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1
Introduction

1.1. Motivation
In this thesis, we discuss distribution-free perspectives on stochastic models for queues, inven-

tory and finance. Traditionally, stochastic models rely on the assumption that the probability

distributions of the driving random variables, such as service times, demand and stock prices,

are fully known. In contrast, a distribution-free perspective assumes only partial knowledge

of these distributions, for example only the mean and variance are known. Distributionally

robust analysis seeks to determine the worst-case model performance by optimizing over the

set of probability distributions that satisfy this partial information. For the stochastic models

in this thesis, identifying this worst-case probability distribution requires solving semi-infinite

optimization problems using duality theory.

We will first present a brief overview of related literature strands, in order to position this

thesis. In Section 1.2, some concrete examples of the duality techniques are presented, which

are closely connected with the theory of generalized moment problems. We will then discuss

in Section 1.3 specific methodological challenges for stochastic models with multiple indepen-

dent and identically distributed (i.i.d.) random variables. We will conclude this introduction in

Section 1.4 with an outline of the chapters in this thesis.

1
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2 Distributionally robust views on stochastic models

1.1.1. Related literature

This thesis connects three common themes in the applied probability and optimization liter-

ature: Generalized moment problems, minimax stochastic programming, or distributionally

robust optimization (DRO), and extremal queueing models.

Generalizedmoment problems.The study of moment problems dates back to the late 19th

century and has attracted the attention of prominent probabilists of that era [43, 153, 205, 206].

In its most classical form, the problem of moments is essentially a feasibility problem that aims

to determine if there exists a probability distribution that satisfies the given distributional in-

formation. Chebyshev [43] formulated the problem of determining bounds for tail probabilities

in terms of only the mean and variance. A formal proof of the tight bound, now known as

Chebyshev’s inequality, was later provided by Markov [153]. In the 1950s and 1960s, there was

a renewed interest in this type of problem, which gave rise to the vast literature on Chebyshev

systems. We refer to the monograph of Karlin and Studden [128] for a comprehensive review.

We further highlight the concurrent advent of duality theory as a favored method for solving

these problems, as demonstrated in works such as [117, 128, 130]. Marshall and Olkin [154]

were the first to generalize Chebyshev’s inequality to the multivariate setting, and Mallows

[150] used structural properties to sharpen the traditional Chebyshev inequalities. In more re-

cent research, the connections between moment problems, nonnegativity of polynomials and

semidefinite programming have been exploited (see, e.g., [29, 139, 172, 173, 177]).

Minimax stochastic programming and DRO. A natural progression from generalized

moment problems is the application of this methodology to decision-making problems with

uncertain parameters. Minimax stochastic programming involves defining a set of probability

distributions to hedge against and then attempting to find the decision that provides the best

protection against worst-case outcomes. Such a minimax approach has its roots in the duality

theory for games, as introduced by Von Neumann. In his pioneering work, Scarf [191] was

arguably the first to bring the concept of minimax optimization into the area of operations

research. Scarf considered a single-item newsvendor problem where the demand distribution

is not precisely known, but only characterized by limited information. The set of admissible

distributions, also known as the ambiguity set, contained all distributions with specified mean

and variance. Scarf used duality techniques to find the worst-case distribution that maximizes

the total costs of the newsvendor, and then determined the order quantity such that these max-

imal total costs were minimized. Subsequently, generalized moment problems have been used

to solve such minimax optimization problems in a vast amount of literature (see, for instance,

[32, 34, 71, 197, 199, 232]). Another work that plays an important role in this thesis is the study

conducted by Ben-Tal and Hochman [19], who derived robust bounds for the expected value of

a convex function of random variables when in lieu of the variance, the mean absolute deviation

from the mean (MAD) is used as dispersion measure. In recent years, the minimax paradigm

regained traction in the operations research literature under the acronym DRO, or distribu-

tionally robust stochastic programming. The term DRO was first coined by [66], and has since

then become the standard terminology in the operations research community. Distribution-

ally robust optimization is advocated as the unifying paradigm between two distinct fields for
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Chapter 1. Introduction 3

decision-making under uncertainty: robust optimization and stochastic programming. Robust

optimization [17, 22] provides an effective way to deal with problems subject to parameter un-

certainty through uncertainty sets. Although encoding uncertainty through these uncertainty

sets often results in computationally tractable problems, the resulting solutions might turn out

to yield overly conservative outcomes. In contrast, stochastic programming captures parameter

uncertainty with full distributional information, but often yields intractable models [198]. Am-

biguity sets provide a powerful modeling tool for capturing distributional information about

uncertain parameters in terms of their support and descriptive statistics. A significant portion

of the literature on DRO is moment-based, with partial information given by means, moments,

and dispersion measures [66, 101, 178, 224]. As adequately described in [224], the tractability of

moment-based DRO problems relies on the intricate interplay between the objective function

and the structure of the ambiguity set. Other popular ambiguity sets are based on statistical-

distance measures, which restrict their members to be within a specific distance of a reference

distribution. Examples of these statistical-distance measures include 𝜙-divergences and the
Wasserstein distance (see, e.g., [15, 157]). In the present work, we focus mainly on moment-

based information. See [181] for overviews of many more DRO applications and techniques.

Extremal queue problem. Extremal stochastic models have been the subject of study

for a considerable period, dating back to the early works of Hoeffding [114], Hoeffding and

Shrikhande [115], Kingman [133]. At first, this body of literature primarily focused on simple

univariate problems or sums of random variables. However, extremal stochastic models also en-

compass problems that involve finding bounds for performance metrics of stochastic processes,

such as the waiting time in the GI/G/1 queue. One of the most renowned bounds in this context

is the one proposed by Kingman [132], which bounds the expected waiting time when one only

knows the means and variances of the service and interarrival times and is known to be tight

in heavy traffic. Nevertheless, an important unresolved problem in queueing theory is to find

the sharpest bound for the expected waiting time in the GI/G/1 queue with this mean-variance

information. In search for the tight upper bound, foundational work was done by [73, 187],

and by [222] in the context of the GI/M/1 queue. Whitt [222] considered the GI/M/1 queue

with given mean and variance of the interarrival time, and showed that the expected steady-

state waiting time is maximized when the interarrivals follow a specific two-point distribution.

Daley conjectured (see [24]) that the overall worst-case behavior, in terms of expected wait-

ing time, would be caused by two-point distributions for both the interarrival and the service

time. That conjecture was proved invalid by counterexamples in [222] when fixing either the

distribution of the interarrivals or the distribution of the services, but the conjecture remained

standing for the case when both are unspecified, except for their first two moments.

Positioning of the thesis.This thesis unifies these strands of research in the followingman-

ner. We employ primarily the techniques presented in the generalized moment problem litera-

ture to derive new distribution-free bounds. These novel bounds will be valuable for analyzing

distributionally robust stochastic programs, as well as for the extremal analysis of queueing

models.
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4 Distributionally robust views on stochastic models

1.2. The weak duality technique
We now introduce the duality framework by means of obtaining the sharpest possible upper

bound for the expectation 𝔼ℙ[𝑔(𝑋)] given limited information on the distribution ℙ of the ran-
dom variable 𝑋 . We model this through the generalized moment problemmaxℙ∈M+(Ω) 𝔼ℙ[𝑔(𝑋)] s.t. 𝔼ℙ[ℎ𝑗 (𝑋)] = 𝑞𝑗 for 𝑗 = 0, … ,𝑚, (1.1)

where ℙ belongs to the set of nonnegative measures M+(Ω) with support confined to Ω, and𝑔, ℎ0, … , ℎ𝑚 are measurable, real-valued functions with ℎ0 ≡ 1 and 𝑞0 = 1. Hereafter, through-
out the entire manuscript, we define measurable functions as exclusively real-valued ones with

respect to the appropriate Borel algebra. The functions ℎ0, … , ℎ𝑚 describe the available distribu-
tional information, and the expectations of these moment functions, 𝑞0, … , 𝑞𝑚, are assumed to
be known and finite. There are typically two common approaches to solving problem (1.1). For

the first approach, we need a concept that is analogous to basic solutions in standard linear pro-

gramming. The Richter-Rogosinski theorem (see, e.g., [186, Theorem 1] and [198, Lemma 3.1])

asserts the existence of an extremal distribution for (1.1) with at most 𝑚 + 1 support points.
Leveraging this general theory, one can reduce the semi-infinite linear program (1.1) to a finite-

dimensional optimization problem. This method is widely used for addressing problems in the

uncertainty quantification literature, as discussed in [98, 170]. Nevertheless, the resulting opti-

mization problems may be nonconvex, making them potentially challenging to solve.

The second approach involves solving the Lagrangian dual of (1.1),

min𝜆0,…,𝜆𝑚 𝑚∑𝑗=0 𝜆𝑗𝑞𝑗 s.t.
𝑚∑𝑗=0 𝜆𝑗ℎ𝑗 (𝑥) � 𝑔(𝑥), ∀𝑥 ∈ Ω, (1.2)

which can be used in lieu of the primal problem (1.1). It is worth emphasizing that in (1.2),

one optimizes over a set of dual functions characterized by the weighted sum of the moment

functions ℎ0, … , ℎ𝑚, whereas in (1.1), one optimizes over probability measures. However, this
approach can be somewhat strenuous, as we are still dealing with an infinite number of con-

straints. Therefore, we will take a different route.

We propose the notion of weak duality as a tool for solving generalized moment problems,

as discussed in, for example, [102, Chapter 2] and [191]. It turns out to be advantageous to

consider (1.1) directly in conjunction with its dual problem (1.2). By making an educated guess

for the dual solution, we can construct a corresponding primal solution. We can then use weak

duality to confirm the optimality of these candidate solutions.

We shall first demonstrate this versatile solution strategy for generalized moment problems

with generic objective functions. To illustrate the approach, we will use the probably most

well-known example from DRO. Then we will demonstrate that there exist combinations of

function classes and distributional information for which we can simplify the search for optimal

solutions even further. This ultimately leads to optimal distributions that depend exclusively

on the distributional information, irrespective of the functional form of 𝑔 . We shall refer to this
property as the “insensitivity” property.
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1.2.1. Concerning particular solutions
In his seminal work, Scarf [191] solved the distributionally robust stochastic programmin𝑞∈ℝ+ maxℙ∈P(𝜇,𝜎) 𝔼ℙ[𝐶(𝑞, 𝑋)]. (1.3)

Here the ambiguity setP(𝜇,𝜎) is defined as the set of all distributions with given mean 𝜇 and
variance 𝜎2, and 𝐶(𝑞, 𝑥) denotes the total cost incurred by the newsvendor when ordering 𝑞
units to meet a demand of 𝑋 . Scarf identified the worst-case distribution that yields the max-
imal costs for a given order quantity, and then determined the order quantity that minimized

the maximal total cost. Particularly pertinent to our interests is the inner maximization stage.

Scarf determined this “worst-case” through the use of weak duality, which involves solving the

problem maxℙ∈P(𝜇,𝜎) 𝔼ℙ[(𝑋 − 𝑞)+], (1.4)

where (𝑥)+ = max{𝑥, 0}. Scarf essentially sought, given the order quantity decision, the demand
distribution that maximized the expected excess demand. This problem is tantamount to solving

the semi-infinite linear program (LP)maxℙ ∫𝑥(𝑥 − 𝑞)+ dℙ(𝑥)
s.t. ∫𝑥 dℙ(𝑥) = 1, ∫𝑥 𝑥 dℙ(𝑥) = 𝜇, ∫𝑥 𝑥2 dℙ(𝑥) = 𝜇2 + 𝜎2, (1.5)

which has a finite number of moment constraints (three in this case), and an infinite number

of decision variables, modeled through the probability distribution ℙ (an infinite-dimensional
object essentially). Just as for linear programming, a dual problem can be set up using standard

techniques. The dual problem of (1.5) is yet another semi-infinite LP, but this time with an

infinite number of constraints, and it can be written asmin𝜆0,𝜆1,𝜆2 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜇2 + 𝜎2)
s.t. 𝑀(𝑥) ∶= 𝜆0 + 𝜆1𝑥 + 𝜆2𝑥2 � (𝑥 − 𝑞)+, ∀𝑥. (1.6)

It is not hard to see that problem (1.6) is weakly dual to (1.5), i.e., the optimal value of (1.6)

provides an upper bound for (1.5). This is easily shown as follows. Suppose that ℙ is feasible
for the primal and (𝜆0, 𝜆1, 𝜆2) is feasible for the dual. Then, by the constraints of (1.6),

∫𝑥(𝑥 − 𝑞)+dℙ(𝑥) � ∫𝑥 𝑀(𝑥)dℙ(𝑥) = 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜇2 + 𝜎2),
so that (1.6) is weakly dual to (1.5). As such, for every feasible ℙ and (𝜆0, 𝜆1, 𝜆2), (1.6) provides
an upper bound for the objective value of (1.5). Hence,maxℙ ∫𝑥(𝑥 − 𝑞)+dℙ(𝑥) � min𝜆0,𝜆1,𝜆2 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜇2 + 𝜎2).
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6 Distributionally robust views on stochastic models

Now, if one finds a feasible distribution ℙ∗ and a feasible dual vector (𝜆∗0, 𝜆∗1, 𝜆∗2) such that
∫𝑥(𝑥 − 𝑞)+dℙ∗(𝑥) = 𝜆∗0 + 𝜆∗1𝜇 + 𝜆∗2(𝜇2 + 𝜎2),

then these solutions are optimal for the primal problem (1.5) and the dual problem (1.6); more-

over, strong duality holds. Strong duality can be established directly under mild conditions on

the moment vector 𝐪 = (𝑞1, … 𝑞𝑚) (see, for example, [117] and [177, Theorem 2.1]). However, we
will not simply assume this; rather, we will seek optimal primal-dual solutions to demonstrate

strong duality in a more constructive manner. To this end, recall the complementary slackness

property from linear programming. This result readily extends to semi-infinite LPs. That is, forℙ∗ and (𝜆∗0, 𝜆∗1, 𝜆∗2) the optimal solutions to the primal and dual problems respectively,
∫𝑥(𝑀∗ − 𝑔)dℙ∗(𝑥) = 0.

This semi-infinite programming variation of complementary slackness (see, e.g., [201, p. 813])

implies that a sufficient condition for a feasible primal-dual solution pair to be optimal is that

the extremal distribution is supported on the points where the optimal dual function 𝑀∗(𝑥)
coincides with 𝑔(𝑥). It is thus sufficient to construct a feasible dual function 𝑀∗ and check its
optimality by constructing a feasible distribution with all of its probability mass on the points

where 𝑀∗(𝑥) = 𝑔(𝑥).

𝑥

(𝑥 − 𝑞)+𝑀(𝑥)

𝑥1 𝑥2𝑞
Figure 1.1: Primal-dual solutions to Scarf’s distributionally robust stochastic program

These insights combined provide a constructive method for solving a semi-infinite LP, like

Scarf’s or in general. The solution of the dual problem not only gives an upper bound for

the primal problem (by weak duality), but also identifies a candidate worst-case distribution.

Indeed, in this way Scarf proved (1.5) is solved by 𝜆0, 𝜆1, 𝜆2 yielding a parabola 𝑀(𝑥), as in
Figure 1.1, that touches (𝑥 − 𝑞)+ at two points. Since 𝑀(𝑥) is convex, it touches (𝑥 − 𝑞)+ at the
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points 𝑥1, 𝑥2 where 𝑀(𝑥1) = 0, 𝑀(𝑥2) = (𝑥2 − 𝑞), and𝑀′(𝑥1) = 0 ⟺ 𝜆1 + 2𝜆2𝑥1 = 0 ⟹ 𝑥1 = − 𝜆12𝜆2 .𝑀′(𝑥2) = 1 ⟺ 𝜆1 + 2𝜆2𝑥2 = 1 ⟹ 𝑥2 = 1 − 𝜆12𝜆2 .
Substituting 𝑥2 = 1−𝜆12𝜆2 into 𝑀(𝑥2) = (𝑥2 − 𝑞) and 𝑥1 = − 𝜆12𝜆2 into 𝑀(𝑥1) = 0 gives𝜆0 = (1 − 4𝑞𝜆2)216𝜆2 , 𝜆1 = 12 − 2𝑞𝜆2.
Inserting these values into the dual objective function leads us to considermin𝜆2 (1 − 4𝑞𝜆2)216𝜆2 + (12 − 2𝑞𝜆2) 𝜇 + 𝜆2(𝜇2 + 𝜎2).
Taking the derivative with respect to 𝜆2 and setting it equal to zero, we find that𝜆∗2 = 14√(𝜇 − 𝑞)2 + 𝜎2 . (1.7)

Thus, the dual objective value equals(1 − 4𝑞𝜆∗2)216𝜆∗2 + (12 − 2𝑞𝜆∗2) 𝜇 + 𝜆∗2(𝜇2 + 𝜎2) = 12(𝜇 − 𝑞 + √(𝜇 − 𝑞)2 + 𝜎2).
Using the proposed support points𝑥1 = 𝑞 − 14𝜆∗2 = 𝑞 − √(𝜇 − 𝑞)2 + 𝜎2, 𝑥2 = 𝑞 + 14𝜆∗2 = 𝑞 + √(𝜇 − 𝑞)2 + 𝜎2,
we return to the primal problem and solve𝑝1 + 𝑝2 = 1, 𝑝1𝑥1 + 𝑝2𝑥2 = 𝜇, 𝑝1𝑥21 + 𝑝2𝑥22 = 𝜇2 + 𝜎2. (1.8)

Hence, 𝑝1 = 12(1 − 𝜇 − 𝑞√(𝜇 − 𝑞)2 + 𝜎2 ), 𝑝2 = 12(1 + 𝜇 − 𝑞√(𝜇 − 𝑞)2 + 𝜎2 )
with primal objective value

∫𝑥(𝑥 − 𝑞)+dℙ(𝑥) = (𝑥2 − 𝑞)𝑝2 = 12(𝜇 − 𝑞 + √(𝜇 − 𝑞)2 + 𝜎2).
Thus, we observe that the objective values of the primal and dual feasible solutions agree. By

weak duality, we conclude that this primal-dual solution pair is optimal for the semi-infinite LP

(1.5) and its dual problem (1.6). In the end, this yields the tight upper boundmaxℙ∈P(𝜇,𝜎) 𝔼[(𝑋 − 𝑞)+] = 12 (𝜇 − 𝑞 + √(𝜇 − 𝑞)2 + 𝜎2) . (1.9)



623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen
Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023 PDF page: 14PDF page: 14PDF page: 14PDF page: 14

8 Distributionally robust views on stochastic models

It is worth noting that the precise form of the objective function plays a crucial role in iden-

tifying the optimal solution to maxℙ∈P(𝜇,𝜎) 𝔼[(𝑋 − 𝑞)+]. So, even though a general method of
solution (i.e., weak duality) exists, determining the optimal solution vector (𝜆∗0, 𝜆∗1, 𝜆∗2) typically
remains an ad hoc procedure. Thus, finding the optimal primal-dual solution pair can still be an

arduous task. However, as we will discuss next, specific conditions on the shape of the function𝑔 can considerably simplify the search for the optimal solution.
1.2.2. Concerning insensitive solutions

As in the previous subsection, we strive to find the extremal distribution for 𝑋 that gives the
worst-case expectation for the function 𝑔 . However, here it is assumed that besides being mea-
surable and finite valued, 𝑔(⋅) is a convex function of 𝑋 . To describe all considered distribu-
tions, we define an ambiguity set that consists of all distributions that comply with the limited

information available. The partial information consists of 𝑋 having a known bounded support,
supp(𝑋) ⊆ Ω ∶= [𝑎, 𝑏] with −∞ < 𝑎 � 𝑏 < ∞, mean 𝔼ℙ[𝑋] = 𝜇 and MAD 𝔼ℙ[|𝑋 − 𝜇|] = 𝑑. This
defines the ambiguity set

P(𝜇,𝑑) = {ℙ ∶ supp(𝑋) ⊆ [𝑎, 𝑏], 𝔼ℙ[𝑋] = 𝜇, 𝔼ℙ[|𝑋 − 𝜇|] = 𝑑} . (1.10)

In what follows, 𝑋 is a random variable whose distribution belongs to the setP(𝜇,𝑑). The ex-
tremal distribution that solves the resulting moment problem is a three-point distribution with

support {𝑎, 𝜇, 𝑏} and respective probabilities [19]
𝑝1 = 𝑑2(𝜇 − 𝑎) , 𝑝2 = 1 − 𝑑2(𝜇 − 𝑎) − 𝑑2(𝑏 − 𝜇) , 𝑝3 = 𝑑2(𝑏 − 𝜇) . (1.11)

Observe that this extremal distribution does not in any way depend on the objective function 𝑔 .
It is quite insightful to see why the moment problem (1.1), with a convex objective function and

MAD as the dispersion measure, returns such a simple worst-case distribution. Under mean-

MAD ambiguity of one random variable 𝑋 , (1.1) specializes to the semi-infinite LP
maxℙ ∫Ω 𝑔(𝑥) dℙ(𝑥)
s.t. ∫Ω dℙ(𝑥) = 1, ∫Ω 𝑥 dℙ(𝑥) = 𝜇, ∫Ω |𝑥 − 𝜇| dℙ(𝑥) = 𝑑, (1.12)

to which the problemmin𝜆0,𝜆1,𝜆2 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑
s.t. 𝑈(𝑥) ∶= 𝜆0 + 𝜆1𝑥 + 𝜆2|𝑥 − 𝜇| � 𝑔(𝑥), ∀𝑥 ∈ [𝑎, 𝑏] (1.13)

is weakly dual. The function 𝑈(𝑥) has a “kink” at 𝑥 = 𝜇. Since the majorant is piecewise linear
and convex, every convex function 𝑔(𝑥) is majorized by letting 𝑈(𝑥) touch at the boundary
points 𝑎, 𝑏 and at the kink point 𝜇, as displayed in Figure 1.2a. For this choice of 𝑈(𝑥), the dual
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variables are 𝜆0 = 𝑓 (𝑎) − 𝜆1𝑎 − 𝜆2(𝜇 − 𝑎), 𝜆1 = 12 (𝑓 (𝑏) − 𝑓 (𝜇)𝑏 − 𝜇 + 𝑓 (𝜇) − 𝑓 (𝑎)𝜇 − 𝑎 ) ,𝜆2 = 12 (𝑓 (𝑏) − 𝑓 (𝜇)𝑏 − 𝜇 − 𝑓 (𝜇) − 𝑓 (𝑎)𝜇 − 𝑎 ) .
By the complementary slackness property, we expect the three points at which 𝑔(𝑥) and 𝑈(𝑥)
coincide to constitute the support of the extremal distribution. From the constraints of (1.12),

we obtain a linear system of three unknown probabilities and three equations:𝑝1 + 𝑝2 + 𝑝3 = 1, 𝑝1𝑎 + 𝑝2𝜇 + 𝑝3𝑏 = 𝜇, 𝑝1|𝑎 − 𝜇| + 𝑝3|𝑏 − 𝜇| = 𝑑,
yielding (1.11). After substituting this primal-dual solution pair in (1.12) and (1.13), it immedi-

ately follows that strong duality holds. As a result, this particular category of functions (i.e.,

convex functions), in conjunction with a specific type of information, renders the extremal dis-

tribution “insensitive” to the exact form of the objective function. That is, it only depends on

the distributional information specified.

𝑥

𝑔(𝑥)𝑈 (𝑥)

𝜇𝑎 𝑏
(a)The majorant 𝑈(𝑥)

𝑥

𝑔(𝑥)𝐿(𝑥)

𝜇𝑥1 𝑥2
(b)The minorant 𝐿(𝑥)

Figure 1.2: Some convex function 𝑔(𝑥) and the dual functions for mean-MAD(-𝛽) information
These tight upper bounds correspond to worst-case scenarios. As a second example, we show

how MAD information can be used to determine best-case scenarios and hence tight lower

bounds. Define a second ambiguity set, which is a subset ofP(𝜇,𝑑):
P(𝜇,𝑑,𝛽) = {ℙ ∶ ℙ ∈P(𝜇,𝑑), ℙ(𝑋 � 𝜇) = 𝛽} . (1.14)

Here, some information regarding the skewness of the distribution, ℙ(𝑋 � 𝜇) = 𝛽, is added to
the ambiguity set. Ben-Tal and Hochman [19] proved a general lower bound for the expectation

of a convex function of a random variable with ℙ ∈P(𝜇,𝑑,𝛽).
For the tight lower bound, it can be shown that the best-case distribution is a two-point

distribution which is insensitive to the precise functional form of 𝑔 , except that it must be
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10 Distributionally robust views on stochastic models

convex. For 𝑋 ∼ ℙ with ℙ ∈P(𝜇,𝑑,𝛽), the tight lower bound follows from solvingminℙ ∫Ω 𝑔(𝑥)dℙ(𝑥)
s.t. ∫Ω dℙ(𝑥) = 1, ∫Ω 𝑥dℙ(𝑥) = 𝜇, ∫Ω |𝑥 − 𝜇|dℙ(𝑥) = 𝑑, ∫Ω {𝑥�𝜇}(𝑥)dℙ(𝑥) = 𝛽, (1.15)

which is a semi-infinite LP with four equality constraints.

Consider the dual of (1.15),max𝜆0,𝜆1,𝜆2,𝜆3 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑 + 𝜆3𝛽
s.t. 𝑔(𝑥) � 𝜆0 + 𝜆1𝑥 + 𝜆2|𝑥 − 𝜇| + 𝜆3{𝑥�𝜇}(𝑥), ∀𝑥 ∈ Ω. (1.16)

Define 𝐿(𝑥) ∶= 𝜆0 + 𝜆1𝑥 + 𝜆2|𝑥 − 𝜇| + 𝜆3{𝑥�𝜇}. Then the inequality in (1.16) can be written
as 𝑔(𝑥) � 𝐿(𝑥), ∀𝑥 , i.e. 𝐿(𝑥) minorizes 𝑔(𝑥). In this case, 𝐿(𝑥) has both a “kink” and a jump
discontinuity at 𝑥 = 𝜇, as depicted in Figure 1.2b.
Thus, the goal is to find the tightest minorant that maximizes the objective value of the dual

problem. By the supporting hyperplane theorem, 𝐿(𝑥) touches the epigraph of 𝑔(𝑥) at two
points on opposite sides of 𝜇 (i.e., at 𝑥1 � 𝜇 � 𝑥2). Using this insight, it follows from solving
the moment conditions𝑝1 + 𝑝2 = 1, 𝑝1𝑥1 + 𝑝2𝑥2 = 𝜇, 𝑝1|𝑥1 − 𝜇| + 𝑝2|𝑥2 − 𝜇| = 𝑑, 𝑝2 = 𝛽,
that 𝑥1 = 𝜇 − 𝑑2(1 − 𝛽) , 𝑥2 = 𝜇 + 𝑑2𝛽
and ℙ(𝑋 = 𝑥1) = 1 − 𝛽 and ℙ(𝑋 = 𝑥2) = 𝛽. Solving for 𝜆0, 𝜆1, 𝜆2 and 𝜆3, such that we obtain𝐿(𝑥), yields𝜆0 = 𝑔(𝑥1) + (𝜆1 − 𝜆2)𝑑2(1 − 𝛽) − 𝜆1𝜇, 𝜆3 = 𝑔(𝑥2) − 𝑔(𝑥1) + 𝜆2𝑑(1 − 𝛽) − (𝜆1 + 𝜆2)𝑑2𝛽(1 − 𝛽) .
To ensure the solution is dual feasible, the free dual variables 𝜆1, 𝜆2 are chosen such that 𝜆2 −𝜆1
and 𝜆2 + 𝜆1 equal the slope of 𝑔(𝑥) at 𝑥 = 𝑥1 and 𝑥2, respectively. It is then easily verified that
the optimal value of (1.15) and (1.16) is given by (1 − 𝛽)𝑔(𝑥1) + 𝛽𝑔(𝑥2), attained by the two-
point distribution with support {𝑥1, 𝑥2} and respective probabilities {(1 − 𝛽), 𝛽}. This extremal
distribution is again insensitive to the objective function. This insensitivity will prove to be

rather helpful in the distribution-free analysis of stochastic models.

1.3. The multivariate problem with i.i.d. random variables
Now consider 𝑔𝑛(𝐗) as function of the random vector 𝐗 = (𝑋1, … , 𝑋𝑛) with support Ω ⊆ ℝ𝑛.
This function might reflect the realization of a stochastic process or some cost in a decision

problem, for which the vector 𝐗 then represents the driving sequence of the stochastic process
or the uncertain parameters in the decision problem. We then seek a solution to the problemmaxℙ∈P 𝔼ℙ[𝑔𝑛(𝐗)] (1.17)
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with ℙ some joint distribution from the setP of distributions compatible with the partial infor-

mation. The partial information available here pertains to the joint measure and might contain

information about both marginal and cross moments, among other types of information. It

turns out most of the duality techniques discussed in the previous section still apply to the

multivariate setting, albeit under some additional assumptions (see, e.g., [117, 196, 201]).

We will first introduce a particular instance of (1.17), and then we discuss how these multi-

variate problems are typically solved using the duality theory of generalized moment problems.

Finally, we will elaborate on why this becomes significantly more complicated for the setting

with i.i.d. random variables.

1.3.1. The extremal queue problem

When i.i.d. random variables are involved, problem (1.17) becomes substantially more difficult

to solve. The following function is a classic example in applied probability that brings this

difficult i.i.d. setting: 𝑓𝑛(𝑥1, … , 𝑥𝑛) = max{0, 𝑥1, … , 𝑥1 + ⋯ + 𝑥𝑛},
for which 𝔼ℙ[𝑓𝑛(𝐗)] expresses the expected running maximum of a random walk 𝑆𝑛 ∶= 𝑋1 +⋯ + 𝑋𝑛 (𝑆0 ∶= 0) with the i.i.d. driving sequence {𝑋𝑛, 𝑛 � 1} distributed as 𝑋 . The random
walk {𝑆𝑛, 𝑛 � 0} and its running maximum 𝑀𝑛 ∶= max{𝑆0, 𝑆1, … , 𝑆𝑛} are extensively studied in
standard texts on probability theory [7, 56, 57, 79] with methods that require full distributional

information of 𝑋1, … , 𝑋𝑛. However, in this thesis, we concentrate on the setting in which the
distribution is only partially known. Denote by𝑊𝑛 the waiting time of customer 𝑛 in the GI/G/1
queue, where 𝑊0 = 0. Let 𝑋𝑛 = 𝑉𝑛 − 𝑈𝑛 be the difference between service and interarrival time.
The waiting-time process satisfies Lindley’s recursion𝑊𝑛+1 = (𝑊𝑛 + 𝑋𝑛)+, 𝑛 � 0,
which, by the i.i.d. assumption, is equivalent to𝑊𝑛+1 𝑑= max{0, 𝑋1, … , 𝑋1 + 𝑋𝑛} = max{𝑆0, 𝑆1, … , 𝑆𝑛} = 𝑀𝑛,
where

𝑑= denotes equality in distribution. The sequence {𝑊𝑛, 𝑛 � 0} is thus generated by the
random walk {𝑆𝑛, 𝑛 � 0}, through its running maximum {𝑀𝑛, 𝑛 � 0}. Then, if only the first two
moments of the interarrival and service times are known, it is of interest to solve the problemmaxℙ∈P𝑉 ,𝑈 𝔼[𝑓𝑛(𝐗)]
whereP𝑉 ,𝑈 is based on the available moment information and 𝐗 is a random vector with ele-
ments {𝑉𝑖, 𝑈𝑖}𝑛𝑖=1. As 𝑛 → ∞, this yields the extremal queue problem, one of the longest-standing
open problems in queueing theory [50, 60, 222], which aims to determine tight bounds for the

moments of the stationary GI/G/1 waiting time 𝑊 ∶= lim𝑛→∞ 𝑊𝑛.
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1.3.2. Strong duality for generalized moment problems
The concept of duality theory to solve generalized moment problems originated in the 1960s,

most notably in the works of [117, 118, 128, 130, 133]. Smith [201] provided a modern account of

this duality theory with applications in operations research and decision theory, while Shapiro

[196] discussed more rigorously the necessary topological conditions for strong duality, relat-

ing the duality results for generalized moment problems to the more general theory on conic

duality. More recently, a stream of research exploits the connections between moment prob-

lems, nonnegativity of polynomials and semidefinite programming (see, e.g., [29, 139]). In his

now-classical work, Stieltjes [205, 206] introduced the problem of moments in its most basic

form. It concerns itself with identifying whether the set

P(𝐪) ∶= {ℙ ∈ M+(Ω) ∶ ∫ ℎ𝑗 (𝑥)dℙ(𝑥) = 𝑞𝑗 , 𝑗 = 0, … ,𝑚}, (1.18)

contains any elements, and it is thus recognized as a feasibility problem. As a closely related

concept that wewill leverage, denote with C the cone of moments 𝐪 ∈ ℝ𝑚 that yield a nonempty
ambiguity setP(𝐪), i.e.,

C ∶= {𝐪 ∈ ℝ𝑚 ∶ ∃ℙ ∈ M+(Ω) such that ℙ ∈ P(𝐪)} .
This set identifies the moment vectors for which the moment problem admits a solution.

We now turn to the generalized moment problem, in which we aim to find the tight upper

bounds on some objective 𝔼[𝑔𝑛(𝐗)], transforming the feasibility problem into an optimization
problem. Like (1.1), problem (1.17) can be stated as a semi-infinite linear programming problem,maxℙ∈M+(Ω) ∫Ω 𝑔𝑛(𝐱)dℙ(𝐱) s.t. ∫Ω ℎ𝑗 (𝐱)dℙ(𝐱) = 𝑞𝑗 for 𝑗 = 0, … ,𝑚, (1.19)

but now considering the joint probability distribution of the components of 𝐗, defined on the
support Ω, instead of the probability distribution of a single random variable 𝑋 . The dual prob-
lem of (1.19) can be expressed asmin𝜆0,…,𝜆𝑚 𝑚∑𝑗=0 𝜆𝑗𝑞𝑗 s.t.

𝑚∑𝑗=0 𝜆𝑗ℎ𝑗 (𝐱) � 𝑔(𝐱), ∀𝐱 ∈ Ω, (1.20)

which is similar to (1.2), but involves multivariate functions. The duality results discussed in

Section 1.2 can be readily extended to the multivariate setting (see, e.g., [117, 133]). To achieve

this, we only need the additional assumption that the moment vector 𝐪 lies in the interior of
the moment cone C. If this is the case, strong duality is ensured to hold. However, even though

solving the dual is sufficient, it involves checking nonnegativity of a multivariate function,

which can be a daunting task in general. Whenwe only considermarginal moment information,

the dual problem usually admits a computationally more tractable reformulation at the cost

of disregarding the dependency structure between the components of 𝐗. On the other hand,
cross-moment ambiguity sets incorporate this information, resulting in tighter bounds but often

leading to hard optimization problems [25, 163, 165]. The computational tractability of the dual

problem is a widely studied problem in the DRO literature; see, for example, [29, 66, 100, 224].
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1.3.3. Computational intractability of i.i.d. driving sequences
Consider a stochastic model with independent random variables {𝑋𝑖}𝑛𝑖=1 of which the distribu-
tions {ℙ𝑖}𝑛𝑖=1 belong to some ambiguity set {P𝑖}𝑛𝑖=1. In the previous subsection, we considered
the joint probability distribution ℙ defined on the support of 𝐗. Instead, we shall now optimize
over the (constrained) joint measure ℙ = ℙ1 ⊗ ℙ2 ⊗ ⋯ ⊗ ℙ𝑛, where the marginal distributions{ℙ𝑖}𝑛𝑖=1 all lie in their respective ambiguity sets, and ⊗ denotes the product measure operator.
The objective function then takes the form

∫𝑥𝑛 ⋯∫𝑥2 ∫𝑥1 𝑔𝑛(𝑥1, … , 𝑥𝑛) dℙ1(𝑥1) ⋅ dℙ2(𝑥2)⋯ dℙ𝑛(𝑥𝑛), (1.21)

which is no longer linear, nor concave, with respect to the optimization variables (i.e., the prob-

ability measures). As a consequence, (1.21) does not yield a convex optimization problem, and

therefore, strong duality might not hold. Yet another way to look at this is as follows: Indepen-

dence is a structural property imposed on all (joint) probability distributions in the setP. As an

example, denote byP0 the set of all probability distributions with support Ω = {0, 1}2. We thus
consider two binary-valued random variables 𝑋, 𝑌 . Define 𝛿(𝑥,𝑦) as the Dirac measure which
puts a probability mass of one on the support point (𝑥, 𝑦). The setP0 can be characterized as
the closure (with respect to the weak topology) of the convex hull of its extreme points, which

are the Dirac measures, and is thus a convex set. However, notice that all mixture distributions

(convex combinations) of the two extreme points 𝛿(0,0) and 𝛿(1,1) have perfectly correlated com-
ponents. As a result, these convex combinations cannot be elements of the ambiguity set that

has the independence property. The structural property of independence degrades the structure

of the set of probability distributionsP0, transforming it into a nonconvex set that is less ideal
to work with since it makes finding a global optimum considerably more difficult. To alleviate

these difficulties, one could of course relax—or, in a sense, convexify—problem (1.21) by using

(1.17) instead, but this still allows (higher-order) correlations between the random variables,

even when we impose the cross-moment constraints 𝔼[(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗 )] = 0, ∀𝑖 ≠ 𝑗 .
By means of an example, we will explain why optimization problem (1.21) is challenging,

as already pointed out in the works by [114] and [133]. There do exist methods to solve (1.21)

under the assumption of independent (not necessarily identical) random variables, although

they can become computationally cumbersome. To illustrate this point, we will use the random

walk example described at the beginning of this section. Formally, finding the tight bound for

the running maximum of a random walk can be achieved by solving the following optimization

problem over probability distributions:maxℙ,{ℙ𝑖}𝑛𝑖=1𝔼ℙ [max{0, 𝑋1, … , 𝑋1 + ⋯ + 𝑋𝑛}]
s.t. ℙ = ℙ1 ⊗ ℙ2 ⊗ ⋯ ⊗ ℙ𝑛,𝔼ℙ𝑖 [ℎ𝑗 (𝑋𝑖)] = 𝑞𝑖,𝑗 , 𝑖 = 1, 2, … , 𝑛, 𝑗 = 1, … ,𝑚. (1.22)

The measure ℙ, defined on ℝ𝑛, is the joint probability measure of the random vector𝐗, which is
constructed from the individual probability distributions {ℙ𝑖}𝑛𝑖=1 through the product measure
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14 Distributionally robust views on stochastic models

operator. By writing ℙ in this particular form, we impose independence among the random
variables in 𝐗. For the sake of exposition, let us concentrate on the setting with mean-variance
information constraints. Problem (1.22) then becomesmaxℙ,{ℙ𝑖}𝑛𝑖=1𝔼ℙ [max{0, 𝑋1, … , 𝑋1 + ⋯ + 𝑋𝑛}]

s.t. ℙ = ℙ1 ⊗ ℙ2 ⊗ ⋯ ⊗ ℙ𝑛,𝔼ℙ𝑖 [𝑋𝑖] = 𝜇𝑖, 𝑖 = 1, 2, … , 𝑛,𝔼ℙ𝑖 [𝑋2𝑖 ] = 𝜇2𝑖 + 𝜎2𝑖 , 𝑖 = 1, 2, … , 𝑛.
(1.23)

Note that the objective function is linear in the joint probability distribution ℙ, and the moment
constraints are linear in the marginal distributions {ℙ𝑖}𝑛𝑖=1. If we would ignore the indepen-
dence constraint, (1.23) becomes a marginal-moment problem with mean-variance constraints

for each marginal distribution ℙ𝑖. It is worth recalling that such infinite-dimensional problems
can be reduced to finite-dimensional ones, of which the optimal objective values are preserved,

since the optimal distribution is always achieved by discrete point distributions. In fact, from

the independence constraint, it follows that every marginal distribution is optimized by a dis-

crete distribution ℙ∗𝑖 with support on at most 𝑚 + 1 points, where 𝑚 is the number of moment
constraints [170]. In other words, the Richter-Rogosinski theorem still holds even if we impose

independence. For an elegant proof using Fubini’s theorem, we refer the interested reader to

the work of Kingman [133, Theorem 3], who also provides an excellent discussion on some of

the topics discussed in this introduction.

Since our example involves two information constraints (mean and variance), each ℙ∗𝑖 con-
sists of at most three point masses. We denote the support and probabilities for each 𝑋𝑖 as(𝑥(𝑖)1 , 𝑥(𝑖)2 , 𝑥(𝑖)3 ) and (𝑝(𝑖)1 , 𝑝(𝑖)2 , 𝑝(𝑖)3 ), respectively. After applying the Richter-Rogosinski theorem,
(1.23) can be reduced to the following optimization problem:

max𝐩,𝐱 ∑𝜶∈{1,2,3}𝑛 ( 𝑛∏𝑖=1 𝑝(𝑖)𝛼𝑖 )max{𝑥(1)𝛼1 , … , 𝑥(1)𝛼1 + ⋯ 𝑥(𝑛)𝛼𝑛 }
s.t.

3∑𝑗=1 𝑝(𝑖)𝑗 𝑥(𝑖)𝑗 = 𝜇𝑖, 𝑖 = 1, 2, … , 𝑛,
3∑𝑗=1 𝑝(𝑖)𝑗 (𝑥(𝑖)𝑗 )2 = 𝜇2𝑖 + 𝜎2𝑖 , 𝑖 = 1, 2, … , 𝑛,0 � 𝐩 � 1, 𝐱 ∈ Ω.

(1.24)

Clearly, this problem can be computationally challenging due to the decision variables being

both the support points and the probabilities. While numerical optimization can be used to de-

termine the extremal distribution, it may not provide the necessary insights into the structural

properties of the extremal distribution that are needed to solve the problem for arbitrary 𝑛.
The example presented above does not assume that the independent variables {𝑋𝑖}𝑛𝑖=1 are iden-

tically distributed. Imposing identical distributions would lead to losing the ability to reduce the
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semi-infinite LP to its finite-dimensional counterpart. To overcome this limitation, one could

replace the identicality constraint with the constraint of identical moments (up to a certain or-

der), as proposed in [27]. Unfortunately, an exact analysis of the i.i.d. setting resulting in explicit

solutions remains elusive. Although a general framework for distribution-free analysis under

the i.i.d. assumption is still desired, this thesis does offer some results that leverage a simple

insight to analyze i.i.d. stochastic models by exploiting the insensitivity property introduced

earlier. However, we acknowledge that this approach may not be applicable in more general

settings. For further details, please refer to Chapters 2, 7 and 8.

1.4. Contributions and outline
This thesis presents seven chapters on various stochastic models assessed with techniques from

distribution-free analysis. Each chapter has its own notation that is tailored to its content. We

now highlight the main contributions of each chapter and explain how all themes throughout

the thesis fit together through the principles outlined in this introduction. We emphasize two

key contributions, which serve as a unifying theme across all chapters:

1. We utilize semi-infinite linear programs and primal-dual techniques (as discussed in Sec-

tion 1.2) to establish sharp bounds for the distribution-free analysis and optimization

of stochastic models. These tight bounds provide an effective approach for handling

distribution-free decision making problems.

2. We propose specific combinations of objective functions and ambiguity sets that result

in insensitive extremal distributions. Such insensitivity not only allows us to evaluate

stochastic models driven by i.i.d. sequences, but it also simplifies DRO problems by re-

ducing them to stochastic programs with a worst-case distribution that is independent of

the decision variables.

In Chapter 2, we address the extremal queue problem by determining the worst possible

performance of the GI/G/1 queue under mean-dispersion constraints for the interarrival- and

service-time distributions. To address this problem, we use as dispersion measure the MAD

rather than the more commonly used variance. We then make the crucial observation that the

expected waiting time can be written in the form𝔼ℙ[𝑊𝑛] = 𝔼ℙ[max{0, 𝑋1, … , 𝑋1 + ⋯ + 𝑋𝑛}],
which is componentwise convex in the random variables 𝑋1, … , 𝑋𝑛. As a consequence, we can
utilize the tight mean-MAD bounds, as derived in Section 1.2.2, for the distribution-free anal-

ysis of the GI/G/1 queue. Our analysis leverages the insensitivity property of the extremal

distribution to derive the sharpest possible upper bounds for all moments of the waiting time,

circumventing the computational issues that arise with the i.i.d. assumption. Furthermore, by

utilizing the mean-MAD lower bound, we are able to produce tight lower bounds that, in con-

junction with the tight upper bounds, provide distribution-free performance intervals.
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In Chapter 3, we examine an M/M/𝑠 queue in which the arrival rate is a random variable Λ
with only known mean, variance and range. Through the use of semi-infinite programming

duality, we establish tight bounds for the expected wait. These bounds are based on an arrival

rate that takes only two values. Unlike the distribution that maximizes Scarf’s bound (1.4), this

two-point distribution possesses the insensitivity property, as with the mean-MAD ambigu-

ity set. The proofs rely heavily on the fact that the expected wait 𝑊(⋅), as a function of the
arrival rate 𝜆, has a convex derivative. Specifically, we demonstrate that the third derivative𝑊′′′(𝜆) is nonnegative, which leads to the insensitivity property and substantially simplifies
the distribution-free analysis of 𝔼ℙ[𝑊 (Λ)].
In Chapter 4, we derive novel bounds on the tail probability of a random variable given

support, mean and dispersion information. As alternatives for the renowned Chebyshev in-

equality, we present tight lower and upper bounds on the tail probability for random variables

with known bounded support, mean and mean absolute deviation. We derive these bounds as

exact solutions to semi-infinite linear programs, employing the weak duality framework set

forth in Section 1.2.1. To this end, we consider as objective function 𝔼ℙ[�{𝑋�𝑡}(𝑋)], where �Ξ
denotes the (discontinuous) indicator function for the event Ξ. We then apply these bounds
for distribution-free analysis of the newsvendor model, stop-loss reinsurance and a chance-

constrained optimization problem in radiotherapy.

In Chapter 5, we consider the problem of bounding conditional expectations based on infor-

mation about the moments of the underlying distribution and the observed random event. For

this, we consider objective functions that take the following semi-infinite programming form:

𝔼ℙ[𝑔(𝑋) | 𝑋 � 𝑡] = 𝔼ℙ[𝑔(𝑋)�{𝑋�𝑡}(𝑋)]𝔼ℙ[�{𝑋�𝑡}(𝑋)] = ∫ 𝑔(𝑥)�{𝑋�𝑡}(𝑥)dℙ(𝑥)∫ �{𝑋�𝑡}(𝑥)dℙ(𝑥) ,
which is nonlinear with respect to the probability measure ℙ; that is, the objective is a linear-
fractional function of ℙ. However, through a simple transformation, we can reformulate this
problem as a semi-infinite LP. This enables us to use the techniques described in Section 1.2.1

to obtain tight bounds for conditional expectations.

Chapter 6 focuses on the multi-item newsvendor problem with a constrained budget, where

demand information is limited to its range, mean and mean absolute deviation. We determine

optimal order quantities by solving a minimax problem that minimizes costs for the worst-case

demand distributions. Using the mean-MAD bounds and recognizing that the newsvendor cost

function is separable, i.e.,

𝔼ℙ[ 𝑛∑𝑖=1 (𝑋𝑖 − 𝑞𝑖)+] = 𝑛∑𝑖=1 𝔼ℙ[(𝑋𝑖 − 𝑞𝑖)+],
we reduce the problem to a stochastic program with a particularly simple structure. This opti-

mization problem can be solved through a greedy approach, reminiscent of the algorithm that

resolves the continuous knapsack problem. The proposed method prescribes a policy that first

ranks items based on their marginal effect on total cost and then orders them until the budget

is exhausted.
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Chapter 7 focuses on the Appointment Scheduling Problem (ASP), which involves schedul-

ing planned appointments for a single server serving a given number of customers within a

fixed period. The objective is to minimize a cost function that takes into account both the

costs of waiting and overtime costs for the server. Even with fully specified service-time dis-

tributions, the ASP presents a computationally challenging stochastic program. When there is

limited distributional information available, one can apply distribution-free analysis techniques

to find the schedule that minimizes costs in worst-case scenarios. However, determining the

extremal distributions under the independence assumption is difficult. Consequently, existing

methods consider relaxations that allow dependence between service times, which may result

in highly correlated extremal distributions. Despite the challenges posed by the independence

assumption, the ASP can be analyzed using similar distribution-free techniques as those used

in Chapter 2 for the GI/G/1 queue.

Finally, Chapter 8 concludes this thesis by examining classes of functions and distributional

information that exhibit the insensitivity property. We also suggest possible directions for fu-

ture research to develop amore general framework for distribution-free analysis of i.i.d. stochas-

tic models.
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2
MAD dispersion measure makes extremal

queue analysis simple

2.1. Introduction
Queueing theory has existed for more than a century, with the GI/G/1 queue playing a cen-

tral role in this theory as a model for a single server and independent generally distributed

interarrival and service times. In this model, the waiting times of consecutive customers can

be expressed as maxima of a random walk with step size equal in distribution to the differ-

ence of the service and interarrival times. This random walk and its maxima can be studied

with mathematical techniques for sums of random variables, covered in many standard texts

on probability theory: [7, 56, 79]. For all moments of the maxima (i.e., waiting times), general

expressions are available that involve convolutions of the distribution of the step size. To use

these general expressions, one thus needs to specify the precise distribution of the increments,

and in the case of the GI/G/1 queue the distributions of both the interarrival and service times.

Special cases of the GI/G/1 queue can be studied with dedicated techniques for Markov

chains. For instance, the M/G/1 queue with Poisson arrivals and the GI/M/1 queue with expo-

nential services have explicit solutions that are more insightful than the general random walk

results; see, for example, [7] and [57]. Another large, somewhat opposite branch of queueing

theory concerns finding approximations and bounds. For the steady-state waiting time in the

This chapter is based on the research paper [210].

19
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GI/G/1 queue, a classical bound for its expected value was obtained by Kingman [132] in terms

of the first two moments of both the interarrival and the service time. While Kingman’s bound

is sharp in situations of heavy traffic, when the server’s utilization approaches 1, it leaves room

for improvement for all other values of the utilization.

In search for that sharpest possible (tight) upper bound when the first two moments of the

interarrival and service times are given, significant progress was made by [24, 73, 187, 222], and

it was conjectured by Daley in [24] that the overall worst-case behavior of the waiting time

in the GI/G/1 queue would be caused by two-point distributions for both the interarrival and

the service time. After this initial thrust of research, it remained silent for a while, until re-

cently Chen and Whitt [49] derived sufficient conditions for the tight bounds to be attained by

the conjectured two-point distributions. Without these additional conditions, the exact form of

the extremal distributions can only be determined numerically, as the solution of a hard non-

convex nonlinear optimization problem. Extensive numerical experiments led Chen and Whitt

to conjecture that for the general problem, with undetermined service- and interarrival-time

distributions, the worst case is formed by two-point distributions, in line with the conjecture

postulated several decades ago. Finding the extremal queue for given mean-variance informa-

tion is therefore one of the longest-standing problems in the field. That problem remains open.

We consider the same problem of finding the sharpest possible bounds for GI/G/1 queue per-

formance measures, but we choose to quantify dispersion in terms of mean absolute deviation

(MAD) instead of variance. MAD is hardly used in queueing theory, or random walk theory

for that matter. The random walk and GI/G/1 queue are intrinsically linked with independent

and identically distributed (i.i.d.) sums of random variables, and the variance thus naturally

emerges as the quantity of interest (e.g., variance of the sum, central limit theorem). The vari-

ance and MAD, however, are equally adequate descriptors of dispersion, and are both easily

calibrated on data using basic statistical estimators. Using the MAD instead of the variance as

dispersion measure has several important advantages for, e.g., analyzing the waiting times in

GI/G/1 queues. First, not only simple explicit expressions for the worst-case distributions can

be obtained, but also for the best-case ones. Hence, a sharp upper bound and a sharp lower

bound for the expected waiting time can be obtained. Second, our approach is for i.i.d. sums of

random variables, while existing DRO approaches have to tolerate possible dependence struc-

tures between the random variables. Third, our approach is suitable for analyzing both transient

behavior and the steady state. Fourth, because of its computational tractability our approach

can also be extended to many optimization variants.

We organize the theoretical results in terms of three key theorems that build towards our

main goal, finding the tightest possible upper bounds for all moments of the steady-statewaiting

time of the GI/G/1 queue with MAD as dispersion measure. We first provide a tight bound for

the expectation of a general convex function of finitely many random variables with mean,

MAD and range information. This is, in fact, a known result due to [19]. We present a new

proof that finds the extremal distribution, the distribution that attains the tight bound, as the

solution to a semi-infinite linear program (LP).The novel proof clearly illustrates why the MAD

constraint leads to a tractable LP in the univariate setting. Since the solution of this LP does
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not depend on the objective function, we can recursively apply the univariate result to obtain

independent extremal distributions that resolve themultivariate problem, thusmaking the latter

amenable to distribution-free analysis. The traditional moment constraints for the mean and

variance, although a popular choice, may not necessarily yield tractable counterparts because

the worst-case distribution depends on the (multivariate) objective function. After showing

the general result, we prove tight bounds for moments of random walk maxima and customer

waiting times, all characteristics that can be brought into the form of the expectation of a convex

function. An additional hurdle is to extend the transient setting to the case of infinitely many

randomvariables, which is required for the all-timemaximum, but also in that case, the extremal

distribution for the step size remains the same three-point distribution. Finally, we resolve the

extremal queue problem and present tight bounds for all moments of the waiting time. For this,

we apply the random walk results combined with the additional reasoning that the step size is

now replaced by the difference between the service and interarrival times. Consequently, the

tights bounds for the stationary moments are attained by three-point distributions for both the

interarrival and service time.

In addition to the theoretical results, we also present various results related to the application

and computation of the tight bounds. The computational complexity of the bound for the ex-

pected finite-time maximum grows exponentially in the number of steps. For the random walk,

we present an alternative expression that considers a number of terms that grows roughly as a

cubic, rather than exponential, function of the number of partial sums, a substantial reduction

in computational complexity for random walks with many steps. We also express, as easy to

compute complex contour integrals, the tight moment bounds for the all-time maximum and

the steady-state waiting time. In addition, we derive tight lower bounds that, together with the

tight upper bounds, provide sharp performance intervals for distribution-free analysis. Fur-

ther, for choosing the range of the step sizes, we propose a heuristic approach reminiscent of

the construction of confidence intervals in statistical estimation. Finally, we illustrate the use

of our approach when the mean and MAD are not known precisely and need to be estimated

from data. The bounds remain effective also in these more realistic settings.

2.1.1. Contributions and outline
The contributions of this chapter can be summarized as follows:

1. We suggest to use MAD instead of variance, and obtain by concise mathematical proof

the worst-case three-point distribution for a rich class of extremal problems. This proof

for MAD gives insight into why the traditional moment constraints, although a popular

choice, may not necessarily yield tractable counterparts.

2. We leverage this result to obtain tight upper and lower bounds for performance mea-

sures, including transient and steady-state queue length moments. Under mean-MAD

constraints, these bounds are the sharpest possible (and thus cannot be improved). The

mean-MAD approach is a new quantitative method applicable to random walks, queues

and related stochastic processes. This generic approach is a computationally tractable
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way to analyze key performance measures of such processes.

3. We present guidelines that describe how to compute the novel tight bounds efficiently.

Moreover, we demonstrate our approach when the mean and MAD are not known pre-

cisely and need to be estimated from data. Also in thesemore realistic settings, the bounds

remain sharp.

The remainder of this chapter is organized as follows. Section 2.2 presents the novel proof

of the tight bounds for the expectation of general convex functions of random variables. Sec-

tion 2.3 then derives sharp bounds for the moments of random walk maxima, and subsequently

conveys both the transient and stationary results for the random walk to the GI/G/1 setting. In

Section 2.4 we discuss the results that are related to the application and computation of the tight

bounds, including the derivation of the matching lower bound. We conclude in Section 2.5, also

mentioning various possibilities for further research.

2.2. Bounding a convex function using mean-MAD-range

information
In this section, we explain how information about the mean, MAD and range can be used for

establishing tight bounds for the expectation of a general convex function of random variables

that match this information. In Section 2.2.1 we present, inTheorem 2.1, a general upper bound

for the expectation of a convex function of independent random variables. We then provide a

novel primal-dual proof for Theorem 2.1 in Section 2.2.2 and explain in Section 2.2.3 why MAD

as dispersion measure is computationally tractable, and why variance is not.

2.2.1. Tight bound for convex functions
Themoments of random walk maxima and GI/G/1 waiting times can all be expressed as the ex-

pectation of ℎ𝑛(𝑋1, … , 𝑋𝑛)with ℎ𝑛(⋅) some function convex in the components of (𝑋1, … , 𝑋𝑛) and𝑋1, … , 𝑋𝑛 independent random variables, which represent the interarrival and service times in
the queueing model (or, alternatively, step sizes in the randomwalk model). Let𝐗 = (𝑋1, … , 𝑋𝑛)
follow some distribution ℙ. We use the notation 𝐗 ∼ ℙ ∈ P to say that 𝐗 has a probability
distribution ℙ from the set of probability distributionsP. Let 𝔼ℙ[⋅] denote the expectation over
the probability distribution ℙ.
Assuming we only have partial information consisting of the mean, dispersion measure and

range of the random variables in 𝐗, the first question we ask and answer in this chapter is:
What extremal distributions of 𝐗 result in the worst-case expectation of the convex functionℎ𝑛(𝑋1, … , 𝑋𝑛)? This question thus requires solving the optimization problemmaxℙ∈P 𝔼ℙ[ℎ𝑛(𝐗)] (2.1)

with P the set of all considered distributions. To describe all considered distributions, we

define an ambiguity set that consists of all distributions of componentwise independent 𝐗 with
known supports, means and MADs. The partial information for (𝑋1, … , 𝑋𝑛) consists of (i) 𝑋𝑖
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has bounded support, supp(𝑋𝑖) = [𝑎𝑖, 𝑏𝑖] with −∞ < 𝑎𝑖 � 𝑏𝑖 < ∞, 𝑖 = 1, … , 𝑛, (ii) 𝔼ℙ(𝑋𝑖) = 𝜇𝑖
and (iii) 𝔼ℙ|𝑋𝑖 − 𝜇𝑖| = 𝑑𝑖. This defines the ambiguity set

P(𝜇,𝑑) = {ℙ ∶ supp(𝑋𝑖) ⊆ [𝑎𝑖, 𝑏𝑖], 𝔼ℙ(𝑋𝑖) = 𝜇𝑖, 𝔼ℙ |𝑋𝑖 − 𝜇𝑖| = 𝑑𝑖, ∀𝑖, 𝑋𝑖 ⟂⟂ 𝑋𝑗 , ∀𝑖 ≠ 𝑗} , (2.2)
where 𝑋𝑖 ⟂⟂ 𝑋𝑗 , ∀𝑖 ≠ 𝑗, denotes stochastic independence of the components 𝑋1, … , 𝑋𝑛. To avoid
trivialities we assume 𝜇𝑖 ∈ (𝑎𝑖, 𝑏𝑖) and 𝑑𝑖 ∈ (0, 2(𝑏𝑖−𝜇𝑖)(𝜇𝑖−𝑎𝑖)(𝑏𝑖−𝑎𝑖) ). The latter interval follows from
basic properties of MAD, which we discuss in Appendix A of this thesis. In what follows, 𝐗 is
a vector of random variables whose distribution belongs to the setP(𝜇,𝑑).
The extremal distribution that solves (2.1) with P = P(𝜇,𝑑) can be shown to be a three-

point distribution. This classical result follows from the general upper bound in [19] on the

expectation of a convex function of independent random variables with mean-MAD ambiguity:

Theorem 2.1. The extremal distribution that solvesmaxℙ∈P(𝜇,𝑑) 𝔼ℙ[ℎ𝑛(𝐗)] (2.3)

consists for each 𝑋𝑖 of a three-point distribution with values 𝜏(𝑖)1 = 𝑎𝑖, 𝜏(𝑖)2 = 𝜇𝑖, 𝜏(𝑖)3 = 𝑏𝑖 and
probabilities

𝑝(𝑖)1 = 𝑑𝑖2(𝜇𝑖 − 𝑎𝑖) , 𝑝(𝑖)2 = 1 − 𝑑𝑖2(𝜇𝑖 − 𝑎𝑖) − 𝑑𝑖2(𝑏𝑖 − 𝜇𝑖) , 𝑝(𝑖)3 = 𝑑𝑖2(𝑏𝑖 − 𝜇𝑖) . (2.4)

Ben-Tal and Hochman [19] provedTheorem 2.1 by introducing a piecewise linear function on

the interval [𝑎, 𝑏] that intersects the convex function in 𝑎, 𝜇 and 𝑏, and then applying the classic
Edmundson-Madansky bound to the subintervals [𝑎, 𝜇] and [𝜇, 𝑏]. In the next subsection, we
give another proof of Theorem 2.1 that also elucidates why using as dispersion measure MAD

instead of variance makes the analysis so simple.

A direct consequence of Theorem 2.1 is that the worst-case expectation of ℎ𝑛(𝐗) is obtained
by enumerating over all 3𝑛 permutations of outcomes 𝑎𝑖, 𝜇𝑖, 𝑏𝑖 of components 𝑋𝑖, as formulated
in the next result.

Corollary 2.2. It holds thatmaxℙ∈P(𝜇,𝑑) 𝔼ℙ[ℎ𝑛(𝐗)] = ∑𝜶∈{1,2,3}𝑛 ℎ𝑛(𝜏(1)𝛼1 , … , 𝜏(𝑛)𝛼𝑛 ) 𝑛∏𝑖=1 𝑝(𝑖)𝛼𝑖 . (2.5)

2.2.2. Novel primal-dual proof of Theorem 2.1
Our proof of Theorem 2.1 will crucially rely on the fact that the solution of the univariate case

can be straightforwardly extended to the multivariate case. We thus start by considering some

univariate measurable function 𝑓 (𝑥) (with the univariate function ℎ1(𝑥1) as an example) that
has finite values on [𝑎, 𝑏], the support of the distribution ℙ. Under mean-MAD ambiguity of
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one random variable 𝑋 , we then need to solvemaxℙ(𝑥)�0 ∫𝑥 𝑓 (𝑥)dℙ(𝑥)
s.t. ∫𝑥 dℙ(𝑥) = 1, ∫𝑥 𝑥 dℙ(𝑥) = 𝜇, ∫𝑥 |𝑥 − 𝜇| dℙ(𝑥) = 𝑑, (2.6)

a semi-infinite linear program with three equality constraints. A perhaps surprising, yet clas-

sical fact, is that the semi-infinite LP (2.6) can be reduced to an equivalent finite-dimensional

optimization problem that yields the same optimal value. Indeed, the Richter-Rogosinski the-

orem [98, 186, 198] states that there exists an extremal distribution for problem (2.6) with at

most three support points. While finding these points in closed form is typically not possible

(for general semi-infinite problems), we have shown in Chapter 1 that this is possible for the

problem at hand, by resorting to its dual problem,min𝜆0,𝜆1,𝜆2 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑
s.t. 𝑀(𝑥) ∶= 𝜆0 + 𝜆1𝜇 + 𝜆2|𝑥 − 𝜇| � 𝑓 (𝑥), ∀𝑥 ∈ [𝑎, 𝑏], (2.7)

and exploiting the specific structure of𝑀(𝑥) induced by the MAD constraint ∫𝑥 |𝑥−𝜇|dℙ(𝑥) = 𝑑.
As explained in Chapter 1, the tightest majorant 𝑀(𝑥), with 𝜆1, 𝜆2 and 𝜆3 chosen optimally,
touches 𝑓 (𝑥) at three points: 𝑥 = 𝑎, 𝜇 and 𝑏. For illustrative purposes, Figure 2.1 is presented
once more. Because the majorant is piecewise linear and convex, we can majorize every convex

function 𝑓 (𝑥), choosing𝑀(𝑥) such that it touches at the boundary points 𝑎 and 𝑏, as well as the
kink point 𝑥 = 𝜇. The optimal probabilities of these support points can now easily be obtained
by solving the linear system resulting from the equations of (2.6), and primal-dual optimality

can be demonstrated as outlined in Section 1.2.2.

To deal with the multivariate case, we successively apply the univariate result. The multi-

variate problem can be expressed asmaxℙ𝑛∈P𝑛(𝜇,𝑑) ⋯ maxℙ2∈P2(𝜇,𝑑) maxℙ1∈P1(𝜇,𝑑) 𝔼ℙ⊗[ℎ𝑛(𝑋1, 𝑋2, … , 𝑋𝑛)]. (2.8)

Here, ℙ𝑖 andP𝑖(𝜇,𝑑), for all 𝑖, represent themarginal distributions and ambiguity sets of𝑋1, … , 𝑋𝑛,
respectively, and ℙ⊗ denotes the product measure. Let ℎ𝑛(𝑋1, … , 𝑋𝑛) be componentwise con-
vex in the vector 𝐗. Suppose we first apply the univariate result to 𝑋1, then we need to con-
sider as objective functional 𝔼ℙ1[ℎ𝑛(𝑋1, 𝑥2, … , 𝑥𝑛)], with 𝑥2, … , 𝑥𝑛 all being fixed. Notice thatℎ(⋅, 𝑥2, … , 𝑥𝑛) is a convex function of 𝑋1 for all possible realizations of 𝑋2, … , 𝑋𝑛. Hence, for all
realizations 𝑥2, … , 𝑥𝑛, 𝔼[ℎ𝑛(𝑋1, 𝑥2, … , 𝑥𝑛)] can be bounded using the univariate result. As stated
in Theorem 2.1, the worst-case distribution is independent of the values for 𝑥2, … , 𝑥𝑛. Then, by
substituting the extremal distribution for 𝑋1, we obtainmaxℙ𝑛∈P𝑛(𝜇,𝑑) ⋯ maxℙ2∈P2(𝜇,𝑑) 𝔼ℙ⊗[ ∑𝛼1∈{1,2,3} 𝑝(1)𝛼1 ℎ𝑛(𝜏(1)𝛼1 , 𝑋2, … , 𝑋𝑛)]. (2.9)

Since the worst-case probabilities for 𝑥1 are nonnegative, the worst-case expectation becomes a
convex function in 𝑥2, … , 𝑥𝑛. Consequently, we can apply the univariate result to 𝑥2 in a likewise
manner. Successively repeating this reasoning 𝑛 times completes the proof.
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𝑥

𝑓 (𝑥)𝑀(𝑥)

𝜇𝑎 𝑏
Figure 2.1: Some convex function 𝑓 (𝑥) and its piecewise linear majorant 𝑀(𝑥)

To the best of our knowledge, our proof is the first to exploit the specific shape of the kink-

majorant to find an analytic solution for the semi-infinite LP. While the dual problems are often

solvable as semidefinite or second-order conic programs, analytic solutions as in our case are

typically hard to attain, and require special structural properties of the LP’s objective function

and its constraints. In the univariate case, this proof method does not require convexity of𝑓 (𝑥) and works for arbitrary measurable functions, as demonstrated in (1.2.1). Convexity is
needed, however, in the proof of Theorem 2.1 to extend the univariate case to the multivariate

case. The proof method is of independent interest, and can for instance be applied to study the

mean-MAD counterparts of the mean-variance analyses in, for example, [61, 163, 166, 174, 226].

2.2.3. Why is MAD computationally easier than variance?
Now that we fully grasp why and how the proof of Theorem 2.1 relies on the specific structural

properties of the mean-MAD constraints, and in particular the univariate result seamlessly

passes into the multivariate counterpart, we can also explain why the comparable challenge

with mean-variance constraints becomes much more difficult if not impossible. For the uni-

variate case, the same proof argument works when 𝜎2 is given instead of 𝑑, i.e., when |𝑥 − 𝜇| in
(2.6) is replaced by (𝑥 − 𝜇)2. Hence, irrespective of whether MAD or variance is used as disper-
sion measure, for determining the tight upper bound of 𝑓 (𝑥), it suffices to consider distributions
with support on at most three points. There is, however, a crucial complication when extending

to the multivariate case.

To see this, observe that when 𝜎2 is used as dispersion measure, the end points and kink
point do not necessarily span the support of the extremal distribution. That is, upon replacing|𝑥 − 𝜇| with (𝑥 − 𝜇)2, the tightest majorant 𝐹(𝑥) does not necessarily touch 𝑓 (𝑥) in 𝑎, 𝑏 and𝜇. Hence, if the variance is used as dispersion measure, then the worst-case distribution might
depend on the function 𝑓 (𝑥). This has severe consequences for the multivariate case, i.e., when
we consider ℎ𝑛(𝑥1, … , 𝑥𝑛). In that case, the worst-case distribution depends on the values of𝑥2, … , 𝑥𝑛, and calculating (in closed form) the worst-case distribution as a function of 𝑥2, … , 𝑥𝑛 is
not straightforward. Even if we were able to derive such a worst-case distribution, substituting

this distribution in theworst-case expectationmight result in a complicated function of 𝑥2, … , 𝑥𝑛
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that is likely nonconvex, and hence applying the univariate result to 𝑥2 is no longer possible.
2.3. Tight bounds for random walks and queues
We now leverage the general tight bounds inTheorem 2.1 for proving tight bounds for moments

of random walk maxima in Section 2.3.1 (Theorem 2.3) and the GI/G/1 queue waiting time in

Section 2.3.2 (Theorem 2.4). In Section 2.3.3 we draw a technical comparison between the ex-

tremal queue problem with MAD information and variance information. Section 2.3.4 provides

some further insights regarding the mean-variance ambiguity set.

2.3.1. Extremal random walk maxima
Consider the partial sums 𝑆𝑛 ∶= 𝑋1 + ⋯ + 𝑋𝑛 (𝑆0 ∶= 0) of i.i.d. random variables 𝑋1, 𝑋2, …
distributed as 𝑋 . The random walk (𝑆𝑛, 𝑛 � 0) arises in many application domains, includ-
ing queueing theory, inventory management and risk theory; see, e.g., Chapter XIV of [7]. If(𝑆𝑛, 𝑛 � 0) indeed models congestion, shortfall or capital position, large values of 𝑆𝑛 are of
particular interest, and it is natural to consider the maxima sequence 𝑀𝑛 ∶= max{𝑆0, 𝑆1, … , 𝑆𝑛}.
Notice that 𝑀𝑛 can be expressed as ℎ𝑛(𝑋1, … , 𝑋𝑛), withℎ𝑛(𝑥1, … , 𝑥𝑛) = max{0, 𝑥1, … , 𝑥1 + ⋯ + 𝑥𝑛}, (2.10)

and the expected maximum can be expressed as 𝔼[𝑀𝑛] = 𝔼[ℎ𝑛(𝐗)], with ℎ𝑛(𝐗) jointly convex
in 𝐗 = (𝑋1, … , 𝑋𝑛). Thus, under the partial information contained inP(𝜇,𝑑), (2.5) is an upper
bound on𝔼[𝑀𝑛] that cannot be improved. Let𝑋(3) denote the random variable with the extremal
three-point distribution, identified in Theorem 2.1 but for the special case when 𝑋1, 𝑋2, … are
i.i.d., that attains this bound. To state our results and for later reference, let Ω(𝜇, 𝑑, 𝑎, 𝑏) denote
a three-point distribution on the values {𝑎, 𝜇, 𝑏} with probabilities𝑝1 = 𝑑2(𝜇 − 𝑎) , 𝑝2 = 1 − 𝑑2(𝜇 − 𝑎) − 𝑑2(𝑏 − 𝜇) , 𝑝3 = 𝑑2(𝑏 − 𝜇) . (2.11)

Then, 𝑋(3) ∼ Ω(𝜇, 𝑑, 𝑎, 𝑏).
For 𝔼[𝑋] < 0 the all-time maximum 𝑀 ∶= lim𝑛→∞ 𝑀𝑛 is a proper random variable (𝑀𝑛

converges in distribution to 𝑀 , which will be finite with probability one if 𝔼[𝑋] < 0). Let𝑐𝑚(𝑀) denote the𝑚-th cumulant of𝑀 . Recall that 𝑐1(𝑀) is the mean, 𝑐2(𝑀) is the variance, and𝑐3(𝑀) is the central moment 𝔼[(𝑀 −𝔼[𝑀])3]. From general random walk theory we know that
(see e.g., [1]) 𝑐𝑚(𝑀) = ∞∑𝑘=1 1𝑘𝔼[(𝑆+𝑘 )𝑚]. (2.12)

We can now prove results similar as for 𝔼[𝑀𝑛], regarding the worst-case distribution and tight
upper bound. The following theorem states the extremal solution for the all-time maximum of

the random walk.

Theorem 2.3. Consider the random walk with generic step size 𝑋 contained in the ambiguity

set P(𝜇,𝑑). The tight upper bounds for all cumulants 𝑐𝑚(𝑀) of the all-time maximum 𝑀 are the

cumulants of the random walk with extremal step size 𝑋(3).
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Proof. Consider the function𝑓 𝑚𝑛 (𝑥1, … , 𝑥𝑛) = 𝑛∑𝑘=1 1𝑘 (max{0, 𝑥1 + … + 𝑥𝑘})𝑚 , (2.13)

which is convex in the vector (𝑥1, … , 𝑥𝑛). Hence, for i.i.d. increments with generic 𝑋 ,maxℙ∈P(𝜇,𝑑) 𝔼ℙ[𝑓 𝑚𝑛 (𝐗)] (2.14)

is solved by the extremal random variable 𝑋(3). This gives the bound, with 𝑋∗1 , 𝑋∗2 , … i.i.d. as𝑋(3), 𝑙𝑛 ∶= 𝑛∑𝑘=1 1𝑘𝔼[(𝑆+𝑘 )𝑚] � 𝔼[𝑓 𝑚𝑛 (𝑋∗1 , … , 𝑋∗𝑛 )] =∶ 𝑢𝑛. (2.15)

The result follows by observing that the sequences {𝑙𝑛} and {𝑢𝑛} are both monotone, and con-
verging to well-defined limits.

We conclude that the extremal three-point distribution for 𝔼[𝑀𝑛] in Theorem 2.1 is also
the extremal distribution for all cumulants of 𝑀 . When calculating the associated tight upper
bounds for 𝑐𝑚(𝑀), (2.12) shows that we are confronted with an infinite summation of increas-
ingly complex summands. Here, another line of classical random walk theory can help, which

transforms such infinite sums into complex contour integrals. We discuss these methods in

Section 2.4.1.

2.3.2. Extremal GI/G/1 queue
We now turn to the extremal GI/G/1 queue problem. Consider a single-server queue with

i.i.d. interarrival times {𝑈𝑛} distributed as 𝑈 , i.i.d. service times {𝑉𝑛} distributed as 𝑉 , and server
utilization 𝜌 = 𝔼[𝑉 ]/𝔼[𝑈] < 1. Let 𝑊𝑛 be the waiting time of customer 𝑛. The sequence(𝑊𝑛, 𝑛 � 0) with 𝑊0 = 0 satisfies the Lindley recursion𝑊𝑛+1 = (𝑊𝑛 + 𝑉𝑛 − 𝑈𝑛)+, 𝑛 � 0. (2.16)

Let 𝑊 be the steady-state waiting time. Since 𝑊𝑛 𝑑= 𝑀𝑛 and 𝑊 𝑑= 𝑀 the results for the random
walk maxima will carry over to the waiting times. The main difference is that the step size𝑋 is now interpreted as the difference 𝑉 − 𝑈 between the generic service time and generic
interarrival time. If one has mean-MAD information about both 𝑉 and 𝑈 this is more in-
formative than mean-MAD information about 𝑉 − 𝑈 , and this additional information should
lead to even sharper bounds. Let us consider the steady-state queue length 𝑊 , which satis-
fies 𝑊 𝑑= (𝑊 + 𝑉 − 𝑈)+. Denote by 𝜎2𝑈 and 𝜎2𝑉 the variances of 𝑈 and 𝑉 , respectively. Let𝜌 = 𝔼[𝑉 ]/𝔼[𝑈] < 1. Then, the following bounds for 𝔼[𝑊 ] are known if one possesses informa-
tion about the first two moments of 𝑈 and 𝑉 :

• Kingman’s upper bound: 𝔼[𝑊 ] � 𝜎2𝑉 + 𝜎2𝑈2(𝔼[𝑈] − 𝔼[𝑉 ]) . (2.17)
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• Daley’s upper bound: 𝔼[𝑊 ] � 𝜎2𝑉 + 𝜌(2 − 𝜌)𝜎2𝑈2(𝔼[𝑈] − 𝔼[𝑉 ]) . (2.18)

• Upper bound of Chen and Whitt [49] based on the two-point conjecture:𝔼[𝑊 ] � 𝜎2𝑉 + 𝜅(𝜌)𝜎2𝑈2(𝔼[𝑈] − 𝔼[𝑉 ]) , (2.19)

with 𝜅(𝜌) = 2𝜌(1 − 𝜌)/(1 − 𝛿) and 𝛿 ∈ (0, 1) the solution of 𝛿 = exp(−(1 − 𝛿)/𝜌).
We shall compare these bounds with the tight bounds for mean-MAD-range information that

we derive next.

The GI/G/1 queue assumes that interarrival times and service times are independent, so it is

natural to assume that 𝑉 has ambiguity setP(𝜇𝑉 ,𝑑𝑉 ) and 𝑈 has ambiguity setP(𝜇𝑈 ,𝑑𝑈 ). We then
consider all distributions ℙ that lie inP(𝜇𝑉 ,𝑑𝑉 ) ×P(𝜇𝑈 ,𝑑𝑈 ), the set containing all product measures
of feasible marginal distributions for 𝑉 and 𝑈 . The extremal queue problem with mean-MAD
dispersion information can now be phrased asmaxℙ∈P(𝜇𝑉 ,𝑑𝑉 )×P(𝜇𝑈 ,𝑑𝑈 ) 𝔼[𝑓 (𝐗)], (2.20)

where 𝔼[𝑓 (𝐗)] describes 𝔼[𝑊𝑛] or 𝑐𝑚(𝑊 ) and 𝐗 is the random vector with elements 𝑈1, 𝑉1,𝑈2, 𝑉2, …. This is the classical setting of the extremal GI/G/1 queue treated in [49, 73, 187, 222],
but with MADs instead of variances describing the ambiguity set. Let the random variables𝑉(3) and 𝑈(3) follow the extremal three-point distributionsΩ(𝜇𝑉 , 𝑑𝑉 , 𝑎𝑉 , 𝑏𝑉 ) andΩ(𝜇𝑈 , 𝑑𝑈 , 𝑎𝑈 , 𝑏𝑈 ),
respectively. The next result presents the solution to the extremal queue problem in (2.20).

Theorem 2.4. Consider the GI/G/1 queue with generic interarrival time 𝑈 with ambiguity set

P(𝜇𝑈 ,𝑑𝑈 ) and generic service times 𝑉 with ambiguity set P(𝜇𝑉 ,𝑑𝑉 ). Consider the tight upper bounds
for the transient mean waiting time 𝔼[𝑊𝑛] and all cumulants of the steady-state waiting time 𝑊 .

(i) For given interarrival time 𝑈 , the tight upper bounds follow from the service time 𝑉(3).
(ii) For given service time 𝑉 , the tight upper bounds follow from the interarrival time 𝑈(3).
(iii) The overall tight upper bounds follow from interarrival time 𝑈(3) and service time 𝑉(3).

Proof. As in Theorem 2.1, the tight bounds for 𝔼[𝑊𝑛] follow from the general upper bound in
[19] on the expectation of a convex function of the random vector (𝑋1, … , 𝑋𝑛)with mean-MAD
ambiguity, but now with 𝑋𝑖 replaced by 𝑉𝑖 − 𝑈𝑖. The function describing 𝔼[𝑊𝑛], see expression
(2.10), is indeed convex in both 𝑉𝑖 and 𝑈𝑖, and hence the result follows. Similarly, the expression
for 𝑐𝑚(𝑊 ) (see Theorem 2.3) is also convex in both 𝑉𝑖 and 𝑈𝑖, and hence the tight bounds for𝑐𝑚(𝑊 ) follow from our proof of Theorem 2.3.
Table 2.1 shows an example of the tight bound for 𝔼[𝑊 ] associated with (𝑈(3), 𝑉(3)), and com-

pares it with the other known bounds that require variance information.The variance of the
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extremal three-point distribution Ω(𝜇, 𝑑, 𝑎, 𝑏) is 𝑑2 (𝑏− 𝑎), the maximal variance for distributions
in the ambiguity setP(𝜇,𝑑). We thus know the variances of 𝑈(3) and 𝑉(3), and can calculate the
other three bounds. In heavy traffic, Kingman’s bound is known to be asymptotically correct,

and hence the other three (sharper) bounds also converge to the heavy-traffic limit as 𝜌 ↑ 1.
Furthermore, we remark that the mean-MAD bounds in Theorem 2.4 are crucially influenced

by the choice of range, in this example set to [0, 10] for both the interarrival- and service-time
distributions. Notice that Table 2.1 is not meant to compare mean-MAD with mean-variance

bounds. The displayed differences merely express different ways of dealing with ambiguity. We

make a connection between mean-MAD and mean-variance information in Section 2.3.4.

Table 2.1: Bounds for (1 − 𝜌)𝔼[𝑊 ]/𝜌 for (𝜇𝑈 , 𝑑𝑈 , 𝑎𝑈 , 𝑏𝑈 ) = (1, 1, 0, 10) and (𝜇𝑉 , 𝑑𝑉 , 𝑎𝑉 , 𝑏𝑉 ) = (𝜌, 0.1, 0, 10)
𝜌 Thm. 2.4 C & W

(2.19)

Daley

(2.18)

Kingman

(2.17)

0.1 4.06613 7.00020 7.25000 27.50000

0.2 2.52306 5.27810 5.75000 13.75000

0.5 2.03141 3.63750 4.25000 5.50000

0.7 2.49160 3.17138 3.60714 3.92857

0.8 2.61932 3.00523 3.31250 3.43750

0.9 2.69802 2.86711 3.02778 3.05556

0.95 2.72609 2.80627 2.88816 2.89474

0.99 2.74547 2.76091 2.77753 2.77778

2.3.3. Comparison with classical extremal queue problem
For the variance counterpart, Chen andWhitt also formulate a semi-infinite linear optimization

problem. The crucial difference is that they cannot use the univariate function extension (as

explained in Section 2.2), and hence should work directly with the multivariate function. This

in turn implies that the dual problem cannot be solved explicitly (like in the univariate case),

let alone that there is a zero duality gap. Another complication is that the expectation of the

multivariate function (2.13) cannot be expressed directly in 𝑉 and 𝑈 , but rather in terms of
convolutions of the distributions of 𝑉 and 𝑈 . Chen and Whitt [49] try to circumvent these
challenges by applying stochastic comparison techniques to obtain results for the mean steady-

state waiting time. In this way, Chen and Whitt [49] prove a similar but weaker result than

Theorem 2.4 for the steady-state setting, but with variance as dispersion measure. They provide

sufficient conditions that guarantee the extremal distributions of 𝑈 and 𝑉 to be the widely
conjectured two-point distributions.

An important message of this chapter is that with MAD the extremal distribution remains

unaltered going from the univariate to the multivariate setting, and that with variance this rea-

soning fails. In fact, one intuitively expects formidable challenges when seeking for extremal
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distributions under variance constraints. This intuition is confirmed by Chen and Whitt’s for-

mulation of the extremal distribution as the solution of a nonconvex nonlinear optimization

problem. While this optimization problem can be solved numerically, a closed-form solution

and hence identification of the extremal distribution remains out of reach.

Under variance constraints, it is thus conjectured that the tight bound comes from specific

two-point distributions for both 𝑈 and 𝑉 . In fact, the bound (2.19) in Table 2.1 holds under the
assumption that this conjecture is true, and was shown by Chen andWhitt [50] to be very close

to the tight upper bound. Theorem 2.4 rules out a similar conjecture in the MAD setting. The

tight bounds in Theorem 2.4 always involve three-point distributions.

2.3.4. Further comparison with mean-variance ambiguity
As already explained in Section 2.2.3, mean-variance ambiguity appears less computationally

tractable than mean-MAD ambiguity. LetP∗(𝜇,𝜎) denote the ambiguity set that contains all dis-
tributions with known range, mean and variance, i.e.,

P∗(𝜇,𝜎) = {ℙ ∶ supp(𝑋𝑖) ⊆ [𝑎𝑖, 𝑏𝑖], 𝔼ℙ(𝑋𝑖) = 𝜇, 𝔼ℙ(𝑋𝑖 − 𝜇)2 = 𝜎2, ∀𝑖, 𝑋𝑖 ⟂⟂ 𝑋𝑗 , ∀𝑖 ≠ 𝑗} .
(2.21)

We now show how the key result for mean-MAD ambiguity, Theorem 2.1, can be used to obtain

results for mean-variance ambiguity, using the following property:

Proposition 2.5. Let 𝑑min = 2𝜎2/(𝑏 − 𝑎) and 𝑑max = 𝜎. Then,maxℙ∈P(𝜇,𝑑min) 𝔼ℙ[ℎ𝑛(𝐗)] � maxℙ∈P∗(𝜇,𝜎) 𝔼ℙ[ℎ𝑛(𝐗)] � maxℙ∈P(𝜇,𝑑max) 𝔼ℙ[ℎ𝑛(𝐗)]. (2.22)

Proof. From [21], we know that 2𝜎2𝑏 − 𝑎 � 𝑑 � 𝜎.
Hence, maxℙ∈P∗(𝜇,𝜎) 𝔼ℙ[ℎ𝑛(𝐗)] = maxℙ∈P(𝜇,𝑑∗) 𝔼ℙ[ℎ𝑛(𝐗)] for some 𝑑∗ ∈ [2𝜎2/(𝑏 − 𝑎), 𝜎]. Sincemaxℙ∈P(𝜇,𝑑) 𝔼ℙ[ℎ𝑛(𝐗)] is nondecreasing in 𝑑, see [179], the result follows.
This result presents a way to delimit the upper bounds of all stationary cumulants 𝑐𝑚(𝑀)

and the transient mean 𝔼[𝑀𝑛] under mean-variance ambiguity. The mean-MAD bounds are
specified in terms of specific three-point distributions.

We next show that the lower bound in Proposition 2.5 can lead to a result for infinite-support

distributions. Set 𝑏 = 𝑎+ 𝜉(𝜇 − 𝑎) with 𝜉 � 1, and observe that the lower bound in (2.22) comes
with the extremal three-point distribution

𝑋𝜉(3) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎 w.p. 𝜎2(𝜇−𝑎)2𝜉 ,𝜇 w.p. 1 − 𝜎2(𝜇−𝑎)2𝜉 − 𝜎2(𝜇−𝑎)2𝜉(𝜉−1) ,𝑎 + 𝜉(𝜇 − 𝑎) w.p. 𝜎2(𝜇−𝑎)2𝜉(𝜉−1) .

This distribution has mean 𝜇 and variance 𝜎2, irrespective of the range [𝑎, 𝑏]. We can thus let 𝜉
grow to infinity to investigate what happens for infinite-support distributions.
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For the expected all-time maximum, we can exploit an argument very similar to [50], Theo-

rem 5.1. A classic result from regenerative analysis says that the expected all-time maximum is

the expected sum of the randomwalk position over one cycle, denoted by𝔼[integral], divided by
the expected length of one cycle, i.e. 𝔼[cycle length]; see Sections 3.6 and 3.7 of [189]. This cycle
will consist of a period during which the queue remains empty, corresponding to consecutive

(negative) steps of size 𝑎 or 𝜇. As 𝜉 increases, the three-point distribution places probabilities
of order 𝑂(1/𝜉2) on 𝑎 and 𝑎 + 𝜉(𝜇 − 𝑎), and the rest of the mass on point 𝜇. As 𝜉 grows large,
only rarely with probability 𝑂(1/𝜉2), a large positive step occurs. The impact of the very large
step of size 𝑎 + 𝜉(𝜇 − 𝑎) is roughly the area of the triangle with height 𝑎 + 𝜉(𝜇 − 𝑎) and width(𝑎+𝜉(𝜇−𝑎))/(−𝜇), and hence 𝔼[integral] = (𝑎+𝜉(𝜇−𝑎))2/(−2𝜇) ∼ (𝜉(𝜇−𝑎))2/(−2𝜇) as 𝜉 → ∞.
The cycle then consists of an empty period of expected length (1 − 𝑝𝑏)/𝑝𝑏 ∼ (𝜉(𝜇 − 𝑎))2/𝜎2
and the positive period due to the large step of expected length (𝑎 + 𝜉(𝜇 − 𝑎))/(−𝜇), so that𝔼[cycle length] ∼ (𝜉(𝜇 − 𝑎))2/𝜎2, and the expected all-time maximum converges to 𝜎2/(−2𝜇)
as 𝜉 → ∞. Since this is a lower bound for maxℙ∈P∗(𝜇,𝜎) 𝔼[𝑀], we know that for the random walk
with generic step size 𝑋 it holds that maxℙ∈P∗(𝜇,𝜎) 𝔼[𝑀] � 𝜎2/(−2𝜇). This lower bound matches
Kingman’s upper bound 𝔼[𝑀] � 𝜎2/(−2𝜇), which proves that Kingman’s upper bound is tight.
Tightness of Kingman’s bound was already proven in [60] by identifying a two-point distribu-

tion with mean 𝜇, variance 𝜎2 such that 𝔼[𝑀] approaches the upper limit as one of the two
points goes to infinity.

2.4. Computational guidelines

This section presents various guidelines for using and calculating the tight bounds in Theo-

rems 2.1–2.4. Section 2.4.1 shows how the computational complexity that comes with convo-

lutions of three-point distributions can be reduced considerably. Section 2.4.2 discusses some

of the numerical aspects of the contour integrals used to determine the tight bounds in the

stationary setting. Section 2.4.3 shows how tight lower bounds can be derived, using a similar

proof method as employed for the tight upper bounds. Section 2.4.4 extends the computational

results for the random walk to the GI/G/1 queue. Section 2.4.5 investigates the impact of the

range on the bounds, and Section 2.4.6 demonstrates what happens if this range is unbounded

from above. Finally, Section 2.4.7 presents a data-driven approach for estimating the mean and

MAD.

2.4.1. Spitzer’s formula and Pollaczek’s integral for three-point distri-

butions

We recall that Spitzer [202] used combinatorial arguments to establish for 𝔼[𝑀𝑛] the alternative
expression (which strictly requires i.i.d. increments)

𝔼[𝑀𝑛] = 𝑛∑𝑘=1 1𝑘𝔼[𝑆+𝑘 ], (2.23)
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with 𝑥+ = max{0, 𝑥}. This can be written as 𝔼[𝑀𝑛] = 𝔼[𝑓𝑛(𝐗)] with𝑓𝑛(𝑥1, … , 𝑥𝑛) = 𝑛∑𝑘=1 1𝑘 max{0, 𝑥1 + … + 𝑥𝑘}. (2.24)

A first usage of Spitzer’s formula (2.23) is a considerable improvement, in terms of computa-

tional complexity, of the tight bound for 𝔼[𝑀𝑛] in (2.5). By applying Theorem 2.1 to (2.23), we
get the following result.

Corollary 2.6.maxℙ∈P(𝜇,𝑑) 𝔼ℙ[𝑓𝑛(𝐗)] = 𝑛∑𝑘=1 1𝑘 ∑∑𝑖 𝑘𝑖=𝑘 max{0, 𝑘1𝑎 + 𝑘2𝜇 + 𝑘3𝑏} ⋅ 𝑘!𝑘1!𝑘2!𝑘3!𝑝𝑘11 𝑝𝑘22 𝑝𝑘33 . (2.25)

Note that for each fixed 𝑘, (2.25) contains amultinomial distributionwith support set {(𝑘1, 𝑘2, 𝑘3) ∈ℕ3 ∶ 𝑘1 + 𝑘2 + 𝑘3 = 𝑘} with cardinality (𝑘+22 ). This implies that the sum over 𝑘 in (2.25) is over
roughly 𝑛3 terms, which is way better than the 3𝑛 terms in (2.5).
Consider the random walk with generic step size 𝑋 . It is known that formal solutions of the

distribution of 𝑀𝑛 and 𝑀 can be expressed in terms of complex contour integrals (see [1, 121]
for the algorithmic aspects of these contour integrals). Assume that 𝜙𝑋(𝑠) = 𝔼[e𝑠𝑋 ] is analytic
for complex 𝑠 in the strip |Re(𝑠)| < 𝛿 for some 𝛿 > 0. A sufficient condition is that the moment
generating function 𝜙𝑋(𝑠) is finite in a neighborhood of the origin, and hence all moments of𝑋 exist. Then 𝔼[e−𝑠𝑀] = exp{ −12𝜋𝑖 ∫C

𝑠𝑢(𝑠 − 𝑢) log(1 − 𝜙𝑋(−𝑢))d𝑢} , (2.26)

where 𝑠 is a complex number with Re(𝑠) � 0, C is a contour to the left of, and parallel to, the

imaginary axis, and to the right of any singularities of log(1 − 𝜙𝑋(−𝑢)) in the left half plane.
From (2.26) contour integral expressions for the cumulants follow by differentiation:𝑐𝑚(𝑀) = (−1)𝑚 𝑚!2𝜋𝑖 ∫

C

log(1 − 𝜙𝑋(−𝑢))𝑢𝑚+1 d𝑢. (2.27)

Consider𝑋 = 𝑋(3)with a three-point distribution on values {𝑎, 𝜇, 𝑏}with probabilities 𝑝1, 𝑝2, 𝑝3
and moment generating function𝜙𝑋(3) (𝑠) = 𝑝1e𝑠𝑎 + 𝑝2e𝑠𝜇 + 𝑝3e𝑠𝑏. (2.28)

All moments of𝑋(3) exist, and hence 𝜙𝑋(3) (𝑠) satisfies the assumption required for representation
(2.26) to hold. Since 𝑋(3) follows the extremal three-point distribution associated with the tight
upper bounds for 𝑐𝑚(𝑀), we obtain the following result:
Corollary 2.7. Let 𝜙𝑋(3) (𝑠) ∶= 𝔼[e𝑠𝑋(3) ] = 𝑝1e𝑠𝑎 +𝑝2e𝑠𝜇 +𝑝3e𝑠𝑏.The tight upper bounds on 𝑐𝑚(𝑀)
identified inTheorem 2.3 are given by(−1)𝑚 𝑚!2𝜋𝑖 ∫

C

log(1 − 𝜙𝑋(3) (−𝑢))𝑢𝑚+1 d𝑢, 𝑚 = 1, 2, … , (2.29)

where C is a contour to the left of, and parallel to, the imaginary axis, and to the right of any

singularities of log(1 − 𝜙𝑋(3) (−𝑢)) in the left half plane.
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Expression (2.29) bypasses the cumbersome calculations with convolutions in (2.12). In the

next subsection, we demonstrate that this is a numerically efficient way of computing the tight

bounds.

2.4.2. Numerical experiments with contour integrals
Numerical aspects of integrals of the type (2.27) have been discussed in e.g., [1, 50, 121]. For

distributions with support on a finite set of points, potential numerical problems can arise,

because |Re(𝜙𝑋 (𝑢))| does not converge to zero as |𝑢| → ∞; see [2, 3, 50]. For the three-point
distributions required in this chapter we have performed extensive numerical experiments with

(2.29). These experiments confirmed that the integrals can be calculated up to high accuracy

with standard integration routines in Mathematica. For many parameter values 𝑎, 𝑏, 𝜇, 𝑑 such
that (A.1) holds, we have calculated 𝔼[𝑀] for generic increment 𝑋(3) using (2.29), and compared
this with results from extensive stochastic simulations. We also compared the results with a

third numerical procedure, known to be extremely stable and accurate. Let us explain the third

procedure, which might be of independent interest: Choose the boundaries of the support as

multiples of 𝛽 = |𝜇| by writing that 𝑎 = −𝑠𝛽 and 𝑏 = 𝑚𝛽 with 𝑠, 𝑚 positive integers. Denote by𝑀𝛽 = 𝑀/𝛽 the normalized steady-state waiting time. We then get𝑀𝛽 𝑑= (𝑀𝛽 + 𝑋𝛽)+,
with 𝑋𝛽 = 𝑋/𝛽 a discrete random variable with support {−𝑠, −1, 𝑚} and MAD𝑑𝛽 ∶= 𝔼[|𝑋𝛽 − 𝔼[𝑋𝛽]|] = 1𝛽𝔼[|𝑋 − 𝔼[𝑋]|] = 𝑑𝛽 .
Define 𝑋𝛽 = 𝐴𝛽 − 𝑠, so that 𝑀𝛽 𝑑= (𝑀𝛽 + 𝐴𝛽 − 𝑠)+
for a discrete randomvariable𝐴𝛽 with support {0, 𝑠−1, 𝑠+𝑚} and probability generating function𝔼[𝑧𝐴𝛽 ] = 𝑝𝑎 + 𝑝𝜇𝑧𝑠−1 + 𝑝𝑏𝑧𝑚+𝑠,
with 𝑝𝑎 = 𝑑𝛽2(𝑠 − 1) , 𝑝𝜇 = 1 − 𝑑𝛽2(𝑠 − 1) − 𝑑𝛽2(𝑚 + 1) , 𝑝𝑏 = 𝑑𝛽2(𝑚 + 1) .
Notice that 𝔼[𝐴𝛽] = 𝑠 − 1. The resulting discrete queueing system is sometimes referred to as a
bulk service queue. Let 𝑟0 be the unique zero of 𝑧𝑠 − 𝔼[𝑧𝐴𝛽 ] with real 𝑧 > 1. For any 𝜀 > 0 with1 + 𝜀 < 𝑟0, 𝔼[𝑤𝑀𝛽 ] = exp( 12𝜋𝑖 ∮|𝑧|=1+𝜀 ln(𝑤 − 𝑧1 − 𝑧 ) (𝑧𝑠 − 𝔼[𝑧𝐴𝛽 ])′𝑧𝑠 − 𝔼[𝑧𝐴𝛽 ] 𝑑𝑧) (2.30)

holds when |𝑤| < 1 + 𝜀; see, e.g., [121]. Alternatively,
𝔼[𝑤𝑀𝛽 ] = (𝑠 − 𝔼[𝐴𝛽])(𝑤 − 1)𝑤𝑠 − 𝐴(𝑤) 𝑠−1∏𝑘=1 𝑤 − 𝑧𝑘1 − 𝑧𝑘 (2.31)
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holds for all 𝑤, |𝑤| < 𝑟0, in which 𝑧1, … , 𝑧𝑠−1 are the 𝑠 − 1 zeros of 𝑧𝑠 − 𝔼[𝑧𝐴𝛽 ] in |𝑧| < 1. Upon
differentiation, (2.30) and (2.31) provide expressions for all cumulants of 𝑀𝛽 that are known to
allow for accurate numerical evaluation, see [121]. We have then performed, for a wide range

of parameters, the following experiment:

1. Fix 𝛽, and then choose integers 𝑠 and 𝑚. In this way we create a standard bulk service
queue with discrete-valued generic increment 𝐴𝛽 .

2. For ranging 𝑑𝛽 , calculate 𝔼[𝑀𝛽] using root-finding procedures and (2.31) or using the
contour integral (2.30).

3. Calculate 𝔼[𝑀] = −12𝜋𝑖 ∫C

log(1 − (𝑝𝑎e−𝑢𝑎 + 𝑝𝑏e−𝑢𝑏 + 𝑝𝑐e−𝑢𝑐))𝑢2 d𝑢.
4. Check whether 𝔼[𝑀] = 𝛽𝔼[𝑀𝛽].
After thoroughly conducting a range of these experiments, it has become clear that the con-

tour integral (2.29) can be computed with remarkable precision.

2.4.3. Random walk lower bounds
The tight upper bounds correspond to worst-case scenarios. We next show how the same MAD

approach can identify best-case scenarios and hence tight lower bounds. For each 𝑋𝑖, define a
second ambiguity set, which is a subset ofP(𝜇,𝑑):

P(𝜇,𝑑,𝛽) = {ℙ ∶ ℙ ∈P(𝜇,𝑑), ℙ(𝑋𝑖 � 𝜇𝑖) = 𝛽𝑖, ∀𝑖} , (2.32)

where 𝛽𝑖 ∈ ( 𝑑𝑖2(𝑏𝑖−𝜇𝑖) , 1 − 𝑑𝑖2(𝜇𝑖−𝑎𝑖) ). Hence, for obtaining a lower bound, we include the additional
information ℙ(𝑋𝑖 � 𝜇𝑖) = 𝛽𝑖 in the ambiguity set. Now, instead of finding the worst-case distri-
bution, wewant to identify the best-case distribution and corresponding tight lower bound. The

following result is a direct consequence of the general lower bound in [19] on the expectation

of a convex function of independent random variables withP(𝜇,𝑑,𝛽) ambiguity.
Theorem 2.8. It holds thatminℙ∈P(𝜇,𝑑,𝛽) 𝔼ℙ[ℎ𝑛(𝐗)] = ∑𝜶∈{1,2}𝑛 ℎ𝑛(𝜐(1)𝛼1 , … , 𝜐(𝑛)𝛼𝑛 ) 𝑛∏𝑖=1 𝑞(𝑖)𝛼𝑖 , (2.33)

where 𝑞(𝑖)1 = 𝛽𝑖, 𝑞(𝑖)2 = 1 − 𝛽𝑖, 𝜐(𝑖)1 = 𝜇𝑖 + 𝑑𝑖/2𝛽𝑖, 𝜐(𝑖)2 = 𝜇𝑖 − 𝑑𝑖/2(1 − 𝛽𝑖). (2.34)

In Chapter 1, we have presented a novel proof with the primal-dual method. The extension

to the multivariate setting follows from the argument used earlier for proving Theorem 2.1.

Again specialize to the i.i.d. setting, and denote by 𝑌 the random variable with two-point
distribution on values 𝜐1 = 𝜇 + 𝑑2𝛽 , 𝜐2 = 𝜇 − 𝑑2(1 − 𝛽) ,
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Figure 2.2: Expected random walk maximum 𝔼[𝑀𝑛] for 𝑈(−𝑏, 𝑏), where 𝑏 = 2, distributed step sizes with
MAD 𝑏/2 (middle curve, obtained by simulation)
with probabilities 𝛽 and 1 − 𝛽, respectively. Using a similar reasoning as for the upper bound,
we obtain for the tight lower bound of 𝔼[𝑀𝑛] an expression that sums over 𝑂(𝑛2) terms:𝑛∑𝑘=1 1𝑘 ∑𝑘1+𝑘2=𝑘 𝑘!𝑘1!𝑘2!𝛽𝑘1 (1 − 𝛽)𝑘2 max{0, 𝑘1𝜐1 + 𝑘2𝜐2}. (2.35)

The tight lower bound for 𝑐𝑚(𝑀) can be expressed in terms of the integral(−1)𝑚 𝑚!2𝜋𝑖 ∫
C

log(1 − 𝜙𝑌 (−𝑢))𝑢𝑚+1 d𝑢, (2.36)

where 𝜙𝑌 (𝑠) = 𝛽e𝑠𝜐1 + (1 − 𝛽)e𝑠𝜐2 , C is a contour to the left of, and parallel to, the imaginary

axis, and to the right of any singularities of log(1 − 𝜙𝑌 (−𝑢)) in the left half plane.
We illustrate the lower bound (2.33) (calculated using (2.35)) in Figure 2.2 for the randomwalk

with step size 𝑋 having a uniform distribution on [𝑎, 𝑏]. Here we assume a specific distribution
just for illustration purposes. The MAD of 𝑋 can be shown to be (𝑏 − 𝑎)/4. In Figure 2.2 we
choose 𝑏 = −𝑎 = 2 so that 𝜇 = 0 and 𝑑 = 1. The upper and lower bound together provide a
tight interval for all possible distributions in the ambiguity setP(0,1,1/2). Figure 2.3 shows the
tight upper bound (2.29) and the lower bound (2.36) for 𝔼[𝑊 ] with ambiguity set with 𝜇 = −1,𝑑 = 𝑏/2 and range [−𝑏 − 2, 𝑏]. The bounds increase with the range and the MAD (which can be
shown to hold in general). For a point of reference, we also plot the exact results for onemember

of the ambiguity set, with the generic increment having a uniform distribution on [−𝑏 − 2, 𝑏].
2.4.4. Numerical procedures for the GI/G/1 queue
Calculations for 𝔼[𝑊𝑛] and 𝑐𝑛(𝑊 ) in the GI/G/1 queue can be performed using similar expres-
sions as for the random walk. Let the random variable 𝑉(3) follow a three-point distribution on



623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen
Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023 PDF page: 42PDF page: 42PDF page: 42PDF page: 42

36 Distributionally robust views on stochastic models

2 4 6 8
5
10
15
20

𝑏

𝔼[𝑀]
3-point

Uniform

2-point

Figure 2.3: Expected all-time maximum 𝔼[𝑀] for 𝑈(−𝑏 − 2, 𝑏) and 𝑏 ∈ (1, 10) (middle curve, obtained by
simulation)

values {𝑠1, 𝑠2, 𝑠3} with probabilities𝑝1 = 𝑑𝑉2(𝜇𝑉 − 𝑎𝑉 ) , 𝑝2 = 1 − 𝑑𝑉2(𝜇𝑉 − 𝑎𝑉 ) − 𝑑𝑉2(𝑏𝑉 − 𝜇𝑉 ) , 𝑝3 = 𝑑𝑉2(𝑏𝑉 − 𝜇𝑉 ) , (2.37)

with 0 � 𝑎𝑉 < 𝜇𝑉 < 𝑏𝑉 , so that 𝑉(3) has mean 𝜇𝑉 and MAD 𝑑𝑉 . Similarly, let 𝑈(3) have a
three-point distribution on values {𝑡1, 𝑡2, 𝑡3} with probabilities𝑟1 = 𝑑𝑈2(𝜇𝑈 − 𝑎𝑈 ) , 𝑟2 = 1 − 𝑑𝑈2(𝜇𝑈 − 𝑎𝑈 ) − 𝑑𝑈2(𝑏𝑈 − 𝜇𝑈 ) , 𝑟3 = 𝑑𝑈2(𝑏𝑈 − 𝜇𝑈 ) (2.38)

and 0 � 𝑎𝑈 < 𝜇𝑈 < 𝑏𝑈 , so that 𝑈(3) has mean 𝜇𝑈 and MAD 𝑑𝑈 .
We then have the representation, see also [49],

𝔼[𝑊𝑛] = 𝑛∑𝑘=1 1𝑘 ∑∑𝑖 𝑘𝑖=𝑘,∑𝑗 𝑙𝑗=𝑘 max{0, 3∑𝑖=1 𝑘𝑖𝑠𝑖 − 3∑𝑗=1 𝑙𝑗 𝑡𝑗 } ⋅ 𝑃(𝑘1, 𝑘2, 𝑘3) ⋅ 𝑅(𝑙1, 𝑙2, 𝑙3) (2.39)

with 𝑃(𝑘1, 𝑘2, 𝑘3) = 𝑘!𝑘1!𝑘2!𝑘3!𝑝𝑘11 𝑝𝑘22 𝑝𝑘33 , 𝑅(𝑙1, 𝑙2, 𝑙3) = 𝑘!𝑙1!𝑙2!𝑙3! 𝑟 𝑙11 𝑟 𝑙22 𝑟 𝑙33 ,
which requires summing 𝑂(𝑛5) terms.
Let 𝜙𝑉(3) (𝑠) and 𝜙𝑈(3) (𝑠) denote the moment generating functions of 𝑉(3) and 𝑈(3). The tight

upper bounds on 𝑐𝑚(𝑊 ) are given by𝑐𝑚(𝑊 ) � (−1)𝑚 𝑚!2𝜋𝑖 ∫
C

log(1 − 𝜙𝑉(3) (−𝑢)𝜙𝑈(3) (𝑢))𝑢𝑚+1 d𝑢, (2.40)

where C is a contour to the left of, and parallel to, the imaginary axis, and to the right of any

singularities of log(1 − 𝜙𝑉(3) (−𝑢)𝜙𝑈(3) (𝑢)) in the left half plane. Again comparing with extensive
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simulation, we have found the expression (2.40) accurate and hence suitable for calculating the

tight bounds.

2.4.5. Setting the range
Compared to variance, MAD may be more appropriate in case of real-life empirical data that

display non-Gaussian features and outliers. Indeed, unlike standard deviation, MAD does not

require existence of second moments, and is not so much affected by large deviations from the

mean. This feature, however, has major consequences when we let the range [𝑎, 𝑏] grow large
in which case conditioning on the MAD being 𝑑 thus allows for distributions with relatively
heavy tails. In particular, in the limit 𝑏 → ∞, this will lead to overly pessimistic scenarios as
heavy-tailed distributions with infinite second moments can still have a finite 𝑑 and hence be
member of the ambiguity set. See Section 2.4.6 for more details. While for large but finite 𝑏 a
truly heavy-tailed distribution with infinite second moment is ruled out, the dispersion allowed

by the ambiguity set might become too loose for practical purposes.

We now present some guidelines for setting the range, based on the observation that many

distributions come with a MAD and standard deviation of comparable size. For the Pearson

family of distributions (which includes the gamma and normal distribution) with mean 𝜇 and
variance 𝜎2, the MAD 𝑑 and variance are related as𝑑 = 2𝛼𝜎2𝑝(𝜇) (2.41)

with 𝛼 a constant depending on skewness and kurtosis and 𝑝(𝜇) the density in 𝜇. For the expo-
nential distribution this relation gives 𝑑 = (2/e)𝜎 and for the normal distribution 𝑑 = (√2/𝜋)𝜎.
Other distributions for which the ratio 𝑑/𝜎 is constant include the uniform distribution and
discrete distributions such as the Poisson, binomial and negative binomial distribution. In a

way similar to constructing confidence intervals in statistical estimation, we then choose to set

the range as the mean plus or minus a constant times the MAD:𝑎 = 𝜇 − 𝑘 ⋅ 𝑑, 𝑏 = 𝜇 + 𝑘 ⋅ 𝑑. (2.42)

Here we regard 𝑑 as the natural scale of deviation, and 𝑘 as a free parameter that sets the
robustness level. So we take the mean and MAD as given, and regard the range as tunable

(using common sense or statistical evidence) by the decision maker. We assume that 𝜇 and 𝑑
can be estimated accurately with existing statistical procedures; see e.g. [179]. We should stress

that, while intuitive from a probabilistic perspective, the rule (2.42) is only one of many ways

to choose the parameters 𝑎, 𝑏.
Table 2.2 illustrates the results associated with using (2.42) for a setting where we take the

M/M/1 queue as the “true” model. The increment 𝑋 now becomes the difference of two ex-
ponential random variables for which we have a closed-form MAD expression in terms of the

mean value of 𝑋 . We consider an instance with unit mean exponential interarrival times and
exponential service times with mean 𝜌, so that the increment 𝑋 has mean 𝜇 = 𝜌 − 1 and MAD𝑑 = 2𝑒𝜌−1𝜌+1 . We thus have reference values for 𝜇 and 𝑑, and can investigate the impact of 𝑘. The
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bound grows almost linearly with 𝑘, in particular in heavy-traffic scenarios, and this underlines
the need for careful selection of the range. While the actual range of the M/M/1 queue spans

all real numbers, we see that restricting deviations to twice the MAD (𝑘 = 2) gives comparable
model performance. When reading Table 2.2, keep in mind that the overall goal in this chapter

is not to approximate specific models, but rather to come with conservative, robust estimates

for an entire class of models that share the same mean-MAD-range properties. In that sense,𝑘 = 2 is not better than 𝑘 = 1.5 or 𝑘 = 2.5, but rather expresses a different ambiguity assessment
or robustness level. The M/M/1 queue serves as a point of reference but is not contained in any

of the underlying ambiguity sets, as the range of the step size is unbounded.

Table 2.2: The actual values and bounds of the expected steady-state waiting time 𝔼[𝑊 ] of the M/M/1
queue with the range [𝑎, 𝑏] set through the rule (2.42)

𝑘𝜌 𝔼[𝑊 ] 1.5 1.75 2 2.25 2.5 3

0.1 0.01111 0.10497 0.16434 0.21535 0.25915 0.30116 0.40782

0.5 0.50000 0.56329 0.67919 0.79663 0.91459 1.02840 1.26462

0.6 0.90000 0.86690 1.03323 1.19770 1.36332 1.52804 1.85818

0.7 1.63333 1.41436 1.66589 1.91885 2.17142 2.42373 2.92850

0.8 3.20000 2.57273 3.01339 3.45454 3.89573 4.33672 5.21866

0.9 8.10000 6.21057 7.25250 8.29428 9.33642 10.37811 12.46184

0.99 98.01000 73.55537 85.81540 98.07540 110.33542 122.59543 147.11548

2.4.6. Degenerate behavior for infinite range

The variance of 𝑋(3) is 𝑑2 (𝑏 − 𝑎), the maximal variance for distributions in the ambiguity set
P(𝜇,𝑑). Hence, for fixed 𝑑, the variance becomes unbounded when 𝑏 → ∞. As a consequence,
this results in fairly crude bounds:

Proposition 2.9. As 𝑏 → ∞, the bound maxℙ∈P(𝜇,𝑑) 𝔼ℙ[𝑓𝑛(𝐗)] converges to
𝑛 ⋅ 𝑑2 + 𝑛∑𝑘=1 1𝑘 ∑𝑘1+𝑘2=𝑘 max{0, 𝑘1𝑎 + 𝑘2𝜇} ⋅ 𝑘!𝑘1!𝑘2!𝑝𝑘11 𝑝𝑘22 (2.43)

with 𝑝1 = 𝑑2(𝜇−𝑎) and 𝑝2 = 1 − 𝑑2(𝜇−𝑎) .
Proof. Split the inner summation in (2.25) into three parts. First consider the summation over∑𝑖 𝑘𝑖 = 𝑘 ∶ 𝑘3 � 2, i.e. those outcomes where the value 𝑏 occurs multiple times. Taking the
limit 𝑏 → ∞ inside of the summation and recognizing that the probability mass on this point is
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of order 𝑂(1/𝑏𝑘3) gives
lim𝑏→∞ ∑∑𝑖 𝑘𝑖=𝑘∶𝑘3�2

𝑑𝑘3 max{0, 𝑘1𝑎 + 𝑘2𝜇 + 𝑘3𝑏}2𝑘3 (𝑏 − 𝜇)𝑘3 ⋅ 𝑘!𝑘1!𝑘2!𝑘3!𝑝𝑘11 𝑝𝑘22 = 0. (2.44)

Next consider∑𝑖 𝑘𝑖 = 𝑘 ∶ 𝑘3 = 1, denoting the instances for which 𝑏 is attained precisely once.
Taking the limit 𝑏 → ∞ inside the sum and using that 𝑏 occurs with probability 𝑂(1/𝑏) results
inlim𝑏→∞ ∑∑𝑖 𝑘𝑖=𝑘∶𝑘3=1

𝑑 max{0, 𝑘1𝑎 + 𝑘2𝜇 + 𝑏}2(𝑏 − 𝜇) ⋅ 𝑘!𝑘1!𝑘2!𝑝𝑘11 𝑝𝑘22 = 𝑘 ⋅ 𝑑2 ∑∑𝑖 𝑘1+𝑘2=𝑘−1
(𝑘 − 1)!𝑘1!𝑘2! 𝑝𝑘11 𝑝𝑘22 = 𝑘 ⋅ 𝑑2 .

(2.45)

The third part is then ∑𝑖 𝑘𝑖 = 𝑘 ∶ 𝑘3 = 0, representing the realizations without the point 𝑏. As𝑏 → ∞, we getlim𝑏→∞ ∑∑𝑖 𝑘𝑖=𝑘∶𝑘3=0max{0, 𝑘1𝑎 + 𝑘2𝜇} ⋅ 𝑘!𝑘1!𝑘2!𝑝𝑘11 𝑝𝑘22 = ∑𝑘1+𝑘2=𝑘 max{0, 𝑘1𝑎 + 𝑘2𝜇} ⋅ 𝑘!𝑘1!𝑘2!𝑝𝑘11 𝑝𝑘22 . (2.46)
This completes the proof.

Proposition 2.9 suggests that large running maxima are likely due to a single large step. The

feature is caused by heavy-tailed distributions, and in queueing theory dubbed the single big

jump principle (see, e.g., [81]). This dominance of one step sharply contrasts intuition for light-

tailed distributions, where typically all steps together lead to large sums or maxima. The bound

(2.43) for 𝔼[𝑀𝑛] grows to infinity as 𝑛 → ∞, rendering the bound useless for the expected all-
time maximum 𝔼[𝑀]. This is indeed anticipated, and can be understood as follows. Define a
sequence of random walks indexed by 𝑏 with the extremal three-point distribution. Consider
the limiting all-time maximum 𝑀 as 𝑏 → ∞. Assume that the random walk has negative drift
(i.e., 𝔼[𝑋] < 0). Then the associated sequence of distributions of 𝑀 = 𝑀(𝑏) will converge
to a proper limit 𝑀(∞). However, as lim𝑏→∞P(𝜇,𝑑) contains distributions with infinite second
moment, [7, Theorem X.2.1] says that 𝔼[𝑀(∞)] will be infinite.
2.4.7. Data-driven setting
In applications, one may only have a limited number 𝑛 of observed interarrival and service
times. We consider this realistic settingwhere knowledge of the stochastic nature is restricted to

a set of samples generated independently and randomly according to an unknown distributionℙ. To apply the mean-MAD framework in this context, we need to construct the ambiguity set
that is supposed to contain this unknown ℙ. We will show that we can efficiently estimate the
mean, MAD and 𝛽, and hence compute robust bounds that are useful in realistic settings.
Let 𝜇(𝑉 )𝑛 , 𝑑(𝑉 )𝑛 and 𝛽(𝑉 )𝑛 denote the consistent estimators of 𝜇𝑉 , 𝑑𝑉 and 𝛽𝑉 = ℙ(𝑉 � 𝜇𝑉 ),

respectively, based on 𝑛 observed service times 𝑣1, ..., 𝑣𝑛, and defined as 𝜇(𝑉 )𝑛 = 𝑣̄ = 1𝑛 ∑𝑛𝑖=1 𝑣𝑖,𝑑(𝑉 )𝑛 = 1𝑛 ∑𝑛𝑖=1 |𝑣𝑖 − 𝑣̄| and 𝛽(𝑉 )𝑛 = 1𝑛 ∑𝑛𝑖=1 �[𝑣̄,∞)(𝑣𝑖). We define similar estimators based on 𝑛
observed interarrival times. Next, we demonstrate the mean-MAD bounds in this data-driven
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setting. Since statistical accuracy of the estimators increases with the number of samples, we

expect the bounds to converge as 𝑛 increases.
We have performed extensive simulations to investigate the error between the estimated and

true bounds for several values of the sample size 𝑛. We generate 1,000 sample paths of sample
size 10,000 and compute the corresponding mean relative error. Table 2.3 displays the mean

absolute percentage error (MAPE) for both the upper and lower bound estimates, where the

interarrival time is 𝑈(0, 10) distributed and we differentiate between a 50% and 90% utilization
level. Sample paths resulting in instable systems were removed. The lower bound is slightly

harder to estimate than the upper bound. Indeed, the lower bound requires estimating the

additional parameters 𝛽𝑉 and 𝛽𝑈 . Also observe that the relative error increases with the system
utilization.

Table 2.3: MAPE of the bound estimates for 𝑛 = 150, 200, 500, 1000, 2000, 5000, 10000
MAPE with sample size 𝑛

Service times Bound 150 200 500 1000 2000 5000 10000𝑈(0, 5) UB 15.44% 13.22% 8.31% 5.84% 4.28% 2.72% 1.89%

LB 25.51% 22.30% 13.86% 9.75% 7.08% 4.53% 3.16%𝑈(0, 9) UB 33.35% 30.93% 21.93% 16.35% 13.29% 8.92% 6.41%

LB 36.27% 35.01% 28.72% 22.30% 17.35% 10.77% 7.58%

To further highlight the role of system utilization, we perform a similar data-driven exper-

iment, but now with ground truth a single trace of 𝑛 customers in an M/M/1 queue. The 𝑈𝑖
are sampled from a unit mean exponential distribution, and the 𝑉𝑖 are exponentially distributed
with mean 𝜌. The results are shown in Figure 2.4. Indeed, as 𝜌 increases, more observations
are required for accurate parameter estimates and hence accurate bounds. Observe that con-

vergence settles in quickly for low-utilization regimes. Taken together, we conclude that the

robust bounds are useful for realistic data-driven settings that require statistical estimation of

the summary statistics such as the mean and MAD.

2.5. Conclusions and outlook
This chapter explains why MAD simplifies comparable variance-based optimization problems,

in a way that is almost unreasonably effective, resulting in a full solution to the extremal queue

problemwith mean-MAD-range information. When full distributional information is not avail-

able, or simply judged too detailed, the mean, MAD and range together form partial yet suffi-

cient information for obtaining robust bounds on the steady-state waiting-time moments in the

GI/G/1 queue. Through basic statistical estimation of this partial information the GI/G/1 queue

becomes a data-driven model that adjusts to available training data, for which we present tight

performance guarantees. While the bounds we have obtained for mean-MAD information are
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Figure 2.4: Estimation of the mean-MAD ambiguity lower bound for the M/M/1 queue, with the dashed

lines corresponding to estimates of the tight bounds

the best possible, it is worth exploring the potential improvements that can be made using more

distributional information, such as higher-order moments and other summary statistics. How-

ever, it is currently unclear how our approach can be adapted to incorporate this information,

so further research in this direction will be necessary.

Compared to the classical extremal queue problem, the key idea in this chapter was to use

MAD instead of variance as dispersion measure. This idea is likely applicable to other queueing

systems. Examples are the multi-server GI/G/𝑐 queue, with a cyclic allocation rule, and tandem
queues. Indeed, some of the key performance measures for such systems are expectations of

functions that are convex in the random variables (see, e.g., [192]), and therefore the mean-

MAD approach can be used. TheMAD approach is of interest beyond queueing theory, because

the search for extremal distributions of convex functions is relevant in many other settings.

Moreover, whenever a performancemeasure can be viewed as a convex function of i.i.d. random

variables with mean-MAD ambiguity (e.g., nested max-operators in production systems; see

[37, 89]), our approach will identify the extremal distribution and tight bounds.

The crux of the MAD approach consists of the explicitly solvable dual LP described in Sec-

tion 2. A simple argument then showed that this solution is independent of the precise objec-

tive function (in this chapter describing waiting-time moments of the GI/G/1 queue). Hence,

the MAD approach is a generic, computationally tractable way to analyze stochastic processes,

such as random walks and queues.



623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen
Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023 PDF page: 48PDF page: 48PDF page: 48PDF page: 48

42 Distributionally robust views on stochastic models



623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen
Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023 PDF page: 49PDF page: 49PDF page: 49PDF page: 49

3
Second-order bounds for the M/M/𝑠 queue

with random arrival rate

3.1. Introduction
The majority of stochastic models in queueing theory assume known arrival processes, which

facilitates exact analysis. In fact, the dominant assumption is that potential customers arrive

according to a Poisson process with a known intensity. In contrast, we interpret the arrival rate

as an unknown parameter of which partial information is available. The arrival rate parameter

is then replaced by a random variable with some distribution representing what is known about

the market size. We primarily focus on the situation where we know the mean and variance

of this market size, with the connection to classical queueing theory when the variance is zero

and, hence, the random variable is known to be identical to the arrival rate.

The technical challenge is to solve the maximization problem, which requires to determine

tight bounds for the expected wait for all distributions of the random arrival rate that comply

with the partial information. A tight upper bound on the expected wait presents for the rational

choice model the worst-possible scenario, and yields the corresponding tight lower bound on

the market share. For mean-variance information, we will show that these tight bounds are

attained by two-point distributions, essentially saying that the worst-case market is one where

individuals assume the actual market size attains its maximum size or is well below the expected

This chapter is based on the research paper [212].
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market size. To establish such tight bounds, we invoke primal-dual techniques for solving semi-

infinite linear programs. Successfully applying these techniques will prove to depend crucially

on the properties of the expected wait viewed as function of the arrival rate. For the main

queueing system in this chapter, the M/M/𝑠 queue, we shall leverage that the expected wait is
(i) increasing and (ii) convex in the arrival rate, with (iii) the first derivative with respect to the

arrival rate being a convex function. All three properties turn out to be crucial for solving the

optimization problems in this chapter, and the convex derivative will be particularly useful for

the setting with mean-variance information.

This research connects four themes in the queueing literature: random arrival rates, second-

order bounds, parametric convexity and rational queueing.

Queues with random arrival rate. Due to its mathematical tractability, the M/M/𝑠 queue
is among the cornerstones of queueing theory and is widely applied in service operations man-

agement. To enhance practical relevance, several studies proposed to relax the assumption of

Poisson arrivals, and instead model the arrival rate as a random variable [9, 44, 47, 107, 111,

204, 223, 233]. This gives rise to a Poisson mixture model for the arrival process, which can

deal with forecast errors, overdispersion (compared with the natural fluctuations of a Poisson

process) and unknown market size. The mathematical formulae of the M/M/𝑠 model, such as
the Erlang-C formula for the delay probability, then still apply once the mixing distribution can

be characterized. Jongbloed and Koole [125] showed how to estimate this mixing distribution

based on available data of arrivals.

Second-order bounds. For this M/M/𝑠 queue with random arrival rate, we derive perfor-
mance bounds that do not require the full mixture distribution, but only utilize the first two

moments of the arrival rate. To derive such second-order bounds, we need to solve a semi-

infinite linear program. To do so, we first show that the expected stationary waiting time can be

written as the expectation of a function of the random arrival rate that has a convex derivative.

We then establish a general result, which provides tight second-order bounds as the solutions

to semi-infinite linear programs for the expectation of functions with convex derivatives. Such

semi-infinite linear programs arise naturally in studying second-order bounds, or more gener-

ally, moment problems. For example, [32, 66, 70] use second-moment information to compute

tight bounds for distributionally robust stochastic programming. Second-order bounds also

play a predominant role in the theory on performance bounds for queues, which started with

the work of Kingman [132]. Kingman derived bounds for the mean waiting time in the GI/G/1

queue, expressed in terms of the first two moments of the interarrival- and service-time distri-

butions; however, these bounds are not in general tight.

Convexity and beyond. Numerous studies have taken advantage of the insight that mo-

ments of the waiting time can be viewed as the expected value of a convex function. Vasicek

[216] showed that the variance of waiting time under a general queueing discipline does not

exceed that under the LCFS discipline, and Hajek [96] established that among all arrival pro-

cesses for an exponential server queue with specified arrival and service rates, the arrival pro-

cess which minimizes the expected waiting time is the process with constant interarrival times.

Weber [219] revealed that the mean queueing time in the G/GI/𝑚 queue is nonincreasing and
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convex in the number of servers,𝑚, indicating that marginal analysis is optimal for determining
server allocation among various service facilities so as to minimize the total expected queue-

ing time. The proofs in [96, 216, 219] rely on convexity properties. Convexity of queueing

performance metrics is a highly desired property in the parametric optimization of stochastic

systems. A substantial body of research employs direct algebraic methods to establish con-

vexity of the steady-state performance metrics as functions of the design parameters; see, for

example, [91, 103, 104, 106, 119, 142, 220]. For a comprehensive discussion on the related notion

of stochastic convexity, we refer the interested reader to [192, 193, 195]. However, as mentioned

earlier, for the present study we require convexity of the objective function’s derivative. Several

closely related concepts emerge in the extremal analysis of queueing systems. In this context,

the need for a convex derivative is replaced by closely related sufficient conditions that warrant

the application of the theory of complete Tchebychev systems [128]. For a detailed discussion

of the relevance of these systems to queues, please refer to [73, 94].

Rational queueing with limited information. A mature literature exists [108] that seeks

to elucidate the rational decision-making processes of users who decidewhether or not to access

delay-sensitive services based on utility. Naor [162] initiated this line of work for the observable

M/M/1 queue with a customer utility that depends linearly on the price, the value of service and

the expected waiting time. Edelson and Hilderbrand [74] investigated similar questions for the

unobservable M/M/1 queue. These works explore the environment with a deterministic arrival

rate. Liu and Hasenbein [143] expanded upon Naor’s model by assuming that the arrival rate

is drawn from a known probability distribution accessible to the decision maker. This concept

was further extended to the unobservable setting in [48]. Their research demonstrated that a

socially optimal pricing strategy results in a lower expected arrival rate compared to a price set

by a revenue-maximizing decision maker. Hassin et al. [109] examined the unobservable model

with a random arrival rate from a distinct angle, where strategic customers base their decisions

on a rate-biased time-average property when estimating their expected waiting time. Wang

et al. [218] extended the traditional observable model to a distributionally robust setting by

taking into account an uncertain arrival rate governed by an unknown underlying probability

distribution.

3.1.1. Contributions and outline
We summarize the main contributions of this chapter as follows:

1. For the M/M/𝑠 queue with partially known arrival rate we establish novel tight bounds.
When mean-variance-support is known, we show that the tight bound on the expected

wait is attained by a two-point distribution. We also present similar results for the envi-

ronment in which the service rate is partially known, or when the dispersion measure is

changed from variance to mean absolute deviation or semi-variance.

2. Our proof of these tight bounds combines two results from disparate areas. The first result

stems from optimization and says the semi-infinite linear program that describes the tight

bound for the expectation of a convex function with a convex derivative is attained by a
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two-point distribution. The second result stems from queueing theory and shows that the

expected wait as a function of the arrival rate is convex, and we show that its derivative

is also a convex function of the arrival rate. Combining these two results provides an

effective strategy for finding distributionally robust bounds for queueing systems subject

to parametric uncertainty.

3. The bounds are leveraged for analysis of non-observable M/M/𝑠 queues that cater to ra-
tional users who decide to join or balk based on expected utility. We use the wait bounds

to bound the equilibrium arrival rate, which in turn leads to tractable maximin analyses

for setting the revenue-maximizing price. In this way, we extend the classical strategic

queueing literature with known model parameters as in [162] and [74] to a setting where

the arrival rate is only partially characterized in terms of range, mean and variance.

4. We further introduce a broader framework for the methods presented in this chapter,

enabling their application to other queueing systems that are subject to parametric un-

certainty. We additionally propose to incorporate additional types of information which,

in the context of steady-state performance metrics, yield tight bounds under paramet-

ric uncertainty. In all cases, the mathematical tractability of the distributionally robust

queueing models hinges on the “curvature” properties of the steady-state performance

metrics with respect to the uncertain parameters governing these models.

The chapter is structured as follows. Section 3.2 contains the proof of our main result, which

provides bounds for the expected wait under uncertain arrival rates. Section 3.3 applies these

bounds to a rational queueing model. In Section 3.4, we explore several information sets that

complement mean-variance information. In Section 3.5, we examine other types of queueing

problems. Finally, in Section 3.6, we conclude and propose future research directions.

3.2. Tight bounds for expected wait with limited market

knowledge
In this section, we derive bounds for the expected wait with an uncertain arrival rate. Sec-

tion 3.2.1 introduces the central problem. Section 3.2.2 derives the second-order bounds for

general convex functions with a convex derivative. In Section 3.2.3, we apply these second-

order bounds to the expected wait in the M/M/𝑠 queue.
3.2.1. The model
Consider an M/M/𝑠 queue with Poisson arrivals with rate 𝜆, unit mean exponential service re-
quirements and 𝑠 parallel servers, each operating with service rate 𝜇. Let 𝑊(𝑠, 𝜆) denote the
total system time experienced by a customer in this queueing system, which depends on the

number of servers 𝑠 and the arrival rate 𝜆. We shall refer to 𝑊(𝑠, 𝜆) as the expected wait. For
notational convenience, we omit at first the functional dependence on the service rate parame-

ter 𝜇, but our findings remain valid for any given value of this parameter. Suppose that 𝜆/𝜇 < 𝑠.
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Then the single-server M/M/1 queue has expected wait 𝑊(1, 𝜆) = (𝜇 − 𝜆)−1. Observe that𝜕𝜕𝜆𝑊 (1, 𝜆) = 1(𝜇 − 𝜆)2 > 0, 𝜕2𝜕𝜆2𝑊 (1, 𝜆) = 2(𝜇 − 𝜆)3 > 0
and 𝜕3𝜕𝜆3𝑊 (1, 𝜆) = 6(𝜇 − 𝜆)4 > 0, for 𝜆 < 𝜇.
Hence, 𝜆 ↦ 𝑊(1, 𝜆) is an increasing, convex function of 𝜆 with a convex derivative. We now
present some general results for functions 𝜙 that have the same properties as𝑊(1, ⋅). We present
the results in general form, because we will apply these results later to 𝑊(𝑠, 𝜆) with 𝑠 � 2 as
well, to obtain the solutions for maxℙ∈P(𝑚,𝜎) 𝔼ℙ[𝑊 (𝑠, Λ)] (3.1)

in which we focus on the caseP =P(𝑚,𝜎) with the latter shorthand notation forP(𝑚, 𝜎, 𝑥, 𝑥),
the set of all distributions with mean 𝑚, standard deviation 𝜎 and the support contained in the
interval [𝜆, 𝜆]. That is,

P(𝑚, 𝜎, 𝜆, 𝜆) ∶= {ℙ ∈P0([𝜆, 𝜆]) ∶ 𝔼ℙ[Λ] = 𝑚, 𝔼ℙ[Λ2] = 𝜎2 + 𝑚2}
whereP0([𝜆, 𝜆]) comprises all probability distributions with support contained in [𝜆, 𝜆]. We
shall refer to such a set as an ambiguity set. Henceforth, the market size is viewed as a random

variable with a distribution contained inP(𝑚, 𝜎, 𝜆, 𝜆). We further assume from this point on-
ward that the system under consideration is stable for each realization of the random arrival

rate; that is, 𝜆 < 𝑠𝜇.
3.2.2. Bounding the expectation of a convex functionwith convex deriva-

tive
We first demonstrate how (3.1) can be written in terms of a moment problem. To emphasize the

generality of these results, we develop bounds for ∫𝑥 𝜙(𝑥)dℙ(𝑥), where 𝜙(⋅) represents a function
of a random variable 𝑋 possessing specific “curvature” properties, shared by 𝑊(𝑠, ⋅). We next
solve maxℙ∈P(𝑚,𝜎) 𝔼ℙ[𝜙(𝑋)] where the constraints that defineP(𝑚,𝜎) correspond to known first
and second moments and support contained in [𝑥, 𝑥]. In other words, we wish to findmaxℙ∈P0([𝑥,𝑥]) ∫𝑥 𝜙(𝑥)dℙ(𝑥)

s.t. ∫𝑥 𝑥dℙ(𝑥) = 𝑚, ∫𝑥 𝑥2dℙ(𝑥) = (𝜎2 + 𝑚2),
which constitutes a semi-infinite linear program with an (infinite-dimensional) decision vari-

able, the probability distribution ℙ, whichmust reside withinP(𝑚,𝜎). In this formulation, it often
proves more manageable to solve the corresponding dual problem, which is also a semi-infinite
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linear program, but with an infinite number of constraints instead of an infinite-dimensional

decision object. For (3.1), this dual problem involves finding 𝜋0, 𝜋1, 𝜋2 such that𝜋0 + 𝜋1𝑥 + 𝜋2𝑥2 � 𝜙(𝑥), ∀𝑥 ∈ [𝑥, 𝑥],
and 𝜋0 + 𝜋1𝑚 + 𝜋2(𝜎2 + 𝑚2) is minimized. The following result, attributable to Birge and Dulá
[32], offers a solution to (3.1) under these curvature conditions for 𝜙. The proof relies heavily
on duality theory for moment problems:

Lemma 3.1 (Theorem 5.1, [32]). Let 𝑥 ↦ 𝜙(𝑥) be a continuously differentiable and convex func-
tion on the interval [𝑥, 𝑥] with its derivative 𝜙′(𝑥) being convex on [𝑥, 𝑐] and concave on [𝑐, 𝑥] for𝑥 � 𝑐 � 𝑥 . For a random variable 𝑋 with distribution ℙ ∈ P(𝑚, 𝜎, 𝑥, 𝑥), the tight upper bound
for 𝔼ℙ[𝜙(𝑋)] is attained by a discrete distribution with at most two support points.

As a consequence of Lemma 3.1, we can restrict attention to two-point distributions in the

search for the extremal distribution that attains the tight bound 𝔼ℙ[𝜙(𝑋)]. A similar result was
already applied by Popescu [178] to the setting in which the support of the uncertain parameter

is unbounded, i.e., supp(𝑋) = ℝ.
Lemma 3.2 (Extremal two-point distributions). Consider a function 𝑥 ↦ 𝜙(𝑥) that is con-
tinuously differentiable and convex on [𝑥, 𝑥], and let 𝑋 be a random variable with distributionℙ ∈P(𝑚, 𝜎, 𝑥, 𝑥).
(i) If the derivative 𝜙′(𝑥) is convex on [𝑥, 𝑥], the tight upper bound for 𝔼ℙ[𝜙(𝑋)] is attained by a

two-point distributionwith values {𝑚− 𝜎2𝑥−𝑚 , 𝑥} and corresponding probabilities { (𝑥−𝑚)2(𝑥−𝑚)2+𝜎2 , 𝜎2(𝑥−𝑚)2+𝜎2 }.
(ii) If the derivative 𝜙′(𝑥) is concave on [𝑥, 𝑥], the tight upper bound for 𝔼ℙ[𝜙(𝑋)] is attained by a
two-point distributionwith values {𝑥, 𝑚+ 𝜎2𝑚−𝑥 } and corresponding probabilities { 𝜎2(𝑚−𝑥)2+𝜎2 , (𝑚−𝑥)2(𝑚−𝑥)2+𝜎2 }.
Proof. A two-point distribution with mean 𝑚 and variance 𝜎2 has support

𝑥1 = 𝑚 −√ 𝛼1 − 𝛼𝜎, 𝑥2 = 𝑚 +√1 − 𝛼𝛼 𝜎 (3.2)

with probabilities 𝛼, 1 − 𝛼, respectively. We thus need to solve max𝛼 Φ(𝛼) with
Φ(𝛼) ∶= 𝛼𝜙(𝑚 +√1 − 𝛼𝛼 𝜎) + (1 − 𝛼)𝜙(𝑚 −√ 𝛼1 − 𝛼𝜎)

and 𝛼 ∈ [ 𝜎2(𝑥 − 𝑚)2 + 𝜎2 , (𝑚 − 𝑥)2(𝑚 − 𝑥)2 + 𝜎2 ]
due to the support being contained in [𝑥, 𝑥]. To show that 𝛼∗ = 𝜎2(𝑥−𝑚)2+𝜎2 is a maximizer, we
will prove that Φ(𝛼) is nonincreasing in 𝛼. For differentiable 𝜙, we have thatdd𝛼Φ(𝛼) = 𝜙(𝑥2) − 𝜙(𝑥1) − (𝑥2 − 𝑥1)𝜙′(𝑥1) + 𝜙′(𝑥2)2 . (3.3)
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In order for Φ(𝛼) to be nonincreasing, we need𝜙(𝑥2) − 𝜙(𝑥1) − (𝑥2 − 𝑥1)𝜙′(𝑥2) + 𝜙′(𝑥1)2 � 0,
or 𝜙′(𝑥2) + 𝜙′(𝑥1)2 � 𝜙(𝑥2) − 𝜙(𝑥1)𝑥2 − 𝑥1 .
This inequality holds by convexity of 𝜙′. Thus, as Φ(𝛼) is nonincreasing in 𝛼, the maximum
occurs at the lower bound of the feasible set (i.e., 𝛼∗ = 𝜎2(𝑥−𝑚)2+𝜎2 ). Substituting the optimal
value 𝛼∗ into our parameterized expression for the two-point distribution then yields assertion
(i).

For assertion (ii), note that for concave 𝜙′, Φ(𝛼) is nondecreasing in 𝛼 and therefore maxi-
mized by 𝛼∗ = (𝑚−𝑥)2(𝑚−𝑥)2+𝜎2 .
Returning to the expectedwait in theM/M/1 queue, we see that the tight bound for𝔼ℙ[𝑊 (1, Λ)]

is attained by the two-point distribution in Lemma 3.2(ii). We shall prove this result for the

multi-server system in the next subsection.

3.2.3. Bounding the expected wait as function of the arrival rate
To apply the results in the previous section to the multi-server M/M/𝑠 queue with random
arrival rate, we must show that the expected wait, as a function of the arrival rate, has a convex

derivative. Therefore, we need to study the third derivative of 𝑊(𝑠, 𝜆) with respect to 𝜆. The
expected wait is a classic formula in the queueing literature, for which a host of properties have

been discovered, including convexity with respect to 𝜆; see, e.g., [91] and [142]. But to the best
of our knowledge, the property of a convex derivative with respect to 𝜆 has not been reported.
However, this property was reported in [182] for the expected queue size defined as𝐿(𝑠, 𝜆) ∶= 𝑠𝜌 + 𝜌1 − 𝜌𝐶(𝑠, 𝜆), (3.4)

where 𝐶(𝑠, 𝜆) is the Erlang-C formula, the probability that an arriving customer experiences
delay in the M/M/𝑠 queue and 𝜌 = 𝜆/(𝑠𝜇). [182] proves that 𝐿(𝑠, 𝜆) as function of the arrival
rate 𝜆, indeed has a convex derivative. By Little’s law, 𝑊(𝑠, 𝜆) = 𝐿(𝑠, 𝜆)/𝜆, and one could try
to see whether the convex derivative of 𝐿(𝑠, 𝜆) implies the same property for 𝑊(𝑠, 𝜆). We do
not see a direct proof for this argument, in which we can use convexity of the derivative of

the expected queue length 𝐿 to demonstrate convexity of the derivative of the expected wait𝑊 . We therefore choose to provide a standalone proof for the fact that 𝑊(𝑠, 𝜆) has a convex
derivative, just like 𝐿(𝑠, 𝜆). The proof method we apply is largely inspired by that in [182]. In
the following, we provide a proof sketch. The details are relegated to the Appendix. First, we

determine an expression for the third derivative of the expected wait as a function of the server

utilization 𝜌. Then, we write this expression as a function of the Erlang-C formula 𝐶 and the
number of servers 𝑠. It then suffices to show that this expression is nonnegative for all values
of 𝑠 and ∀𝜌 ∈ (0, 1), which implies convexity of 𝑊(𝑠, 𝜆) as a function of 𝜆 with the number of
servers 𝑠 fixed.
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Lemma 3.3 (Derivative w.r.t. 𝜆 is convex). The expected wait 𝑊(𝑠, 𝜆) as function of 𝜆 ∈ (0, 𝜇)
has a convex derivative.

Proof. See Appendix B.1.

Convexity of 𝑊(𝑠, ⋅) as a function of 𝜆 implies that the extremal distribution of Λ is given by
the extremal distribution in Lemma 3.2(i). This then yields our main result.

Theorem 3.4 (Second-order bound for random arrival rate). Consider an M/M/𝑠 queue with
random arrival rate Λ that follows a distribution ℙ belonging to the ambiguity set P(𝑚,𝜎). The

tight upper bound for the expected wait 𝔼ℙ[𝑊 (𝑠, Λ)] is attained by the two-point distribution with
support 𝜆1 = 𝑚 − 𝜎2𝜆 − 𝑚, 𝜆2 = 𝜆,
and corresponding probabilities

𝑝1 = (𝜆 − 𝑚)2(𝜆 − 𝑚)2 + 𝜎2 , 𝑝2 = 𝜎2(𝜆 − 𝑚)2 + 𝜎2 .
We demonstrate the effectiveness of our novel second-order bounds through a numerical

experiment. The results are presented in Table 3.1. We assume that the “true” distribution of

the random arrival rate follows a beta distribution with support [0, 𝜆] and standard deviation
fixed to 𝜎 = 0.1. We consider the scenario with 𝑠 = 2 servers and vary the mean 𝑚 to obtain
results for multiple utilization levels. The average utilization level is denoted by 𝜌 = 𝑚/(𝑠𝜇).
As shown in Table 3.1, the second-order bounds proposed inTheorem 3.4 perform well for low-

and medium-utilization regimes. However, for high utilization, the bounds deviate significantly

from the true value when assuming a beta distribution for Λ. Furthermore, the bounds widen
as the upper bound of the support 𝜆 increases. The second column corresponds to the second-
order lower bound, which can be obtained using the extremal distribution in Lemma 3.2(ii). This

holds because determining the lower bound is tantamount to maximizing 𝔼ℙ[−𝜙(𝑋)]. Notice
that this bound depends on 𝜆, the lower bound of the support, rather than 𝜆.
Table 3.1: Numerical bounds for the expectedwait in theM/M/2 queuewith random arrival rate following

a beta distribution with support [0, 𝜆] and 𝜎 = 0.1𝜆 = 1.925 𝜆 = 1.95 𝜆 = 1.99𝜌 LB 𝔼[𝑊 (2, Λ)] UB 𝔼[𝑊 (2, Λ)] UB 𝔼[𝑊 (2, Λ)] UB

0.2 1.0445 1.0449 1.0940 1.0449 1.1199 1.0449 1.4312

0.5 1.3389 1.3440 1.4655 1.3440 1.5315 1.3440 2.3236

0.7 1.9753 2.0094 2.3200 2.0096 2.5002 2.0098 4.6625

0.8 2.8099 2.9442 3.5518 2.9465 3.9446 2.9497 8.6515

0.9 5.3921 6.4285 7.6443 6.6019 9.0133 6.9387 25.0550

tel:0094%202.3200%202.0096%202


623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen
Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023 PDF page: 57PDF page: 57PDF page: 57PDF page: 57

Chapter 3. Second-order bounds for the M/M/𝑠 queue with random arrival rate 51

3.3. Rational queueing model
We apply in this section the results derived in the previous section to rational queueing models.

Section 3.3.1 introduces the rational queueing model with a knownmarket size. In Section 3.3.2,

we extend this model to the setting in which customers are ambiguity-averse about the total

market size.

3.3.1. Model with known market size
Consider a firm that sells delay-prone services to a market of rational delay-sensitive individ-

uals. Individuals value service, but dislike waiting, and will only join when the net service

value exceeds the wait costs. They cannot observe real-time queues, and instead estimate their

expected wait costs based on beliefs or information about the total arrival rate of all potential

customers. The arrival rate or market size is measured in terms of the scale parameter 𝜆, so
that the expected time between arrivals of consecutive individuals is 1/𝜆. All individual joining
decisions together give an equilibrium arrival rate or market share 𝜆𝑒 , which could be viewed
as the product of 𝜆 times the probability that an individual decides to join. We then consider the
firm as a price-setting monopolist seeking to maximize revenue. With 𝑝 the price for service,
the firm can influence the net service value of individuals, and hence the joining probability.

A low price yields small margins but high joining probability, while a high price increases the

profit per customer but suppresses the market share. The firm should thus strike the optimal

balance between profit per customer and market share. Such challenges have been thoroughly

addressed in the rational queueing literature [108].

Assume that the firm operates according to an M/M/𝑠 queue, but that the arrival process con-
sists of individuals that decide to join-or-not based on a rational-choice model. An individual’s

utility in acquiring service is defined as𝑈 = 𝑟 − 𝑝 − 𝑐𝑊 (𝑠, 𝜆𝑒)
with 𝑟 the value of service, 𝑝 the price for service, 𝑐 the wait costs per time unit, and 𝜆𝑒 the
effective arrival rate of joining individuals. Here we assume that individuals cannot observe

real-time queue lengths, but instead know how the expected wait varies with overall demand.

Hence, the rational choices are based on a linear relation between net service value and expected

wait costs, and an individual will only join when 𝑈 � 0. This is a common set-up in the rational
queueing literature with self-interested individuals that tend to overcrowd systems, because

they ignore externalities—inconvenient side effects—that their decisions have on others. When

an individual decides to join, this will increase congestion and wait for all customers. Standard

game theory then predicts that all individual decisions together will lead to an equilibrium,

expressed in the equilibrium arrival rate, the probability 𝑞(𝑝) that an arbitrary individual joins
the system multiplied by the market size 𝜆. Since not joining the queue gives zero utility, the
equilibrium joining probability 𝑞(𝑝) then solves 𝑈 = 𝑟 − 𝑝 − 𝑐𝑊 (𝑠, 𝑞(𝑝)𝜆) = 0. The arrival
process of those who decide to join is then a Poisson process with rate 𝑞(𝑝)𝜆. To optimize
revenue, the firm needs to set the price that strikes the best balance between margin 𝑝 and
market share 𝜆𝑒(𝑝) = 𝑞(𝑝)𝜆. Notice that the joining probability 𝑞(𝑝) is an implicit function that



623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen
Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023 PDF page: 58PDF page: 58PDF page: 58PDF page: 58

52 Distributionally robust views on stochastic models

decreases with 𝑝 and can only be determined as the solution to 𝑈 = 0 when individuals know
the arrival rate parameter 𝜆. The firm then effectively solves the monopoly pricing problem,max𝑝 𝑝 ⋅ 𝑞(𝑝) ⋅ 𝜆, to attain maximal revenue. The optimal solution to this problem for a given
market size is already well established [108]. Instead, in the next subsection, we choose to view

the market size as a random variable of which only limited information is available.

3.3.2. Model with ambiguous market size
We interpret the market size as an unknown parameter about which the individuals that con-

stitute the market form beliefs. The parameter 𝜆 is then replaced by a random variable Λwith a
distribution representing what individuals believe or know about the market size. We primar-

ily focus on the situation where individuals only know the support, mean and variance of Λ.
From the individual’s perspective, variance of Λ expresses uncertainty about the market size,
and hence uncertainty about the expected waiting. For this setting with partially-informed cus-

tomers, or an ambiguously specified arrival process, we consider the revenue-maximizing firm

as a maximin decision maker, first determining the worst-case market (a minimization prob-

lem), and then maximizing the revenue by selecting the best price for this worst-case market.

The firm thus attempts to solve the maximin problemmax𝑝 minℙ∈P(𝑚,𝜎) 𝔼ℙ[𝑝 ⋅ 𝜆𝑒(𝑝)] (3.5)

with ℙ the distribution of the market size Λ andP(𝑚,𝜎) the ambiguity set that contains all distri-
butions that satisfy the partial information, given by the mean, variance and support. Minimax

and maximin optimization problems such as (3.5) arise naturally in decision making under un-

certainty. Our strategy for solving such problemswill be to solve first the minimization problemminℙ∈P(𝑚,𝜎) 𝔼ℙ[𝜆𝑒(𝑝)], and then the maximization problem for this worst-case market. The tech-
nical challenge is to solve the minimization problem, which requires determining tight bounds

for the expected wait for all distributions of Λ that comply with the partial information. How-
ever, this part was already resolved in the previous section, where we derived an upper bound

on the expected wait. A tight upper bound on expected wait presents the worst-possible sce-

nario in the rational choicemodel and yields the corresponding tight lower bound on themarket

share. Observe from the expression for the utility 𝑈 � 0 that solving minℙ∈P(𝑚,𝜎) 𝔼ℙ[𝜆𝑒(𝑝)] is
equivalent to solving maxℙ∈P(𝑚,𝜎) 𝔼ℙ[𝑊 (𝑠, 𝑞(𝑝)Λ)]. That is, the worst-possible expected market
share arises from the worst-possible utility and hence worst-possible expected wait. To make

this more precise, notice that the maximin problem (3.5) can also be written as an optimization

problem in terms of the equilibrium joining strategy 𝑞(𝑝); that is,max𝑞(𝑝)∈[0,1]∩[0,𝑠𝜇/𝜆) minℙ∈P(𝑚,𝜎) 𝔼ℙ[𝑞(𝑝)Λ] ⋅ 𝔼ℙ[𝑟 − 𝑐𝑊 (𝑠, 𝑞(𝑝)Λ)]≡ max𝑞(𝑝)∈[0,1]∩[0,𝑠𝜇/𝜆) minℙ∈P(𝑚,𝜎) 𝔼ℙ[𝑞(𝑝)𝑚 (𝑟 − 𝑐𝑊 (𝑠, 𝑞(𝑝)Λ))], (3.6)

where the equivalence follows from the fact that the expected value 𝔼[Λ] = 𝑚 is a known
constant as it is part of the information contained in the ambiguity set. To see that (3.6) is
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equivalent to (3.5), we carefully go over the decision processes of the firm and the customers.

First, the firm sets a price 𝑝, and then the customers settle on a joining strategy with expected
utility 𝑈 = 0, while considering all possible distributions that might govern the market size Λ.
That is, the customers solve the equation 𝑟 = 𝑝+maxℙ∈P(𝑚,𝜎) 𝑐𝔼ℙ[𝑊 (𝑠, 𝑞(𝑝)Λ)], with the expected
value operator appearing here because of the customers’ internal calculations. In equilibrium,

the utility equation can then be rewritten as 𝑝 = minℙ∈P(𝑚,𝜎) 𝔼ℙ[𝑟 − 𝑐𝑊 (𝑠, 𝑞(𝑝)Λ)]. Now, if
the firm sets the price to 𝑝, the expected revenue will equal this price times the market share,𝑝 ⋅ 𝜆𝑒(𝑝) = 𝑝 ⋅ 𝔼ℙ[𝑞(𝑝)Λ], yielding (3.6). In order to solve the utility equation, we must make
additional assumptions regarding how customers experience waiting times in a mixed Poisson

model.

The next question then is a rather philosophical one: What to assume for the wait expected

by an arbitrary arriving customer? One natural choice is 𝔼ℙ[𝑊 (𝑠, 𝑞Λ)]; see, e.g., [47] and [48].
Here, we assume nature picks a realization Λ = 𝜆, and customers from time 0 onward arrive
according to a Poisson process with this rate. Customers remain unaware of the specific uni-

verse (i.e., event Λ = 𝜆) they live in but hold a (Bayesian) prior belief about the probability
of residing in one universe compared to another. Another option is to base the rational de-

cision made upon arrival on the posterior distribution of Λ, the updated version of the prior
distribution of Λ that accounts for size bias. That is, the customer uses the conditional distri-
bution of Λ given the realization of its own arrival event. [109] calls this phenomenon RASTA
(Rate-biased ASTA), as a counterpart of PASTA. For any function 𝑔(⋅), the posterior expectation
of 𝑔(Λ) at arrival instants is 𝔼[Λ𝑔(Λ)]/𝔼[Λ], and when 𝑔 is nondecreasing and convex, then𝔼[Λ𝑔(Λ)]/𝔼[Λ] � 𝔼[𝑔(Λ)] � 𝑔(𝔼[Λ]). As an application, consider the M/M/𝑠 queue. Then, the
expected wait with a random arrival rate 𝑞Λ equals𝑊(𝑠, 𝑞) ∶= 𝔼[Λ𝑊(𝑠, 𝑞Λ)]𝔼[Λ] = 𝔼[𝑞Λ𝑊(𝑠, 𝑞Λ)]𝔼[𝑞Λ] = 𝔼[𝐿(𝑠, 𝑞Λ)]𝔼[𝑞Λ] .
Theutility of a customer who joins the queue when all the other customers use strategy 𝑞 equals𝑈(𝑞) = 𝑟 − 𝑝 − 𝑐𝑊 (𝑠, 𝑞)
and the best response of an individual customer is to join if and only if 𝑈(𝑞) � 0. When
accounting for size bias, we thus need to solvemaxℙ∈P(𝑚,𝜎) 𝑊 (𝑠, 𝑞) (3.7)

to find the worst-case market share. Alternatively, assuming (P)ASTA instead of RASTA, we

should consider maxℙ∈P(𝑚,𝜎) 𝔼ℙ[𝑊 (𝑠, 𝑞Λ)]. (3.8)

It is easy to show that (3.7) is also solved by the distribution in Lemma 3.2(ii), as it is known

that 𝜆𝑊(𝑠, 𝜆) is increasingly convex in 𝜆 (see [182]) and 𝔼[Λ] is a known constant since the
mean 𝑚 is contained in the ambiguity set. For the RASTA arrival assumption, we then obtain
the following result.
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Corollary 3.5 (Market share with partially knownmarket size, RASTA). Let the market

size Λ follow a distribution ℙ that belongs to the ambiguity setP(𝑚, 𝜎, 𝜆, 𝜆). Suppose the market

consists of individuals that base their decision on the posterior distribution of Λ. Then, the worst-

case joining probability 𝑞 = 𝑞∗ solves the equation𝑟 − 𝑝𝑐 = 𝑝1 𝜆1𝑊 (𝑠, 𝑞𝜆1)𝑚 + 𝑝2 𝜆2𝑊 (𝑠, 𝑞𝜆2)𝑚 ,
with 𝜆1, 𝜆2, 𝑝1 and 𝑝2 as defined inTheorem 3.4.
When we work with (3.8) instead, Theorem 3.4 implies the result for PASTA arrivals:

Corollary 3.6 (Market share with partially known market size, PASTA). Let the market

size Λ follow a distribution ℙ that belongs to the ambiguity setP(𝑚, 𝜎, 𝜆, 𝜆). Suppose the market

consists of individuals that base their decision on the prior distribution of Λ. Then, the worst-case

joining probability 𝑞 = 𝑞∗ solves the equation𝑟 − 𝑝𝑐 = 𝑝1𝑊 (𝑠, 𝑞𝜆1) + 𝑝2𝑊 (𝑠, 𝑞𝜆2),
with 𝜆1, 𝜆2, 𝑝1 and 𝑝2 as defined inTheorem 3.4.
We next present numerical results for the M/M/1 model with random market size Λ ∼ ℙ ∈

PΛ(2, 𝜎, 0, 4), 𝑐 = 0.25, 𝑟 = 2 and RASTA arrivals. Figure 3.1 illustrates the equilibrium joining
probabilities and revenues for various price values 𝑝 and different levels of variance 𝜎2. As
expected, both the joining probabilities and revenues decreasewith an increase in the dispersion

of the market size. This observation aligns with the intuition that greater variance indicates

more uncertainty about the market size and, as a result, greater uncertainty about the expected

wait. Another noteworthy characteristic of the ambiguous model, as compared to the model

with a known arrival rate, is that the equilibrium joining probability cannot exceed a certain

level since, otherwise, the M/M/1 system can become unstable.

For conciseness, let ℙ∗ denote the extremal two-point distribution, as defined inTheorem 3.4,
in the remainder of this section. We now present expressions for the optimal price in the RASTA

context. To accomplish this, we start by deriving an expression for the derivative of the expected

queue length with respect to 𝜆, using the equation for 𝐿′(𝑠, 𝜌) from [91]. By substituting 𝜌 =𝜆/(𝑠𝜇) into the expression for 𝐿′(𝑠, 𝜌) and applying the chain rule, we obtain𝑀(𝑠, 𝜆) ∶= 𝜕𝜕𝜆𝐿(𝑠, 𝜆) = 1𝜇 (𝐶(𝑠, 𝜆)𝜇(𝑠𝜇 + 𝜆 − 𝐶(𝑠, 𝜆)𝜆)(𝜆 − 𝑠𝜇)2 + 𝐶(𝑠, 𝜆) + 1) .
Let us now determine the joining probability that results in the maximal revenue for the firm.

Proposition 3.7 (Optimal joining probability). Consider the M/M/𝑠 queue with RASTA ar-

rivals. Suppose that 𝑐/𝜇 < 𝑟 < 𝑐𝑊 (𝑠, 1). Then the joining probability 𝑞∗ that maximizes the

revenue for the firm, in the worst-case market Λ ∼ ℙ ∈P(𝑚,𝜎), is the unique solution in 𝑞 of𝑟 − 𝑐𝔼ℙ∗[Λ𝑀(𝑠, 𝑞Λ)]𝑚 = 0. (3.9)
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Figure 3.1: Equilibrium probability and revenue for different prices 𝑝 in the M/M/1 model with random
market size Λ ∼ ℙ ∈PΛ(2, 𝜎, 0, 4), 𝑐 = 0.25, 𝑟 = 2 and RASTA arrivals
Proof. It is a known property of RASTA arrivals that for the revenue-maximizing firm the ob-

jective function is equivalent to that of the social optimizer [109]. This leads us to consider the

maximin social welfare as the objective function:max𝑞∈(0,1) minℙ∈P(𝑚,𝜎) 𝔼ℙ[𝑞Λ𝑟 − 𝑐𝐿(𝑠, 𝑞Λ)].
It suffices to consider 𝑞 ∈ (0, 1) as, due to the assumption, both 𝑞 = 0 and 𝑞 = 1 are not equi-
librium strategies. Notice that the min problem is solved by ℙ∗, since 𝐿(𝑠, 𝑞𝜆) has the required
curvature properties. We can now solve the max part. Taking the derivative w.r.t. 𝑞 (which is
allowed as Λ is bounded), we obtain the first-order condition𝑟𝔼ℙ∗[Λ] − 𝑐𝔼ℙ∗[Λ𝑀(𝑠, 𝑞Λ)] = 0,
which can be written as (3.9). Since 𝑀(𝑠, ⋅) is an increasing function of 𝜆, as 𝐿(𝑠, ⋅) is (strictly)
convex, this implies that (3.9) has a unique solution that is the global maximizer, as the social

welfare objective is a concave function of 𝑞.
We next determine the minimax price 𝑝 that induces the optimal joining strategy 𝑞∗.

Proposition 3.8 (Optimal maximin price). For the M/M/𝑠 queue with RASTA arrivals, the

optimal price for the firm that solves the maximin problem (3.5) is

𝑝∗ = 𝑐𝔼ℙ∗ [Λ (𝑀 (𝑠, 𝑞∗Λ) − 𝑊 (𝑠, 𝑞∗Λ))]𝑚 . (3.10)

Proof. It suffices to show that the right-hand side of (3.10) yields a solution to 𝑞(𝑝) = 𝑞∗, or
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equivalently, 𝑈(𝑞∗) − 𝑝 = 0. Indeed, plugging in the right-hand side of (3.10), we see that𝑈(𝑞∗) − 𝑝 = 𝑟 − 𝑐 maxℙ∈P(𝑚,𝜎) 𝑊 (𝑠, 𝑞∗) − 𝑐𝔼ℙ∗ [Λ (𝑀 (𝑠, 𝑞∗Λ) − 𝑊 (𝑠, 𝑞∗Λ))]𝔼ℙ∗[Λ]= 𝑟 − 𝑐𝔼ℙ∗[Λ𝑀(𝑠, 𝑞Λ)]𝔼ℙ∗[Λ] = 0,
in which the final identity follows from Proposition 3.7.

In conclusion, we have shown that our second-order bounds can aid in deriving the optimal

maximin price for a firm seeking to maximize revenue. This firm serves a rational customer

base that makes decisions based on limited information about the overall market size. Inter-

estingly, this adverse market follows a computationally tractable two-point distribution, thus

allowing for the application of established techniques designed for rational queueing models

with stochastic arrival rates.

3.4. Other types of market information
In this section, we demonstrate the tractability of our approach when applied to various types

of market information. It appears that the curvature properties, central to this work, also pro-

vide the necessary mathematical tractability for other types of ambiguity sets. Section 3.4.1

introduces two distinct measures of dispersion as alternatives to variance: mean absolute de-

viation and upper semivariance. Section 3.4.2 incorporates unimodality information to refine

the mean-variance bounds. Section 3.4.3 examines a data-driven model in which the decision

maker progressively learns the true distribution of the market size and offers a robust solution

using the Wasserstein ambiguity set.

3.4.1. Alternative dispersion measures
Besides variance information, there exist other types of dispersion measures which, in conjunc-

tion with the curvature properties, lead to easy solutions to (3.1) for different ambiguity sets.

For example, letP(𝑚,𝑑) ∶=P(𝑚, 𝑑, 𝑥, 𝑥) be the set of all distributions with mean 𝑚, mean abso-
lute deviation (MAD) 𝑑 ∶= 𝔼|𝑋 − 𝜇| and support contained in the interval [𝑥, 𝑥]. The following
result follows immediately from the mean-MAD bounds discussed in the previous chapters.

Theorem 3.9 (M/M/𝒔 queuewithMAD information). Consider anM/M/𝑠 queue with random
arrival rate Λ that follows a distribution ℙ belonging to the ambiguity setP(𝑚, 𝑑, 𝜆, 𝜆). The tight

upper bound for the expected wait 𝔼ℙ[𝑊 (𝑠, Λ)] is attained by a three-point distribution withℙ(Λ = 𝜆) = 𝑑2(𝑚 − 𝜆) =∶ 𝑝1, ℙ(Λ = 𝑚) = 1 − 𝑑2(𝑚 − 𝜆) − 𝑑2(𝜆 − 𝑚) =∶ 𝑝2,ℙ(Λ = 𝜆) = 𝑑2(𝜆 − 𝑚) =∶ 𝑝3,
and given by 𝑝1𝑊 (𝑠, 𝜆) + 𝑝2𝑊 (𝑠, 𝑚) + 𝑝3𝑊 (𝑠, 𝜆).
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We next consider a particular asymmetric dispersion measure that only measures dispersion

above the mean. LetP(𝑚,𝜎) ∶=P(𝑚, 𝜎, 𝑥, 𝑥) be the set of all distributions with mean𝑚, (upper)
semivariance 𝜎 ∶= 𝔼[(𝑋 − 𝜇)+]2, where (𝑥)+ = max{𝑥, 0}, and the support contained in the
interval [𝑥, 𝑥]. Using primal-dual techniques, we prove the following result.
Theorem 3.10 (M/M/𝒔 queue with semivariance information). Consider an M/M/𝑠 queue
with random arrival rate Λ that follows a distribution ℙ belonging to the ambiguity set P(𝑚, 𝜎).
Suppose that 𝑚 ∈ (𝜆, 𝜆) and 𝜎 ∈ (0, (𝜆−𝑚)2(𝑚−𝜆)(𝜆−𝜆) ). Then, the tight upper bound for the expected wait

corresponds to the maximum value of 𝔼ℙ[𝑊 (𝑠, Λ)] that results from the following two solutions:

(i) the expected wait with the expectation taken over a three-point distribution withℙ(Λ = 𝜆) = 𝑝1(𝑥∗0 ), ℙ(Λ = 𝑥∗0 ) = 𝑝2(𝑥∗0 ), ℙ(Λ = 𝜆) = 𝑝3(𝑥∗0 ),
where 𝑥∗0 ∈ [𝜇, 𝜆) solvesmax𝑥0∈[𝜇,𝜆) 𝑝1(𝑥0)𝑊 (𝑠, 𝜆) + 𝑝2(𝑥0)𝑊 (𝑠, 𝑥0) + 𝑝3(𝑥0)𝑊 (𝑠, 𝜆) s.t. 0 � 𝑝1, 𝑝2, 𝑝3 � 1; or

(ii) the expected wait with the expectation taken over the two-point distribution

ℙ(Λ = 𝜆) = √4𝜎(𝑚 − 𝜆)2 + 𝜎2 − 𝜎2(𝑚 − 𝜆)2 ,ℙ(Λ = 𝑥∗0 ) = 2(𝑚 − 𝜆)2√4𝜎(𝑚 − 𝜆)2 + 𝜎2 + 2(𝑚 − 𝜆)2 + 𝜎 ,
where 𝑥∗0 = 2𝑚(𝑚 − 𝜆) + √4𝜎(𝑚 − 𝜆)2 + 𝜎2 + 𝜎2(𝑚 − 𝜆) .

Proof. The primal problem for mean-(upper)semivariance information is given bymaxℙ(𝑥)�0 ∫ 𝑥𝑥 𝜙(𝑥)dℙ(𝑥)
s.t. ∫ 𝑥𝑥 dℙ(𝑥) = 1, ∫ 𝑥𝑥 𝑥 dℙ(𝑥) = 𝑚, ∫ 𝑥𝑥 ((𝑥 − 𝑚)+)2dℙ(𝑥) = 𝜎, (3.11)

and admits the following dual:min𝜆0,𝜆1,𝜆2 𝜆0 + 𝜆1𝑚 + 𝜆2𝜎
s.t. 𝑀𝜎(𝑥) ∶= 𝜆0 + 𝜆1𝑥 + 𝜆2((𝑥 − 𝑚)+)2 � 𝜙(𝑥), ∀𝑥 ∈ [𝑥, 𝑥]. (3.12)

The objective function 𝜙(⋅) is increasingly convex since it represents 𝑊(𝑠, ⋅). Under the con-
ditions imposed on the parameters of the ambiguity set, strong duality holds and the optimal

values of the primal and dual problem coincide. In addition, since the common optimal value is

finite, the dual optimal solution is attained [196, Proposition 3.4]. Moreover, as both the objec-

tive function and the dual function𝑀𝜎(𝑥) are continuous and the support [𝑎, 𝑏] is compact, the
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optimal primal solution is also attained [196, Corollary 3.1]. As a consequence, complementary

slackness holds [196, Proposition 2.1]. We next use the complementary slackness property and

structural properties of the functions 𝜙 and𝑀𝜎 to determine which points should constitute the
support of the extremal distribution. Since the primal problem has three constraints, we can

restrict our search to a worst-case distribution with at most three support points [186]. Since

the conditions in the theorem impose 𝜎 > 0, we can readily exclude the case of a one-point
worst-case distribution. Furthermore, we need both a point below and above the mean to sat-

isfy the mean condition and to avoid the semivariance being equal to zero. For the support

point below the mean, 𝑥 is the only dual-feasible option by convexity of 𝜙, as𝑀𝜎(⋅) is linear for
all 𝑥 ∈ [𝑥, 𝑚]. We next consider two dual solutions that correspond to cases (i) and (ii) stated in
the theorem, which assert a worst-case two- and three-point distribution, respectively.

𝑥

𝜙(𝑥)𝑀𝜎(𝑥)

𝑥∗0𝑚𝑥 𝑥 𝑥

𝜙′(𝑥)𝑀′𝜎(𝑥)

𝑥∗0𝑚𝑥 𝑥
Figure 3.2: Objective function 𝜙(𝑥), dual function𝑀𝜎(𝑥) and their derivatives, where𝑀′𝜎(𝑥) is interpreted
as the right-derivative

(i) Fixing the first support point to 𝑥 , we next seek the other two points using another com-
plementary slackness argument. The dual function 𝑀𝜎 can only be tangent to 𝜙 at one unique
point 𝑥0 on the interval [𝑚, 𝑥]. This follows from linearity of 𝑀′𝜎(𝑥) and convexity of 𝜙′(𝑥), as
illustrated in Figure 3.2, which rules out the possibility of a second tangent point. To see this,

assume that there exists a second tangent point 𝑥̃0. To remain dual-feasible, the dual function
has to satisfy 𝑀′𝜎(𝑥) � 𝜙′(𝑥) for 𝑥 ↑ 𝑥̃0, and 𝑀′𝜎(𝑥) � 𝜙′(𝑥) for 𝑥 ↓ 𝑥̃0. Therefore, 𝑀′𝜎(𝑥) has
to intersect 𝜙′(𝑥) from below at 𝑥̃0, but since this already occurred at 𝑥∗0 , this cannot happen
a second time as otherwise 𝑀′𝜎(𝑥) has to be nonlinear or 𝜙′(𝑥) nonconvex. Hence, we arrive
at a contradiction. The dual function can only coincide with 𝜙(𝑥) one more time, at the upper
bound of the support, 𝑥 = 𝑥 . Therefore, if the worst case is given by a three-point distribution,
then it has to admit this specific form as a result of complementary slackness. The probabilities,

as functions of 𝑥0, follow from solving the moment constraints in (3.11). As 𝑥0 is yet to be de-
termined, the maximum value follows from solving the univariate optimization problem stated

in the claim. There always exists a feasible solution to this optimization problem. Specifically,

letting 𝑥0 = 𝑚, we obtain the three-point distribution𝑝1 = 𝜎(𝑥 − 𝑚)(𝑚 − 𝑥) , 𝑝2 = 1 − 𝜎(𝑥 − 𝑥)(𝑚 − 𝑥)(𝑥 − 𝑚)2 , 𝑝3 = 𝜎(𝑥 − 𝑚)2 ,
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of which is easily verified, using the conditions in the claim, that it is primal feasible for all

possible parameter combinations.

(ii) We next consider the two-point solution. If the dual function only coincides with 𝜙 at 𝑥
and some 𝑥0, then the resulting two-point distribution can be directly derived from the moment
conditions 𝑝1 + 𝑝2 = 1, 𝑝1𝜆 + 𝑝2𝑥∗0 = 𝑚, 𝑝2(𝑥∗0 − 𝑚)2 = 𝜎,
which is a system of three equations with three unknowns with a unique solution, as stated

in the claim. Further, from the assumptions in the claim, it follows that this distribution is

always feasible in the primal. Taking the maximum expected value of the assertions (i) and (ii)

completes the proof of the claim.

Although upper semivariance may be regarded as a useful dispersion measure, as it quanti-

fies the upside risk of a substantially large market on the expected wait, its use as a dispersion

measure has a drawback. Despite being able to restrict some of the support points using the cur-

vature properties of 𝜙, the worst-case distribution still partly depends on the objective function
in some cases, necessitating an additional numerical step to determine 𝑥∗0 . In contrast, MAD
dispersion leads to an extremal distribution that no longer depends on the exact expression for𝑊(𝑠, 𝜆), thus yielding similar computational advantages as the variance-based ambiguity set.
Table 3.2 displays the numerical results for the tight mean-MAD bounds, utilizing the same

numerical setup as Table 3.1. We observe that the MAD bounds perform comparably to the

variance-based bounds. For low-utilization regimes, the variance bounds appear much sharper,

whereas for high-utilization levels, the MAD bounds appear to result in values closer to the

ground truth. However, we want to stress that a direct comparison is meaningless, as the un-

derlying ambiguity sets might contain vastly different distributions.

Table 3.2: Numerical bounds for the expected wait in the M/M/2 queue with beta arrival rate distribution𝜆 = 1.95 𝜆 = 1.99𝜌 𝔼[𝑊 (2, Λ)] Var-UB MAD-UB 𝔼[𝑊 (2, Λ)] Var-UB MAD-UB

0.2 1.0449 1.1199 1.5325 1.0449 1.4312 3.5291

0.5 1.3440 1.5315 2.1166 1.3440 2.3236 5.3162

0.7 2.0096 2.5002 3.2631 2.0098 4.6625 8.5942

0.8 2.9465 3.9446 4.7258 2.9497 8.6515 12.7120

0.9 6.6019 9.0133 9.0679 6.9387 25.0550 24.8840

3.4.2. Sharper bounds for unimodal market size
Often more is known about the market-size distribution than just the mean and variance. For

example, we may have some structural information regarding the distribution of the market

size. In this section, we showhow to use this structural information to improve the tight bounds,
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corresponding to the situation in which the service provider has the additional information that

the market-size distribution is unimodal, which can be understood as there being one primary

market segment that constitutes the bulk of the arrivals requesting service.

A random variable is said to be unimodal with mode𝑚 if its distribution can be characterized
as the mixture of a Dirac distribution 𝛿𝑚 and a distribution function that is a concave function
on [𝑥, 𝑚] and a convex function on (𝑚, 𝑥]. Some examples of unimodal distributions are the
normal, exponential and beta probability distributions. In order to incorporate such unimodal-

ity, we apply Khinchine’s characterization theorem, which states that a random variable 𝑌 has a
unimodal distribution with mode zero if, and only if, there exists a random variable 𝑌 such that𝑌 = 𝑈𝑉 , where 𝑈 is a uniformly distributed random variable on [0, 1] independent of 𝑉 (see,
e.g., [79, p. 158]). We adopt the following approach from [38], which is based on the, slightly

more general, results derived by Kemperman [131]. First, we transform the problem from the

unimodal random variable 𝑋 to the auxiliary variable 𝑉 . Then, we establish tight bounds for 𝑉
and use them to obtain bounds for𝑋 . Notice that if𝑋 is unimodal with mode𝑚, then 𝑌 = 𝑋 −𝑚
is also unimodal but with mode 0. Hence, according to Khinchine’s theorem, we have 𝑌 = 𝑈𝑉 ,
where 𝑈 is uniformly distributed over [0, 1]. According to Kemperman’s approach, we can
transform the moment problem in terms of the random variable 𝑋 into one in terms of the
auxiliary random variable 𝑉 using that for any function 𝜙, 𝔼[𝜙(𝑌 )] = 𝔼[𝜙∗(𝑉 )], where

𝜙∗(𝑥) = 1𝑥 ∫ 𝑥0 𝜙(𝑡)𝑑𝑡 = 𝔼[𝜙(𝑈𝑉 ) | 𝑉 = 𝑥]. (3.13)

By taking 𝜙(𝑥) = 𝑥𝑘 , we can relate the moments of 𝑌 to those of 𝑉 through𝜙∗(𝑥) = 1(𝑘 + 1)𝑥𝑘,
so that 𝔼[𝑉 𝑘] = (𝑘 + 1)𝔼[𝑌 𝑘]. The mean and variance of 𝑉 , in terms of the mean and variance
of 𝑋 , are given by𝑚𝑉 = 𝔼[𝑉 ] = 2𝔼[𝑌 ] = 2 (𝑚𝑋 − 𝑚) .𝜎2𝑉 = 𝔼[𝑉 2] − (𝔼[𝑉 ])2 = 3𝔼[𝑌 2] − 4(𝔼[𝑌 ])2 = 3𝜎2𝑌 − (𝔼[𝑌 ])2 = 3𝜎2𝑋 − (𝑚𝑋 − 𝑚)2 .
We can use the same integral relationship to find tight bounds for 𝔼[𝜙(𝑋)]when 𝑋 is unimodal
with mode 𝑚. Specifically, this problem is equivalent to finding bounds for 𝔼[𝜙∗(𝑉 )] subject to
the moment constraints on 𝑉 , where𝜙∗(𝑥) = 1𝑥 ∫ 𝑥0 𝜙(𝑢 + 𝑚)d𝑢.
We already have the solution for this transformed problem, since the (conditional) expectation

operator (3.13) preserves the curvature properties. By substituting the transformed moments

into the result stated in Lemma 3.2, we obtain the following result.
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Theorem 3.11 (M/M/𝒔 queue with unimodality). Consider an M/M/𝑠 queue with random ar-

rival rate Λ. Suppose that Λ is unimodal with mode 𝑚, mean 𝑚, variance 𝜎2 and has support

contained in [𝜆, 𝜆]. Let 𝑊∗(𝑠, 𝑥) = 1𝑥 ∫ 𝑥+𝑚𝑚 𝑊 (𝑠, 𝑡)d𝑡.
Then, the tight upper bound for the expected wait 𝔼ℙ[𝑊 (𝑠, Λ)] is given by(1 − 𝑝)𝑊 ∗ (𝑠, 𝜆1) + 𝑝𝑊 ∗(𝑠, 𝜆2),
where𝜆1 = 2𝑚 − 2𝑚 − 3𝜎2 − (𝑚 − 𝑚)2𝜆 + 𝑚 − 2𝑚 , 𝜆2 = 𝜆 − 𝑚, 𝑝 = 3𝜎2 − (𝑚 − 𝑚)23𝜎2 − (𝑚 − 𝑚)2 + (𝜆 + 𝑚 − 2𝑚)2 .
Table 3.3 demonstrates the performance of the tight mean-variance bounds that incorpo-

rate unimodality information. Evidently, incorporating this structural information significantly

sharpens the bounds compared to the standardmean-variance boundswithout this information.

Nevertheless, the bounds still substantially diverge from the true value for high utilization lev-

els.

Table 3.3: Numerical bounds for the expected wait in the M/M/2 queue with unimodal beta arrival rate

distribution 𝜆 = 1.95 𝜆 = 1.99𝜌 𝔼[𝑊 (2, Λ)] Var-UB Unimod-UB 𝔼[𝑊 (2, Λ)] Var-UB Unimod-UB

0.2 1.0449 1.1199 1.0583 1.0449 1.4312 1.0686

0.5 1.3440 1.5315 1.3879 1.3440 2.3236 1.4277

0.7 2.0096 2.5002 2.1502 2.0098 4.6625 2.3124

0.8 2.9465 3.9446 3.2477 2.9497 8.6515 3.7098

0.9 6.6019 9.0133 7.1468 6.9387 25.0550 9.3105

3.4.3. Data-driven setting: Learning the market size
We next derive some first reformulations for the model with a Wasserstein ambiguity set [85,

157]. In this model, the worst-case is taken over a set of distributions that are “sufficiently”

close to the empirical distribution obtained from data. Here, the distance between distributions

is measured with the Wasserstein metric. We first define the notion of a Wasserstein ambiguity

set. LetP0([𝜆, 𝜆]) be the set of all probability distributions ℙ of Λ supported on [𝜆, 𝜆]. For 𝑟 � 1,
the 𝑟-Wasserstein distance between two distributions of Λ is then defined as𝑑𝑟 (ℙ1, ℙ2) = inf {(∫[𝜆,𝜆]2 |𝜆1 − 𝜆2|𝑟dℚ(𝜆1, 𝜆2)) 1𝑟 }

(3.14)
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in which ℚ is a joint distribution of Λ1 and Λ2 with marginals ℙ1 and ℙ2, respectively. Assume
we observe 𝑛 independent realizations given by {𝜆̂𝑖}𝑖=1,…,𝑛, and define the empirical distribution
as ℙ̂𝑛 ∶= 1𝑛 ∑𝑛𝑖=1 𝛿𝜆̂𝑖 with 𝛿𝑥 being the Dirac measure with mass concentrated on 𝑥 . Now, define
the 𝑟-Wasserstein ambiguity set as

B𝑟𝜖(ℙ̂𝑛) ∶= {ℙ ∈P0([𝜆, 𝜆]) ∶ 𝑑𝑟 (ℙ, ℙ̂𝑛) � 𝜖} (3.15)

with 𝜖 as the radius of theWasserstein ball and ℙ̂𝑛 as the reference distribution. We next present
a result for the setting with 𝑟 = 1.
Theorem 3.12 (M/M/𝒔 queue with Wasserstein ambiguity). Consider an M/M/𝑠 queue with
a random arrival rate Λ that follows a distribution ℙ belonging to the ambiguity set B1𝜖 (ℙ̂𝑛). The

tight upper bound for 𝔼ℙ[𝑊 (𝑠, Λ)] coincides with the optimal objective value of the linear programinf𝛼∈ℝ+,𝜷∈ℝ𝑛𝛼𝜖 + 1𝑛 𝑛∑𝑖=1 𝛽𝑖
s.t. 𝛽𝑖 − 𝛼(𝜆 − 𝜆̂𝑖) � 𝑊(𝑠, 𝜆), ∀𝑖 = 1, … , 𝑛,𝛽𝑖 � 𝑊(𝑠, 𝜆̂𝑖), ∀𝑖 = 1, … , 𝑛,𝛽𝑖 + 𝛼(𝜆 − 𝜆̂𝑖) � 𝑊(𝑠, 𝜆), ∀𝑖 = 1, … , 𝑛.

(3.16)

Proof. The strong dual of supℙ∈B1𝜖 (ℙ̂𝑛) 𝔼ℙ[𝑊 (𝑠, Λ)] is given by [157, Theorem 4.2]inf𝛼∈ℝ+,𝜷∈ℝ𝑛𝛼𝜖 + 1𝑛 𝑛∑𝑖=1 𝛽𝑖
s.t. 𝛽𝑖 + 𝛼|𝜆 − 𝜆̂𝑖| � 𝑊(𝑠, 𝜆) ∀𝑖 = 1, … , 𝑛, ∀𝜆 ∈ [𝜆, 𝜆]. (3.17)

Given that the expected wait is convex in 𝜆, it suffices to verify that the semi-infinite constraints
are satisfied at the three points 𝜆 = 𝜆, 𝜆̂𝑖, 𝜆, from which the claim follows.
Computing bounds for the expected wait using Theorem 3.12 brings substantial benefits,

especially in the data-driven setting. By adjusting the radius 𝜖 of the Wasserstein ball, one
can control the degree of conservatism of the bound, where 𝜖 = 0 represents the singleton
set containing the empirical distribution based on the 𝑛 sampled data points. Furthermore, it
has been demonstrated that the data-driven bound in (3.16) converges to the true value of the

stochastic model as 𝑛 → ∞ [157].
To demonstrate the effectiveness of the data-driven bounds, we conducted a numerical ex-

periment using the same setup as presented in Table 3.1 as our ground truth. The arrival rate Λ
is modeled by a beta distribution, and we generated three traces of the data-driven bounds for

a varying number of data points, 𝑛, ranging from 5,000 to 20,000. These bounds were computed
for low-, medium-, and high-utilization scenarios. For the actual values of 𝔼ℙ[𝑊 (𝑠, Λ)], please
refer to Table 3.1. Notice that the data-driven bounds converge to the true values as the num-

ber of data points increases while the radius of the Wasserstein ball shrinks with 𝜖 = 1/√𝑛.
However, convergence occurs at a slower rate for higher utilization levels. Furthermore, as the

utilization level increases, the behavior of the computed traces becomes more erratic.
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Figure 3.3: Data-driven bounds for the expected wait of an M/M/2 queue with beta distributed arrival

rate and 𝜖 = 1/√𝑛
3.5. Further applications
This section attempts to showcase the extensive range of applications for our approach and

position it within amore general framework. In Section 3.5.1, we apply the second-order bounds

to a staffing optimization problem. In Section 3.5.2, we demonstrate that our results are also

valid for other types of queues with uncertain input parameters. Last, in Section 3.5.3, we

explore the extension wherein the service rate parameter is likewise a random parameter.

3.5.1. Staffing problems
An alternative optimization problem that one can consider is staffing. The goal of staffing is

to strike the right balance between the capacity allocation costs and delay costs incurred. To

be specific, let 𝑎 be the server allocation costs per unit time, and let ℎ be the penalty cost per
delayed job per unit time. Here, delay is time in the queue only. Assume that the servers work

at unit rate. This yields, for a known arrival rate, the total cost function𝐾(𝑠, 𝜆) ∶= 𝑎 𝑠 + ℎ𝜆𝐶(𝑠, 𝜆)𝑠 − 𝜆 .
For uncertain arrival rate Λ ∼ ℙ ∈ P(𝑚,𝜎), the two-point extremal distribution also yields the
worst case for the expected delay costs rate since𝜆𝐶(𝑠, 𝜆)𝑠 − 𝜆 = 𝜆𝑊(𝑠, 𝜆) − 𝜆𝜇 = 𝐿(𝑠, 𝜆) − 𝜆𝜇
is still increasingly convex in 𝜆. Assume that the decision maker aims to minimize total costs
given a mixed Poisson arrival process with a random arrival rate Λ. The decision maker con-
siders the time-average metrics of the system. Therefore, we seek to minimize the worst-case

costs 𝐾(𝑠, 𝜆) ∶= 𝑎𝑠 + ℎ(𝑝1𝜆1 𝐶(𝑠, 𝜆1)𝑠 − 𝜆1 + 𝑝2𝜆2 𝐶(𝑠, 𝜆2)𝑠 − 𝜆2 ) ,
where 𝜆1, 𝜆2, 𝑝1 and 𝑝2 are defined in Theorem 3.4. We now ask for the capacity level 𝑠 that
minimizes 𝐾(𝑠, 𝜆), denoted by 𝑠∗ ∈ argmin𝑠>𝜆 𝐾(𝑠, 𝜆). We impose 𝑠 > 𝜆 as this ensures that
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the resulting system is stable. Notice that the search for this global optimum can be performed

efficiently using standard numerical techniques, as the objective is convex in the decision vari-

able, the number of servers 𝑠. Here, (discrete) convexity as a function of the number of servers
follows from Harel [105, Proposition 5]. We emphasize that the quality-of-service model can

be applied in this context as well. Given that 𝐶(𝑠, ⋅) is convex with respect to 𝜆, the MAD-based
ambiguity yields a mathematically tractable solution.

30 40 50
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(c) 𝑚 = 15
Figure 3.4: Optimal staffing example with 𝑎 = 0.1, ℎ = 5, 𝜆 = 20 while fixing 𝜎2𝑚2 = 0.2

We proceed by discussing a numerical example. Consider 𝜇 = 1, 𝑎 = 0.1, ℎ = 5, and 𝜆 = 20.
Figure 3.4 displays the costs for different staffing levels as we vary the mean arrival rate, while

keeping the squared coefficient of variation fixed at 𝜎2/𝑚2 = 0.2. The bounds diverge to infinity
for 𝑠 � 𝜆, resulting in an unstable system. As the mean arrival rate increases, the optimal value
of 𝑠∗ also increases, and the marginal cost of adding servers above this optimal value appears
to diminish.

3.5.2. Other queueing systems
We next exploit convexity in conjunction with mean-MAD ambiguity so that we can handle an

evenmore diverse set ofmodels. Establishing convexity ofmean performancemeasures, such as𝑊(𝑠, 𝜆), is of great importance for the efficient optimization of stochastic systems, particularly
for the optimal design of queueing systems. Our problem is not much different from these

parametric optimization models. We also seek to establish convexity of the total system time

as a function of these parameters, for example, 𝑊(𝜆) ∶= 𝔼[𝑊̃ (𝜆)], where the distribution of 𝑊̃
depends on the underlying stochastic model. However, for our application, convexity results

in tractable solutions to the maximization step in a minimax problem, rather than the optimal

value of these parameters in order to minimize waiting costs. Hence, even though the ultimate

goal is different, our models can still benefit from the same convexity results.

Often direct algebraic manipulations on closed-form expressions for the mean performance

measure are considered. However, this algebra turns out to be rather tedious, even for relatively

simple models. For convexity in the service rate 𝜇, Weber [220] presented a powerful approach
for the G/G/1 queue by analyzing the sample-path dynamics of the stochastic process. Consider



623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen
Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023 PDF page: 71PDF page: 71PDF page: 71PDF page: 71

Chapter 3. Second-order bounds for the M/M/𝑠 queue with random arrival rate 65

the G/G/1 queueing system with (parameterized) service times 𝑆𝑛(𝜇) = 𝑆𝑛/𝜇 and interarrival
times 𝑇𝑛, for all 𝑛 � 1. From Lindley’s recursion,𝑊̃𝑛(𝜇) = (𝑊̃𝑛−1(𝜇) + 𝑆𝑛/𝜇 − 𝑇𝑛)+ , 𝑛 � 1, 𝑊̃0(𝜇) = 0, (3.18)

it is easily observed that the waiting times 𝑊̃𝑛(⋅) are decreasing and convex in 𝜇 for all sample
paths so that this result must hold true for the expected wait 𝑊(𝜇) as well.
Let us discuss two convexity results that arise from these sample-path techniques. First,

consider the single-server queue with Poisson arrivals, for which the arrival rate is given by

the random variable Λ, and generally distributed service times with mean 1/𝜇, i.e., a variant
of the M/G/1 system, but with mixed Poisson input. The goal is to determine bounds for the

expected waiting time of a customer, where the expected wait is defined as a function of the

arrival rate 𝜆. It is well known that the expected wait in the M/G/1 queue, denoted here as𝑊∗(⋅), is a convex function of the arrival rate 𝜆 (see, e.g., [82]). For a proof of convexity in 𝜆
using sample-path arguments, see [195]. As a result, the three-point distribution constitutes

the worst-case for the expected wait of the M/G/1 queue.

Proposition 3.13 (M/G/1 queue with MAD information). Let the market size Λ have a dis-

tribution ℙ that resides in the ambiguity setP(𝑚, 𝑑, 𝜆, 𝜆), and let 𝑊∗(𝜆) denote the expected wait
in the M/G/1 queue. Suppose that 𝜆 < 𝜇. Then, the tight upper bound for 𝔼ℙ[𝑊∗(Λ)] is attained by
a three-point distribution as inTheorem 3.9.

Next, consider a multi-server queue with 𝑠 servers, Poisson arrivals and deterministic ser-
vice times (i.e., an M/D/𝑠 queueing system). For this system, assigning customers to servers
cyclically preserves the first-come-first-served queueing policy, due to the deterministic ser-

vice times. Whenever there is an idle server, there is no waiting customer. Each server thus

serves the same set of customers, and as a result, each queue can view its channel as a separate

M/D/1 queue. Convexity of 𝑊∗(𝑠, 𝜆) in 𝜆 follows fromTheorem 3(b) in [104]. Hence, our result
for the M/G/1 queue directly implies the following proposition:

Proposition 3.14 (M/D/𝒔 queue with MAD information). Let the market size Λ have a dis-

tribution ℙ that resides in the ambiguity set P(𝑚, 𝑑, 𝜆, 𝜆), and let 𝑊∗(𝑠, 𝜆) denote the expected
wait in the M/D/𝑠 queue. Then, the tight upper bound for 𝔼ℙ[𝑊∗(𝑠, Λ)] is attained by a three-point
distribution as inTheorem 3.9.

A common misconception is that the expected waiting time in the G/G/1 queue is a convex

function of the arrival rate when the interarrival times in the Lindley recursion (3.18) are scaled

by 1/𝜆. In their brief note, Fridgeirsdottir and Chiu [82] rightfully claim that much of the
congestion pricing literature is flawed due to this unfounded assumption. However, as the

authors point out, a different performance metric is utilized in the majority of these analyses.

So, although the expected wait is not necessarily a convex function of 𝜆, Fridgeirsdottir and
Chiu [82] demonstrate that the expected delay cost rate, 𝜆𝑊 (𝜆), is convex in the arrival rate,
also for the G/G/1 queue. We next turn back to the rational queueing model. Now say the firm

searches for a socially optimal fee that maximizes social welfare, rather than its own financial
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benefits. This leads us to consider the following maximin problem (see, e.g., [48] for the original

problem with full distributional information):max𝑝 minℙ∈P(𝑚,𝑑) 𝔼ℙ[𝑞(𝑝)Λ(𝑟 − 𝑐𝑊 (𝑞(𝑝)Λ))]
Again, 𝑞(𝑝) is an implicit function of 𝑝 that solves the utility equation 𝑈(𝑞) = 0. Now notice thatΛ𝑊(Λ) is precisely the expected delay cost rate, which is convex in the arrival rate parameter.
Hence, for mean-MAD information, we can obtain tight bounds for the expected social welfare,

even if the underlying arrival process conditioned on the event Λ = 𝜆 is not a Poisson process,
but instead, an arrival process which is characterized by the uncertain parameter Λ.
The applications above are just three examples of a vast range of uses. In principle, all queue-

ing systems for which the steady-state performance measures are convex functions of the pa-

rameters are amenable to minimax analysis with MAD dispersion. However, when it comes to

variance, convexity on its own is insufficient. The second-order bounds necessitate the third-

order property, a convex derivative. Here, a sample-path method appears to be impractical for

many models. To see this, consider the evolution of the waiting time as in (3.18). Clearly, the

underlying sample path is not continuously differentiable in 𝜆 (due to the (⋅)+ operator). De-
spite the fact that the derivative does not exist in the sample-path sense, ad hoc approaches, in

which one works directly with algebraic formulae for the steady-state expected wait, will still

work. As a concrete example of this direct approach, consider the Pollaczek-Khinchine formula

for the expected wait in the M/G/1 queue, given by

𝑊∗(𝜆) = 𝜌 + 𝜆𝜇 Var(𝑆)2(𝜇 − 𝜆) + 𝜇−1.
Now observe thatdd𝜆𝑊∗(𝜆) = 1 + 𝜇2 Var(𝑆)2(𝜆 − 𝜇)2 � 0, d2d𝜆2𝑊∗(𝜆) = 1 + 𝜇2 Var(𝑆)(𝜇 − 𝜆)3 � 0,
and moreover, d3d𝜆3𝑊∗(𝜆) = 3(1 + 𝜇2 Var(𝑆))(𝜆 − 𝜇)4 � 0, for 𝜆 < 𝜇.
Hence, 𝑊∗(𝜆) is increasingly convex, and 𝔼[𝑊∗(Λ)] can be bounded using Lemma 3.2, yielding
the following result.

Proposition 3.15 (M/G/1 queue with variance information). Let the market size Λ have a

distribution ℙ that resides in the ambiguity set P(𝑚, 𝜎, 𝜆, 𝜆), and let 𝑊∗(𝜆) denote the expected
wait in the M/G/1 queue. Then, the tight upper bound for 𝔼ℙ[𝑊∗(Λ)] is attained by the two-point

distribution stated inTheorem 3.4.

Thus, despite the need for some tedious algebra, the second-order bounds that incorporate

variance information have the potential to be widely applicable to other stochastic systems.

https://parameter.is/
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3.5.3. Random service rate
In practice, it might turn out that other parameters besides the arrival rate are uncertain, with

only partial information available. It could be advantageous to establish second-order bounds

for the service rate at which the different servers operate. It seems reasonable to assume that

decision makers may not always have precise knowledge of server rates, as these rates could

depend on specific server characteristics. In this regard, we consider the scenario in which the

service rate 𝜇 is replaced by a random service rate 𝑀 . Convexity of the mean queue size of the
M/M/𝑠 queue with respect to the system utilization 𝜌 is a classic result; see e.g. [91] and [142].
The following result pertains to the multi-server setting, where we again will rely on the results

in [182].

Lemma 3.16 (Derivative w.r.t. 𝜇 is concave). The expected wait 𝑊(𝑠, 𝜆, 𝜇) as function of 𝜇 has
a concave derivative.

Proof. Denote 𝜙𝜇(𝑥) ∶= 𝑊(𝑠, 𝜆, 𝑥). To prove that 𝜙′𝜇(𝑥) is concave, we will use the result in
Randhawa [182] which proves convexity of 𝐿′ as function of 𝜌. Interpreting 𝐿 indeed as function
of 𝜌, define ℎ(𝑥) ∶= 𝐿 and 𝑔(𝜇) ∶= 𝜆/(𝑠𝜇), where 𝜇 is the variable and the parameters 𝜆 and𝑠 are fixed to arbitrary constants. To see that the composite function (ℎ ◦ 𝑔)(𝜇) = 𝐿(𝜆/(𝑠𝜇)) is
decreasingly convex, notice that𝜕3𝜕𝜇3 (ℎ ◦ 𝑔)(𝜇) = 𝑔′′′(𝜇)ℎ′(𝑔(𝜇))⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟𝑔′′′<0,ℎ′�0 + 𝑔′(𝜇)3ℎ′′′(𝑔(𝜇))⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟𝑔′<0,ℎ′′′�0 + 3𝑔′(𝜇)𝑔′′(𝜇)ℎ′′(𝑔(𝜇))⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟𝑔′<0,𝑔′′>0,ℎ′′�0 � 0.
Little’s law indicates that𝑊(𝑠, 𝜆, 𝜇) = 𝐿(𝑠, 𝜆, 𝜇)/𝜆, with 𝜆 > 0 a fixed constant, which completes
the proof.

Hence,𝑊(𝑠, 𝜆, 𝜇) is a decreasing, convex function of 𝜇with a concave derivative. By Lemma 3.2(i),
the extremal distribution is given by a two-point distribution with support {𝜇1, 𝜇2} = {𝜇, 𝑚𝜇 +𝜎2𝑚𝜇−𝜇 } and respective probabilities

𝑝1 = 𝜎2(𝑚𝜇 − 𝜇)2 + 𝜎2 , 𝑝2 = (𝑚𝜇 − 𝜇)2(𝑚𝜇 − 𝜇)2 + 𝜎2 .
That is, the worst case is given by servers which either operate at their lowest service capacity

or just above the mean service rate.

Moreover, it is possible to work with multiple uncertain parameters simultaneously. We next

consider maxℙΛ∈P(𝑚Λ,𝜎Λ) maxℙ𝑀∈P(𝑚𝑀 ,𝜎𝑀 ) 𝔼ℙ𝑀⊗ℙΛ[𝑊 (𝑠, Λ,𝑀)],
which turns out to be solvable in closed form:

Theorem 3.17 (M/M/𝒔 queue with partially known service rate and market size). Let the

service rate 𝑀 follow a marginal distribution ℙ𝑀 ∈P𝑀 ∶=P(𝑚𝑀 ,𝜎𝑀) and the market size Λ follow

a marginal distribution ℙΛ ∈PΛ ∶=P(𝑚Λ,𝜎Λ). Suppose that 𝜆 < 𝑠𝜇. If 𝑀 and Λ are independent,
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the sharpest possible upper bound for 𝔼ℙ[𝑊 (𝑠, Λ,𝑀)] is attained by the product measure ℙ∗𝑀 ⊗ℙ∗Λ,
with ℙ∗Λ and ℙ∗𝑀 as defined in Lemma 3.2(i) and (ii), respectively.

Proof. The tower rule yieldsmaxℙ𝑀∈P𝑀 𝔼ℙ[𝑊 (𝑠, Λ,𝑀)] = maxℙ𝑀∈P𝑀 𝔼𝑀[𝔼Λ[𝑊 (𝑠, Λ,𝑀)|𝑀]],
where the expectation is well defined due to 𝑠𝜇 > 𝜆. Hence, fixing the distribution of Λ gives
the moment problem maxℙ𝑀∈P𝑀 ∫[𝜇,𝜇] 𝔼Λ[𝑊 (𝑠, Λ, 𝜇)]dℙ(𝜇).
For 𝜆 a fixed constant, 𝑊(𝑠, Λ, 𝜇) has the required “curvature” properties, so ℙ∗𝑀 is the solution
to the moment problem. For ℙ∗𝑀 to work also for 𝜙𝜇(𝑥) ∶= 𝔼Λ[𝑊 (𝑠, Λ, 𝑥)], we need to check the
signs of the first three derivatives. We interchange differentiation and expectation operations

(which is allowed as Λ is bounded), so that𝜙(𝑘)𝜇 (𝑥) = d(𝑘)d𝑥(𝑘) 𝔼Λ[𝑊 (𝑠, Λ, 𝑥)] = 𝔼Λ [ d(𝑘)d𝑥(𝑘) 𝑊 (𝑠, Λ, 𝑥)] .
As the expectation operator is nonnegative,d(𝑘)d𝑥(𝑘) 𝑊 (𝑠, 𝜆, 𝑥) � 0, ∀𝜆 ⟹ 𝔼Λ [ d(𝑘)d𝑥(𝑘) 𝑊 (𝑠, Λ, 𝑥)] � 0,
and likewise, d(𝑘)d𝑥(𝑘) 𝑊 (𝑠, Λ, 𝑥) � 0, ∀𝜆 ⟹ 𝔼Λ [ d(𝑘)d𝑥(𝑘) 𝑊 (𝑠, Λ, 𝑥)] � 0,
which proves that ℙ∗𝑀 maximizes 𝜙𝜇(𝑥) for any distribution of Λ. Substituting the two-point
distribution gives the moment problemmaxℙΛ∈PΛ 𝔼ℙΛ[𝑝1𝑊 (𝑠, Λ, 𝜇1) + 𝑝2𝑊 (𝑠, Λ, 𝜇2)].
Based on the same line of reasoning, this expression is maximized by ℙ∗Λ.
Theorem 3.17 demonstrates another favorable property of our second-order bounds. Namely,

the extremal distributions are independent of the precise form of𝑊(𝑠, 𝜆, 𝜇), allowing us to apply
the univariate results recursively when considering multiple uncertain parameters.

3.6. Conclusions and outlook
Let us conclude. We have derived novel second-order bounds for the expected wait in an M/M/𝑠
queueing system driven by a mixed Poisson process, in which the arrival rate parameter is in-

herently a random variable. We have been able to derive these tight bounds for theM/M/𝑠 queue
by exploiting the unique curvature properties of its steady-state queueing metrics, in conjunc-

tion with semi-infinite programming techniques from distributionally robust analysis. Further-

more, we have demonstrated that within a rational queueing context, these bounds can be used
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to determine the optimal maximin price for a firm catering to a market of delay-sensitive, ra-

tional customers with limited information about the total market size.

Looking forward, it seems worthwhile to search for other information sets that exhibit useful

properties similar to variance and MAD, which proved crucial in our distributionally robust

analyses. It can also be interesting to consider other data-driven ambiguity sets, such as the

Wasserstein ambiguity set discussed in Section 3.4.3, which are equipped to handle limited

data, as estimates of means and dispersion measures might not always be statistically accurate

enough. Additionally, it is insightful to investigate to which other stochastic systems analogous

types of distributionally robust techniques to control for parameter uncertainty can be applied,

a topic we briefly touched upon in Section 3.5.2.
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4
Tight tail probability bounds for

distribution-free decision making

4.1. Introduction
Chebyshev’s inequality provides an upper bound on the tail probability of a random variable

using only its first two moments [31, 42]. This inequality is tight, meaning it cannot be im-

proved in general. However, Chebyshev’s inequality can be criticized for only being attained

by pathological distributions that abuse the unboundedness of the underlying support. Indeed,

the worst-case distribution takes values on merely two support points, which can be regarded

unrealistic [214]. A variant of the Chebyshev inequality that was already considered in [86]

restricts the distributions it considers to be unimodal. This yields an improvement by a factor 49
over the classical Chebyshev inequality. This idea of including unimodality has been extended

to the multivariate case recently as well [214].

Multivariate generalizations of Chebyshev’s inequality have also been studied. In [29] and

[215] generalizations are studied through formulating a convex optimization problem, given

that the prescribed confidence region can be described by polynomial or linear and quadratic

inequalities, respectively. In [92] on the other hand, closed-form variants of Chebyshev’s in-

equality are provided for different dispersion measures than the variance. Generalized versions

This chapter is based on the research paper [188].

71
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of Chebyshev’s inequality for products of random variables that focus on a one-sided inequality

have also received some attention recently [190].

All the above-mentioned inequalities, however, still assume an unbounded support. In many

practical applications some information on the minimum and maximum of uncertain parame-

ters is known. This is particularly true for OR applications that consider uncertain parameters

that are known to be nonnegative, such as inventory management, service operations, appoint-

ment scheduling and pricing mechanisms. De Schepper and Heijnen [64] derived tail probabil-

ity bounds that incorporate the upper bound of the random variable’s range. These bounds are

attained by discrete distributions, supported on two or three atoms.

Next to restricting the support to be contained in a bounded interval, a second potential im-

provement with this novel setup compared to Chebychev’s inequality concerns robustness for

outliers. Whereas outliers greatly influence the (sample) variance, the mean absolute deviation

from the mean (MAD) is less sensitive for large deviations from the mean, and hence a poten-

tially more robust measure of statistical dispersion in data. We therefore propose to replace

variance with MAD. Using the MAD comes with additional advantages. We show that the set

of extremal distributions for which the derived tail bounds are tight is more varied than a single

pathological distribution: it consists of an infinite number of mixed distributions instead. Sec-

ond, because the MAD is a linear function, it allows for elegant closed-form bounds, a feature

we shall leverage when applying the bounds to domain-specific OR questions.

The solution to a generalized moment problem will give a tight upper bound on the tail

probability of all random variables with a given bounded support, mean and MAD. This new

robust bound is of a similar simplicity and generality as the original Chebyshev inequality, and

can therefore be used in various applications. The worst-case distribution that achieves the

tight bounds is, however, more complicated than the two-point distribution of the Chebyshev

inequality, and is a mixed distribution with up to three discrete parts and one continuous part.

We also derive a number of additional tail probability bounds: the tight lower bound for mean,

MAD and bounded support information, and the tight upper bound where we condition on the

median and the mean absolute deviation from the median.

Recent advances in distributionally robust optimization (DRO) also exploit MAD-based am-

biguity sets to obtain closed-form expressions for stochastic quantities such as the minimum

and maximum expectation of a convex function [87, 179]. These closed-form expressions are

then used to solve minimax and maximin optimization problems that arise naturally in deci-

sion making under uncertainty. Postek et al. [179] specifically used results from Ben-Tal and

Hochman [19] on tight upper and lower bounds on the expectation of a convex function of a

random variable.

4.1.1. Contributions and outline

This chapter presents the first closed-form solution for the problemwith a combination of mean,

MAD and support constraints, and a nonconvex objective function. This proof method is not

restricted to the indicator function that models the tail probability and works for a much larger

class of (measurable) functions, as explained in Section 1.2.1.
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We apply the robust bounds for distribution-free analysis of three applications that can be

subjected to minmax or maxmin optimization. We start with the newsvendor model, the basic

single-period inventory model that searches for the optimal order quantity in view of overage

and underage costs. The second application is stop-loss reinsurance, in which an insurance

company faces a claim which it pays up to a predefined level, while the reinsurance company

covers the remainder. We study this problem from both the insurer’s and reinsurer’s perspec-

tive, the latter of which requires an extension of our tail probability bound. Last, we study a

continuous optimization problem from radiotherapy optimization with an ambiguous chance

constraint. Application of the derived tail probability bound yields a computationally tractable

convex reformulation that can be solved with traditional methods. The three applications illus-

trate different aspects of the derived tail probability and the primal-dual proof used to obtain

it. First, the newsvendor example is a direct application of the bound to a classical OR problem.

Second, the stop-loss reinsurance application illustrates how the primal-dual proof technique

can be extended to more complex functionals than the tail probability. Third, the radiotherapy

optimization example highlights the connection of our result to the field of distributionally ro-

bust optimization. We should say that the models have been chosen somewhat arbitrarily, and

there are many other OR questions where tail probability bounds under mean-MAD constraints

can prove useful.

The chapter is organized as follows. We present the tail probability bounds in Section 4.2

and the three applications in Section 4.3. Section 4.4 presents some conclusions and several

directions for future research.

4.2. Tail probability bounds
In this section, we derive novel bounds for the tail probability ℙ(𝑋 � 𝑡) of a random variable 𝑋 .
We solve the semi-infinite linear program (LP) in Section 4.2.1. In Section 4.2.2, we derive more

bounds, based on different ambiguity sets. We compare the novel bounds with some existing

bounds in Section 4.2.3.

4.2.1. Tight lower and upper bounds
Let the ambiguity setP(𝜇,𝜎) contain all distributionswith a givenmean 𝜇 and variance 𝜎2, and let
the random variable 𝑋 follows some distribution ℙ ∈ P(𝜇,𝜎). Chebyshev’s inequality (the one-
sided version also known as Cantelli’s inequality) then follows from the worst-case distribution

that solves the optimization problem sup𝑋∼ℙ∈P(𝜇,𝜎) 𝔼ℙ [�{𝑋 � 𝑡}], yielding the upper bound
ℙ (𝑋 � 𝑡) � 𝜎2𝜎2 + (𝑡 − 𝜇)2 . (4.1)

Thisworst-case distribution takes only values on the points 𝜇−𝜎2/(𝑡−𝜇) and 𝑡 (with probabilities(𝑡 − 𝜇)2/(𝜎2 + (𝑡 − 𝜇)2) and 𝜎2/(𝜎2 + (𝑡 − 𝜇)2), resp.), which can be regarded as conservative. In
obtaining our novel robust tail bounds, we instead need to solvesup𝑋∼ℙ∈P(𝜇,𝑏,𝑑) 𝔼ℙ [�{𝑋 � 𝑡}] , (4.2)
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withP(𝜇,𝑏,𝑑) the ambiguity set that contains all distributions with a given mean 𝜇, support [0, 𝑏]
and mean absolute deviation 𝑑, i.e.,

P(𝜇,𝑏,𝑑) = {ℙ ∶ B → [0, 1] | ℙ(𝑋 ∈ [0, 𝑏]) = 1, 𝔼ℙ[𝑋] = 𝜇, 𝔼ℙ[|𝑋 − 𝜇|] = 𝑑} (4.3)

withB the Borel 𝜎-algebra of the closed set [0, 𝑏]. Optimization problem (4.2) is a semi-infinite
LP that is reminiscent of those arising in moment problems, and typically does not allow for

an analytic (closed-form) solution. However, using the MAD-based ambiguity set, the dual

program to (4.2) can be solved explicitly. Since ℙ is a probability measure it should satisfy the
constraint ∫𝑥∈[0,𝑏] dℙ(𝑥) = 1. Moreover, this probability measure should satisfy the mean and
MAD constraints ∫𝑥∈[0,𝑏] 𝑥 dℙ(𝑥) = 𝜇 and ∫𝑥∈[0,𝑏] |𝑥 − 𝜇| dℙ(𝑥) = 𝑑. Under these constraints, we
solve the semi-infinite linear programsupℙ∈P(𝜇,𝑏,𝑑) ∫𝑥 �{𝑥�𝑡} dℙ(𝑥), (4.4)

which gives our first main result.

Theorem 4.1. Consider a random variable 𝑋 with a distribution ℙ inP(𝜇,𝑏,𝑑). Then,

supℙ∈P(𝜇,𝑏,𝑑) ℙ(𝑋 � 𝑡) = supℙ∈P(𝜇,𝑏,𝑑) ℙ(𝑋 > 𝑡) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, 𝑡 ∈ [0, 𝜏1],𝜇𝑡 − 𝑑(𝑏−𝑡)2𝑡(𝑏−𝜇) , 𝑡 ∈ [𝜏1, 𝜇],1 − 𝑑2𝜇 , 𝑡 ∈ [𝜇, 𝜏2],𝑑2(𝑡−𝜇) , 𝑡 ∈ [𝜏2, 𝑏], (4.5)

with 𝜏1 and 𝜏2 given by 𝜏1 = 𝜇 − 𝑑(𝑏 − 𝜇)2(𝑏 − 𝜇) − 𝑑 , 𝜏2 = 𝜇 + 𝑑𝜇2𝜇 − 𝑑 .
Proof. LetM+ be the set of non-negative measures defined on the measurable space ([0, 𝑏],B).
We need to solve supℙ∈M+ ∫𝑥 �{𝑥�𝑡} dℙ(𝑥)

s.t. ∫𝑥 dℙ(𝑥) = 1, ∫𝑥 𝑥 dℙ(𝑥) = 𝜇, ∫𝑥 |𝑥 − 𝜇| dℙ(𝑥) = 𝑑. (4.6)

Consider the dual of (4.6),inf𝜆0,𝜆1,𝜆2 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑
s.t. �{𝑥�𝑡} � 𝜆0 + 𝜆1𝑥 + 𝜆2|𝑥 − 𝜇| =∶ 𝐹(𝑥), ∀𝑥 ∈ [0, 𝑏]. (4.7)

The constraint of the dual problem requires 𝐹(⋅) to majorize �{𝑥 � 𝑡}. Note that 𝐹(⋅) has a “kink”
at 𝑥 = 𝜇, that is, 𝐹(⋅) is piecewise linear and can only change direction in 𝑥 = 𝜇. Solving (4.7)
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𝑥

�{𝑥 � 𝑡}𝐹1𝑎(𝑥)𝐹1𝑏(𝑥)
𝜇𝑡 𝑏 𝑥

�{𝑥 � 𝑡}𝐹2𝑎(𝑥)𝐹2𝑏(𝑥)
𝜇 𝑡 𝑏

Figure 4.1:The majorizing functions under the different scenarios

boils down to finding the tightest majorant. We have four candidates for the solution, which

are depicted in Figure 4.1. When 𝑡 ∈ [0, 𝜇], 𝐹(𝑥) touches �{𝑥 � 𝑡} in {0, 𝑡, 𝑏} (scenario 1a), or𝐹(𝑥) = 1 and touches �{𝑥 � 𝑡} in [𝑡, 𝑏] (scenario 1b). When 𝑡 ∈ [𝜇, 𝑏], 𝐹(𝑥) touches in [0, 𝜇] ∪ {𝑡}
(scenario 2a) or in {0} ∪ [𝑡, 𝑏] (scenario 2b).
Scenario 1a implies 𝐹(0) = 0, 𝐹(𝑡) = 𝐹(𝑏) = 1, which gives as dual solution𝜆2 = − 𝑏 − 𝑡2𝑡(𝑏 − 𝜇) , 𝜆1 = 1𝑡 + 𝜆2, 𝜆0 = −𝜆2𝜇,

and objective value 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑 = 𝜇𝑡 − 𝑑(𝑏 − 𝑡)2𝑡(𝑏 − 𝜇) .
The next step is to find a feasible solution for the primal problem that yields the same objective

value as the solution to the dual problem. By weak duality of semi-infinite linear programming,

a feasible solution to the dual problem gives a valid upper bound for the optimal primal solution

value. A feasible primal solution with an objective value equal to this upper bound results in

strong duality. Next, we provide a constructive approach to find such a primal solution. Assume

that strong duality holds. The primal maximizer ℙ∗ and the dual minimizer (𝜆∗0, 𝜆∗1, 𝜆∗2) are then
related as ∫𝑥 �{𝑥 � 𝑡} dℙ∗(𝑥) = ∫𝑥(𝜆∗0 + 𝜆∗1𝑥 + 𝜆∗2|𝑥 − 𝜇|) dℙ∗(𝑥). (4.8)

Due to dual feasibility, we must have that 𝜆∗0 + 𝜆∗1𝜇 + 𝜆∗2𝑑 − �{𝑥 � 𝑡} � 0 pointwise for each𝑥 ∈ [0, 𝑏]. This inequality combined with equation (4.8) is also known as the complementary
slackness relation in (semi-infinite) linear programming. Complementary slackness implies

that the worst-case probability distribution is supported on the points where the dual function𝐹∗(𝑥) = 𝜆∗0 + 𝜆∗1𝑥 + 𝜆∗2|𝑥 − 𝜇| coincides with the indicator function �{𝑥 � 𝑡}. For scenario 1a
we have one unique option, a three-point distribution on {0, 𝑡, 𝑏}. The corresponding optimal
probabilities of (4.6) follow from solving𝑝0 + 𝑝𝑡 + 𝑝𝑏 = 1, 𝑝𝑡 𝑡 + 𝑝𝑏𝑏 = 𝜇, 𝑝0𝜇 + 𝑝𝑡(𝜇 − 𝑡) + 𝑝𝑏(𝑏 − 𝜇) = 𝑑.
This gives 𝑝0 = 1 − 𝑝𝑡 − 𝑝𝑏, 𝑝𝑡 = 𝜇𝑡 − 𝑏𝑑2𝑡(𝑏 − 𝜇) , 𝑝𝑏 = 𝑑2(𝑏 − 𝜇) , (4.9)
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and hence ∫𝑥 �{𝑥 � 𝑡} dℙ(𝑥) = 𝑝𝑡 + 𝑝𝑏 = 𝜇𝑡 − 𝑑(𝑏 − 𝑡)2𝑡(𝑏 − 𝜇) .
Since strong duality holds as the primal and dual objective values agree, (4.9) is the optimal

solution.

Scenario 1b implies 𝐹(0) = 𝐹(𝑡) = 𝐹(𝑏) = 1 and hence 𝜆0 = 1, 𝜆1 = 𝜆2 = 0 with objective
value 1. One feasible primal solution is e.g. 𝑝𝑡 = 𝑑2(𝜇−𝑡) , 𝑝𝑏 = 𝑑2(𝑏−𝜇) , 𝑝𝜇 = 1 − 𝑝𝑡 − 𝑝𝑏, with
objective 1. Note that this solution is not a unique optimum, as the dual function 𝐹∗1𝑏(𝑥) coincides
with �{𝑥 � 𝑡} on the entire interval [𝑡, 𝑏]. Therefore, one can construct an arbitrary (discrete,
continuous or mixed) probability distribution with support on the interval [𝑡, 𝑏], which then
serves as the worst-case distribution, as long as the mean and MAD conditions are satisfied.

Scenario 2a implies 𝐹(0) = 𝐹(𝜇) = 0, 𝐹(𝑡) = 1, which gives𝜆1 = 𝜆2 = 12(𝑡 − 𝜇) , 𝜆0 = − 𝜇2(𝑡 − 𝜇) ,
and objective value 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑 = 𝑑2(𝑡 − 𝜇) .
Solving the optimal probabilities of (4.6), wherewe take {0, 𝜇, 𝑡} for the support of theworst-case
distribution, indeed confirms that 𝑝𝑡 = 𝑑2(𝑡−𝜇) .
Scenario 2b gives 𝐹(0) = 0, 𝐹(𝜇) = 𝐹(𝑏) = 1, which results in𝜆0 = 12 , 𝜆1 = 12𝜇 , 𝜆2 = − 12𝜇 ,

and dual objective value 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑 = 1 − 𝑑2𝜇 .
Solving (4.6) with support {0, 𝑡, 𝑏} confirms that 𝑝0 = 𝑑2𝜇 .
The proof is then completed by finding the minimum for each scenario and determining the

values of 𝜏1 and 𝜏2 for scenarios 1 and 2, respectively. We remark that the proof is identical for
the strict inequality. Because the majorant is a continuous function, it is irrelevant whether the

indicator function that is majorized is lower or upper semi-continuous.

We mention some noteworthy characteristics of the bound in Theorem 4.1. The bound is

continuous in 𝑡 = 𝜇. If the support is symmetric around 𝜇, then the worst-case probability is
at least 1/2 for 𝑡 ∈ [0, 𝜇]. The upper bound for 𝑡 ∈ [𝜇, 𝑏] is increasing for 𝑑 � 2𝜇(𝑡 − 𝜇)/𝑡 and
decreasing for larger values of 𝑑. This last observation in particular is interesting as one might
anticipate the bound to increase with MAD. This also implies that when MAD is unknown, the

worst-case probability based on only the support and mean is given by the result ofTheorem 4.1

for 𝑑 = 2𝜇(𝑡 − 𝜇)/𝑡. This indeed returns Markov’s inequality. We also mention that the sup-
port information [0, 𝑏] can easily be extended to [𝑎, 𝑏] with 𝑎 ∈ ℝ by shifting the distribution
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accordingly. The tail bounds for the second and third interval then change into𝜇 − 𝑎𝑡 − 𝑎 − 𝑑(𝑏 − 𝑡)2(𝑡 − 𝑎)(𝑏 − 𝜇) and 1 − 𝑑2(𝜇 − 𝑎) , (4.10)

respectively. Similarly, the result can be adapted to a support that is only bounded from below

or above. For such supports, one of the cases in (4.5) disappears. Specifically, when the support

of 𝑋 is given by [0, ∞), it follows that 𝜏1 = 𝜇, while for the support (−∞, 𝑏], it follows that𝜏2 = 𝜇.
For a tight lower bound on ℙ(𝑋 > 𝑡), we can use the results and the remark above on a

slightly altered version of the input. The idea is formalized in the following result:

Corollary 4.2. For a random variable 𝑋 with a distribution ℙ inP(𝜇,𝑏,𝑑),
infℙ∈P(𝜇,𝑏,𝑑) ℙ(𝑋 � 𝑡) = infℙ∈P(𝜇,𝑏,𝑑) ℙ(𝑋 > 𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 − 𝑑2(𝜇−𝑡) , 𝑡 ∈ [0, 𝜏1],𝑑2(𝑏−𝜇) , 𝑡 ∈ [𝜏1, 𝜇],𝜇−𝑡𝑏−𝑡 + 𝑑𝑡2𝜇(𝑏−𝑡) , 𝑡 ∈ [𝜇, 𝜏2],0, 𝑡 ∈ [𝜏2, 𝑏], (4.11)

with 𝜏1 = 𝜇 − 𝑑(𝑏 − 𝜇)2(𝑏 − 𝜇) − 𝑑 , 𝜏2 = 𝜇 + 𝑑𝜇2𝜇 − 𝑑 .
Proof. We reformulate the infimum as follows:infℙ∈P(𝜇,𝑏,𝑑) ℙ(𝑋 > 𝑡) = 1 − supℙ∈P(𝜇,𝑏,𝑑) ℙ(𝑋 � 𝑡)= 1 − supℙ∈P̃(𝜇,𝑏̃,𝑑) ℙ(𝑋 � 𝑡),
where

P̃(𝜇,𝑏̃,𝑑) = {ℙ ∶ B → [0, 1] | ℙ(𝑋 ∈ [𝑎̃, 𝑏̃]) = 1, 𝔼ℙ[𝑋] = 𝜇, 𝔼ℙ[|𝑋 − 𝜇|] = 𝑑},
and 𝑎̃ = 2𝜇 − 𝑏, 𝑏̃ = 2𝜇 and 𝑡 = 2𝜇 − 𝑡. This transformation essentially flips the support around𝜇 such that 𝜇 − 0 = 𝑏̃ − 𝜇 and 𝑏 − 𝜇 = 𝜇 − 𝑎̃. Therefore, the maximum probability below 𝑡 is
equal to the maximum probability above the flipped threshold 𝑡. Plugging in the results from
Theorem 4.1 for 𝑡 ∈ (𝑎, 𝑏] then yields (4.11). Similarly, the result for infℙ∈P ℙ(𝑋 � 𝑡) can be
obtained.

We now describe in more detail the worst-case distributions that are revealed in the proof of

Theorem 4.1.

Corollary 4.3. Consider the set of worst-case distributions

P∗ = argsupℙ∈P(𝜇,𝑏,𝑑) 𝔼ℙ[�{𝑋 � 𝑡}].
Then,
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(i) if 𝑡 ∈ [0, 𝜏1], P∗ = {ℙ ∈ P(𝜇,𝑏,𝑑) | ℙ (𝑋 ∈ [𝑡, 𝑏]) = 1}, all distributions in P(𝜇,𝑏,𝑑) that are
supported on the interval [𝑡, 𝑏];

(ii) if 𝑡 ∈ [𝜏1, 𝜇], P∗ = {ℙ ∶ ℙ (𝑋 = 0) = 1 − 𝜇𝑡 + 𝑑(𝑏−𝑡)2𝑡(𝑏−𝜇) , ℙ (𝑋 = 𝑡) = 𝜇𝑡 − 𝑏𝑑2𝑡(𝑏−𝜇) , ℙ (𝑋 = 𝑏) =𝑑2(𝑏−𝜇) }, the three-point distribution as derived in scenario 1a in the proof of Theorem 4.1;

(iii) if 𝑡 ∈ [𝜇, 𝜏2],P∗ = {ℙ ∈P(𝜇,𝑏,𝑑) || ℙ (𝑋 = 0) = 𝑑2𝜇 , ℙ (𝑋 ∈ [𝑡, 𝑏]) = 1− 𝑑2𝜇 }, all discrete/mixed

distributions with probability mass 𝑑2𝜇 on 0 and the remainder of its probability mass sup-

ported on [𝑡, 𝑏];
(iv) if 𝑡 ∈ [𝜏2, 𝑏], P∗ = {ℙ ∈ P(𝜇,𝑏,𝑑) || ℙ (𝑋 = 𝑡) = 𝑑2(𝑡−𝜇) , ℙ(𝑋 ∈ [0, 𝜇]) = 1 − 𝑑2(𝑡−𝜇) }, all

discrete/mixed distributions with probability mass 𝑑2(𝑡−𝜇) on 𝑡 and the remainder of its prob-

ability mass supported on [0, 𝜇].
Proof. The proof follows almost directly from the complementary slackness relation explained

in the proof ofTheorem 4.1. For 𝑡 ∈ [0, 𝜏1] the dual solution function coincides with �{𝑥 � 𝑡} on
the interval [𝑡, 𝑏]. Hence, all distributions that are supported on this interval and comply with
the mean and MAD requirements are possible candidates for the worst-case distribution. Next,

one can apply a similar reasoning for 𝑡 ∈ [𝜇, 𝜏2] and 𝑡 ∈ [𝜏2, 𝑏]. The worst-case distribution can
exist on the range where the dual solution function 𝐹∗(𝑥) and the indicator function coincide.
To attain the same optimal value, the probability mass on the singletons is chosen accordingly.

Finally, note that the second case is already shown in the proof of Theorem 4.1.

Observe that when 𝑡 equals 𝜏1, 𝜇, or 𝜏2, there is only a single discrete extremal distribution.
Figure 4.2 provides examples of the worst-case distributions for several different parameter

settings and values of 𝑡. For the sake of exposition, all depicted examples have a continuous
part that is uniform over its supported interval. Corollary 4.3 shows that the ambiguity set

P(𝜇,𝑏,𝑑) results in a non-trivial collection of worst-case distributions; that is, the mean-MAD
approach results in a set that does not solely include discrete distributions with a small number

of atoms for 𝑡 ∉ [𝜏1, 𝜇] ∪ {𝜏2}.
4.2.2. Sharp bounds for other types of ambiguity
The primal-dual method is a general approach, often used in DRO, with a much wider range of

possible applications. This subsection demonstrates that the semi-infinite programming prob-

lems can be adapted to different ambiguity sets, thus incorporating other types of information.

We first derive alternative (tight) bounds for the tail probability, where we use a different mea-

sure of central tendency: the median. We then turn back to mean-MAD information and derive

sharper bounds with a commonly used skewness measure that complements the mean-MAD

ambiguity set, i.e., ℙ(𝑋 � 𝜇).
For the first adjustment, assume we know the following parameters: the support [0, 𝑏], the

median 𝑚 and the mean absolute deviation (from the median) 𝑑𝑚. Let us suppose further, for
simplicity, that the median is uniquely defined. We now obtain a different set of distributions,
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ℙ(𝑋 � 𝑥)

𝑥

15/16

1/2

0

1

0 𝜇 = 1𝑡 = 12
𝜏1 𝑏 = 3
(a) 𝑑 = 14

ℙ(𝑋 � 𝑥)

𝑥1/4

3/4

0

1

0 𝜇 = 1𝑡 = 12
𝜏1 𝑏 = 3

(b) 𝑑 = 1ℙ(𝑋 � 𝑥)

𝑥
2/3

1/2

0

1

0 𝜇 = 1 𝑡 = 32
𝜏2 𝑏 = 3

(c) 𝑑 = 1

ℙ(𝑋 � 𝑥)

𝑥1/4

3/4

0

1

0 𝜇 = 1 𝑡 = 32
𝜏2 𝑏 = 3
(d) 𝑑 = 14

Figure 4.2: Examples of the extremal distributions that attain the tail probability bound as described in

Corollary 4.3

namely,

P(𝑚,𝑏,𝑑𝑚) = {ℙ ∶ B → [0, 1] | ℙ(𝑋 ∈ [0, 𝑏]) = 1, ℙ(𝑋 � 𝑚) � 12 ,ℙ(𝑋 � 𝑚) � 12 , 𝔼ℙ[|𝑋 − 𝑚|] = 𝑑𝑚} .
If the distribution of 𝑋 resides in this ambiguity set, the tight bounds are given by the optimal
value of supℙ∈M+ ∫𝑥 �{𝑥�𝑡}dℙ(𝑥)

s.t. ∫𝑥 dℙ(𝑥) = 1, ∫𝑥 �{𝑥�𝑚} dℙ(𝑥) � 12 ,∫𝑥 �{𝑥�𝑚} dℙ(𝑥) � 12 , ∫𝑥 |𝑥 − 𝑚| dℙ(𝑥) = 𝑑𝑚.
(4.12)
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This then gives the dual probleminf𝜆0,𝜆2;𝜆−1 ,𝜆+1�0 𝜆0 + (𝜆−1 + 𝜆+1 )12 + 𝜆2𝑑𝑚
s.t. �{𝑥�𝑡} � 𝜆0 + 𝜆−1 �{𝑥�𝑚} + 𝜆+1 �{𝑥�𝑚} + 𝜆2|𝑥 − 𝑚| =∶ 𝐹𝑚(𝑥), ∀𝑥 ∈ [0, 𝑏]. (4.13)

We can solve the dual problem by exploiting the structure of 𝐹𝑚(𝑥), like with the proof of
Theorem 4.1. The different scenarios are depicted in Figure 4.3. The following theorem presents

the median-MAD bounds. The details of the proof are relegated to the appendix.

Theorem 4.4. For a random variable 𝑋 with a distribution ℙ ∈P(𝑚,𝑏,𝑑𝑚),
supℙ∈P(𝑚,𝑏,𝑑𝑚) ℙ(𝑋 � 𝑡) = ⎧⎪⎪⎨⎪⎪⎩inf

{1, 𝑏−2𝑑𝑚2𝑡 + 12} , 𝑡 ∈ [0, 𝑚),inf {12 , 𝑑𝑚(𝑡−𝑚)} , 𝑡 ∈ [𝑚, 𝑏]. (4.14)

𝑥

�{𝑥 � 𝑡}𝐹1𝑎𝑚 (𝑥)𝐹1𝑏𝑚 (𝑥)
𝑚𝑡 𝑏 𝑥

�{𝑥 � 𝑡}𝐹2𝑎𝑚 (𝑥)𝐹2𝑏𝑚 (𝑥)
𝑚 𝑡 𝑏

Figure 4.3:The function 𝐹𝑚(𝑥) under scenarios 1a, 1b, 2a and 2b
In robust statistics themedian is widely considered as amore suitable location parameter than

themeanwhen the distribution is estimated from historical data and contaminatedwith outliers

through another (possibly fat-tailed) distribution [39]. As the former puts less importance on

the tail of the distribution, it is barely affected by those outliers. The median and MAD around

the median are the robust variants of, respectively, the mean and standard deviation. Next

to describing the underlying distribution more accurately, the median might also provide a

better measure of central tendency for the quantity that we are estimating from historical data.

For example, the median wealth of a population is a better measure of “typical” wealth than

the expected value since the distribution of wealth is often skewed. To illustrate the median-

MAD tail bound (4.14), we plot a small example in which the ground truth follows a Pareto
distribution, see Figure 4.4. Here the “true” distribution resides in the ambiguity setP(𝑚,𝑏,𝑑𝑚)
with 𝑚 = √2, 𝑑𝑚 = 2√2 − 2 and unbounded support. When the shape parameter of the Pareto
distribution equals 2, the variance is infinite, rendering Chebyshev’s inequality useless, but the

median-MAD bound can still be computed. In the remainder of this chapter, we will focus on

the mean-MAD ambiguity set now that we demonstrated our approach is also applicable to

other types of information.
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Pareto(1, 2)

Theorem 2

Figure 4.4:The median-MAD bounds for the tail probability

We next consider the tail bounds when also a specific measure of skewness is known: 𝛽 =ℙ(𝑋 � 𝜇). Since this statistic contains information about the distribution of 𝑋 relative to
its mean 𝜇, it is often combined with mean-MAD information [19, 179]. Define the restricted
ambiguity set

P(𝜇,𝑏,𝑑,𝛽) = {ℙ ∶ ℙ ∈P(𝜇,𝑏,𝑑), ℙ(𝑋 � 𝜇) = 𝛽}. (4.15)

Using this ambiguity set results in new tight bounds. These results are stated in the following

two results for which the primal-dual proofs are also provided in Appendix B.2.

Theorem 4.5. For a random variable 𝑋 with a distribution ℙ ∈P(𝜇,𝑏,𝑑,𝛽),

supℙ∈P(𝜇,𝑏,𝑑,𝛽) ℙ(𝑋 � 𝑡) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, 𝑡 ∈ [0, 𝜏1],(1−𝛽)𝜇+𝛽𝑡𝑡 − 𝑑2𝑡 , 𝑡 ∈ [𝜏1, 𝜇),𝛽, 𝑡 ∈ [𝜇, 𝜏2],𝑑2(𝑡−𝜇) , 𝑡 ∈ [𝜏2, 𝑏], (4.16)

with 𝜏1 = 𝜇 − 𝑑2(1 − 𝛽) , 𝜏2 = 𝜇 + 𝑑2𝛽 .
Theorem 4.6. For a random variable 𝑋 with a distribution ℙ ∈P(𝜇,𝑏,𝑑,𝛽),

infℙ∈P(𝜇,𝑏,𝑑,𝛽) ℙ(𝑋 > 𝑡) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 − 𝑑2(𝜇−𝑡) , 𝑡 ∈ [0, 𝜏1],𝛽, 𝑡 ∈ [𝜏1, 𝜇),𝛽(𝜇−𝑡)(𝑏−𝑡) + 𝑑2(𝑏−𝑡) , 𝑡 ∈ [𝜇, 𝜏2],0, 𝑡 ∈ [𝜏2, 𝑏] (4.17)
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with 𝜏1 = 𝜇 − 𝑑2(1 − 𝛽) , 𝜏2 = 𝜇 + 𝑑2𝛽 .
Note that for these bounds equality between ℙ(𝑋 � 𝑡) and ℙ(𝑋 > 𝑡) does not hold. The

reason for this is demonstrated in the proofs of both the upper and lower bound. Since the

function 𝐹(𝑥) in the dual problem now has a jump discontinuity for 𝑥 = 𝜇, the optimal solution
depends on whether the indicator function is upper or lower semi-continuous.

In Figure 4.5, the upper and lower bounds are depicted for the ambiguity set that considers

all distributions with 𝜇 = 0.5, 𝑑 = 0.1875, 𝛽 = 0.5, 𝑎 = 0 and 𝑏 = 1. As a point of reference, the
Beta(2, 2) tail distribution, which is a member of the ambiguity set, is also plotted.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

t

P (X ≥ t)

(μ, b, d) upper bound

(μ, b, d) lower bound

(μ, b, d, β) upper bound

(μ, b, d, β) lower bound

Beta(2, 2)

Figure 4.5: An illustration of the mean-MAD-𝛽 bounds for the tail probability
Next to summary statistics such as the mean, MAD and median, it is also possible to im-

pose structural properties of the underlying distributions, like unimodality and symmetry, by

altering the constraints of the dual problem. By cleverly exploiting conic duality, Popescu [177]

shows how to adapt the dual problem to take into account these additional conditions. More-

over, we can apply the techniques discussed in this section to other objectives than the indicator

function; see, for example, Section 4.3.2.

4.2.3. Comparison with other bounds
Closely related to our results is the discussion in section 4.1 of [87]. They consider, among

others, the ambiguity set

P̃(𝜇,𝑏,𝑑) = {ℙ ∶ B → [0, 1] ∶ ℙ [𝑋 ∈ [0, 𝑏]] = 1, 𝔼ℙ [𝑋] = 𝜇, 𝔼ℙ [|𝑋 − 𝜇|] � 𝑑} .
The only difference with the ambiguity set we use is the inclusion of all distributions with a

lower mean absolute deviation. This has major implications for the maximum and minimum

probability that 𝑋 exceeds 𝑡, however. First of all, it should be noted that the distribution with
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all its probability mass on 𝜇 is an element of P̃(𝜇,𝑏,𝑑) for any value of 𝑑. This means that for any𝑡 � 𝜇 it holds that supℙ∈P̃(𝜇,𝑏,𝑑) ℙ (𝑋 � 𝑡) = 1.
Moreover, for any 𝑡 > 𝜇 and 𝑑 > 2𝜇 (𝑡 − 𝜇) /𝑡, the maximum probability of 𝑋 exceeding 𝑡
is attained by a distribution with a mean absolute deviation equal to 2𝜇 (𝑡 − 𝜇) /𝑡, which is
explained by the observation that the bound we obtain is decreasing in 𝑑 for 𝑑 > 2𝜇 (𝑡 − 𝜇) /𝑡.
Clearly, because of the above observations, the theoretical maximum of ℙ (𝑋 > 𝑡) has a much

simpler closed-form solution than (4.5) for the ambiguity set P̃(𝜇,𝑏,𝑑). A big downside is that
many of the distributions contained in P̃(𝜇,𝑏,𝑑) but not inP(𝜇,𝑏,𝑑) are unrealistic. Especially when
the mean absolute deviation is known or can be accurately estimated, there is little reason to

consider distributions with a different (in this case lower) mean absolute deviation. For large

values of 𝑑 relative to 𝑡 in particular, usingP̃(𝜇,𝑏,𝑑) can lead to an overestimation of the maximum
value of ℙ (𝑋 > 𝑡). The observation that the maximum value of ℙ (𝑋 > 𝑡) is decreasing in 𝑑 for
large values of 𝑑 alsomeans that considering distributions with a lowermean absolute deviation
can lead to a higher bound on ℙ (𝑋 > 𝑡).
Comparing the result of Theorem 4.1 to Cantelli’s inequality (4.1) is harder, since we assume

the mean absolute deviation to be known, but not the variance. Hence, some relation between

these two quantities is needed to be able to make a comparison. In particular, we will use that𝑑2 � 𝜎2 � 𝑑(𝑏 − 𝑎)2 . (4.18)

Throughout the comparison belowwe assume that 𝑑 is given and compare the bound obtained in
Theorem 4.1with Cantelli’s bound for different values of 𝜎 satisfying (4.18). Figure 4.6 illustrates
this comparison for a simple numerical example with the following parameters: 𝑎 = −1, 𝜇 = 0,𝑏 = 1, 𝑑 = 14 . We consider three values for 𝜎: 𝜎 = 𝑑 = 14 , 𝜎 = 13 and 𝜎 = √𝑑(𝑏 − 𝑎)/2 = 12 .
Figure 4.6 gives rise to a number of interesting observations. First of all, we note that since

Cantelli’s bound is 1 for any 𝑡 � 𝜇, the bound fromTheorem 4.1 is at most Cantelli’s bound as it
includes an interval for which it is not 1. Furthermore, the flat area in the blue line corresponds

to the values of 𝑡 such thatmin{ 𝑑2 (𝑡 − 𝜇) , 1 − 𝑑2(𝜇 − 𝑎)} = 1 − 𝑑2(𝜇 − 𝑎) ,
which corresponds to all 𝜇 � 𝑡 � 𝜏2 ∶= 𝜇+ 𝑑(𝜇−𝑎)2(𝜇−𝑎)−𝑑 . Moreover, we note that for 𝜎 = 𝑑, Cantelli’s
bound is lower than (4.5) for all 𝜏2 � 𝑡 � 𝑏. This is true for all parameters as:𝑑2𝑑2 + (𝑡 − 𝜇)2 = 𝑑2(𝑑 − (𝑡 − 𝜇))2 + 2𝑑(𝑡 − 𝜇)

� 𝑑22𝑑(𝑡 − 𝜇) = 𝑑2 (𝑡 − 𝜇) .
In particular, for 𝜎 = 𝑑 Cantelli’s bound and (4.5) always coincide at 𝑡 = 𝜇 + 𝑑, since𝑑2𝑑2 + 𝑑2 = 12 = 𝑑2𝑑 .
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Figure 4.6: A comparison of the bound in Theorem 4.1 with Cantelli’s bound for three different values of𝜎 with the parameter values 𝑎 = −1, 𝜇 = 0, 𝑏 = 1 and 𝑑 = 14

If, on the other hand, we choose 𝜎 = √𝑑(𝑏 − 𝑎)/2, its highest possible value, Cantelli’s bound is
higher than (4.5). This is true for all parameter values as well, as Cantelli’s bound is increasing

in 𝜎 and must thus be at least (4.5) for its highest possible value.
For intermediate values of 𝜎, we observe behavior similar to the line corresponding to 𝜎 = 13

in Figure 4.6. More specifically, we find that (4.5) is lower than Cantelli’s bound for all 𝑡 in the
two intervals [0, 𝜏̂] and[𝜏, 𝜏], with the three boundaries given by

𝜏̂ = 𝜇 +√ 𝑑𝜎22(𝜇 − 𝑎) − 𝑑 ,𝜏 = 𝜎2𝑑 − 𝜎√𝜎2𝑑2 − 1,𝜏 = min{𝑏, 𝜎2𝑑 + 𝜎√𝜎2𝑑2 − 1}.
Note that for some 𝜎, such as 𝜎 = √𝑑(𝑏 − 𝑎)/2 in Figure 4.6, it holds that 𝜏̂ � 𝜏, that is,

(4.5) is lower than Cantelli’s bound for all 𝑡 ∈ [𝜇, 𝜏]. To visually clarify all boundaries discussed
above, Figure 4.7 only shows Cantelli’s bound for 𝜎 = 0.27 and marks 𝜏2, 𝜏̂, 𝜏 and 𝜏. It should
be noted that this value of 𝜎 is very close to the minimum of 0.25, and hence Cantelli’s bound
compares more favorably than is generally to be expected. In the appendix we provide a similar

comparison with the variance-based bound of [64], and also perform numerical experiments

with the other bounds derived in the previous subsection.
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Figure 4.7: An illustration of 𝜏̂, 𝜏2, 𝜏 and 𝜏 for the parameter values 𝑎 = −1, 𝜇 = 0, 𝑏 = 1 and 𝑑 = 0.25
4.3. Distribution-free analysis of OR models
We now turn to three OR applications: the newsvendor problem, stop-loss reinsurance and

radiotherapy optimization. These three models can be subjected to distribution-free analyses

that make use of the novel tight bounds. The common theme is that with ambiguity described

in terms of mean, MAD and restricted support, distribution-free analysis often leads to valuable

structural insights.

4.3.1. Newsvendor problem
The newsvendor problem serves to find the order quantity that maximizes the expected profit

for a single period given a stochastic demand. Denote by 𝑞 the order quantity (number of units)
and by 𝐷 the stochastic demand during a single selling period. Per unit, 𝑝 denotes the selling
price and 𝑐 the purchase cost. Let 𝑝 > 𝑐, and assume without loss of generality that unsold units
have zero salvage value. The expected profit is 𝔼ℙ[𝜋(𝑞, 𝐷)] with 𝐷 ∼ ℙ and𝜋(𝑞, 𝐷) = 𝑝min{𝑞, 𝐷} − 𝑐𝑞.
The decision maker then chooses the optimal order quantity 𝑞∗ that solves max𝑞 𝔼ℙ[𝜋(𝑞, 𝐷)].
This solution is known to be the 𝜂 ∶= (𝑝 − 𝑐)/𝑝 quantile (critical quantile) of the distribution
of 𝐷, that is, 𝑞∗ = min{𝑞 ∶ ℙ(𝐷 � 𝑞) � 𝜂}. (4.19)

In practice, however, the decision maker might only know partial information on the demand

distribution. [191] pioneered distribution-free analysis of the newsvendor problem, when only

the mean and the variance of the demand are known. Scarf obtained the optimal order quantity
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for the worst-case demand, turning the newsvendor into a maxmin decision maker that solvesmax𝑞 infℙ∈P(𝜇,𝜎) 𝔼ℙ [𝜋(𝑞, 𝐷)] (4.20)

withP(𝜇,𝜎) the ambiguity set that contains all distributions with a given mean 𝜇 and variance𝜎2, and solution 𝑞𝑆 = { 0, if 𝜂 < 𝜎2𝜇2+𝜎2 ,𝜇 + 𝜎2 2𝜂−1√𝜂(1−𝜂) , if 𝜂 � 𝜎2𝜇2+𝜎2 . (4.21)

We shall instead consider all demand distributions with given mean 𝜇, MAD 𝑑 and support[0, 𝑏], and consider max𝑞 infℙ∈P(𝜇,𝑑,𝑏) 𝔼ℙ [𝜋(𝑞, 𝐷)] . (4.22)

This is the counterpart of problem (4.20). [191] solved (4.20) directly, computing the lower

bound infℙ∈P(𝜇,𝜎) 𝔼ℙ [𝜋(𝑞, 𝐷)] via a linear program. Instead, we do not solve (4.22) directly, but
apply the tail probability bound from Theorem 4.1 to the first-order condition for 𝑞∗ in (4.19).
Clearly, the tight lower and upper bounds for 𝑞∗ follow from substituting infℙ∈P(𝜇,𝑏,𝑑) ℙ(𝐷 > 𝑞)
and supℙ∈P(𝜇,𝑏,𝑑) ℙ(𝐷 > 𝑞) into (4.19), respectively.
Proposition 4.7 (Order quantity bounds under mean-MAD-range ambiguity). Suppose

the newsvendor knows the mean 𝜇, the mean absolute deviation 𝑑 and the support’s upper bound 𝑏
of the demand distribution ℙ(𝐷 � 𝑞). The optimal order quantity 𝑞∗ that solves max𝑞 𝔼ℙ[𝜋(𝑞, 𝐷)]
is then contained in the interval [𝑞𝐿, 𝑞𝑈 ] with

[𝑞𝐿, 𝑞𝑈 ] = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[0, 2𝜇(𝑏−𝜇)−𝑏𝑑2(𝑏−𝜇)(1−𝜂)−𝑑 ], if 𝜂 < 𝑑2𝜇 ,[𝜇 − 𝑑2𝜂 , 𝜇 + 𝑑2(1−𝜂) ], if 𝑑2𝜇 � 𝜂 � 1 − 𝑑2(𝑏−𝜇) ,[ 𝜇−𝑏(1−𝜂)𝜂−𝑑/(2𝜇) , 𝑏], if 𝜂 � 1 − 𝑑2(𝑏−𝜇) , (4.23)

where 𝜂 = (𝑝 − 𝑐)/𝑝 is the critical quantile of the distribution of 𝐷.
The proposition provides various handles for a robust policy that responds to the uncertainty

captured inP(𝜇,𝑑,𝑏). The lower bound 𝑞𝐿 follows from the worst-case demand distribution. Ob-
serve that 𝑞𝐿 is larger than 𝜇 when the profit margin 𝜂 exceeds 1 − 𝑑/2(𝑏 − 𝜇), and smaller than𝜇 otherwise. This insight can be contrasted with 𝑞𝑆 in (4.21) that also considers the worst-case
scenario, but then in view ofP(𝜇,𝜎) ambiguity. Scarf’s 𝑞𝑆 is larger than 𝜇 if 𝜂 > 1/2 and smaller
than 𝜇 otherwise. Hence, 𝑞𝐿 quantifies the dependency on 𝑏, where 𝑞𝑆 does not. In particular,
when the profit margin 𝜂 is fixed, the pessimistic newsvendor that uses 𝑞𝐿 will only order above
the mean when 𝑏 does not exceed 𝜇 + 𝑑/2(1 − 𝜂).
Table 4.1 shows that the support [0, 𝑏] also influences the intervals [𝑞𝐿, 𝑞𝑈 ], in particular for

low and high profit margins. We also recognize the three different regimes in Proposition 4.7

that correspond to low margins, average margins and high margins.

We mention two further works related to Proposition 4.7. [20] use general techniques for

stochastic programs with limited information such as (4.22). For such stochastic programs the
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Table 4.1:The intervals [𝑞𝐿, 𝑞𝑈 ] for mean-MAD ambiguity with 𝜇 = 5, 𝑑 = 1.5 and various profit margins𝜂 𝜂 𝑏 = 10 𝑏 = 15 𝑏 = 20 𝑏 = ∞
0.01 [0.00, 4.17] [0.00, 4.23] [0.00, 4.26] [0.00, 4.29]
0.1 [0.00, 4.67] [0.00, 4.70] [0.00, 4.71] [0.00, 4.72]
0.2 [1.25, 5.94] [1.25, 5.94] [1.25, 5.94] [1.25, 5.94]
0.4 [3.13, 6.25] [3.13, 6.25] [3.13, 6.25] [3.13, 6.25]
0.5 [3.50, 6.50] [3.50, 6.50] [3.50, 6.50] [3.50, 6.50]
0.7 [3.93, 7.50] [3.93, 7.50] [3.93, 7.50] [3.93, 7.50]
0.9 [5.33, 10.00] [4.17, 12.50] [4.17, 12.50] [4.17, 12.50]
0.95 [5.63, 10.00] [5.31, 15.00] [5.00, 20.00] [4.21, 20.00]
0.99 [5.83, 10.00] [5.77, 15.00] [5.71, 20.00] [4.24, 80.00]

available information is often not sufficient to find the optimal solution. [20] develop a method

to construct the minimal set that should contain the optimum. They also demonstrate this

technique for the newsvendor model with given mean and MAD, but unbounded support, and

obtain intervals that indeed arise from Proposition 4.7 for the limit 𝑏 → ∞:
[𝑞𝐿, 𝑞𝑈 ] = { [0, 𝜇−𝑑/21−𝜂 ], if 𝜂 < 𝑑2𝜇 ,[𝜇 − 𝑑2𝜂 , 𝜇 + 𝑑2(1−𝜂) ], if 𝜂 � 𝑑2𝜇 . (4.24)

Natarajan et al. [163] introduce semi-variance as an extra piece of information about the

skewness of the distribution. Together with the mean and variance, this results in a more

restrictive ambiguity set (compared to Scarf), and therefore a less conservative (or sharper)

estimation of 𝑞∗. In our case, we restrict the ambiguity set further with ℙ(𝑋 � 𝜇) = 𝛽 infor-
mation that, like semi-variance, measures skewness. The following problem is the mean-MAD

counterpart of the mean-variance-semivariance model discussed in the work of [163]:

max𝑞 infℙ∈P(𝜇,𝑏,𝑑,𝛽) 𝔼ℙ[𝜋(𝑞, 𝐷)], (4.25)

where 𝛽 adopts the role of the semivariance as a measure of skewness. We use Theorems 4.5
and 4.6 to bound the tail distribution of the demand 𝐷, and obtain sharper bounds for 𝑞∗.
Proposition 4.8 (Order quantity bounds under mean-MAD-𝛽 ambiguity). Suppose the

newsvendor knows that ℙ ∈P(𝜇,𝑏,𝑑) and ℙ(𝐷 � 𝜇) = 𝛽. The optimal order quantity 𝑞∗ that solves
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max𝑞 𝔼ℙ[𝜋(𝑞, 𝐷)] is then contained in the interval [𝑞𝐿, 𝑞𝑈 ] with
[𝑞𝐿, 𝑞𝑈 ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
[0, (1−𝛽)𝜇−𝑑/2(1−𝜂−𝛽) ], if 𝜂 < 𝑑2𝜇 ,[𝜇 − 𝑑2𝜂 , 𝜇], if 𝑑2𝜇 � 𝜂 < 1 − 𝛽,𝜇, if 𝜂 = 1 − 𝛽,[𝜇, 𝜇 + 𝑑2(1−𝜂) ], if (1 − 𝛽) < 𝜂 < 1 − 𝑑2(𝑏−𝜇) ,[ 𝑏(1−𝜂)−𝛽𝜇−𝑑/2(1−𝜂−𝛽) , 𝑏], if 𝜂 � 1 − 𝑑2(𝑏−𝜇) ,

(4.26)

where 𝜂 = (𝑝 − 𝑐)/𝑝 is the critical quantile of the distribution of 𝐷.
This result provides a robust policy that protects against uncertainty contained inP(𝜇,𝑏,𝑑,𝛽).

Obviously, ordering the mean is optimal if 𝜂 = 1 − 𝛽. The lower bound 𝑞𝐿 relates to the worst-
case demand distribution. Similar to the case with mean-MAD-range information, 𝑞𝐿 is larger
than 𝜇 when the profit margin 𝜂 exceeds 1 − 𝑑/2(𝑏 − 𝜇). Hence, skewness information does not
determine whether the pessimistic newsvendor orders more than the mean, since the upper

bound 𝑏 again plays a decisive role. This can be contrasted with the results of [163], who show
that, forP(𝜇,𝜎,𝑠) ambiguity, the order quantity is greater than 𝜇 if 𝜂 > 12 (1 + 𝑠), where 𝑠 is the
normalized semivariance.

Table 4.2 shows that the bounded support [0, 𝑏] again influences the intervals for low and
high profit margins. The new intervals are sharper than the ones found in Table 4.1. This is, of

course, an obvious result of incorporating more distributional information.

Table 4.2: The intervals [𝑞𝐿, 𝑞𝑈 ] for mean-MAD-𝛽 ambiguity with 𝜇 = 5, 𝑑 = 1.5, 𝛽 = 0.5 and various
profit margins 𝜂 𝜂 𝑏 = 10 𝑏 = 15 𝑏 = 20 𝑏 = ∞

0.01 [0.00, 3.57] [0.00, 3.57] [0.00, 3.57] [0, 3.57]
0.1 [0.00, 4.38] [0.00, 4.38] [0.00, 4.38] [0.00, 4.38]
0.2 [1.25, 5.00] [1.25, 5.00] [1.25, 5.00] [1.25, 5.00]
0.4 [3.13, 5.00] [3.13, 5.00] [3.13, 5.00] [3.13, 5.00]
0.5 5.00 5.00 5.00 5.00

0.7 [5.00, 7.50] [5.00, 7.50] [5.00, 7.50] [5.00, 7.50]
0.9 [5.63, 10.00] [5.00, 12.50] [5.00, 12.50] [5.00, 12.50]
0.95 [6.11, 10.00] [5.56, 15.00] [5.00, 20.00] [5.00, 20.00]
0.99 [6.43, 10.00] [6.33, 15.00] [6.22, 20.00] [5.00, 80.00]

Apart from modifying or narrowing the ambiguity set, conservatism can be alleviated by

choosing alternate objective functions, for instance by replacing the profit function by a regret

function (opportunity cost of not making the optimal decision) [174, 229], or by extending the

profit function with a utility function 𝑢(⋅) for max-min analysis of 𝔼[𝑢(𝜋(𝑞, 𝐷))] as in [97]. See
[163] for an extensive review of many other studies on distribution-free newsvendor models.
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The tight bounds developed in this chapter can be used for distribution-free analysis of more

advanced models, including those modeling regret and utility mentioned above, the risk-averse

newsvendor with stochastic price-dependent demand [52] and multi-product settings [55].

4.3.2. Stop-loss reinsurance

Reinsurance is a classical topic in the actuarial sciences and insurance mathematics and implies

that an insurance company transfers part of its risk to a reinsurance company; see e.g., [8], [127].

Say an insurance company faces a total claim 𝑆 that is the sum of 𝑛 individual claims 𝑋𝑖, 𝑖 =1, … , 𝑛. The insurance company pays the claim up to a level 𝑧, and the reinsurance company
covers the remainder. This gives rise to the so-called retention function 𝜓(𝑧, 𝑆) = min{𝑆, 𝑧} that
represents the payment of the insurer. We provide an upper bound for the standard stop-loss

retention function in Proposition 4.9.

Proposition 4.9. The worst-case expected claim payment of the direct insurer as a function of the

retention limit 𝑧 is given by

supℙ∈P(𝜇,𝑏,𝑑) 𝔼ℙ[𝜓(𝑧, 𝑆)] =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑧, if 𝑧 ∈ [0, 𝜏1],𝜇 − 𝑑(𝑏−𝑧)2(𝑏−𝜇) , if 𝑧 ∈ [𝜏1, 𝜇],𝑧(1 − 𝑑2𝜇 ), if 𝑧 ∈ [𝜇, 𝜏2],𝜇, if 𝑧 ∈ [𝜏2, 𝑏], (4.27)

where 𝜏1 = 𝜇 − 𝑑(𝑏 − 𝜇)2(𝑏 − 𝜇) − 𝑑 , 𝜏2 = 𝜇 + 𝑑𝜇2𝜇 − 𝑑 .
Proof. First, note that 𝜓(𝑧, 𝑆) = min{𝑆, 𝑧} = 𝑆 − max{𝑆 − 𝑧, 0},
and hence supℙ∈P(𝜇,𝑏,𝑑) 𝔼ℙ[𝜓(𝑧, 𝑆)] = 𝜇 − infℙ∈P(𝜇,𝑏,𝑑) 𝔼ℙ[max{𝑆 − 𝑧, 0}]. (4.28)

The second term is convex in 𝑆, and thus equivalent to [179]
min𝑑2(𝑏−𝜇)�𝜃�1− 𝑑2𝜇

{𝜃max{𝜇 + 𝑑2𝜃 − 𝑧, 0} + (1 − 𝜃)max{𝜇 − 𝑑2(1 − 𝜃) − 𝑧, 0}}, (4.29)

a convex optimization problem with a piecewise linear objective function. The optimal value

depends on the retention limit 𝑧. Solving problem (4.29) for 𝑧 ∈ [0, 𝑏] and subtracting the
optimal value from 𝜇 results in the four cases mentioned in (4.27).
The payment function of the reinsurance company puts forward a more challenging problem

when the insurance coverage is limited. In this case, a relevant performance characteristic is
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to what extent the insurance company benefits from the reinsurance contract. This benefit is

measured with the function

𝜙(𝑧, 𝑚, 𝑆) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑚, if 𝑆 � 𝑧 + 𝑚,𝑆 − 𝑧, if 𝑧 � 𝑆 � 𝑧 + 𝑚,0, if 𝑆 � 𝑧. (4.30)

When the total claim 𝑆 stays below the retention limit 𝑧, the insurance company covers the
entire claim, but when 𝑆 exceeds 𝑧 the reinsurer pays the excess claim up to a maximum 𝑚.
Thus, the reinsurance company does not compensate large claims that exceed the exit point𝑚+𝑧. Above this level the risk is retained by the insurance company. We obtain a novel bound
by primal-dual arguments.

Proposition 4.10. The expected insurer’s benefit is bounded by supℙ∈P(𝜇,𝑏,𝑑) 𝔼ℙ[𝜙(𝑧, 𝑚, 𝑆)] =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min{𝑚, 𝑚𝑚+𝑧 (𝜇 − 𝑑(𝑏−(𝑚+𝑧))2(𝑏−𝜇) )}, if 𝑧 � 𝑧 + 𝑚 � 𝜇,min{𝑚(1 − 𝑑2𝜇 ), 𝑧( 𝑑2𝜇 − 1) + 𝜇}, if 𝑧 � 𝜇 � 𝑧 + 𝑚 � 𝑏,min{𝑚(1 − 𝑑2𝜇 ), 𝑑𝑚2(𝑚+𝑧−𝜇) }, if 𝜇 � 𝑧 � 𝑧 + 𝑚 � 𝑏, (4.31)

where the function 𝜙(𝑧, 𝑚, 𝑆) degenerates to max{𝑆 − 𝑧, 0} if 𝑧 + 𝑚 > 𝑏. In this case,

supℙ∈P(𝜇,𝑏,𝑑) 𝔼ℙ[𝜙(𝑧, 𝑚, 𝑆)] = { 𝑧( 𝑑2𝜇 − 1) + 𝜇, if 𝑧 � 𝜇,𝑑(𝑏−𝑧)2(𝑏−𝜇) , if 𝑧 � 𝜇. (4.32)

For the sake of conciseness, we only sketch the proof. The full details are highly similar to

the derivations used in the proof of Theorem 4.1.

We will show via primal-dual reasoning that the stated stop-loss formulas are tight upper

bounds. We consider the measurable function 𝜙(𝑧, 𝑚, 𝑠). For a random variable 𝑆 with distribu-
tion ℙ ∈P(𝜇,𝑏,𝑑), we solvesupℙ∈M+ ∫𝑠 𝜙(𝑧, 𝑚, 𝑠)dℙ(𝑠)

s.t. ∫𝑠 dℙ(𝑠) = 1, ∫𝑠 𝑠 dℙ(𝑠) = 𝜇, ∫𝑠 |𝑠 − 𝜇| dℙ(𝑠) = 𝑑. (4.33)

Consider the dual of (4.33),inf𝜆0,𝜆1,𝜆2 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑
s.t. 𝜙(𝑧, 𝑚, 𝑠) � 𝜆0 + 𝜆1𝑠 + 𝜆2|𝑠 − 𝜇|, ∀𝑠 ∈ [0, 𝑏]. (4.34)

Define 𝐹(𝑠) ∶= 𝜆0+𝜆1𝑠+𝜆2|𝑠−𝜇|. Then the inequality in (4.34) can bewritten as 𝜙(𝑧, 𝑚, 𝑠) � 𝐹(𝑠),∀𝑠, i.e. 𝐹(𝑠)majorizes the “staircase” function 𝜙(𝑧, 𝑚, 𝑠). Note that 𝐹(𝑠) has a ‘kink’ at 𝑠 = 𝜇. There
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are six candidate scenarios, which are displayed in Figure 4.8. When 𝑚 + 𝑧 � 𝜇, 𝐹(𝑠) = 1 and
touches 𝜙(𝑧, 𝑚, 𝑠) in {0, 𝑚 + 𝑧, 𝑏} (scenario 1a), or 𝐹(𝑠) touches 𝜙(𝑧, 𝑚, 𝑠) in [𝑚 + 𝑧, 𝑏] (scenario
1b). When 𝑧 � 𝜇 � 𝑚 + 𝑧, 𝐹(𝑠) touches in {0} ∪ [𝜇, 𝑚 + 𝑧] (scenario 2a) or in {0} ∪ [𝑚 + 𝑧, 𝑏]
(scenario 2b). Finally, if 𝜇 � 𝑧 � 𝑚+𝑧, 𝐹(𝑠) coincides with 𝜙(𝑧, 𝑚, 𝑠) in [0, 𝜇] ∪ {𝑚+𝑧} (scenario
3a) or in {0} ∪ [𝑚 + 𝑧, 𝑏] (scenario 3b).

𝑠

𝜙(𝑧, 𝑚, 𝑠)𝐹1𝑎(𝑠)𝐹1𝑏(𝑠)
𝑧 𝑚 + 𝑧 𝑏𝜇 𝑠

𝜙(𝑧, 𝑚, 𝑠)𝐹2𝑎(𝑠)𝐹2𝑏(𝑠)
𝑧 𝑚 + 𝑧 𝑏𝜇

𝑠

𝜙(𝑧, 𝑚, 𝑠)𝐹3𝑎(𝑠)𝐹3𝑏(𝑠)
𝑧 𝑚 + 𝑧 𝑏𝜇

Figure 4.8:The different scenarios and majorizing functions

Scenario 1a implies that 𝐹(0) = 𝐹(𝑚 + 𝑧) = 𝐹(𝜇) = 𝐹(𝑏) = 𝑚, and hence 𝜆0 = 𝑚, 𝜆1 = 𝜆2 = 0
with objective value 𝑚. It is clear that the optimal primal objective value is also equal to 𝑚 as
the primal solution can only assign probability to values greater than or equal to 𝑚 + 𝑧 (which
is a consequence of complementary slackness).

Scenario 1b implies 𝐹(0) = 0, 𝐹(𝑚+𝑧) = 𝐹(𝑏) = 𝑚. It can be shown that allocating probability
mass to the points {0, 𝑚+ 𝑧, 𝑏} in the primal problem (4.33) yields the same objective value, and
hence the corresponding solutions are optimal.

Similarly, scenarios 2a, 2b, 3a and 3b imply values for at least three of 𝐹(0), 𝐹(𝜇), 𝐹(𝑚 + 𝑧)
and 𝐹(𝑏), from which a dual and primal solution with equal objective value can be derived.
The proof of the first part of the theorem is then completed by taking the minimum for each

scenario. The second part is an immediate consequence of upper bound (8) in [179], which is a

result that was already shown in [19].

An illustration of the bounds for the stop-loss payments is provided in Figure 4.9, where we

display payments as functions of 𝑧 with 𝜇 = 5, 𝑑 = 1.77, and 𝑚 = 3, 𝑚 = 5 and 𝑚 → ∞. We
assume that the “true” total claim 𝑆 follows a Poisson(5) distribution. Note the resemblance
between the shape of the stop-loss bound in Figure 4.9b and of the mean-MAD tail probability

bound inTheorem 4.1. The former bound, however, has an additional linear part with a negative
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Proposition 4 with m = 3
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(b) Insurer’s benefit: 𝑚 = 3
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Proposition 4 with m = 5
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(c) Insurer’s benefit: 𝑚 = 5 2 4 6 8 10

1

2

3

4

z
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Proposition 4 with m → ∞
S ∼ Poisson(5)

(d) Insurer’s benefit: 𝑚 → ∞
Figure 4.9: The bounds and “true” values of the expected claim payment of the insurance company𝔼ℙ[𝜓(𝑧, 𝑆)] and the insurer’s benefit 𝔼ℙ[𝜙(𝑧, 𝑚, 𝑆)] as functions of the retention limit 𝑧
slope for 𝜇 − 𝑚 � 𝑧 � 𝜇. This linear segment is only present when 𝑚 exceeds 𝑑𝜇/(2𝜇 − 𝑑);
moreover, the bound approaches a linear function for 𝑧 � 𝜇when𝑚 is chosen sufficiently large.
Additionally, letting 𝑚 → ∞, our example results in a bound equal to the constant 𝑑/2 if 𝑧 � 𝜇,
and thus the bound for the stop-loss payment of the reinsurer degenerates to a piecewise linear

function consisting of two parts (a linear part with negative slope 𝑑/2𝜇 − 1 and a constant part
equal to 𝑑/2).
These results complement the vast literature on tight bounds for expected claim payments.

[58] considers bounded support and known first and second moment and obtains tight bounds

using general results for moment problems. Other related works explore ways to sharpen the

bounds using additional information. When modifying the ambiguity set by incorporating

skewness information, imposing unimodality and symmetry conditions or using higher order

moments, the gap between the upper and lower bounds narrows significantly; see [112], [65]
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and [120]. Note that mean-MAD information can easily be extended with additional parame-

ters, such as the probability 𝛽 = ℙ(𝑆 � 𝜇) or the median.
4.3.3. Radiotherapy optimization
We consider a continuous optimization problem that arises in radiotherapy. Here, the biolog-

ical effective radiation dose delivered to a tumor is to be maximized subject to a constraint on

the biological effective dose delivered to the surrounding healthy tissue. Mathematically, the

biological effective dose (BED) for a dose 𝐱 ∈ ℝ𝑛 delivered over 𝑛 fractions is given by
𝐵(𝐱) = 𝑛∑𝑡=1 (𝑥𝑡 + 1𝜌 𝑥2𝑡 ) ,

where 𝜌 is the radiosensitivity parameter of the irradiated tissue. More specifically, it can be
interpreted as the tissue’s sensitivity to fractionation, where a low value indicates a high sen-

sitivity to fractionation, i.e., the distribution of treatment over multiple fractions.

While there is an extensive body of research on the value of 𝜌 for different tumor sites, it
remains subject to significant uncertainty [124]. Moreover, since this value can differ from

patient to patient, there is a very limited amount of data available and there is little evidence

to suggest it follows some well known distribution. Throughout the rest of the example, we

denote the sensitivity to fractionation by 𝜌1 and 𝜌2 for the tumor and the surrounding healthy
tissue, respectively.

For illustrative purposes, we consider a setting in which it has been decided to deliver the

treatment over two fractions, i.e., the optimization variables are limited to the dose in the first

and second fraction. Moreover, we focus on the uncertainty of 𝜌2, and thusmodel the restriction
of sparing the healthy tissue through an ambiguous chance constraint. Mathematically, wewish

to solve the following optimization problem [207]:max𝐱∈ℝ2 𝑥1 + 𝑥2 + 1𝜌1 (𝑥21 + 𝑥22) (4.35a)

s.t. ℙ(𝜎(𝑥1 + 𝑥2) + 1𝜌2 𝜎2 (𝑥21 + 𝑥22) � 𝑡(𝜌2)) � 1 − 𝜖, ∀ℙ ∈P(𝜇,𝑏,𝑑), (4.35b)𝑥1, 𝑥2 � 𝑥𝑚𝑖𝑛, (4.35c)

where 𝜎 is the generalized dose-sparing factor that denotes the fraction of the mean tumor dose
that the healthy tissue receives on average, 𝑥𝑚𝑖𝑛 is the minimum dose that must be delivered in
each fraction, and 𝑡(𝜌2) denotes the tolerance level of the healthy tissue and is given by𝑡(𝜌2) = 𝜙𝐷(1 + 𝜙𝐷𝑇 1𝜌2) .
In other words, the healthy tissue is known to tolerate a total dose of 𝐷 gray if it is delivered in𝑇 fractions under dose shape factor 𝜙. This dose shape factor is a parameter that characterizes
the spatial heterogeneity of a dose distribution [175].
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The ambiguity of 𝜌 is modeled through themean-MAD ambiguity set, where the lower bound
of the support is given by 𝑎 instead of 0. In general, convex ambiguous chance constraints in
which the uncertain parameter appears on the right-hand side can be reformulated as a tractable

convex constraint.

Proposition 4.11. Let 𝑔 ∶ ℝ𝑛 ↦ ℝ, ℎ ∈ ℝ and let 𝑍 be a random variable whose distribution lies

in the ambiguity set

P = {ℙ ∶ ℙ [𝑍 ∈ [−1, 𝑏]] = 1, 𝔼 [𝑍] = 0, 𝔼 [|𝑍|] = 𝑑} ,
for some 𝑑 ∈ [0, 2𝑏1+𝑏 ]. For any 𝜖 ∈ (0, 11+𝑏) and 𝐱 ∈ ℝ𝑛 it holds thatinfℙ∈Pℙ [𝑔(𝐱) + 𝑍 � 0] � 1 − 𝜖, (4.36)

if and only if 𝑔(𝐱) + min{𝑏, 𝑑2𝜖} � 0. (4.37)

Proof. We first rewrite (4.36) to supℙ∈Pℙ [𝑍 > −𝑔(𝐱)] � 𝜖.
From Theorem 4.1 and the fact that 𝜖 < 1/(1 + 𝑏) we know that it must hold that −𝑔(𝐱) >𝔼 [𝑍] = 0. Given that requirement, we know by Theorem 4.1 that

supℙ∈Pℙ [𝑍 > −𝑔(𝐱)] = ⎧⎪⎪⎨⎪⎪⎩min
{ 𝑑−2𝑔(𝐱) , 1 − 𝑑2} if − 𝑔(𝐱) < 10 if − 𝑔(𝐱) � 1.

From 𝑑 ∈ [0, 2𝑏1+𝑏 ] and 𝜖 ∈ (0, 11+𝑏 ), it follows that 1 − 𝑑/2 > 𝜖, and thus any feasible solution 𝐱
must satisfy −𝑔(𝐱) � 1 and/or −𝑑/2𝑔(𝐱) � 𝜖. The latter can be equivalently stated as−𝑔(𝐱) � 𝑑2𝜖 ,
which can easily be combined with the former as−𝑔(𝐱) � min{1, 𝑑2𝜖} ⟺ 𝑔(𝐱) + min{1, 𝑑2𝜖} � 0.
Because 𝑑/2𝜖 > 0, we find that the requirement −𝑔(𝐱) > 0 is redundant, and thus (4.36) is
equivalent to (4.37).

The ambiguous chance constraint (4.35b) is not naturally stated in the form (4.36). It can be

rewritten, however, asℙ(𝜌 ⋅ (𝜎(𝑥1 + 𝑥2) − 𝜙𝐷) > 𝜙2𝐷2𝑇 − 𝜎2(𝑥21 + 𝑥22 )) � 𝜖, ∀ℙ ∈P(𝜇,𝑏,𝑑), (4.38)
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where we note multiplication by 𝜌 is allowed as its support is nonnegative. Leveraging the tail
probability bound, we find for 𝜖 ∈ (0, 𝜇−𝑎𝑏−𝑎 ) that (4.38) is equivalent to𝜇𝜎(𝑥1 + 𝑥2) + 𝜎2(𝑥21 + 𝑥22 ) + 𝑑2𝜖 |𝜎(𝑥1 + 𝑥2) − 𝜙𝐷| � 𝜇𝜙𝐷 + 𝜙2𝐷2𝑇 . (4.39)

The resulting optimization problem can be solved efficiently, as (4.39) can be equivalently stated

as two conic quadratic inequalities through the introduction of an auxiliary variable.

We solve (4.35) for a specific, realistic set of parameters taken from [207], which are reported

in Table 4.3. Figure 4.10 shows the feasible region and optimal solution of (4.35) for different

Table 4.3: Parameter values used for solving (4.35)

Parameter Value𝜏 4𝜎 0.9𝜙 2𝐷 27𝑇 5𝑥𝑚𝑖𝑛 1.5𝑎 3𝑏 6𝜇 4𝑑 0.25

values of 𝜖 as well as the feasible region when we assume having the exact knowledge that𝜌 = 𝜇 and the feasible region when 𝜖 = 0.1 and 𝜌 ∼ Beta(6.6, 13.2), which is a member of
the ambiguity set. Remarkable in this example is the similarity between the feasible region of

the problem without any uncertainty, the specified Beta distribution and that of the ambiguous

problem for 𝜖 = 0.1 and 𝜖 = 0.05. From the feasible region for 𝜖 = 0.01, however, it is clear that
requiring a low risk of violation results in a solution that is much worse in terms of tumor BED.

Remarkable, also, is that the feasible region for the specified Beta distribution hardly changes

with 𝜖 compared to the behavior under ambiguity. In fact, even for 𝜖 = 0.01, the feasible region
when we assume 𝜌 ∼ Beta(6.6, 13.2) contains the ambiguous feasible region for 𝜖 = 0.01. Note
that the figure does illustrate how the shape of the feasible region changes with 𝜖: the feasibility
of unbalanced solutions, i.e., solutions that administer a different dose in the two fractions, is

impacted much more severely than that of balanced solutions.

We mention two related works on ambiguous chance constraints. [101] present a tractable

framework for joint ambiguous chance constraints under a few simplifying conditions. In par-

ticular, they assume a conic, hence unbounded, support, which is a key difference to our ap-

proach. Their approach is very powerful in settings for which an unbounded support makes

sense, however, as they are able to elegantly deal with joint ambiguous chance constraints.
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Figure 4.10: The feasible region and optimal solution of (4.35) for different values of 𝜖 as well as exact
knowledge that 𝜌 = 𝜇 (dots indicate the optimal solution)
[225], on the other hand, consider ambiguous chance constraints given a bounded support and

moment information. Their assumptions on the ambiguity set do, however, exclude exact distri-

butional information on nonlinear functions of the uncertain parameter, which we do assume

in exact knowledge of the mean absolute deviation.

4.4. Conclusions and outlook
Tail probabilities are ubiquitous in probabilistic studies in many areas of science and application

domains. Just as the original Chebyshev’s inequality for mean-variance ambiguity, we expect

our novel tail bounds for mean-MAD ambiguity to find many applications. In our search for

tight bounds under limited information, we had to solve for the worst-case distribution and

worst-case value of the expectation of the indicator function �{𝑋 � 𝑡}. In this chapter the
limited information was captured through ambiguity setsP(𝜇,𝑏,𝑑),P(𝜇,𝑏,𝑑,𝛽) andP(𝑚,𝑏,𝑑𝑚), and it
turned out that the combination of the non-convex indicator function with these ambiguity set

gave rise to semi-infinite linear programs with easy, closed-form solutions.

In future work, we expect to find more such solvable classes, i.e. specific combinations of

objective function (other than the indicator function) and ambiguity sets that together give rise

to solvable linear programs and hence easy extremal distributions. In this way, one can try to

sharpen the tail bounds by including more information (e.g. higher moments or percentiles),

or to consider objective functions other than the tail probability. Our proof method based on

solving the dual problem with piecewise-linear majorants is not tailor-made for the indicator

function, and could potentially work for a much larger class of (measurable) objective functions,

as shown in Section 4.3.2. Another direction we shall pursue is the application of the bounds to

more complex, and possibly high-dimensional, robust optimization problems. To do so, we shall

leverage the connection with the quickly evolving field of DRO, as illustrated by examples in
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Section 4.3.3. Indeed, minimax and maximin decision problems arise naturally, and the bounds

and proof techniques can help in advancing that field.
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5
A generalized moment approach for

conditional expectations

5.1. Introduction
Distribution-free performance analysis of stochastic models strives to obtain tight bounds for

the expectation of an objective function of random variables, using only limited information

about the underlying probability distributions. Traditionally, given the moment information

about the random variables, these problems are modeled as generalized moment problems. The

sharpest (i.e., “best possible”) upper and/or lower bounds for these objective functions of ran-

dom variables are found by solving semi-infinite optimization problems, where the optimization

is taken over all admissible distributions of the random variables. In this chapter, we explore a

new situation in which, besides the given moment sequence, we possess stronger information—

that is, we have knowledge that a particular random event will occur, which pertains to the

realizations of the random variables rather than their underlying probability distribution. We

are interested in solving the moment problem with the knowledge of this random event, which

may be based on assumptions, assertions, expert judgment or past observations. Alternatively,

wemaywant to determine the worst-case behavior of a stochastic model if such a random event

occurs. Conditional expectations offer a way to model this event information and provide us

with the best estimate of the expected value of a function of random variables, knowing that

This chapter is based on the research paper [209].

99
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the specified random event will occur. It is of interest to define a generalized moment frame-

work for this new setting with conditional expectations, instead of standard expectations in

which the random variables are not restricted to take on a subset of the values in the event set.

However, random variables conditioned on a random event give rise to a different probabilistic

concept, requiring a distinct type of analysis compared to the traditional theory on generalized

moment problems.

Moment problems have been investigated by probability theorists since the end of the 19th

century, see, e.g., [43, 153, 205]. Smith [201] revisited the generalized moment problem in his

contemporary discussion, highlighting its various applications in decision theory. In his work,

Smith briefly mentions the setting with prior information, but notes that the resulting expecta-

tion is no longer linear in the probability measure, thus presenting a more challenging problem

that is not directly amenable to the techniques discussed in his work. As a solution, Smith [201]

suggested a linearization technique, as discussed in [141] and [59], which converts the problem

into a series of regular generalized moment problems. Along the lines of Shapiro [196], we de-

fine a novel variant of the generalized problem of moments and use semi-infinite programming

theory to obtain tight bounds in a setting where the objective function is a fractional, rather

than linear, function of the probability distribution. A comprehensive overview of general semi-

infinite programming theory can be found in [113]. To the best of our knowledge, there are no

general techniques available for obtaining tight bounds on conditional expectations. Although

[151] provided some bounds for conditional expectations for traditional power moments, these

are only for the expectation of a single random variable and are not necessarily tight. More-

over, [151] primarily used conditional information to sharpen Chebyshev-type tail probability

bounds. In contrast, we provide a general framework for obtaining the best possible bounds for

conditional expectations under limited information.

Extending the ideas described above to the DRO setting, we are interested in obtaining tight

bounds for the expectation of some objective function of random variables, where the function

also contains a decision vector, in order to protect ourselves against the worst nature has to

offer. Conditional-moment information has been used in various works to describe ambigu-

ity sets. In the minimax stochastic programming literature, Birge and Wets [34] incorporated

such information into the constraints of generalized moment problems to bound the objective

values of stochastic programming problems. de Klerk et al. [63] restricted the distributions in

the ambiguity set to polynomial density functions. They demonstrated that these ambiguity

sets are highly expressive because they can conveniently accommodate distributional infor-

mation about conditional probabilities, conditional moments and marginal distributions. Chen

et al. [53] introduced scenario-wise ambiguity sets that capture information with conditional

expectation constraints based on generalized moments. Although these works use conditional

moment information, their objectives aim to maximize the conventional expectation. Conse-

quently, their approaches cannot directly handle the case in which the conditional expectation

is the objective.

Here we should mention some work on distributionally robust optimization in which the

objective function is fractional. When only support information is available, Gorissen [90]
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extended robust optimization formulations to fractional programming in which the objective

function is a fraction of two functions of the uncertain parameters. Liu et al. [145] solved a DRO

problem with moment constraints which consists of the maximization of ambiguous fractional

functions representing reward-risk ratios. Ji and Lejeune [122] also investigated this class of

fractional DRO problems using semi-infinite programming epigraphic formulations to solve the

ambiguous reward-risk ratio problem and, additionally, design a data-driven formulation and

solution framework using the Wasserstein ambiguity set. Using the conditional information,

we can use the conditional-expectation bounds to enhance “worst-case” decision-making in a

DRO framework. As for this setting, there does exist a separate thrust of research named con-

textual distributionally robust optimization, in which the prior knowledge on the realizations

of the random variables is commonly referred to as side information. This area of research is

a natural extension of the prescriptive stochastic programming paradigm. In this paradigm,

the central object of interest is the joint distribution of the side information and the outcome

random variables, which, if known, would result in more accurate estimations of the outcome

variable when conditioning this distribution on the side information given. In practice, how-

ever, this joint distribution is usually not known precisely and is only estimated using a finite

data sample. The ultimate goal of prescriptive stochastic programming is to develop an op-

timization methodology that uses the available side information to improve decision-making

given only limited insights into the predictive power of the side information on the uncertain

outcome parameters (see, e.g., [12, 26, 203]). The contextual DRO modeling paradigm assumes

that, next to this side information, the joint distribution is contained in an ambiguity set that

is defined using the limited information available. Research on this paradigm is still relatively

scarce. We highlight a number of works. Esteban-Pérez and Morales [78] described ambiguity

through a partial mass transportation problem, and exploited probability-trimming methods to

solve the contextual DRO problem. In contrast, Nguyen et al. [169] worked directly with the

optimal transport ambiguity set, and the authors succeeded in finding tractable conic reformu-

lations for DRO problems with side information. Nguyen et al. [168] considered a Wasserstein-

ball ambiguity set [157], which is centered on the empirical distribution that follows from the

available data sample of the side information and the outcome parameters. Even though the

Wasserstein-ball ambiguity set is a class of distributional ambiguity sets obtained through the

theory of optimal transport, the models and results obtained in [168, 169] behave qualitatively

differently due to special properties of the type-∞Wasserstein distance, which is used to con-
struct the ambiguity set. The literature described above mostly considers ambiguity sets that

are defined through measures that define distances between probability distributions (such as

the Wasserstein metric), whereas in this chapter, we will focus on ambiguity sets described by

generalized moment information.

5.1.1. Contributions and outline
The main contributions of this chapter may be summarized as follows.

1. We expand the theory on semi-infinite programming and generalized moment problems,

by deriving duality results for linear-fractional programming in the semi-infinite setting.



623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen
Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023 PDF page: 108PDF page: 108PDF page: 108PDF page: 108

102 Distributionally robust views on stochastic models

We extend several well-known results from the theory on generalized moment problems

in order to bound conditional expectations, rather than standard expectations of functions

of random variables. The fact that most results carry over to this setting with conditional

expectations is particularly intriguing because the conditional expectation is a nonlinear

function of the probability measure (thus not amenable to standard techniques based on

semi-infinite linear programming).

2. We apply these novel results for the generalized conditional-bound problem to univariate

functions of a simple random variable. Using primal-dual arguments, we obtain several

closed-form bounds for different types of dispersion information. In addition to general-

ized moment information, we show that structural properties of the distribution can also

be included. We further demonstrate our approach by resolving a minimax optimization

problem, taken from the robust monopoly pricing literature. It is further asserted that

most computations, in the univariate setting, are as tractable as with the linear expecta-

tions operator.

3. We use findings from robust uncertainty quantification and distributionally robust con-

vex optimization to develop conic reformulations for the multivariate problem. We then

apply these reformulations to contextual DRO, presenting a generalized moment frame-

work for distributionally robust optimization with side information. The resulting frame-

work is designed for conditional decision-making, incorporating both the side informa-

tion and the distributional information contained within the ambiguity set. The compu-

tational tractability of the reformulations turns out to be closely related to that of distri-

butionally robust convex optimization problems with support restrictions on the random

variables.

The remainder of the chapter is organized as follows. In Section 5.2, we introduce the gener-

alized moment bound problem for conditional expectations and elaborate on the duality ap-

proach. Section 5.3 discusses several examples of tight bounds for the conditional expected

value of functions of a single random variable. In Section 5.4, the moment-based contextual

DRO framework is presented. Most proofs of minor results are deferred to Appendix B.3. Fi-

nally, in Section 5.5, we conclude and provide several directions for future research.

5.2. A duality framework for generalized conditional-bound

problems
We first describe the problem of bounding conditional expectations in Section 5.2.1 and subse-

quently derive the associated dual problem in Section 5.2.2. Then, in Section 5.2.3, we provide

fundamental results that will be employed in later sections to obtain the desired sharp bounds.

5.2.1. Problem statement
We aim to find the best upper bound for the conditional expectation of a random vector 𝑋 .
Let us first introduce some notation. Let 𝔼 denote the expectation operator, and 𝑔(⋅) denote an
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arbitrary measurable function of 𝑋 . The random vector 𝑋 is defined on the support Ω ⊆ ℝ𝑛,
which we assume is a closed set endowed with the Borel sigma algebraBΩ. The random vector𝑋 is governed by a probability measure ℙ ∶ BΩ → [0, 1], such that for a measurable setS ∈ BΩ
we have ℙ(S) = ℙ(𝑋 ∈ S). Furthermore, ℙ lies in some convex set of probability measures
P. Throughout this chapter, the terms “probability measure” and “probability distribution” are

used interchangeably. We assume that Ξ ∈ BΩ is an arbitrary measurable event modeling
the random event observed, pertaining to the realization of 𝑋 . Let Ξ be a set with strictly
positive measure ℙ(𝑋 ∈ Ξ) > 0 so that 𝔼[𝑔(𝑋) | Ξ] is well-defined and denotes the conditional
expectation of 𝑋 restricted to the values in the set Ξ. We now have the necessary notation
to develop an adapted version of the generalized moment problem that incorporates random

events or, using different terminology, side information. The central problem in this chapter

can be formulated as follows:supℙ∈M+(Ω) 𝔼ℙ[𝑔(𝑋) | 𝑋 ∈ Ξ] subject to 𝔼ℙ[ℎ𝑗 (𝑋)] = 𝑞𝑗 for 𝑗 = 0, … ,𝑚, (5.1)

whereM+(Ω) denotes all nonnegative measures defined on the support Ω, and 𝑔, ℎ0, … , ℎ𝑚 are
real-valued, measurable functions that model the objective function and the available (general-

ized) moment information. The probability mass constraint is explicitly included as ℎ0 ≡ 1 and𝑞0 = 1. LetP denote the ambiguity set that contains the true probability distribution. For a

given moment vector 𝐪, define the set
P(𝐪) ∶= {ℙ ∈P0(Ω) ∶ ∫ ℎ𝑗 (𝑥)dℙ(𝑥) = 𝑞𝑗 , 𝑗 = 0, … ,𝑚}, (5.2)

which contains all probability distributions that complywith the givenmoment sequence. Here,

we typically assume ℙ is an element of a set of probability measuresP0(Ω) with support con-
tained in Ω. Thus, the constraint ℎ0 ≡ 1 is implicitly assumed so as to normalize the measures
inM+(Ω) to obtain probability distributions. As a closely related concept, we consider the cone
of moments 𝐪 ∈ ℝ𝑚 that yield a nonempty ambiguity setP(𝐪), which can be defined as

Q ∶= {𝐪 ∈ ℝ𝑚 ∶ ∃ℙ ∈ M+(Ω) such that ℙ ∈ P(𝐪)} .
This set thus contains all moment vectors 𝐪 for which (5.1) has a solution. That is, the moment
constraints are consistent or, in other words, there exists a probability distribution feasible

to the generalized moment problem. We henceforth assume that the moment constraints are

consistent so that the ambiguity setP is nonempty, and therefore a feasible solution to problem

(5.1) always exists.

Now that we have introduced the required notation and studied the constraints of (5.1), let

us turn to the objective function. Instead of the regular expectation of a function of a random

vector studied in generalized moment problems, 𝔼[𝑔(𝑋)], we now study
𝔼ℙ[𝑔(𝑋) | 𝑋 ∈ Ξ] = ∫Ξ 𝑔(𝑥) dℚ(𝑥) = 𝔼ℙ[𝑔(𝑋)�Ξ(𝑋)]𝔼ℙ[�Ξ(𝑋)] , (5.3)
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in which ℚ denotes the conditional probability measure, given that it exists. Notice that the
objective function is a fractional, and thus nonlinear, function of the probability distributionℙ. As a result, (5.1) belongs to the class of distributionally robust fractional optimization prob-
lems, which are fundamentally more difficult to solve than the standard problem that simply

maximizes the expectation of a function (see, e.g., [122, 145]).

5.2.2. An equivalent problem and its dual

Problem (5.1) can be formulated equivalently as a semi-infinite linear-fractional program (LFP).

The semi-infinite LFP reformulation of (5.1) is given by

supℙ(𝑥)�0 ∫Ω 𝑔(𝑥)�Ξ(𝑥)dℙ(𝑥)∫Ω �Ξ(𝑥)dℙ(𝑥)
s.t. ∫Ω ℎ𝑗 (𝑥)dℙ(𝑥) = 𝑞𝑗 , ∀𝑗 = 0, … ,𝑚,ℙ(𝑋 ∈ Ξ) > 0,

(5.4)

in which �Ξ(𝑥) equals 1 if 𝑥 ∈ Ξ, and 0 otherwise. Here the optimization of the linear-fractional
objective is taken over infinite-dimensional variables (i.e., the probability distribution). We

further have a finite number of constraints that describe the moment information. The final

constraint ensures that the conditional expectation is well defined by avoiding conditioning on

a set of measure zero. In the finite setting, these linear-fractional programs can be reduced to

linear programs through a Charnes-Cooper transformation [41, Theorem 2]. If we generalize

this to infinite-dimensional spaces, the Charnes-Cooper transformation becomesdℚ(𝑥)dℙ(𝑥) = 𝛼, with 𝛼 = 1∫Ω �Ξ(𝑥)dℙ(𝑥) . (5.5)

In some sense, this generalized Charnes-Cooper transformation constitutes a change of mea-

sure, from the original probability measure ℙ to its conditional counterpart ℚ. The variable 𝛼
is a scaling parameter that essentially models the normalization on the random event.

After transformation (5.5), problem (5.4) reduces to the semi-infinite linear program (LP)

sup𝛼,ℚ(𝑥)∈ℝ+ ∫Ω 𝑔(𝑥)�Ξ(𝑥)dℚ(𝑥)
s.t. ∫Ω ℎ𝑗 (𝑥) dℚ(𝑥) = 𝛼𝑞𝑗 , ∀𝑗 = 0, … ,𝑚,

∫Ω �Ξ(𝑥)dℚ(𝑥) = 1,
(5.6)

where all the right-hand sides of the constraints in (5.6) are scaled by 𝛼, and the last line ensures
that ℚ is a proper (conditional) distribution when defined on its support Ξ. To determine the
dual of (5.6), one can employ semi-infinite linear programming duality, as in Section 6 of [113].
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It then follows from standard calculations that the Lagrangian dual of (5.6) isinf𝜆0,…,𝜆𝑚+1 𝜆𝑚+1
s.t.

𝑚∑𝑗=0 𝜆𝑗𝑞𝑗 � 0,𝑚∑𝑗=0 𝜆𝑗ℎ𝑗 (𝑥) + 𝜆𝑚+1�Ξ(𝑥) � 𝑔(𝑥)�Ξ(𝑥), ∀𝑥 ∈ Ω,
(5.7)

where the dual variables 𝜆0, … , 𝜆𝑚+1 are associated to each constraint in the primal (5.6). From
this point on, we use the shorthand notation ℎ𝑚+1(𝑥) ∶= �Ξ(𝑥). Notice that the dual problem
has a finite number of decision variables, but an infinite number of constraints. By virtue of

weak duality, an upper bound for (5.6) follows from a feasible solution to (5.7). The optimal dual

solution to problem (5.7) yields a viable upper bound by weak duality, but whether this bound

is sharp (i.e., whether strong duality holds) is still an open question, to which we will seek an

answer in the next subsection.

5.2.3. Strong duality of the generalized conditional-bound problem
The purpose of this section is twofold: we demonstrate that (5.7) is strongly dual to (5.1), also

extending this result to more general, convex sets of probability measuresP0 that might model
structural properties such as symmetry and unimodality, and we show that (5.1) can be reduced

to a finite-dimensional problem in which one optimizes over a parametric family of distribu-

tions.

Since the objective function of (5.1) is nonlinear with respect to the expectation operator, it

is not immediately clear how to pass down sufficient conditions regarding strong duality for

generalized moment problems to the setting in which conditional expectations are considered.

Therefore, in order to prove ourmain results, we use an alternative formulation of problem (5.4).

The equivalence of this formulation is provided by the following lemma, which is an adaptation

of Proposition 2.1 in [145].

Lemma 5.1. Suppose that problem (5.1) has a finite optimal value. Then problem (5.1) is equivalent

to inf𝜏∈ℝ 𝜏
s.t. supℙ∈P𝔼ℙ [𝑔(𝑋)�Ξ(𝑋) − 𝜏�Ξ(𝑋)] � 0, (5.8)

Moreover, the optimal value of (5.8), 𝜏∗, is also finite.
It turns out that (5.8) is significantly easier toworkwith than the original semi-infinite formu-

lation (5.4) since the problem is linear with respect to ℙ, rather than linear-fractional. This can
be seen from the constraints of (5.8) in which the expectation 𝔼ℙ[⋅] appears linearly, whereas in
(5.3), we have a fraction of expectation operators. From the duality theory of moment problems,

solving problem (5.8) turns out to be equivalent to solving the dual (5.7). As a consequence, solv-

ing (5.4) will also be equivalent to solving (5.7) due to the equivalence between (5.4) and (5.8).

We next show strong duality holds. To this end, we make the following assumptions:
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(A1) The function 𝑔(𝑥) is bounded on the support Ω.
(A2) There exists a positive number 𝜖 > 0 such thatinfℙ∈P𝔼ℙ[�Ξ(𝑋)] � 𝜖.
(A3) The Slater condition holds; that is, 𝐪 ∈ int(QP), where “int” denotes the interior of a set.
Assumption (A1) is standard and could be relaxed. It is satisfied, for example, when Ω is a com-
pact set and 𝑔(𝑥) is upper-semicontinuous, by virtue of Weierstrass’ Extreme Value Theorem.
This assumption is used to guarantee that the optimal value of (5.4) is finite. Assumption (A2)

provides a sufficient condition for the conditional expectation to be well-defined, as it avoids

conditioning on a set of measure zero. Assumption (A3) constitutes a Slater-type condition

on the moments of 𝑋 , which is standard for generalized moment problems; see, for example,
Proposition 3.4 in [196]. Under these regularity conditions, we show strong duality holds for a

general, convex set of probability distributionsP0, possibly endowed with structural properties
(e.g., symmetry and unimodality). Wewill focus on structural ambiguity setsP0(Ω) that possess
a mixture representation. In other words, we assumeP0 can be “generated” by a convenient
class of distributions, say T , such that every distribution ℙ ∈ P0 can be written as a mixture
(i.e., an infinite convex combination) of the extremal distributions (i.e., the extreme points of

the convex setP0) that constituteT . For every Borel setS ∈ BΩ, it should thus hold that
ℙ(𝑋 ∈ S) = ∫

T
𝕋𝐭(𝑋 ∈ S)d𝕄(𝐭)

where 𝕋𝐭 ∈ T ⊆P0, is a parametrized representation of the family of extremal distributions of
P0, and𝕄 represents the mixture distribution that generates ℙ from the extremal distributions
inT . This finite-dimensional parameterization of the family of extremal distributions will prove

useful when determining the optimal bounds. For a thorough discussion on these structural

ambiguity sets in the context of DRO, we refer to the work of [177]. We use these general

ambiguity sets with structural properties when formulating our main results.

Finally, before formulating our main result, we introduce some final technical notation from

conic duality theory for generalized moment problems (see, e.g., [177, 196]). Denote by A =co(P0) the cone of measures A generated by the set of probability distributionsP0. Define
its dual cone as A∗ ∶= {ℎ ∈ H ∶ ∫Ω ℎ(𝑥) dℙ(x) � 0, ∀ℙ ∈ A

}
, where H is the linear space

of functions formed by combinations of 𝑔, ℎ0, … , ℎ𝑚, and the spaces of functions and measures
are paired by the integral operator. We now have the necessary preliminaries to demonstrate

strong (conic) duality. Lemma 5.1, in conjunction with assumptions (A1)–(A3), pave the way

for us to formulate the main results.

Theorem 5.2 (Strong conic duality). Suppose that assumptions (A1)–(A3) hold. Then, the op-
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timal value of the primal problem (5.1) is finite and equals that of its dual probleminf𝜆0,…,𝜆𝑚+1 𝜆𝑚+1
s.t.

𝑚∑𝑗=0 𝜆𝑗𝑞𝑗 � 0,𝑚+1∑𝑗=0 𝜆𝑗ℎ𝑗 (𝑥) − 𝑔(𝑥)�Ξ(𝑥) ∈ A∗, (5.9)

in which A∗ is the dual cone of A.

Proof. The assumptions ensure that, for all ℙ ∈P,||||𝔼ℙ[𝑔(𝑋)�Ξ(𝑋)]𝔼ℙ[�Ξ(𝑋)] |||| � 1𝜖 |𝔼ℙ[𝑔(𝑋)]|
� supℙ∈P 1𝜖 |𝔼ℙ[𝑔(𝑋)]|
� 1𝜖 sup𝑥∈Ω |𝑔(𝑥)| < ∞.

Hence, instead of (5.1), it is equivalent to consider (5.8). Since the constraints of this problem are

linear in the probability distribution ℙ, standard conic duality for generalized moment problems
suffices, which holds under the Slater-type condition, as in [196]. Notice that if we substitute𝜏 with 𝜆3, the dual of (5.8) is equivalent to (5.9). For A = M+, the strong conic dual problem
(5.7) reduces to the semi-infinite LP (5.7). The result for general cones of measures follows from

conic duality arguments as in Theorem 3.1 of [177].

As a consequence, duality enables us to reduce the primal problem, which has infinite-

dimensional variables, to a dual problem with 𝑚 + 1 variables, but with an infinite number
of constraints. These constraints are indexed by the probability measures, i.e., the constraints

should hold ∀ℙ ∈ P0. This indexation might turn out to be difficult. However, this difficulty
can be greatly reduced if we instead use the generating setT , as shown in [177]. In this case,

the dual cone can be reduced to A∗ = {ℎ ∈ H ∶ ∫Ω ℎ(𝑥) dℙ(𝑥) � 0, ∀ℙ ∈T
}
, and hence, the

indexing now only runs over the set of extreme points ofP0.
Another classical result is that the semi-infinite LP that models a generalized moment prob-

lem can be reduced to an equivalent finite-dimensional problem that yields the same optimal

value. The Richter-Rogosinski theorem (see, e.g., [98, 186, 201]) states that there exists an ex-

tremal distribution for the semi-infinite LP with at most 𝑚 + 1 support points. Analogous to
the basic solutions for conventional semi-infinite linear programming, we define a basic distri-

bution as a convex combination of extremal distributions ofP0. As there are 𝑚 + 1 moment
functions, these basic distributions consist of at most 𝑚+1 extreme points (i.e., elements ofT).
We let D(𝐪) denote the set of basic distributions that comply with the given moment sequence𝐪. We can then state the following result, which is an adaptation of the fundamental theorem
for convex classes of distributions, but now for the generalized conditional-bound problem.
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Theorem 5.3 (Fundamental theorem for conditional expectations). Consider problem (5.1).

Under assumptions (A1)–(A3),supℙ∈P(𝐪) 𝔼ℙ[𝑔(𝑋) | 𝑋 ∈ Ξ] = supℙ∈D(𝐪) 𝔼ℙ[𝑔(𝑋) | 𝑋 ∈ Ξ].
Moreover, if the optimal value is attained, then there exists an optimal basic distribution, a convex

combination of 𝑚+ 1 probability distributions from the generating setT , that achieves this value.

Proof. Again, under the stated assumptions, it suffices to consider the equivalent problem (5.8).

Since the constraints of (5.8) are linear in ℙ, standard generalized moment problem results
apply. Hence, Theorem 3.2 in [177] yields the result.

This theorem states that, even if the bound is not achieved, it is sufficient to consider only the

basic feasible distributions in D(𝐪) to determine the supremum. This result holds for general
convex classes of distributionsPwith the optimal distributions taken as convex combinations

of the extremal distributions inT . We further remark that both theorems also hold in the set-

ting in which the supremum of the conditional expectation grows infinitely large. In this case,

a maximizing sequence of probability measures exists (also taken from the set of basic distribu-

tions) for which the conditional expectation diverges. Combined, the concept of weak duality

described in Section 5.2.2 and the reduction to the basic distributions generated by T as pro-

posed inTheorem 5.3 provide an effective way of solving problem (5.1), as will be demonstrated

in the next section.

5.3. Tight bounds for conditional expectations
In this section, we study several easy examples for the case with 𝑛 = 1; that is, 𝑋 is a random
variable conditioned on itself. First, in Section 5.3.1, we seek the best possible bounds for con-

ditional expectation 𝔼[𝑋 | 𝑋 � 𝑡] when mean-dispersion information, and possible structural
properties of the underlying distribution, are given. We find the tight bounds using primal-dual

arguments. In Section 5.3.2, we demonstrate this also works for arbitrary choices of 𝑔(𝑥), using
an example from the robust pricing literature. Finally, Section 5.3.3 shows that, in the univariate

setting, tight bounds can be obtained by solving semidefinite programming problems.

5.3.1. Simple examples for mean-dispersion information

For the sake of exposition, we concentrate our efforts on the event Ξ = {𝑋 � 𝑡}. We thus seek
to bound the conditional expectation

𝔼ℙ[𝑔(𝑋) | 𝑋 � 𝑡] = ∫Ω 𝑔(𝑥)�Ξ(𝑥)dℙ(𝑥)∫Ω �Ξ(𝑥)dℙ(𝑥) ,
in which �Ξ(𝑥) is the indicator function modeling the occurrence of the event {𝑋 � 𝑡} and ℙ
is the underlying probability distribution of which we assume that it lies in the mean-variance
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ambiguity set, P(𝜇,𝜎), which contains all distributions that comply with the available mean-
variance information. Then, the problem of interest can be stated as

supℙ(𝑥)�0 ∫Ω 𝑔(𝑥)�Ξ(𝑥)dℙ(𝑥)∫Ω �Ξ(𝑥)dℙ(𝑥)
s.t. ∫Ω dℙ(𝑥) = 1, ∫Ω 𝑥 dℙ(𝑥) = 𝜇, ∫Ω 𝑥2 dℙ(𝑥) = (𝜎2 + 𝜇2), (5.10)

which is a semi-infinite LFP. Through the generalized Charnes-Cooper transformation, intro-

duced in Section 5.2.1, it is possible to write (5.10) assup𝛼,ℚ(𝑥)�0 ∫Ω 𝑔(𝑥)�Ξ(𝑥)dℚ(𝑥)
s.t. ∫Ω dℚ(𝑥) = 𝛼, ∫Ω 𝑥 dℚ(𝑥) = 𝛼𝜇, ∫Ω 𝑥2 dℚ(𝑥) = 𝛼(𝜎2 + 𝜇2), ∫Ω �Ξ(𝑥)dℚ(𝑥) = 1,

(5.11)

where 𝛼 is a decision variable denoting the “worst-case” probability of 𝑋 exceeding 𝑡. The
semi-infinite linear programming dual of (5.11) is given byinf𝜆0,𝜆1,𝜆2,𝜆3 𝜆3

s.t. 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜎2 + 𝜇2) � 0,𝜆0 + 𝜆1𝑥 + 𝜆2𝑥2 + 𝜆3�Ξ(𝑥) � 𝑔(𝑥)�Ξ(𝑥), ∀𝑥 ∈ ℝ, (5.12)

which, for this specific choice of random event Ξ, results ininf𝜆0,𝜆1,𝜆2,𝜆3 𝜆3
s.t. 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜎2 + 𝜇2) � 0,𝜆0 + 𝜆1𝑥 + 𝜆2𝑥2 � 0, ∀𝑥 < 𝑡,𝜆0 + 𝜆1𝑥 + 𝜆2𝑥2 + 𝜆3 � 𝑔(𝑥), ∀𝑥 � 𝑡.

Consider the standard conditional expectation (i.e., consider the function 𝑔 ∶ 𝑥 ↦ 𝑥). We
next try to find feasible solutions to the dual problem, and prove optimality by finding primal

solutions with matching objective values. Let 𝑡 < 𝜇. The dual problem of supℙ∈P(𝜇,𝜎) 𝔼[𝑋 | 𝑋 � 𝑡]
is given by inf𝜆0,𝜆1,𝜆2,𝜆3 𝜆3

s.t. 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜎2 + 𝜇2) � 0,𝜆0 + 𝜆1𝑥 + 𝜆2𝑥2 � 0, ∀𝑥 < 𝑡,𝜆0 + 𝜆1𝑥 + 𝜆2𝑥2 � 𝑥 − 𝜆3, ∀𝑥 � 𝑡. (5.13)

Denote the left-hand sides of the constraints by𝑀(𝑥) ∶= 𝜆0 + 𝜆1𝑥 + 𝜆2𝑥2. The function𝑀(𝑥)
is dual feasible when it is greater than or equal to 0 for 𝑥 < 𝑡 and greater than or equal to 𝑥 −𝜆3
for 𝑡 � 𝑥 � 𝑏. We construct two candidate dual solutions, the quadratic functions 𝑀1(⋅) and
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𝑥

�{𝑥�𝑡}(𝑥 − 𝜆3)𝑀1(𝑥)𝑀2(𝑥)

𝑡 − 𝜆3
𝜇𝑡− 𝑥0

Figure 5.1: 𝑀1(𝑥) and 𝑀2(𝑥)
𝑀2(⋅) (see Figure 5.1), with the former’s minimum occurring below 𝑡, while for the latter, its
minimum occurs above the threshold 𝑡.
The first dual function,𝑀1(⋅), does not admit a feasible solution. Since 𝜎 > 0, from 𝜆0 +𝜆1𝜇 +𝜆2(𝜎2+𝜇2) � 0 it follows that𝑀(𝜇) = 𝜆0+𝜆1𝜇+𝜆2𝜇2 < 0, but for the minimizer 𝑥∗ = −𝜆1/(2𝜆2),𝑀(𝑥∗) � 0. Thus, this case is infeasible.
The second parabola, 𝑀2(⋅), does admit a feasible solution. This function coincides with the

function 𝑔(⋅) at 𝑡 and some point 𝑥0. Since 𝑀2(𝑡) = 0, 𝑀2(𝑥0) = 𝑥0 − 𝜆3 and 𝑀′2(𝑥0) = 1,𝜆0 = −𝑡(𝜆3(𝑡 − 2𝑥0) + 𝑥20 )(𝑡 − 𝑥0)2 , 𝜆1 = 𝑡2 + 𝑥0(𝑥0 − 2𝜆3)(𝑡 − 𝑥0)2 , 𝜆2 = 𝜆3 − 𝑡(𝑡 − 𝑥0)2 . (5.14)

Hence, this yields an optimization problem in two variables, min𝑥0,𝜆3 𝜆3, with the additional
constraint 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜎2 + 𝜇2) � 0, in which we substitute (5.14). If this constraint is tight,
the dual problem can be reduced tomin𝜆3,𝑥0 𝜆3 ≡ min𝑥0 (𝑡2 + 𝑥20 )𝜇 − 𝑡(𝑥20 + 𝜇2 + 𝜎2)(𝑡 − 𝜇)(𝑡 − 2𝑥0 + 𝜇) − 𝜎2 .
Optimizing over 𝑥0, it then follows that𝑥∗0 = 𝜇 + 𝜎2𝜇 − 𝑡 , 𝜆∗3 = 𝜇 + 𝜎2𝜇 − 𝑡 ,
with 𝜆∗3 a feasible upper bound for 𝔼[𝑋|𝑋 � 𝑡]. To prove this bound is optimal, we construct a
distribution that (asymptotically) achieves 𝜆∗3 . From complementary slackness (see, e.g., [201]),
we deduce that the candidate distribution has all of its probability mass on two points: 𝑡− and𝑥∗0 . Solving the system of moment constraints in (5.10) yields the probabilities𝑝𝑡− = 𝜎2𝜎2 + (𝜇 − 𝑡)2 , 𝑝𝑥∗0 = (𝜇 − 𝑡)2𝜎2 + (𝜇 − 𝑡)2
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Indeed, for this two-point distribution,𝔼[𝑋 | 𝑋 � 𝑡] = 𝑥∗0 ⋅ 𝑝𝑥∗0ℙ(𝑋 � 𝑡) = 𝑥∗0 ⋅ 𝑝𝑥∗0𝑝𝑥∗0 = 𝑥∗0 = 𝜇 + 𝜎2𝜇 − 𝑡 ,
ensuring the upper bound is tight. Hence, by weak duality,supℙ∈P(𝜇,𝜎) 𝔼[𝑋 | 𝑋 � 𝑡] = 𝜇 + 𝜎2𝜇 − 𝑡 . (5.15)

Notice that this bound is not actually attained, but it is achieved in the limit; that is, for 𝑡𝑘 = 𝑡− 1𝑘 ,
as 𝑘 → ∞, this construction of the extremal distribution indeed gives the desired result. For𝑡 � 𝜇, it can be shown that supℙ∈P(𝜇,𝜎) 𝔼[𝑋 | 𝑋 � 𝑡] = ∞,
since we can construct the following sequence of (maximizing) measures:ℙ𝑘 = 1𝑘2𝜎2 + 1𝛿𝜇+𝑘𝜎2 + 𝜎2𝜎2 + 1𝑘2 𝛿𝜇− 1𝑘 .
Letting 𝑘 → ∞ then results in 𝔼ℙ𝑘 [𝑋 | 𝑋 � 𝑡] → ∞. Taken together, we obtain the following
result.

Proposition 5.4. For a real-valued random variable 𝑋 with distribution ℙ ∈P(𝜇,𝜎), it holds that
supℙ∈P(𝜇,𝜎) 𝔼ℙ[𝑋 | 𝑋 � 𝑡] = {𝜇 + 𝜎2𝜇−𝑡 , for 𝑡 < 𝜇,∞, for 𝑡 � 𝜇. (5.16)

A number of interesting observations can be drawn from this result. First, note that the

maximizing sequence for the second case, {ℙ𝑘}, converges weakly to 𝛿𝜇, which is not included
in the ambiguity set. Notice also that the solution to the second case becomes “uninformative,”

as it diverges for values of 𝑡 � 𝜇. Degenerate behavior like this also holds for different ambiguity
sets, as we will see in later examples. This result confirms tightness of the Mallows and Richter

bound for conditional expectations under mean-variance information, stated in [151]. Further,

notice that the worst-case distribution that achieves the upper bound matches the extremal

distribution that yields the Cantelli lower bound for the tail probability, as also shown in [88].

The authors of the latter work provide a constructive proof of tightness using the extremal

distribution that achieves the Cantelli bound. Despite Proposition 5.4 being a known result,

this is the first instance in which it has been proven through a duality argument that provides

immediate insight into the extremal distributions.

The method discussed above can be applied to different types of dispersion information, not

only the traditional variance. For example, assume that instead of the variance, we consider the

mean absolute deviation from the mean (MAD), 𝑑 ∶= 𝔼|𝑋 − 𝜇|, as the measure of dispersion.
LetP(𝜇,𝑑) denote the mean-MAD ambiguity set, with the additional constraint that the support
of 𝑋 is (a subset of) the interval [𝑎, 𝑏]. We can then prove the following result.
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Proposition 5.5. For a real-valued random variable 𝑋 with distribution ℙ ∈P(𝜇,𝑑), it holds that
supℙ∈P(𝜇,𝑑) 𝔼ℙ[𝑋 | 𝑋 � 𝑡] = {𝜇 + 𝑑(𝜇−𝑡)2(𝜇−𝑡)−𝑑 , for 𝑡 < 𝜇 − 𝑑(𝑏−𝜇)2(𝑏−𝜇)−𝑑 ,𝑏, for 𝑡 � 𝜇 − 𝑑(𝑏−𝜇)2(𝑏−𝜇)−𝑑 . (5.17)

Again, we see that the second case becomes uninformative, as it simply reduces to the robust

solution (i.e., it agrees with the upper bound of the support). It is worth noting here the in-

terplay between the size of the ambiguity set and the set that describes the random event/side

information. Despite having only a limited number of distributions to choose from, if the real-

izations of the random variable are limited to too small an interval, the bounds become overly

conservative, as an extremal distribution can be constructed for which the moment constraints

are satisfied, yet the support point onΞ can bemade arbitrarily large, bounded, of course, by the
upper bound of the support. For the mean-MAD ambiguity set, the extremal distribution also

agrees with the distribution attaining the lower bound on the corresponding tail probability

[188].

Proposition 5.5 can be generalized further. Assume that the dispersion information is mod-

eled through the expectation of a convex function 𝑑(⋅) of the random variable 𝑋 , defined as𝜎̄ ∶= 𝔼[𝑑(𝑋)]. We can state the following result for such arbitrary convex dispersion mea-
sures.

Proposition 5.6. Suppose that there exists a solution 𝑥∗0 to the equation𝜎̄𝑡 − 𝜇𝑑(𝑡)𝑡𝑑(𝑥0) − 𝑥0𝑑(𝑡) 𝑣 + 𝜇𝑑(𝑥0) − 𝜎̄𝑥0𝑡𝑑(𝑥0) − 𝑥0𝑑(𝑡) = 1,
such that the corresponding two-point distribution, with support {𝑡, 𝑥∗0 }, is feasible. Then, for a

real-valued random variable 𝑋 with distribution ℙ ∈P(𝜇,𝜎̄), it holds thatsupℙ∈P(𝜇,𝜎̄) 𝔼ℙ[𝑋 | 𝑋 � 𝑡] = 𝑥∗0 . (5.18)

Proposition 5.6 covers a wide range of dispersion measures, not limited to only variance and

MAD. It also incorporates asymmetric measures of dispersion, such as semivariance, semimean

deviations, and partial moments. More generally, it encompasses all dispersion measures that

are modeled using piecewise convex functions. Since the 𝑝-norms on ℝ are convex, these are
naturally included in the category of convex dispersion measures as well. Another notable

function that falls into this class is the Huber-loss function, which has been extensively studied

in the field of robust statistics.

As explained earlier, using onlymoment information often leads to overly conservative bounds

and pathological worst-case distributions. We require additional assumptions about the distri-

bution’s shape to sharpen the bounds and avoid the pathological two-point distributions that

constitute the worst-case scenario in the previous examples. We next study two such structural

properties, i.e., symmetry and unimodality. The random variable 𝑋 is said to admit a symmetric
distribution about a point 𝑚 if ℙ(𝑋 ∈ [𝑚 − 𝑥,𝑚]) = ℙ(𝑋 ∈ [𝑚,𝑚 + 𝑥]) for all 𝑥 � 0. A random



623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen
Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023 PDF page: 119PDF page: 119PDF page: 119PDF page: 119

Chapter 5. A generalized moment approach for conditional expectations 113

variable 𝑋 has a unimodal distribution with mode 𝑚 if its distribution function is a concave
function on (−∞,𝑚] and convex on (𝑚,∞). Both definitions are generalized so that they admit
probability distributions that allow for point masses at 𝑚. We next consider a distribution that
is symmetric about its mean 𝜇 with the values of the mean and variance given. Making use of
primal-dual arguments, we obtain the following result.

Proposition 5.7. For a real-valued random variable 𝑋 with a symmetric distribution ℙ ∈Psym(𝜇,𝜎),
it holds that

supℙ∈Psym(𝜇,𝜎) 𝔼ℙ[𝑋 | 𝑋 � 𝑡] = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜇 + (𝜇−𝑡)𝜎22(𝑡−𝜇)2−𝜎2 , for 𝑡 < 𝜇 − 𝜎,𝜇 + 𝜎, for 𝜇 − 𝜎 � 𝑡 < 𝜇,∞, for 𝑡 � 𝜇. (5.19)

Observe that the bounds are sharper than the bound in Proposition 5.4, but still vacuous for𝑡 � 𝜇. Combining the notions of symmetry and unimodality yields the following, even tighter,
bounds:

Proposition 5.8. For a real-valued random variable 𝑋 with a symmetric, unimodal distributionℙ ∈Puni(𝜇,𝜎), it holds that
supℙ∈Puni(𝜇,𝜎) 𝔼ℙ[𝑋 | 𝑋 � 𝑡] = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

4𝜇(𝑥∗0 )3−3𝜎2(𝑡+𝑥∗0 −𝜇)(𝑡−𝑥∗0 +𝜇)4(𝑥∗0 )3−6𝜎2(𝑡+𝑥∗0 −𝜇) , for 𝑡 < 𝜇 − 3√3𝜎5 ,12 (𝜇 + 𝑡 + √3𝜎) , for 𝜇 − 3√3𝜎5 < 𝑡 < 𝜇,∞, for 𝑡 � 𝜇, (5.20)

where 𝑥∗0 is the real-valued solution to the quartic equation6𝜎2𝑥20 (3(𝑡 − 𝜇)2 − 𝑥20) + 9𝜎4(𝜇 − 𝑡 − 𝑥0)2 = 0,
which satisfies the condition 𝑥∗0 � 3𝜎.
Although Proposition 5.8 does not provide a closed-form solution, it does demonstrate the

versatility of the primal-dual arguments used to derive it. It further highlights that structural

properties can be addressed in conjunction with moment information, even for conditional-

bound problems.

5.3.2. A robust pricing objective function
To demonstrate the primal-dual approach for an alternative objective function 𝑔(𝑥), we next
turn our attention to a specific minimax problem. We consider the objective of the robust

monopoly-pricing problem; see, e.g., [45, 75, 88]. This involves evaluating the revenue functionΠ(𝑝) ∶= 𝔼[𝑝�{𝑋�𝑝}] = 𝑝ℙ(𝑋 � 𝑝),
which models the expected revenue that a seller of a single item receives when the price posted

is equal to 𝑝, and the valuation of customers is distributed as 𝑋 . As in [88], we will attempt
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to minimize the maximum relative regret by posting the minimax selling price 𝑝∗; that is, we
solve min𝑝 maxℙ∈P max𝑧 𝔼ℙ[Π(𝑧)]𝔼ℙ[Π(𝑝)] .
We use the “min” and “max” operators only to avoid notational clutter, as it does not imply that

the optima are actually attained. Chen et al. [45] present various results for robust monopoly

pricing and also consider this relative regret criterion. In [45] an almost identical objective

function is considered, namely,min𝑝 maxℙ {1 − 𝔼ℙ[Π(𝑝)]max𝑧 𝔼ℙ[Π(𝑧)]} = 1 − max𝑝 minℙ 𝔼ℙ[Π(𝑝)]max𝑧 𝔼ℙ[Π(𝑧)]
We, however, work with the reciprocalmin𝑝 maxℙ max𝑧 𝔼ℙ[Π(𝑧)]𝔼ℙ[Π(𝑝)] = min𝑝 maxℙ max𝑧 𝔼ℙ[Π(𝑧)]𝔼ℙ[Π(𝑝)] = min𝑝 max𝑧 maxℙ 𝔼ℙ[Π(𝑧)]𝔼ℙ[Π(𝑝)] ,
where we swap the maximization operators to obtain the final equality. As in the proof of

Theorem 4 in [45], it is imperative to solve the semi-infinite optimization problemmaxℙ∈P(𝜇,𝜎)
𝔼ℙ[𝑧�{𝑋 � 𝑧}]𝑝ℙ(𝑋 � 𝑝) . (5.21)

Notice that this problem effectively models the conditional expectation𝔼[ 𝑧𝑝 �{𝑋�𝑧}�{𝑋�𝑝} | 𝑋 ∈ Ξ]with
the random event Ξ = {𝑋 � 𝑝}. As [45] tries to optimize the dual problem directly, their proof
requires several lengthy, tedious arguments to obtain the tight bounds. We will simplify their

proof using primal-dual arguments as in the previous subsection. We assume that 𝑝 < 𝜇, as
otherwise, it is possible to construct an extremal distribution for which the relative regret ratio

diverges; see [88]. For 𝑧 < 𝑝, the expectation in the numerator will evaluate to 1. Hence,maxℙ∈P(𝜇,𝜎)
𝔼ℙ[ 𝑧𝑝�{𝑋 � 𝑧}]ℙ(𝑋 � 𝑝) � 𝑧𝑝 maxℙ∈P(𝜇,𝜎)

1ℙ(𝑋 � 𝑝) = 𝑧𝑝 1minℙ∈P(𝜇,𝜎) ℙ(𝑋 � 𝑝) .
To bound the latter, we can use the one-sided version of Chebyshev’s inequality (commonly

known as Cantelli’s inequality). It then follows thatmaxℙ∈P(𝜇,𝜎)
𝔼ℙ[ 𝑧𝑝�{𝑋 � 𝑧}]ℙ(𝑋 � 𝑝) = 𝑧𝑝 𝜎2 + (𝜇 − 𝑝)2(𝜇 − 𝑝)2 .

Hence, max𝑧�𝑝 maxℙ 𝔼ℙ[ 𝑧𝑝�{𝑋 � 𝑧}]𝑝ℙ(𝑋 � 𝑝) = 𝜎2 + (𝜇 − 𝑝)2(𝜇 − 𝑝)2 .
For 𝑧 � 𝑝, it holds that𝔼ℙ[ 𝑧𝑝�{𝑋 � 𝑧}]ℙ(𝑋 � 𝑝) = 𝑧𝑝 ℙ(𝑋 � 𝑧)ℙ(𝑋 � 𝑝) = 𝑧𝑝 ℙ(𝑋 � 𝑧 ∩ 𝑋 � 𝑝)ℙ(𝑋 � 𝑝) = 𝑧𝑝ℙ(𝑋 � 𝑧 | 𝑋 � 𝑝),

and thus, we require a bound for conditional probabilities. Using primal-dual arguments, we

obtain the following result.
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Proposition 5.9. Suppose that 𝑧 � 𝑝 and 𝑝 < 𝜇. For a nonnegative random variable 𝑋 with

distribution ℙ ∈P(𝜇,𝜎), it holds that
supℙ∈P(𝜇,𝜎) ℙ(𝑋 � 𝑧 | 𝑋 � 𝑝) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜎2(𝑧−𝜇)2+𝜎2 , for 𝑧 � 𝜇 + 2𝜎2(𝜇−𝑝)(𝜇−𝑝)2+𝜎2 ,( (𝜇−𝑝)2+𝜎2𝜎2+𝜇2−𝑝2+2𝑧(𝜇−𝑝))2 , for 𝜎2+𝜇2−𝑝𝜇𝜇−𝑝 � 𝑧 � 𝜇 + 2𝜎2(𝜇−𝑝)(𝜇−𝑝)2+𝜎2 ,1, otherwise.

(5.22)

Using these bounds, one can show thatmax𝑧�𝑝 supℙ 𝔼ℙ[𝜋(𝑧, 𝑋)]𝑝ℙ(𝑋 � 𝑝) = 𝜎2 + 𝜇(𝜇 − 𝑝)𝑝(𝜇 − 𝑝) .
Hence, combining the above results, the optimal price should solvemin𝑝<𝜇 max{ 𝜎2𝑝(𝜇 − 𝑝) + 𝜇𝑝 , 𝜎2(𝜇 − 𝑝)2 + 1} .
It is shown by [88] that the optimal price is the value of 𝑝 on which both branches of the
max operator agree. Observe that by using primal-dual arguments, we have greatly reduced

the number of necessary calculations to obtain the desired result. Contrary to [45], we work

with the primal and dual problems concurrently so as to verify the optimality of the suggested

solutions in a more effective manner. It goes without saying that the proposed duality approach

in this section probably also works for other pricing problems with fractional objectives, such

as e.g. the personalized pricing setting in [75].

5.3.3. Numerical bounds
We next show how the strong dual problem (5.7) can be reduced to a semidefinite programming

problem for the univariate setting. Consequently, the tight bounds can always be obtained nu-

merically as the solution to a (computationally tractable) optimization problem. The numerical

experiments have been conducted in the Julia programming language, using the MOSEK solver

[158] together with the Julia packages SumOfSquares.jl and PolyJuMP.jl [221].

Assume the objective function 𝑔(𝑥) is piecewise polynomial and the moment constraints are
described by the traditional power moments. Then the dual problem can be reduced further

to a semidefinite programming problem by applying standard DRO techniques discussed in,

for example, [28, 29, 177]. In particular, the univariate moment problem reduces to solving a

semidefinite program, provided that the dual-feasible set is semi-algebraic; that is, the dual con-

straint involves checking whether certain polynomial functions are nonnegative on intervals

described by the event set Ξ and the support Ω. It is well known that a univariate polyno-
mial is nonnegative if, and only if, it is a sum of squares. A classic result then states that the

semi-infinite constraint in the dual-feasible set of (5.7), with the support Ω a possibly infinite
interval, can be reduced to a set of linear matrix inequalities (LMIs) of polynomial size in the

number of moments 𝑚 (see, e.g., [28, 29, 167]). Since 𝑔(𝑥) is piecewise polynomial, the support
of the dual constraints in (5.7) can be subdivided into subintervals so that these constraints can

https://sumofsquares.jl/
https://polyjump.jl/
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116 Distributionally robust views on stochastic models

be reduced to a set of LMIs. Generalized moment information can be included if these moments

are described by piecewise polynomials in the dual problem. Examples of piecewise polyno-

mial objective functions are the indicator function 𝑔(𝑥) = �[𝑐,∞)(𝑥) and the stop-loss function𝑔(𝑥) = max{𝑥 − 𝑐, 0}. Both of these functions have several relevant applications in e.g. finance,
insurance and inventory control.
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Figure 5.2: Tight bounds for conditional tail probability for ambiguity sets matching the uniform distri-

bution on [0, 5]
In Figure 5.2 we provide numerical bounds for the conditional probability ℙ(𝑋 � 𝑐 | 𝑋 � 𝑡),

which corresponds to the piecewise function 𝑔(𝑥) = �[𝑐,∞)(𝑥). We assume that the ground truth
is given by a uniform distribution with support [0, 5]. We determine the bounds for three types
of ambiguity sets, in which the number of available moments varies between 𝑚 = 2, 4, and
6. Obviously, the bounds become sharper when more moment information is included, but in

addition, the uninformative solution becomes less prominent because the size of the ambiguity

set reduces. Nevertheless, the uninformative solution becomes more apparent again as the size

of Ξ reduces, as already noted in Section 5.3.1.
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Figure 5.3: Tight bounds for conditional expectation for ambiguity sets matching the moments and prop-

erties of the standard normal distribution

Even if the ambiguity sets are augmented with structural properties, the resulting dual prob-

lem can still be reduced to a semidefinite optimization problem. Consider the setting in which

P0 contains only symmetric distributions. Using the generator class consisting of symmetric
pairs of Dirac measures, the dual problem (5.9) reduces toinf 𝜆3

s.t.
𝑚∑𝑗=0 𝜆𝑗𝑞𝑗 � 0,𝑚+1∑𝑗=0 𝜆𝑗 (ℎ𝑗 (𝜇 − 𝑥) + ℎ𝑗 (𝜇 + 𝑥)) �𝑔(𝜇 − 𝑥)�Ξ(𝜇 − 𝑥) + 𝑔(𝜇 + 𝑥)�Ξ(𝜇 + 𝑥), ∀𝑥 � 0.

(5.23)
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Likewise, if we consider symmetric, unimodal distributions (which can be generated by the

convex combination of a Dirac measure 𝛿𝜇 and uniform distributions, which we denote by𝛿[𝜇−𝑧,𝜇+𝑧], 𝑧 > 0), the dual problem becomesinf 𝜆3
s.t.

𝑚∑𝑗=0 𝜆𝑗𝑞𝑗 � 0,𝑚+1∑𝑗=0 𝜆𝑗 ∫ 𝜇+𝑥𝜇−𝑥 ℎ𝑗 (𝑧)d𝑧 � ∫ 𝜇+𝑥𝜇−𝑥 𝑔(𝑧)�Ξ(𝑧)d𝑧, ∀𝑥 � 0,
𝑚+1∑𝑗=0 𝜆𝑗ℎ𝑗 (𝜇) � 𝑔(𝜇)�Ξ(𝜇).

(5.24)

Observe that the resulting integral transforms are still piecewise polynomial in 𝑥 . As a conse-
quence, we can reformulate both (5.23) and (5.24) as semidefinite programming problems.

Figure 5.3 shows the results for different structural assumptions. Notice that the addition of

structural information significantly sharpens the bounds, independently of the available mo-

ment information. However, even though the bounds are sharpened with additional informa-

tion, the bounds still diverge for 𝑡 � 𝜇 when only mean-variance information is available. Still,
it is obvious from the figures that this conservatism of the bounds can be mitigated significantly

by adding additional moment information.

5.4. Distributionally robust optimization with side infor-

mation
In this section, we lay the groundwork for a generalized moment-based framework for con-

textual distributionally robust stochastic optimization. Section 5.4.1 introduces moment-based

contextual DRO and a class of ambiguity sets that lead to tractable problems. In Section 5.4.2,

we provide examples of these ambiguity sets for which computationally tractable conic opti-

mization problems can be derived.

5.4.1. Contextual DRO with mean-dispersion information
Given the side information in the form of the event 𝐗 ∈ Ξ, contextual DRO problems can be
stated in general as inf𝝂∈V

supℙ∈P𝔼ℙ[𝑓 (𝝂, 𝐗) | 𝐗 ∈ Ξ], (5.25)

where 𝑓 is some cost function to be minimized, and 𝝂 ∈ V denotes the decision vector with

V ⊆ ℝ𝑝 a closed, convex set. The probability distribution ℙ is the joint measure governing 𝐗.
Let 𝐘 ∈ Y ⊆ ℝ𝑛𝐲 be a random vector that models the outcome variables that affect the decision
problem directly, and let 𝐙 ∈ Z ⊆ ℝ𝑛𝐳 be the covariates (or features) that influence the outcome
random variables. Assuming that the supports of 𝐘 and 𝐙 are independent, let 𝐗 = (𝐘, 𝐙) ∈
Y ×Z =∶ X. Henceforth the boldface lowercase characters represent the realizations of the
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random vectors. Furthermore, the expectation inf𝝂 supℙ∈P 𝔼ℙ[𝑣(𝝂, 𝐗) | 𝐗 ∈ Ξ] is conditioned
primarily on the information given by the covariates 𝐙 with Ξ𝐳 ⊆ Z the information set built

from the information on the covariates 𝐙. Therefore, the side information is described by Ξ ∶={𝐱 = (𝐲, 𝐳) ∈ X ∶ 𝐳 ∈ Ξ𝐳}. This includes the case in which Ξ𝐳 is represented by a singleton,
which models a particular realization of the covariates. No conditional information is normally

included about the outcome variables. Hence, in the remainder of the section, we occasionally

use the notation 𝔼[𝑓 (𝝂, 𝐗) | 𝐙 ∈ Ξ𝐳] for the conditional expectation given the side information.
We next introduce some additional technical notation tailored to this section. Boldfaced

lowercase characters represent vectors, where the italic character 𝑥𝑘 denotes the 𝑘th element
of the vector 𝐱 and 𝐱⊤ denotes its transpose. Except for the random vectors described above, all
boldface uppercase characters represent matrices. For a set S, let conv(S), cl(S) and int(S)
denote its convex hull, closure and interior, respectively. For a proper cone K ∈ ℝ𝑛 (i.e., a
closed, convex and pointed cone with nonempty interior), the general inequality 𝐱 ≼K 𝐮 is
equivalent to the set constraint 𝐮 − 𝐱 ∈ K, while the strict variant 𝐱 ≺K 𝐮 expresses that𝐮 − 𝐱 ∈ int(K). We useK∗ to denote the dual cone ofK, given byK∗ = {𝐮 ∶ 𝐮⊤𝐱, ∀𝐱 ∈ K}
with 𝐮⊤𝐱 the appropriate inner product. The set 𝕊𝑛+ represents the cone of symmetric positive
semidefinite matrices in ℝ𝑛×𝑛. Finally, for matrices 𝐀, 𝐁, we use 𝐀 ≼ 𝐁 to abbreviate the relation𝐀 ≼𝕊𝑛+ 𝐁.
In order to derive solvable reformulations of (5.28), we shall impose the following conditions:

(C1) The side information Ξ is a closed and convex set, and the support setX = ℝ𝑛.
(C2) The dispersion is modelled by (D-)convex epigraph functions (see [101, 224]).

(C3) The function 𝑓 (𝝂, 𝐱) can be represented as𝑓 (𝝂, 𝐱) = max𝑙∈L {𝑓𝑙(𝝂, 𝐱)},
in whichL is a set of indices and the auxiliary functions 𝑓𝑙 are of the form𝑓𝑙(𝝂, 𝐱) = 𝐬𝑙(𝝂)⊤𝐱 + 𝑡𝑙(𝝂)
where for all 𝑙 ∈ L, 𝐬𝑙(⋅) ∈ ℝ𝑝 and 𝑡𝑙(⋅) ∈ ℝ are some affine functions of 𝝂.

(C4) The ambiguity setP satisfies the Slater condition.

The rationale behind the first part of condition (C1) is twofold: (i) it enables the use of robust

optimization methods to reformulate the model, and (ii) it guarantees that the side event has a

conic reformulation. There is no necessity to the second part of the condition (closedness and

convexity suffice), as it is merely done to benefit the mathematical exposition in this section.

The second condition states that the dispersion function has an epigraph that can be described

through convex cones. We denote the dispersion function by 𝐝 ∶ ℝ𝑛 ↦ ℝ𝑚, and assume it
admits a D-epigraph that is conic representable, with D ⊆ ℝ𝑚 a proper cone, meaning that the
set {(𝐱, 𝐮) ∈ ℝ𝑛 × ℝ𝑚 ∶ 𝐝(𝐱) ≼D 𝐮} can be described with conic inequalities, possibly using
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cones other than D and auxiliary variables. See [23] for a comprehensive introduction to conic

representations. The epigraphic mean-dispersion ambiguity set can now be defined as

P(𝝁,𝝈) = {ℙ ∈P0(X) ∶ 𝔼ℙ[𝐗] = 𝝁, 𝔼ℙ[𝐝(𝐗)] ≼D 𝝈}, (5.26)

whereP0 is the set of probability distributions with supportX, the vector 𝝁 ∈ ℝ𝑛 represents
the mean value of the random vector 𝐗, and 𝝈 ∈ ℝ𝑚 is an upper bound on the expected value
of the dispersion measure 𝔼[𝐝(𝐗)]. Although the mean-dispersion ambiguity setP(𝝁,𝐝) may
seem simple, there are numerous practically relevant ambiguity sets that can be recovered by

selecting appropriate dispersion functions 𝐝(⋅). For example, setting 𝐝 = 𝟎 yields the mean-
support ambiguity set, while setting 𝐝(𝐗) = (𝐗 − 𝝁)(𝐗 − 𝝁)⊤ enables modeling the correlation
structures between the elements of the randomvector𝐗. Other (D-)convex dispersionmeasures
include the Huber loss function, mean absolute deviations, any norm ‖⋅‖ on ℝ𝑛, and the other
convex dispersion measures that were applicable to Proposition 5.6. We will elaborate on some

of these dispersion measures in the next subsection.

The third condition states that the objective function 𝑓 is a convex, piecewise-affine function
of the uncertainty 𝐱, for all 𝝂 ∈ V, and the decision vector 𝝂, for all 𝐱 ∈ X. We will focus on

piecewise-affine objective functions as these are more than sufficient to capture several inter-

esting models. For example, they can capture max operators as in the newsvendor model, as

well as the Conditional-Value-at-Risk, which is frequently used to optimize financial portfolios

with risk-averse investors. The requirement on the objective function is not strictly necessary

and can be relaxed to a much richer class of functions 𝑓 (⋅, ⋅) that are convex in 𝝂 for all 𝐱, and
concave in 𝐱 for all admissible 𝝂. For a detailed discussion on computational tractability, we
refer the interested reader to [224].

The dual problem of the inner maximization problem of (5.25), in the multivariate case, is

given by inf𝜆0,𝝀1,𝝀2,𝜆3 𝜆3
s.t. 𝜆0 + 𝝀⊤1 𝝁 + 𝝀⊤2 𝝈 � 0,𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐝(𝐱) � (𝑓 (𝝂, 𝐱) − 𝜆3)�Ξ(𝐱), ∀𝐱 ∈X, (5.27)

with 𝜆0, 𝜆3 ∈ ℝ, 𝝀1 ∈ ℝ𝑛 and 𝝀2 ∈ ℝ𝑚+ .
We assume that condition (C4) holds so that supℙ∈P 𝔼ℙ[𝑓 (𝝂, 𝐗) | 𝐗 ∈ Ξ] is strongly dual to
(5.27). To be more specific, the Slater condition is given by 𝝁 ∈ int(X) and 𝐝(𝝁) ≺D 𝝈. The
semi-infinite constraint in (5.27) can be amended using standard robust optimization methods.

This yields the following result.

Theorem 5.10 (Contextual DRO with mean-dispersion information). Let ℙ be a member

of the mean-dispersion ambiguity setP(𝝁,𝝈). If conditions (C1)–(C4) hold, then the objective value
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of the contextual DRO problem (5.25) coincides with the optimal value of the semi-infinite LPinf𝝂,𝜆0,𝝀1,𝝀2,𝜆3 𝜆3
s.t. 𝜆0 + 𝝀⊤1 𝝁 + 𝝀⊤2 𝝈 � 0,𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐮 � 0, ∀(𝐱, 𝐮) ∈ C,𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐮 + 𝜆3 � 𝐬𝑙(𝝂)⊤𝐱 + 𝑡𝑙(𝝂), ∀(𝐱, 𝐮) ∈ C, ∀𝑙 ∈ L,𝝂 ∈ V, 𝜆0 ∈ ℝ, 𝝀1 ∈ ℝ𝑛, 𝝀2 ∈ ℝ𝑚+ , 𝜆3 ∈ ℝ,

(5.28)

in which
C ∶= {(𝐱, 𝐮) ∈ ℝ𝑛 × ℝ𝑚 ∶ 𝐱 ∈ Ξ, 𝐝(𝐱) ≼D 𝐮},
C ∶= conv ({(𝐱, 𝐮) ∈ ℝ𝑛 × ℝ𝑚 ∶ 𝐱 ∈ Ξ, 𝐝(𝐱) = 𝐮}) , (5.29)

with Ξ ∶= cl(ℝ𝑛\Ξ). Moreover, problem (5.28) admits a reformulation as a finite-dimensional

conic optimization problem.

Proof. The dual problem of the inner maximization problem is given byinf𝜆0,𝝀1,𝝀2,𝜆3 𝜆3
subject to 𝜆0 + 𝝀⊤1 𝝁 + 𝝀⊤2 𝝈 � 0,𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐝(𝐱) � �Ξ(𝐱)(𝑓 (𝝂, 𝐱) − 𝜆3), ∀𝐱 ∈ ℝ𝑛. (5.30)

By decomposing the semi-infinite constraints using the definition of the indicator function, we

obtain two semi-infinite constraints,𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐝(𝐱) � 0, ∀𝐱 ∈ ℝ𝑛\Ξ,𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐝(𝐱) + 𝜆3 � 𝑓 (𝝂, 𝐱), ∀𝐱 ∈ Ξ, (5.31)

in which ℝ𝑛\Ξ is the complement of Ξ. From a standard continuity argument, it follows that we
are allowed to replace the complement with its closure, Ξ. Since 𝑓 (𝝂, 𝐱) is a convex, piecewise
affine function by condition (C3), (5.31) is equivalent to𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐝(𝐱) � 0, ∀𝐱 ∈ Ξ,𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐝(𝐱) + 𝜆3 � 𝑓𝑙(𝝂, 𝐱), ∀𝐱 ∈ Ξ, ∀𝑙 ∈ L.
Then, by lifting the nonlinearity in the uncertainty to the uncertainty set, we obtain the robust

counterparts𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐮 � 0, ∀(𝐱, 𝐮) ∶ 𝐱 ∈ Ξ, 𝐝(𝐱) = 𝐮,𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐮 + 𝜆3 � 𝑓𝑙(𝝂, 𝐱), ∀(𝐱, 𝐮) ∶ 𝐱 ∈ Ξ, 𝐝(𝐱) = 𝐮, ∀𝑙 ∈ L. (5.32)

As the constraints are linear in the uncertain parameters, we can equivalently use the convex

hull of the uncertainty sets𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐮 � 0, ∀(𝐱, 𝐮) ∈ conv ({(𝐱, 𝐮) ∶ 𝐱 ∈ Ξ, 𝐝(𝐱) = 𝐮}) ,𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐮 + 𝜆3 � 𝑓𝑙(𝝂, 𝐱), ∀(𝐱, 𝐮) ∈ conv({(𝐱, 𝐮) ∶ 𝐱 ∈ Ξ, 𝐝(𝐱) = 𝐮}), ∀𝑙 ∈ L. (5.33)
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Here we note, for the first set of semi-infinite constraints, that although the convex hull de-

fines a convex set, it might not admit a conic representable form involving only the “tractable”

cones (i.e., the nonnegative orthant, second-order cone, exponential cone, power cone, positive

semidefinite cone and their Cartesian products). From conditions (C1) and (C2), it immediately

follows that the convex hull of the uncertainty set of the second set of robust counterparts is

equivalent to C. As the robust counterparts in (5.33) constitute an (infinite) intersection of

halfspaces w.r.t. the dual variables 𝜆0, 𝝀1, 𝝀2, 𝜆3 and the decision vector 𝝂, it follows that the
feasible set is convex and (5.28) is a convex optimization problem. This a fortiori implies that

problem (5.28) can be phrased as a conic optimization problem. To demonstrate the second

claim, in Appendix B.3 we rewrite (5.28) as a finite-dimensional conic program. This completes

the proof.

The difficulty now lies in reformulating the semi-infinite constraints (or robust counterparts)

in the dual problem by constructing explicit expressions for the convex hulls C and C. To

address this, robust optimization techniques for nonlinear types of uncertainty can be used;

see, for example, [16, 228] for further details. It seems noteworthy to mention here that the

distribution-free analysis of (5.28) shares many similarities with the literature based on uncer-

tainty quantification [100, 101], and distributionally robust convex optimization [224]. How-

ever, in contrast to Theorem 5 in [224], we apply a lifting argument when solving the dual

problem rather than during the construction of the ambiguity set. In the next section, we show

that Theorem 5.10 leads to computationally tractable models for appropriate choices ofP andΞ.
5.4.2. Some examples for mean-dispersion information
For the sake of exposition, we limit our attention to two types of ambiguity sets, which are anal-

ogous to Propositions 5.4 and Proposition 5.5 in Section 5.3.1. Further, for the sake of simplicity,

we assume that the event set is defined by a halfspace; that is,Ξ𝐳 = {𝐳 ∈ ℝ𝑛𝐳 ∶ 𝐜⊤𝐳 � 𝑐},
with 𝐜 ∈ ℝ𝑛𝐳 and 𝑐 ∈ ℝ. Since Y = ℝ𝑛𝐲 , Ξ is unrestricted in the outcome space. We have
chosen this specific setup so that, in the remainder of this section, we can obtain computation-

ally tractable conic reformulations. In this context, “computationally tractable” means that our

problems can be formulated as linear, conic-quadratic or semidefinite programs so that we are

able to use mature, off-the-shelf solvers for conic optimization. The derivations of these conic

programs are provided in Appendix B.3.

We first construct a Chebyshev-type ambiguity set [66, 215], which allows us to impose con-

ditions on the covariance matrix of the random vector 𝐗. Let 𝔼[𝐗] = 𝝁 denote the mean vector,
and define the dispersion measure as 𝐝(𝐱) = (𝐱 − 𝝁)(𝐱 − 𝝁)⊤. We identify D with the cone of

positive semidefinite matrices. The Chebyshev ambiguity set then consists of all distributions

with mean 𝝁 ∈ ℝ𝑛 and covariance matrix bounded above by 𝚺 ∈ 𝕊𝑛+. It can be defined as
P(𝝁,𝚺) = {ℙ ∈P0 (ℝ𝑛) ∶ 𝔼ℙ[𝐗] = 𝝁, 𝔼ℙ [(𝐗 − 𝝁)(𝐗 − 𝝁)⊤] ≼ 𝚺} .
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When we consider this ambiguity set in conjunction with the half-space event set, the convex

hulls in (5.28) can be described by LMIs. Hence, Theorem 5.10 yields the following result.

Corollary 5.11 (Chebyshev ambiguity set). Suppose conditions (C1)–(C4) are satisfied. LetΞ𝐳 be defined by a halfspace. Then, for P = P(𝝁,𝚺), the contextual DRO problem (5.28) can be

reformulated as a semidefinite optimization problem.

Alternatively, the MAD can be used as dispersion measure [179]. Let𝐦 ∈ ℝ𝑛 represent some
center point, in our case the mean. Assume that we have bounds for the componentwise mean

deviations 𝔼[|𝐗 − 𝐦|] and the pairwise mean deviations 𝔼[|(𝑋𝑖 ± 𝑋𝑗) − (𝑚𝑖 ± 𝑚𝑗)|], which are
given by 𝐟 ∈ ℝ𝑛2 . This information results in the ambiguity set

P(𝐦,𝐟) = {ℙ ∈P0 (ℝ𝑛) ∶ 𝔼ℙ[𝐗] = 𝐦, 𝔼[|𝑋𝑖 − 𝑚𝑖|] � 𝑓𝑖,𝑖, ∀𝑖,𝔼[|(𝑋𝑖 ± 𝑋𝑗) − (𝑚𝑖 ± 𝑚𝑗)|] � 𝑓𝑖,𝑗 , ∀𝑖 ≠ 𝑗}.
For this ambiguity set, the convex hulls in (5.28) are representable by linear inequalities. There-

fore, Theorem 5.10 leads to the following result.

Corollary 5.12 (MAD ambiguity set). Suppose that conditions (C1)–(C4) hold. Let Ξ𝐳 be de-
fined by a halfspace. Then, forP =P(𝐦,𝐟), the contextual DRO problem (5.28) can be reformulated

as a linear optimization problem.

The precise mathematical models are relegated to Appendix B.3. Although we have obtained

computationally tractable models, it is not immediately clear how the ambiguity sets and side

information interact or under which conditions the contextual DRO problem reduces to its ro-

bust counterpart, inf𝝂 sup𝐲 𝑓 (𝝂, 𝐲), as discussed in Section 5.3. Related to this, we would like to
mention the nested ambiguity sets that were introduced in [224], which encompass distance-

based ambiguity sets as a special type of generalized-moment ambiguity sets. The reason for

this is that distance-based ambiguity sets can be defined by a finite number of (conditional)

expectation constraints based on generalized moments [53]. The distance-based ambiguity sets

are particularly interesting as they provide an explicit way to relate the “sizes” of ambiguity

sets and event sets. This makes it possible to quantify when the contextual DRO problem be-

comes “uninformative.” For an excellent discussion on the interplay between a distance-based

ambiguity set based on optimal transport and the size of the event set, see [169]. As our frame-

work applies to generalized moments, it is possible to extend Theorem 5.10 to include nested

ambiguity sets. Furthermore, as discussed in Section 5.3, we can obtain tighter bounds by im-

posing structural properties on the base ambiguity setP0. However, both extensions would
entail delving into many technical details. As these might detract from the main focus of this

expository section, we leave them to the avid reader.

5.5. Conclusions and outlook
This chapter presents a novel framework for bounding conditional expectations that, in con-

trast to generalized moment-bound problems, can explicitly incorporate side information into
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the semi-infinite formulation. The key idea is to use a simple transformation to reduce the re-

sulting semi-infinite fractional problem to a semi-infinite LP. The corresponding dual problem

highly resembles that of a generalized moment problem, but includes an additional constraint

that models the conditioning on this random event. Fortunately, this slight increase in complex-

ity does not seem to affect significantly the computational tractability of the resulting models.

The generalized conditional-bound framework can be used to obtain univariate bounds for dif-

ferent ambiguity sets and general objectives (for, e.g., pricing) through the use of primal-dual

arguments. Moreover, it serves as the foundation for a moment-based contextual DRO frame-

work that can be applied to stochastic optimization problems with side information.

We finallymention several potentially interesting avenues for further research. First, it seems

of interest to find more applications for the univariate bounds, such as the robust monopoly-

pricing problem. Second, alternative applications for the contextual DRO framework, discussed

in Section 5.4, can be investigated. Moreover, it would be beneficial to expand our findings to

nested ambiguity sets, as this class of ambiguity includes the distance-based ambiguity sets,

which offer a more direct way to answer questions about when a solution becomes “uninfor-

mative,” i.e., for which instances the DRO problem reduces to a robust optimization problem.

Conducting a comprehensive complexity analysis for the nested ambiguity sets and different

types of side information and objective function structures also seems a worthwhile topic to

explore. In conclusion, our proposed framework provides a promising approach for bound-

ing conditional expectations while incorporating side information. We anticipate that the sug-

gested directions for future research will contribute to the development and applicability of this

framework.
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6
Robust knapsack ordering for a

partially-informed newsvendor

6.1. Introduction
The newsvendor model is one of the cornerstones of inventory management, introduced by

Arrow et al. [6] for finding the order quantity that minimizes expected costs in view of unknown

demand and the trade-off between leftovers and lost sales. The newsvendor model finds many

applications in e.g. perishable food, fashion and high-tech industries, particularly when the

total time span of production and lead times exceeds the market lifetime of a product; see [159]

and [80].

Manufacturers and retailers need to decide how to employ the available budget or resources

when determining the optimal order quantities of different products. A budget constraint

makes the problemmultidimensional—as ordering more of one item leaves less budget for other

items—and gives rise to a challenging optimization problem. Hadley andWhitin [95] solved this

problem with Lagrangian optimization. Abdel-Malek et al. [4] and Lau and Lau [140] provided

alternative solution methods, Erlebacher [77] established closed-form solutions for special de-

mand distributions and Nahmias and Schmidt [161] developed heuristic solutions. All these

works are for the full information setting, where the demand distributions for all items are fully

specified. In this chapter we perform a distribution-free analysis of the multi-item newsvendor

This chapter is based on the research paper [35].

125
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problem with budget constraint. This analysis does not rely on full specification of the demand

distributions, but only requires for each item knowledge of the mean, the mean absolute devi-

ation (MAD) and range. Given this partial demand information, we obtain a robust ordering

policy by employing distributionally robust optimization methods.

The newsvendor model in this chapter seeks to minimize the expected costs as function of

the order quantity. The cost function depends on the order quantity, but also on the demand,

which is a random variable with some distribution. Given the demand distribution, the single-

item newsvendor model finds the optimal order quantity that minimizes the expected costs.

In traditional approaches, the demand distribution is fully specified, so that the expected costs

can be calculated, and the optimal order quantity can be determined. A robust version of this

problem assumes partial information, and only knows that the demand distribution belongs to

some ambiguity set that contains all distributions that comply with this partial information. We

adopt a minimax strategy that can be viewed as a game between the newsvendor and nature:

the newsvendor first picks the order quantity after which nature chooses a demand distribution

that maximizes the expected costs. The goal then becomes to solve this minimax problem.

The way we solve this minimax problem in this chapter fits in a much richer class of dis-

tributionally robust optimization (DRO) approaches that first calculate worst-case model per-

formance, over the set of distributions satisfying some partial information, and then optimize

against these worst-case circumstances. Such DRO techniques found applications in many do-

mains including scheduling [135, 149], portfolio optimization [67, 178], pricing [45, 75, 134],

complex networks [213], and inventory management [15, 83, 174, 191]. A classic distribution-

ally robust approach is due to Scarf [191], who considered the single-item newsvendor problem

with mean-variance demand information. Scarf was able to derive explicit expressions for the

worst-case distribution, and solved the minimax problem to obtain the optimal order quantity.

Whether a minimax problem is solvable depends on both the function to be optimized and the

choice of ambiguity set. There are many ways to characterize a set of distributions. In DRO,

one can define ambiguity by using distance-based metrics, such as total variation or Kullback-

Leibler distance. Another popular class of ambiguity uses summary statistics. The ambiguity set

studied in this chapter contains all distributions with knownmean andMAD.Themaximization

part of the minimax problem can then be viewed as a semi-infinite linear optimization problem

with three constraints, and an infinite number of variables (all distributions in the ambiguity

set). In fact, such minimax problems are related to generalized moment bound problems, for

which general theory says there exists an extremal distribution solving the maximization part

with at most a number of support points equal to the number of moment constraints [186].

For the multi-item newsvendor model in this chapter, we solve the multi-dimensional min-

imax problem with a random vector that describes the demand for all items. Compared with

tractable one-dimensional problems such as the single-item newsvendor model, applying DRO

techniques to such problems with multiple random variables might present considerable chal-

lenges in terms of computational complexity. For example, given information on the mean and

covariance of the demands, the distributionally robust multi-item newsvendor is significantly

harder to solve than its single-item counterpart [100]. However, for the multi-item newsven-
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dor model in conjunction with mean-MAD ambiguity, solving the minimax problem becomes

tractable, and in fact has an elegant algorithmic solution. The key insight will prove to be

that the worst-case demand distribution—the solution to the maximization part of the minimax

problem—is identical for any order quantity. As a result, the minimax problem reduces to a

known-distribution optimization problem. This known distribution is in fact, for each item, a

unique three-point distribution. In turn, the minimization problem with this known (discrete)

distribution can be solved using a reduction to a knapsack problem.

We next discuss some related literature on the newsvendor model. Gallego and Moon [84]

considered the multi-item newsvendor model with budget constraint when the mean and vari-

ance of demand is known. Gallego and Moon [84] extended the ideas in Scarf [191] to obtain

an optimization problem that can be solved with Lagrange multiplier techniques, similar to

the full information setting with a known distribution. In contrast, our minimax analysis with

mean-MAD-range information yields a knapsack ordering policy that generates a sorted list and

prescribes to sort items successively according to that list, with order sizes equal to the mini-

mal, mean or maximum demand. Other related works that consider the multi-item newsvendor

model under partial information include Vairaktarakis [208], who assumed only the support of

demand is known, and Ardestani-Jaafari and Delage [5] who assumed knowledge of partial mo-

ments and rephrase the robust optimization problem as a tractable linear program. Natarajan

et al. [163] assumed knowledge of mean, variance and semivariance, for which the newsvendor

model is solvable in the single-item setting using a semi-infinite linear program, but largely in-

tractable in the multi-item setting. Natarajan et al. [163] therefore considered a relaxation that

gives a semidefinite program (SDP) to find a lower bound (which is not tight). Hanasusanto et al.

[100] considered mean and covariance knowledge. They prove that the distributionally robust

problem is NP-hard but admits a semidefinite programming formulation with an exponential

number of inequalities (that grows in the number of items). Xu et al. [227] and Natarajan and

Teo [164] presented more tractable bounds for mean-covariance information. In this chapter,

we assume only marginal information is available, since covariance information and other de-

pendency structures are difficult to estimate, and fixing covariance information often leads to

difficult optimization problems with non-intuitive solutions (policies). The knapsack ordering

policy that we obtain in this chapter deals with the worst-case demand distributions among all

demand distributions with a given mean, MAD and range, not conditioning on a specific depen-

dency structure. This approach makes the knapsack ordering policy robust, but also suitable

for scarce-data settings, as the mean, MAD and range are relatively easy to estimate.

6.1.1. Contributions and outline
The main contributions of this chapter are as follows:

1. Solution of minimax problem. We solve the minimax problem for mean-MAD ambiguity

and a budget constraint. We first show that the worst-case scenarios arise when item

demands follow specific three-point distributions that comply with the partial demand

information. We minimize the associated worst-case costs to obtain a robust ordering

policy as the solution to a knapsack problem. As opposed to existing methods for the
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newsvendor model under full demand information, the knapsack problem leads to an

effective closed-form ordering policy, also for scenarios with many items. As such, the

present chapter further develops DRO theory that uses MAD information to formulate

tractable minimax problems.

2. Budget consistency. The robust ordering policy only depends on the minimal, mean and

maximal demand for each item. Hence, the worst-case distributions are independent of

all other model parameters, which makes the robust ordering policy “budget consistent.”

When the budget is increased, the orders for the original budget remain unaltered, while

only the additional budget is further divided over the items. Such budget consistency is

useful because the optimization model needs to be solved only once. That is, for the initial

budget value the decisionmaker can generate an ordered list of items as the solution to the

knapsack problem, using only standard spreadsheet software, and this solution is valid

for all budget levels. In contrast, most other exact and robust methods for the multi-item

newsvendor model do not have this feature, which means that the decision maker has to

recompute the optimal policy for each budget level.

3. Performance of ordering policy. Through a range of numerical examples we demonstrate

the performance of the knapsack ordering. We draw comparisons with full information

settings and other robust approaches that require partial demand information by assess-

ing the so-called expected value of additional information (EVAI). Overall, the perfor-

mance of the robust policy only deviates a few percent from the optimal performance

with full information availability. We also quantify the value of MAD information by

comparing the performance with the situations when only the mean and range of de-

mand is known, and show that MAD indeed provides crucial information for providing

good performance. In addition, we construct an ordering policy that attains the optimal

value of a matching minimin problem which, in conjunction with the optimal value of

the minimax problem, yields tight performance guarantees.

Section 6.2 introduces the single-item model and the multi-item model with budget, under

the traditional assumption of full information about the demand distributions. In Section 6.3 we

present our main results for the distributionally robust setting with partial information. Sec-

tion 6.4 presents a detailed numerical study that demonstrates the robust policies. We present

conclusions and several directions for future work in Section 6.5.

6.2. Classical newsvendor analysis
We introduce the newsvendor model and several well-known results in Section 6.2.1 for the

single-item setting, and in Section 6.2.2 for the multi-item setting with budget constraint.

6.2.1. Classical single-item setting
Consider an item with purchase price 𝑐 and selling pricing 𝑝. The decision maker places an
order of size 𝑞. The demand for items is assumed to be the random variable 𝐷 with distribution
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function 𝐹𝐷(⋅). Unsold items will be salvaged at the end of the period for salvage value 𝑠 per
item. The mark-up 𝑚 > 0 represents the profit per sold item and satisfies 𝑝 = 𝑐(1 + 𝑚) and the
discount factor 𝑑 > 0 captures the loss through 𝑠 = (1 − 𝑑)𝑐.
The expected costs consist of two terms: opportunity costs of lost sales and overage costs in

case of overstocking. This gives the cost function

𝐺(𝑞, 𝐷) = { (𝑝 − 𝑐)(𝐷 − 𝑞) if 𝑞 � 𝐷,(𝑐 − 𝑠)(𝑞 − 𝐷) if 𝑞 > 𝐷. (6.1)

The case 𝑞 � 𝐷 amounts to lost sales and 𝑞 > 𝐷 results in overstocking. The objective is to
order the quantity 𝑞 of items that minimizes the expected costs. Let 𝔼 denote expectation, and
define 𝜇 = 𝔼[𝐷] and 𝑥+ = max(𝑥, 0). Write the expected costs as𝐶(𝑞) ∶= 𝔼[𝐺(𝑞, 𝐷)] = (𝑐 − 𝑠)𝑞 + (𝑝 − 𝑠)𝔼(𝐷 − 𝑞)+ − (𝑐 − 𝑠)𝜇 = 𝑐 (𝑑(𝑞 − 𝜇) + (𝑚 + 𝑑)𝔼(𝐷 − 𝑞)+) .

(6.2)

To keep notation simple (and without loss of generality) set 𝑐 = 1. Then, the optimal order
quantity 𝑞∗ = argmin𝑞�0 𝐶(𝑞) ≡ argmin𝑞�0 𝑑𝑞 + (𝑚 + 𝑑)𝔼(𝐷 − 𝑞)+, (6.3)

is given by 𝑞∗ = inf {𝑞 ∶ 𝐹(𝑞) � 𝑚𝑚 + 𝑑}. (6.4)

A proof of (6.4) is provided in most standard textbooks on inventory management; see e.g.

[95, 160, 200].

Scarf [191] introduced a distribution-free analysis for the single-item newsvendor model by

assuming that the decision maker only knows the mean and variance of the demand. Define

the ambiguity set containing all distributions with the same mean and variance as

P(𝜇,𝜎) ∶= {ℙ | 𝔼ℙ(𝐷) = 𝜇, 𝔼ℙ(𝐷2) = 𝜎2 + 𝜇2}.
Scarf [191] determined an upper bound on the cost function 𝐶(𝑞) by finding the worst-case
distribution in the ambiguity set. To find the order quantity that protects against the ambiguity

inP(𝜇,𝜎), the following minimax optimization problem is solved:min𝑞 maxℙ∈P(𝜇,𝜎) 𝑑𝑞 + (𝑚 + 𝑑)𝔼ℙ(𝐷 − 𝑞)+.
Since maxℙ∈P(𝜇,𝜎) 𝔼ℙ(𝐷 − 𝑞)+ �

√𝜎2 + (𝜇 − 𝑞)2 + (𝜇 − 𝑞)2 ,
this minimax optimization problem becomes min𝑞 maxℙ 𝐶𝑆(𝑞) with

𝐶𝑆(𝑞) ∶= 𝑑𝑞 + (𝑚 + 𝑑)√𝜎2 + (𝜇 − 𝑞)2 + (𝜇 − 𝑞)2 . (6.5)
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and solution 𝑞𝑆 ∶= argmin𝑞 𝐶𝑆(𝑞) = 𝜇 + 𝜎2 (√𝑚𝑑 −√ 𝑑𝑚) . (6.6)

The quantity 𝑞𝑆 is known as Scarf’s order quantity which prescribes to order more than the
expected demand when 𝑚 > 𝑑, and less than the expected demand when 𝑑 < 𝑚.
6.2.2. Multi-item setting
Consider 𝑛 different items and order 𝑞𝑖 units for item 𝑖 for a given period where 𝑖 = 1, … , 𝑛. For
item 𝑖, the unit purchasing and selling price are 𝑐𝑖 and 𝑝𝑖 respectively. Possible leftovers will be
salvaged at the end of the period for unit salvage value 𝑠𝑖. We define the model in terms of the
mark-up 𝑚𝑖 > 0 and discount factor 𝑑𝑖 > 0. The mark-up represents the profit per sold unit and
the discount factor the loss, i.e. 𝑝𝑖 = 𝑐𝑖(1 + 𝑚𝑖) and 𝑠𝑖 = (1 − 𝑑𝑖)𝑐𝑖. The random demand for item𝑖 in one period is represented by the nonnegative random variable 𝐷𝑖, distributed according to𝐹𝑖(⋅). As in the single-item setting, we minimize the expected costs. Define the multi-item cost
function as 𝐺(𝐪, 𝐃) ∶= 𝑛∑𝑖=1 𝑐𝑖 (𝑑𝑖(𝑞𝑖 − 𝐷𝑖) + (𝑚𝑖 + 𝑑𝑖)(𝐷𝑖 − 𝑞𝑖)+) . (6.7)

We also introduce the budget constraint ∑𝑛𝑖=1 𝑐𝑖𝑞𝑖 � 𝐵 with 𝐵 the available budget. The multi-
item newsvendor model, with decision vector 𝐪 = (𝑞1, … , 𝑞𝑛), is then given by

min𝐪 𝐶(𝐪) ∶= 𝔼[𝐺(𝐪, 𝐃)] = 𝑛∑𝑖=1 𝑐𝑖 (𝑑𝑖(𝑞𝑖 − 𝜇𝑖) + (𝑚𝑖 + 𝑑𝑖)𝔼(𝐷𝑖 − 𝑞𝑖)+)
s.t.

𝑛∑𝑖=1 𝑐𝑖𝑞𝑖 � 𝐵,𝑞𝑖 � 0, 𝑖 = 1, … , 𝑛.
(6.8)

Its solution, referred to as the optimal ordering policy, will be denoted by 𝐪∗. In the single-item
setting the purchase costs had no influence on the objective function, but in the multi-item

setting the optimal order quantity is affected by 𝑐𝑖. It is well known that model (6.3) is a convex
optimization problem. In (6.8) we take the summation over 𝑛 convex functions, which preserves
convexity. Moreover, the constraints form a convex set, so that (6.8) is a convex optimization

problem [36]. Gallego and Moon [84] built on Scarf’s result to consider the multi-item setting,

which gives the problem

min𝐪 𝐶𝑆(𝐪) ∶= 𝑛∑𝑖=1 𝑐𝑖 (𝑑𝑖(𝑞𝑖 − 𝜇𝑖) + (𝑚𝑖 + 𝑑𝑖) √𝜎2𝑖 + (𝑞𝑖 − 𝜇𝑖)2 − (𝑞𝑖 − 𝜇𝑖)2 )
s.t.

𝑛∑𝑖=1 𝑐𝑖𝑞𝑖 � 𝐵, (6.9)𝑞 � 0.
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The optimal solution to problem (6.9) is referred to as 𝐪𝑆 . Applying Scarf’s bound for each item
individually results in (6.9). Similar to the full information setting with a known distribution,

this optimization problem can be solved with Lagrange multiplier techniques.

6.3. Proposed robust approach
Section 6.3.1 presents the robust ordering policy for the single-item setting. This result serves as

building block for the robust analysis of the multi-item setting in Section 6.3.2, which describes

the optimal policy as the solution of an LP. In Section 6.3.3 we show that this LP can be viewed

as a knapsack problem. All these results are based on a tight upper bound for the cost function.

In Section 6.3.4 we derive a matching tight lower bound for the cost function.

6.3.1. Distribution-free ordering policy for single item
Let ℙ denote a probability distribution, and write 𝔼ℙ for 𝔼 to emphasize that the expectation
is taken with respect to the distribution ℙ of 𝐷. The MAD for random demand 𝐷 is defined as𝛿 ∶= 𝔼ℙ|𝐷−𝜇|, where 𝜇 is the expected value of𝐷. Similar to the variance, theMAD is ameasure
of dispersion or variability. We mention several properties of MAD in Appendix A. For the

random variable 𝐷 with mean 𝜇, MAD 𝛿, and (bounded) support [𝑎, 𝑏], where 0 � 𝑎 � 𝑏 < ∞,
the mean-MAD ambiguity set is defined as

P(𝜇,𝛿) ∶= {ℙ | 𝔼ℙ[𝐷] = 𝜇, 𝔼ℙ|𝐷 − 𝜇| = 𝛿, supp(𝐷) ⊆ [𝑎, 𝑏]} .
We thus assume that the “true” distribution ℙ̃ of the random demand 𝐷 is contained in this
ambiguity set, that is, ℙ̃ ∈P(𝜇,𝛿).
To obtain the robust order quantity, we solvemin𝑞 maxℙ∈P(𝜇,𝛿) 𝑑𝑞 + (𝑚 + 𝑑)𝔼ℙ(𝐷 − 𝑞)+,

for which we first considermaxℙ∈P(𝜇,𝛿) 𝔼ℙ(𝐷−𝑞)+. To characterize this tight bound, we apply a
general upper bound for convex functions of a random variable by Ben-Tal and Hochman [19].

The proof of the following result has been provided in Chapter 1.

Lemma 6.1. The extremal distribution that solves maxℙ∈P(𝜇,𝛿) 𝔼ℙ(𝐷 − 𝑞)+ is a three-point distribution

on the values 𝑎, 𝜇 and 𝑏 that does not depend on 𝑞.
From the proof of Lemma 6.1, it follows that the worst-case probability distribution of 𝐷, the

extremal distribution that solves maxℙ∈P(𝜇,𝛿) 𝔼ℙ(𝐷 − 𝑞)+, is a three-point distribution defined as
ℙ(𝐷 = 𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝛿2(𝜇 − 𝑎) , for 𝑥 = 𝑎,1 − 𝛿2(𝜇 − 𝑎) − 𝛿2(𝑏 − 𝜇) , for 𝑥 = 𝜇,𝛿2(𝑏 − 𝜇) , for 𝑥 = 𝑏. (6.10)
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Applying this worst-case distribution, the robust order quantity follows from solving 𝑞𝑈 =argmin𝑞 𝐶𝑈 (𝑞) with𝐶𝑈 (𝑞) ∶= 𝑑(𝑞 − 𝜇) + 𝛿(𝑚 + 𝑑)2(𝜇 − 𝑎) (𝑎 − 𝑞)+ + (𝑚 + 𝑑)(1 − 𝛿2(𝜇 − 𝑎) − 𝛿2(𝑏 − 𝜇)) (𝜇 − 𝑞)++ 𝛿(𝑚 + 𝑑)2(𝑏 − 𝜇) (𝑏 − 𝑞)+. (6.11)

The upper bound (6.11) coincides with the “true” cost function at the points 𝑎, 𝜇 and 𝑏. Clearly,
for 𝑞 = 𝑎 or 𝑏, it holds that 𝐶𝑈 (𝑞) = 𝐶(𝑞). When 𝑞 = 𝜇, the cost function equals𝐶(𝜇) = 𝑑(𝜇 − 𝜇) + (𝑚 + 𝑑)𝔼(𝐷 − 𝜇)+ = 𝛿(𝑚 + 𝑑)2 = 𝐶𝑈 (𝜇),
since 𝔼(𝐷 − 𝜇)+ = 𝔼|𝐷 − 𝜇|/2. By analyzing (6.11) one can obtain an explicit ordering rule for𝑞𝑈 . The objective function of (6.11) is composed of piecewise linear functions. By exploiting
this structure, we can construct an explicit ordering policy. For scalars 𝛼1, … , 𝛼𝑚, 𝜈1, … , 𝜈𝑚 ∈ ℝ,𝑓 (𝑥) = max𝑖=1,…,𝑚{𝛼𝑖𝑥 + 𝜈𝑖} denotes a convex, piecewise linear function. The function 𝐶𝑈 (𝑞)
in (6.11) admits a representation of the form𝐶𝑈 (𝑞) = 𝑑(𝑞 − 𝜇) + (𝑚 + 𝑑)𝔼(𝐷 − 𝑞) = 𝑚(𝜇 − 𝑞) =∶ 𝑓0(𝑞),
for 𝑞 ∈ [0, 𝑎) and𝐶𝑈 (𝑞) = 𝑑(𝑞 − 𝜇) + (𝑚 + 𝑑)(1 − 𝛿2(𝜇 − 𝑎) − 𝛿2(𝑏 − 𝜇)) (𝜇 − 𝑞) + 𝛿(𝑚 + 𝑑)2(𝑏 − 𝜇) (𝑏 − 𝑞)= 𝑞(𝛿(𝑚 + 𝑑)2(𝜇 − 𝑎) − 𝑚) + 𝜈1 =∶ 𝑓1(𝑞),
for 𝑞 ∈ [𝑎, 𝜇), where 𝜈1 is some constant value. For 𝑞 ∈ [𝑎, 𝜇), the mean-MAD objective function
is defined by the linear function 𝑓1(𝑞). For the interval 𝑞 ∈ [𝜇, 𝑏], we obtain𝐶𝑈 (𝑞) = 𝑑(𝑞 − 𝜇) + 𝛿(𝑚 + 𝑑)2(𝑏 − 𝜇) (𝑏 − 𝑞) = 𝑞 (𝑑 − 𝛿(𝑚 + 𝑑)2(𝑏 − 𝜇) ) + 𝜈2 =∶ 𝑓2(𝑞)
for some constant 𝜈2. The cost function is thus the pointwise maximum of the three linear
functions 𝑓0(𝑞), 𝑓1(𝑞) and 𝑓2(𝑞):𝐶𝑈 (𝑞) = max {𝑓0(𝑞), 𝑓1(𝑞), 𝑓2(𝑞)} .
Since 𝐶𝑈 (𝑞) = max𝑗=0,1,2{𝛼𝑗𝑞 + 𝜈𝑗 } is a convex function, it holds that 𝛼0 � 𝛼1 � 𝛼2. Since we
assume that𝑚 > 0, we know that 𝛼0 < 0. Therefore, from the derivatives 𝛼1, 𝛼2 of 𝐶𝑈 (𝑞), we can
derive an explicit order quantity by examining for which linear piece the slope turns positive.

This allows us to state Theorem 6.2.

Theorem 6.2 (Mean-MAD order quantity). The robust order quantity 𝑞𝑈 ∈ argmin𝑞 𝐶𝑈 (𝑞) is
given by
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(a) If 𝑚 < 𝛿𝑑2(𝜇 − 𝑎) − 𝛿 , then 𝑞𝑈 = 𝑎.
(b) If

𝛿𝑑2(𝜇 − 𝑎) − 𝛿 < 𝑚 < 𝑑(2(𝑏 − 𝜇) − 𝛿)𝛿 , then 𝑞𝑈 = 𝜇.
(c) If

𝑑(2(𝑏 − 𝜇) − 𝛿)𝛿 < 𝑚, then 𝑞𝑈 = 𝑏.
(d) If 𝑚 = 𝛿𝑑2(𝜇 − 𝑎) − 𝛿 and 𝑚 = 𝑑(2(𝑏 − 𝜇) − 𝛿)𝛿 , then 𝑞𝑈 ∈ [𝑎, 𝜇] and 𝑞𝑈 ∈ [𝜇, 𝑏], respectively.
According to Theorem 6.2, the robust order quantity 𝑞𝑈 for mean-MAD-range information

consists of three predictable values (minimal, mean, maximum demand) that do not depend on

the mark-up𝑚 and discount factor 𝑑, whereas the conditions that dictate howmuch to order do
depend on them (in addition to the demand mean, MAD and range). Furthermore, based on the

preceding observations, we can derive valuable performance guarantees. The costs associated

with the optimal order quantity are always bounded from above by min{𝐶𝑈 (𝑎), 𝐶𝑈 (𝜇), 𝐶𝑈 (𝑏)},
but more importantly, the performance of the robust order quantity 𝑞𝑈 (i.e., the mean value 𝜇
or either of the support values 𝑎, 𝑏) is actually equivalent to the true costs. This property sets it
apart from Scarf’s robust order quantity, which lacks such a guarantee.

6.3.2. Multiple items and budget constraint
A distribution-free analysis of the multi-item model requires a multivariate ambiguity set. As

in the single-item case, the partial information is the mean 𝜇𝑖, MAD 𝛿𝑖 and support supp(𝐷𝑖) =[𝑎𝑖, 𝑏𝑖] for each random variable 𝐷𝑖, 𝑖 = 1, … , 𝑛. The mean-MAD ambiguity set is defined as
P(𝜇,𝛿) ∶= {ℙ | 𝔼ℙ (𝐷𝑖) = 𝜇𝑖, 𝔼ℙ |𝐷𝑖 − 𝜇𝑖| = 𝛿𝑖, supp (𝐷𝑖) ⊆ [𝑎𝑖, 𝑏𝑖] , ∀𝑖} . (6.12)

We henceforth assume that the distribution of the vector of random variables 𝐃 = (𝐷1, … , 𝐷𝑛)
belongs to this ambiguity set, i.e., ℙ ∈ P(𝜇,𝛿). Since the objective function in (6.8) is separable,
one can apply the single-item bound to each term 𝔼 (𝐷𝑖 − 𝑞𝑖)+ in the summation individually.
The following result, for the multi-item problem, is then a direct consequence of Lemma 6.1.

Lemma 6.3. The extremal distribution that solves maxℙ∈P(𝜇,𝛿) 𝔼ℙ[𝐺(𝐪, 𝐃)] consists for each𝐷𝑖 of a three-
point distribution with values 𝜉(𝑖)1 = 𝑎𝑖, 𝜉(𝑖)2 = 𝜇𝑖, 𝜉(𝑖)3 = 𝑏𝑖 and probabilities𝑝(𝑖)1 = 𝛿𝑖2(𝜇𝑖 − 𝑎𝑖) , 𝑝(𝑖)2 = 1 − 𝛿𝑖2(𝜇𝑖 − 𝑎𝑖) − 𝛿𝑖2(𝑏𝑖 − 𝜇𝑖) , 𝑝(𝑖)3 = 𝛿𝑖2(𝑏𝑖 − 𝜇𝑖) . (6.13)

For the multi-item newsvendor model based on mean-MAD ambiguity, we use Lemma 6.3 to

solve the maximization part of

min𝐪∶∑𝑖 𝑐𝑖𝑞𝑖�𝐵,𝑞𝑖�0 maxℙ∈P(𝜇,𝛿) 𝔼ℙ[ 𝑛∑𝑖=1 𝑐𝑖𝑑𝑖(𝑞𝑖 − 𝜇𝑖) + 𝑐𝑖(𝑚𝑖 + 𝑑𝑖) (𝐷𝑖 − 𝑞𝑖)+ ], (6.14)
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and obtainmin𝐪 𝑛∑𝑖=1 𝑐𝑖 (𝑑𝑖(𝑞𝑖 − 𝜇𝑖) + (𝑚𝑖 + 𝑑𝑖) (𝑝(𝑖)1 (𝑎𝑖 − 𝑞𝑖)+ + 𝑝(𝑖)2 (𝜇𝑖 − 𝑞𝑖)+ + 𝑝(𝑖)3 (𝑏𝑖 − 𝑞𝑖)+))
s.t.

𝑛∑𝑖=1 𝑐𝑖𝑞𝑖 � 𝐵,𝑞𝑖 � 0, 𝑖 = 1, … , 𝑛.
(6.15)

The objective function of (6.15) has a piecewise linear structure. Moreover, because of this result

and since the constraints are linear, (6.15) can be cast as an LP. In particular, as explained below,

the robust ordering policy 𝐪𝑈 can be found by solvingmin𝐪 𝑛∑𝑖=1 max𝑗=0,1,2{𝛼𝑖,𝑗 𝑞𝑖 + 𝜈𝑖,𝑗 }
s.t.

𝑛∑𝑖=1 𝑐𝑖𝑞𝑖 � 𝐵,𝑞𝑖 � 0, 𝑖 = 1, … , 𝑛,
(6.16)

where 𝛼𝑖,0 = −𝑐𝑖𝑚𝑖, 𝜈𝑖,0 = 𝑐𝑖𝑚𝑖𝜇𝑖,𝛼𝑖,1 = 𝑐𝑖 (𝛿𝑖(𝑚𝑖 + 𝑑𝑖)2(𝜇𝑖 − 𝑎𝑖) − 𝑚𝑖) , 𝜈𝑖,1 = 𝑐𝑖(𝑚𝑖 + 𝑑𝑖) (𝜇𝑖 − 𝛿𝑖𝑎𝑖2(𝜇𝑖 − 𝑎𝑖)) − 𝑐𝑖𝑑𝑖𝜇𝑖,𝛼𝑖,2 = 𝑐𝑖 (𝑑𝑖 − 𝛿𝑖(𝑚𝑖 + 𝑑𝑖)2(𝑏𝑖 − 𝜇𝑖) ) , 𝜈𝑖,2 = 𝑐𝑖𝛿𝑖(𝑚𝑖 + 𝑑𝑖)𝑏𝑖2(𝑏𝑖 − 𝜇𝑖) − 𝑐𝑖𝑑𝑖𝜇𝑖, for 𝑖 = 1, … , 𝑛.
Let 𝑓𝑖,𝑗 (𝑥) = 𝛼𝑖,𝑗 𝑥 +𝜈𝑖,𝑗 for 𝑖 = 1, … , 𝑛 and 𝑗 = 0, 1, 2. From the single-item case, we know that the
objective, for each item 𝑖, can be written asmax𝑗=0,1,2{𝑓𝑖,𝑗 (𝑞𝑖)}with 𝛼𝑖,0 � 𝛼𝑖,1 � 𝛼𝑖,2, and thus the
objective functions of (6.15) and (6.16) are equal, which makes the twomodels equivalent. Since

we know from linear programming theory that convex, piecewise linear objective functions can

be written as linear constraints, problem (6.16) admits an LP representation [36].

6.3.3. Knapsack algorithm
It turns out that problem (6.16) is intimately related to the continuous knapsack problem, thus

making available efficient sorting-based algorithms to solve (6.16). We next describe an efficient

algorithm that determines the robust ordering policy.

Define the linear funtion 𝑓𝑖,𝑗 for each item 𝑖, and let 𝛼𝑖,𝑗 represent its derivative with respect
to 𝑞𝑖, for items 𝑖 = 1, … , 𝑛 and linear pieces 𝑗 = 0, 1, 2. That is,d𝑓𝑖,𝑗 (𝑞𝑖)d𝑞𝑖 = 𝛼𝑖,𝑗 .
For each item 𝑖, 𝑓𝑖,0, 𝑓𝑖,1 and 𝑓𝑖,2 represent the marginal effect on the value of (6.16) when we
increase 𝑞𝑖 to 𝑎𝑖, 𝜇𝑖 and 𝑏𝑖 respectively. The parameter 𝛼𝑖,𝑗 represents the slope of these linear
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functions and an order quantity is increased only when 𝛼𝑖,𝑗 < 0, because otherwise it will not
reduce the expected costs. We consecutively allocate budget to the item that causes the largest

relative decrease in expected costs; that is, item 𝑘 with the smallest negative derivative 𝛼𝑘,𝑖
relative to its cost 𝑐𝑘 . Define the set of all items as 𝑁 = {1, … , 𝑛}. Since only order quantities
that decrease the expected costs are considered, define the ordered set:

G ∶= {(𝑖, 𝑗) | 𝛼𝑖,𝑗 < 0, 𝑖 ∈ 𝑁 , 𝑗 ∈ {0, 1, 2}}, (6.17)

where the ordering is determined according to the value of 𝛼𝑖,𝑗/𝑐𝑖. For 𝑚 = |G|, this ordering is
represented by the sequence (𝑖1, 𝑗1), … , (𝑖𝑚, 𝑗𝑚) for which it holds that 𝛼𝑖1,𝑗1/𝑐𝑖1 � ⋯ � 𝛼𝑖𝑚,𝑗𝑚/𝑐𝑖𝑚 .
Here G contains tuples (𝑖, 𝑗) for which 𝑖 represents an item in the newsvendor model and 𝑗 a
linear piece of the piecewise function. As these functions are convex, the linear pieces appear

for each item 𝑖 in increasing order in the set G. We can now state the knapsack algorithm for

the distribution-free multi-item newsvendor model. This algorithm yields an optimal solution

to (6.16), as asserted in the following theorem.

Theorem 6.4 (Knapsack ordering policy). For given budget level 𝐵 � 0, the robust order-
ing policy 𝐪𝑈 that solves the multi-item newsvendor model (6.16) is determined by the following

procedure:

(i) Initialize by setting 𝐪 = (0, … , 0), and construct G. Continue to (ii).

(ii) Select the first element (𝑖, 𝑗) ∈ G. If the set G is empty, the optimal solution is 𝐪𝑈 = 𝐪.
Otherwise, continue to (iii).

(iii) If 𝑗 = 0, set 𝑞𝑖 = 𝑎𝑖. If 𝑗 = 1, set 𝑞𝑖 = 𝜇𝑖. If 𝑗 = 2, set 𝑞𝑖 = 𝑏𝑖. Continue to (iv).
(iv) Determine whether the budget constraint ∑𝑛𝑖=1 𝑐𝑖𝑞𝑖 � 𝐵 is violated. If so, set 𝑞𝑖 such that𝑐𝑖𝑞𝑖 = 𝐵−∑𝑘∈𝑁 |𝑘≠𝑖 𝑐𝑘𝑞𝑘 , and the optimal solution is 𝐪𝑈 = 𝐪. Otherwise, remove element (𝑖, 𝑗)

from G and return to step (ii).

Proof. To prove that this algorithm produces an optimal solution, we construct a continuous

knapsack problem that solves (6.16). In the following, (𝑖𝑘, 𝑗𝑘) corresponds to the 𝑘th entry of
the ordered sequence of items in G, with |G| = 𝑚. Define the following auxiliary model:

min𝐱 𝑚∑𝑘=1 𝑝𝑘𝑥𝑘
s.t.

𝑚∑𝑘=1 𝑐𝑘𝑥𝑘 � 𝐵,0 � 𝑥𝑘 � 𝑢𝑘 ∀𝑘 = 1,… ,𝑚,
(6.18)

where 𝑢𝑘 = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎𝑖𝑘 , for 𝑗𝑘 = 0𝜇𝑖𝑘 − 𝑎𝑖𝑘 , for 𝑗𝑘 = 1𝑏𝑖𝑘 − 𝜇𝑖𝑘 , for 𝑗𝑘 = 2
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and 𝑝𝑘 = 𝛼𝑖𝑘,𝑗𝑘 and 𝑐𝑘 = 𝑐𝑖𝑘 . From the order of the sequence, it follows that 𝑝1/𝑐1 � … � 𝑝𝑚/𝑐𝑚.
Assume that (𝑥∗1 , … , 𝑥∗𝑚) is an optimal solution to optimization problem (6.18). For 𝑖 ∈ 𝑁 , let𝑞𝑈𝑖 = ∑𝑘=1,…,𝑚|𝑖=𝑖𝑘 𝑥∗𝑘 . Since 𝛼𝑖,0 � 𝛼𝑖,1 � 𝛼𝑖,2, the pieces 𝑗𝑘 appear in G in increasing order for

each item 𝑖. Thus, in an optimal solution, 𝑢𝑖𝑘,𝑗𝑘 will only be attained if its predecessor 𝑢𝑖𝑘,𝑗𝑙 is also
attained. By construction, 𝐪𝑈 is feasible for (6.16). Moreover, the objective values of problems
(6.16) and (6.18) only differ by a constant term, so both problems have the same optimal solution.

For the continuous knapsack problem, a greedy allocation produces an optimal solution (see,

e.g., [129]). Hence, 𝐪𝑈 = (𝑞𝑈1 , … , 𝑞𝑈𝑛 ) is optimal for (6.16).
Theorem 6.4 shows that there exists a ranking for the selection of items. Take an initial budget𝐵 = 0. If we increase the budget 𝐵 by some small value, we first increase item 𝑖 to 𝑎𝑖 for the

item that has the highest mark-up 𝑚𝑖. This makes sense intuitively because the product with
the highest mark-up is most profitable and, since 𝑞𝑖 < 𝑎𝑖, we have no risk of overstocking. We
successively select the items with the greatest marginal benefit 𝛼𝑖,𝑗/𝑐𝑖, and increase the order
quantity consecutively to either 𝑎𝑖, 𝜇𝑖 or 𝑏𝑖. This procedure continues until we have spent the
entire budget, or reached the uncapacitated optimum. Items that are ordered in the beginning of

this procedure have the largest impact on the decrease in costs for the multi-item newsvendor

model.

As the main complexity of the knapsack algorithm inTheorem 6.4 stems from sorting the set

G, the greedy approach is of computational complexity 𝑂(𝑛 log 𝑛). Moreover, the solution can
be found in 𝑂(𝑛) time by first identifying the critical element (𝑖𝑠, 𝑗𝑠) that will violate the budget
constraint, as proposed in [11] for the continuous knapsack problem. One then compares each𝛼𝑖,𝑗/𝑐𝑖 with the ratio of the critical element to determine the optimal allocation of budget to the
items. The optimal solution can also be found through the LP (6.16), which we solve with the

simplexmethod. We remark that a single iteration of the simplexmethod takes𝑂(𝑛2) arithmetic
operations [116], which exceeds the time requirement of the knapsack algorithm.

6.3.4. A matching lower bound
The robust analysis so far was based on finding a tight upper bound on the cost function when

we know the mean, MAD and range of the demand distributions. When additional information

is available, we can also construct a matching lower bound. We include the skewness informa-

tion 𝛽𝑖 = ℙ(𝐷𝑖 � 𝜇𝑖) in the mean-MAD ambiguity set to obtain the tight lower bound. For the
random variables 𝐃 = (𝐷1, … , 𝐷𝑛), define the ambiguity set as

P(𝜇,𝛿,𝛽) ∶= {ℙ | ℙ ∈P(𝜇,𝛿), ℙ(𝐷𝑖 � 𝜇𝑖) = 𝛽𝑖, 𝑖 = 1, … , 𝑛}
withP(𝜇,𝛿,𝛽) ⊆ P(𝜇,𝛿). The proof of the following result is identical to that of Lemma 6.3, but
now uses the tight lower bound for a convex function of random variables discussed in Ben-Tal

and Hochman [19]. The proof for the univariate case has been provided in Chapter 1. This is

sufficient since the univariate result can be applied to each term of the summation in 𝐺(𝐪, 𝐃)
separately, as with Lemma 6.3.
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Lemma 6.5. The extremal distribution that solves minℙ∈P(𝜇,𝛿,𝛽) 𝔼ℙ[𝐺(𝐪, 𝐃)] consists for each𝐷𝑖 of a two-
point distribution with values 𝜇𝑖 + 𝛿𝑖2𝛽𝑖 , 𝜇𝑖 − 𝛿𝑖2(1−𝛽𝑖) and probabilities 𝛽𝑖, 1 − 𝛽𝑖, respectively.
Using this result, we obtain

min𝐪 𝑛∑𝑖=1 𝑐𝑖 (𝑑𝑖(𝑞𝑖 − 𝜇𝑖) + (𝑚𝑖 + 𝑑𝑖) (𝛽𝑖(𝜇𝑖 + 𝛿𝑖2𝛽𝑖 − 𝑞𝑖)+ + (1 − 𝛽𝑖)(𝜇𝑖 − 𝛿𝑖2(1 − 𝛽𝑖) − 𝑞𝑖)+))
s.t

𝑛∑𝑖=1 𝑐𝑖𝑞𝑖 � 𝐵,𝑞𝑖 � 0, for 𝑖 = 1, … , 𝑛,
(6.19)

as a model to provide a lower bound for the multi-item newsvendor. Let 𝐶𝐿(𝐪) denote the
objective function of (6.19). Since 𝐶𝐿(𝐪) also consists of piecewise linear functions, there exists
an LP representation and knapsack algorithm for (6.19) analogous to the results for problem

(6.15).

We can now solve (6.16) and (6.19) to obtain tight performance intervals for the multi-item

newsvendor model, using recent DRO results (see Appendix A and [179]). For all feasible or-

dering policies 𝐪 and ℙ ∈P(𝜇,𝛿,𝛽), it holds that𝐶(𝐪) ∈ [𝐶𝐿(𝐪), 𝐶𝑈 (𝐪)] .
In addition, for the optimal solutions to the newsvendor problem and its distributionally robust

counterparts, 𝐶(𝐪∗) ∈ [𝐶𝐿(𝐪𝐿), 𝐶𝑈 (𝐪𝑈 )] .
One can find the tightest upper and lower bounds, based on mean-MAD ambiguity, for the

multi-item newsvendor model by calculating the optimal solutions to models (6.15) and (6.19),

respectively.

6.4. Numerical examples of robust ordering
We will now illustrate and visualize the robust ordering policies. To demonstrate the “budget-

consistency” property, Section 6.4.1 applies the knapsack algorithm for a setting where the

budget is increased. In Section 6.4.2 we contrast the performance of the knapsack policy for

partial demand information against that of the optimal solution for the full information setting.

6.4.1. Numerical illustration of the “budget-consistency” property
We illustrate the knapsack algorithm and the process of allocating budget to different order

quantities for items in the newsvendor model. Consider 𝑛 = 5 identically distributed items
with support 𝑎 = 10, 𝑏 = 50 and mean 𝜇 = 30. From Figure 6.1, we can infer that item 1 is the
most profitable. Low budget levels are allocated to this item such that we obtain 𝑞1 = 𝜇. Item
number 3 is the last item to which the budget is allocated. Hence, it is the least profitable item.

Table 6.1 displays the ordered set G.
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Table 6.1: Table containing 𝛼𝑖,𝑗/𝑐𝑖 and corresponding information of the ordered set G

G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15𝛼𝑖,𝑗/𝑐𝑖 -0.92 -0.75 -0.72 -0.49 -0.3 -0.15 -0.1 -0.08 -0.03 -0.01 0.14 0.42 0.45 0.7 0.7

Function piece 0 1 0 1 0 0 1 2 1 0 1 2 2 2 2

Item 1 1 2 2 4 5 4 1 5 3 3 5 2 4 3

From this table, we can indeed infer that item 1 has the smallest value for 𝛼𝑖,0/𝑐𝑖 and therefore
is increased first.

Figure 6.1: Development of the order quantities when the budget increases according to the knapsack

algorithm

Figure 6.1 nicely illustrates that when the budget is increased, the orders for the original

budget remain unaltered, while only the additional budget is further divided over the items. To

further illustrate the “budget-consistency” property, consider themulti-item newsvendormodel

for which 𝑛 = 2, 𝑚2 = 2, the remaining cost parameters equal 1, and demand is identically dis-
tributed according to a symmetric triangle distribution supported on [10, 50]. In Figure 6.2 we
plot the expected costs and order quantities for various budget levels. Figure 6.2a contains the

allocation between both order quantities. For low budget values, one first increases the order

quantity of item one, the most profitable item. Figure 6.2b shows the upper bound (6.15) and

lower bound (6.19) that together lead to a tight performance interval for the expected costs. For

the sake of comparison, we also show results for the partial demand information setting consid-

ered in Gallego and Moon [84], assuming that the mean and variance of demands are known.

The results of Gallego and Moon [84] depend (non-trivially) on all model parameters, including

the budget 𝐵. This lack of budget-consistency forces the decision maker to solve an optimiza-
tion problem, i.e. (6.9), for each budget level separately, which explains the smooth curve in

Figure 6.2a. Solving (6.9) yields the mean-variance alternative for the knapsack algorithm. In

contrast, our knapsack algorithm generates a sorted ordering list that does not depend on 𝐵,
and prescribes sorting items successively according to that list, with order sizes equal to the



623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen
Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023 PDF page: 145PDF page: 145PDF page: 145PDF page: 145

Chapter 6. Robust knapsack ordering for a partially-informed newsvendor 139

minimal, mean or maximum demand.

(a) Ordering policy (b) Newsvendor costs

Figure 6.2: Mean-variance and mean-MAD bounds and ordering policies for the newsvendor model.

We emphasize that these results are not meant to numerically compare the mean-MAD and

mean-variance policies, because the displayed differencesmerely express different ways of deal-

ing with ambiguity. Indeed, it is hard to compare both policies as the respective ambiguity sets

can contain vastly different distributions. For instance, a finite variance excludes distributions

with an infinite second moment, while finite MAD does not. For our purposes, MAD and vari-

ance are equally adequate descriptors of dispersion, and both are easily calibrated on data using

basic statistical estimators. The crucial difference in theDRO context of this chapter is thatMAD

leads to a simple, budget-consistent ordering policy.

6.4.2. Expected value of additional information
We introduce as performance measure the expected value of additional information (EVAI),

defined as

EVAI(𝐪𝑈𝐵 ) = 𝐶(𝐪𝑈𝐵 ) − 𝐶(𝐪∗𝐵)𝐶(𝐪∗𝐵) ,
where 𝐪𝑈𝐵 is the robust ordering policy and 𝐪∗𝐵 is the optimal ordering policy when the joint
demand distribution is known. We let 𝐵 run from 0 to ∑𝑛𝑖=1 𝑞∗𝑖 =∶ 𝐵opt, and consider nine
different demand distributions, listed in Table 6.2.

Table 6.2: Nine distributions used for multi-item performance analysis

Case Case Case

1 Uniform[10, 50] 4 Beta(1, 3) on [0, 50] 7 Triangular(10, 50, 18)
2 Uniform[10, 100] 5 Beta(2, 2) on [0, 50] 8 Triangular(10, 50, 30)
3 Uniform[10, 200] 6 Beta(3, 1) on [0, 50] 9 Triangular(10, 50, 42)

We consider 𝑛 = 25 items. For each item 𝑖, let 𝑐𝑖 = 𝑑𝑖 = 1 and assume identically distributed
demand. For example, in Case 2 the demand 𝐷𝑖 for each item 𝑖 follows the uniform distribu-
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tion with parameters 𝑎𝑖 = 10 and 𝑏𝑖 = 100. Table 6.3 provides an overview for the mark-up,
representing low, average and high margins.

Table 6.3: Mark-up values for all 25 items in the newsvendor model

Mark-up 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9 𝑚10 𝑚11 𝑚12 𝑚13
Low margin 0.1 0.14 0.18 0.21 0.25 0.29 0.33 0.36 0.4 0.44 0.48 0.51 0.55

Average margin 1 1.13 1.25 1.38 1.5 1.63 1.75 1.88 2 2.13 2.25 2.38 2.5

High margin 4 4.21 4.42 4.63 4.83 5.04 5.25 5.46 5.67 5.88 6.08 6.29 6.5

Mark-up 𝑚14 𝑚15 𝑚16 𝑚17 𝑚18 𝑚19 𝑚20 𝑚21 𝑚22 𝑚23 𝑚24 𝑚25
Low margin 0.59 0.63 0.66 0.7 0.74 0.78 0.81 0.85 0.89 0.93 0.96 1

Average margin 2.63 2.75 2.88 3 3.13 3.25 3.38 3.5 3.63 3.75 3.88 4

High margin 6.71 6.92 7.12 7.33 7.54 7.75 7.96 8.17 8.37 8.58 8.79 9

For the low margin regime, Figure 6.3 shows results for each of the nine cases, for both the

robust ordering policy with mean-MAD-range information, and for the policy that uses the

additional information 𝛽𝑖 = ℙ(𝐷𝑖 � 𝜇𝑖). For the former, the worst performance over all nine
cases has a maximum deviation of approximately 23% compared to the optimal order quantity𝑞∗𝐵. Overall, the performance of the robust policy only deviates a few percent from the optimal
performance with full information availability. For the uniformly distributed cases (Cases 1-3),

the performance decreases when the range increases. For beta distributed demand (Cases 4-

6), right-tailed distributions perform worse than left-tailed distributions. This effect is also

observed for the triangular distributions (Cases 7-9). The policy with additional information𝛽𝑖 = ℙ(𝐷𝑖 � 𝜇𝑖) performs somewhat better in most cases.
Figure 6.4 depicts the results for the average profitability scenario. A quick glance reveals

that these plots exhibit a different impression than the low profitability scenario. The perfor-

mance of the mean-MAD policy stays below some threshold for most budget levels, but as the

budget exceeds two-thirds of the maximum budget 𝐵opt, the performance starts to decrease.
By contrast, the mean-MAD-𝛽 EVAI actually starts decreasing when approaching the maximal
budget.

Figure 6.5 shows similar results for high margins. The EVAI for the robust policy remains

mostly below 10% for lower budget levels, but starts increasing rapidly when the budget ap-

proaches 𝐵opt (i.e., when approaching the unconstrained model). When the budget is less re-
strictive, additional distributional information provides substantial value. In particular, since

the policy uses skewness information 𝛽𝑖, it performs better (in expectation) for higher budget
levels than the robust ordering policy.
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Figure 6.3: The results for the low margin setting, where the x-axis corresponds to 𝐵 and the y-axis to
the EVAI
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Figure 6.4: The results for the average margin setting, where the x-axis corresponds to 𝐵 and the y-axis
to the EVAI

Figure 6.5: The results for the high margin setting, where the x-axis corresponds to 𝐵 and the y-axis to
the EVAI
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We next quantify the value of MAD information by comparing the performance with the

situations when only the mean and range of demand is known. For the low margin setting,

Figure 6.6 shows the EVAI for the ordering policy with only mean-range information. Like the

mean-MAD policy, this policy follows from a discrete distribution, in this case the extremal dis-

tribution on {𝑎, 𝑏} with probabilities 𝑏−𝜇𝑏−𝑎 and 𝜇−𝑎𝑏−𝑎 that attains the Edmundson-Madansky bound
(see [19]). That is, instead of the worst-case three-point distribution, we take the expectation

in (6.8) over this two-point distribution and find the robust mean-range ordering policy using

the resulting LP. The plots clearly demonstrate that knowledge on dispersion in terms of MAD

improves performance considerably.

Figure 6.6:The results for the low margin setting, where E-M refers to the model with only mean infor-

mation
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6.5. Conclusions and outlook
This chapter establishes new ordering policies for the newsvendor with partial demand infor-

mation (mean, MAD and range) with a budget constraint. The ordering policies follow from a

minimax approach, where we search for the order quantities with minimal costs for the maxi-

mal (worst-case) cost function restricted to demand distributions that comply with the partial

information.

The minimax analysis for the multi-item setting gives rise to a knapsack problem, and the

solution of this knapsack problem in fact is the ordering policy. This policy prescribes to sort

items based on their marginal effect on the total costs, reminiscent of the greedy algorithm

that solves the continuous knapsack problem. The ordering policy only orders the minimum,

mean or maximum demand for each item. Hence, the decision maker can rank the items based

on their marginal effects, and then start ordering items according to this list until the budget

is spent. The fact that the ranking list is easy to generate, and that the “order of ordering”

does not depend on the budget, makes the policy transparent and easy to implement. Existing

approaches for full and partial (such as mean-variance) knowledge of the demand distribution

lack this property of “budget-consistency.”

The minimax approach provides robustness, with an ordering policy that protects against

all distributions that comply with the partial information. This approach avoids the need to

estimate the demand distribution, which can be a daunting process in practice and is prone to

errors. However, theminimax approach comes at the risk of being overly conservative. Through

extensive numerical experiments we compared the robust policies for partial demand settings

with the policies for full demand settings, and observed that the proposed policies performwell.

At the heart of our analysis lies the idea to set up the robust minimax analysis with MAD in-

formation. With MAD as dispersion measure we obtained a tractable optimization model, with

a solution in terms of a robust ordering policy that satisfies the budget-consistency property.

Using MAD to formulate solvable minimax problems can also be applied to other inventory

models. We demonstrate this idea in [35] for three extended settings: the newsvendor with

multiple contraints, the newsvendor with unreliable supply, and the risk-averse newsvendor.

In all three cases, the minimax analysis leads to a tractable mathematical program, either a

knapsack problem or a linear program.
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7
Distributionally robust appointment

scheduling that can deal with independent

service times

7.1. Introduction
Unpredictability of arrival times and service times can lead to long waiting times and idle-

ness, signals of poor quality of service and inefficient capacity usage. Ideally, a service system

combines high quality and high efficiency. One way to achieve this dual goal is by having

appointments scheduled in advance, so that customer waiting times are shortened and server

utilization is increased. Appointment scheduling has long been recognized as a way to bet-

ter regulate service processes. Spurred by increased availability of online reservation systems

and teleservices, appointment scheduling rapidly gained further ground and became a driving

factor in regulating modern economies.

Finding the best schedule of planned appointments is known in the queueing literature as

the Appointment Scheduling Problem (ASP). The basic version of this problem involves a single

server that serves a total of 𝑛 customers over a period of length 𝑇 . The service times are inde-
pendent and identically distributed (i.i.d.) random variables and the objective function consists

of the weighted sum of the expected waiting times and the expected idle times. The ASP then

This chapter is based on the research paper [211].

145
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aims to determine the optimal schedule of arrival times that minimizes the objective function

and strikes the right balance between wait and efficiency. Customers arrive punctually on the

scheduled times (an assumption that can be easily relaxed) and wait in a queue before receiving

service. Notice that queues are formed due to the stochastic service times. The ASP describes

services that require instore or onsite visits, such as surgeries or outpatient clinics [40], but also

remote care and teleservices. These are often service systems that operate close to maximum

capacity, which can lead to long waiting times, urging the need to find a good if not optimal

schedule.

Solving the ASP, and finding the optimal schedule, involves a stochastic optimization prob-

lem with an objective function that accounts for both the costs of idle times and the costs of

waiting. This optimization problem requires as input the distributions of the uncertain sources,

such as the service times (length of appointments) and arrival times. With historical data you

could statistically estimate the service time distributions, but we take a different, more robust

approach in this chapter. We work under the assumption that we do not know the distribution,

but only have access to partial information in the form of summary statistics. More specifically,

we assume that we know the mean, the mean absolute deviation (MAD) and the range of the

service times. We then analyze the stochastic ASP with this partial information to find a robust

optimal schedule that applies to all distributions that share the same partial information. We

determine the robust schedules under partial information with amin-max analysis consisting of

two steps. First we determine the worst-case (maximum) costs of the objective function under

the conditions of the partial information. Then we determine the schedule by minimizing the

maximum costs. As will become clear, the partial information consisting of mean, MAD and

range presents a solvable maximization problem, which makes the minimization step particu-

larly feasible and leads to optimal schedules with insightful structures. Just like the newsvendor

problem in the previous chapter, the min-max approach in this chapter belongs to a much larger

class of distributionally robust approaches that seek to calculate worst-case model performance,

over the set of distributions satisfying some partial information.

Compared with tractable one-dimensional problems such as the newsvendor model, apply-

ing DRO techniques to problems with multiple independent random variables and distributions

presents considerable, if not unsurmountable challenges. An early account of these specific

challenges of multiple independent random variables can be found in [133], who searches for

tight bounds for 𝔼[𝑓 (𝐗)] with 𝑓 a real-valued function and 𝐗 a vector of random variables for
which partial information is available, such as the first few moments. For the univariate case,

Kingman shows that a standard optimization technique—related to the duality theory of general

conic linear programs and moment problems [196]—yields tight bounds. For the multivariate

case, Kingman explains that the same approach no longer works, because the dual problem can

only be solved by allowing dependence between the random variables. That leads to less sharp

bounds, or in Kingman’s words: “It is not altogether surprising that this larger class of random

variables allows a wider range of values of 𝔼[𝑓 (𝐗)] to be attained. (…) These we must expect
to be fairly weak, and the determination of refinements of these inequalities which are sharp is

an unsolved problem, apparently of very considerable difficulty.” It is indeed well known in the
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DRO literature thatmultiple independent variables can causemajor problems, and that allowing

correlation often alleviates these problems. Another additional challenge comes with assuming

that the random variables are not only independent, but also identically distributed, since this

i.i.d. assumption introduces non-linearity to the optimization problem, often rendering conic

duality theory unsuitable. For the classic ASP we are in fact facing this challenging setting

with multiple i.i.d. random variables, as the objective function depends on all 𝑛 independent
service times.

7.1.1. Contributions and outline
We highlight the following contributions to the ASP literature:

1. We present a robust solution method for the classic ASP that is suitable for independent

service times. For this we work with partial information that includes MAD instead of

variance. This gives a solvable min-max problem, where the worst-case scenario lead-

ing to the maximum expected costs under partial information—the max of min-max—is

given by independent three-point distributions for the service times. These three-point

distributions do not depend on the number of customers, and hence remain the same for

all problem sizes.

2. We also show that the min-max problem is computationally tractable, by performing the

minimization after the maximization. The three-point distributions that follow from the

maximization thus serve as input for the minimization, which can therefore be written as

a standard stochastic program, solvable as linear program (LP) or as stochastic program

with sample average approximation (SAA). To accurately approximate the optimal solu-

tion, SAA typically requires a number of samples that depends on 𝑛 (i.e., the dimension of
the problem) and the size of the feasible set. In our case, the required sample size for ob-

taining a near-optimal solution remains manageable, because we work with three-point

distributions and therefore a relatively small feasible set.

3. Unlike other robust methods, our method leads to worst-case scenarios that respect the

independence assumption. Most other robust studies do not impose independence, re-

sulting in extreme worst-case scenarios, where long service times follow each other in

rapid succession (due to the tolerated correlations). These scenarios in turn yield overly

conservative schedules that build in most slack in the initial stages of the planning hori-

zon. Our method gives realistic worst-case scenarios for the independent setting, and

hence intuitive robust schedules that share universal features with the optimal schedules

reported in the literature.

4. Finally, we show that our robust method does not only work for the classic ASP, but

for many variants and extensions. We demonstrate our method for other settings with

correlation structures and min-min (instead of min-max) analysis, but also for extended

models that include features such as sequencing, no-shows, and risk-aversity. The latter

extensions are typically difficult to solve in the partial-information setting. However,
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when using mean-MAD information, the partial-information setting reduces to the full-

information setting since we know the worst-case distribution, which is independent of

the decision variables, and the extensions are therefore solvable as stochastic programs.

In what follows, we introduce a new perspective for solving the ASP under partial informa-

tion by introducing a DRO approach that can deal with i.i.d. service times. We start with a

detailed model description in Section 7.2, where we also discuss more ASP and DRO literature.

Section 7.3 presents the new robust perspective for the ASP. We show how robust schedules

can be determined as solutions to linear programs (LPs) and draw comparisons with other DRO

approaches in the literature. Section 7.4 discusses several extensions of the classic ASP model,

including correlated service times, no-shows and sequencing decisions when service times can

have different distributions. We also discuss an alternative model for the ASP that uses as

objective the conditional value at risk (CVaR) to address risk-aversity and unfairness. For all

stochastic programs in Section 7.4, our robust method gives rise to LP reformulations and in-

sightful robust schedules. We present some conclusions in Section 7.5.

7.2. Robust appointment scheduling
We now give a more precise specification of the appointment scheduling problem (ASP), with

full and partial information, discuss more literature, and summarize our main contributions for

robust appointment scheduling.

7.2.1. ASP with full information
Consider a total of 𝑛 customers that need service from a single server during a period of length𝑇 . The goal is to find the appointment book (the arrival times of all 𝑛 customers) that minimizes
costs associated with waiting times, idle times and overtime. Let 𝑋𝑘 denote the service time of
customer 𝑘, and assume that all customers arrive precisely according to schedule. The schedul-
ing problem is then to determine the interarrival times between customers, given the sequence

in which they arrive. We use 𝑠𝑘 to denote the interarrival time between job 𝑘 and the next job,
i.e., the length of the slot reserved for job 𝑘. The vector 𝐬 = (𝑠1, 𝑠2, … , 𝑠𝑛) will be referred to
as the schedule. Job 𝑘 is thus scheduled to arrive at time ∑𝑘−1𝑖=1 𝑠𝑖. Define the set of all possible
schedulesS = {𝐬 ∈ ℝ𝑛+ ∶ 𝑠1 + … + 𝑠𝑛 � 𝑇 }, where 𝑇 is a positive upper time limit within which
the schedules should be fit. Let 𝑊𝑘 denote the delay of job 𝑘 and let 𝑊𝑛+1 denote the overtime.
Delay costs are incurred at rate 𝑐𝑤 . If the last job is completed after time 𝑇 , overtime costs are
incurred at rate 𝑐𝑜. Then 𝑊1 = 0 and 𝑊𝑘 = (𝑊𝑘−1 + 𝑋𝑘−1 − 𝑠𝑘−1)+, 𝑘 = 2… , 𝑛 + 1. It is then
natural to seek a schedule 𝐬 ∈ 𝑆 that minimizes the total delay and overtime costs

𝑓𝑛(𝐬, 𝐗) = 𝑐𝑤 𝑛∑𝑘=2 𝑊𝑘 + 𝑐𝑜𝑊𝑛+1, (7.1)

and the classic ASP can be formulated asmin𝐬 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)] (7.2)
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with the expectation taken over the distribution ℙ of the service times 𝐗 = (𝑋1, … , 𝑋𝑛).
The ASP thus tries to find an optimal design through an objective function that weighs con-

flicting performance measures, a tried and tested concept in OR. A prerequisite for successful

execution is the availability of tractable expressions for the performance measures and thus the

objective function. Special for the ASP is that the objective function consists of performance

measures of a single-server queue, which in full generality renders an intractable optimization

problem. With that in mind we divide the ASP literature into two methodological directions.

The first direction uses advanced queueing theory and approaches the ASP with explicit

queue analysis and tractable objective functions [10, 93, 110, 126, 138, 144, 156, 217, 230, 231,

234]. This queueing approach requires further simplifying assumptions that facilitate exact

analysis. Many works in this direction use specific service time distributions (such as expo-

nential and phase-type distributions) and assume stationarity, hence approximating the ASP

with finitely many appointments with an idealized model that considers an infinite number

of appointments. Indeed, stationary, long-term queue analysis is simpler than non-stationary

analysis. Since the stationary regimemakes no distinction between customers, the approximate

schedule is equidistant with slots of fixed size, which in many cases is far from optimal.

The second direction avoids advanced queueing theory and views the ASP as an optimization

problem which only requires the distributions of the service times and the queue dynamics,

i.e., the recursive relations that describe the waiting times and idles times as function of the

appointment times and service times. The expected value problem (7.2) can be (approximately)

solved using various methods, including SAA, quasi-gradient methods and sequential bounding

approaches; see, e.g., [13, 33, 183, 198]. SAA leverages that, for a given realization of service

times 𝐱 = (𝑥1, … , 𝑥𝑛), the optimal schedule solves the LP𝑓𝑛(𝐬, 𝐱) =min𝐰 𝑐𝑤 𝑛∑𝑘=2 𝑤𝑘 + 𝑐𝑜𝑤𝑛+1
s.t. 𝑤2 � 𝑥1 − 𝑠1,𝑤𝑘+1 � 𝑤𝑘 + 𝑥𝑘 − 𝑠𝑘, 𝑘 = 2, … , 𝑛,𝑤𝑘 � 0, 𝑘 = 2, … , 𝑛 + 1.

(7.3)

For more background on the numerical implications of SAA, see Shapiro et al. [198, Section 5.3].

These optimization methods can be computationally intensive and moreover require a precise

description of the distribution ℙ, or at least a sufficient number of independent samples from
this distribution.

7.2.2. Robust ASP with partial information
The computational problems of the full-information ASP, and the wish to design robust sched-

ules that can deal with situations of partial information, have triggered earlier studies using

min-max analysis and partial distributional information of the uncertain service times such as

range, marginal moments and covariance. The distribution-free methods, proposed in these

studies, lead to schedules that minimize the worst-case expected objective value among all pos-

sible distributions that comply with the partial information. The robust ASP can be formulated
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as min𝐬∈S maxℙ∈P 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)] (7.4)

withS the feasible set of appointment schedules and ambiguity setP taken to be the family of

all probability distributions consistent with the information known about the probability dis-

tribution of 𝐗. This information can include, e.g., moments and covariance structures. Several
papers solve some version of the robust ASP in (7.4) [30, 135, 149, 171, 180]. Kong et al. [135]

formulated for known mean and covariance a robust min-max problem that can be approxi-

mately solved by semidefinite programming. Mak et al. [149] constructed for known marginal

moments of the service time a tractable conic program. Both approaches cannot cope well with

the case of i.i.d. service times, for the reasons explained earlier. That is, without restricting co-

variance and only specifying marginal moments, the worst-case probability distributions often

correspond to highly correlated, unrealistic service times, see [149], while explicit specification

of covariance leads to nonlinear hard-to-solve optimization models, see [135]. We will discuss

these and other DRO papers [30, 171] in more detail later, but none of them can handle the set-

ting of independent service times. To understand why the i.i.d. case stays out of reach, observe

that independent service times make the expectation in (7.4) nonlinear and nonconcave (viewed

as function of the probability distribution). Therefore, the associated semi-infinite program is

no longer a convex optimization problem, which makes it hard, if not impossible, to find the

worst-case distribution.

7.2.3. Features of optimal schedules

Several universal features of optimal schedules were reported in the literature. For i.i.d. service

times with a known distribution, Wang [217], Denton and Gupta [68] and Robinson and Chen

[183] observed independently that optimal schedules typically follow a “dome-shape” pattern,

with successive time slots first increasing and later decreasing. This schedule allocates more

time for customers in the middle and less time to customers at the beginning and the end of the

day. This universal pattern fits with queueing theory intuition. Delays that arise early cause

further delays, which pleads for longer slots in early stages. However, longer slots increase

the chance of idleness. Shorter slots at the beginning and end of the day prevent idling and

overtime, while longer slots in the middle of the day protect against long waiting times for

many customers.

In most robust studies with only partially known service time distributions, it is not the dome

shape but a “decreasing” schedule in which the slot lengths become smaller [123, 149]. This

has to do with correlations between service times that are tolerated in the robust optimization

models. The robust schedule is meant to guard against the worst-case scenario, which due to

correlations, will be a scenario where long service times will follow each other at the beginning

of the period. Because early delays are likely to transfer into delays for downstream jobs, this

potentially creates major problems that can be mitigated by allocating more time for these

first jobs. Such worst-case scenarios with positively correlated service times of consecutive

customers inevitably lead to a strategy that avoids early delays, hence the decreasing schedule.
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This decreasing schedule is also at odds with the famous Bailey’s scheduling rule that lets

the first two customers arrive at the start of the day, and schedules succeeding appointments

at intervals equal to the expected service time [10, 135]. Bailey shows, using Monte-Carlo

simulation, that this rule—which is an extreme case of an increasing (as opposed to decreasing)

schedule—strikes a good balance between idle times and waiting times. With two customers

present the server will not idle early on, while the waiting times remain acceptable. Allowing or

banning correlations among service times thus leads to vastly different worst-case scenarios and

min-max system designs. When anticipated, or statistically estimated, it makes sense to include

correlations. However, there are also many situations where the independence assumption is

more realistic and preferable. Moreover, the classic ASP with its origin in the single-server

queue and inherent independence assumption serves as the benchmark model in the field. We

therefore develop a robust optimization method for the ASP that can deal with independent

service times. We will also explain why most other robust ASP studies cannot deal with the

independence assumption.

7.3. Novel DRO approach for ASP
In Section 7.3.1 we discuss the ASP under partial information and present our min-max method

for mean, MAD and range information of the service time distribution. In Section 7.3.2 we

present a min-min method, complementing the upper bounds found in Section 7.3.1 with lower

bounds. In Section 7.3.3 we discuss the numerical aspects of this approach, and present several

structural properties of the robust schedules.

7.3.1. Solvable min-max problem
Wenow turn to the distributionally robust approaches for the ASP (7.4) and seek for the solution

of the min-max problem for independent service times. Observe that

𝑓𝑛(𝐬, 𝐗) = 𝑐𝑤 𝑛−1∑𝑘=1 𝑔𝑘(𝐬, 𝐗) + 𝑐𝑜𝑔𝑛(𝐬, 𝐗) (7.5)

with 𝑔𝑘(𝐬, 𝐗) = max{𝑋𝑘 − 𝑠𝑘, 𝑘∑𝑗=𝑘−1(𝑋𝑗 − 𝑠𝑗 ), … , 𝑘∑𝑗=1(𝑋𝑗 − 𝑠𝑗 )}, 𝑘 = 1, … , 𝑛, (7.6)

which gives the following result:

Lemma 7.1. The function 𝑓𝑛(𝐬, 𝐗) is jointly convex in 𝐬 and 𝐗.
Because the function 𝑓𝑛(𝐬, ⋅) is convex, we choose to work with the mean-MAD ambiguity

set

P(𝜇,𝑑) = {ℙ ∶ supp(𝑋𝑘) ⊆ [𝑎𝑘, 𝑏𝑘], 𝔼ℙ[𝑋𝑘] = 𝜇𝑘, 𝔼ℙ [|𝑋𝑘 − 𝜇𝑘|] = 𝑑𝑘, ∀𝑘, 𝑋𝑘 ⟂⟂ 𝑋𝑗 , ∀𝑘 ≠ 𝑗} ,
(7.7)

where 𝑋𝑘 ⟂⟂ 𝑋𝑗 , ∀𝑘 ≠ 𝑗, denotes stochastic independence of the components 𝑋1, … , 𝑋𝑛. This
ambiguity set is known to generate, in conjunction with convex objective functions, explicit
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worst-case distributions and tight bounds, see [19, 179]. After applying these results to the

maximization problem in (7.4), we obtain the following result:

Lemma 7.2. The extremal distribution that solves maxℙ∈P(𝜇,𝑑) 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)] consists for each 𝑋𝑘 of
the three-point distribution on {𝑎𝑘, 𝜇𝑘, 𝑏𝑘}.
For notational convenience, we denote the three values of the extremal distribution of 𝑋𝑘 as𝜏(𝑘)1 = 𝑎𝑘 , 𝜏(𝑘)2 = 𝜇𝑘 , 𝜏(𝑘)3 = 𝑏𝑘 and the associated probabilities as𝑝(𝑘)1 = 𝑑𝑘2(𝜇𝑘 − 𝑎𝑘) , 𝑝(𝑘)2 = 1 − 𝑑𝑘2(𝜇𝑘 − 𝑎𝑘) − 𝑑𝑘2(𝑏𝑘 − 𝜇𝑘) , 𝑝(𝑘)3 = 𝑑𝑘2(𝑏𝑘 − 𝜇𝑘) . (7.8)

Since this extremal distribution is independent of 𝐬, we can substitute the 3𝑛 terms (all values
of the 𝑛 independent three-point distributions of𝑋1, … , 𝑋𝑛), and still maintain a convex function
in 𝐬. Therefore, the minimization problem over 𝐬 and hence the robust ASP with independent
service times and mean-MAD ambiguity is equivalent withmin𝐬∈S maxℙ∈P(𝜇,𝑑) 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)] = min𝐬∈S ∑𝜶∈{1,2,3}𝑛 𝑛∏𝑖=1 𝑝(𝑖)𝛼𝑖 𝑓𝑛(𝐬, 𝜏(1)𝛼1 , … , 𝜏(𝑛)𝛼𝑛 ). (7.9)

By describing the maximum operator in (7.6) in terms of linear terms, (7.9) can be formulated

as a tractable linear optimization problem:

Proposition 7.3. The optimization problem min𝐬∈Smaxℙ∈P(𝜇,𝑑) 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)] can be written as

min𝐬∈S ∑𝜶∈{1,2,3}𝑛 ( 𝑛∏𝑖=1 𝑝(𝑖)𝛼𝑖 (𝑐𝑤 𝑛−1∑𝑘=1 𝑔(𝑘)𝜶 + 𝑐𝑜𝑔(𝑛)𝜶 ))
s.t. 𝑔(𝑘)𝜶 � 0, 𝑘 = 1, … , 𝑛, ∀𝜶 ∈ {1, 2, 3}𝑛,𝑔(𝑘)𝜶 �

𝑘∑𝑗=𝑙 (𝜏(𝑗)𝛼𝑗 − 𝑠𝑗 ), 𝑘 = 1, … , 𝑛, 𝑙 = 1, … , 𝑘, ∀𝜶 ∈ {1, 2, 3}𝑛. (7.10)

We solve the LP (7.10), and other LPs presented later, with the programming language Julia

and Gurobi 9.1. Because the number of constraints grows exponentially in 𝑛, the problem size
that we can deal with is limited (say 𝑛 � 15), even when exploiting the problem structure with
the L-shaped method (see, e.g., [68]). However, since the worst-case distribution of the service

times is known explicitly, and consists of only three support points, SAA presents an effective

way of computing the bounds for large problem sizes.

7.3.2. Solvable min-min problem
We now show that tight lower bounds for the ASP objective function can be obtained by adding

skewness information 𝛽 = ℙ(𝑋 � 𝜇) and hence considering the ambiguity set
P(𝜇,𝑑,𝛽) = {ℙ ∶ ℙ ∈P(𝜇𝑘 ,𝑑𝑘), ℙ(𝑋𝑘 � 𝜇𝑘) = 𝛽𝑘, ∀𝑘} . (7.11)

Based on this ambiguity set, [19] also derives a tight lower bound as well as the distribution

that attains this bound for the expectation of a convex function of random variables. Hence,

again relying on the convexity shown in Lemma 7.1, we derive a lower bound for the ASP:
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Lemma 7.4. The distribution that solves minℙ∈P(𝜇,𝑑,𝛽) 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)] consists for each 𝑋𝑘 of the two-
point distribution on {𝜇𝑘 + 𝑑𝑘2𝛽𝑘 , 𝜇𝑘 − 𝑑𝑘2(1−𝛽𝑘) }.
Again for notational convenience, write𝑞(𝑘)1 = 𝛽𝑘, 𝑞(𝑘)2 = 1 − 𝛽𝑘, 𝜐(𝑘)1 = 𝜇𝑘 + 𝑑𝑘2𝛽𝑘 , 𝜐(𝑘)2 = 𝜇𝑘 − 𝑑𝑘2(1 − 𝛽𝑘) . (7.12)

We can substitute the 2𝑛 terms (all values of the the 𝑛 independent two-point distributions
of 𝑋1, … , 𝑋𝑛) to obtain the following result:
Proposition 7.5. The optimization problem min𝐬∈Sminℙ∈P(𝜇,𝑑) 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)] can be written as

min𝐬∈S ∑𝜶∈{1,2}𝑛 ( 𝑛∏𝑖=1 𝑞(𝑖)𝛼𝑖 (𝑐𝑤 𝑛−1∑𝑘=1 𝑔(𝑘)𝜶 + 𝑐𝑜𝑔(𝑛)𝜶 ))
s.t. 𝑔(𝑘)𝜶 � 0, 𝑘 = 1, … , 𝑛, ∀𝜶 ∈ {1, 2}𝑛,𝑔(𝑘)𝜶 �

𝑘∑𝑗=𝑙 (𝜐(𝑗)𝛼𝑗 − 𝑠𝑗 ), 𝑘 = 1, … , 𝑛, 𝑙 = 1, … , 𝑘, ∀𝜶 ∈ {1, 2}𝑛. (7.13)

The upper and lower bounds give a closed interval for 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)], ∀ℙ ∈P(𝜇,𝑑,𝛽). Denote the
optimal values of (7.10) and (7.13) by 𝑔𝑈 and 𝑔𝐿, respectively. The upper and lower bounds then
also provide closed intervals for the optimal values:

Corollary 7.6. For all distributions ℙ ∈P(𝜇,𝑑,𝛽),min𝐬∈S 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)] ∈ [𝑔𝐿, 𝑔𝑈 ].
Using the skewness information, we thus obtain a sharp performance interval for the ex-

pected value of 𝑓𝑛(𝐬, 𝐗) instead of only an upper bound. Figure 7.1 shows the optimal values
of the ASP problem under mean-MAD ambiguity, where (𝑐𝑤, 𝑐𝑜) = (1, 2), [𝑎, 𝑏] = [1, 5], 𝜇 = 3,𝑇 = 𝑛𝜇, 𝑑 = 1 and 𝛽 = 1/2. As a result of Corollary 7.6, the red and green lines together pro-
vide a tight upper and lower bound for all distributions inP(3,1,1/2) with support on the interval[1, 5]. As a point of reference, we also plot the exact costs in the case that the 𝑋𝑘 represent𝑈(1, 5) distributed service times, which is a member of this ambiguity set.
Although the above min-min approach provides valuable insights for robust ASP perfor-

mance, we will discuss in the remainder of this chapter only the min-max perspective.

7.3.3. Optimal robust schedules
We now present some first numerical results regarding the structure of the optimal schedules,

based on the LP formulation (7.10). From this subsection onward, the optimal schedules de-

picted in the figures are obtained by solving (7.10) with SAA using 100,000 samples.

Figure 7.2 shows the minimax schedules for several settings with 25 customers. The optimal

schedule for the uniformly distributed service times is indeed dome-shaped, see [68], and turns
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Figure 7.1: Tight bounds for the optimal objective values of the ASP (obtained by SAA using 100,000

samples)
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Figure 7.2: Optimal time allocation for 𝑐𝑤 = 1 and 𝑛 = 25 with schedules based on the worst-case three-
point distribution and 𝑈(1, 5) distributed service times (obtained through SAA with 100,000 samples)
from dome-shaped to increasing when overtime is more heavily penalized. The robust schedule

also resembles a dome shape, but of a different nature: the schedule installs longer slots in a

periodic fashion. We see four such longer slots in Figure 7.2a, and two in Figure 7.2b. Since

waiting times build up progressively, these longer slots can protect against long waiting times.

Then, in Figures 7.2a and 7.2b, at some point during the day, the schedule becomes constant,

and the final customers arrive relatively early since the schedules should be fitted within the

time limit. The spiked structure of the robust schedules in Figures 7.2a and 7.2b can be viewed

as a robust counterpart of the earlier observed dome-shaped schedules. In Figure 7.2c we see

that for large overtime costs, the optimal schedule becomes nearly constant, except for the final

customer for which additional time is reserved to avoid excessive overtime.

Also observe that the robust schedules in Figure 7.2a consist of integer-valued appointment

slots, which indeed is the case when service times are discrete random variables; see Corol-

lary 8.2 in Begen and Queyranne [14]. We see this also confirmed in Figure 7.3, where the

reference distribution is the (discrete) Binomial distribution.
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(c) 𝑐𝑜 = 40
Figure 7.3: Optimal time allocation for 𝑐𝑤 = 1 and 𝑛 = 25 with schedules based on the worst-case three-
point distribution and Binomial(6, 12 ) distributed service times
Figure 7.3a again reveals the spiked patterns, but now turns for higher overtime costs into a

flat line in Figure 7.3b. This flat line means that the robust schedule prescribes equal slots for

all customers. Figure 7.3c shows a schedule similar to the one in Figure 7.2c.
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(c) Beta( 14 , 14 )
Figure 7.4: Optimal time allocation for 𝑐𝑤 = 1 and 𝑛 = 25 with schedules based on the worst-case three-
point distribution and Beta(𝛾, 𝜃) distributed service times
Figure 7.4 shows three robust schedules for ambiguity sets that include the Beta distribu-

tion with increasing MAD. Observe that with increasing MAD, so when scenarios become less

predictable, more spikes are scheduled in the early stages.

To compare the performance of the robust schedules against some optimal schedules, we use

Monte Carlo simulation to compute the total costs of the mean-MAD schedule for 𝑛 appoint-
ments, where 𝑛 ∈ {10, 15, 25}. Our numerical experiments are based on [149]. The service times
are generated under two common distribution types, the beta and triangular distributions, and

all service times are independent but not necessarily identically distributed. That is, for each

customer 𝑘, we randomly set the parameters of the beta distribution, 𝛾𝑘, 𝜃𝑘 ∼ 𝑈( 12 , 2), and
draw the mode of the triangular distribution from 𝑈(10, 20). Let all distributions be supported
on the interval [0, 30]. For each generated instance, the total session length is determined as𝑇 = ∑𝑛𝑘=1 𝜇𝑘 + 𝑅 ⋅ ∑𝑛𝑘=1 𝑑𝑘 , with 𝑅 ∈ {−0.5, 0, 0.5}. Next, we generate 10,000 independent sam-
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ples from these distributions and use SAA to approximate the schedule that minimizes (7.2),

which assumes full knowledge of the distribution. We also use SAA and 10,000 independent

samples from the three-point distributions (with matching mean and MAD) to compute the op-

timal mean-MAD schedule. In addition, we also solve a second-order conic program, as in Mak

et al. [149], to compute the mean-variance schedule, which does not specify any correlation

or dependency structure. To compare the out-of-sample performance of the three scheduling

solutions, a Monte Carlo simulation is performed. We generate 1,000,000 scenarios from the un-

derlying distributions that were used to generate the near-optimal solution. We then estimate

the percentage difference between the mean performance of the distributionally robust solu-

tions and the full-information solution. For each parameter setting and type of distribution, we

consider 50 randomly generated instances. We then report the average percentage differences

over these 50 instances for each case.

Table 7.1 provides a number of interesting insights. First, observe that the differences be-

tween the expected costs of the mean-MAD schedule and the near-optimal solution are not

large, ranging from 1.2% to 13.6%. Second, congestion in the system, controlled by the parame-

ter 𝑅, affects the performance differences the most, whereas the performance of the mean-MAD
schedule is barely dependent on the number of customers 𝑛. In contrast, the performance of
the mean-variance schedule deteriorates as 𝑛 increases since it guards against scenarios where
a large number of consecutive jobs have long durations simultaneously, which, in the setting

with independence, leads to overly conservative schedules and hence high average costs.

Table 7.1: Percentage difference between the expected costs of the robust schedules and the full informa-

tion schedule when scheduling 25 appointments

Mean-MAD Mean-variance

Perf. measure 𝑅 𝑋𝑘 ∼ ℙ 10 15 25 10 15 25

mean -0.25 Beta(2, 𝜃) 1.6% 1.5% 1.2% 8.0% 11.5% 17.8%Beta(𝛾, 2) 2.4% 2.2% 2.7% 7.2% 11.6% 20.6%

Triangular 3.5% 4.9% 4.6% 7.9% 12.1% 19.9%

0 Beta(2, 𝜃) 2.2% 2.2% 1.9% 10.9% 16.4% 27.9%Beta(𝛾, 2) 3.5% 4.4% 4.3% 10.3% 18.4% 31.3%

Triangular 8.6% 6.9% 7.2% 10.8% 18.9% 30.4%

0.25 Beta(2, 𝜃) 4.4% 3.5% 4.0% 16.4% 24.1% 42.0%Beta(𝛾, 2) 7.2% 6.3% 6.9% 17.0% 25.5% 48.7%

Triangular 12.6% 10.8% 13.6% 17.4% 24.7% 46.5%

The numerical results in Table 7.1 demonstrate that the robust approach presents sharp per-

formance guarantees, when compared to the (near-)optimal schedules. The performance gaps

do not varymuchwhen assuming different distributions. We conclude that the robust schedules

are valuable in practice, and certainly not overly conservative, despite their ability to protect
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against all scenarios possible given the partial information.

7.4. Broader application of robust scheduling method
We now discuss extensions and variations of the standard ASP to which the novel robust ap-

proach developed in Section 7.3 can be applied. We first discuss three extensions: Section 7.4.1

discusses themodel with sequencing decisions, Section 7.4.2 relaxes the assumption that service

times are independent, and Section 7.4.3 considers the model where customers no longer arrive

punctually at the scheduled times (or do not arrive at all). We then introduce in Section 7.4.4

the risk-averse ASP in which the conditional value at risk (CVaR) is the objective function, with

the goal of reducing delay unfairness. In Section 7.4.5 we present a dynamic version of the ASP,

which is solved with techniques from adjustable robust optimization. Finally, we discuss in

Section 7.4.6 the stationary analysis of the ASP and show that our min-max approach can also

deal with this setting that can serve as approximation when the number of appointments grows

large.

7.4.1. Sequencing
In this section we discuss the problem of jointly determining the schedule and arrival sequence

of customers, which we refer to as the appointment sequencing problem. We thus generalize

the ASP model such that it includes the sequencing decision. Denote the sequencing decision

by the variable 𝐲 = (𝑦𝑘𝑚)𝑘=1,…,𝑛;𝑚=1,…,𝑛, where 𝑦𝑘𝑚 is set to 1 if customer 𝑚 is assigned to slot 𝑘.
To ensure that the sequence of jobs is feasible, we make sure each slot is assigned to a customer

(i.e., the assignment variables 𝑦𝑘𝑚 add up to 1 for each 𝑘), and since every customer should be
treated, the assignment variables amount to 1 for each 𝑚. Denote the feasible set by Y. The

distributionally robust appointment sequencing problem, under mean-MAD ambiguity, then

reduces to a stochastic mixed-integer programming problem.

Proposition 7.7. The optimization problemmin𝐲∈Y,𝐬∈Smaxℙ∈P(𝜇,𝑑) 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)] can be written asmin𝐲∈{0,1}𝑛×𝑛, 𝐬∈S ∑𝜶∈{1,2,3}𝑛 ( 𝑛∏𝑖=1 𝑝(𝑖)𝛼𝑖 (𝑐𝑤 𝑛−1∑𝑘=1 𝑔(𝑘)𝜶 + 𝑐𝑜𝑔(𝑛)𝜶 ))
s.t. 𝑔(𝑘)𝜶 � 0, 𝑘 = 1, … , 𝑛, ∀𝜶 ∈ {1, 2, 3}𝑛,𝑔(𝑘)𝜶 �

𝑘∑𝑗=𝑙 ( 𝑛∑𝑚=1 𝜏(𝑚)𝛼𝑚 𝑦𝑗𝑚 − 𝑠𝑘), 𝑘 = 1, … , 𝑛, 𝑙 = 1, … , 𝑘, ∀𝜶 ∈ {1, 2, 3}𝑛,
𝑛∑𝑘=1 𝑦𝑘𝑚 = 1, 𝑚 = 1,… , 𝑛,
𝑛∑𝑚=1 𝑦𝑘𝑚 = 1, 𝑘 = 1, … , 𝑛.

(7.14)

The sequencing decision does not affect convexity of 𝑓𝑛(𝐬, 𝐗) in 𝐗, and therefore the three-
point distribution again constitutes the extremal distribution. To solve problem (7.14), we can

again resort to SAA.
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We next show that, although a popular heuristic in practice, sequencing jobs by increas-

ing order of variance (OV), or MAD, is not necessarily optimal for the distribution-free model

with independent service times. Before doing so, we discuss some further literature. Since the

sequencing decision makes the problem nonconvex, the appointment sequencing problem is

significantly more difficult. For the model with only two jobs, [69] proves the optimal sequence

is determined by ordering jobs by increasing variance of job duration. In [152] it is shown

that the appointment scheduling problem, formulated as a stochastic mixed-integer program,

is NP-hard, evenwhen the number of job duration scenarios is finite. By exploiting a connection

with serial supply-chain inventory models, a mixed-integer second-order cone programming

approximation is developed in [148]. When only themean and variance are known, [149] shows

OV is optimal for their distributionally robust model. Using an analytical model, [136] provides

insights into when the OV sequencing rule obtains superior performance. TheOV rule is shown

to be asymptotically optimal in [62], that is, as 𝑛 → ∞.
Contrary to the mean-variance discussed in [149], the optimal mean-MAD sequence is not

necessarily obtained by ordering the jobs by increasing magnitude of the dispersion measure 𝑑.
To demonstrate this, consider the following four instances with 𝑛 = 6 jobs. Case 1 contains the
following choices for the parameters: 𝜇𝑘 = 10, 𝑑𝑘 = 1+0.5(𝑘−1), 𝑎𝑘 = 0 and 𝑏𝑘 = 15 𝑘 = 1,… , 𝑛.
For case 2, we have 𝜇𝑘 = 13.5 − 𝑘, 𝑑𝑘 = 1 + 0.5(𝑘 − 1), 𝑎𝑘 = 0, 𝑏𝑘 = 15 𝑘 = 1,… , 𝑛, and for case 3,
let 𝜇𝑘 = 13.5 − 𝑘, 𝑑𝑘 = 1 + 0.5(𝑘 − 1), 𝑎1 = 𝑎2 = 𝑎3 = 0, 𝑎4 = 𝑎5 = 𝑎6 = 5, 𝑏1 = 𝑏2 = 𝑏3 = 25 and𝑏4 = 𝑏5 = 𝑏6 = 15. For case 4, the parameters are given by 𝜇𝑘 = 13.5 − 𝑘, 𝑑𝑘 = 2, 𝑎𝑘 = 0, 𝑏𝑘 = 15𝑘 = 1,… , 𝑛. In addition, we consider two values for the overtime costs: 𝑐𝑜 = 2 and 𝑐𝑜 = 20.

Table 7.2: Optimal job sequences for 𝑐𝑜 = 2
𝑛 1 2 3 4 5 6

case 1 1 2 3 4 5 6𝑠𝑘 10.0 10.0 10.0 10.0 10.0 10.0

case 2 1 2 3 4 5 6𝑠𝑘 12.5 11.5 13.0 9.5 8.5 5.0

case 3 1 2 4 5 3 6𝑠𝑘 12.5 11.5 9.5 11.0 10.5 5.0

case 4 4 5 6 3 2 1𝑠𝑘 9.5 8.5 7.5 10.5 11.5 12.5

Table 7.3: Optimal job sequences for 𝑐𝑜 = 20
𝑛 1 2 3 4 5 6

case 1 1 2 3 4 5 6𝑠𝑘 10.0 10.0 5.0 10.0 10.0 15.0

case 2 1 2 6 5 4 3𝑠𝑘 12.5 11.5 2.5 8.5 10.0 15.0

case 3 1 6 2 3 5 4𝑠𝑘 12.5 5.0 11.5 10.5 5.5 15.0

case 4 6 5 4 1 2 3𝑠𝑘 5.0 7.5 10.5 12.5 11.5 13.0

Tables 7.2 and 7.3 provide the optimal sequencing and scheduling decisions for the three

instances above, for both choices of 𝑐𝑜. When overtime costs are low, i.e. 𝑐𝑜 = 2, the optimal
sequence follows the increasing MAD pattern for cases 1 and 2. However, the optimal sequence

for case 2 changes when the overtime costs are high, and instead places customers with higher

expected service times at the end of the planning period, even though their service times are

less variable. This ensures that larger jobs, with less variability, are dealt with at the end of the

day to mitigate the risk of excessive overtime. Moreover, the third case shows that the range

of the service time also affects the sequencing decision. Thus next to variability in terms of
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MAD, the width of the support also brings about changes in the optimal sequence. We thus

conclude that under the independence assumption the optimal job sequence does not admit a

straightforward structure. However, we do expect the increasing MAD sequence to perform

well as a heuristic, like the performance of OV in [69, 152].

In addition, we consider an example inspired by the numerical example in [135, Section 6.2].

Assume, in total, 25 customers are scheduled to arrive, divided into three distinct customer

classes. The first class has the highest and most variable service requirements and consists of𝑛1 = 5 customers. The other two customer classes both consist of 𝑛2 = 𝑛3 = 10 customers
and have lower mean and MAD. The customer classes are scheduled in decreasing order of

mean and MAD. For the first customer class with 𝑛1 = 5, 𝜇𝑘 = 14 and 𝑑𝑘 = 𝜎𝑘 = 8. For the
second class consisting of 𝑛2 = 10 customers, 𝜇𝑘 = 12 and 𝑑𝑘 = 𝜎𝑘 = 4, and for the final
class with 𝑛3 = 10 customers, the parameters 𝜇𝑘 = 10 and 𝑑𝑘 = 𝜎𝑘 = 2. The total period
length 𝑇 = 276. Figure 7.5 compares the mean-MAD schedule, which assumes independence,
to the mean-variance schedule that allows all dependency structures. The mean-MAD schedule

exhibits the “Bailey’s rule + break” pattern, which was first observed in [135]. In contrast, the

mean-variance schedule allots gradually decreasing slot lengths, and instead of inserting a break

when switching to a different customer class, it schedules a tighter slot during the transition

since the next customer class has lower service requirements.
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Figure 7.5: Optimal time allocation for different customer classes with varying mean and MAD, and a

fixed range [0, 20]
7.4.2. Correlations
As mentioned earlier, the assumption of independent service times is challenging and greatly

influences the structure of optimal schedules. For the sake of comparison, we now consider the

relaxation that allows for correlated service times. We explain why this setting is mathemati-

cally more tractable, but does lead to entirely different schedules.

Consider the ambiguity set

Pcorr(𝜇,𝑑) = {ℙ ∶ supp(𝑋𝑘) ⊆ [𝑎𝑘, 𝑏𝑘], 𝔼ℙ[𝑋𝑘] = 𝜇𝑘, 𝔼ℙ [|𝑋𝑘 − 𝜇𝑘|] = 𝑑𝑘, ∀𝑘} , (7.15)

which is larger thanP(𝜇,𝑑) since correlations are allowed. In Appendix B.4, we extend results
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for marginal moments discussed in [149] to the setting of generalized moments (such as MAD)

to obtain the following result:

Proposition 7.8. Assume 𝜇𝑘 ∈ (𝑎𝑘, 𝑏𝑘), 𝑑𝑘 ∈ (0, 2(𝑏𝑘−𝜇𝑘)(𝜇𝑘−𝑎𝑘)(𝑏𝑘−𝑎𝑘) ), ∀𝑘. Then, the optimization problemmin𝐬∈Smaxℙ∈Pcorr(𝜇,𝑑) 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)] can be written as

min𝐬,𝜻 ,𝝃 ,𝝀(1),𝝀(2) 𝑛∑𝑘=1 (𝜁𝑘 + 𝜇𝑘𝜆(1)𝑘 + 𝑑𝑘𝜆(2)𝑘 )
s.t.

min{𝑛,𝑗}∑𝑖=𝑘 𝜁𝑖 � min{𝑛,𝑗}∑𝑖=𝑘 (𝜉𝑖𝑗 − 𝑠𝑖𝜋𝑖𝑗 ) , 1 � 𝑘 � 𝑛, 𝑘 � 𝑗 � 𝑛 + 1,𝜉𝑖𝑗 � (𝜋𝑖𝑗 − 𝜆(1)𝑖 ) 𝑏𝑖 − 𝜆(2)𝑖 (𝑏𝑖 − 𝜇𝑖), 1 � 𝑖 � 𝑛, 𝑖 � 𝑗 � 𝑛 + 1,𝜉𝑖𝑗 � (𝜋𝑖𝑗 − 𝜆(1)𝑖 ) 𝜇𝑖 1 � 𝑖 � 𝑛, 𝑖 � 𝑗 � 𝑛 + 1,𝜉𝑖𝑗 � (𝜋𝑖𝑗 − 𝜆(1)𝑖 ) 𝑎𝑖 − 𝜆(2)𝑖 (𝜇𝑖 − 𝑎𝑖), 1 � 𝑖 � 𝑛, 𝑖 � 𝑗 � 𝑛 + 1,𝐬 ∈ S,
(7.16)

where 𝜋𝑖𝑗 = {𝑐𝑤(𝑗 − 𝑖), for 1 � 𝑖 � 𝑗 � 𝑛,𝑐𝑜 + 𝑐𝑤(𝑛 − 𝑖), for 1 � 𝑖 � 𝑛, 𝑗 = 𝑛 + 1. (7.17)

Notice that the complexity of the LP (7.16) dropped compared to (7.10), with the number

of constraints reduced to 𝑂(𝑛2). Hence, this model remains tractable for larger values of 𝑛.
However, since we can no longer deal with i.i.d. service times, (7.16) produces vastly different

schedules.
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Figure 7.6: Tight bounds and optimal solutions for the ASP

As a reference consider 𝑈(1, 5) distributed service times, 𝑐𝑤 = 1 and 𝑐𝑜 = 2. Next to the
“true” optimal value, we compare the mean-MAD upper bound for the original model with

i.i.d. service times and ambiguity setP(𝜇,𝑑), and the relaxation with possibly correlated service
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times and ambiguity set Pcorr(𝜇,𝑑). Figure 7.6 depicts the optimal values and the corresponding
schedules. Observe that the schedule that allows correlated worst-case distributions provides

much looser bounds compared to the tight bounds that follow from (7.10). This is as expected,

since dropping the independence condition enlarges the solution space with distributions that

tolerate correlations between the service times. As a consequence, the optimal schedules lose

the dome structure, and instead prescribe monotonically decreasing slot lengths as reported in

earlier DRO studies [149, 180].

7.4.3. No-shows
Let 𝐼𝑘 be a Bernoulli(𝑞𝑘) indicator variable that equals 1 when customer 𝑘 shows up, and 0
otherwise. The delay of job 𝑘 now satisfies𝑊𝑘 = (𝑊𝑘−1 + 𝐼𝑘−1𝑋𝑘−1 − 𝑠𝑘−1)+. (7.18)

Since expression (7.18) remains convex in the uncertain parameters, we obtain a similar result

as in previous sections.

Proposition 7.9. Let all 𝐼𝑘, 𝑍𝑘 be independent, with 𝐼𝑘 ∼ Bernoulli(𝑞𝑘). Then, the optimization

problem min𝐬∈Sminℙ∈P(𝜇,𝑑) 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)] can be written as

min𝐬∈S ∑𝜶∈{1,2,3}𝑛×{0,1}𝑛 ( 𝑛∏𝑖=1 𝑝(𝑖)𝛼𝑖 (𝑐𝑤 𝑛−1∑𝑘=1 𝑔(𝑘)𝜶 + 𝑐𝑜𝑔(𝑛)𝜶 ))
s.t. 𝑔(𝑘)𝜶 � 0, 𝑘 = 1, … , 𝑛, ∀𝜶 ∈ {1, 2, 3}𝑛 × {0, 1}𝑛,𝑔(𝑘)𝜶 �

𝑘∑𝑗=𝑙 (𝑞(𝑗)𝛼𝑗 𝜏(𝑗)𝛼𝑗 − 𝑠𝑗 ), 𝑘 = 1, … , 𝑛, 𝑙 = 1, … , 𝑘, ∀𝜶 ∈ {1, 2, 3}𝑛 × {0, 1}𝑛. (7.19)

Problem (7.19) considers all possible scenarios for𝑋𝑘 and 𝐼𝑘 . Here we still charge waiting time
costs regardless of whether the customer actually shows up, as in Jiang et al. [123]. Alterna-

tively, one might waive the waiting time costs when a customer does not show up by modifying

the objective function, thus modeling the waiting time costs as 𝑐𝑤𝐼𝑘𝑊𝑘 .
The LP in (7.19) presents a new DRO perspective for ASP with no shows. Other DRO studies

are [123] with ambiguity for the no-show variables, and [137] in which this model is extended

by introducing time-dependent no-show probabilities and deriving a conic programming for-

mulation. We now compare our robust approach for partial information to the full information

ASP with no shows, an extension of work in [68] covered in [76].

We now perform some numerical experiments motivated in part by the examples in Sec-

tion 5.1 of Erdogan and Denton [76]. As a reference, we also consider the setting with all

service times independent and identically distributed as 𝑈(1, 5). Figures 7.7 and 7.8 provide the
optimal schedules for the ASP with no shows. Figure 7.7 shows that, when no shows occur with

probability 1 − 𝑞𝑘 = 0.4, the optimal schedules allot less time to the customers in the middle of
the session to hedge against possible idling of the server in case of a no show. In addition, for

large overtime costs 𝑐𝑜 = 20, the first two customers are double booked as with Bailey’s rule.
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Figure 7.7: Optimal time allocation for schedules based on known customer no-show probabilities with𝑛 = 10, 𝑇 = 25, 𝑋𝑘 ∼ 𝑈(1, 5)
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(c) 1 − 𝑞𝑘 = 0.4, 𝑐𝑜 = 20
Figure 7.8: Optimal time allocation for schedules based on known customer no-show probabilities with𝑛 = 10, 𝑇 = 25, 𝑋𝑘 ∼ 𝑈(1, 5)
7.4.4. Risk aversion and delay unfairness
Consider a risk-averse version of the ASP where one makes decisions based on CVaR. First
introduced as a performance measure for financial risk management, CVaR denotes the average
value of the costs exceeding the 𝜚th quantile of the cost distribution. For 𝑓𝑛(𝐬, 𝐗), CVaR follows
from solving a convex minimization problem [184, 185]. That is,CVaR𝜚[𝑓𝑛(𝐬, 𝐗)] = min𝜗∈ℝ

{𝜗 + 11 − 𝜚𝔼(𝑓𝑛(𝐬, 𝐗) − 𝜗)+} .
However, as the exact distribution is unknown, we consider the partial information setting as

in [235], and solvemin𝐬∈S maxℙ∈P(𝜇,𝑑) min𝜗∈ℝ
{𝜗 + 11 − 𝜚𝔼ℙ(𝑓𝑛(𝐬, 𝐗) − 𝜗)+} = min𝐬∈S,𝜗∈ℝ

{𝜗 + 11 − 𝜚 maxℙ∈P(𝜇,𝑑) 𝔼ℙ(𝑓𝑛(𝐬, 𝐗) − 𝜗)+} ,
(7.20)

where the identity holds by Sion’s minimax theorem because the objective function of (7.20)

is convex in 𝜗, concave in ℙ, andP(𝜇,𝑑) is weakly compact as supp(𝐷) is compact. Since (⋅)+
preserves convexity, the three-point distribution maximizes 𝔼ℙ(𝑓𝑛(𝐬, 𝐗) − 𝜗)+.
The risk-averse scheduler thus needs to solve the following problem:
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Proposition 7.10. The optimization problemmin𝐬∈S maxℙ∈P(𝜇,𝑑) min𝜃∈ℝ {𝜃 + 11 − 𝜌𝔼ℙ(𝑓𝑛(𝐬, 𝐗) − 𝜗)+}
can be written asmin𝐬∈S,𝜼,𝜗 𝜗 + 11 − 𝜚 ∑𝜶∈{1,2,3}𝑛 𝑛∏𝑖=1 𝑝(𝑖)𝛼𝑖 𝜂𝜶

s.t. 𝜂𝜶 � 𝑐𝑤 𝑛−1∑𝑘=1 𝑔(𝑘)𝜶 + 𝑐𝑜𝑔(𝑛)𝜶 − 𝜗, ∀𝜶 ∈ {1, 2, 3}𝑛,𝜂𝜶 � 0, ∀𝜶 ∈ {1, 2, 3}𝑛,𝑔(𝑘)𝜶 � 0, 𝑘 = 1, … , 𝑛, ∀𝜶 ∈ {1, 2, 3}𝑛,𝑔(𝑘)𝜶 �
𝑘∑𝑗=𝑙 (𝜏(𝑗)𝛼𝑗 − 𝑠𝑗 ), 𝑘 = 1, … , 𝑛, 𝑙 = 1, … , 𝑘, ∀𝜶 ∈ {1, 2, 3}𝑛.

(7.21)

Figure 7.9 illustrates the optimal schedules when minimizing CVaR with the overtime costs

set to 𝑐𝑜 = 2. The schedule allots time to 𝑛 = 7 customers, for which the service times are 𝑈(1, 5)
distributed. The total time allowance is restricted to 𝑇 = 21. For these parameter settings, the
mean-MAD schedule closely resembles the optimal schedule under exact knowledge of the

underlying distribution.
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Figure 7.9: Optimal schedules for CVAR with 𝑐𝑤 = 1, 𝑐𝑜 = 2, 𝑛 = 7, 𝑋𝑘 ∼ 𝑈(1, 5)

Instead of the total costs, the scheduler can consider customer unpleasantness in terms of

delays exceeding certain thresholds. A suitable service quality measure for this purpose is the

delay unfairness measure (DUM), as introduced in [180]. Let 𝜈𝑘 be the tolerance threshold for
customer 𝑘. Then, the delay unfairness for client 𝑘 is found by solvinginf {1 − 𝜚 | maxℙ∈P(𝜇,𝑑) CVaR𝜚[𝑔𝑘−1(𝐬, 𝐗)] � 𝜈𝑘, 𝜌 ∈ [0, 1)}. (7.22)

In this definition, CVaR denotes the worst-case expected delay conditioned on the (1 − 𝜚) tail
of the delay distribution. The quantity in (7.22) thus represents the smallest (1 − 𝜚)th quantile
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such that the worst-case average in the tail is not greater than the threshold level. Note that

this definition also holds for the server overtime 𝑔𝑛. If the goal is to minimize the maximum
delay unfairness (7.22), one solvesinf𝜚∈[0,1),𝐬∈S 1 − 𝜚

s.t. 𝜗𝑘 + 11 − 𝜚 supℙ∈P(𝜇,𝑑) 𝔼ℙ (𝑔𝑘−1(𝐬, 𝐗) − 𝜗𝑘)+ � 𝜈𝑘, 𝑘 = 1, … , 𝑛. (7.23)

This problem is nonlinear in 𝜚. However, since the objective function and constraints are mono-
tonic in 𝜚, a simple bisection search will suffice to find the solution that minimizes 1 − 𝜚. We
note that the worst-case distribution is again the three-point distribution supported on 𝑎, 𝜇 and𝑏. After substituting this distribution and fixing the value of 𝜚, problem (7.23) reduces to an LP
for which we only have to check feasibility.

In Figure 7.10 we provide the optimal schedules when minimizing the maximal delay unfair-

ness. The parameter values are consistent with the setting of the CVaR example. Figure 7.10a

shows the optimal schedule when minimizing total costs. In Figure 7.10b, we minimize the

maximum DUM with a higher threshold value for the server overtime, and in Figure 7.10c,

the threshold values are set to 𝜈𝑘 = 5, ∀𝑘. Since we consider another type of objective, the
schedules exhibit a different kind of dome shape. Compared to the optimal schedule for cost

minimization, when minimizing DUM, we allocate a much shorter slot to the first customer to

reduce waiting times of later customers and the total server overtime.
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Figure 7.10: Optimal time allocation based on DUM thresholds with 𝑛 = 7, 𝑇 = 21, 𝑋𝑘 ∼ 𝑈(1, 5)

7.4.5. Dynamic appointment scheduling
This section considers a dynamic variant of the ASP in which the schedule can be adjusted for

future customers at every arrival epoch. For simplicity, we assume that the required service

time of a customer is sufficiently long so that at the arrival of customer 𝑘, the arrival time of
customer 𝑘 + 1 can be scheduled. We next discuss an adjustable DRO approach in which we
solve the dynamic ASP in a multistage fashion.

Before serving the 𝑘th customer, we observe the realizations 𝑥1, … , 𝑥𝑘−1 of the random vari-
ables 𝑋1, … , 𝑋𝑘−1. We can use this knowledge for choosing the optimal value of 𝑠𝑘 by writing
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the appointment slot length as a function of the realizations: 𝑠𝑘 = 𝑠𝑘 (𝑥1, … , 𝑥𝑘−1). Since such
functional dependencies typically give rise to NP-hard optimization problems, in robust opti-

mization one often resorts to so-called linear decision rules (see, e.g., [18, 228]) of the form

𝑠𝑘 = 𝑧𝑘0 + 𝑘−1∑𝑖=1 𝑧𝑘𝑖𝑥𝑖, (7.24)

where 𝑧𝑘𝑖 becomes a decision variable in the new optimization problem. After substituting
(7.24) into (7.5), the problem remains convex in the uncertain parameters. Hence, we can apply

Lemma 7.2 to obtain the following linear program:

Proposition 7.11. The optimization problem min𝐬∈Smaxℙ∈P(𝜇,𝑑) 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)] can be written as

min𝐬∈S,𝐳 ∑𝜶∈{1,2,3}𝑛 ( 𝑛∏𝑖=1 𝑝(𝑖)𝛼𝑖 (𝑐𝑤 𝑛−1∑𝑘=1 𝑔(𝑘)𝜶 + 𝑐𝑜𝑔(𝑛)𝜶 ))
s.t. 𝑔(𝑘)𝜶 � 0, 𝑘 = 1, … , 𝑛, ∀𝜶 ∈ {1, 2, 3}𝑛,𝑔(𝑘)𝜶 �

𝑘∑𝑗=𝑙 (𝜏(𝑗)𝛼𝑗 − 𝑧𝑗0 − 𝑗−1∑𝑖=1 𝑧𝑗𝑖𝜏(𝑖)𝛼𝑖 ) , 𝑘 = 1, … , 𝑛, 𝑙 = 1, … , 𝑘, ∀𝜶 ∈ {1, 2, 3}𝑛. (7.25)

The linear program (7.25) is an approximation of the distributionally robust multistage prob-

lem and yields an upper bound since we only consider the subclass of linear functions for the

decision 𝑠𝑘 . Nevertheless, the solution of (7.25) still provides a robust schedule, which protects
against distributional ambiguity, but additionally takes into account past realizations and thus

makes adaptive decisions. To circumvent computational issues arising from the exponential

number of constraints, we can again resort to SAA.

Themodel (7.25) is advantageous in practical settingswhere customers are already on standby,

and thus benefit from regular schedule updates. Consider, for example, delivery services or

surgery scheduling where the patient is already physically present in the hospital [147]. An-

other related line of research concerns settings in which, next to routine customers which are

scheduled in advance, we have add-on customers that are fitted dynamically into the existing

schedule as they call to request appointments, see [46, 76].

Figure 7.11 illustrates the adjustable robust schedules for 𝑇 = 21, 𝑛 = 7 and three different
overtime costs. The figures show the range of values that the adjustable schedules assume and

also display three possible traces of the schedule. For low overtime costs, the range of time

allocation to the different customers remains narrow and almost no time is planned for the last

customer. For higher values of 𝑐𝑜, the range of values widens and the slot length of the final
customer strongly depends on the previous service time realizations.

7.4.6. Equidistant scheduling
As explained in Section 7.2, the ASP can be approximated by a version with infinitely many

appointments and equidistant schedules with slots of fixed length. The ASP objective function

can then be formulated in terms of the stationary waiting time 𝑊 in a D/G/1 queue, which in
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Figure 7.11: Optimal time allocation for 𝑇 = 21, 𝑐𝑤 = 1 and 𝑛 = 7 with adjustable schedules based on the
worst-case three-point distribution for 𝑎 = 1, 𝑏 = 5, 𝜇 = 3 and 𝑑 = 1
turn can be leveraged to determine the optimal slot length. Here𝑊 satisfies𝑊 𝑑= max{𝑊 +𝑋 −𝑠, 0} with 𝑋 the generic service time and 𝑠 the slot length.
We assume that 𝑠 > 𝜇, so that the long-run expected idle time per slot is 𝑠 − 𝜇. The trade-off

between stationary idle and waiting time then forms the ASP:min𝑠�𝜇 𝜔(𝑠 − 𝜇) + (1 − 𝜔)𝔼[𝑊 ]. (7.26)

Here 𝜔 ∈ (0, 1) is a cost parameter. Using the infinite-series expression [202]
𝔼[𝑊 ] = ∞∑𝑘=1 1𝑘𝔼[max{0, 𝑋1 − 𝑠 + … + 𝑋𝑘 − 𝑠}], (7.27)

one can write (7.26) in the form min𝑠>𝜇 𝔼ℙ[𝑓∞(𝑠, 𝐗)] with the expectation taken over the dis-
tribution ℙ of the service times 𝐗 = (𝑋1, 𝑋2, …). Adopting the DRO method presented in this
chapter, we then first determine tight bounds for 𝔼ℙ[𝑓∞(𝑠, 𝐗)] under mean-MAD ambiguity of𝐗, and then solve for the optimal (robust) slot length:min𝑠∈(𝜇,𝑏] minℙ∈P(𝜇,𝑑,𝛽) 𝔼ℙ[𝑓∞(𝑠, 𝐗)] and min𝑠∈(𝜇,𝑏] maxℙ∈P(𝜇,𝑑) 𝔼ℙ[𝑓∞(𝑠, 𝐗)]. (7.28)

Tight bounds for minℙ∈P(𝜇,𝑑,𝛽) 𝔼ℙ[𝑓∞(𝑠, 𝐗)] and maxℙ∈P(𝜇,𝑑) 𝔼ℙ[𝑓∞(𝑠, 𝐗)] (7.29)

do not follow directly from Lemma 7.4 and Lemma 7.2, because the function 𝑓∞(𝑠, 𝐗) can be
viewed as a special case of 𝑓𝑛(𝑠, 𝐗) but then with 𝑛 → ∞. A limiting argument for 𝑛 → ∞
was provided in [210], where the distributions that attain the bounds in (7.29) were shown

to correspond to the two-point and three-point distributions in Lemma 7.4 and Lemma 7.2,

respectively. Figure 7.12a shows some examples of the tight lower and upper bounds (7.29),

where we use uniformly 𝑈(1, 5) distributed service times as a reference.
We next consider the optimal slot length, 𝑠∗ say, where we also compare with a DRO ap-

proach in [138] based onmean-variance infinite-range ambiguity, which uses Kingman’s bound
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Figure 7.12: Optimal stationary schedules and costs (reference values obtained by simulation)

𝔼[𝑊 ] � 𝜎2/(2(𝑠 − 𝜇)) (tight for the D/G/1 queue, see [60]) and hence solves
min𝑠>𝜇 𝜔(𝑠 − 𝜇) + (1 − 𝜔) 𝜎22(𝑠 − 𝜇) .

Figures 7.12b and 7.12c plot the optimal slot lengths and costs, respectively, for different val-

ues of𝜔. We use a bisection search procedure to find the optimal value 𝑠∗ and solve the problems
in (7.28). The objective function (7.26) is convex in 𝑠, and hence efficient numerical techniques
can be applied. We also plot the objective function that follows from Kingman’s bound for the

matching mean-variance ambiguity set. Notice that the optimal mean-MAD slot length is close

to the “true” optimum for all values of 𝜔, while Kingman’s bound suggests relatively large slot
lengths when 𝜔 is small. This difference arises because the mean-MAD bound conditions on
the range of service times, whereas Kingman’s bound allows for unbounded support.

7.5. Conclusions and outlook
This chapter presents a novel distributionally robust approach for the ASP that, in contrast to

existing robust methods, can incorporate explicitly independent service times in a min-max

formulation. The key idea is to use MAD instead of variance as dispersion measure, so that the

worst-case scenarios that maximize costs are formed by independent three-point distributions

for the service times. These three-point distributions are independent of the chosen schedule

and hence render the min-max problem amenable to standard stochastic programming tech-

niques.

As explained in Section 7.1, existingDRO approaches for theASP are confrontedwith formidable

challenges when dealing with independent and identically distributed service times, due to the

non-linearity of the stochastic program. Our novel approach beats these challenges by clev-

erly choosing the ambiguity set, resulting in exact yet easy-to-solve linear programs. Another

way to circumvent the challenges is to relax the assumption of i.i.d. service times and allow

for correlation and dependency structures, and using DRO approaches that optimize over joint

probability measures instead of product measures. To the best of our knowledge, this is the first

work that deals with independent random variables in a DRO setting for the ASP. Other DRO
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approaches allow either freely varying dependency structures or restricted linear dependence

through conditioning on the covariance matrix, setting all covariance terms equal to zero; see

[135, 171]. The latter approach, however, is only an approximation for the independent setting.

We have revealed several new structural properties of optimal robust schedules, including

the “spiked patterns” in Figures 7.2-7.4, negligible early slots that resemble Bailey’s rule, and

optimal schedules that turn from dome-shaped to increasing when overtime costs become large.

As shown, DRO approaches that allow for dependent service times prescribe entirely different

schedules, such as decreasing patterns to counter several long service times that occur early

during the day (due to positive correlation). A further comparison between correlated and in-

dependent settings is worth exploring in more detail. To measure the “price of correlations,”

the method in this chapter can serve as a benchmark for system performance under full inde-

pendence of the driving random variables.
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Some concluding thoughts

8.1. Discussion
Independence causes problems, an observation that will initially seem strange to most proba-

bilists. After all, in probability theory, and certainly when it comes to sums of random variables

or stochastic systems such as random walks and queues, the independence of variables is often

a requirement for mathematical tractability. In contrast, if one does not exclude correlations,

the analysis usually becomes much more challenging. This stands in stark contrast with the op-

timization point of view, at least when resolving extremal problems, to which the perspective

is exactly the other way around: allowing for correlations leads to a relaxation that is math-

ematically simpler since modeling independence requires an infinite number of semi-infinite

constraints.

Extremal stochastic models seek to establish upper and lower bounds for performance met-

rics using limited information available about the underlying random variables that drive the

system, a renowned example being the eponymous bound derived by Kingman [132] for the

expected delay in the GI/G/1 queue, which only uses mean-variance information about the ser-

vice and interarrival times. However, a notable drawback of this bound is its inability to fully

harness the knowledge that the underlying driving sequences consist of independent and iden-

tically distributed (i.i.d.) random variables. This limitation generally gives rise to a bound that is

not as sharp as it could potentially be. In distributionally robust optimization (DRO), the issue

regarding independence we address here is widely acknowledged. We adopt the terminology

from DRO and in this chapter shall refer to the set of admissible probability distributionsP as

an ambiguity set. Many existing works that incorporate structural properties of distributions—

169
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such as unimodality and symmetry—require the underlying ambiguity set to remain convex to

employ the duality theory suited for solving such problems; see, for example, [177]. However,

the presence of independence disrupts this convexity, resulting in mathematical intractability

[100]. Moreover, we have not yet addressed the additional difficulties that arise from assuming

identically distributed random variables. Fully capturing such a distributional characteristic

requires an infinite number of moment constraints. Even within the stochastic programming

literature, the arduous nature of addressing stochastic independence is widely acknowledged.

The introduction of independence necessitates the computation of high-dimensional convolu-

tions, which poses significant challenges. Indeed, even under the lenient assumption of inde-

pendent uniform distributions governing the random variables, the simple class of linear two-

stage stochastic programs with fixed recourse is deemed computationally intractable [72, 99].

Despite these additional complexities, it still seems of substantial value to add this structural

information to the ambiguity set. Doing so reduces its size, resulting in tighter performance

bounds. This parallels the scenario where the inclusion of the unimodality property in the am-

biguity set leads to sharper bounds as it excludes the possibility of the worst-case distribution

being a pathological discrete distribution supported on a limited set of points; see, e.g., [131].

As demonstrated in this chapter, the assumption of i.i.d. random variables does not eliminate

the possibility of these discrete distributions being the extremal solutions. However, it does

exclude overly conservative dependency structures.

As our motivating example, we again turn to the GI/G/1 queue. Let𝑊𝑛 be the waiting time of
the 𝑛th customer. Further, let𝑋𝑛 = 𝑉𝑛−𝑈𝑛 denote the difference between service and interarrival
time. The waiting-time process then evolves according to the Lindley recursion𝑊𝑛+1 = (𝑊𝑛 + 𝑋𝑛)+, 𝑛 � 0, 𝑊0 = 0, (8.1)

where (𝑥)+ = max{𝑥, 0}. By the i.i.d. assumption, (8.1) can equivalently be stated as𝑊𝑛+1 𝑑= max{0, 𝑋1, 𝑋1 + 𝑋2, … , 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛} =∶ 𝑓𝑛(𝑋1, 𝑋2, … , 𝑋𝑛),
where

𝑑= denotes equality in distribution. The sequence {𝑊𝑛, 𝑛 � 0} can thus be expressed as a
multivariate function 𝑓𝑛(⋅), which shall serve as the objective function for our extremal analysis.
In the remainder, it is our aim to resolvemaxℙ∈P 𝔼[𝑓𝑛(𝐗)], (8.2)

whereP contains the available moment information and 𝐗 is a random vector with elements{𝑉𝑖, 𝑈𝑖}𝑛𝑖=1. Letting 𝑛 → ∞, this yields the classical extremal queue problem, as discussed in Chap-
ter 2 and [50, 60, 222]. To obtain bounds for the stationary GI/G/1 waiting time, one considers

the random variable 𝑊 ∶= lim𝑛→∞ 𝑊𝑛, which solves the stochastic fixed point equation𝑊 𝑑= (𝑊 + 𝑉 − 𝑈)+. (8.3)

Notice that for the expressions above to be valid, aside from stochastic independence, equality in

distribution must hold throughout for all underlying random variables. This additional require-

ment, as aptly described by Kingman [133], introduces a challenging element of nonlinearity
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into the problem: “A still more difficult problem arises when all random variables considered

are required to have the same distribution, since this requirement introduces an element of

nonlinearity into the problem.” To illustrate how this nonlinearity arises in the formulation of

problem (8.2), let us consider the following example in two dimensions. Let 𝑋1, 𝑋2 denote two
random variables both with supportX = {𝑥1, … , 𝑥𝑟 }, and say we are trying to find a distribution(𝑝1, … , 𝑝𝑟 ) onX that resolves maxℙ∈P 𝔼[𝑓2(𝑋1, 𝑋2)]. This is tantamount to solving

max 𝑟∑𝑘=1 𝑟∑𝑙=1 max{0, 𝑥𝑘, 𝑥𝑘 + 𝑥𝑙}𝑝𝑘𝑝𝑙
s.t.

𝑟∑𝑘=1 ℎ𝑗 (𝑥𝑘)𝑝𝑘 = 𝑞𝑗 , 𝑗 = 0, … ,𝑚,𝑝𝑘 � 0, 𝑘 = 1, … , 𝑟,
(8.4)

where ℎ𝑗 and 𝑞𝑗 , ∀𝑗 , capture the available moment information. The nonlinearity arising from
the objective function in (8.4) becomes evident upon closer examination. It is apparent that

the objective function now takes a quadratic form in the vector (𝑝1, … , 𝑝𝑟 ). The computational
complexity naturally increases as more random variables are introduced, exacerbating the com-

putational intractability of the problem. Furthermore, if the support is not assumed to be finite,

this adds another layer of complexity to the extremal analysis.

In this concluding chapter, our objective is to address extremal problems with i.i.d. random

variables using simple yet effective solutions tailored to specific cases. We delve deeper into the

recursive argument that was used to resolve the extremal queue problem in Chapter 2. Then,

we show that the insensitivity property, emphasized throughout this thesis, can be extended

to encompass various other types of distributional information. To facilitate its application, we

present concise guidelines outlining the process of eliciting this property. Finally, we discuss

two more extremal models featuring i.i.d. driving sequences, which can be effectively solved by

leveraging the recursive argument and harnessing the insensitivity property.

8.2. A simple trick
An excellent exposition on extremal models for independent random variables is provided by

Kingman [132], who discusses a two-dimensional example. Consider two independent random

variables 𝑋 ∈ X, 𝑌 ∈ Y, whereX, Y denote their supports, with ambiguity setsP𝑋 andP𝑌 ,
respectively, and define 𝜙𝑌 (𝑥) ∶= 𝔼[𝑓 (𝑥, 𝑌 )], 𝑥 ∈X.
Then 𝔼[𝑓 (𝑋, 𝑌 )] = 𝔼[𝜙𝑌 (𝑋)] by the law of total expectation. Observe that 𝜙𝑌 isX-measurable
by Fubini’s theorem. Suppose that there exists a measure that satisfies the moment conditions.

Then using the Richter-Rogosinski theoremwith 𝑓 replaced by the function 𝜙𝑌 , we can establish
the existence of an extremal random variable 𝑋∗ with at most 𝑚 + 1 support points. It follows
that 𝔼[𝜙𝑌 (𝑋)] � 𝔼[𝜙𝑌 (𝑋∗)] ⟹ 𝔼[𝑓 (𝑋, 𝑌 )] � 𝔼[𝑓 (𝑋∗, 𝑌 )].
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Applying the same argument to 𝜙𝑋∗(𝑦) ∶= 𝔼[𝑓 (𝑋∗, 𝑦)], it can be shown that there exists a 𝑌 ∗
such that 𝔼[𝑓 (𝑋∗, 𝑌 )] � 𝔼[𝑓 (𝑋∗, 𝑌 ∗)],
and so 𝔼[𝑓 (𝑋, 𝑌 )] � 𝔼[𝑓 (𝑋∗, 𝑌 ∗)].
So far, this result relies predominantly on the Richter-Rogosinski theorem [186]. It is natural

to try and extend this result to the setting with an arbitrary number of random variables. In

particular, consider the problem of finding bounds for𝔼[𝑓𝑛(𝑋1, 𝑋2, … , 𝑋𝑛)],
where 𝑋1, 𝑋2, … , 𝑋𝑛 are independent random variables satisfying the moment conditions. By
applying the above argument sequentially, it turns out that it is possible to carry over the two-

dimensional result to the setting with an arbitrary number of independent random variables.

Thus, we can restrict our attention, with respect to all the random variables being considered, to

those that assume only a finite number of values. This results in the following theorem, which

generalizes results discussed in [114, 133].

Theorem 8.1 (Richter-Rogosinski tower rule). Suppose that there exist distributions for 𝑋1,𝑋2, … , 𝑋𝑛 that all satisfy𝑚moment conditions. Then the supremum of 𝔼[𝑓𝑛(𝑋1, 𝑋2, … , 𝑋𝑛)], where𝑋1, 𝑋2, … , 𝑋𝑛 are independent, is unaltered if the respective ambiguity sets are restricted to distri-

butions with at most 𝑚 + 1 support points.
Unfortunately, Theorem 8.1 does not necessarily hold for identically distributed random vari-

ables (see, e.g., [133]). Despite this limitation, this theorem offers a framework for establishing

sharp bounds for 𝔼[𝑓𝑛(𝑋1, 𝑋2, … , 𝑋𝑛)], even if 𝑋1, 𝑋2, … , 𝑋𝑛 are i.i.d. random variables. If we
relax the assumption of identical distributions, it is sufficient to solvemaxℙ⊗,{ℙ𝑖}𝑛𝑖=1𝔼ℙ⊗ [𝑓𝑛(𝑋1, 𝑋2, … , 𝑋𝑛)]

s.t. ℙ⊗ = ℙ1 ⊗ ℙ2 ⊗ ⋯ ⊗ ℙ𝑛,𝔼ℙ𝑖 [ℎ𝑗 (𝑋𝑖)] = 𝑞𝑗 , 𝑖 = 1, 2, … , 𝑛, 𝑗 = 1, … ,𝑚, (8.5)

where the probability measure ℙ⊗ is written in this particular form to impose independence
among the random variables 𝑋1, … , 𝑋𝑛. To deal with problem (8.5), we adopt the approach
outlined in Chapter 2 and sequentially optimize over the 𝑛 random variables. This way, we can
express the multivariate problem asmaxℙ𝑛∈P⋯maxℙ2∈Pmaxℙ1∈P𝔼ℙ⊗[𝑓𝑛(𝑋1, 𝑋2, … , 𝑋𝑛)]. (8.6)

It is important to note here that, due to the identicality of the random variables, the optimization

is taken over the same ambiguity setP in each stage. Suppose we first consider the maximiza-

tion with respect to 𝑋1, then we need to consider as objective function𝜙(𝑥1) ∶= 𝔼[𝑓𝑛(𝑥1, 𝑋2, … , 𝑋𝑛)],
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where the expectation 𝔼 is taken with respect to the other random variables 𝑋2, … , 𝑋𝑛. From
Theorem 8.1, it readily follows that the extremal distributions have at most 𝑚 + 1 mass points.
In order to find a candidate distribution for 𝔼[𝜙(𝑋1)], we can try to exploit general properties
such as curvature, as demonstrated in the proof of Theorem 2.1, in which convexity of 𝜙(𝑥1)
was leveraged. If an extremal distribution can be established which is fully characterized by the

distributional information within the ambiguity set, such that it relies solely on the curvature

properties of 𝜙(𝑥1) and no longer depends on the specific characteristics of 𝑓𝑛—and, by exten-
sion, the other random variables—this extremal distribution constitutes the candidate to solve

(8.5) and governs the extremal random variable, denoted as 𝑋∗. Then, by taking the expectation
with respect to 𝑋∗, we obtainmaxℙ𝑛∈P𝑛(𝜇,𝑑) ⋯ maxℙ2∈P2(𝜇,𝑑) 𝔼ℙ⊗[𝑓𝑛(𝑋∗, 𝑋2, … , 𝑋𝑛)]. (8.7)

Since the expectation operator preserves properties such as monotonicity, convexity, etc., the

worst-case expectation retains those properties as function of 𝑥2, … , 𝑥𝑛. As a result, we can
substitute 𝑋∗ sequentially 𝑛 times, and, since all the ambiguity sets are equivalent, the extremal𝑋1, 𝑋2, … , 𝑋𝑛 are i.i.d. as𝑋∗, hence resolving the original extremal problem (8.6) with identically
distributed random variables. As a result, this recursive argument can solve both problems with

independent and i.i.d. random variables.

Of course, the main challenge is finding such an extremal distribution that solves 𝜙(𝑋1),
which pertains to the notion of “insensitivity” that we have introduced earlier in this thesis.

Distribution-free analysis, and distributionally robust optimization, for that matter, greatly ben-

efit from this insensitivity property as it simplifies the mathematical analysis significantly. As a

matter of fact, the recursive argument presented in this section relies heavily on this property.

Without it, the argument would be considerablymore complex, perhaps even impossible. While

it is important to note that this simple trick based on the tower rule is certainly not a panacea for

all extremal problems with i.i.d. driving sequences, it proves potentially valuable for particular

models. Therefore, we complement this recursive argument with a set of guidelines that enables

us to identify cases for which this simple trick can lead to solvable instances of the extremal

problem with i.i.d. random variables. In the next section, we present several combinations of

distributional information and objective functions that induce the desired insensitivity.

8.3. Guidelines for inducing insensitivity
We already observed in Chapter 3 that we can restrict our attention to two-point distributions

in the search for the extremal distribution that attains the tight bound 𝔼ℙ[𝜙(𝑋)]with ℙ ∈P(𝜇,𝜎).
We next prove a result that is similar to Lemma 3.2, but which requires only existence and con-

vexity of the derivative 𝜙′. The proof of this result elucidates why this setting with variance
information attains similar favorable properties as those that we encountered for mean-MAD

information in the previous chapters, albeit for a different class of functions. We prove the

insensitivity result by following a series of steps: First, we determine a candidate primal solu-

tion by leveraging the complementary slackness property to make an educated guess. Then,
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we demonstrate that our guess remains primal feasible across all possible values of the distri-

butional parameters. Subsequently, we establish the feasibility of the resulting dual solution.

Finally, we demonstrate the optimality of these solutions using weak duality.

Proposition 8.2 (Insensitive mean-variance solution). Consider a function 𝑥 ↦ 𝜙(𝑥) that
is continuously differentiable on [𝑎, 𝑏], with its derivative denoted as 𝜙′, and a random variable𝑋 ∼ ℙ ∈P(𝜇,𝜎).
(i) If 𝜙′(𝑥) is convex on [𝑎, 𝑏], the extremal distribution that solves maxℙ∈P(𝜇,𝜎) 𝔼ℙ[𝜙(𝑋)] is a two-

point distribution on the values
{𝜇 − 𝜎2𝑏−𝜇 , 𝑏} with respective probabilities

{ (𝑏−𝜇)2(𝑏−𝜇)2+𝜎2 , 𝜎2(𝑏−𝜇)2+𝜎2 }.
(ii) If 𝜙′(𝑥) is concave on [𝑎, 𝑏], the extremal distribution that solvesmaxℙ∈P(𝜇,𝜎) 𝔼ℙ[𝜙(𝑋)] is a two-
point distribution on the values

{𝑎, 𝜇 + 𝜎2𝜇−𝑎} with respective probabilities
{ 𝜎2(𝜇−𝑎)2+𝜎2 , (𝜇−𝑎)2(𝜇−𝑎)2+𝜎2 }.

Proof. Consider a generic function 𝜙(𝑥)with a convex derivative 𝜙′(𝑥). For ℙ ∈P(𝜇,𝜎), we must
solve maxℙ(𝑥)�0 ∫ 𝑏𝑎 𝜙(𝑥)dℙ(𝑥)

s.t. ∫ 𝑏𝑎 dℙ(𝑥) = 1, ∫ 𝑏𝑎 𝑥 dℙ(𝑥) = 𝜇, ∫ 𝑏𝑎 𝑥2dℙ(𝑥) = 𝜎2 + 𝜇2, (8.8)

which has the following dual:min𝜆0,𝜆1,𝜆2 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜎2 + 𝜇2)
s.t. 𝑀(𝑥) ∶= 𝜆0 + 𝜆1𝑥 + 𝜆2𝑥2 � 𝜙(𝑥), ∀𝑥 ∈ [𝑎, 𝑏]. (8.9)

We seek a quadratic function that majorizes the objective function 𝜙(𝑥). Under the assumption
that strong duality holds, we can provide a constructive argument to find the extremal distribu-

tion with help from the dual problem. Consequently, we can use the complementary slackness

property to make an educated guess on the support of the extremal distribution. The candidate

solution 𝑀(𝑥) that we will consider touches 𝜙(𝑥) at exactly two points, i.e., some 𝑥0 < 𝜇 and
the upper bound of the support 𝑏, see Figure 8.1. First we show that for each feasible pair of the
mean 𝜇 and variance 𝜎 parameters, the two-point distribution with support {𝑥0, 𝑏} is a member
of the ambiguity set. Solving for 𝑥0, 𝑝𝑥0 and 𝑝𝑏, using the moment constraints in (8.8), yields
the distribution stated in the lemma. Notice that𝑝𝑥0 = (𝑏 − 𝜇)2(𝑏 − 𝜇)2 + 𝜎2 ,
from which it is apparent that 𝑝𝑥0 , 𝑝𝑏 ∈ [0, 1]. We also have 𝑥0 < 𝜇 since 𝜎 > 0 and 𝑏 > 𝜇.
Finally, we check if 𝑥0 � 𝑎. Obviously, this holds if 𝑎 = −∞. To show 𝑥0 � 𝑎 also for 𝑎 > −∞,
recall that 𝜎2 � (𝑏 − 𝜇)(𝜇 − 𝑎).
Hence, using this bound, it follows that𝑥0 = 𝜇 − 𝜎2𝑏 − 𝜇 � 𝜇 − (𝑏 − 𝜇)(𝜇 − 𝑎)𝑏 − 𝜇 = 𝑎.



623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen
Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023 PDF page: 181PDF page: 181PDF page: 181PDF page: 181

Chapter 8. Some concluding thoughts 175

As a consequence, the extremal distribution stated in Lemma 8.2 always constitutes a feasible

primal solution for each 𝜇, 𝜎 pair. Next the goal is to construct a dual solution (𝜆0, 𝜆1, 𝜆2) that
achieves the same objective value as this primal solution, ensuring by weak duality that this

primal-dual solution pair is optimal. To obtain the quadratic function illustrated in Figure 8.1,

the dual variables should satisfy the following conditions:𝜆0 + 𝜆1𝑥0 + 𝜆2𝑥20 = 𝜙(𝑥0), 𝜆0 + 𝜆1𝑏 + 𝜆2𝑏2 = 𝜙(𝑏), 𝜆1 + 2𝜆2𝑥0 = 𝜙′(𝑥0).
Solving for 𝜆0, 𝜆1, 𝜆2, substituting the expression for 𝑥0 and plugging these values into the dual
objective function yields, after some algebra,

𝜆0 + 𝜆1𝜇 + 𝜆2(𝜇2 + 𝜎2) = (𝑏 − 𝜇)2(𝑏 − 𝜇)2 + 𝜎2 𝜙(𝜇 − 𝜎2𝑏 − 𝜇) + 𝜎2(𝑏 − 𝜇)2 + 𝜎2 𝜙(𝑏),
which agrees with the primal objective value. Hence, strong duality holds if this choice for 𝜆0,𝜆1 and 𝜆2 is feasible. To complete the proof, it thus remains to establish feasibility of this dual
solution. Denote by 𝑀𝑥0 the dual function that touches 𝜙 at 𝑥0, and intersects at 𝑏.

𝑥

𝜙(𝑥)𝑀𝑥0 (𝑥)

𝑥∗0 𝜇𝑎 𝑏 𝑥

𝜙′(𝑥)𝑀′𝑥0 (𝑥)

𝑥∗0 𝜇𝑎 𝑏
Figure 8.1: Objective function 𝜙(𝑥), dual function 𝑀(𝑥) and their derivatives

Now, by looking at the derivatives of the majorizing function𝑀(𝑥) and the objective function𝜙(𝑥), we can verify that dual feasibility indeed holds. To see this, notice that the derivatives
can only intersect twice because 𝜙′ is convex and 𝑀′ is linear. The first intersection point
corresponds to a tangent point for the original functions. Due to dual feasibility, 𝑀′(𝑥) has to
be greater than 𝜙′ directly after the intersection point and 𝜙(𝑥) can only coincide with 𝑀(𝑥)
once, except for a possible second time at 𝑏. This then yields assertion (i). For assertion (ii),
note that for concave 𝜙′(𝑥) the line of reasoning is almost identical, but instead considering
the extremal distribution with support {𝑎, 𝑥0} and the dual function that corresponds to this
solution.

The benefits of this result are readily apparent. If a function is a member of this class of

functions with a convex derivative, then intuitive guesses and trial solutions for the primal

solution and dual function are unnecessary, as we immediately obtain an extremal distribution

that exhibits the insensitivity property.
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It is quite instructive to compare the upper and lower bounds with mean-variance infor-

mation to those with mean-MAD(-𝛽) information. For this purpose, recall the dual functions
corresponding to the mean-MAD(-𝛽) ambiguity sets, as displayed in Figures 8.2a and 8.2b.

𝑥

𝜙(𝑥)𝑀𝑑(𝑥)

𝜇𝑎 𝑏
(a)The majorant 𝑀𝑑(𝑥)

𝑥

𝜙(𝑥)𝑀𝛽(𝑥)

𝜇𝑥1 𝑥2
(b)The minorant 𝑀𝛽(𝑥)

Figure 8.2: Some convex function 𝜙(𝑥) and the dual functions for mean-MAD(-𝛽) information
Another natural guess for the primal solution in the mean-MAD setting is a two-point dis-

tribution with one support point fixed to either 𝑎 or 𝑏 and a second support point 𝑥0 varying in
the interval (𝜇, 𝑏) or (𝑎, 𝜇), respectively. This leads to three unknowns (two probabilities and the
value of 𝑥0), which can be determined using the three moment equations. However, it becomes
clear from Figure 8.2a that several issues arise when turning to the dual problem. Because 𝜙(𝑥)
is convex and 𝑀𝑑 is piecewise affine, there does not exist a matching dual function for which𝑀𝑑(𝑥) coincides with 𝜙(𝑥) on a point in the interior of [𝑎, 𝑏], except for 𝑥 = 𝜇. Hence, the only
alternative that yields a consistent solution is the three-point distribution with support {𝑎, 𝜇, 𝑏},
which follows from solving the moment conditions𝑝1 + 𝑝2 + 𝑝3 = 1, 𝑝1𝑎 + 𝑝2𝜇 + 𝑝3𝑏 = 𝜇, 𝑝1|𝑎 − 𝜇| + 𝑝3|𝑏 − 𝜇| = 𝑑,
yielding the extremal distribution that is ubiquitous in this thesis.

In contrast, a similar guess proves effective for the mean-MAD-𝛽 lower bound. Consider a
two-point distribution characterized by two unknown support values 𝑥1, 𝑥2 and two unknown
probabilities 𝑝1, 𝑝2. With four moment constraints in place, we can obtain a unique extremal
distribution as the solution to the following system of equations:𝑝1 + 𝑝2 = 1, 𝑝1𝑥1 + 𝑝2𝑥2 = 𝜇, 𝑝1|𝑥1 − 𝜇| + 𝑝2|𝑥2 − 𝜇| = 𝑑, 𝑝2 = 𝛽.
Upon examining Figure 8.2b, it becomes apparent that this two-point distribution admits a

feasible dual function,𝑀𝛽 . Therefore, the resulting solution serves as a viable candidate for the
extremal distribution, meeting the requirements in both the primal and dual sense.

We proceed to establish a bound that closely resembles the Edmundson-Madanski (E-M)

bound [146], but for which a weaker condition than convexity, called starshapeness, is suffi-

cient. A function 𝜙 ∶ ℝ+ ↦ ℝ, with ℝ+ denoting the nonnegative real numbers, is said to be
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starshaped if 𝜙(𝑥)/𝑥 is a nondecreasing function of 𝑥 ∈ ℝ+. However, it is usually easier to ap-
ply the following, more intuitive, definition: A function is starshaped if, and only if, it has the

property that when one draws its graph and places a star at the origin, then this star illuminates

from the origin every point of the upper part of the curve [155], as illustrated in Figure 8.3.

𝑥

𝜙(𝑥)𝑀∗(𝑥)

0 𝑏
Figure 8.3: A starshaped function and its linear majorant

Let us consider, in conjunction with the class of starshaped functions, the ambiguity set

P(𝜇,𝑏) = {ℙ ∶ supp(𝑋) ⊆ [0, 𝑏], 𝔼ℙ[𝑋] = 𝜇} .
From Figure 8.3, it follows that the next result holds.

Proposition 8.3 (E-M bound for starshaped functions). Let 𝑋 denote a random variable of

which its distribution ℙ ∈P(𝜇,𝑏). Consider a function 𝑥 ↦ 𝜙(𝑥) for which 𝜙(𝑥)/𝑥 is nondecreasing
on [0, 𝑏]. Then,maxℙ∈P(𝜇,𝑏) 𝔼ℙ[𝜙(𝑋)] is achieved by a two-point distribution with support {0, 𝑏} and
respective probabilities {1 − 𝜇/𝑏, 𝜇/𝑏}.
Proof. Define𝑀∗(𝑥) ∶= 𝜆0+𝜆1𝑥 , which is the dual function corresponding toP(𝜇,𝑏). Then, from
the definition of starshapeness, it follows that the dual solution 𝜆0 = 𝜙(0), 𝜆1 = (𝜙(𝑏) −𝜙(0))/𝑏
is feasible. Moreover, by complementary slackness, the corresponding primal solution places

probability mass on the support {0, 𝑏}. It is then a straightforward exercise to show that the
primal and dual objective values agree, and hence, by weak duality, this is the optimal primal-

dual solution pair.

We shall see later that starshapeness becomes useful for distribution-free analysis of the

GI/G/𝑐 queue.
8.4. Tractable extremal models

8.4.1. Bounds for higher-order cumulants of GI/G/1 queue
We analyze the mean-variance extremal queue with a single server and unlimited waiting space

in which customers are served based on the order of arrival. This system is driven by two

independent sequences of i.i.d. distributed random variables, which represent the service times
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{𝑉𝑛} and the interarrival times {𝑈𝑛} of customers, distributed as 𝑉 and 𝑈 , respectively. The
service time of the 𝑛th customer is denoted by 𝑉𝑛, and the interarrival time between the arrivals
of customers 𝑛 and 𝑛+1 is represented by 𝑈𝑛. We assume that the first customer arrives precisely
at time 0. It is further assumed that the mean service time 𝔼[𝑉 ] = 𝜇𝑉 and the mean interarrival
time 𝔼[𝑈] = 𝜇𝑈 exist (and are finite), and that both 𝑉 and 𝑈 have a finite variance 𝜎2𝑉 and 𝜎2𝑈
respectively. To ensure stability, we assume that 𝜇𝑉 < 𝜇𝑈 . The waiting time of the 𝑛th customer,
denoted by 𝑊𝑛, is defined as the time the customer spends in the queue before being served.
The sequence {𝑊𝑛, 𝑛 � 0} represents a Lindley process. We define the Lindley process through
the recursion 𝑊𝑛+1 = (𝑊𝑛 + 𝑉𝑛 − 𝑈𝑛)+, 𝑛 � 0,
in which (𝑥)+ = max{𝑥, 0} and 𝑊0 = 0. We study the steady-state waiting time, denoted by 𝑊 ,
of which the distribution satisfies the stochastic fixed-point equation𝑊 𝑑= (𝑊 + 𝑉 − 𝑈)+,
with

𝑑= denoting equality in distribution. Define 𝑋𝑛 ∶= 𝑉𝑛−𝑈𝑛 and 𝑆𝑛 ∶= 𝑋1+⋯+𝑋𝑛, for 𝑛 � 1,
so that 𝑊𝑛 𝑑= max{𝑆𝑘 ∶ 1 � 𝑘 � 𝑛}—in other words, the waiting time process {𝑊𝑛} is generated
by the random walk {𝑆𝑛}. Under the finite moment conditions, 𝑊𝑛 is finite almost surely with a
finite mean given by 𝔼[𝑊𝑛] = 𝑛∑𝑘=1 1𝑘𝔼[𝑆+𝑘 ], ∀𝑛 � 0
and, assuming a stable system, 𝑊 is a proper random variable with mean

𝔼[𝑊 ] = ∞∑𝑘=1 1𝑘𝔼[𝑆+𝑘 ] < ∞.
Let 𝑐𝑚(𝑊 ) denote the 𝑚th cumulant of the steady-state waiting time, which one can write as𝑐𝑚(𝑊 ) = ∞∑𝑘=1 1𝑘𝔼[(𝑆+𝑘 )𝑚]. (8.10)

Bounds for the higher cumulants of the steady-state waiting time were already obtained in

[24] using stochastic comparison techniques. Let the random variables 𝑉(2) and 𝑈(2) follow the
extremal two-point distributions stated in assertions (i) and (ii) of Lemma 8.2, respectively. In

order to apply the bounds in Lemma 8.2, it is necessary to show that expression (8.10) can be

written in terms of an objective function with a convex derivative. As a building block for

expression (8.10), define an objective function as follows:

𝜙(𝑥) ∶= ∫ 𝑏𝑌𝑎𝑌 ℎ ((𝑦 − 𝑥)+) d𝐹(𝑦) = ℎ(0)𝐹(𝑥) + ∫ 𝑏𝑌𝑥 ℎ(𝑦 − 𝑥)d𝐹(𝑦), 𝑎𝑈 � 𝑥 � 𝑏𝑈 , (8.11)

where ℎ(𝑥) = 𝑥𝑚 with 𝑚 � 2 being an integer, and 𝐹 is the cumulative distribution function
of some auxiliary real-valued random variable 𝑌 (which henceforth will correspond to 𝑉1, 𝑉1 +
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𝑉2 −𝑈2, etc.). Since ℎ(0) = 0, it is possible to reduce the Riemann-Stieltjes integral (8.11) further
to 𝜙(𝑥) = ∫ 𝑏𝑌𝑥 ℎ(𝑦 − 𝑥)d𝐹(𝑦), 𝑎𝑈 � 𝑥 � 𝑏𝑈 . (8.12)

In Appendix B.5, we show that 𝜙(𝑥) is convex and continuously differentiable, with a concave
derivative 𝜙′(𝑥), so that Lemma 8.2 can be employed.
Lemma 8.4. Consider a real-valued random variable 𝑌 with cumulative distribution function 𝐹
on support [𝑎𝑌 , 𝑏𝑌 ] and a finite moment-generating function. Then, the objective function 𝜙(𝑥), as
defined in (8.12), with ℎ(𝑥) = 𝑥𝑚, 𝑚 � 2, is continuously differentiable on [𝑎𝑈 , 𝑏𝑈 ]. Moreover, its

derivative, 𝜙′(𝑥), is concave on [𝑎𝑈 , 𝑏𝑈 ].
Note that we did notmake any assumptions on the probability distribution 𝐹 . Chen andWhitt

[51], however, needed to derive sufficient conditions for the distribution function 𝐹 so that their
objective function yields a Chebyshev system on [0, 𝑏], entailing that the extremal distributions
are the two-point distributions stated in Lemma 8.2. However, in order to demonstrate this,

they must make ancillary assumptions, such as the existence of a smooth probability density

function and additional constraints on the support of 𝑌 (i.e., 𝑎𝑌 � 0 < 𝑏 � 𝑏𝑌 ), all of which
turn out to be superfluous, as we show next. For the higher-order cumulants of the steady-state

waiting time, we demonstrate the following result, which is a stronger assertion thanTheorem 1

in [51].

Theorem 8.5 (Higher-order cumulants of steady-state waiting time). Consider the GI/G/1

queue with generic service time 𝑉 whose distribution lies in the ambiguity setP(𝜇𝑉 ,𝜎𝑉 ) and generic
interarrival time 𝑈 whose distribution lies in the ambiguity set P(𝜇𝑈 ,𝜎𝑈 ). Consider the tight upper
bounds for all cumulants 𝑚 � 2 of the steady-state waiting time 𝑊 .

(i) For given service time 𝑉 , the tight upper bound follows from 𝑈(2).
(ii) For given interarrival time 𝑈 , the tight upper bound follows from 𝑉(2).
(iii) The overall tight upper bound follows from 𝑉(2) and 𝑈(2).

Proof. Let us provide a proof sketch for part (i) of the theorem, then (ii) and (iii) follow from a

similar line of reasoning. According to Lemma 8.2, objective functions of the form (8.12) attain

their maximal expected value under the extremal random variable 𝑈(2). To establish results
for the steady-state waiting time, we first consider a truncated version of the infinite series

expression (8.10):

𝑓𝑛,𝑚(𝑢1, … , 𝑢𝑛) = 𝑛∑𝑘=1 1𝑘𝔼[(max{0, 𝑉1 − 𝑢1 + … + 𝑉𝑘 − 𝑢𝑘})𝑚]. (8.13)

Observe that this expression has the required functional form. We investigate the case 𝑚 =2, i.e. the variance, as the argument is identical for higher cumulants. Consider the moment
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problem in 𝑈1, thus fixing the distributions of 𝑈2, … , 𝑈𝑛, 𝑉1, … , 𝑉𝑛,maxℙ∈P(𝜇𝑈 ,𝜎𝑈 ) ∫ 𝑏𝑈𝑎𝑈 (𝔼[((𝑉1 − 𝑢1)+)2] + … + 1𝑛𝔼[((𝑉1 − 𝑢1 + … + 𝑉𝑛 − 𝑈𝑛)+)2]) dℙ(𝑢1), (8.14)

where the expectations𝔼 are taken with respect to the distributions of 𝑉1, … , 𝑉𝑛, 𝑈2, … , 𝑈𝑛. Since
the expectations in (8.14) are functions of the form 𝑓 (𝑢1), with ℎ(𝑥) = 𝑥2 and 𝑌 representing𝑉1, 𝑉1 + 𝑉2 − 𝑈2, etc., Lemma 8.2 holds for each of these terms. Since the two-point extremal
distribution is independent of 𝑢2, … , 𝑢𝑛, we can apply the univariate result recursively. The
proof is then completed by a limit argument, where we approach the infinite series by letting𝑛 → ∞. Consider the function𝑓𝑛,𝑚(𝑢1, … , 𝑢𝑛) = 𝑛∑𝑘=1 1𝑘𝔼[(max{0, 𝑉1 − 𝑢1 + … + 𝑉𝑘 − 𝑢𝑘})𝑚]
Then, for i.i.d. interarrival times distributed as 𝑈 ,maxℙ∈P(𝜇𝑈 ,𝜎𝑈 ) 𝔼[𝑓𝑛,𝑚(𝑈1, … , 𝑈𝑛)]
is solved by the extremal distribution 𝑈(2). This yields the bounds𝑐𝑛 ∶= 𝑛∑𝑘=1 1𝑘𝔼[(max{0, 𝑉1 − 𝑈1 + … + 𝑉𝑘 − 𝑈𝑘})𝑚] � 𝔼ℙ[𝑓𝑛,𝑚(𝑈 ∗1 , … , 𝑈 ∗𝑛 )] =∶ 𝑢𝑛
with 𝑈∗1 , 𝑈 ∗2 , … i.i.d. as 𝑈(2). Since the sequences {𝑐𝑛} and {𝑢𝑛} both converge to well-defined
limits, the result follows. For (ii), we prove that 𝜙(𝑣1) has a convex derivative. For (iii), we
combine (i) and (ii).

8.4.2. Extremal GI/G/𝑐 queue with mean-support information
Consider a multi-server GI/G/𝑐 queueing system where the service time of the 𝑛th customer
is denoted by 𝑉𝑛, and the interarrival time between the arrivals of customers 𝑛 and 𝑛 + 1 is
represented by 𝑈𝑛. That is, the system is driven by the same two sequences as the GI/G/1 model
in the previous subsection. Customers are served according to a first-come-first-served policy.

The waiting time 𝑊𝑛 of the 𝑛th customer is given by the remaining workload assigned to the
first server at the time of the 𝑛th arrival, 𝑊(1)𝑛 . For a vector 𝐱, let 𝑥(𝑖) denote the 𝑖th smallest
component, so that 𝑥(1) � 𝑥(2) � … � 𝑥(𝑐). Let (𝑊 (1)𝑛 , 𝑊 (2)𝑛 , … ,𝑊 (𝑐)𝑛 ) denote the componentwise
increasing vector of assigned workloads at the 𝑐 servers as seen by the 𝑛th arrival. Let Φ(𝐱) =(𝑥(1), 𝑥(2), … , 𝑥(𝑐)) denote the operator that sorts the vector 𝐱 in this increasing order. Then for𝑛 = 1, 2, …, the evolution of the workloads in the GI/G/𝑐 queueing system is described by the
Kiefer-Wolfowitz recursion(𝑊 (1)𝑛+1, 𝑊 (2)𝑛+1, … ,𝑊 (𝑐)𝑛+1) = Φ ((𝑊 (1)𝑛 + 𝑉𝑛 − 𝑈𝑛)+, (𝑊 (2)𝑛 − 𝑈𝑛)+, … , (𝑊 (𝑐)𝑛 − 𝑈𝑛)+) ,
For 𝑐 = 1, this expression reduces to Lindley’s recursion𝑊𝑛+1 = (𝑊𝑛 + 𝑉𝑛 − 𝑈𝑛)+ , 𝑛 � 0.
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By a simple induction argument, it can be shown that𝑊𝑛+1 is convex in the service-time param-
eter. However, Weber [220] provided counterexamples that show the GI/G/𝑐 queue no longer
possesses this convexity property, so we need to find a weaker property. It is obvious that the

waiting times are nondecreasing in the service times. Hence, it seems natural to try to show

that a property stronger than monotonicity, but weaker than convexity, holds for the workloads

in the GI/G/𝑐 queue as functions of the service times.
A property that satisfies this characterization is starshapeness of a nonnegative function, as

discussed in the previous section. Since the pointwise maximum, the pointwise minimum and

the sum of any two monotone functions is again monotone, the following result can be easily

verified [194, Lemma 2.4].

Lemma 8.6. Consider two starshaped functions 𝜙𝑖 ∶ ℝ+ → ℝ, 𝑖 = 1, 2. Then 𝜙[1], 𝜙[2] and 𝜓
defined by 𝜙[1](𝑥) = min {𝜙1(𝑥), 𝜙2(𝑥)} , ∀𝑥 ∈ ℝ+, 𝜙[2](𝑥) = max {𝜙1(𝑥), 𝜙2(𝑥)} , ∀𝑥 ∈ ℝ+, and𝜓(𝑥) = 𝜙1(𝑥) + 𝜙2(𝑥), ∀𝑥 ∈ ℝ+, are all starshaped functions.
Then it can be shown that the sorting operator Φ preserves starshapeness by repeated use of

the previous result [194, Lemma 2.5].

Lemma 8.7. Let Φ ∶ ℝ𝑐 → ℝ𝑐 denote a function that sorts the coordinates of the input vector into

increasing order. If 𝜙𝑖, 𝑖 = 1, 2, … , 𝑐, are all starshaped functions, then 𝜓𝑖, 𝑖 = 1, 2, ⋯ , 𝑐, defined by(𝜓1(𝑥), … , 𝜓𝑐(𝑥)) = Φ (𝜙1(𝑥), … , 𝜙𝑐(𝑥)) , 𝑥 ∈ ℝ+, are all starshaped functions.
Close inspection of the Kiefer-Wolfowitz recursion reveals that all operations governing the

workload dynamics of the GI/G/𝑐 queue maintain the starshapeness property. Then, since the
expectation operator also preserves starshapeness, we can readily derive an extremal result

for the GI/G/𝑐 queue with mean-support information by combining Proposition 8.3 with the
recursive argument.

Theorem 8.8 (Tight bounds for GI/G/𝒄waiting time). Consider the GI/G/𝑐 queue with generic
service time 𝑉 whose distribution lies in the ambiguity set P(𝜇𝑉 ,𝑏𝑉 ). For given interarrival time 𝑈 ,
the tight upper bounds for the transient mean waiting time 𝔼[𝑊𝑛] and expected steady-state wait-
ing time 𝔼[𝑊 ] are achieved by a two-point distribution for 𝑉 with support {0, 𝑏𝑉 } and respective

probabilities {1 − 𝜇𝑉 /𝑏𝑉 , 𝜇𝑉 /𝑏𝑉 }.
8.5. Outlook
The insensitive extremal distributions discussed in this chapter can be broadly classified into

two categories. The first category pertains to the mean-MAD approach, where the support is

fixed to the maximum of𝑚+1 point masses, in agreement with the Richter-Rogosinski theorem
[186]. Consequently, the corresponding probabilities are obtained by solving the moment con-

ditions. Alternatively, as with mean-variance information, properties of the objective function

fix some of the mass points, enabling the determination of the remaining points and their cor-

responding probabilities through the moment conditions. This second category also includes,

for example, the mean-MAD-𝛽 information set combined with a convex objective function.
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It further includes the ambiguity set that incorporates support, mean, variance and skewness

information, along with an objective function featuring a convex second derivative; see, e.g.,

[128].

Unfortunately, striving for a fully general solution to the extremal problem involving i.i.d.

random variables necessitates referring back to the works of Hoeffding [114] and Kingman

[133]. As these authors have adeptly articulated, the extremal problem induced by i.i.d. random

variables is nonlinear in the probability distribution ℙ. In fact, due to the product structure
resembling multilinear terms in a finite-dimensional mathematical programming problem, one

could even characterize this problem as highly nonconvex in ℙ. As such, it is expected that
future approaches for solving this problem must evolve through advancements in nonconvex

semi-infinite optimization. Otherwise, one shall be left relying on either judiciously chosen

combinations of objective functions and distributional information, or approximations that aim

to approach these structural properties through infinite sequences ofmoments, as demonstrated

in [27, 132], or by using infinitely-constrained ambiguity sets, as presented in [54].
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A
Properties of MAD and DRO results

We recall some well-known properties of the MAD, see e.g. [21]. Denote by 𝜎2 the variance of
the random variable 𝑋 , whose distribution is known to belong to the setP(𝜇,𝑑). Then𝑑24𝛽(1 − 𝛽) � 𝜎2 � 𝑑(𝑏 − 𝑎)2 .
In particular, since 𝑑2 � 4𝛽(1 − 𝛽)𝜎2 � 𝜎2,
it holds that 𝑑 � 𝜎. For a proof, we refer the reader to [21]. For some distributions, an explicit
formula for 𝑑 is available:

• Uniform distribution on [𝑎, 𝑏]: 𝑑 = 14(𝑏 − 𝑎)
• Normal distribution 𝑁(𝜇, 𝜎2): 𝑑 = √ 2𝜋 𝜎
• Gamma distribution with parameters 𝜆 and 𝑘 (for which 𝜇 = 𝑘/𝜆):

𝑑 = 2𝑘𝑘Γ(𝑘) exp(𝑘) 1𝜆 .
183
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• Beta distribution with shape parameters 𝛾, 𝜃 on support [𝑎, 𝑏]:
𝑑 = 2𝛾𝛾𝜃𝜃Γ(𝛾 + 𝜃)(𝛾 + 𝜃)𝛾+𝜃+1Γ(𝛾)Γ(𝜃) (𝑏 − 𝑎)

• Triangular distribution on [𝑎, 𝑏] with mode 𝑐:
𝑑 = { 2(𝑏+𝑐−2𝑎)381(𝑎−𝑏)(𝑎−𝑐) , for 𝑎 + 𝑏 < 2𝑐,2(𝑎+𝑐−2𝑏)381(𝑎−𝑏)(𝑏−𝑐) , for 𝑎 + 𝑏 > 2𝑐

• Binomial distribution with success probability 𝑝 and 𝑁 trials:
𝑑 = 2(1 − 𝑝)𝑁−⌊𝑁𝑝⌋𝑝⌊𝑁𝑝⌋+1(⌊𝑁𝑝⌋ + 1)( 𝑁⌊𝑁𝑝⌋ + 1)

• Discrete uniform distribution on [𝑎, 𝑏], with 𝑎, 𝑏 integers and 𝑁 = 𝑏 − 𝑎 + 1:
𝑑 = {14𝑁 , for 𝑁 even,(𝑁−1)(𝑁+1)4𝑁 , for 𝑁 odd.

The MAD is known to satisfy the bound0 � 𝑑 � 2(𝑏 − 𝜇)(𝜇 − 𝑎)𝑏 − 𝑎 . (A.1)

Let 𝛽 = ℙ(𝑋 � 𝜇). For example, in the case of continuous symmetric distribution of 𝑋 we
know that 𝛽 = 0.5. This quantity is known to satisfy the bounds:𝑑2(𝑏 − 𝜇) � 𝛽 � 1 − 𝑑2(𝜇 − 𝑎) . (A.2)

In Ben-Tal and Hochman [19], the following result was proved (for a much larger class of

functions 𝑓 (𝐲, 𝐗) than in our case):
Proposition A.1. If 𝑓 (𝐲, ⋅) is convex,

supℙ∈P(𝜇,𝛿) 𝔼ℙ[𝑓 (𝐲, 𝐗)] = 𝑔𝑈 (𝐲) = ∑𝜿∈{1,2,3}𝑛 𝑛∏𝑖=1 𝑝(𝑖)𝜅𝑖 𝑓 (𝐲, 𝜉 (1)𝜅1 , … , 𝜉(𝑛)𝜅𝑛 ), (A.3)

with 𝑝(𝑖)𝜅𝑖 , 𝜉 (𝑖)𝜅𝑖 defined as in Lemma 6.3. If 𝑓 (𝐲, ⋅) is concave,
supℙ∈P(𝜇,𝛿,𝛽) 𝔼ℙ[𝑓 (𝐲, 𝐗)] = 𝑔𝐿(𝐲) = ∑𝜿∈{1,2}𝑛 𝑛∏𝑖=1 𝑝̂(𝑖)𝜅𝑖 𝑓 (𝐲, 𝜐(1)𝜅1 , … , 𝜐(𝑛)𝜅𝑛 ), (A.4)

with 𝜐(𝑖)1 = 𝜇𝑖 + 𝛿𝑖2𝛽𝑖 , 𝜐(𝑖)2 = 𝜇𝑖 − 𝛿𝑖2(1−𝛽𝑖) and 𝑝̂(𝑖)1 = 𝛽𝑖, 𝑝̂(𝑖)2 = 1 − 𝛽𝑖.
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Hence, 𝑔𝑈 (⋅) in (A.3) inherits the convexity in 𝐲 from 𝑓 (⋅, 𝐗) and its functional form depends
only on the form of 𝑓 (⋅, 𝐗), and similarly for 𝑔𝐿(⋅). The upper and lower bound give a closed
interval for

Valℙ(𝐲) = 𝔼ℙ[𝑓 (𝐲, 𝐗)] ∀ℙ ∈P(𝜇,𝛿,𝛽). (A.5)

Corollary A.2. If 𝑓 (𝐲, ⋅) is convex for all 𝐲 then Valℙ(𝐲) ∈ [𝑔𝐿(𝐲), 𝑔𝑈 (𝐲)] ∀ℙ ∈P(𝜇,𝛿,𝛽). If 𝑓 (𝐲, ⋅)
is concave for all 𝐲 then Valℙ(𝐲) ∈ [𝑔𝑈 (𝐲), 𝑔𝐿(𝐲)] ∀ℙ ∈P(𝜇,𝛿,𝛽).
From Proposition A.1 we see that the extremal distribution is independent of 𝐲. Hence, we

can substitute the 3𝑛 terms. This leads to a convex function in 𝐲, and hence the minimization
problem over 𝐲 is tractable.
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B
Proofs

B.1. Remaining proofs Chapter 3
Proof Lemma 3.3. From the derivations in [91], we know that the derivative of 𝐿 can be written
as 𝐿′(𝜌) = 𝑠 + (𝑠 − 𝐿(𝜌) + 1𝜌 + 21 − 𝜌) (𝐿(𝜌) − 𝑠𝜌). (B.1)

Further differentiating both sides yields

𝐿′′(𝜌) = (𝐿(𝜌) − 𝑠𝜌)(−𝑠 − 𝐿(𝜌) + 1𝜌2 − 𝐿′(𝜌)𝜌 + 2(1 − 𝜌)2)+ (𝑠 − 𝐿(𝜌) + 1𝜌 + 21 − 𝜌)(𝐿′(𝜌) − 𝑠) (B.2)

and𝐿′′′(𝜌) =(𝑠 − 𝐿(𝜌) + 1𝜌 − 2𝜌 − 1)𝐿′′(𝜌) + 2(−𝑠 + 𝐿(𝜌) − 1𝜌2 − 𝐿′(𝜌)𝜌 + 2(𝜌 − 1)2 ) (𝐿′(𝜌) − 𝑠)+ (𝐿(𝜌) − 𝑠𝜌)(2(𝑠 − 𝐿(𝜌) + 1)𝜌3 − 𝐿′′(𝜌)𝜌 + 2𝐿′(𝜌)𝜌2 − 4(𝜌 − 1)3 ) .
(B.3)

By Little’s law, 𝑊(𝜌) = 𝐿(𝜌)/(𝜌𝑠𝜇). The third derivative of the expected wait is then given by
𝑊′′′(𝜌) = 𝜕3𝜕𝜌3 𝐿(𝜌)𝜌𝑠𝜇 = 𝜌 (6𝐿′(𝜌) + 𝜌 (𝜌𝐿′′′(𝜌) − 3𝐿′′(𝜌))) − 6𝐿(𝜌)𝑠𝜇𝜌4 . (B.4)

187
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To prove the claim, we shall show that𝑊′′′(𝜌) � 0. Consecutively substituting (B.3), (B.2), (B.1)
and finally (3.4) into (B.4), we obtain

𝑊′′′(𝜌) = 𝐶𝑠𝜇(1 − 𝜌)4𝜌3 ( − 𝑠2(1 − 𝜌)4((7𝐶 − 6)𝜌 + 3) + 2𝑠(1 − 𝜌)2(𝜌(2𝐶((3𝐶 − 7)𝜌 + 1)+ 9𝜌 − 4) + 1) − 6(𝐶 − 2)((𝐶 − 2)𝐶 + 2)𝜌3 + 𝑠3(1 − 𝜌)6). (B.5)

Since 𝐶𝑠𝜇(1−𝜌)4𝜌3 is nonnegative, it suffices to show that𝑓 (𝑠, 𝐶) ∶= ( − 𝑠2(1 − 𝜌)4 ((7𝐶 − 6)𝜌 + 3) + 2𝑠(1 − 𝜌)2(𝜌(2𝐶((3𝐶 − 7)𝜌 + 1) + 9𝜌 − 4) + 1)− 6(𝐶 − 2)((𝐶 − 2)𝐶 + 2)𝜌3 + 𝑠3(1 − 𝜌)6) � 0.
To simplify some of the terms of 𝑓 (𝑠, 𝐶), it is convenient to work with bounds for 𝐶 in the
remainder of the proof. We will use the simple bounds (i) 𝐶 � 𝜌 and (ii) 𝐶 � 1 + 𝑠(1−𝜌)22𝜌 −(1−𝜌)2𝜌 √4𝑠𝜌 + 𝑠2(1 − 𝜌)2 (see, e.g., [105]). It suffices to show for all 𝑠 � 2 that 𝑓 (𝑠, 𝐶(𝜌)) �0, ∀𝜌 ∈ (0, 1), since the result is already demonstrated for the single-server queue. We pro-
ceed by showing that 𝑓 (𝑛, 𝐶) is nondecreasing for 2 � 𝑛 � 𝑠. Then, to complete the proof, it
remains to show that 𝑓 (2, 𝐶) � 0 for all 𝜌 ∈ (0, 1). Now notice that

𝑔(𝑥) ∶= 1(1 − 𝜌)2 𝜕𝜕𝑛𝑓 (𝑛, 𝑥) = 𝑎2𝑥2 − 𝑎1𝑥 + 𝑎0,
where 𝑎2 = 12𝜌2,𝑎1 = 2𝜌 (7𝑛(1 − 𝜌)2 + 14𝜌 − 2) ,𝑎0 = 18𝜌2 − 8𝜌 + 3(1 − 𝜌)4𝑛2 − 6(1 − 𝜌)2𝑛 + 12𝜌(1 − 𝜌)2𝑛 + 2.
After some algebra, one sees that, for 𝑛 � 2, 𝑎0, 𝑎1 � 0, and clearly, 𝑎2 = 12𝜌2 > 0. Since𝑎0, 𝑎1, 𝑎2 � 0, 𝑔(𝑥) has two positive roots. Denote the smaller root by 𝑥−. Now, to show 𝑔(𝐶) �0, we demonstrate that 𝑔′(𝐶) � 𝑔′(𝑥−), which is sufficient as 𝑔(𝑥) is a convex quadratic function.
We will instead prove this inequality for an upper bound on 𝐶:

𝐶 � 1 + 𝑛(1 − 𝜌)22𝜌 − (1 − 𝜌)2𝜌 √4𝑛𝜌 + 𝑛2(1 − 𝜌)2 =∶ 𝐶̄,
where the inequality follows from (ii) and 𝑛 � 𝑠. We next compute 𝑔′(𝐶̄) and 𝑔′(𝑥−), and show
that 𝑔′(𝑥−) − 𝑔′(𝐶̄) is nonnegative. Demonstrating 𝑔′(𝐶̄) � 𝑔′(𝑥−) is sufficient since 𝑔 is a
quadratic decreasing function on [0, 𝐶̄]. Notice that𝑔′(𝑥−) = −2𝜌(1 − 𝜌)√(𝑛 (52𝜌 + 13(1 − 𝜌)2𝑛 + 44) − 20)𝑔′(𝐶̄) = −2𝜌(1 − 𝜌) ((1 − 𝜌)𝑛 + 6√𝑛 (4𝜌 + (1 − 𝜌)2𝑛) − 2) .
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Since 𝑔′(𝑥−), 𝑔′(𝐶̄) < 0, it is sufficient to show |𝑔′(𝑥−)|2𝜌(1−𝜌) � |𝑔(𝐶̄)|2𝜌(1−𝜌) by demonstrating nonnegativity
of 𝑔̄(𝑛, 𝜌) ∶= ( 𝑔(𝐶̄)2𝜌(1 − 𝜌))2 − ( 𝑔′(𝑥−)2𝜌(1 − 𝜌))2= (6√𝑛 (4𝜌 + (1 − 𝜌)2𝑛) + (1 − 𝜌)𝑛 − 2)2 − 𝑛 (52𝜌 + 13(1 − 𝜌)2𝑛 + 44) + 20.
After some tedious calculations, it follows from standard calculus that 𝜕𝑔̄𝜕𝑛 > 0, for 𝑛 � 2. So, for
fixed 𝜌, the auxiliary function 𝑔̄(⋅, 𝜌) is minimized at 𝑛 = 2. Hence,𝑔̄(𝑛, 𝜌) � 𝑔̄(2, 𝜌) = 96𝜌2 − 48𝜌√1 + 𝜌2 + 24 � 17.5692 > 0,
for all 𝜌 ∈ (0, 1). Here the final inequality follows from minimizing 96𝜌2 − 48𝜌√1 + 𝜌2 + 24.
Therefore, 𝑔(𝐶) � 0 or, equivalently, 𝜕𝜕𝑛 𝑓 (𝑛, 𝐶) � 0 for 2 � 𝑛 � 𝑠. In the remainder of the
proof, it thus suffices to concentrate on 𝑓 (2, 𝐶). Defineℎ(𝑥) ∶= 𝑓 (2, 𝑥) = ( − 4(1 − 𝜌)4 ((7𝑥 − 6)𝜌 + 3) + 4(1 − 𝜌)2(𝜌(2𝑥((3𝑥 − 7)𝜌 + 1)+ 9𝜌 − 4) + 1) − 6(𝑥 − 2)((𝑥 − 2)𝑥 + 2)𝜌3 + 8(1 − 𝜌)6).
Observe that ℎ′′(𝑥) = 12𝜌2(𝜌(4𝜌 − 3𝑥 − 4) + 4).
From thewell-known bound (i), it follows that ℎ′′(𝑥) � 0 for 𝑥 � 𝜌 since ℎ′′(𝜌) = 12(𝜌−2)2𝜌2 �0. Further, it can be shown thatℎ′(𝜌) = 2𝜌(𝜌4 + 4𝜌3 − 18𝜌2 + 20𝜌 − 10) � 0, ∀𝜌 ∈ (0, 1).
Since ℎ′′(𝑥) � 0, ℎ′(𝑥) � 0 for all 𝑥 � 𝜌. Hence, for 𝜌 ∈ (0, 1),𝑓 (2, 𝐶) = ℎ(𝐶) � ℎ(𝜌) = −2𝜌2((𝜌 − 2)𝜌((𝜌 − 2)𝜌 + 2) − 2) � 0,
in which the final inequality follows from some straightforward calculus. This completes the

proof.

B.2. Remaining proofs Chapter 4
Proof of Theorem 4.4. We solve problems (4.12) and (4.13) by considering the four scenarios de-

picted in Figure 4.3. Scenario 1a implies 𝐹𝑚(0) = 0, 𝐹𝑚(𝑡) = 𝐹𝑚(𝑏) = 1, which gives𝜆0 = 𝑚𝑡 , 𝜆−1 = 0, 𝜆+1 = 𝑡 − 2𝑚 + 𝑏𝑡 , 𝜆2 = −1𝑡 ,
and objective value 𝜆0 + 𝜆+1 12 + 𝜆2𝑑𝑚 = 𝑏 − 2𝑑𝑚𝑡 + 12 .
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Solving the primal problem (4.12) with probability masses on the points {0, 𝑡, 𝑏} gives
∫𝑥 �{𝑥 � 𝑡}dℙ(𝑥) = 𝑝𝑡 + 𝑝𝑏 = 𝑏 − 2𝑑𝑚2𝑡 + 12 .

Scenario 1b implies that 𝐹(0) = 𝐹(𝑡) = 𝐹(𝑚) = 𝐹(𝑏) = 1, and hence 𝜆0 = 1, 𝜆+1 = 𝜆−1 = 𝜆2 = 0
with objective value 1.

Scenario 2a implies 𝐹(𝑚) = 0, 𝐹(𝑡) = 1 which gives𝜆0 = 𝜆−1 = 𝜆+1 = 0, 𝜆2 = 1𝑡 − 𝑚,
with objective value 𝜆2𝑑𝑚 = 𝑑𝑚𝑡 − 𝑚.
Solving the optimal probabilities for the primal problem (4.12) indeed shows that 𝑝𝑡 = 𝑑𝑚𝑡−𝑚 .
Scenario 2b implies that 𝐹(0) = 0, 𝐹(𝑚) = 𝐹(𝑡) = 𝐹(𝑏) = 1, and𝜆0 = 1, 𝜆−1 = −1, 𝜆+1 = 𝜆2 = 0,
with objective value 𝜆0 + (𝜆−1 + 𝜆+1 )12 = 12 .
Solving (4.12), with support {𝑚, 𝑡, 𝑏}, gives 𝑝𝑚 = 1/2.
Proof of Theorem 4.5. For a random variable 𝑋 with distribution ℙ ∈P(𝜇,𝑏,𝑑,𝛽), we now solvesupℙ∈M+ ∫𝑥 �{𝑥�𝑡} dℙ(𝑥)

s.t. ∫𝑥 dℙ(𝑥) = 1, ∫𝑥 𝑥 dℙ(𝑥) = 𝜇,∫𝑥 |𝑥 − 𝜇| dℙ(𝑥) = 𝑑, ∫𝑥 �{𝑥�𝜇} dℙ(𝑥) = 𝛽,
(B.6)

which is a semi-infinite linear program with four equality constraints.

Consider the dual of (B.6),inf𝜆0,𝜆1,𝜆2,𝜆3 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑 + 𝜆3𝛽
s.t. �{𝑥�𝑡} � 𝜆0 + 𝜆1𝑥 + 𝜆2|𝑥 − 𝜇| + 𝜆3�{𝑥�𝜇}, ∀𝑥 ∈ [0, 𝑏]. (B.7)

Define 𝐹(𝑥) = 𝜆0 + 𝜆1𝑥 + 𝜆2|𝑥 − 𝜇| + 𝜆3�{𝑥�𝜇}. Then the inequality in (B.7) can be written
as �{𝑥�𝑡} � 𝐹(𝑥), ∀𝑥 , i.e. 𝐹(𝑥) majorizes �{𝑥�𝑡}. Note that 𝐹(𝑥) has both a “kink” and a jump
discontinuity at 𝜇. There are four candidate scenarios, which are described in Figure B.1. When𝑡 ∈ [0, 𝜇), 𝐹(𝑥) touches �{𝑥�𝑡} in {0, 𝑡} ∪ [𝜇, 𝑏] (scenario 1a), or 𝐹(𝑥) = 1 and touches in [𝑡, 𝑏]
(scenario 1b). When 𝑡 ∈ [𝜇, 𝑏], 𝐹(𝑥) touches in [0, 𝜇] ∪ {𝑡} (scenario 2a), or in [0, 𝜇) ∪ [𝑡, 𝑏]
(scenario 2b).
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𝑥

�{𝑥 � 𝑡}𝐹1𝑎(𝑥)𝐹1𝑏(𝑥)
𝜇𝑡 𝑏 𝑥

�{𝑥 � 𝑡}𝐹2𝑎(𝑥)𝐹2𝑏(𝑥)
𝜇 𝑡 𝑏

Figure B.1: Scenario 1 and the majorizing functions 𝐹1𝑎(𝑥) and 𝐹1𝑏(𝑥) under scenarios 1a and 1b, respec-
tively. Scenario 2 and the majorizing functions 𝐹2𝑎(𝑥) and 𝐹2𝑏(𝑥) under scenarios 2a and 2b, respectively.
Scenario 1a implies 𝐹(0) = 0, 𝐹(𝑡) = 𝐹(𝜇) = 𝐹(𝑏) = 1, which gives𝜆0 = 𝜇2𝑡 , 𝜆1 = 12𝑡 , 𝜆2 = − 12𝑡 , 𝜆3 = 𝜇 − 𝑡𝑡 ,

and objective value 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑 + 𝜆3𝛽 = (1 − 𝛽)𝜇 + 𝛽𝑡𝑡 − 𝑑2𝑡 .
Solving the primal problem (B.6) with probability masses on the points {0, 𝑡, 𝜇, 𝑏} gives

∫𝑥 �{𝑥 � 𝑡}dℙ(𝑥) = 𝑝𝑡 + 𝑝𝜇 + 𝑝𝑏 = (1 − 𝛽)𝜇 + 𝛽𝑡𝑡 − 𝑑2𝑡 .
Since primal and dual feasible solutions have the same objective value we have strong duality

and hence found the optimal solutions.

Scenario 1b implies that 𝐹(0) = 𝐹(𝑡) = 𝐹(𝜇) = 𝐹(𝑏) = 1, and hence 𝜆0 = 1, 𝜆1 = 𝜆2 = 𝜆3 = 0
with objective value 1. It is clear that the optimal primal objective value is also equal to 1.

Scenario 2a implies 𝐹(0) = 𝐹(𝜇) = 0, 𝐹(𝑡) = 1 which gives𝜆0 = − 𝜇2(𝑡 − 𝜇) , 𝜆1 = 𝜆2 = 12(𝑡 − 𝜇) , 𝜆3 = 0,
with objective value 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑 + 𝜆3𝛽 = 𝑑2(𝑡 − 𝜇) .
Solving (B.6) with probabilities masses on {0, 𝜈, 𝜇, 𝑏}, with 𝜈 ∈ (0, 𝜇), indeed shows that 𝑝𝑡 =𝑑2(𝑡−𝜇) .
Scenario 2b implies that 𝐹(0) = 0, 𝐹(𝜇) = 𝐹(𝑡) = 𝐹(𝑏) = 1, which gives as the dual feasible

solution 𝜆0 = 𝜆1 = 𝜆2 = 0, 𝜆3 = 1,
and objective value 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑 + 𝜆3𝛽 = 𝛽.
Finding the optimal probabilities of (B.6) confirms that 𝑝0 = (1 − 𝛽).
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Proof Corollary 4.6. We solveinfℙ∈M+ ∫𝑥 �{𝑥>𝑡} dℙ(𝑥)
s.t. ∫𝑥 dℙ(𝑥) = 1, ∫𝑥 𝑥 dℙ(𝑥) = 𝜇,∫𝑥 |𝑥 − 𝜇| dℙ(𝑥) = 𝑑, ∫𝑥 �{𝑥�𝜇} dℙ(𝑥) = 𝛽,

(B.8)

which is a semi-infinite linear program with four equality constraints. The dual problem is

given by sup𝜆0,𝜆1,𝜆2,𝜆3 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑 + 𝜆3𝛽
s.t. �{𝑥>𝑡} � 𝜆0 + 𝜆1𝑥 + 𝜆2|𝑥 − 𝜇| + 𝜆3�{𝑥�𝜇} =∶ 𝐹(𝑥), ∀𝑥 ∈ [0, 𝑏]. (B.9)

The proof is similar to that of Theorem 4.5 but, since we are minimizing, 𝐹(𝑥) is a minoriz-
ing function. Note that 𝐹(𝑥) has both a “kink” and a jump discontinuity at 𝜇. There are four
candidate solutions, which are depicted in Figure B.2. When 𝑡 ∈ [0, 𝜇), 𝐹(𝑥) touches �{𝑥>𝑡}
in {𝑡} ∪ [𝜇, 𝑏] (scenario 1a) or in [0, 𝑡] ∪ [𝜇, 𝑏] (scenario 1b). When 𝑡 ∈ [𝜇, 𝑏], 𝐹(𝑥) touches in[0, 𝜇) ∪ {𝑡, 𝑏} (scenario 2a), or 𝐹(𝑥) = 0 and touches in [0, 𝑡] (scenario 2b).
Scenario 1a implies 𝐹(𝑡) = 0, 𝐹(𝜇) = 𝐹(𝑏) = 1, which gives the dual solution𝜆0 = 2𝑡 − 𝜇2(𝑡 − 𝜇) , 𝜆1 = − 12(𝑡 − 𝜇) , 𝜆2 = 12(𝑡 − 𝜇) , 𝜆3 = 0,

and objective value 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑 + 𝜆3𝛽 = 1 − 𝑑2(𝜇 − 𝑡) .
Solving the primal problem (B.8) with probability masses on the points {𝑡, 𝜇, 𝜈, 𝑏}, with 𝜈 ∈ (𝜇, 𝑏),
gives ∫𝑥 �{𝑥 > 𝑡} dℙ(𝑥) = 1 − 𝑝𝑡 = 1 − 𝑑2(𝜇 − 𝑡) .
Scenario 1b implies that 𝐹(0) = 𝐹(𝑡) = 0, 𝐹(𝜇) = 𝐹(𝑏) = 1, and hence 𝜆0 = 𝜆1 = 𝜆2 = 0, 𝜆3 = 1

with objective value 𝛽. Now solving the primal problem with probability masses on {0, 𝑡, 𝜇, 𝑏}
gives us ∫𝑥 �{𝑥 > 𝑡} dℙ(𝑥) = 𝑝𝜇 + 𝑝𝑏 = 𝛽.
Scenario 2a implies that 𝐹(0) = 𝐹(𝑡) = 0 and 𝐹(𝑏) = 1, which results in𝜆0 = 𝜇2(𝑡 − 𝑏) , 𝜆1 = 𝜆2 = 12(𝑏 − 𝑡) , 𝜆3 = −(𝜇 − 𝑡)(𝑏 − 𝑡) ,
with objective value 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑 + 𝜆3𝛽 = 𝛽(𝜇 − 𝑡)(𝑏 − 𝑡) + 𝑑2(𝑏 − 𝑡) .
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𝑥

�{𝑥 > 𝑡}𝐹1𝑎(𝑥)𝐹1𝑏(𝑥)
𝜇𝑡 𝑏 𝑥

�{𝑥 > 𝑡}𝐹2𝑎(𝑥)𝐹2𝑏(𝑥)
𝜇 𝑡 𝑏

Figure B.2: Scenario 1 and the minorizing functions 𝐹1𝑎(𝑥) and 𝐹1𝑏(𝑥) under scenarios 1a and 1b, respec-
tively. Scenario 2 and the minorizing functions 𝐹2𝑎(𝑥) and 𝐹2𝑏(𝑥) under scenarios 2a and 2b, respectively.
Indeed, solving the primal problem with probability masses on {0, 𝜈, 𝑡, 𝑏}, with 𝜈 ∈ (0, 𝜇), gives𝑝𝑏 = 𝛽(𝜇−𝑡)(𝑏−𝑡) + 𝑑2(𝑏−𝑡) .
Scenario 2b implies that 𝐹(0) = 𝐹(𝜇) = 𝐹(𝑡) = 𝐹(𝑏) = 0, which gives the dual feasible solution𝜆0 = 𝜆1 = 𝜆2 = 𝜆3 = 0,

with objective value 0. All probability mass is placed on points that are less than or equal to 𝑡.
Hence, the optimal primal objective value is also equal to 0.

B.3. Remaining proofs Chapter 5
Proof of Lemma 5.1. Suppose the moment constraints are consistent so thatP is nonempty. Let𝜏̃ and 𝜏∗ be the optimal values, and optimal solution, of (5.4) and (5.8), respectively. To prove
the result, it suffices to show that𝜏∗ = supℙ∈P 𝔼ℙ[𝑔(𝑋)�Ξ(𝑋)]𝔼ℙ[�Ξ(𝑋)] =∶ 𝜏̃.
Notice that 𝔼ℙ[𝑔(𝑋)�Ξ(𝑋)]𝔼ℙ[�Ξ(𝑋)] � 𝜏̃,
for all ℙ ∈P. Rewriting and taking the supremum overP, the inequality above is equivalent

to supℙ∈P𝔼ℙ[𝑔(𝑋)�Ξ(𝑋) − 𝜏̃�Ξ(𝑋)] � 0,
which implies 𝜏̃ is a feasible solution to problem (5.8). Since 𝜏̃ is optimal to (5.4),𝜏∗ � sup

P

𝔼ℙ[𝑔(𝑋)�Ξ(𝑋)]𝔼ℙ[�Ξ(𝑋)] = 𝜏̃. (B.10)

As 𝜏∗ is a feasible solution to (5.8), it holds thatsupℙ∈P𝔼ℙ [𝑔(𝑋)�Ξ(𝑋) − 𝜏∗�Ξ(𝑋)] � 0. (B.11)
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We next show that this implies supℙ∈P 𝔼ℙ[𝑔(𝑋)�Ξ(𝑋)]𝔼ℙ[�Ξ(𝑋)] � 𝜏∗. (B.12)

For the sake of contradiction, assume that for an arbitrary 𝜖 > 0, there exists a sequence of
probability measures {ℙ𝑘} such that𝜏∗ + 𝜖 � 𝔼ℙ𝑘 [𝑔(𝑋)�Ξ(𝑋)]𝔼ℙ𝑘 [�Ξ(𝑋)]
as 𝑘 grows large. Fixing ℙ𝑘 for a sufficiently large 𝑘, we obtain𝜖𝔼ℙ𝑘 [�Ξ(𝑋)] � 𝔼ℙ𝑘 [𝑔(𝑋)�Ξ(𝑋) − 𝜏∗�Ξ(𝑋)].
Since 𝔼ℙ𝑘 [�Ξ(𝑋)] = ℙ𝑘(𝑋 ∈ Ξ) > 0 and 𝜖 > 0, this inequality contradicts (B.11). Moreover,
if ℙ𝑘(𝑋 ∈ Ξ) = 0, the fractional objective function diverges. However, this also yields a con-
tradiction by boundedness of the optimal values. Hence, it follows from combining (B.10) and

(B.12) that 𝜏∗ = 𝜏̃. This completes the proof.
Proof of Proposition 5.5. Replacing the second-moment function 𝑥2 by |𝑥 − 𝜇| and substituting 𝑑
for (𝜎2 + 𝜇2) in (5.12) yields the dual problem for supℙ∈P(𝜇,𝑑) 𝔼[𝑋|𝑋 � 𝑡],inf𝜆0,𝜆1,𝜆2,𝜆3 𝜆3

subject to 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑 � 0,𝜆0 + 𝜆1𝑥 + 𝜆2|𝑥 − 𝜇| � 0, ∀𝑎 � 𝑥 < 𝑡,𝜆0 + 𝜆1𝑥 + 𝜆2|𝑥 − 𝜇| � 𝑥 − 𝜆3, ∀𝑡 � 𝑥 � 𝑏. (B.13)

Denote the left-hand sides of the second and third constraints by 𝐷(𝑥) ∶= 𝜆0 +𝜆1𝑥 +𝜆2|𝑥 −𝜇|.
The function𝐷(𝑥) is dual feasible when it is greater than or equal to 0 for 𝑥 < 𝑡 and greater than
or equal to 𝑥 −𝜆3 for 𝑡 � 𝑥 � 𝑏. First, we consider the case 𝑡 < 𝜇. To solve the dual problem, we
shall consider three cases for the shape of the dual function 𝐷(𝑥), as illustrated in Figure B.3.
First, we discuss the case where 𝐷(𝑥) is a straight line (i.e., 𝜆2 = 0). If 𝜆1 = 0, then 𝐷1(𝑥) is a

horizontal line, which is dual feasible because, for a suitable choice of 𝜆3, this function lies above
�{𝑥�𝑡}(𝑥 −𝜆3). Note that for this solution to satisfy 𝜆0+𝜆1𝜇+𝜆2𝑑 � 0, the constant 𝜆0 = 0. Since
we are minimizing 𝜆3 (or maximizing −𝜆3), we push the function 𝑥 −𝜆3 upward until it hits the
horizontal line, so this choice for the dual function yields 𝑏 as the optimal objective value. The
dual function 𝐷1(𝑥) cannot have a positive slope because this would imply 𝜆0 + 𝜆1𝜇 > 0. Note
that a line with negative slope 𝜆1 < 0 will only increase 𝜆3. Hence, the horizontal line with𝜆0 = 0 is the best feasible option. A primal solution that attains this value is the distribution
with support

{𝑏(𝑑−2𝜇)+2𝜇2−2𝑏+𝑑+2𝜇 , 𝑏} and probabilities𝑝1 = 1 − 𝑑2(𝑏 − 𝜇) , 𝑝2 = 𝑑2(𝑏 − 𝜇) .
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𝑥

�{𝑥�𝑡}(𝑥 − 𝜆3)𝑀1(𝑥)𝑀2(𝑥)𝑀3(𝑥)

𝑡 − 𝜆3

𝜇𝑡−
𝑏

Figure B.3: 𝐷1(𝑥), 𝐷2(𝑥), and 𝐷3(𝑥)
Using complementary slackness, we argue that the second case, 𝐷2(𝑥), can be omitted. From

Figure B.3, observe that the corresponding primal solution is supported on the values 𝑎, 𝑏. How-
ever, we cannot construct a two-point distribution that, in general, satisfies the moment con-

straints. Therefore, this second case does not provide a useful solution from which we can

obtain a tight bound.

For the third case (wedge), let𝐷3(𝑥) coincide with �{𝑥 � 𝑡}(𝑥−𝜆3) at 𝑥 = 𝑡, 𝜇 and 𝑏. Choosing𝐷3(𝑥) in this particular way, the dual variables satisfy
𝜆0 = (𝑡 + 𝜆3)𝜇 − 2𝑡𝜆32(𝑡 − 𝜇) , 𝜆1 = 𝜆3 + 𝑡 − 2𝜇2(𝑡 − 𝜇) , 𝜆2 = 𝑡 − 𝜆32(𝑡 − 𝜇) .

Substituting these values into 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑 � 0, we obtain
−𝜆3 + 𝜇 + 𝑑(𝜆3 − 𝑡)2(𝜇 − 𝑡) � 0,

in which the left-hand side is a decreasing (linear) function of 𝜆3 for 𝑡 < 𝜇 − 𝑑(𝑏−𝜇)2(𝑏−𝜇)−𝑑 . Since
we are minimizing with respect to 𝜆3, we choose 𝜆3 such that equality is attained. Hence,𝜆∗3 = 𝜇 + 𝑑(𝜇−𝑡)2(𝜇−𝑡)−𝑑 . The distribution with support {𝑡−, 𝜆∗3}, and respective probabilities

𝑝1 = 𝑑2(𝜇 − 𝑡) , 𝑝2 = 1 − 𝑑2(𝜇 − 𝑡) ,
achieves 𝜆∗3 asymptotically. Combining the two feasible cases, and ensuring these bounds are
tight by constructing primal feasible solutions that (asymptotically) achieve these bounds, we

arrive at the desired result.
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Proof of Proposition 5.6. In this setting, the dual is given byinf𝜆0,𝜆1,𝜆2,𝜆3 𝜆3
subject to 𝜆0 + 𝜆1𝜇 + 𝜆2𝑑 � 0,𝜆0 + 𝜆1𝑥 + 𝜆2𝑑(𝑥) � 0, ∀𝑥 < 𝑡,𝜆0 + 𝜆1𝑥 + 𝜆2𝑑(𝑥) � 𝑥 − 𝜆3, ∀𝑥 � 𝑡. (B.14)

Define 𝑉 (𝑥) ∶= 𝜆0 + 𝜆1𝑥 + 𝜆2𝑑(𝑥). Analogous to the variance and MAD settings, a candidate
solution is the majorant 𝑉 (𝑥) that touches at 𝑥 = 𝑡−, and is tangent to 𝑥 − 𝜆3 at a point 𝑥0 > 𝑡
that will be determined a posteriori. Using these insights, we solve the following system of

equations to determine 𝑝𝑡 , 𝑝𝑥0 and the dual variables 𝜆0, 𝜆1, 𝜆2, 𝜆3 (with 𝑥0 fixed):𝑝𝑡 𝑡 + 𝑝𝑥0𝑥0 = 𝜇, 𝑝𝑡𝑑(𝑡) + 𝑝𝑥0𝑑(𝑥0) = 𝜎̄,𝜆0 + 𝜆1𝑡 + 𝜆2𝑑(𝑡) = 0, 𝜆0 + 𝜆1𝑥0 + 𝜆2𝑑(𝑥0) = 𝑥0 − 𝜆3𝜆1 + 𝜆2𝑑′(𝑥0) = 1, 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜇2 + 𝜎2) = 0,
where the first line contains the moment constraint, the second and third line fix the shape of𝑉 (𝑥), and finally, we assume that the dual constraint 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜇2 + 𝜎2) � 0 is tight. The
derivative 𝑑′(𝑥) is assumed to be the right derivative, in order to allow for nondifferentiable dis-
persion functions. Notice that the resulting dual solution is always feasible, since 𝑉 (𝑥) is convex
(𝜆2 � 0 is a necessary condition for dual feasibility), and therefore, 𝑉 (𝑥) � (𝑥 − 𝜆3)�Ξ(𝑥), ∀𝑥 ,
by the constraints 𝑉 ′(𝑥0) = 1 and 𝑉 (𝑡) = 0. Solving the equations, one obtains𝑝𝑡 = 𝜎̄𝑡 − 𝜇𝑑(𝑡)𝑡𝑑(𝑥0) − 𝑥0𝑑(𝑡) , 𝑝2 = 𝜎̄𝑥0 − 𝜇𝑑(𝑥0)𝑥0𝑑(𝑡) − 𝑡𝑑(𝑥0) ,𝜆3 = −(𝑡 − 𝜇) (𝑑(𝑥0) − 𝑥0𝑑′(𝑥0)) − 𝜇𝑑(𝑡) + 𝜎̄𝑡(𝑡 − 𝜇)𝑑′(𝑥0) − 𝑑(𝑡) + 𝜎̄ ,
and 𝜆0 = 𝜇𝑑(𝑡) − 𝜎̄𝑡(𝑡 − 𝜇)𝑑′(𝑥0) − 𝑑(𝑡) + 𝜎̄ , 𝜆1 = 𝜎̄ − 𝑑(𝑡)(𝑡 − 𝜇)𝑑′(𝑥0) − 𝑑(𝑡) + 𝜎 ,𝜆2 = 𝑡 − 𝜇(𝑡 − 𝜇)𝑑′(𝑥0) − 𝑑(𝑡) + 𝜎̄ .
To guarantee strong duality, we choose 𝑥0 such that𝑥0 = −(𝑡 − 𝜇) (𝑑(𝑥0) − 𝑥0𝑑′(𝑥0)) − 𝜇𝑑(𝑡) + 𝜎̄𝑡(𝑡 − 𝜇)𝑑′(𝑥0) − 𝑑(𝑡) + 𝜎̄ = 𝜆3⟺ (𝑡 − 𝑥0)𝜎̄ + (𝑥0 − 𝜇)𝑑(𝑡) + (𝜇 − 𝑡)𝑑(𝑥0)(𝑡 − 𝜇)𝑑′(𝑥0) − 𝑑(𝑡) + 𝜎̄ = 0,
and the normalization constraint 𝑝𝑡 + 𝑝𝑥0 = 1 hold. Both conditions are equivalent to(𝑡 − 𝑥0)𝜎̄ + (𝑥0 − 𝜇)𝑑(𝑡) + (𝜇 − 𝑡)𝑑(𝑥0) = 0.
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Consequently, the 𝑥∗0 that follows from solving𝜎̄𝑡 − 𝜇𝑑(𝑡)𝑡𝑑(𝑥0) − 𝑥0𝑑(𝑡) + 𝜎̄𝑥0 − 𝜇𝑑(𝑥0)𝑥0𝑑(𝑡) − 𝑡𝑑(𝑥0) = 1,
is optimal. Hence, the claim follows.

Proof of Proposition 5.7. The class of symmetric pairs of Dirac measures (i.e., 𝛿𝜇−𝑥 , 𝛿𝜇+𝑥 , 𝑥 � 0)
generates the set of symmetric distributions about 𝜇. FromTheorem 5.2, it follows that the dual
problem is given byinf𝜆0,𝜆1,𝜆2,𝜆3 𝜆3

subject to 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜎2 + 𝜇2) � 0,2𝜆0 + 2𝜆1𝜇 + 2𝜆2(𝑥2 + 𝜇2) + 𝜆3�Ξ(𝜇 − 𝑥) + 𝜆3�Ξ(𝜇 + 𝑥)
� (𝜇 − 𝑥)�Ξ(𝜇 − 𝑥) + (𝜇 + 𝑥)�Ξ(𝜇 + 𝑥), ∀𝑥 � 0. (B.15)

The last constraint can be reduced to2𝜆0 + 2𝜆1𝜇 + 2𝜆2(𝑥2 + 𝜇2) � −2𝜆3 + 2𝜇, ∀0 � 𝑥 < 𝜇 − 𝑡,2𝜆0 + 2𝜆1𝜇 + 2𝜆2(𝑥2 + 𝜇2) � 𝑥 + 𝜇 − 𝜆3, ∀𝑥 � 𝜇 − 𝑡.
Notice that �Ξ(𝜇 + 𝑥) = 1, ∀𝑥 � 0, since it is assumed that 𝑡 < 𝜇. Define the quadratic
function𝑀sym(𝑥) ∶= 2𝜆0 + 2𝜆1𝜇 + 2𝜆2(𝑥2 + 𝜇2). We suggest two possible solutions for the dual
problem. The first solution, denoted as 𝑀 sym1 (𝑥), touches −2𝜆3 + 2𝜇 at 𝑥 = 0 and 𝑥 + 𝜇 − 𝜆3
at 𝜇 − 𝑡. The second solution, 𝑀 sym2 (𝑥), is a quadratic function that touches 𝑥 + 𝜇 − 𝜆3 at an
optimal point 𝑥0 that is unknown a priori. We further postulate that in both dual solutions,
the constraint 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜇2 + 𝜎2) � 0 is tight. In the interest of space, we omit the figure,
but it is easily verified that the suggested solutions are dual feasible. The corresponding primal

solutions follow from complementary slackness and are the pairs of Dirac measure 𝛿𝜇−𝑥 , 𝛿𝜇+𝑥
in which for 𝑥 we substitute the points at which the dual function coincides with the right-hand
sides of the constraints in (B.15).

The dual variables which correspond to 𝑀 sym1 (𝑥) are
𝜆1 = −𝜆0 + (𝑡−𝜇)(𝜇2+𝜎2)2(𝑡−𝜇)2−𝜎2𝜇 , 𝜆2 = 𝜇 − 𝑡2(𝑡 − 𝜇)2 − 𝜎2 ,

yielding 𝜆∗3 = 2(𝑡 − 𝜇)2𝜇 − 𝑡𝜎22(𝑡 − 𝜇)2 − 𝜎2
as our guess for the optimal value of the dual problem. The proposed solution is feasible for the

dual problem since𝑀 sym1 (𝑥) is convex (as 𝜆2 � 0) and tangent to −2𝜆3 +2𝜇 at 𝑥 = 0, and further
some straightforward calculations show that the derivative of 𝑀 sym1 (𝑥) at 𝑥 = 𝜇 − 𝑡 is greater
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than 1, so that 𝑀 sym1 (𝑥) � 𝑥 + 𝜇 − 𝜆∗3, ∀𝑥 � 𝜇 − 𝑡. For the primal probabilities, it follows from
the variance constraint (1 − 𝑝)𝜇2 + 12𝑝𝑡2 + 12𝑝(2𝜇 − 𝑡)2 = 𝜇2 + 𝜎2
that 𝑝 = 𝜎2(𝑡 − 𝜇)2 .
Hence,

𝔼[𝑋 | 𝑋 � 𝑡] = 𝜎22(𝑡−𝜇)2 (2𝜇 − 𝑡) + (1 − 𝜎2(𝑡−𝜇)2 ) 𝜇𝜎22(𝑡−𝜇)2 + (1 − 𝜎2(𝑡−𝜇)2 ) = 2𝜇(𝑡 − 𝜇)2 − 𝜎2𝑡2(𝑡 − 𝜇)2 − 𝜎2 = 𝜆∗3,
so that these are the optimal primal-dual solutions by weak duality. For the second case, we de-

termine the candidate support point 𝑥0 first. From the moment constraints and the fact that the
solution should be symmetric about 𝜇, we find that 𝑥∗0 = 𝜎 and therefore, the primal candidate
is given by the distribution 12 𝛿𝜇−𝜎 + 12𝛿𝜇+𝜎 . The second dual solution then yields𝜆1 = −4𝜆0𝜎 + 𝜇2 + 𝜎24𝜇𝜎 , 𝜆2 = 14𝜎 , 𝜆∗3 = 𝜇 + 𝜎.
Thus, 𝔼[𝑋 | 𝑋 � 𝑡] = 𝜇 + 𝑥∗0 = 𝜇 + 𝜎 = 𝜆∗3.
For 𝑡 � 𝜇, there exists a sequence of measures supported on {𝜇, 𝜇−𝑘, 𝜇+𝑘} that is feasible in the
primal, and for which the conditional expectation diverges, as 𝑘 → ∞. This feasible sequence is
given by ℙ𝑘 = (1 − 𝜎2𝑘2 ) 𝛿𝜇 + 12 𝜎2𝑘2 𝛿𝜇−𝑘 + 12 𝜎2𝑘2 𝛿𝜇+𝑘.
It is then easily verified that lim𝑘→∞ 𝔼ℙ𝑘 [𝑋 | 𝑋 � 𝑡] diverges. Combining the cases above, while
checking for feasibility of the primal solutions, the claim follows.

Proof of Proposition 5.8. Symmetric, unimodal distributions with mode 𝜇 can be generated by
rectangular/uniform distributions, possibly including aDiracmeasure at 𝜇 (i.e., 𝛿[𝜇−𝑧,𝜇+𝑧], 𝑧 � 0).
From Theorem 5.2, it follows that the dual problem is given byinf𝜆0,𝜆1,𝜆2,𝜆3 𝜆3

subject to 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜎2 + 𝜇2) � 0,∫ 𝜇+𝑥𝜇−𝑥 𝜆0 + 𝜆1𝑧 + 𝜆2𝑧2d𝑧 � ∫ 𝜇+𝑥𝜇−𝑥 (𝑧 − 𝜆3)�Ξ(𝑧) d𝑧, ∀𝑥 > 0,𝜆0 + 𝜆1𝜇 + 𝜆2𝜇2 � (𝜇 − 𝜆3).
(B.16)

After computing the integral on the left-hand side of the penultimate constraint, one obtains23𝑥 (3𝜆0 + 3𝜇(𝜆1 + 𝜆2𝜇) + 𝜆2𝑥2) � ∫ 𝜇+𝑥𝜇−𝑥 (𝑧 − 𝜆3)�Ξ(𝑧) d𝑧, ∀𝑥 > 0.
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For the right-hand side, we distinguish two cases so that we can split the semi-infinite constraint

into two sets, resulting in the system of inequalities23𝑥 (3𝜆0 + 3𝜇(𝜆1 + 𝜆2𝜇) + 𝜆2𝑥2) � 2𝑥(𝜇 − 𝜆3), ∀0 < 𝑥 < 𝜇 − 𝑡,23𝑥 (3𝜆0 + 3𝜇(𝜆1 + 𝜆2𝜇) + 𝜆2𝑥2) � −12(𝑡 − 𝑥 − 𝜇)(𝑡 + 𝑥 − 2𝜆3 + 𝜇), ∀𝑥 � 𝜇 − 𝑡. (B.17)

Again, we can make an educated guess for an optimal dual solution, and using weak duality,

prove optimality by constructing a matching primal solution using the complementary slack-

ness property. The dual solution is now characterized by a third-order polynomial function,𝑀uni(𝑥) ∶= 23𝑥 (3𝜆0 + 3𝜇(𝜆1 + 𝜆2𝜇) + 𝜆2𝑥2). We show through primal-dual reasoning that there
are merely two feasible options for the extremal distribution. Using this insight, we optimize

the primal problem directly by plugging in the candidate form of the extremal distribution. No-

tice that as𝑀uni(𝑥) needs to be convex in order to be dual feasible, there cannot exist a tangent
point on the interval [0, 𝜇 − 𝑡) because otherwise 𝑀uni(𝑥) would need to intersect 2𝑥(𝜇 − 𝜆3).
Furthermore, there can exist only one tangent point 𝑥 = 𝑥∗0 at which𝑀uni(𝑥) coincides with the
quadratic function −12 (𝑡 − 𝑥 −𝜇)(𝑡 + 𝑥 −2𝜆3 +𝜇), as𝑀uni(𝑥) is a cubic function. By complemen-
tary slackness, the corresponding extremal distribution is then given by the mixture of a Dirac

measure at 𝜇 and a uniform distribution on the interval [𝜇−𝑥∗0 , 𝜇+𝑥∗0 ], for the first case, or a uni-
form distribution on [𝜇 −√3𝜎, 𝜇 +√3𝜎] for the second. Indeed, the latter uniform distribution
is the only one that is feasible for the primal problem. From these observations, it follows that

the primal problem can be reduced to a finite-dimensional (nonconvex) optimization problem.

The objective function of the primal problem can be rewritten as

𝔼[𝑋 | 𝑋 � 𝑡] = (1 − 𝑝)𝜇 + 𝑝 ∫ 𝜇+𝑥0𝑡 𝑧2𝑥0 d𝑧(1 − 𝑝) + 𝑝 ∫ 𝜇+𝑥0𝑡 12𝑥0 d𝑧 = 4𝑥0𝜇 − 𝑝(𝑡 + 𝑥0 − 𝜇)(𝑡 − 𝑥0 + 𝜇)4𝑥0 − 2𝑝(𝑡 + 𝑥0 − 𝜇) . (B.18)

From the variance constraint(1 − 𝑝)𝜇2 + 𝑝 (𝜇 − 𝑥0)2 + (𝜇 − 𝑥0)(𝜇 + 𝑥0) + (𝜇 + 𝑥0)23 = 𝜎2 + 𝜇2,
it follows that 𝑝 = 3𝜎2𝑥20 . In order to be a probability, it should hold that 𝑝 � 1, and hence𝑥0 � √3𝜎. The variable 𝑝 can be eliminated from (B.18), yielding the optimization problemmax𝑥0 {4𝜇(𝑥0)3 − 3𝜎2(−𝜇 + 𝑡 + 𝑥0)(𝜇 + 𝑡 − 𝑥0)4(𝑥0)3 − 6𝜎2(−𝜇 + 𝑡 + 𝑥0) ∶ 𝑥0 � √3𝜎} . (B.19)

From standard arguments, it follows that the maximum of (B.19) must be attained at a critical

point of the objective function or at the boundary of the feasible region. The first case follows

from determining the critical point by solving the first-order condition6𝜎2𝑥20 (3(𝑡 − 𝜇)2 − 𝑥20) + 9𝜎4(𝜇 − 𝑡 − 𝑥0)2 = 0.
The second case corresponds to the boundary of the feasible region for which 𝑝 = 1. As a
consequence, the optimal tangent point 𝑥∗0 = √3𝜎. It is easy to verify that this solution yields
the second case.
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Finally, for the third case, 𝑡 � 𝜇, we construct amaximizing sequence {ℙ𝑘} forwhich𝔼[𝑋 | 𝑋 �𝑡] diverges. To this end, considerℙ𝑘 = (1 − 3𝜎2𝑘2 ) 𝛿𝜇 + 3𝜎2𝑘2 𝛿[𝜇−𝑘,𝜇+𝑘],
which is feasible for the primal problem. Then

𝔼ℙ𝑘 [𝑋 | 𝑋 � 𝑡] = ∫ 𝜇+𝑘𝑡 𝑧2𝑘 d𝑧∫ 𝜇+𝑘𝑡 12𝑘 d𝑧 = 12(𝑡 + 𝜇 + 𝑘) 𝑘→∞⟶ ∞,
hence resulting in the third case. Combining the cases above completes the proof.

Proof of Proposition 5.9. The primal can be equivalently stated assupℙ∈P(𝜇,𝜎) 𝔼[�{𝑋�𝑧} | 𝑋 � 𝑝],
which is (weakly) dual toinf𝜆0,𝜆1,𝜆2,𝜆3 𝜆3

subject to 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜎2 + 𝜇2) � 0,𝜆0 + 𝜆1𝑥 + 𝜆2𝑥2 � (�{𝑥�𝑧}(𝑥) − 𝜆3)�Ξ(𝑥), ∀𝑥 � 0. (B.20)

The right-hand side of the constraint is equal to 0, for 𝑥 < 𝑡, −𝜆3 for 𝑡 � 𝑥 < 𝑧, and 1 − 𝜆3
for 𝑥 � 𝑧. We discuss three cases, in the order of their appearance in the claim. The first dual
solution,𝑀1(𝑥), corresponds to a convex quadratic function that touches (�{𝑥�𝑧}(𝑥) − 𝜆3)�Ξ(𝑥)
at 𝑧 and 𝑥0, where the latter point lies between 𝑝 and 𝑧. The primal probabilities, dual variables,
and the support point 𝑥0 follow from solving𝑝𝑥0 + 𝑝𝑧 = 1, 𝑝𝑥0𝑥0 + 𝑝𝑧𝑧 = 𝜇, 𝑝𝑥0𝑥20 + 𝑝𝑧𝑧2 = 𝜇2 + 𝜎2,𝜆0 + 𝜆1𝑥0 + 𝜆2𝑥20 = −𝜆3, 𝜆0 + 𝜆1𝑧 + 𝜆2𝑧2 = 1 − 𝜆3,𝜆1 + 2𝜆2𝑥0 = 0, 𝜆0 + 𝜆1𝜇 + 𝜆2(𝜇2 + 𝜎2) = 0,
yielding as solution𝑝𝑥0 = (𝑧 − 𝜇)2𝜎2 + (𝑧 − 𝜇)2 , 𝑝𝑧 = 𝜎2𝜎2 + (𝑧 − 𝜇)2 , 𝑥0 = 𝜇 + 𝜎2𝜇 − 𝑧 ,𝜆0 = (𝑧 − 𝜇) (𝜇2(𝑧 − 𝜇) − 𝜎2(𝜇 + 𝑧))(𝜎2 + (𝑧 − 𝜇)2)2 , 𝜆1 = 2(𝑧 − 𝜇) (𝜇2 + 𝜎2 − 𝜇𝑧)(𝜎2 + (𝑧 − 𝜇)2)2 ,

𝜆2 = (𝑧 − 𝜇)2(𝜎2 + (𝑧 − 𝜇)2)2 , 𝜆3 = 𝜎2𝜎2 + (𝑧 − 𝜇)2 .
Indeed, by weak duality, this gives the best possible bound since𝔼[�{𝑥�𝑧}(𝑋)] = 𝑝𝑧 = 𝜎2𝜎2 + (𝑧 − 𝜇)2 = 𝜆3.
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For the second case, let𝑀2(𝑥) denote a quadratic function that touches at 𝑥 = 𝑧 and some point𝑥0, like 𝑀1(𝑥), but additionally agrees with (�{𝑥�𝑧}(𝑥) − 𝜆3)�Ξ(𝑥) at 𝑥 = 𝑝. Again, we can use
a similar set of conditions, as described above, to find the optimal primal and dual solutions,

but now with a three-point distribution with 𝑥0 = 𝜇2+𝜎2−𝜇𝑧𝜇−𝑧 (which follows from the conditions).

This leads to the second bound. For brevity, we omit the detailed calculations. Finally, for the

third case, 𝑀3(𝑥) is a quadratic function that touches at 𝑧 and a point 0 � 𝑥 � 𝑝. The same set
of calculations leads to the third upper bound, which is equal to the constant 1. We combine

the cases above in such a way that the primal distributions are feasible. This completes the

proof.

B.3.1. Conic reformulations
Proof of second claim Theorem 5.10. We will focus on the second semi-infinite constraint (the

first constraint can be dealt with analogously), which can equivalently be written as the collec-

tion of robust counterparts𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐮 + 𝜆3 � 𝐬𝑙(𝝂)⊤𝐱 + 𝑡𝑙(𝝂), ∀(𝐱, 𝐮) ∈ C, ∀𝑙 ∈ L. (B.21)

Let “cl” denote the closure of a set. We next generate a proper cone from the uncertainty set
as follows: DefineK ∶= cl ({(𝐱, 𝐮, 𝑤) ∈ ℝ𝑛 × ℝ𝑚 × ℝ ∶ (𝐳/𝑤, 𝐮/𝑤) ∈ C, 𝑤 > 0}), of whichK∗ is
the dual cone. The semi-infinite constraint (B.21) is satisfied if, and only if,inf (𝝀1 − 𝐬𝑙(𝝂))⊤ 𝐱 + 𝝀⊤2 𝐮

s.t. (𝐱, 𝐮, 1) ∈ K, (B.22)

is greater than, or equal to, 𝑡𝑙(𝝂)−𝜆0 −𝜆3. By conic duality, the strong dual of (B.22) is given bysup − 𝑤𝑙
s.t. 𝝀1 − 𝐬𝑙(𝝂) − 𝐚𝑙 = 𝟎,𝝀2 − 𝐛𝑙 = 𝟎,(𝐚𝑙, 𝐛𝑙, 𝑤𝑙) ∈ K∗. (B.23)

Then the semi-infinite constraint (B.21) is satisfied if, and only if, there exist solutions (𝐚𝑙, 𝐛𝑙, 𝑤𝑙) ∈
K∗, for all 𝑙 ∈ L, such that the constraints in (B.23) are satisfied and −𝑤𝑙 is not less than𝑡𝑙(𝝂) − 𝜆0 − 𝜆3. Using this dual characterization, we can rewrite (5.28) in the following way:inf 𝜆3

s.t. 𝜆0 + 𝝀⊤1 𝝁 + 𝝀⊤2 𝝈 � 0,𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐮 � 0, ∀(𝐱, 𝐮) ∈ C,𝜆0 + 𝜆3 − 𝑡𝑙(𝐱) − 𝑤𝑙 � 0, ∀𝑙 ∈ L,𝝀1 − 𝐬𝑙(𝝂) − 𝐚𝑙 = 𝟎, ∀𝑙 ∈ L,𝝀2 − 𝐛𝑙 = 𝟎, ∀𝑙 ∈ L,(𝐚𝑙, 𝐛𝑙, 𝑤𝑙) ∈ K∗, ∀𝑙 ∈ L,𝝂 ∈ V, 𝜆0 ∈ ℝ, 𝝀1 ∈ ℝ𝑛, 𝝀2 ∈ ℝ𝑚+ , 𝜆3 ∈ ℝ.
(B.24)
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Since C is also conic representable, an analogous argument enables us to reformulate the first

semi-infinite constraint, reducing (B.24) to a finite-dimensional conic optimization problem.

Then, the second claim follows.

We use the following result to derive the LMI reformulations for the Chebyshev ambiguity

setP(𝝁,𝚺).
Lemma B.1 (S-Lemma, 176). Consider two quadratic functions of 𝐱 ∈ ℝ𝑛, 𝑞𝑖(𝐱) = 𝐱⊤𝐂𝑖𝐱+2𝐜⊤𝑖 𝐱+𝑐𝑖, 𝑖 = 0, 1, with 𝑞1(𝐱) > 0 for some 𝐱. Then𝑞0(𝐱) � 0 ∀𝐱 ∶ 𝑞1(𝐱) � 0
if, and only if, there exists 𝜏 � 0 such that

( 𝑐0 𝐜⊤0𝐜0 𝐂0 ) − 𝜏 ( 𝑐1 𝐜⊤1𝐜1 𝐂1 ) ∈ 𝕊𝑛+1+ .
Proof of Corollary 5.11. By the S-Lemma, we have that

𝜆0 + 𝝀⊤1 𝐱 + 𝐱⊤𝚲𝐱 � 0, ∀𝐱 ∶ 𝐜⊤𝐱 � 𝑐 ⟺ ∃𝜏 � 0 ∶ [ 𝜆0 + 𝜏𝑐 12 (𝝀1 − 𝜏𝐜)⊤12 (𝝀1 − 𝜏𝐜) 𝚲 ] ≽ 𝟎.
Analogously, for the second semi-infinite constraint,𝜆0 + (𝝀1 − 𝐬(𝝂))⊤𝐱 + 𝐱⊤𝚲𝐱 + 𝜆3 − 𝑡𝑙(𝝂) � 0, ∀𝐱 ∶ 𝐜⊤𝐱 � 𝑐⟺ ∃𝜒𝑙 � 0 ∶ [ 𝜆0 − 𝜒𝑙𝑐 12 (𝝀1 − 𝐬𝑙(𝝂) + 𝜒𝑙𝐜)⊤12 (𝝀1 − 𝐬𝑙(𝝂) + 𝜒𝑙𝐜) 𝚲 ] ≽ 𝟎.
These LMIs yield the following semidefinite programming problem:inf 𝜆3

s.t. 𝜆0 + 𝝀⊤1 𝝁 + ⟨𝚲, 𝚺⟩ � 0,
[ 𝜆0 + 𝜏𝑐 12 (𝝀1 − 𝜏𝐜)⊤12 (𝝀1 − 𝜏𝐜) 𝚲 ] ≽ 𝟎,
[𝜆0 + 𝜆3 − 𝑡𝑙(𝝂) − 𝜒𝑙𝑐 12 (𝝀1 − 𝐬𝑙(𝝂) + 𝜒𝑙𝐜)⊤12 (𝝀1 − 𝐬𝑙(𝝂) + 𝜒𝑙𝐜) 𝚲 ] ≽ 𝟎, ∀𝑙 ∈ L,𝝂 ∈ V, 𝜆0 ∈ ℝ, 𝝀1 ∈ ℝ𝑛, 𝚲 ∈ 𝕊𝑛+, 𝜆3 ∈ ℝ, 𝜏 ∈ ℝ+, 𝝌 ∈ ℝ|L|+ ,

where ⟨⋅, ⋅⟩ denotes the trace inner product.
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Proof of Corollary 5.12. The model with MAD information follows from defining separate con-

straints for the positive and negative parts of the absolute value terms. This yieldsinf𝝂,𝜆0,𝝀1,𝝀2,𝜆3 𝜆3
s.t. 𝜆0 + 𝝀⊤1𝐦 + 𝝀⊤2 𝐟 � 0,𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐝(𝐱) � 0, ∀𝐱 ∶ 𝐜⊤𝐱 � 𝑐,𝜆0 + 𝝀⊤1 𝐱 − 𝝀⊤2 𝐝(𝐱) � 0, ∀𝐱 ∶ 𝐜⊤𝐱 � 𝑐,𝜆0 + 𝝀⊤1 𝐱 + 𝝀⊤2 𝐝(𝐱) + 𝜆3 � 𝐬𝑙(𝝂)⊤𝐱 + 𝑡𝑙(𝝂), ∀𝐱 ∶ 𝐜⊤𝐱 � 𝑐, ∀𝑙 ∈ L,𝜆0 + 𝝀⊤1 𝐱 − 𝝀⊤2 𝐝(𝐱) + 𝜆3 � 𝐬𝑙(𝝂)⊤𝐱 + 𝑡𝑙(𝝂), ∀𝐱 ∶ 𝐜⊤𝐱 � 𝑐, ∀𝑙 ∈ L,𝝂 ∈ V, 𝜆0 ∈ ℝ, 𝝀1 ∈ ℝ𝑛, 𝝀2 ∈ ℝ𝑛2+ , 𝜆3 ∈ ℝ,

where 𝐝(𝐱) = 𝐦0 + 𝐃𝐱 describes the affine functions 𝑋𝑖 − 𝑚𝑖 and (𝑋𝑖 ± 𝑋𝑗) − (𝑚𝑖 ± 𝑚𝑗). Let
us focus on the first semi-infinite constraint. Using the fact that 𝐝 is an affine, multi-valued
function of 𝐱, the first semi-infinite constraint can be rewritten as𝜆0 + 𝝀⊤2𝐦0 + (𝝀1 + 𝐃⊤𝝀2)⊤𝐱 � 0.
Then, standard LP duality yields a finite-dimensional linear reformulation since𝜆0 + 𝝀⊤2𝐦0 + (𝝀1 + 𝐃⊤𝝀2)⊤𝐱 � 0, ∀𝐱 ∶ 𝐜⊤𝐱 � 𝑐⟺ 𝜆0 + 𝝀⊤2𝐦0 + min𝐱∶𝐜⊤𝐱�𝑐(𝝀1 + 𝐃⊤𝝀2)⊤𝐱 � 0⟺ 𝜆0 + 𝝀⊤2𝐦0 + max𝜏�0 {𝑐𝜏 ∶ 𝜏𝐜 = 𝝀1 + 𝐃⊤𝝀2} � 0⟺ ∃𝜏 � 0 ∶ 𝜆0 + 𝝀⊤2𝐦0 + 𝑐𝜏 � 0, 𝜏𝐜 = 𝝀1 + 𝐃⊤𝝀2.
A similar argument applies to the other semi-infinite constraints. Therefore, all robust coun-

terparts can be rewritten in terms of linear inequalities, yielding the result.

B.4. Remaining proofs Chapter 7
Proof of Proposition 7.8. We first consider the marginal moment model for the uncertain service

times discussed in Mak et al. [149]. Assume knowledge of only the marginal moments of the

joint distribution and consider the min-max problemmin𝐬∈S maxℙ∈F(D,Q) 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)], (B.25)

where the probabilitymeasureℙ is chosen from themarginalmoment ambiguity setF(D,Q)with
D = [𝑎1, 𝑏1] × … × [𝑎𝑛, 𝑏𝑛] the Cartesian product of the supports of the individual service times
andQ an information set that comprises vectors (𝔼[ℎ1(𝑋𝑘)], … , 𝔼[ℎ𝑚(𝑋𝑘)]) = (𝑞(1)𝑘 , … , 𝑞(𝑚)𝑘 ), ∀𝑘,
containing information on 𝑚 generalized moments for all service time distributions. For the
setting with traditional power moments (i.e., ℎ𝑙(𝑥) = 𝑥𝑙), Mak et al. [149] show that problem
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(B.25) is equivalent to

min𝐬,𝜻 ,𝝀 𝑛∑𝑘=1 𝜁𝑘 + 𝑛∑𝑘=1 𝑚∑𝑙=1 𝑞(𝑙)𝑘 𝜆(𝑙)𝑘
s.t.

min{𝑗,𝑛}∑𝑖=𝑘 max𝑥𝑖∈[𝑎𝑖,𝑏𝑖] ((𝑥𝑖 − 𝑠𝑖) 𝜋𝑖𝑗 − 𝑚∑𝑙=1 𝜆(𝑙)𝑘 ℎ𝑙(𝑥𝑖) − 𝜁𝑖) � 0, for 1 � 𝑘 � 𝑛, 𝑘 � 𝑗 � 𝑛 + 1,𝑠 ∈ S,
(B.26)

with 𝜋𝑖𝑗 as stated in Proposition 7.8. These parameters characterize the extreme points of the
polyhedron Λ that describes the feasible set corresponding to the dual of LP (7.3), see Mak et al.
[149, Section 2]. Recall that (7.3) determines the total costs 𝑓𝑛(𝐬, 𝐱) for a given realization of
service times 𝐱. Close inspection of the proof of Proposition 2 in Mak et al. [149] shows that
this result also holds for generalized moment functions such as the MAD dispersion functionℎ(𝑥) = |𝑥 − 𝜇|. To see this, note that strong duality for generalized moment problems holds for
the inner maximization in (B.25) when the generalized moment vector lies in the interior of the

set of feasible moment vectors; see, e.g., [177]. For mean-MAD ambiguity, this specializes to the

conditions 𝜇𝑘 ∈ (𝑎𝑘, 𝑏𝑘), 𝑑𝑘 ∈ (0, 2(𝑏𝑘−𝜇𝑘)(𝜇𝑘−𝑎𝑘)(𝑏𝑘−𝑎𝑘) ), ∀𝑘. By analyzing the dual problem of the semi-
infinite LP maxℙ∈F(D,Q) 𝔼ℙ[𝑓𝑛(𝐬, 𝐗)], an analog of Lemma 1 in Mak et al. [149] for generalized
moments can be derived. Then, to obtain problem (B.26), the proof of Proposition 2 in Mak et al.

[149] exploits the structure of the polyhedron Λ but does not require the functionals ℎ𝑙(𝑥) to be
of a specific form. We thus conclude that equivalence between (B.25) and (B.26) also holds for

generalized moments.

Specializing (B.26) to the case where the mean and MAD are known, (B.25) gives rise to

min𝐬,𝜻 ,𝝀(1),𝝀(2) 𝑛∑𝑖=1 (𝜁𝑖 + 𝜇𝑖𝜆(1)𝑖 + 𝑑𝑖𝜆(2)𝑖 )
s.t.

min{𝑛,𝑗}∑𝑖=𝑘 max𝑥𝑖∈[𝑎𝑖,𝑏𝑖] {(𝑥𝑖 − 𝑠𝑖) 𝜋𝑖𝑗 − 𝜆(1)𝑖 𝑥𝑖 − 𝜆(2)𝑖 |𝑥𝑖 − 𝜇𝑖| − 𝜁𝑖} � 0,∀1 � 𝑘 � 𝑛, 1 � 𝑘 � 𝑗 � 𝑛 + 1,𝐬 ∈ S.
Since the function to be maximized is piecewise linear, the optimal solution lies either on the

boundary points 𝑎𝑖, 𝑏𝑖 or at the kink point 𝜇𝑖. Hence,max𝑥𝑖∈[𝑎𝑖,𝑏𝑖]{(𝑥𝑖 − 𝑠𝑖)𝜋𝑖𝑗 − 𝜆(1)𝑖 𝑥𝑖 − 𝜆(2)𝑖 |𝑥𝑖 − 𝜇𝑖| − 𝜁𝑖}= max𝑥𝑖∈{𝑎𝑖,𝜇𝑖,𝑏𝑖}{(𝑥𝑖 − 𝑠𝑖)𝜋𝑖𝑗 − 𝜆(1)𝑖 𝑥𝑖 − 𝜆(2)𝑖 |𝑥𝑖 − 𝜇𝑖| − 𝜁𝑖}.
Using the auxiliary variable 𝜉𝑖𝑗 to replace the maximum operator by linear inequalities, we
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obtain min{𝑛,𝑗}∑𝑖=𝑘 𝜉𝑖𝑗 � min{𝑛,𝑗}∑𝑖=𝑘 𝜁𝑖 + 𝑠𝑖𝜋𝑖𝑗 , for 1 � 𝑘 � 𝑛, 1 � 𝑘 � 𝑗 � 𝑛 + 1,𝜉𝑖𝑗 � (𝜋𝑖𝑗 − 𝜆(1)𝑖 )𝑏𝑖 − 𝜆(2)𝑖 (𝑏𝑖 − 𝜇𝑖), for 1 � 𝑖 � 𝑛, 𝑖 � 𝑗 � 𝑛 + 1,𝜉𝑖𝑗 � (𝜋𝑖𝑗 − 𝜆(1)𝑖 )𝜇𝑖, for 1 � 𝑖 � 𝑛, 𝑖 � 𝑗 � 𝑛 + 1,𝜉𝑖𝑗 � (𝜋𝑖𝑗 − 𝜆(1)𝑖 )𝑎𝑖 − 𝜆(2)𝑖 (𝜇𝑖 − 𝑎𝑖), for 1 � 𝑖 � 𝑛, 𝑖 � 𝑗 � 𝑛 + 1.
This yields (7.16).

B.5. Remaining proofs Chapter 8
Proof of Lemma 8.4. First, note that (8.12) is well defined because the moment-generating func-

tion of 𝑌 is finite valued. The objective function 𝜙(𝑥) is convex since it reflects the expectation
of a convex function, i.e., 𝔼[((𝑌 − 𝑥)+)𝑚]. From integration by parts, it follows that

∫ 𝑏𝑌𝑥 ℎ(𝑦 − 𝑥)d𝐹(𝑦) = −∫ 𝑏𝑌𝑥 ℎ(𝑦 − 𝑥)d(1 − 𝐹(𝑦))
= 0 + ∫ 𝑏𝑌𝑥 ℎ′(𝑦 − 𝑥)(1 − 𝐹(𝑦))d𝑦

in which the second equality follows from ℎ(0) = 0, 𝐹(𝑏𝑌 ) = 1. Taking the derivative,dd𝑥 ∫ 𝑏𝑌𝑥 ℎ(𝑦 − 𝑥)d𝐹(𝑦) = dd𝑥 ∫ 𝑏𝑌𝑥 ℎ′(𝑦 − 𝑥) (1 − 𝐹(𝑦)) d𝑦 = −∫ 𝑏𝑌𝑥 ℎ′′(𝑦 − 𝑥) (1 − 𝐹(𝑦)) d𝑦,
where the final line follows from Leibniz’s integral rule and the observation that ℎ′(0) = 0.
After some rewriting, this yields−∫ 𝑏𝑌𝑥 ℎ′′(𝑠 − 𝑥) (1 − 𝐹(𝑠)) d𝑠 = −∫ 𝑏𝑌𝑥 ℎ′′(𝑠 − 𝑥) ∫ 𝑏𝑌𝑠 d𝐹(𝑦) d𝑠

= −∫ 𝑏𝑌𝑥 ∫ 𝑦𝑥 ℎ′′(𝑠 − 𝑥)d𝑠 d𝐹(𝑦)
= −∫ 𝑏𝑌𝑥 ℎ′(𝑦 − 𝑥)d𝐹(𝑦).

Hence, 𝜙′(𝑥) = −∫ 𝑏𝑌𝑥 ℎ′(𝑦 − 𝑥)d𝐹(𝑦),
which is a continuous function of 𝑥 for ℎ(𝑥) = 𝑥𝑚, 𝑚 � 2, supporting the claim that 𝜙(𝑥) is
continuously differentiable. It then remains to show that 𝜙′(𝑥) is concave. By differentiating a
second time, one obtains 𝜙′′(𝑥) = ∫ 𝑏𝑌𝑥 ℎ′′(𝑦 − 𝑥)d𝐹(𝑦),
which is clearly nonincreasing in 𝑥 for ℎ(𝑥) = 𝑥𝑚, 𝑚 � 2. As a consequence, the derivative𝜙′(𝑥) is concave.
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Summary

In this thesis, we discuss distribution-free methods for stochastic models. The traditional ap-

proach to these models often assumes full information with respect to the probability distribu-

tions of the random variables under consideration. However, in this thesis, a distribution-free

perspective is adopted by assuming only partial knowledge of these distributions, often lim-

ited to moment information. Distributionally robust analysis seeks to determine the worst-case

model performance by optimizing over a set of probability distributions that comply with this

partial information. This necessitates us to solve semi-infinite optimization problems through

the application of duality theory.

The thesis tries to bridge the research on generalized moment problems, distributionally ro-

bust stochastic programming and extremal queueing models, three prevalent themes in the ap-

plied probability and optimization literature. It usesmethods from generalizedmoment problem

literature to derive new distribution-free bounds which can then be used for solving stochastic

optimization problems and performing extremal analysis on queueing models. One of the key

contributions emphasized in this thesis is the use of semi-infinite linear optimization problems

and primal-dual techniques to establish tight (i.e., “best possible”) bounds for the distribution-

free analysis and optimization of stochastic models, facilitating distribution-free decision mak-

ing. This work further highlights specific combinations of objective functions and ambigu-

ity sets that yield worst-case probability distributions that are, in some sense, insensitive to

the precise stochastic model dynamics under consideration, thereby significantly simplifying

distribution-free analysis.

The different chapters detail various applications of the distribution-free bounds. In Chap-

ter 2, we investigate the extremal queue problem, focusing on theworst-case performance of the

GI/G/1 queue under mean-dispersion constraints for the interarrival- and service-time distribu-

tions. We use the mean absolute deviation from the mean (MAD) as the dispersion measure in-

stead of the more common variance. Our key observation is that the expected waiting time can

be expressed as a componentwise convex function of random variables, which allows us to use

known tight bounds for the distribution-free analysis of the GI/G/1 queue. This approach lever-

ages the extremal distribution’s insensitivity property, providing sharp upper and lower bounds

for the moments of the waiting time while incorporating the i.i.d. assumption. In Chapter 3, we

examine an M/M/𝑠 queue with a random arrival rate characterized by its mean, variance and
support. We establish tight bounds for the expected waiting time by determining a worst-case

distribution supported on two points. The proofs rely on the convex derivative of the expected

219



623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen623039-L-bw-vanEekelen
Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023Processed on: 8-11-2023 PDF page: 226PDF page: 226PDF page: 226PDF page: 226

220 Distributionally robust views on stochastic models

waiting time with respect to the arrival rate. These bounds have applications in rational queue-

ing where individuals decide to join or balk based on expected utility and limited market size

knowledge. Chapter 4 introduces new bounds for the tail probability of random variables with

known support, mean and mean absolute deviation. These bounds result from solving semi-

infinite linear programs using the weak duality framework. We apply these bounds to analyze

the newsvendor model, stop-loss reinsurance and a chance-constrained optimization problem

in radiotherapy. In Chapter 5, we address conditional expectation bounds based on moment in-

formation and observed random events. We reformulate this problem as a semi-infinite linear

program, enabling us to derive tight bounds for conditional expectations using the duality the-

ory for generalized moment problems. Chapter 6 focuses on the multi-item newsvendor prob-

lem with budget constraint, in which we leverage the mean-MAD bounds from earlier chapters

to simplify the optimization problem. After reducing this problem to a stochastic program

with a simple structure, it follows that a greedy approach can be used to find the optimal order

quantities for the newsvendor. Chapter 7 tackles the appointment scheduling problem, in which

distribution-free analysis techniques are applied to minimize costs under worst-case scenarios.

We address challenges posed by the independence assumption and explore distribution-free

methods similar to those used in Chapter 2 for the GI/G/1 queue. Chapter 8 concludes the the-

sis by exploring classes of functions and distributional information that induce the insensitivity

property and suggesting future research directions for a broader framework of distribution-free

analysis for i.i.d. stochastic models.
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Samenvatting

In dit proefschrift behandelen we verdelingsvrije methoden voor stochastische modellen. De

traditionele benadering voor deze modellen gaat vaak uit van volledige informatie met be-

trekking tot de kansverdelingen van de betreffende stochasten. In dit proefschrift wordt echter

een verdelingsvrije benadering gehanteerd door slechts gedeeltelijke kennis over deze verdelin-

gen te veronderstellen, vaak beperkt tot informatie betreffende demomenten van de toevalsvari-

abelen. Verdelingsvrije analyse zoekt dan naar de slechtst mogelijke modelprestaties door te

optimaliseren over een verzameling van kansverdelingen die voldoen aan deze gedeeltelijke

informatie. Dit vereist vervolgens het oplossen van semi-oneindige optimaliseringsproblemen

met behulp van dualiteitstheorie.

We streven ernaar in dit proefschrift een verband te leggen tussen het onderzoek naar gegen-

eraliseerde momentproblemen, kansverdelingsvrije stochastische optimaliseringsproblemen en

worst-case wachtrijmodellen, drie veel voorkomende onderzoeksrichtingen in de literatuur

over toegepaste kansrekening en optimalisatie. We gebruiken methoden uit de literatuur over

gegeneraliseerde momentproblemen om nieuwe verdelingsvrije begrenzingen af te leiden, die

vervolgens gebruikt kunnen worden voor het oplossen van stochastische optimaliseringsprob-

lemen en het uitvoeren van worst-case analyse op wachtrijmodellen. Een van de belangrijkste

bijdragen die dit proefschrift benadrukt, is het gebruik van semi-oneindige lineaire optimalis-

eringsproblemen en dualiteitstechnieken om scherpe (oftewel, optimale) grenzen vast te stellen

voor de verdelingsvrije analyse en optimalisatie van stochastischemodellen. Dit proefschrift be-

licht verder specifieke combinaties van doelfuncties en gedeeltelijke informatie die worst-case

kansverdelingen opleveren welke, in zekere zin, ongevoelig zijn voor de precieze stochastische

modeldynamiek van het probleem, wat de analyse aanzienlijk vereenvoudigt.

Dit proefschrift behandelt bovenstaande bijdragen aan de hand van diverse toepassingen, die

zijn verdeeld over de verschillende hoofdstukken. In hoofdstuk 2 onderzoeken we het worst-

case wachtrijprobleem en richten we ons op de slechtst mogelijke prestaties van de GI/G/1

wachtrij onder gemiddelde- en dispersiebeperkingen voor de tussenaankomst- en servicetijd-

verdelingen. We gebruiken de gemiddelde absolute afwijking van het gemiddelde als de dis-

persiemaat in plaats van de, meer gangbare, variantie. Onze belangrijkste observatie is dat de

verwachte wachttijd kan worden uitgedrukt als een componentgewijze convexe functie van to-

evalsvariabelen, wat ons in staat stelt om bekende begrenzingen te gebruiken voor de analyse

van de GI/G/1 wachtrij. Deze benadering maakt gebruik van de ongevoeligheidseigenschap van

de worst-case kansverdeling, en levert scherpe boven- en ondergrenzen op voor de momenten
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van de wachttijd, die, zelfs onder de onafhankelijkheidsaanname (welke verdelingsvrije anal-

yse normaal gesproken aanzienlijk lastiger maakt), valide zijn. In hoofdstuk 3 beschouwen we

een M/M/𝑠 wachtrij met een stochastische aankomstintensiteit, gekenmerkt door zijn gemid-
delde, variantie en bereik. We stellen scherpe grenzen vast voor de verwachte wachttijd door

een worst-case verdeling vast te stellen die ondersteund wordt op twee punten. De wiskundige

bewijzen in dit hoofdstuk maken gebruik van de convexe afgeleide van de verwachte wachttijd

als functie van de aankomstintensiteit. Deze grenzen kunnen worden toegepast op de rationele

wachtrijtheorie, waarbij klanten beslissen of ze wel of niet in de wachtrij gaan staan gebaseerd

op het verwachte nut hiervan en de beperkte kennis over de totale marktomvang. In hoofdstuk

4 introduceren we nieuwe grenzen voor de staartkans van toevalsvariabelen met een bekend

bereik, gemiddelde en gemiddelde absolute afwijking. Deze grenzen zijn opnieuw het resul-

taat van het oplossen van semi-oneindige lineaire optimaliseringsproblemen met behulp van

zwakke dualiteit. In hoofdstuk 5 behandelen we begrenzingen voor conditionele verwachtin-

gen die gebaseerd zijn op momentinformatie en waargenomen stochastische gebeurtenissen.

We herformuleren dit probleem als een semi-oneindig lineair optimaliseringsprobleem, wat

ons in staat stelt om scherpe grenzen af te leiden voor conditionele verwachtingen met be-

hulp van de dualiteitstheorie voor gegeneraliseerde momentproblemen. In hoofdstuk 6 kijken

we naar het multi-item newsvendor probleem met een beperkt budget, waarbij we de eerder

vervaardigde grenzen benutten om het optimaliseringsprobleem te vereenvoudigen. Door dit

probleem te reduceren tot een stochastisch optimaliseringsprobleem met een zeer eenvoudige

structuur, kunnen we een efficiënt algoritme formuleren om optimale bestelhoeveelheden te

vinden. In hoofdstuk 7 bespreken we het optimaal plannen van afspraken met behulp van

verdelingsvrije analysetechnieken. Het doel is om de kosten onder de slechtst mogelijke om-

standigheden te minimaliseren. We pakken de uitdagingen aan die voortkomen uit de aanname

van onafhankelijkheid met behulp van verdelingsvrije methoden die vergelijkbaar zijn met die

uit hoofdstuk 2 voor de GI/G/1 wachtrij. In hoofdstuk 8 sluiten we het proefschrift af door

klassen van functies en informatie te verkennen die de ongevoeligheidseigenschap opleveren.

Tevens beschrijven we mogelijke toekomstige onderzoeksrichtingen voor de ontwikkeling van

een breder theoretisch raamwerk voor de verdelingsvrije analyse van stochastische modellen

met onafhankelijke toevalsvariabelen.
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This dissertation explores distribution-free methods for stochastic models. 
Traditional approaches operate on the premise of complete knowledge about the 
probability distributions of the underlying random variables that govern these 
models. In contrast, this work adopts a distribution-free perspective, assuming 
only partial knowledge of these distributions, often limited to generalized moment 
information. Distributionally robust analysis seeks to determine the worst-case 
model performance. It involves optimization over a set of probability distributions 
that comply with this partial information, a task tantamount to solving a semi-
infinite linear program. To address such an optimization problem, a solution 
approach based on the concept of weak duality is used. Through the proposed 
weak-duality argument, distribution-free bounds are derived for a wide range of 
stochastic models. Further, these bounds are applied to various distributionally 
robust stochastic programs and used to analyze extremal queueing models—
central themes in applied probability and mathematical optimization.
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