

system ϕn with domain Un such that ϕn(Un ∩ S) has Lebesgue measure zero. In case

X ⊂ Rm is an m-dimensional Cr manifold, then the notions of Lebesgue measure zero and

Lebesgue measure zero in X coincide.

Theorem 7.14 For k1, k2, k3 ∈ N, for r ∈ N∗+, let X1 be a k1-dimensional Cr manifold,

X2 a Cr manifold, Y a k2-dimensional Cr manifold, Z ⊂ Y a k3-dimensional Cr manifold,

and f ∈ Cr(X1 ×X2, Y ) with r > max({0, k1 − k2 + k3}). For every x2 ∈ X2, define the

function fx
2 ∈ Cr(X1, Y ) by

fx
2

(x1) = f(x1, x2), x1 ∈ X1.

Then f >� �Z implies fx
2 >� �Z, except for x2 in a subset of X2 having Lebesgue measure

zero in X2.

8 Convergence Proof

So far, an economy E was characterized by an excess demand function z : P → RL. We now

go back to the primitives and derive the excess demand function from the consumption

choices of a finite set M of consumers that face a budget constraint.

For every consumer i ∈ M, the consumption set X i and the preference relation �i are

assumed to be given in this section as is the starting price system p0 ∈ ∆̇L. After choosing,

for every i ∈M, initial endowments ωi ∈ X i we obtain an economy E = ((X i,�i, ωi)i∈M).

To show that, generically in initial endowments, a price adjustment process is globally and

universally stable, a number of standard assumptions on consumption sets and preference

relations are made.

A1. For every consumer i ∈M, the consumption set X i is equal to RL
++.

Consider some consumer i ∈M. The preference relation �i satisfies the boundary condition

if, for every xi ∈ X i, the closure of the set {xi ∈ X i | xi �i xi} of consumption bundles

weakly preferred to xi is contained in RL
++. The preference relation �i is of the class Cr

for some r ∈ N∗+ if the set {(xi, xi) ∈ X i ×X i | xi ∼i xi} of pairs of consumption bundles

among which i is indifferent is a (2L− 1)-dimensional Cr manifold.
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Let �i be complete, transitive, continuous, monotonic, i.e., a consumption bundle con-

taining more of every commodity than another consumption bundle is preferred to this

other consumption bundle by consumer i, and of the class Cr. For every xi ∈ X i, we define

the sets I i(xi) = {xi ∈ X i | xi ∼i xi} and P i(xi) = {xi ∈ X i | xi �i xi} as the sets of con-

sumption bundles indifferent to xi and weakly preferred to xi, respectively, by consumer i.

It holds that P i(xi) is an L-dimensional Cr manifold with boundary, with boundary equal

to the (L − 1)-dimensional Cr manifold I i(xi). The real number ci(xi) is defined as the

Gaussian curvature of P i(xi) at xi. The preference relation �i is said to have non-zero

Gaussian curvature if, for every xi ∈ X i, ci(xi) 6= 0. Intuitively, �i has non-zero Gaussian

curvature if indifference curves are nowhere flat.

A2. For every consumer i ∈ M, the preference relation �i is complete, transitive, con-

tinuous, strongly monotonic, strongly convex, of the class C3, satisfies the boundary

condition, and has non-zero Gaussian curvature.

If the economy E = ((X i,�i, ωi)i∈M) satisfies Assumptions A1 and A2 and for every

consumer i ∈M it holds that ωi ∈ X i, then it can be shown that the total excess demand

function z : RL
++ → RL of the economy E belongs to C2(RL

++,RL).

Let (X i,�i)i∈M satisfy Assumptions A1-A2 and let p0 ∈ ∆̇L be the starting price

system. The set Ω of initial endowments is defined by Ω =
∏

i∈M RL
++. The next definition

introduces the notion of regularity for initial endowments ω ∈ Ω, which means that the set

P ω as defined in equation (5.1) of Section 5 has a nice structure.

Definition 8.1 Let (X i,�i)i∈M satisfy Assumptions A1 and A2 and let p0 ∈ ∆̇L be

the starting price system. The set of regular initial endowments Ω∗ is the set of initial

endowments ω of Ω for which the components of the set P ω as defined in (5.1) for the

economy E = ((X i,�i, ωi)i∈M) with starting price system p0 are given by

1. an arc containing p0 and precisely one Walrasian equilibrium price system as bound-

ary points,

2. a finite number of arcs containing precisely two Walrasian equilibrium price systems

both being boundary points,

3. a finite number of loops containing neither p0 nor any Walrasian equilibrium price

system.

If initial endowments ω are regular, then the price adjustment process converges to a

uniquely determined Walrasian equilibrium. Moreover, since one Walrasian equilibrium is

connected to the starting price system, the other Walrasian equilibria come in pairs, and

all Walrasian equilibria belong to P ω, the number of Walrasian equilibria is odd.
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The result that we are after is that the set of non-regular initial endowments is small,

both in a topological and in a measure theoretic sense. This is the content of Theorem 8.2,

stated as Theorem 2.3 in Herings (1997).

Theorem 8.2 Let (X i,�i)i∈M satisfy Assumptions A1 and A2 and let p0 ∈ ∆̇L be the

starting price system. Then the set of non-regular initial endowments Ω \Ω∗ has a closure

in Ω with Lebesgue measure zero.

The proof of Theorem 8.2 conveys that the set of initial endowments ω ∈ Ω for which the

set P ω is a compact 1-dimensional piecewise C2 manifold, i.e., a 1-dimensional topological

manifold that is a finite union of C2 manifolds, some possibly of lower dimension, is such

that its complement in Ω has a closure with Lebesgue measure zero. All these initial

endowments are regular, as the conditions required for P ω in Definition 8.1 are clearly

satisfied.

Theorem 8.2 confirms the well-known result of Dierker (1972) that, generically, an

economy has an odd number of Walrasian equilibria.

To prove Theorem 8.2, it is useful to decompose the set P ω on the basis of the sign of

excess demands at prices in P ω. To do so, we define the set of sign vectors

S = {s ∈ {−1, 0,+1}L | ∃`1, `2 ∈ {1, . . . , L} such that s`1 = −1 and s`2 = +1}.

For every sign vector s ∈ S, we define the sets L−(s), L0(s), and L+(s) by L−(s) = {` ∈
{1, . . . , L} | s` = −1}, L0(s) = {` ∈ {1, . . . , L} | s` = 0}, and L+(s) = {` ∈ {1, . . . , L} |
s` = +1}. The number of elements in the sets L−(s), L0(s), and L+(s) are denoted by

`−(s), `0(s), and `+(s), respectively.

For every ω ∈ Ω, for every s ∈ S, we define the set P ω(s) of price systems by

P ω(s) =
{
p ∈ ∆̇L

∣∣∣ ∀` ∈ L−(s), z`(p, ω) ≤ 0 and p`
p0`

= min
({

pk
p0k
|k ∈ {1, . . . , L}

})
∀` ∈ L0(s), z`(p, ω) = 0,

∀` ∈ L+(s), z`(p, ω) ≥ 0 and p`
p0`

= max
({

pk
p0k

∣∣∣ k ∈ {1, . . . , L}})} ,
To make the dependence on ω explicit, the domain of the total excess demand function z

is now equal to RL
++ × Ω. It is easily seen that the set P ω is equal to ∪s∈SP ω(s).

Let s ∈ S, `− ∈ L−(s), and `+ ∈ L+(s). Without loss of generality, it can be assumed

that L0(s) = {1, . . . , `0(s)}, L−(s) = {`0(s) + 1, . . . , `0(s) + `−(s)}, and L+(s) = {`0(s) +
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`−(s) + 1, . . . , L}. Let ω ∈ Ω. Then p ∈ P ω(s) if and only if p ∈ RL
++ and

z`(p, ω) = 0, ` ∈ L0(s), (8.1)

p`p
0
`+1 − p`+1p

0
` = 0, ` ∈ {`0(s) + 1, . . . , `0(s) + `−(s)− 1}, (8.2)

p`p
0
`+1 − p`+1p

0
` = 0, ` ∈ {`0(s) + `−(s) + 1, . . . , L− 1}, (8.3)∑

`∈{1,...,L}p` − 1 = 0, (8.4)

−z`(p, ω) ≥ 0, ` ∈ L−(s), (8.5)

z`(p, ω) ≥ 0, ` ∈ L+(s), if `0(s) ≤ L− 3, (8.6)

p`p
0
`− − p`−p0` ≥ 0, ` ∈ L0(s), (8.7)

p`+p
0
` − p`p0`+ ≥ 0, ` ∈ L0(s), (8.8)

p`+p
0
`− − p`−p0`+ ≥ 0. (8.9)

Notice that if `−(s) = 1, then (8.2) is vacuous. The same holds for (8.3) if `+(s) = 1.

Since `−(s) and `+(s) are both greater than or equal to one, there are all together L − 1

equations in (8.1)-(8.4). If `0(s) > L− 3, so `0(s) = L− 2, then `−(s) = `+(s) = 1. In this

case the inequality in (8.6) follows by Walras’ law from equality (8.1) and inequality (8.5),

so inequality (8.6) is redundant.

Let a sign vector s ∈ S be given. It is shown in the following that for almost every

ω ∈ Ω the set of price systems satisfying (8.1)–(8.9) is a 1-dimensional C2 manifold with

boundary. This is achieved by showing that, for almost every ω ∈ Ω, (8.1)–(8.9) yields a

regular constraint system as defined in Definition 7.7.

To show Theorem 8.2 it is convenient to define, for every s ∈ S, for every ω ∈ Ω, the

set Qω(s) by

Qω(s) =
{
p ∈ ∆̇L−1

∣∣∣ p`′
p0
`′

=
p`′′
p0
`′′
, ∀`′, `′′ ∈ L−(s),

z`(p, ω) = 0, ∀` ∈ L0(s),
p`′
p0
`′

=
p`′′
p0
`′′
, ∀`′, `′′ ∈ L+(s)

}
.

Let s ∈ S. Clearly, for every ω ∈ Ω, P ω(s) ⊂ Qω(s), the difference between these two sets

being that no inequality constraints are taken into account in the definition of Qω(s). In

Lemma 8.3 it is shown that there exists a subset Ω of Ω such that Ω \ Ω has Lebesgue

measure zero and for every ω ∈ Ω the set Qω(s) is a 1-dimensional C2 manifold. Hence, it

can be shown to consist of a number of disjoint sets that are diffeomorphic to either the

unit circle or the open unit interval.

For every s ∈ S, the function ψs : RL
++ × Ω → RL−1 is defined such that, for every

(p, ω) ∈ RL
++ × Ω, ψs(p, ω) is the left-hand side of (8.1)-(8.4). For every s ∈ S, for every

ω ∈ Ω, the function ψs,ω : RL
++ → RL−1 is defined by, for every p ∈ RL

++, ψ
s,ω(p) = ψs(p, ω).

Notice that, for every s ∈ S, for every ω ∈ Ω, Qω(s) = ψs,ω
−1

({0L−1}).
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Lemma 8.3 Let (X i,�i)i∈M satisfy Assumptions A1 and A2 and let p0 ∈ ∆̇L−1 be the

starting price system. Let s ∈ S. Then there exists a subset Ω of Ω such that Ω \ Ω has

Lebesgue measure zero and, for every ω ∈ Ω, ψs,ω >� � {0L−1} and Qω(s) is a 1-dimensional

C2 manifold.

Proof: The matrix of partial derivatives of ψs evaluated at (p, ω) ∈ RL
++ × Ω satisfying

ψs(p, ω) = 0L−1 is denoted by M and is given in Table 1. Moreover, in Table 1 two

submatrices M1 and M2 of M are defined. It is shown that the matrix M has rank L− 1.

First it is proved that, for every i ∈ M, ∂ωiz(p, ω) has rank L − 1. Notice that, for every

i ∈ M, p>∂ωiz(p, ω) = 0L
>

and ∂ωiz(p, ω) = ∂widi(p, p · ωi)p> − IL, where di(p, p · ωi)
denotes the demand of consumer i at prices p and income p · ωi. Then, for every i ∈M,

∂ωiz(p, ω)
(
p`′′e

L(`′)− p`′eL(`′′)
)

= p`′e
L(`′′)− p`′′eL(`′), ∀`′, `′′ ∈ {1, . . . , L},

where, for ` ∈ {1, . . . , L}, eL(`) denotes the `-th L-dimensional unit vector, so the rank of

∂ωiz(p, ω) is equal to L− 1.

Let some i ∈ M be given. Consider the first `0(s) rows of ∂ωiz(p, ω). These rows are

independent. Suppose not, then `0(s) ≤ L− 2 implies the existence of y ∈ RL \ {0L} such

that yL−1 = yL = 0 and y>∂ωiz(p, ω) = 0L
>
. Since p>∂ωiz(p, ω) = 0L

>
, this implies that

the rank of ∂ωiz(p, ω) is less than or equal to L− 2, a contradiction.

Now let y ∈ RL−1 be such that y>M = 0LM+L> . From the previous paragraph it follows

that y>∂ω1ψs(p, ω) = 0L
>

implies, for every ` ∈ {1, . . . , `0(s)}, y` = 0.

Suppose yL−1 6= 0. Without loss of generality, it can be assumed that yL−1 < 0. If

`0(s) ≥ 1 or `−(s) = 1, then 0 > yL−1 = y>∂p1ψ
s(p, ω) = 0, yielding a contradiction. If

`0(s) = 0 and `−(s) ≥ 2, then yL−1 < 0 and y>∂p1ψ
s(p, ω) = y1p

0
`0(s)+2 + yL−1 = 0 implies

y1 > 0. It is easily seen that, for every ` ∈ {1, . . . , `−(s)− 2}, y` > 0 and y>∂p`+1
ψs(p, ω) =

0 implies y`+1 > 0, so y`−(s)−1 > 0. It follows that y>∂p`−(s)
ψs(p, ω) < 0, leading to a

contradiction. Consequently, yL−1 = 0.

The independence of the rows of M1 and of the rows of M2 yields y`0(s)+1 = · · · =

yL−2 = 0. So, y = 0L−1 and M has rank L− 1.

Since M has rank L−1, it follows that ψs intersects {0L−1} transversally, ψs >� � {0L−1}.
From our assumptions on the utility functions, it follows that ψs ∈ C2(RL

++ × Ω,RL−1).

Moreover, RL
++ is an L-dimensional C∞ manifold, Ω is an LM -dimensional C∞ manifold,

RL−1 is an (L− 1)-dimensional C∞ manifold, and {0L−1} is a 0-dimensional C∞ manifold.

Let the set Ω be defined by Ω = {ω ∈ Ω | ψs,ω >� � {0L−1}}. It follows from Theorem 7.14

that the set Ω \ Ω has Lebesgue measure zero in Ω. Since Ω is an LM -dimensional C∞

manifold that is a subset of RLM , it follows that the set Ω \Ω has Lebesgue measure zero.

For every ω ∈ Ω, ψs,ω is a function from an L-dimensional C∞ manifold into an (L − 1)-

dimensional C∞ manifold, ψs,ω ∈ C2(RL
++,RL−1), and ψs,ω >� � {0L−1}, so ψs,ω

−1
({0L−1})

and hence Qω(s) is a 1-dimensional C2 manifold by Theorem 7.13. 2
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M =

∂pz1(p, ω) ∂ωz1(p, ω)
...

... `0(s)

∂pz`0(s)(p, ω) ∂ωz`0(s)(p, ω)

0(`
−(s)−1)×`0(s) M1 0(`

−(s)−1)×`+(s) 0(`
−(s)−1)×LM `−(s)− 1

0(`
+(s)−1)×(`0(s)+`−(s)) M2 0(`

+(s)−1)×LM `+(s)− 1

1L
>

0LM> 1

L LM

M1 =

p0`0(s)+2 −p
0
`0(s)+1 0`

−(s)−2>

0 p0`0(s)+3 −p
0
`0(s)+2 0`

−(s)−3>

. . .
. . .

0`
−(s)−3> p0`0(s)+`−(s)−1 −p

0
`0(s)+`−(s)−2 0

0`
−(s)−2> p0`0(s)+`−(s) −p0`0(s)+`−(s)−1

`−(s)

M2 =

p0p0`0(s)+`−(s)+2 −p
0
`0(s)+`−(s)+1 0`

+(s)−2>

0 p0`0(s)+`−(s)+3 −p0`0(s)+`−(s)+2 0`
+(s)−3>

. . .
. . .

0`
+(s)−3> p0L−1 −p0L−2 0

0`
+(s)−2> p0L −p0L−1

`+(s)

Table 1: The matrix M.
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For every s ∈ S, for every ω ∈ Ω, for every `1 ∈ L−(s) ∪ L+(s), the set Qω(s, `1) is defined

by

Qω(s, `1) =
{
p ∈ ∆̇L−1

∣∣∣ p`′
p0
`′

=
p`′′
p0
`′′
, ∀`′, `′′ ∈ L−(s),

z`(p, ω) = 0, ∀` ∈ L0(s) ∪ {`1},
p`′
p0
`′

=
p`′′
p0
`′′
, ∀`′, `′′ ∈ L+(s)

}
.

It is easily verified that p ∈ Qω(s, `1) if and only if p ∈ RL
++, p satisfies equations (8.1)-(8.4),

and

z`1(p, ω) = 0. (8.10)

For every s ∈ S, for every `1 ∈ L−(s)∪L+(s), the function ψs`1 : RL
++ ×Ω→ RL is defined

such that, for every (p, ω) ∈ RL
++ × Ω, ψs`1(p, ω) is the left-hand side of (8.1)-(8.4) and

(8.10). For every s ∈ S, for every `1 ∈ L−(s) ∪ L+(s), for every ω ∈ Ω, the function

ψs,ω`1 : RL
++ → RL is defined by, for every p ∈ RL

++, ψ
s,ω
`1 (p) = ψs`1(p, ω).

Lemma 8.4 Let (X i,�i)i∈M satisfy Assumptions A1 and A2 and let p0 ∈ ∆̇L−1 be the

starting price system. Let s ∈ S and `1 ∈ L−(s)∪L+(s). Then there exists a subset Ω of Ω

such that Ω\Ω has Lebesgue measure zero and, for every ω ∈ Ω, ψs,ω`1 >
� � {0L} and Qω(s, `1)

is a 0-dimensional manifold.

The proof of Lemma 8.4 involves similar techniques as the proof of Lemma 8.3.

For every s ∈ S with `0(s) ≤ L − 3, for every ω ∈ Ω, for every `1, `2 ∈ L−(s) ∪ L+(s)

with `1 6= `2, the set Qω(s, `1, `2) is defined by

Qω(s, `1, `2) =
{
p ∈ ∆̇L−1

∣∣∣ p`′
p0
`′

=
p`′′
p0
`′′
, ∀`′, `′′ ∈ L−(s),

z`(p, ω) = 0, ∀` ∈ L0(s) ∪ {`1, `2},
p`′
p0
`′

=
p`′′
p0
`′′
, ∀`′, `′′ ∈ L+(s)

}
.

Let a sign vector s ∈ S with `0(s) ≤ L−3 and some `1, `2 ∈ L−(s)∪L+(s) with `1 6= `2

be given. Let some ω ∈ Ω be given. It is easily verified that p ∈ Qω(s, `1, `2) if and only if

p ∈ RL
++, p satisfies the equations (8.1)-(8.4), and

z`1(p, ω) = 0, (8.11)

z`2(p, ω) = 0. (8.12)

For every s ∈ S with `0(s) ≤ L − 3, for every `1, `2 ∈ L−(s) ∪ L+(s) with `1 6= `2,

the function ψs`1,`2 : RL
++ × Ω → RL+1 is defined such that, for every (p, ω) ∈ RL

++ × Ω,

ψs`1,`2(p, ω) is the left-hand side of (8.1)-(8.4), (8.11), and (8.12). For every s ∈ S with
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`0(s) ≤ L− 3, for every `1, `2 ∈ L−(s) ∪ L+(s) with `1 6= `2, for every ω ∈ Ω, the function

ψs,ω`1,`2 : RL
++ → RL+1 is defined by, for every p ∈ RL

++, ψ
s,ω
`1,`2(p) = ψs`1,`2(p, ω).

Lemma 8.5 Let (X i,�i)i∈M satisfy Assumptions A1-A2 and let p0 ∈ ∆̇L−1 be the starting

price system. Let s ∈ S be such that `0(s) ≤ L − 3 and let `1, `2 ∈ L−(s) ∪ L+(s) be such

that `1 6= `2. Then there exists a subset Ω of Ω such that Ω \ Ω has Lebesgue measure zero

and, for every ω ∈ Ω, ψs,ω`1,`2 >
� � {0L+1} and Qω(s, `1, `2) is an empty set.

Notice that the condition `0(s) ≤ L− 3 is crucial since for an admissible sign vector s with

`0(s) = L− 2 a corresponding set Qω(s, `1, `2) is equal to the set of Walrasian equilibrium

price systems in P ω(s) of the economy E = ((X i,�i, ωi)i∈M). Clearly, it cannot be shown

that this set is empty for almost every ω ∈ Ω.

Let ω ∈ Ω. If, for every ` ∈ {1, . . . , L}, z`(p0, ω) 6= 0, then it holds that p0 ∈ P ω(s) for

a uniquely determined admissible sign vector s ∈ S. Therefore, it is shown in Lemma 8.6

that there exists a subset Ω of Ω such that Ω \Ω has Lebesgue measure zero and, for every

ω ∈ Ω, for every ` ∈ {1, . . . , L}, z`(p0, ω) 6= 0. For every ` ∈ {1, . . . , L}, the function ψ` :

{p0}×Ω→ R is defined by, for every ω ∈ Ω, ψ`(p
0, ω) = z`(p

0, ω). For every ` ∈ {1, . . . , L},
for every ω ∈ Ω, the function ψω` : {p0} → R is defined by ψω` (p0) = ψ`(p

0, ω).

Lemma 8.6 Let (X i,�i)i∈M satisfy Assumptions A1 and A2 and let p0 ∈ ∆̇L−1 be the

starting price system. Then there exists a subset Ω of Ω such that Ω \ Ω has Lebesgue

measure zero and, for every ω ∈ Ω, for every ` ∈ {1, . . . , L}, ψω` >� � {0} and z`(p
0, ω) 6= 0.

The proof of Lemma 8.6 uses similar techniques as the proof of Lemma 8.3.

With this preliminary work out of the way, the proof of Theorem 8.2 consists of three

parts. In the first part, which combines Lemmas 8.3, 8.4, 8.5, and 8.6, it is shown that, for

almost every ω ∈ Ω, for every s ∈ S, the set P ω(s) is a compact 1-dimensional C2 manifold

with boundary. In this part of the proof, Lemma 8.5 is needed to show that, generically, at

most one of the inequalities in (8.5)–(8.9) can be binding at the same time. In the second

part, such a generic ω ∈ Ω is fixed, and the sets P ω(s) corresponding to the various sign

vectors s ∈ S are linked together. Here Lemma 8.5 is crucial again, since it ensures that a

boundary point of P ω(s) is also a boundary point of P ω(s′) for a uniquely determined sign

vector s′ ∈ S \ {s}, unless the boundary point is equal to the starting price system p0 or a

Walrasian equilibrium price system p∗. It then follows that for almost every ω ∈ Ω the set

P ω consists of a finite number of arcs and loops. The argument corresponds to a non-linear

version of the door-in door-out principle. There is a unique arc having the starting price

system p0 and a unique Walrasian equilibrium price system as boundary points. The other
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arcs have two Walrasian equilibrium price systems as boundary points, whereas the loops

contain no Walrasian equilibrium price systems. Therefore, the set Ω \ Ω∗ has Lebesgue

measure zero. In the third part of the proof it is shown that the closure in Ω of the set

Ω \ Ω∗ has Lebesgue measure zero. For details of these three parts, the reader is referred

to Herings (1997).

9 Further Developments

The price adjustment processes of Smale (1976), van der Laan and Talman (1987), and

Kamiya (1990) have an appealing economic interpretation where the adjustment of prices

is related to the values of excess demands. Another price adjustment process which admits

such an interpretation was introduced in Joosten and Talman (1998), where prices of

commodities with the highest excess demand are kept above their initial values, the prices of

commodities with the lowest excess demand are allowed to be lower than their initial values,

and the prices of other commodities are equal to their initial values. The literature has

also considered various price adjustment processes for production economies. Economies

with linear or constant returns to scale production were studied by van den Elzen (1993,

1997) and van den Elzen, van der Laan, and Talman (1994) and economies with non-convex

production technologies by van den Elzen and Kremers (2006).

Bénassy (1975), Drèze (1975), and Younès (1975) studied exchange economies where

price adjustment is subject to rigidities. At a fix-price equilibrium, equality of supply

and demand is achieved by adjusting quantities rather than prices. Chapter 11 of Herings

(1996) presents a globally and universally converging quantity adjustment process that

ends up at a fix-price equilibrium. Herings, van der Laan, Talman, and Venniker (1997),

Herings, van der Laan, and Venniker (1998), and Herings, van der Laan, and Talman

(1999) study processes where both prices and quantities adjust and eventually a Walrasian

equilibrium is reached.

In this paper, the differentiable approach is emphasized. Herings (2002) presents an al-

ternative approach towards the understanding of the universal convergence of price adjust-

ment processes that does not rely on differentiability and points out that convergence can

be understood from fixed-point theory, more precisely the fixed point theorem of Browder

(1960). Methods from differential topology can be used to show that for a generic economy,

where the primitives satisfy suitable differentiability assumptions, the initial price system

is connected by exactly one path to a Walrasian equilibrium. Browder’s theorem can be

used to show that for every economy, where the primitives satisfy suitable continuity as-

sumptions, the initial price system is always connected to a Walrasian equilibrium, though

not necessarily by a uniquely specified path. Herings (2002) also extends these insights to
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strategy adjustment processes used in non-cooperative game theory like the tracing proce-

dure of Harsanyi (1975) and the equilibrium selection procedure of McKelvey and Palfrey

(1995).

In the tracing procedure, the players initially choose a best response against a given

common prior distribution. Next, they lower the weight on the prior and give some weight

to the initial best responses to form a new prior against which a best response is played.

This process of updating the initial prior on the basis of best responses continues until

the weight on the prior is zero and a Nash equilibrium is reached. Herings and Peeters

(2001) show that the tracing procedure converges to a Nash equilibrium for a generic finite

normal-form game. Herings and Peeters (2004) extend the tracing procedure to the class

of stochastic games and show convergence to subgame perfect equilibrium in stationary

strategies for a generic stochastic game.

Jackson and Wolinsky (1996) studies network formation games and introduces the

widely used concept of pairwise stability. A network is pairwise stable if it is robust

against unilateral link deletion and bilateral link creation. Most of the literature considers

unweighted networks, but recently, Bich and Morhaim (2020) study a weighted version,

where the strength of each link is measured by a continuous variable. Agents can unilater-

ally decide to decrease the link strength, whereas it requires the consent of both agents to

increase it. Bich and Morhaim (2020) prove that pairwise stable networks exist if all agents

have quasi-concave and continuous utility functions. Herings and Zhan (2022) reformulate

the network formation problem as a non-cooperative game played by the links and adapt

the linear tracing procedure of Harsanyi (1975) to this problem. They show that for a

generic network formation problem, a uniquely defined pairwise stable network is selected

by the corresponding strategy adjustment process.

McKelvey and Palfrey (1995) study finite normal-form games and assume that each

player’s payoff is subject to random error. Their concept of quantal response equilibrium

is consistent in the sense that all players maximize their utility given the choices made

by the other players, and the utility maximizing behavior of a player, together with the

error structure, leads to the mixed strategy against which the other players optimize.

Quantal response equilibria are quite successful in describing the behavior of participants

in experiments. McKelvey and Palfrey (1995) also consider a procedure similar to the

tracing procedure to select a Nash equilibrium. Start with the quantal response equilibrium

where choices are completely determined by the error terms and follow the path of quantal

response equilibria that results when the error terms vanish. McKelvey and Palfrey (1995)

show that for almost all games, a unique Nash equilibrium is selected in this way.

Among other frameworks, Tyson (2021) considers finite normal-form games where play-

ers are assumed to be exponential satisficers. For a satisficing player, there is a positive
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probability that the perceived payoffs of different strategies are equal, even when actual

payoffs are different. The exponential satisficing model depends on a preference resolution

parameter γ ≥ 0, where γ = 0 implies that all pure strategies are perceived indifferent

and higher values of γ correspond to a higher probability that perceived preferences are

in line with actual preferences. Tyson also studies the limit, when γ tends to infinity, of

exponential satisficing equilibria, as a way to select Nash equilibria.

We have considered price adjustment processes with a natural economic interpreta-

tion and briefly discussed strategy adjustment processes with an appealing game-theoretic

description. These processes can also be seen as algorithms to compute an economic or

game-theoretic equilibrium and thereby contribute to the vast literature on equilibrium

computation as pioneered by Scarf (1967), Kuhn (1968), and Eaves (1972). To numeri-

cally follow the price adjustment processes presented in this paper, one can either resort

to piecewise linear approximations of the problem of interest and then follow the exact

price adjustment process for the piecewise linear approximation, or use predictor-corrector

methods to approximately follow the price adjustment process for the exact problem. For

numerical details, we refer the reader to Garcia and Zangwill (1981) and Allgower and

Georg (2012).

There is some experimental support for price adjustment processes like the global New-

ton method. Asparouhova and Bossaerts (2009) performed experiments where a large pool

of subjects trade in securities via a double auction mechanism. It turns out that security

prices respond to excess demand of all securities, so not only to their own excess demand

as in the Walrasian tâtonnement process. In fact, the authors provide evidence that the

resulting price adjustment process coincides with the global Newton method.

Still, in other experimental designs, price adjustment seems to be described fairly well

by Walrasian tâtonnement. For instance, in an economic environment based on Scarf’s

example, Anderson, Plott, Shimomura, and Granat (2004) find strong support for the hy-

pothesis that price dynamics are mainly driven by a market’s excess demand, and therefore

prices follow the path predicted by Walrasian tâtonnement. This finding is corroborated in

the experimental work by Gillen, Hirota, Hsu, Plott, and Rogers (2021), who find that price

changes for a good are largely determined by excess demand in its own market with only

second-order influences of excess demands in other markets. These findings raise the ques-

tion whether globally and universally convergent price adjustment processes can be used

to stabilize markets. The experimental work by Goeree and Lindsay (2016) suggests that

this is the case. They also construct an economic environment based on Scarf’s example,

use the global Newton method to adjust prices, and observe convergence to a competitive

equilibrium.
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