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Abstract This work develops a closed-form yield criterion applicable to porous materials with pressure-8

dependent matrix presenting tension–compression asymmetry (Mises–Schleicher–Burzyński material) con-9

taining parallel cylindrical voids. To develop the strength criterion, the stress-based variational homogenization10

approach due to Cheng et al. (Int J Plast 55:133–151, 2014) is extended to the case of a hollow cylinder under11

generalized plane strain conditions subjected to axisymmetric loading. Adopting a strictly statically admissible12

trial stress field, the homogenization procedure results in an approximate yield locus depending on the current13

material porosity, tension–compression material asymmetry, the mean lateral stress and an equivalent shear14

stresses. The analytical criterion provides exact solutions for purely hydrostatic loading. Theoretical results15

are compared with finite element (FE) simulations considering cylindrical unit-cells with distinct porosity16

levels, different values of the tension–compression asymmetry and a wide range of stress triaxialities. Based17

on comparisons, the theoretical results are found to be in good agreement with FE simulations for most of18

the loading conditions and material features considered in this study. More accurate theoretical predictions19

are provided when higher material porosities and/or lower tension–compression asymmetries are considered.20

Overall, the main outcome of this work is a closed-form yield function proving fairly accurate predictions to21

engineering applications, in which pressure-dependent and tension–compression asymmetric porous materials22

with cylindrical voids are dealt with. This can be the case of honeycomb structures or additively manufactured23

materials, in which metal matrix composites are employed.24

1 Introduction25

Porous materials are known to be present in many engineering applications and the porosity is known to26

influence the mechanical behavior of such materials. For example, material porosity has been reported to be27

intimately related to the ductile fracture and failure of metallic materials [2]. In addition, when it comes to28

geophysics and civil engineering, material porosity is thought to be an intrinsic feature of soils, rocks, concrete29

and asphalt that significantly influences their overall mechanical behavior, regarding, e.g., stability and fracture30

strength [9, 10]. 131

The constitutive modelling of the mechanical behavior of porous metallic materials may be traced back to the32

pioneering works of McClintock [26], Rice and Tracey [35] and Gurson [17]. The analyses due to McClintock33
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[26] and Rice and Tracey [35], on the growth of voids in ductile matrix materials, have provided the basis for34

the subsequent study of Gurson [17], who proposed a macroscopic yield criterion for porous media with a35

von Mises matrix material containing either cylindrical or spherical voids. Gurson’s development consists of36

a kinematic limit analysis, which provided yield criteria to porous plastic solids explicitly accounting for the37

porosity influence on the overall material strength. Later, Gurson’s approach has been heuristically extended by38

Tvergaard [49] and Tvergaard and Needleman [50] in an effort to provide a better agreement when compared to39

unit-cell simulations. Therefore, resulting in the well-known GTN model that has been widely employed within40

modelling frameworks addressing ductile damage, fracture and failure in incompressible matrix materials (see41

for instance the review of Benzerga and Leblond [2]).42

Many researches have lead to more general approaches, where Gursons’s model has been extended in an43

effort to incorporate pore shape and/or the effect of matrix anisotropy (see Monchiet et al. [28]; Cazacu and44

Stewart [6]; Keralavarma and Benzerga [21]; Monchiet et al. [29]; Keralavarma and Benzerga [22], to cite45

few works). Regarding both tension–compression asymmetry and plastic anisotropy, Cazacu and Stewart [6]46

have developed an analytic plastic potential for a void-matrix aggregate with a random distribution of spherical47

voids. They have employed an upper bound approach for a matrix material obeying the yield criterion developed48

by Cazacu et al. [5], which can describe both the anisotropy and the tension–compression asymmetry of the49

matrix. Monchiet et al. [28] investigated the combined effects of both void shape and matrix anisotropy on50

the macroscopic response of ductile porous solids. They have extended the analysis due to Gologanu et al.51

[15] to the case of an anisotropic matrix obeying the criterion of Hill [20]. Keralavarma and Benzerga [21]52

have considered a class of anisotropic porous media with spheroidal voids arbitrarily oriented in an orthotropic53

matrix. Their model has been numerically assessed in a subsequent work [22], where theoretical predictions54

have been compared with rigorous upper bounds obtained from numerical analysis of spheroidal unit-cells.55

Moreover, Monchiet et al. [29], employing Eshelby-like velocity fields, also provided a closed-form anisotropic56

yield criterion for a rigid ideal-plastic von Mises matrix containing spheroidal cavities.57

While all works cited above have addressed only pressure-independent matrix materials, proposals dealing58

with pressure-dependent ones have also been proposed. In this sense, studies have been devoted to extend59

Gurson’s approach to porous solids with either Drucker–Prager [16, 42, 44]—that has a linear pressure-60

dependence—or Green [14, 40] matrix materials—having a symmetric parabolic pressure-dependence. See61

the reviews of Dormieux et al. [11], Shen and Shao [38] and Shen et al. [42] for more detailed discussions.62

While approaches considering porous media having either Drucker–Prager or Green matrices have provided63

suitable results to rock-like and powder materials, they have not been adequate to model the behavior of porous64

solids with non-linearly pressure-dependent matrix presenting strong tension–compression asymmetry, such65

as some polymers and metal matrix composites [3, 24, 36, 54]. In the case of metal matrix composites, possible66

causes for the tension–compression asymmetry are reported to be related to the residual stresses due to the67

thermal expansion mismatch between matrix and reinforcements (see for instance Zhang et al. [54]). The68

yield behavior of such materials is better represented by parabolic type pressure-dependent yield criteria that69

accounts for tension–compression asymmetry, such as the Mises–Schleicher [36] or Burzyński [3] ones.70

In the context of pressure-dependent and tension–compression asymmetric porous materials, Lee and71

Oung [24] have employed Gurson’s approach to obtain closed-form yield criteria to porous solids with a72

Mises–Schleicher matrix having either spherical or cylindrical voids. However, the obtained criteria were73

not suitable to high-stress triaxiliaties and did not recover Gurson’s model for the particular case of a von74

Mises matrix. Thus, the model was empirically modified by the authors in order to comply with the last75

feature. Furthermore, employing a simple static procedure, Durban et al. [12] derived closed form yield76

functions for spherically voided solids with pressure-sensitive matrix considering either Drucker–Prager or77

Mises–Schleicher matrix materials. Subsequently, Monchiet and Kondo [30] have developed an exact solution78

for porous materials with Mises–Schleicher matrix, considering the problem of a hollow sphere subjected to79

purely hydrostatic load on its external boundary.80

Results due to Monchiet and Kondo [30] for spherical voids have been considered in further numerical limit81

analysis on spherical cells with Mises–Schleicher matrix material [33, 34], providing both upper and lower82

bounds to the macroscopic yield criteria. Shen et al. [41], employing the exact solution of Monchiet and Kondo83

[30], have proposed a new macroscopic criterion to porous materials with Mises–Schleicher matrix. The new84

macroscopic yield function has been compared with the theoretical approaches due to Lee and Oung [24] and85

to Durban et al. [12], and also with the numerical bounds obtained by Pastor et al. [34]. The model developed86

by Shen et al. [41] presented a better agreement with numerical simulations. This model was subsequently87

employed to describe the mechanical behavior of rock-like porous materials [19, 39].88
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Shen et al. [43] have improved the criterion of Shen et al. [41] in an effort to provide better predictions89

for pure deviatoric stress states. The authors (Shen et al. [43]) have employed the variational stress-based90

homogenization approach proposed by Cheng et al. [8], in which statically admissible microscopic trial stress91

fields have to be constructed (see also Yi and Duo [53]). To build the trial stress fields, Shen et al. [43] have92

adopted the exact solution of Monchiet and Kondo [30], for purely hydrostatic stresses, and that employed by93

Zhang et al. [55], for a pure deviatoric loading, which has been based on the Boussinesq–Papkovich–Neuber94

solution.95

A large improvement of the early work of Lee and Oung [24] has been recently achieved in the works of96

Monchiet and Kondo [30]; Pastor et al. [34]; Shen et al. [41] and Shen et al. [43] regarding porous solids with97

Mises–Schleicher matrix materials. However, except for the work of Lee and Oung [24], other proposals cited98

above have considered only spherical voids in their developments. To the best of our knowledge, except for Lee99

and Oung [24], a strength criterion to porous materials with Mises–Schleicher matrix containing cylindrical100

voids has not been proposed in the open literature. Nevertheless, the study of porous material with cylindrical101

voids/cavities has also a significant importance in engineering applications, such as thick-walled honeycomb102

structures and additively manufactured lightweight materials in aerospace industry [45]. Particularly, the addi-103

tive manufacturing process has provided new geometric freedom for metal matrix composites to be used in104

lightweight structures [25].105

Aiming at addressing the yield behavior of pressure-dependent and tension–compression asymmetric106

porous materials, this work develops an approximate strength criterion to porous solids with a Mises–Schle-107

icher–Burzyński matrix material containing cylindrical voids. With this goal, the variational stress-based108

homogenization of Cheng et al. [8] is then employed. In this approach, a trial stress field satisfying the equilib-109

rium equations is then built-up. In addition, the yield condition is relaxed by means of a Lagrange multiplier,110

being satisfied only in an average way. According to the literature, this kind of approach is known to provide111

quasi lower bounds [8].112

In this work, following the procedure outlined by Shen et al. [43], the microscopic trial stress field results113

from the superposition of two stress tensors. In the first case, the exact solution developed by Monchiet and114

Kondo [30], considering a hollow sphere, is extended to the case of a hollow cylinder subjected to tractions on115

its external boundary (see Appendix A). External loads consists of longitudinal stresses applied on the top and116

bottom surfaces and also to radial stress applied at the outer radius. A specific feature of the first microscopic117

trial stress field is that the longitudinal stress is assumed to be equal to the hydrostatic stress. As it will be118

shown throughout the work, this hypothesis results in a purely hydrostatic macroscopic stress field. The second119

microscopic trial stress state is obtained from a simple homogeneous longitudinal loading applied on both top120

and bottom surfaces (see Appendix B). To be highlighted that in this work the microscopic trial stress field121

comply with stress-free boundary conditions at the cavity wall. This was not the case in the original approach122

due to Cheng et al. [8], where a hollow sphere was considered.123

This work is organized as follows. Section 3 describes the stress-based variational homogenization approach124

of Cheng et al. [8] and Shen et al. [37] to be applied to the case of a hollow cylinder. The finite element model125

employed in this work is described in Sect. 4. In Sect. 5, the results obtained using the developed macroscopic126

yield criterion are presented and discussed. The theoretical results are compared with other models to porous127

materials with cylindrical voids [17, 24]—see Appendix D—and also with finite element results. The final128

conclusions and remarks are given in Sect. 6.129

2 Constitutive framework130

This section briefly outlines the main features of the constitutive model studied in this work. The matrix131

material is considered to present a pressure-dependent plastic behavior with tension–compression asymmetry.132

Therefore, its plastic behavior is assumed to follow the Mises–Schleicher [36] yield function:133

φ � σ 2
e + 3(k − 1)σhσT − (σT )2k ≤ 0 (1)134135

where σe �
√

3
2

s : s is the von Mises equivalent stress, σh � 1
3
σ : 1 is the hydrostatic stress, being 1 the136

second-order unity tensor and s � σ − σh1 the deviatoric part of the Cauchy stress tensor σ . Moreover, in Eq.137

(1), k � σC/σT is the ratio between the yield stresses in compression, σC , and tension, σT . Notice that, if the138

following constants are defined,139
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α � (k − 1)
√

k
and σ0 �

√
kσT (2)140141

the form employed by Monchiet and Kondo [30] is obtained:142

φ � σ 2
e + 3ασ0σh − σ 2

0 ≤ 0 (3)143144

In this work, the material is considered to be perfectly plastic. Therefore, the yield stresses, σC and σT , are145

constant. The yield function provided in Eq. (3) can be seen as a particular case of Burzyński’s model [3, 52].146

Therefore, we will call it Mises–Schleicher–Burzyński criterion.147

Furthermore, the material is assumed to present an elastoplastic behavior. Thus, the deformation rate tensor148

is taken to be the sum of an elastic d
e and a plastic d

p part:149

d � d
e + d

p (4)150151

The elastic part relates to the rate of the stress by means of a hypo-elastic law:152

▽

σ � C : d
e � C : (d − d

p) (5)153154

where
▽

σ is the Jaumann stress rate and C is the fourth-order tensor of isotropic elastic moduli:155

C �
E

1 + ν
I
′ +

E

3(1 − 2ν)
1 ⊗ 1 (6)156157

in which E is the Young’s modulus, ν is the Poisson’s ratio, 1 is the unit second-order tensor, and I
′ is the unit158

deviatoric fourth-order tensor.159

The plastic deformation rate tensor is assumed to follow an associative flow rule:160

d
p � λ̇

∂φ

∂σ
(7)161162

where λ̇ is a non-negative plastic multiplier obeying the dissipation consistency:163

λ̇ �
σT

˙̄ε p

σ :
∂φ
∂σ

(8)164165

where ˙̄ε p is the effective strain rate (see e.g. Vadillo et al. [52]). Moreover, the constitutive model follows both166

the Kuhn-Tucker loading-unloading, λ̇ ≥ 0, φ ≤ 0, λ̇φ � 0, and the consistency, λ̇φ̇ � 0, conditions.167

3 Stress-based variational homogenization168

This section briefly outlines the main features of the stress-based variational homogenization approach. For a169

detailed description, the reader is referred to the works of Cheng et al. [8], Shen et al. [37] and Shen et al. [43].170

Let us consider a material containing periodically distributed parallel cylindrical voids, as shown in Fig. 1a.171

Due to material periodic pattern, the homogenization process is carried out considering the unit cylindrical172

cell 	 shown in Fig. 1b. The unit-cell is composed of void ω and matrix 	m domains, such that 	 � 	m ∪ ω.173

The macro-element 	 is bounded by surface ∂	 and the void ω by ∂ω. The initial height of the cell is H0,174

the initial inner and outer radii are a0 and b0, respectively (see Fig. 1b). The stress-based homogenization175

approach assumes an axisymmetric model subjected to radial �r and longitudinal �z macroscopic stresses on176

its outer surface, while void surface is stress-free, as illustrated in Fig. 1c. Therefore, deformation occurs in a177

manner that both the cell and the void remain cylindrical during the whole process. Matrix material is assumed178

to obey the constitutive model provided in Sect. 2. However, it is assumed to present a rigid-plastic behavior:179

d � d
p (see Eq. (4)).180

Considering a generalized plane strain and cylindrically symmetric problem, with cylindrical coordinates181

(r, θ, z), it is assumed that the circumferential displacement uθ is null, the radial displacement ur varies only182

with the radial coordinate r. Moreover, the longitudinal displacement uz , in addition to be constant in plane183

(r, θ), is assumed to vary linearly with the longitudinal axis z, providing a uniform longitudinal strain εz .184
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Fig. 1 a Schematic representation of the porous material containing distributed parallel cylindrical voids. b Unit cylindrical cell,
	, composed of void ω and matrix 	m domains, where geometric parameters are illustrated. c Axisymmetric model subjected to
radial �r and longitudinal �z macroscopic stresses on its outer surface, while void surface is stress-free

Regarding the stress field, it is assumed that all shear stresses are null, both radial σr and circumferential σθ185

stresses depend only on the radial coordinate r, and the longitudinal stress σz is uniform. Therefore, disregarding186

body forces and inertia effects, the equilibrium equation reads:187

dσr

dr
+

σr − σθ

r
� 0 (9)188189

Since the radial displacement u(r) is the only non-vanishing in-plane displacement, the active strain rates190

(ε̇r , ε̇θ , ε̇z) are then given by:191

ε̇r �
du̇

dr
, ε̇θ �

u̇

r
, ε̇z � Ė3 (10)192193

being Ė3 � Ḣ/H the rate of macroscopic logarithmic principal strain in X3 direction (axes X3 and z are parallel,194

see Fig. 1).195

Both the macroscopic stress � and the macroscopic deformation rate D are obtained from volume averages196

of their microscopic counterparts σ and d (see for instance Suquet [47]):197

� �
1

|	|

∫

	

σdV, D �
1

|	|

∫

	

ddV (11)198199

where |	| is the cell volume. In the case of uniform natural boundary conditions, another upscaling bridge200

between both microscopic (σ ) and macroscopic (�) stress fields can be established [46, 47]:201

σ n � �n on ∂	 (12)202203
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where n is the outward unit normal vector at a given point on the boundary ∂	. Reasoning on the problem204

presented in Fig. 1, supposing that a uniform radial stress �r is imposed on the outer boundary (r � b) and a205

stress-free void surface (r � a), relation (12) implies that:206

σr (r � b) � �r and σr (r � a) � 0 (13)207208

where σr is the microscopic radial stress.209

The set of kinematically admissible velocity fields v is given by:210

Ka � {v s.t. v(x) � Dx on ∂	} (14)211212

where x is the position vector. The set of statically admissible stress fields is defined as:213

Sa � {σ s.t. divσ � 0 in 	, σ n � 0 on ∂ω, σ � 0 in ω} (15)214215

where n is the unit outward normal vector.216

It has been shown that the variational homogenization is equivalent to solve the following minimization217

problem under the constraint φ(σ ) � 0 [4, 47]:218

min
σ∈Sy

(−� : D) (16)219220

where221

Sy � {σ ∈ Sa s.t. φ(σ ) ≤ 0 a.e. in 	m} (17)222223

defines the admissible stress space. However, as it has been discussed by Cheng et al. [8] and Shen et al. [37, 43],224

due to the difficult in satisfying the constraint φ(σ ) � 0 at every point in the matrix material domain 	m , this225

condition is enforced only in the average sense. Therefore, using a Lagrange multiplier ̇ ≥ 0 (homogeneous226

in 	m), the constrained minimization is replaced by an equivalent saddle-point problem given in terms of the227

Lagrangian functional L
(

σ , ̇
)

� ̇
|	|

∫

	m
φ(σ )dV − � : D:228

max
̇≥0

min
σ∈Sa

(

L
(

σ , ̇
)

�
̇

|	|

∫

	m

φ(σ )dV − � : D

)

(18)229230

where the macroscopic strength criterion reads:231

�(�) �
1

|	|

∫

	m

φ(σ (�))dV � 0 (19)232233

Thereby, the saddle-point problem becomes [8]:234

max
̇≥0

min
�

(

L
(

�, ̇
)

� ̇�(�) − � : D
)

(20)235236

Accordingly, the solution of the previous problem results in an associative macroscopic plastic flow rule237

D � ̇ ∂�
∂�

and the macroscopic Kuhn-Tucker loading-unloading conditions, ̇ ≥ 0, �(�) ≤ 0, and ̇�238

(�) � 0. To be highlighted that the problem stated in (20) resembles to the maximum dissipation principle at239

the macroscopic scale, also resulting in the convexity of the macroscopic yield function [4, 13, 18, 31].240
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3.1 Microscopic and macroscopic trial stress fields241

In order to obtain the macroscopic strength criterion, the next key step is to build-up an admissible microscopic242

trial stress field σ [8, 37, 43]. Thereby, the macroscopic stress tensor � can be obtained using the average243

relation stated in Eq. (11)1 and/or the uniform traction condition given in Eq. (12), which was particularized244

in Eq. (13) considering the axisymmetric cylindrical problem given in Fig. 1.245

Following the rationale of Cheng et al. [8] and Shen et al. [37], the trial stress field σ is assumed to be246

given by the sum of two stress tensor fields:247

σ � σ 1 + σ 2 (21)248249

The first one is obtained based on the analytical solution developed by Monchiet and Kondo [30] to a plastic250

hollow sphere with a Mises–Schleicher matrix material. The development of Monchiet and Kondo [30] is251

extended to the case of a hollow cylinder, thus resulting in the following stress solution (see Eqs. (A.12)–(A.14)252

in Appendix A for more details):253

σ1r �
A1

3α

[

1 −
3α2

4
W 2

(

p
a2

r2

)

−
3α2

2
W

(

p
a2

r2

)]

(22)254255

σ1θ �
A1

3α

[

1 −
3α2

4
W 2

(

p
a2

r2

)

+
3α2

2
W

(

p
a2

r2

)]

(23)256257

σ1z �
A1

3α

[

1 −
3α2

4
W 2

(

p
a2

r2

)]

(24)258259

where A1 > 0 is a constant, which satisfies A1 � σ0 for a purely hydrostatic loading. Therefore, considering260

the trial radial stress given in Eq. (22) into Eq. (13)1, the first macroscopic radial stress reads:261

�1r �
A1

3α

[

1 −
3α2

4
W 2(p f ) −

3α2

2
W (p f )

]

(25)262263

where relation f � a2

b2 has been used and parameter p is given in Eq. (A.16).264

Furthermore, the macroscopic longitudinal stress can be calculated using the average relation (11)1 con-265

sidering the trial stress given in Eq. (24):266

�1z �
1

|	|
A1

3α

∫ H
2

− H
2

∫ 2π

0

∫ b

a

r

[

1 −
3α2

4
W 2

(

p
a2

r2

)]

drdθdz (26)267268

where dv � rdrdθdz denotes an infinitesimal volume element in cylindrical coordinates. Previous integral269

results in:270

�1z �
A1

3α

[

1 −
3α2

4
W 2(p f ) −

3α2

2
W (p f )

]

(27)271272

where relations |	| � Hπb2, f � a2

b2 and condition (A.15) have been employed. Comparing Eqs. (25) and273

(27), it is easily noticed that �1z � �1r .274

Due to axisymmetry of the problem considered here (see Fig. 1), the first macroscopic stress tensor �1 can275

be written in Cartesian coordinates based on the following relations: �r � �1 � �2 and �z � �3. Therefore,276

using Eqs. (25) and (27), the first macroscopic stress tensor is obtained:277

�1 �
A1

3α

(

1 +
3α2

4
ϒ

)

(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3) (28)278279

where the following parameter was defined:280

ϒ � −W 2(p f ) − 2W (p f ) (29)281282

As it can be readily seen in Eq. (28), the first microscopic trial stress field adopted in Eqs. (22)–(24) results in283

a purely hydrostatic macroscopic stress tensor.284
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The second microscopic trial stress field σ 2 results from the solution derived in Appendix B, where a purely285

uniform longitudinal loading is considered. Therefore, based on Eqs. (B.1) and (B.4), σ 2 is given by:286

σ 2 � A2ez ⊗ ez (30)287288

where A2 is a constant. For a pure longitudinal loading, A2 � 1
2

(

−α ±
√

α2 + 4
)

σ0, see Eq. (B.4). That is,289

constant A2 depends on whether a tensile or a compressive load is imposed. It is worth emphasizing that both290

stress fields, σ 1 and σ 2, satisfy the stress-free condition σ n � 0 at the cavity wall (see Eq. (13)2). Therefore,291

the microscopic trial stress field adopted in this work complies with all the conditions related to the statically292

admissible stress set defined in Eq. (15).293

Inserting Eq. (30) into Eq. (11)1, and using relations |	| � Hπb2 and f � a2

b2 , the second macroscopic294

stress field is obtained:295

�2 �
A2

|	|

∫ H
2

− H
2

∫ 2π

0

∫ b

a

rdrdθdzez ⊗ ez296297

providing298

�2 � (1 − f )A2e3 ⊗ e3 (31)299300

which was given in Cartesian coordinates for future convenience, remembering that X3 is parallel to z (see301

Fig. 1).302

3.2 Macroscopic yield criterion303

Considering the macroscopic stress tensors given in Eqs. (28) and (31), the total macroscopic stress tensor is304

then obtained according to the following superposition: � � �1 +�2. Based on the macroscopic stress tensor,305

we calculate an equivalent shear stress (�sh) and the mean lateral stress (�m), respectively by:306

�sh � �3 − �1 � (1 − f )A2 (32)307308

and309

�m �
1

2
(�1 + �2) �

A1

3α

(

1 +
3α2

4
ϒ

)

(33)310311

Notice that, the equivalent shear stress �sh relates to the equivalent von Mises stress �e according to: �e �312

|�sh | or �sh � �esign(63 − 61). In addition, for the axisymmetric loading considered in this work (see Fig. 1),313

the mean lateral stress �m , which is responsible for the cylindrical void growth [2, 17], is equal to the radial314

stress �r given in Eq. (25), therefore: �m � �1, since �r � �1 � �2 in this case.315

From Eqs. (3) and (19), the macroscopic yield function can be obtained considering the superposition (21),316

and the microscopic trial stress fields given in Eqs. (22)–(24) and (30), leading to (for more details, we refer317

to Appendix C):318

�(�) � −
(

f +
3α2

4
ϒ

)

A2
1 + A2

2(1 − f ) + σ0

(

1 +
3

4
α2ϒ

)

A1 + (1 − f )ασ0 A2 − (1 − f )σ 2
0 � 0 (34)319320

Thus, using Eqs. (32) and (33), the macroscopic yield function is obtained:321

�(�) �
�2

sh

σ 2
0

− �
�2

m

σ 2
0

+ α(1 − f )
(3�m + �sh)

σ0
− (1 − f )2 � 0 (35)322323

being324

� �
9α2(1 − f )

(

f + 3α2

4
ϒ

)

(

1 + 3α2

4
ϒ

)2
(36)325326
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where parameters α, σ0 and ϒ are given in Eqs. (2) and (29), respectively. Notice that parameter p in Eq. (29)327

is calculated using Eq. (A.16) and it has two branches: p+ for positive values of �m and p− for negative values328

of �m . Furthermore, it is noticed in Eq. (35) that the sign of both �m and �sh play important roles in this329

macroscopic yield criterion, leading to an asymmetric yield locus in the �sh-�m stress space (see for instance330

Figs. 4 and 5). It is observed that the tension–compression asymmetry of the matrix is the main source of this331

behavior. That is, unless the special condition leading to a von Mises matrix (α � 0 or k � 1) is considered,332

the yield locus is not symmetric with respect to the �m-axis or �sh-axis.333

Overall, Eq. (35) provides an approximate yield surface depending on the current material porosity f,334

the tension–compression material asymmetry α, the macroscopic mean lateral stress �m (Eq. (33)), and an335

equivalent shear stress �sh (Eq. (32)). Moreover, using the fact that W (0) � 0 in Eqs. (29) and (36), knowing336

that 3�h � 2�1 + �3, �h being the macroscopic hydrostatic stress, Eq. (35) recovers the yield criterion of337

the matrix material given in Eq. (3) when f � 0.338

3.2.1 Particular case of a von Mises matrix material339

For the particular case of a von Mises matrix material, parameter α in Eq. (3) has to be set equal to zero. Thus,340

in order to obtain the particular forms of Eq. (35) to the case of a von Mises matrix, Taylor expansions of the341

Lambert function, W ( f p+) and W ( f p−), at α → 0 (k → 1) are used (see also Monchiet and Kondo [30]):342

W ( f p+) �
√

4

3

1

α
+ ln( f ) − 1 + o(α) (37)343344

W ( f p−) � −
√

4

3

1

α
+ ln( f ) − 1 + o(α) (38)345346

Therefore, using Eq. (37), for �m ≥ 0 (or Eq. (38), for �m ≤ 0), in Eqs. (29) and (36), the yield criterion of347

Eq. (35) becomes:348

�(�) �
�2

sh

σ 2
0

+
3(1 − f )2

ln2( f )

�2
m

σ 2
0

− (1 − f )2 � 0 for α → 0 (39)349350

It is important to mention that when α → 0, the yield criterion does not depend either on the sing of �sh nor351

the sign of �m . That is, the yield surface is symmetric with respect to both the �sh and �m axes. However, in352

an overall sense, Eq. (35) does not recover Gurson’s model when α → 0.353

For a particular case in which �sh � 0 and �m > 0 (hydrostatic stress state with void expansion), Eq.354

(39) provides:355

�m � −
ln( f )
√

3
σ0 for α → 0 (40)356357

Similarly, for �sh � 0 and �m < 0 (hydrostatic stress state with void reduction), Eq. (39) yields:358

�m �
ln( f )
√

3
σ0 for α → 0 (41)359360

It is clearly seen that the developed model (Eq. (35)) recovers the exact Gurson’s solution (Eq. (C.2)) when a361

purely hydrostatic loading is employed and parameter α → 0 is set.362

4 Finite element model363

The theoretical model developed in this work is verified against Finite Element (FE) calculations. Numerical364

simulations consist of cell analysis that are performed in the commercial software [1]. The numerical model365

used in this work is an axisymmetric bidimensional voided cell with initial hight H0, inner and outer radius a0366

and b0, respectively. The initial ratio between H0 and b0 is chosen to be H0/b0 � 4. Symmetry about X1-axis367

is imposed so that only half of the cell is considered in the numerical analysis. Finite element discretization is368

performed using 40 CAX8R elements. Both boundary conditions and finite element discretization are shown369

in Fig. 2. The boundary conditions applied along the outer faces of the cell are:370
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Fig. 2 Finite element discretization and boundary conditions applied to the axisymmetric cylindrical cell

u1 � U1, for X1 � b; u1 � 0, for X1 � 0371

u3 � U3, for X3 � H/2; u3 � 0, for X3 � 0372373

where U1 and U3 are prescribed displacements in radial and longitudinal directions, respectively. The dis-374

placements, U1 and U3, are imposed such that the corresponding average macroscopic stresses (see also Eqs.375

(11)1 and (12)),376

�1 �
2

H

∫ H/2

0

[σ1]X1�b d X3; �3 �
2

b2

∫ b

0

[σ3]X3�H/2 X1dX1 (42)377378

have proportional values during the whole loading history. In Eq. (42), σ1 and σ3 are the Cauchy stress379

components, b � b0 + U1 and H/2 � H0/2 + U3 are the current outer radius and length of the cylinder,380

respectively. Simulations are carried out employing a MPC (Multi-Point Constraints) user subroutine, in which381

displacement boundary conditions are imposed, while constant macroscopic stress triaxialities (T � �h/|�sh |)382

are ensured during deformation. On the one hand, since continuous displacement and velocity fields are383

developed, Pastor et al. [32] emphasized that standard FE approach cannot be qualified in terms of bounds,384

except for very special homogeneous problems. On the other hand, Cheng et al. [8] reported results showing that385

MPC-based cell analysis, using standard FE simulations, provides results between upper and lower numerical386

bounds (see for instance numerical limit analysis developed by Trillat and Pastor [48] and Pastor et al. [34]). In387

this sense, MPC-based numerical simulations are expected to provide suitable reference solutions to compare388

the stress-based theoretical model with, as it has been done in Cheng et al. [8]. For further details on the389

MPC-based strategy used to prescribe boundary conditions, we refer to Cheng and Guo [7] and Vadillo and390

Fernández–Sáez [51].391

In the FE model, the matrix material is described according to the constitutive model provided in Sect. 2.392

The set of non-linear constitutive equations is solved implicitly within the finite element framework at the393

material level. The algorithm is implemented in ABAQUS/Standard [1] via a UMAT user subroutine. More394

details on the numerical formulation and its implementation can be found in Vadillo et al. [52]. While a hypo-395

elastic finite strain framework has been adopted, in the numerical simulations performed in this work, both396

initial and final void volume fraction were practically the same. This is due to the fact that the maximum397

displacement imposed on the external faces, in order to yield the whole cell, was less than 10−5 H0. Therefore,398

a small strain framework could have been used in the numerical cell analysis.399

5 Results400

In this section, the predictions of the constitutive model presented in Eq. (35) are compared with the results401

given by numerical simulations. The numerical simulations are carried out for a Mises–Schleicher–Burzyński402
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Fig. 3 Comparison between the developed model (Eq. (39)), criterion of Gurson [17] (Eq. (C.1)) and finite element results for k �
1.0 and different material porosities f � (0.00, 0.01, 0.03, 0.09, 0.27): yield surfaces plotted in the plane of the dimensionless
equivalent shear stress �sh/σT versus the dimensionless mean lateral stress �m/σT . Notice that, for the axisymmetric cylindrical
case shown in Fig. 1c, we have �sh � �3 − �1 and �m � �1 � �2

material with E � 7170.8 GPa, σT � 384.05 MPa, ν � 0.33 and k � 1.0, 1.2, 1.5. In the numerical403

hollow cylinder, the ratios of a0 and b0 are chosen in such a way that f0 � a2
0/b2

0 � 0.01, 0.03, 0.09, 0.27.404

The range of macroscopic triaxiality values (T � �h/|�sh |) analysed varies from T � −50 up to T � 6 for405

�sh < 0 (�1 > �3) and �sh > 0 (�1 < �3). The yield functions will be presented in the �sh/σT -�m/σT406

dimensionless stress space. It is worth mentioning that, for all values of f and k considered in the analyses,407

convex yield functions have been obtained from Eq. (35). To be emphasized that, while a wide range of the408

void volume fraction has been considered in this parametric study, phenomena such as internal necking and409

void coalescence are not taken into account in our development. However, we are aware that such failure410

mechanisms are expected to play important roles in the failure of porous materials (see for instance the review411

paper of Benzerga and Leblond [2]).412

Figure 3 shows the yield surfaces predicted by the developed criterion (Eq. (39)) for k � 1.0,413

(σC � σT � σ0), in comparison with the results given by the finite element simulations (symbols). The yield414

surfaces for k � 1.0 exhibits symmetry with respect to both the �m and �sh axes, thus only positive values of415

�sh � (�3 − �1) are presented in the figure. For k � 1.0, the Mises–Schleicher–Burzynski model reduces416

to the von Mises yield function. As it is well known, for a voided cylindrical cell with a perfectly plastic von417

Mises matrix material, the analytical expression of the yield criterion has the solution given by Gurson [17]418

(see Eq. (C.1)). For f � 0 (no void in the cell) all 3 criteria are coincident. For f � 0.01 and f � 0.03,419

there are some differences between the proposed model, the numerical results given by the simulations and420

the analytical solution given by Gurson’s model (dotted lines). These differences are higher for f � 0.01421

than for f � 0.03 and vanish when �sh � 0 (T � ±∞) and �m � 0 (T � ±1/3). The highest difference422

between �sh obtained numerically and analytically, for a fixed value of �m , is ∼ 14 % for �m/σT � −1.96423

(T ≈ −2) when f � 0.01. However, it is observed that, for higher porosity values ( f � 0.09, f � 0.27) and424

all the stress states considered, there is an excellent agreement between the proposed yield function, Gurson’s425

criterion and numerical results.426

It is noticed in Fig. 3 that the proposed model always provide yield surfaces that are below those obtained427

from Gurson’s model. This behavior should be expected since Gurson’s model consists of a kinematic limit428

analysis, which is known to provide upper bounds [23]. In contrast, the stress-based approach of Cheng et al.429

[8] is reported to provide quasi-lower bounds. Nevertheless, the proposed model is expected to provide exact430

solutions for either a purely hydrostatic loading, T � ±∞, (see Appendix A) or a homogeneous longitudinal431

stress field, T � ±1/3 (see Appendix B). Similar trends have also been reported in Cheng et al. [8], in the sense432

that Gurson’s yield curves were slightly above MPC-based finite element simulations and their stress-based433
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Fig. 4 Comparison between the developed model (Eq. (35)) and finite element results for k � 1.2 and different material porosities
f � (0.00, 0.01, 0.03, 0.09, 0.27): yield surfaces plotted in the plane of the dimensionless equivalent shear stress �sh/σT

versus the dimensionless mean lateral stress �m/σT . Notice that, for the axisymmetric cylindrical case shown in Fig. 1c, we have
�sh � �3 − �1 and �m � �1 � �2

model has always provided curves below the numerical results. However, the three approaches coincided for434

both purely hydrostatic and pure shear loading.435

A comparison of the analytical solution according to Eq. (35) and the finite element results for k � 1.2436

is shown in Fig. 4. Although the yield surface for the dense material ( f � 0.0) is open when �m is negative,437

the yield surfaces for f > 0 are closed. As expected, the porous yield stress becomes smaller as the porosity438

f increases and always falls within the envelope of the yield surface for f � 0.0. As it can be seen in Fig. 4,439

in contrast to the case with k � 1.0 (Fig. 3), the yield surface is asymmetric with respect to both the �m and440

�sh axes. Taking the numerical results as reference, the lower bound nature of the proposed yield surface is441

clearly observed from the figure, being the analytical solution from Eq. (35) slightly lower than numerical442

results and overlapping both (numerical and analytical) results for purely hydrostatic loading and for �m � 0.443

The largest differences between both theoretical and numerical results are observed for f � 0.01 and negative444

values of �m . The maximum difference is found to be in the order of 28 % for �m/σT � −3.2 (T ≈ −2)445

when f � 0.01.446

Figure 5 compares the predicted yield locus with numerical data for k � 1.5. The analytical yield functions447

capture the numerical set quite well. As in the case with k � 1.2, for k � 1.5, the analytical results are in448

better agreement with numerical values for f � 0.0 and for the highest values of f analysed. For f � 0.01,449

0.03 and �m < 0, the numerical results are not perfectly met. For all porosities, both theoretical and numerical450

solutions overlap each other when either �sh � 0 or �m � 0. It was found that the maximum difference is451

31 % for �m/σT � −5.38 (T ≈ −2) when f � 0.01.452

Overall, for all values of k considered in this study, the highest differences between the theoretical and453

numerical results have been observed for f � 0.01 with stress triaxiliaties close to −2. In the present approach,454

the microscopic stress fields resulting in either a purely hydrostatic macroscopic stress state (T � ±∞) or455

a longitudinal loading (T � ±1/3) have been considered. Therefore, the trial stress field has been obtained456

from the superposition of both of them (Eq. (21)). However, if another stress solution, for an intermediate457

value of T, can be obtained, the theoretical model could be enriched and thus provide predictions closer to the458

reference results.459

Aiming at evidencing the influence of the matrix asymmetry parameter k on the predicted yield surface,460

Figs. 6, 7, 8, 9 and 10 also compare the proposed model (Eq. (35)) with finite element simulations. However,461

now comparisons are performed keeping the material porosity f constant and varying the value of k. In addition,462

in order to check the predictive capability of the proposed criterion when compared to other approaches, yield463

surfaces obtained using the model of Lee and Oung [24] for cylindrical voids (see Eq. (C.7)) are also shown464

in those figures.465
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Fig. 5 Comparison between the developed model (Eq. (35)) and finite element results for k � 1.5, and different material
porosities f � (0.00, 0.01, 0.03, 0.09, 0.27): yield surfaces plotted in the plane of the dimensionless equivalent shear stress
�sh/σT versus the dimensionless mean lateral stress �m/σT . Notice that, for the axisymmetric cylindrical case shown in Fig. 1c,
we have �sh � �3 − �1 and �m � �1 � �2

Figure 6 compares the theoretical predictions, using Eq. (3) (dense material), with finite element simulations466

considering a material porosity f � 0.0 and different values of the asymmetry parameter: k � 1.0, 1.2, 1.5.467

It is readily seen that the pressure sensitivity of the material increases as k does. On the one hand, for �m > 0,468

higher values of k lead to smaller yield domains. On the other hand, when �m < 0, the opposite behavior469

is evidenced (asymmetry with respect to the �sh-axis). Furthermore, the asymmetry of the yield locus with470

respect to the �m-axis also increases with k, such that the elastic domain is translated downward. It is observed471

in Fig. 6 that, for k > 0, the yield locus is asymmetric with respect to both the �m and �sh axes for dense472

materials. This behavior is observed because Eq. (35) depends on the sign of �sh and �m even when f � 0.473

Notice that the matrix yield criterion (Eq. (3)) is symmetric with respect to the hydrostatic stress (�h) axis474

and not to the lateral mean stress (�m).475

Figure 7 shows the yield functions for f � 0.01 and distinct values of parameter k. As it would be expected,476

the results also show that the asymmetry of the curves is more pronounced for higher values of k. For k � 1.0477

(von Mises matrix), Lee and Oung’s model (that recovers Gurson’s model when k � 1.0) provides a better478

agreement with numerical results when compared with the present approach (see also discussion on Fig. 3).479

However, as k increases (for k � 1.2 and k � 1.5), both theoretical approaches (Eqs. (35) and (C.6)) provide480

adequate results for positive values of �m . In contrast, both theoretical models underestimate the numerical481

yield function when �m < 0. However, for purely (negative) hydrostatic stress state, the proposed model482

(Eq. (35)) is in excellent agreement with the numerical counterpart. Both the finite element results and the483

yield criterion proposed here cross the negative branch of the �m-axis at the points (−2.64, 0) for k � 1.0,484

(−4.60, 0) for k � 1.2 and (−7.80, 0) for k � 1.5. Furthermore, it is readily seen in Fig. 7 that the yield485

curves obtained using Lee and Oung’s model (Eq. (C.6)) strongly underestimate the reference results. The486

intersections with the negative branch of the �m-axis are at: (−2.64, 0) for k � 1.0, (−3.53, 0) for k � 1.2487

and (−4.42, 0) for k � 1.5. Except for the case with k � 1.0, the analytical model developed in this work488

provides better predictions when compared with Lee and Oung’s proposal.489

As it is shown in Fig. 8, the same behavior observed for f � 0.01 (Fig. 7) is exhibited when f � 0.03.490

Results demonstrate that the proposed model provides good approximations when positive values of �m are491

considered. However, it underestimates the effective response of the material for negative values of �m . The492

discrepancies decrease gradually as purely hydrostatic stress states are approached (�sh � 0). Slightly higher493

differences are found when higher values of k are set. In addition, similarly to case with f � 0.01, if the whole494

stress range is considered, the analytical model proposed here gives better predictions when compared with495

Lee and Oung’s model.496
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Fig. 6 Comparison between the developed model (Eq. (35)), the approximate criterion of Lee and Oung [24] (Eq. C.6) and
finite element results for f � 0.00 and different values of parameter k � (1.0, 1.2, 1.5): yield surfaces plotted in the plane
of the dimensionless equivalent shear stress �sh/σT versus the dimensionless mean lateral stress �m/σT . Notice that, for the
axisymmetric cylindrical case shown in Fig. 1c, we have �sh � �3 − �1 and �m � �1 � �2
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Fig. 7 Comparison between theoretical (Eq. (35)), the approximate criterion of Lee and Oung [24] (Eq. C.6) and finite element
results for f � 0.01 and different values of parameter k � (1.0, 1.2, 1.5): yield surfaces plotted in the plane of the dimensionless
equivalent shear stress �sh/σT versus the dimensionless mean lateral stress �m/σT . Notice that, for the axisymmetric cylindrical
case shown in Fig. 1c, we have �sh � �3 − �1 and �m � �1 � �2

Similar trends are observed for f � 0.09 and f � 0.27 (see Figs. 9 and 10). It is also noticed that if the497

porosity value is higher, the predicted material response is closer to the reference data. Particularly, as it can498

be seen in Fig. 10, the present analytical approach and the numerical solutions are closely overlapping for499

f � 0.27 for all values of k considered here.500

Overall, analysis of Figs. 7, 8, 9 and 10 shows that the asymmetry with respect to both the �m and �sh axes501

increases with k. In addition, the proposed model provides lower estimative for the yield surface when compared502

to the finite element results. However, while the differences increase with k, the discrepancies decrease as the503
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Fig. 8 Comparison between theoretical (Eq. (35)), the approximate criterion of Lee and Oung [24] (Eq. C.6) and finite element
results for f � 0.03 and different values of parameter k � (1.0, 1.2, 1.5): yield surfaces plotted in the plane of the dimensionless
equivalent shear stress �sh/σT versus the dimensionless mean lateral stress �m/σT . Notice that, for the axisymmetric cylindrical
case shown in Fig. 1c, we have �sh � �3 − �1 and �m � �1 � �2
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Fig. 9 Comparison between theoretical (Eq. (35)), the approximate criterion of Lee and Oung [24] (Eq. C.6) and finite element
results for f � 0.09 and different values of parameter k � (1.0, 1.2, 1.5): yield surfaces plotted in the plane of the dimensionless
equivalent shear stress �sh/σT versus the dimensionless mean lateral stress �m/σT . Notice that, for the axisymmetric cylindrical
case shown in Fig. 1c, we have �sh � �3 − �1 and �m � �1 � �2

material porosity f increases. Furthermore, specially for negative values of �m , the yield criterion developed504

in this work (Eq. (35)) provides better predictions when compared with the approximate function proposed505

by Lee and Oung [24] (Eq. (C.6)). The latter strongly underestimates the effective material strength when506

small porosities, higher values of k and high triaxialities are considered. Those observations have already been507

reported by Monchiet and Kondo [30] and Shen et al. [41] in the case of a hollow sphere with Mises–Schleicher508

matrix material.509
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Fig. 10 Comparison between theoretical (Eq. (35)), the approximate criterion of Lee and Oung [24] (Eq. C.6) and finite element
results for f � 0.27 and different values of parameter k � (1.0, 1.2, 1.5): yield surfaces plotted in the plane of the dimensionless
equivalent shear stress �sh/σT versus the dimensionless mean lateral stress �m/σT . Notice that, for the axisymmetric cylindrical
case shown in Fig. 1c, we have �sh � �3 − �1 and �m � �1 � �2

6 Summary and concluding remarks510

In this work, a closed-form yield criterion (Eq. (35)), for porous materials with pressure-dependent and ten-511

sion–compression asymmetric matrix (Mises–Schleicher–Burzyński material) containing cylindrical voids, has512

been developed. The overall development is based on the stress-based variational homogenization approach513

proposed by Cheng et al. [8]. The model developed here recovers the matrix material behavior for a null514

porosity value. However, since a stress-based procedure has been employed, it does not recover Gurson’s515

model when a tension–compression symmetric (von Mises) matrix is adopted. Proposed yield criterion has516

been assessed comparing its predictions with finite element simulations. In addition, results obtained using the517

model developed by Lee and Oung [24] (Eq. (C.6)) have also been considered in comparisons. The studies have518

taken into account different porosities, f � (0.00, 0.01, 0.03, 0.09, 0.27), and distinct tension–compression519

asymmetries, k � (1.0, 1.2, 1.5). In general, the whole analysis shows that the proposed model provides lower520

estimative for the yield surface when compared to the finite element results. For all values of k considered521

in this study, the highest differences (∼ 31 %) between the present model and numerical results have been522

observed when f � 0.01 for stress triaxiliaties (T ) close to −2 and k � 1.5. However, while the differences are523

observed to increase with k, a better agreement with finite element simulations are obtained when the material524

porosity increases. Furthermore, specially for negative values of �m , the yield criterion developed in this work525

gives better predictions when compared with Lee and Oung’s model. The latter strongly underestimates the526

numerical results when small porosities, higher values of k and high triaxialities are considered. It is expected527

that the model proposed here can be improved as the trial stress field is enriched. In the present approach, the528

microscopic trial stress field has been obtained from the superposition of two exact solutions, providing: (i)529

a purely hydrostatic macroscopic stress state (T � ±∞); (ii) and a uniaxial macroscopic stress state in the530

longitudinal direction (T � ±1/3). However, if another stress solution, resulting in an intermediate value of531

T, can be obtained, the theoretical model could be improved and provide predictions closer to the reference532

results. It is expected the main finds of this work can be used to the plastic analysis of honeycomb structures or533

additively manufactured materials, where metal matrix composites are employed. Our theoretical development534

has considered a perfectly plastic material, which is not the case for real materials. However, a strain hardening535

rule, such as that proposed by Zhang et al. [54] to metal matrix composites, can be heuristically added to the536

matrix material strength. This procedure has been extensively done to Gurson’s model in the literature. To be537

emphasized that, since phenomena such as internal necking and void coalescence (see for instance Benzerga538

and Leblond [2]) have not been taken into account here, the effects of such failure mechanisms also deserve539

to be addressed in future works. In addition, the present study could also be further extended to the dynamic540
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analysis of porous materials following the approach of Molinari and co-authors [27, 45]. According to their541

rationale, the total stress tensor is given by the superposition of a static stress, obtained from a rate potential,542

and a dynamic stress, accounting for micro-inertia effects. Certainly, safe use of the proposed strength crite-543

rion, and its extensions, in practical engineering applications demands further validations against experiments544

on porous materials/structures. Therefore, to complement both numerical and theoretical results presented545

in this work, experimental campaigns studying the evolution of cylindrical voids in porous materials with546

pressure-dependent matrix presenting tension–compression asymmetry shall be conducted in future works.547
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Appendix A: Development of the first stress field σ 1552

To develop the first trial stress field σ 1, the analytical development presented by Monchiet and Kondo [30] is553

considered. They have proposed an exact solution for a plastic hollow sphere with a Mises–Schleicher [36]554

matrix material. For a plastic loading, the yield criterion has to satisfy the condition (see Eq. (3)):555

σ 2
e + 3ασ0σh − σ 2

0 � 0 (A.1)556557

where, for a cylindrically symmetric problem, the von Mises equivalent stress and the hydrostatic stress are558

given respectively by:559

σe �
√

3

4
(σθ − σr )

2 +
9

4
(σz − σh)2 and σh �

1

3
(σr + σθ + σz) (A.2)560561

being σr , σθ and σz the radial, circumferential and longitudinal stresses. For the first trial stress field σ 1 it will562

be assumed that σz � σh , thus σe and σh become:563

σe �
√

3

4
(σθ − σr )ǫ and σh �

1

2
(σr + σθ ) (A.3)564565

where ǫ � sign(σθ − σr ) is the sign of (σθ − σr ). It is worth mentioning that, in addition to simplify the566

expression of the equivalent stress σe, assuming that σz � σh results in a purely hydrostatic macroscopic stress567

field (see Eq. (28)).568

Following the development of Monchiet and Kondo [30], a positive function G(r), depending on the radial569

coordinate r, is introduced in a manner that:570

σe � σ0G(r) (A.4)571572

Therefore, using Eq. (A.1), the hydrostatic stress reads:573

σh �
σ0

3α

[

1 − G2(r)
]

(A.5)574575

Moreover, combining Eqs. (A.3), (A.4), (A.5), the solution in terms of σr and σθ results:576

σr �
σ0

3α

[

1 − G2(r)
]

−
√

1

3
σ0G(r)ǫ (A.6)577578

σθ �
σ0

3α

[

1 − G2(r)
]

+

√

1

3
σ0G(r)ǫ (A.7)579580

Introducing the last two equations into Eq. (9) yields:581

G(r)
dG(r)

dr
+

A

2

dG(r)

dr
+

A

r
G(r) � 0 (A.8)582583

where A �
√

3αǫ. The solution of the differential equation (A.8) is:584
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G(r) �
A

2
W

⎛

⎝

2 exp
(

C1
A

)

Ar2

⎞

⎠

585586

or587

G(r) �
√

3αǫ

2
W

(

p
a2

r2

)

(A.9)588589

where W (x) is the Lambert W function, which is the inverse of x � W exp(W ). Function p is defined as:590

p �
2 exp

(

C1√
3αǫ

)

√
3αǫa2

(A.10)591592

Thus, parameter p has both positive (p+) and negative (p−) branches:593

p �

⎧

⎪

⎨

⎪

⎩

p+ �
2 exp

(

C1√
3α

)

√
3αa2

p− � −
2 exp

(

− C1√
3α

)

√
3αa2

(A.11)594595

Since G(r) ≥ 0, from Eqs. (A.9) and (A.11), it is concluded that sign(W ) � sign(p) and thus ǫ � sign(p).596

Given the solution (A.9), the stress components become (see Eqs. (A.6) and (A.7)):597

σr �
σ0

3α

[

1 −
3α2

4
W 2

(

p
a2

r2

)

−
3α2

2
W

(

p
a2

r2

)]

(A.12)598599

σθ �
σ0

3α

[

1 −
3α2

4
W 2

(

p
a2

r2

)

+
3α2

2
W

(

p
a2

r2

)]

(A.13)600601

From Eq. (A.3)2, the hydrostatic and axial stresses are then calculated:602

σh � σz �
σ0

3α

[

1 −
3α2

4
W 2

(

p
a2

r2

)]

(A.14)603604

Coefficient p can be determined from the boundary condition σr (r � a) � 0. Thus, from Eq. (A.12):605

α2W 2(p) + 2α2W (p) −
4

3
� 0 (A.15)606607

The corresponding roots of the last equation are:608

W (p) �
−α ±

√

α2 + 4
3

α
609610

Thus, both the positive (p+) and negative (p−) branches of p are determined:611

⎧

⎪

⎪

⎨

⎪

⎪

⎩

p � p+ � z+ exp(z+), z+ �
−α+

√

α2+ 4
3

α
or

p � p− � z− exp(z−), z− �
−α−

√

α2+ 4
3

α

(A.16)612613
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Appendix B: Development of the second stress field σ 2614

To develop the second trial stress field σ 2, a homogeneous longitudinal stress state is considered:615

σ 2 � σz ez ⊗ ez (B.1)616617

Since σz is constant, the stress tensor σ 2 readily satisfies the equilibrium equation divσ 2 � 0. For this particular618

stress tensor, the von Mises equivalent stress and the hydrostatic stress become, respectively:619

σe � σzsign(σz) and σh �
1

3
σz (B.2)620621

Therefore, the yield condition yields (see Eq. (3)):622

σ 2
z + ασ0σz − σ 2

0 � 0 (B.3)623624

Thus, solving previous equation in terms of the longitudinal stress, we obtain:625

σz �
(

−α ±
√

α2 + 4
)σ0

2
(B.4)626627

Since σ0 > 0, the term
(

−α ±
√

α2 + 4
)

defines the sign of the longitudinal stress σz . Notice in Eq. (B.4) that628

the solution depends on the tension–compression asymmetry by means of parameter α (or k, see Eq. (2)).629

Appendix C: Development of the macroscopic yield function �(�)630

This section is intended to present the development leading to the macroscopic yield function �(�). Starting631

from condition (19), having in mind the matrix yield function (3), the following relation is obtained:632

�(�) �
1

|	|

∫ b

a

∫ H
2

− H
2

∫ 2π

0

(

σ 2
e + 3ασ0σh − σ 2

0

)

rdθdzdr (C.1)633634

In view of the stress superposition (21) and the trial stress fields given in Eqs. (22)–(24) and (30), the first term635

in the right-hand side of Eq. (C.1), can be integrated as follows:636

1

|	|

∫ H
2

− H
2

∫ 2π

0

∫ b

a

σ 2
e rdrdθdz �

1

|	|

∫ H
2

− H
2

∫ 2π

0

∫ b

a

[

A2
1

3α2

4
W 2

(

p
a2

r2

)

+
9

4

(

2

3
A2

)2
]

rdrdθdz637

� −
(

f +
3α2

4
ϒ

)

A2
1 + A2

2(1 − f ) (C.2)638639

in which relations |	| � Hπb2, f � a2

b2 and condition (A.15) have been employed. Moreover, parameter ϒ640

is calculated using in Eq. (29).641

Moreover, also using Eqs. (21), (22)–(24) and (30), the second term in the right-hand side of Eq. (C.1) is642

integrated:643

3ασ0

|	|

∫ H
2

− H
2

∫ 2π

0

∫ b

a

σhrdrdθdz �
2π Hσ0 A1

	

∫ b

a

[

1 −
3α2

4
W 2

(

p
a2

r2

)]

rdr +
2π Hασ0 A2

	

∫ b

a

rdr644

� σ0

(

1 +
3

4
α2ϒ

)

A1 + (1 − f )ασ0 A2 (C.3)645646

where relations |	| � Hπb2, f � a2

b2 and Eq. (A.15) have been used again.647

Finally, the last term on the right hand side of Eq. (C.1) can be easily integrated:648

1

|	|

∫ H
2

− H
2

∫ 2π

0

∫ b

a

σ 2
0 rdrdθdz � (1 − f )σ 2

0 (C.4)649650

Therefore, using Eqs. (C.2)–(C.4), Eq. (C.1) becomes:651

�(�) � −
(

f +
3α2

4
ϒ

)

A2
1 + A2

2(1 − f ) + σ0

(

1 +
3

4
α2ϒ

)

A1 + (1 − f )ασ0 A2 − (1 − f )σ 2
0 � 0 (C.5)652653
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Appendix D: Reference criteria to porous materials with cylindrical voids654

This section aims at summarizing yield criteria that have been proposed in the literature to porous materials655

with cylindrical voids. Those criteria will be considered in this work for comparison purposes. The first one is656

the well-known [17] criterion:657

�G �
�2

e

σ 2
0

+ 2 f cosh

(√
3�m

σ0

)

−
(

1 + f 2
)

� 0 (D.1)658659

where �e is the von Mises equivalent stress and �m � (�1+�2)/2 denotes the mean lateral stress. In the specific660

axisymmetric case of the cylinder shown in Fig. 1c, we have �m � �1 � �2 and �e � |�3 − �1|, that is,661

the von Mises equivalent stress has the absolute value of the equivalent shear stress �sh defined in Eq. (32).662

For a purely hydrostatic loading (�e � �sh � 0), Eq. (D.1) provides the well-known exact solution:663

|�m | �
σ0√

3
ln( f ) (D.2)664665

where the identity arcosh(x) � ln
(

x +
√

x2 − 1
)

, for x ≥ 1, has been used. Notice that, for a purely hydrostatic666

case, we have �m � �h , being �h the hydrostatic stress.667

The second one is the upper bound that has been developed by Lee and Oung [24] employing Gurson’s668

kinematic approach to porous materials with Mises–Schleicher matrix material:669

�
up
L O �

�2
sh

σ 2
0

+ 3 f
�2

m

σ 2
0

+ α(1 − f )
(3�m + �sh)

σ0
− (1 − f )2 � 0 (D.3)670671

where relation �e � ±�sh , between the equivalent von Mises stress �e and the equivalent shear stress �sh672

(See Eq. (32)), has been employed in order to have the same stress components shown in Eq. (35). For a purely673

hydrostatic stress state (�sh � 0), previous criterion becomes:674

3 f
�2

m

σ 2
0

+ 3α(1 − f )
�m

σ0
− (1 − f )2 � 0 (D.4)675676

In addition, when the special case with α → 0 is considered, it results:677

|�m | �
σ0√

3

(1 − f )
√

f
(D.5)678679

which differs from the exact solution (D.2). In order to recover Gurson’s model when α → 0 (von Mises680

matrix material) and also to provide better predictions for high triaxialities, the previous criterion (Eq. (D.3))681

has been heuristically modified by Lee and Oung [24]. Their improved approximate criterion reads:682

�
app
L O �

�2
sh

σ 2
0

+ 2 f cosh

(√
3�m

σ0

)

+ α(1 − f )
(3�m + �sh)

σ0
−

(

1 + f 2
)

� 0 (D.6)683684

where relation �e � ±�sh has been used. Considering a purely hydrostatic loading (�sh � 0), the improved685

criterion yields:686

2 f cosh

(√
3�m

σ0

)

+ 3α(1 − f )
�m

σ0
−

(

1 + f 2
)

� 0 (D.7)687688

which clearly recovers Eq. (D.2) when α → 0.689
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