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A B S T R A C T

In this work, we introduce a novel hp-adaptive strategy. The main goal is to minimize the complexity and imple-
mentational efforts hence increasing the robustness of the algorithm while keeping close to optimal numerical
results. We employ a multi-level hierarchical data structure imposing Dirichlet nodes to manage the so-called
hanging nodes. The hp-adaptive strategy is based on performing quasi-optimal unrefinements. Taking advantage
of the hierarchical structure of the basis functions both in terms of the element size h and the polynomial order
of approximation p, we mark those with the lowest contributions to the energy of the solution and remove them.
This straightforward unrefinement strategy does not need from a fine grid or complex data structures, making
the algorithm flexible to many practical situations and existing implementations. On the other side, we also iden-
tify some limitations of the proposed strategy, namely: (a) data structures only support isotropic h-refinements
(although p-anisotropic refinements are enabled), (b) we assume certain quasi-orthogonality properties of the
basis functions in the energy norm, and (c) in this work, we restrict to symmetric and positive definite problems.
We illustrate these and other advantages and limitations of the proposed hp-adaptive strategy with several one-,
two- and three-dimensional Poisson examples.

1. Introduction

Most engineering applications require a grid and an approximation
space that accurately captures the most salient features of the solution
and satisfies reasonable computational cost constraints. Such features
may include boundary layers or singularities, which could be repro-
duced with small grid elements (h-refinements), and smooth solution
areas that can be superbly approximated with high-order elements (p-
refinements). Often, both h and p refinements need to be combined
within the same problem. When no information on the solution is

☆ The first two authors are supported by Projects of the Spanish Ministry of Economy and Competitiveness with reference MTM2016-76329-R (AEI/FEDER,
EU), MTM2016-81697-ERC and the Basque Government Consolidated Research Group Grant IT649-13 on “Mathematical Modeling, Simulation, and Industrial
Applications (M2SI)”, the BCAM “Severo Ochoa” accreditation of excellence SEV-2017-0718, and the Basque Government through the BERC 2018-2021 program
and the European Union’s Horizon 2020, research and innovation program under the Marie Sklodowska-Curie grant agreement No777778. Last two authors have
been partially supported by the Spanish Government through TEC2016-80386-P.
∗ Corresponding author. Cerfacs, Toulouse, France.

E-mail addresses: vincent.darrigrand@gmail.com (V. Darrigrand), dzubiaur@gmail.com (D. Pardo), theophile.chaumont@inria.fr (T. Chaumont-Frelet),
igomez@diac.upm.es (I. Gómez-Revuelto), legcasti@ing.uc3m.es (L.E. Garcia-Castillo).

known a priori, it is essential to have at our disposal automatic adaptive
algorithms.

Refinement algorithms that simultaneously adapt element sizes h
and polynomial orders of approximation p throughout the grid are
known as hp-adaptive algorithms. When properly designed and imple-
mented, they deliver exponential convergence rates (see [1,2] for the-
oretical results on the subject, and, e.g. [3,4], for numerical results
along with an open-source software). Despite the great convergence
properties exhibited by hp-adaptive algorithms, their industrial use is
still somewhat limited, and only a handful of companies have adopted
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Fig. 1. Re-meshing without hierarchy.

them for their daily computations. We believe this limited use is due to
the high complexity exhibited by most existing hp-adaptive algorithms
and their data-structure employed to manage hanging nodes. Indeed,
these algorithms frequently lead to overly complicated pieces of soft-
ware whose debugging and upgrading requires dedicated and highly-
trained experts on the field. Moreover, they sometimes lack robustness
probably due to the high complexity of the adaptive algorithm and its
associated data structures.

We classify existing hp-adaptive algorithms into two categories:
those based on generating an entirely new mesh (re-meshing), and those
that merely refine an existing mesh. The first option, depicted in Fig. 1,
and proposed, for instance, by Schoberl et al. [5], needs from an effi-
cient mesh generator, thus redirecting the implementation efforts to the
mesh generator rather than to the adaptive data structures. The second
option, based on refining an existing grid, requires complicated data
structures to ensure the global continuity requirements of the solution,
typically via the use of hanging nodes. To limit the implementation
complexity, especially in higher dimensions, most authors restrict their
algorithm to the 1-irregularity rule (see, e.g. [3,6]) that allows for at
most one level of hanging nodes, as illustrated in Fig. 2. Some excep-
tions to the 1-irregularity rule can be found in Refs. [7,8].

Since 2015, Zander et al. proposed new data structures for support-
ing hp-discretizations [9–11]. Using a multi-level approach and hierar-
chical basis functions both in h and in p, they perform global uniform
refinements and impose homogeneous Dirichlet conditions (i.e., they
remove the corresponding basis functions) at those nodes that need not
be refined.

The design of those multi-level meshes with wide use of Dirichlet
nodes overcomes the hanging node difficulties per se: it ensures that
the basis functions of the refined patch vanish at its boundaries, see
Fig. 3. This method highly simplifies previously existing data structures
for supporting hp-adaptive refinements. Moreover, it is possible to eas-

Fig. 3. Multi-level 2D mesh without constraints on hanging nodes using Dirich-
let nodes, see [9] for details.

ily implement it in most of the existing Finite Element codes by sim-
ply generating global refinement trees and properly handling Dirichlet
nodes. However, it also poses some limitations, namely: (a) anisotropic
h-refinements are unsupported, (b) integration costs increase with the
number of levels of h-refinements due to the hierarchical nature of h-
basis functions, and (c) the design of scalable parallelization schemes
may be more challenging, although some works on this area already
exist (see, e.g. [12]). We can also encounter other multi-level implemen-
tations that support anisotropic h-refinements (see [13]) at the expense
of considering slightly more complex data structures.

In this work, and driven by our “simple-to-implement” goal, we
adopt the data structures proposed by Zander et al. [9–11], and we
focus on developing an automatic and relatively simple hp-adaptive
algorithm under these new data structures.

There exists a variety of refinement-based hp-adaptive algorithms.
Amongst others, we shall mention the works of: (a) G. Zumbush [14] in
KASKADE framework, who employs a posteriori error estimators from
[15]; (b) G. Karniadakis et al. [16–18] with the spectral/hp finite
elements implemented in NEKTAR for Computational Fluid Dynam-
ics, which exhibits exponential convergence for complex geometries
but presents the complication of requiring two compatible meshes for
the spectral elements and for h-approximation; (c) B.A. Szabó et al.
[1,19–23], where the emphasis is set on the a priori design of an adapted
mesh joint with a p-adaptive process, (d) Ainsworth et al. [24], which is
simple to implement but it is only designed for isotropic refinements in
h and p and its suitability for industrial applications is unclear; (e) the
Texas 3 Step strategy [25] that performs first an h-adaptive step followed
by a p-adaptive one that leads to non-optimal results; (f) the work of
Demkowicz et al. presented in [3,4,26] and applied in several contexts,
e.g. [27–38], that produces almost optimal meshes but needs from solv-
ing the problem over a globally refined ( h

2 , p + 1)-grid, which is often
prohibitively expensive, and also requires a sophisticated implementa-
tion partially due to the Projection-Based Interpolation (PBI) needed to
compute the error contributions; (g) the work of Houston et al. [39],
which estimates the regularity of the solution with the Legendre coef-
ficients [40] and, (h) the contribution of Zander et al. [41] and appli-
cations [42–45], which combine their multi-level data structure [9,10]
with a classic residual-based estimator [46].

Fig. 2. Meshes illustrating the 1-irregularity rule (panel a) and higher-irregularity rules (panel b).
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We refer to [40] for a recent (Oct. 2014) review and comparison of
some of the existing methods in terms of computational time versus the
number of degrees of freedom (dofs). Note that the implementational
effort is not accounted for in that survey. Finally, we also mention the
family of hp-adaptive Discontinuous Galerkin (DG) methods [47–55],
which require from a specific implementation that is not always easily
transferable to commercial FEM codes.

Inheriting some of the existing hp-adaptive algorithms is simply
unfeasible with the new data structures employed by Zander et al. [41].
For example, the local projections considered by Demkowicz [3] in the
context of hierarchical h-basis functions considered in our work would
lead to an inefficient and overly complex implementation. On the other
side, we may exploit the hierarchical structure of the basis functions
to our advantage and design new hp-adaptive algorithms that could not
be implemented with previous data structures. This is precisely the path
we follow in this work.

Our contribution is an easy-to-implement hp-adaptive strategy. The
main idea is that given a mesh, we perform close to optimal unrefine-
ments by taking advantage of the hierarchical data structures proposed
by Zander et al. [9,10]. We employ quadrilateral elements and select
some of the basis functions that can be easily removed to perform an
unrefinement step (i.e., coarsening a given mesh similarly to [56,57]).
The use of optimal unrefinements rather than refinements delivers a
unique advantage: the algorithm is capable of “correcting” (remov-
ing) undesired unknowns introduced during the pre-asymptotic regime.
An unrefinement scheme is natural to implement with the hierarchical
multi-level data structures employed here, but it would become rather
challenging to use in combination with other data structures such as
those proposed by Demkowicz [3]. For instance, the imposition of the
1-irregularity rule imposes important difficulties when implementing
arbitrary unrefinements.

Let us devise an analogy of our proposed hp-adaptive algorithm in
terms of workload in a business company. The multi-level basis function
structure might be compared to a pyramidal hierarchy of workers and
supervisors. The lowest level workers being the bubble basis functions
(in charge of only one element) and the supervisors being the linear
basis functions (in charge of several elements). The hp-algorithm abides
by the following guidelines: (a) hire arbitrarily, either via a global h, p
or hp-refinements or any other type of refinement selected by the user,
see Appendix B, (b) evaluate the contribution of the last level work-
ers, which correspond to those basis functions that can be removed
without losing completeness, and (c) fire the ineffective workers: (i)
either fire those lazy workers (local p-unrefinement), (ii) or, if all the
last level workers are inefficient, fire the supervisor instead (local h-
unrefinement). To determine the contribution of a basis function, we
consider the difference in energy of the solution with and without the
contribution of that basis function. In the context of h-adaptivity, such
approach relates to the (h − h∕2)-type error estimators, whose conver-
gence has been proven in [58].

In this work, we focus on elliptic problems. We employ 1D, 2D
and 3D numerical results to illustrate the observed convergence behav-
ior. However, we have no convergence proof of the proposed hp-
adaptive algorithm. Due to the complexity of hp-adaptive algorithms,
the lack of convergence proofs is customary in the field (see e.g. Refs.
[3,59]), although some convergence proofs exist for certain algorithms
[57,60–63]. To simplify the exposition, in the numerical results we
consider Poisson problems with homogeneous Dirichlet and Neumann
boundary conditions. The computational domain is the unit square (of
dimension 1 or 2) or a scaled version of it unless specified (L-shaped
domain). The load vector is selected so that the exact solution fits a
specific manufactured solution.

Amongst the existing hp-adaptive algorithms, we select the one
described in [3] to contrast our results. The algorithm proposed in this
book is known to produce optimal hp-meshes in the sense that they pro-
vide the expected exponential convergence rates. The main steps of this
algorithm are: (a) Compute the solution on a coarse mesh; (b) To refine

the coarse mesh in h and p and compute the solution on the globally
refined mesh; (c) To compute the PBI of the fine mesh solution into
the coarse mesh and estimate the error decrease rate of the competing
meshes scaled by the number of added dof; (d) To select the elements to
refine and decide if to apply h- or p-refinements; (e) For h-refined ele-
ments, to determine the optimal order of approximation; (f) To evaluate
the error between the refined and the fine grid to determine whether to
perform another refinement step.

Note that solving the fine grid problem described in [3] is pro-
hibitively expensive in many 3D cases. In contrast, our algorithm
employs a coarse grid that can be partially refined in any form and
later globally unrefined as selected by the optimization algorithm (up to
the initial mesh elements if needed). Thus, we avoid solving an expen-
sive fine grid problem. Additionally, since our approach is based on
performing optimal unrefinements, we correct (i.e., unrefine) elements
that could improperly appear during the pre-asymptotic regime, where
discrete solutions could be highly inaccurate.

The paper is organized as follows: Section 2 describes the data
structures as well as the available mesh operations. Section 3 sets the
definition of the removable basis function that is a key concept of our
method. Section 4 defines the indicators we use to determine which
basis functions may be removed (unrefined). The unrefinement algo-
rithm is described in Section 5 as well as the algorithm performing
the global refinements. Implementation details are exposed in Section
6. Section 7 numerically illustrates our method when applied to 1D,
2D, and 3D examples. We also compare some of our results with those
appearing in Chapters 6 and 14 of book [3]. Finally, we draw some con-
clusions in Section 8. In Appendix A, we display additional 2D exam-
ples built from the one-directional solutions used in the 1D models. In
Appendix B, we consider different refinement strategies illustrating the
flexibility of the presented method when it comes to performing arbi-
trary refinements. Such alternative refinement strategies may be used
to minimize the overall cost of the hp-adaptive algorithm.

2. Definitions

2.1. Abstract variational formulation

Given a domain Ω ⊂ ℝd, where d = 1, 2, or 3 is the spatial dimen-
sion, let ℍ(Ω) be a Hilbert functional space. We denote ‖ · ‖ℍ(Ω) the
norm of ℍ(Ω). Our problem is expressed in abstract variational form as:

(1)

where f is a linear continuous form on ℍ and b a bilinear continuous,
symmetric and elliptic form such that problem (1) admits a unique solu-
tion in ℍ. Note that for simplicity of the presentation, we restrict our-
selves to homogeneous Dirichlet boundary conditions that are directly
incorporated into subspace ℍ.

2.2. Discretization

Let  be a partition of Ω into open active elements Ka such that
Ω = ∪K∈ Ka. ℍ denotes a conforming finite element subspace of ℍ
associated with partition  . The finite element solution of (1) on ℍ is
denoted by u . || || stands for the cardinal of  .

Basis functions: We restrict to quadrilateral/hexahedral elements.
A basis function of ℍ whose support contains an element Ka is built by
tensor product of 1D integrated Legendre polynomials basis functions.
Specifically, a basis function 𝜑 is a product of i 1D linear functions and
d − i bubble functions where i ∈ (0,… , d).

Nodes: Following the notation of [3], we define an abstraction of a
node e as a component of an element K that refers to either a vertex,
an edge, a face, or a volume. We define the dimension de ∈ {0,… , d}

3
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Fig. 4. Nodes distribution and basis functions in one element.

Fig. 5. Hierarchical isotropic mesh element subdivision.

of e according to the dimension of the component it denotes: de = 0
for a vertex, de = 1 for an edge, de = 2 for a face, and de = 3 for
a volume. For instance, in 2D, a quadrilateral element contains four
nodes of dimension 0 (vertices), four of dimension 1 (edges), and one
of dimension 2 (face).

Remark. In the following, we abuse the notation by considering indis-
tinctly an element K either as a set of nodes or as a subdomain of Ω.

Node directions: A node e of dimension de ≠ 0 has a set e ⊂

{1,… , d} of de directions. If the node e is a vertex, de = 0, then we
set e ∶= ∅. The subset of nodes of Ka ∈  containing the direction i is
denoted as Ka,i.

Basis functions associated to a node: A basis function is associated
to a node e of dimension de if it contains the tensor product of exactly
d − de 1D linear functions whose support includes e.

Example. As illustrated in Fig. 4a, Px
1 is associated with vertex 2, Px

2
is associated with vertex 1, and Px

3 is associated with edge 3. In Fig. 4b,
the basis function Px

1Py
1 is associated with vertex 3, Px

1Py
3 is associated

with edge 6, and Px
3Py

3 is associated with face 9.

Node orders For a given node e of dimension de ∈ {1,… , d} of an
element Ka ∈  , the orders of a node is a vector containing the high-
est polynomial order of the basis functions along each of its directions
and it is denoted as p = (p1,… , pde

) ∈ (ℕ ⧵ {0})de . If e has no associated
basis function, then we set p = 1 in each direction. We designate the
pair consisting of a node and its associated orders by ep.

Element orders: The orders of an element Ka ∈  , denoted as
(Ka), is a set that gathers the orders of all its nodes.

2.3. Genealogical tree

Given an arbitrary element K, we define its following genealogy tree
properties:

• Level: The level of an element is the number of successive ancestors
different from itself that it has. For example, a level 0 element is a
root element. The application  ∶ K ↦ n ∈ ℕ returns the element
level.

• Children: If K has been refined, then it admits a set of Nchild children,
{Kj

C}
Nchild
j=1 , as illustrated in Fig. 5. We define the application  that

for K returns the set of children (K) = {Kj
C}

Nchild
j=1 . If K is unrefined,

we define (K) = ∅ unless K is a root active element, in which case
we define (K) = {K}.

• Parent: If there exists a KP such that K ∈ (KP), then KP is called the
parent of K. We define the application  that for K returns its parent
 (K) = {KP}.  ( ) is the set of all parents of the elements of  .

• Siblings: The siblings of K are the elements that share the same parent
element. We define the application  that for a given K returns itself
and its siblings  ∶=  ∘  . Note that if K is a root element, we set
(K) ∶= {K}.

Example. In Fig. 5, we illustrate 1D and 2D genealogical trees.

2.4. Supported refinements and unrefinements

Mesh operations: For a given active element Ka ∈  , we define the
following operations:

4
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Fig. 6. 1D removable basis functions (in green). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)

Fig. 7. 2D removable shape functions (in green). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)

• h -unrefinement on Ka: setting its siblings (Ka) to inactive and
 (Ka) as active.  (Ka) inherits the maximum orders of its children.
Note that if (Ka) = ( (Ka)) = 0, then an h -unrefinement has no
effect since (Ka) =  (Ka) = {Ka}.

• h -refinement on Ka: breaking Ka into a set of children (Ka), and
setting its children active. They inherit the orders of Ka.

• p -unrefinement of one node ep of Ka in one direction i ∈ e: setting
p to max (p − 𝟙i,1) where 𝟙i is a vector of dimension de with 1 in the

ith component and 0 everywhere else.
• p -refinement of one node ep of Ka in one direction i ∈ e: setting p

to p + 𝟙i.
• p -(un)refinement of Ka in one direction i: p -(un)refining, in the

direction i, the interior node of Ka (i.e., e ∈ Ka such that de = d).
The orders of the nodes of lower dimension containing the direction
i are set as the minimum of the orders pi of the contiguous interior
nodes.

5
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3. Removable basis functions

Our automatic adaptive unrefinement strategy takes full advantage
of the hierarchical structure of our basis functions, both in terms of
h and p. The idea is to identify individual basis functions that can be
directly removed from the discretization without affecting the others
and such that the remaining basis functions generate a complete polyno-
mial subspace of ℍ in the sense that such subspace restricted to each
element is given by all polynomials of a given order. We denote them
as removable basis functions (Rmbasis). These will be the candidates for
unrefinement (removal) at a given iteration. Thus, it is essential to iden-

tify them for any given mesh in our adaptive strategy.

Example. Let us illustrate the set of removable basis functions in the
1D cases shown in Fig. 6 and the 2D scenario described by Fig. 7. The
removable basis functions (in green) are selected such that if individu-
ally removed, the remaining subspace still constitutes a complete poly-
nomial subspace. If any other basis functions (drawn in red) would be
removed, we would need to redefine the basis functions for the corre-
sponding space to be complete.

Removable basis functions for the hp -adaptive case: We define
the set of removable basis functions of a node, namely Rmbasis

[
ep
]
, as

follows:

Fig. 8. 1D hp-unrefinements.

Fig. 9. Adaptive algorithm.
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• If ep is a vertex whose associated linear basis function has its support
on one next-to-last level element whose children are of order p = 1
(i.e., no bubbles), this basis function is removable.

• if ep is a node of dimension de ≠ 0, the removable basis functions
in a given direction i ∈ e are the basis functions whose cartesian
product contains the highest degree in the direction i.

The set of removable basis functions in the direction i is denoted
Rmbasis

[
ep, i

]
and we define the set

Rmbasis
[
ep
]
∶= ∪

i∈e
Rmbasis

[
ep, i

]
.

Removable basis functions for the h -adaptive case: When per-
forming h -adaptivity with any order, we need to modify the definition

of removable linear basis function: we consider as removable solely the
linear basis functions whose support is entirely contained on a penulti-
mate level element, independently of the polynomial order of its chil-
dren.

With the above definitions, we obtain the following properties:

• The basis functions of an element K that are eliminated when per-
forming a p-unrefinement in a given direction are removable.

• If there are only linear basis functions in K, then the ones that are
eliminated when performing an h-unrefinement on  (K) are remov-
able.

• When performing h-unrefinements only (for any p), the removable
basis functions coincide with the active linear ones.

Fig. 10. Regular solution. u = sin(2𝜋x).

Fig. 11. Singular solution. u = x
3
5 .
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Notations around removable basis functions: For the ease of the
presentation, we introduce the following notations.

• For any given set of nodes K, we denote Krm the subset of the nodes
of K that contains removable basis functions as for example 

rm ⊂ 

or Krm
a ⊂ Ka ⊂  .

• For any given set of elements  , we denote 
rm
K the set of elements

that contains at least one removable basis function.
• In particular, the subset of  rm

K that contains the nodes with a linear
removable basis function is denoted 

rm
K,h and 

rm
K,p gathers those

with at least one bubble removable basis function.
• We denote the cardinal of any given set K as nK. For example, n


rm

or nKrm
a

.

4. Energy contribution indicators

Since the bilinear form b is symmetric and positive definite, we
denote the energy J(v) ∶= 1

2 b(v, v) − f (v), for any v ∈ ℍ. The solution
u of (1) satisfies

u = argmin
v∈ℍ

J(v) (2)

For a given partition  , the finite elements solution u of (1) in ℍ (u
also verifies (2) in ℍ ) can be decomposed as u = ∑N

i=1 ui𝜑i where N
is the dimension of ℍ .

Contribution in energy For a given ũ ∈ ℍ , we define its energy
contribution as:

(ũ) ∶= J(u − ũ) − J(u )

= 1
2

b(ũ, ũ) − b(u , ũ) + f (ũ)

= 1
2

b(ũ, ũ)

Nodal and elemental indicators: We define the error indicators
for the nodes and the elements as follows:

• For a given node e, such that Rmbasise ≠ ∅, we define

ũe ∶=
∑

𝜑j∈Rmbasis[e]
uj𝜑j. (3)

• For a given node e such that de ≠ 0, and i ∈ e, and Rmbasis [e, i] ≠ ∅,
we define

ũe,i ∶=
∑

𝜑j∈Rmbasis[e,i]
uj𝜑j. (4)

• We define the element-wise error isotropic and anisotropic indica-
tors of Ka ∈ 

rm
K by accumulating the node-wise error indicator of

the element, scaled as per removable basis function as in [3]:

𝜂Ka
∶= 1

n
Rmbasis

[
Krm

a

]
⎛⎜⎜⎝
∑

e∈Krm
a

ũe

⎞⎟⎟⎠
, (5)

𝜂Ka,i
∶= 1

n
Rmbasis

[
Krm

a,i ,i
]

⎛⎜⎜⎜⎝
∑

e∈Krm
a,i

ũe,i

⎞⎟⎟⎟⎠
, ∀i ∈ {1,… , d}. (6)

Remark. Note that u − ũ is different from the solution u
̃

for ̃ being
the subset of  without the basis function selected for the definition of
ũ. They would only coincide if basis functions would be orthogonal in
the norm prescribed by the bilinear form. However, we notice that if||J(u − ũ) − J(u )|| is small then |||J(ũ ) − J(u )

||| is also small. Indeed,
since J is monotonously decreasing as the space is enriching, J(u ) ⩽
J(u

̃
) and J(u ) ⩽ J(u − ũ) since u is a solution of (1). Then,

|||J(ũ ) − J(u )
||| − ||J(u − ũ) − J(u )||

= J(u
̃
) − J(u ) − J(u − ũ) + J(u )

= J(u
̃
) − J(u − ũ)

We notice that, J(u
̃
) ⩽ J(u − ũ) since u − ũ ∈ ℍ

̃
and u

̃
is solution of

(1) in ℍ
̃

. Thus

|||J(ũ ) − J(u )
||| ⩽ ||J(u − ũ) − J(u )|| .

Nonetheless, it may happen that ||J(u − ũ) − J(u )|| is large whereas|||J(ũ ) − J(u )
||| is small. In that case, our algorithm would not remove

such basis function in that particular iteration, making the algorithm
non-optimal. Later unrefinement iterations would correct such mis-
takes.

Fig. 12. High gradient solution. u = atan
(
a
(

x − 1
5

))
+ atan

(
a · 1

5

)
, a = 120.

8
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Fig. 13. Regular solution. The final adapted hp-mesh, Fig. 13a and b, needs 1521 dofs for delivering an error of 2.9 · 10−4%; and the h-mesh, Fig. 13c, delivers an
error of 0.831% for 34,313 dofs. Additionally, for 121 dofs, we obtain an error of 1.199%.

Remark. The indicators are local computable quantities. Indeed, each
ũe involves a limited number of basis functions, and by definition of the
residual , the nodal indicator (ũe) results in local computations and
element-wise accumulations.

To determine which element contains useless basis function(s), we
compute the average “work” per basis function. Then a basis function
is considered useless if its work contribution is below some small per-
centage of the average.

Average quantity The average contribution over all the elements is
computed as:

W

avg = 1
n


rm
K

∑
Ka∈

rm
K

𝜂Ka
.

The local average contribution over the sons of a family is computed
as: For all Ka ∈ 

rm
K , such that (Ka) ≠ 0 and (Ka) ⊂ 

rm
K ,

W , (Ka)
avg = 1

n(Ka)

∑
K∈(Ka)

𝜂K .

We provide a schematic code description for determining the remov-
able basis functions in Algorithm 1 and to compute their contribution
in Algorithm 2.

9
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Algorithm 1 Determination of the removable basis
function.
Inputs: K ∈ 

rm, e ∈ K, i ∈ de
Output: ũe,i

if performing h-unrefinement (any p) then
Mark all last level active linear basis functions as
removable.

Else
if pe,i ⩾ 2 then

Retrieve the indexes of the basis functions up to pe,i − 1.

(continued on next page)

Algorithm 1 (continued)

Retrieve the indexes of the basis functions up to pe,i .
Mark as removable functions all basis functions corresponding with the

difference between both indices lists.
else if the maximum order of all the siblings of K (ie. (K)) is 1, then

Mark the linear basis functions as removable.
Else

The node e has no removable basis function.
End

End

Fig. 14. 2D singular reentrant corner problem. The final adapted hp-mesh, Fig. 14a and b, needs 1521 dofs for delivering an error of 9.46 · 10−3%; and the h-mesh,
Fig. 14c, delivers an error of 0.831% for 15,656 dofs. Additionally, for 383 dofs, we obtain an error of 0.771%. The algorithm of Demkowicz [3] needs between 277
and 417 dofs to reach 1% of error.

10
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Algorithm 2 Computation of the estimators.

Input:  given mesh.
Outputs: 𝜂K, for all K in 

rm.
do for all K in 

rm

do for all e in K and for all i in de
Algorithm 1: Find the removable basis functions ũe and

ũe,i, Eqs. (4) and (4).
End
Compute their contribution: 𝜂Ka

, 𝜂Ka,i
with Eqs. (4) and

(4).
End

5. Algorithm

The core of our approach is the hp-unrefinement step acting on any
given mesh. This algorithm is then encapsulated in a two-steps proce-
dure: 1) Arbitrary refinements that increases the number of (dofs) 2)
hp-unrefinements that decrease it. Let us present first the unrefinement
step and then describe the entire adaptive process.

5.1. Firing (coarsening) policy

The hp firing policy has to decide whether unrefining a given ele-
ment in polynomial order p or element size h. The philosophy is the fol-
lowing: (a) if the selected removable basis function is a bubble, then we
p-unrefine it unless the bubbles of the whole siblinghood are marked,
in which case we h-unrefine the siblinghood; (b) if the selected remov-
able basis function is linear, then the only choice is an h-unrefinement.
The h or p dilemma is illustrated in the 1D case in Fig. 8. Algorithm 3
describes it. We emphasize that the global average is computed only
once on the initial (finest) mesh and remains fixed during the unrefine-
ment process. By doing so, we ensure that the number of unrefinements

decreases along the iterative coarsening process that will eventually
stop.

Algorithm 3 Firing policy (coarsening step).

Inputs:  0 given mesh; 𝛼p, 𝛼h ⩾ 0.
Output:  coarsened mesh
 ∶=  0 initialize the mesh to be unrefined.
Do

Solve: solve the problem on  .
Estimate (Algorithm 2): compute the indicators

𝜂Ka
,∀Ka ∈ 

rm and the average W 0
avg.

p-Mark: ∀Ka ∈ 
rm ⧵ 

rm
h , ∀i ∈ {1,… , d},

if |||𝜂Ka,i
||| ⩽ 𝛼p

|||W 0
avg

|||
then mark Ka for p-unrefinement in the direction i.

h-Mark: ∀Ka ∈ 
rm such that (Ka) ⊂ 

rm,
if |||W , (Ka)

avg
||| ⩽ 𝛼h

|||W
avg

|||,
then mark (Ka) for h-unrefinement.

Escape: if nothing has been marked, return  as
unrefined mesh.

Unrefine: update  .
End

5.2. Global hiring and firing policy

The refining algorithm that includes the unrefining algorithm is kept
simple: One step of refinements and one of unrefinements until the
requested precision is reached. The refinement step is up to the user’s
discretion. We choose to alternate between global h-refinement and p-
refinement. One could, for instance, perform refinements only on part
of the mesh in which the error is suspected to be large. The procedure is
described in Algorithm 4. The complete adaptive process is schematized
in Fig. 9.

Fig. 15. 2D singular reentrant corner problem. Zoom of the hp meshes around the singularity.

11
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Algorithm 4 Adaptive process.

Input:  initial coarse mesh
Output:  adapted mesh
Do

Refine: perform arbitrary refinements on  (h, p or both).
Unrefine (Algorithm 3): Run the firing policy to update  .
Escape: if the unrefined  satisfies a given precision,

return  as the final adapted mesh.
End

Remark 4. In this work, global refinements are performed alterna-
tively in p for one iteration and then in h for the subsequent iteration.
However, when performing p refinements, in the context of hp unrefine-
ments, we impose that the difference in polynomial orders of a given

element and its active neighbors in each direction is below Δp = 6.
Otherwise, instead of p -refining the element, we h -refine it. The reason
behind this choice is that such gaps in polynomial orders occur in the
presence of singularities that are better treated by h -refinements. Our
unrefinement algorithm may fail to detect such cases since the bubble
of higher degree (removable) may exhibit a large estimator and are not
selected for unrefinements. We also impose that the maximum order
should not exceed p = 11. If a p -refinement would provoke such a
situation, we again apply an h -refinement instead.

6. Implementation details

An important feature of our method is its simplicity as on top of the
multi-level data structure. Our hp-adaptive algorithm requires below
one thousand lines written in Fortran for its implementation (includ-

Fig. 16. 2D shock problem. The final adapted hp-mesh, Fig. 16a and b, needs 7260 dofs for delivering an error of 1.3 · 10−3%; and the h-mesh, Fig. 16c, delivers an
error of 1.527% for 39,803 dofs. Additionally, for 856 dofs, we obtain an error of 3.369%. The algorithm of Demkowicz [3] needs between 1261 and 1901 dofs to
reach 1% of error.

12
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ing comments), which is below 10% of the lines used by the algorithm
described in [3,4]. Furthermore, the implementation is independent of
the spatial dimensionality of the problem. Additionally, the same algo-
rithm serves for hp-adaptivity, p-adaptivity for any element-size, and
h-adaptivity for any order.

Regarding computational cost, we compute the solution once per
coarsening iteration, and the computational cost of the local indicators
grows with the number of levels due to the hierarchical data structure
although, in practical cases, the depth of the refinements is limited.
Additionally, the method could also be parallelized following the strat-
egy described in Ref. [12]. At each unrefinement step, the integration
cost decreases as the number of levels and the number of integration
points reduce.

7. Numerical results

In this section, we solve the following problem: for Ω ∶= (a, b)d
where d is the dimension of the domain and ∂Ω = ΓD ∪ ΓN , and
ΓD ∩ ΓN = ∅:

(6)

where f, g and the definitions of ΓD and ΓN are set so that u fits certain
given manufactured solutions and n̂ is the outward normal unit vector.

The relative error between the exact solution u and the approxi-
mated solution uh is computed in percent against the exact solution in
the H1 semi-norm:

eh =
||u − uh||H1|u|H1

· 100.

For every test case, we provide the convergence history for the hp-
adaptive strategy against h-adaptivity with uniform p = 1

and p = 2 .
In the following numerical results, we set the parameters of the

unrefinement process to 𝛼p = 0.1 and 𝛼h = 0.3. Such choice pro-
vides the best results amongst the tested parameters. Furthermore, in
the following examples (and for Appendix A), we perform first a global
h-refinement and, for the next iteration, a global p = p + 2 refine-
ment.

Fig. 17. 3D shock problem: Solution computed on the final adapted hp mesh.

7.1. 1D test problems

We consider the following three manufactured solutions in the
domain Ω = (0,1): A smooth solution, a singular solution, and a solu-
tion with a strong gradient. The initial mesh is composed of two equal-
size elements with orders p = 1.

1. Regular Solution: u = sin(2𝜋x), ΓD = {0} ∪ {1}, ΓN = ∅. The
smoothness of the solution is captured with a coarse mesh with uni-
form relatively elevated orders (p = 3), as shown in Fig. 10. We
need 11 dofs to reach 1% error.

2. Singular Solution: u = x
3
5 exhibits a singular behavior at 0,

ΓD = {0}, ΓN = {1}. The hp-adaptive strategy selects tiny ele-
ments nearby the singularity (of size 10−10) and of growing size as
we move away from the singularity (see Fig. 11). The polynomial
orders are high p = 9 in the element closest to the singularity,
while in the next two elements it decreases quickly to p = 3, and
the rest are set to p = 4. The expected order should be lower, as dis-
cussed by Guo and Babuska [2,64,65]. The non-optimal high order
at the singularity is due to the alternated refinements we performed
and because the contribution of the highest order basis function at
the singularity is above average so the unrefinement algorithm will
not remove it. This behaviour illustrates that, due to Eq. (4), we
cannot ensure that a large estimator implies that the basis function
is necessary. However, we know that a small estimator implies that
the corresponding basis function should be removed. To reach 1%
of error, our algorithm needs around N = 104 dofs whereas the
algorithm of [3] require only N = 80 dofs. However, for N = 145
dofs, we obtain an error of 0.45% where they reached around 0.5%.

3. High-Gradient Solution: u = atan
(

a
(

x − 1
5

))
+ atan

(
a
5

)
for

a = 120, ΓD = {0}, ΓN = {1}, which is a regular solution with
a strong gradient nearby x = 0.2, also known as a shock problem.
The strong gradient (see Fig. 12) is captured by element with both
small h and high p around x = 0.2. To reach 2% Demkowicz [3]
produced a mesh with around N = 23 dofs when our algorithm
needs N = 25 dofs for 4% and N = 38 dofs for 1.4%. Note, how-
ever, that they imposed Dirichlet boundary conditions on the whole
boundary thus, our problem is less stable, which partly explains the
need of extra dofs in the pre-asymptotical regime.

In all considered examples, the adapted mesh captures the main fea-
tures of each solution correctly, and the convergence is exponential and
competitive to other existing methods (see, e.g. [3]).

7.2. 2D test problems

Similarly to the 1D case, we consider the following three manufac-
tured solutions: a smooth solution, a shock problem, and a singular
solution, where the singularity is generated by the non-convexity of
the domain. The initial mesh has four (three for the L-shape domain)
equal-sized linear elements.

1. Regular Solution: u = sin(2𝜋x)sin(2𝜋y), on Ω = (0,1)2 with
ΓD = ∂Ω, ΓN = ∅. We display the results in Fig. 13.

2. Reentrant corner: u = r
2
3 sin( 2

3 (𝜃 +
𝜋

2 )), r =
√

x2 + y2,
𝜃 = atan B(y, x) on Ω = (−1,1)2∖(−1,0)2 with ΓD = {0} × (−1,
1) ∪ (−1, 1) × {0} and ΓN = ∂Ω∖ΓD. The singularity of this
solution comes from the non convexity of the domain. Fig. 14 shows
competitive convergence rates and close to optimal meshes. A zoom
around the singularity of the hp mesh is displayed in Fig. 15

3. Shock problem: u = atan(a(r − 1
2 ) − atan(− a

2 )), a = 60 and r =√
x2 + y2, on Ω = (0,1)2 with ΓD = {(0,0)} and ΓN = ∂Ω∖ΓD.

The solution exhibits a strong gradient around r = 0.5. Fig. 16
gathers the adapted meshes and convergence history. Note that,
although widely used, the problem is ill-posed with such bound-
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Fig. 18. 3D shock problem: Final adapted hp mesh. Since the solution is symmetric, we show only the values of the polynomial order in the z component. We filtered
the elements according to their refinement level, from the largest (0) to smaller elements (higher levels).

ary conditions and there might occur extra refinements around the
point-wise Dirichlet condition. Such extra refinements are visible in
Fig. 16a and b. However, our algorithm is able to finally remove
them, as shown in Fig. 16c.

As for the 1D examples, we show that our algorithm exhibits expo-
nential convergence rates up to a constant based on Babuska’s theory.

7.3. 3D test problems

Finally, we illustrate our algorithm on a manufactured 3D shock
problem: We consider Ω ∶= (0,1)3 and ΓD ∶ = ∂Ω and f is selected
so that u = atan(60(r − 1)) · x(x − 1)y(y − 1)z(z − 1), where
r =

√
x2 + y2 + z2. The initial mesh is a partition of the unit cube into

43 = 64 cubes.
Fig. 17 shows the solution computed on the finest hp mesh. Fig. 18

displays three clips of the hp-adapted mesh. The clipping criteria is the
refinement level of the elements. The shock is correctly captured via hp-
refinements. Fig. 19 shows the convergence results of the algorithm. We
observe that the convergence of the h-adaptive process is linear while
the hp version exhibits exponential-type convergence.

8. Conclusions

We introduce a novel hp-adaptive method for elliptic problems
based on the multi-level data structure developed by Zander et al.
[9,10]. Our goal is to minimize the implementational efforts without
undermining neither the quality of the adapted mesh nor the computa-
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Fig. 19. 3D shock problem: Convergence history.

tional cost.
We present a coarsening strategy that relies on the contribution of

each removable basis function. If its contribution is small, then it is
marked for unrefinement. Such unrefining policy does not rely on the
initial mesh, thus providing great flexibility to build a fine mesh can-
didate for coarsening. Furthermore, by being able to unrefine a given
mesh several times in a row, we can correct potential mistakes com-
mitted in previous iterations. This is especially advantageous since it
allows to remove unnecessary refinements possibly introduced during
the pre-asymptotic regime.

We numerically demonstrate using standard academic test problems
that our method produces close to optimal meshes when compared with
other existing techniques as e.g. [3]. Indeed, we were able to detect
and adjust the meshes properly for solutions that exhibit singularities,
strong gradients, or even regular solutions in 1D and 2D and strong
gradients in 3D.

The main advantages are both the limited implementation efforts
and the flexibility of the refinement strategy. We also identified some
limitations of the proposed hp-adaptive algorithm: (a) the lack of
orthogonality of the basis functions may lead to non-optimal results,
(b) the definition of the multi-level data structure forces isotropic h-
(un)refinements, and (c) the current hp-adaptive algorithm is limited
to elliptic problems due to the definition of the error indicators. The
first limitation is a direct consequence of the lack of using projections,
which also simplifies the implementation. The second one is due to the
employed data structures. One possibility to overcome it would be the
use of other data structures such as the ones discussed in [13]. To over-
come the last one, in turn, we require a re-definition of the indicators
that will be the object of future studies.

The continuation of this work includes: (a) the extension to non-
elliptic problems perhaps via the use of a residual minimization method
for providing an adequate error representation, (b) the use of triangular,
tetrahedral, or hexahedral meshes, (c) the development of goal-oriented
indicators following a similar element-wise strategy as in Refs. [66,67],
and (d) the description of complex geometries by curved isoparametric
elements instead of straight elements.
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Appendix A. 2D results with one dimensional solutions

This appendix describes additional 2D results: we consider the 1D examples of section 7.1 and we extend them to a 2D domain by considering a
constant solution in y with homogeneous Neumann boundary conditions at the edges y = 0 and y = 1. In the case of the shock problem, we now
centered the shock around x = 0.5 instead of x = 0.2 as in the 1D example. The results are displayed in Figs. 20, 21, and 22. In every test case,
we observe that the meshes seem optimal and as expected: one dimensional both in h and p, and the y-directional orders are constant and equal to
1. As for the other 2D example of section 7.2, the convergence is exponential. However, we observe that the singular solution 21 does not provide
exponential convergence. These examples serve to expose the limitation due to the lack of anisotropic refinements in h. Without such limitation, we
would have been able to recover the exponential convergence rate as for the 1D case.

Fig. 20 One dimensional regular solution solved in a 2D mesh.
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Fig. 21 One dimensional singular solution solved in a 2D mesh. The final adapted hp-mesh, Figures A.21a and A.21b, needs 17,041 dofs to deliver an error of 4.878%; and the h-mesh,
Figure A.21c, has an associated solution with error equal 8.2% for 21,100 dofs.
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Fig. 22 One dimensional strong gradient solution solved in a 2D mesh. The final adapted hp-mesh, A.22a and A.22b, needs 1372 dofs to deliver an error of 2.24 · 10−3%; and the
h-mesh, Figure A.22c, has an associated solution with error equal 2.89% for 15,858 dofs.

Appendix B. Different refinement strategy

This section is devoted to showing the flexibility of the refinement step. In the following, instead of performing global refinements alternating
between h and p + 2 globally refined grids, as used in the previously exposed numerical results in Section 7, we h-refine half of the mesh (all
descendants of two initial mesh elements) and p + 2 refine the other half (all descendants of the other two initial elements), switching their role at
the next refinement iteration. Such an alternative refinement process illustrates one of the different options that one could employ when performing
refinements. For example, it is also possible to refine only half of the mesh at each step and/or employ other alternatives suitable for a particular
application. Some of them may considerably reduce the overall cost of the adaptive algorithm. Alternatively, one may also use a partially converged
iterative solver to solve the fine grid problem (following a similar strategy as in [27]).

We illustrate the aforementioned strategy with the 2D L-shape problem (Fig. 23) and the 2D shock problem (Fig. 24). The resulting convergence
curves exhibit similar behavior as with the original refinement process.
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Fig. 23 2D L-shape problem. Alternative hp-adaptive refinement strategy where the global refinement steps combine simultaneously p- and h-refinements.
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Fig. 24 2D shock problem. Alternative hp-adaptive refinement strategy where the global refinement steps combine simultaneously p- and h-refinements.
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